Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Copyright (C) 2001 Jens Axboe <axboe@suse.de>
4 */
5#ifndef __LINUX_BIO_H
6#define __LINUX_BIO_H
7
8#include <linux/mempool.h>
9/* struct bio, bio_vec and BIO_* flags are defined in blk_types.h */
10#include <linux/blk_types.h>
11#include <linux/uio.h>
12
13#define BIO_MAX_VECS 256U
14
15struct queue_limits;
16
17static inline unsigned int bio_max_segs(unsigned int nr_segs)
18{
19 return min(nr_segs, BIO_MAX_VECS);
20}
21
22#define bio_prio(bio) (bio)->bi_ioprio
23#define bio_set_prio(bio, prio) ((bio)->bi_ioprio = prio)
24
25#define bio_iter_iovec(bio, iter) \
26 bvec_iter_bvec((bio)->bi_io_vec, (iter))
27
28#define bio_iter_page(bio, iter) \
29 bvec_iter_page((bio)->bi_io_vec, (iter))
30#define bio_iter_len(bio, iter) \
31 bvec_iter_len((bio)->bi_io_vec, (iter))
32#define bio_iter_offset(bio, iter) \
33 bvec_iter_offset((bio)->bi_io_vec, (iter))
34
35#define bio_page(bio) bio_iter_page((bio), (bio)->bi_iter)
36#define bio_offset(bio) bio_iter_offset((bio), (bio)->bi_iter)
37#define bio_iovec(bio) bio_iter_iovec((bio), (bio)->bi_iter)
38
39#define bvec_iter_sectors(iter) ((iter).bi_size >> 9)
40#define bvec_iter_end_sector(iter) ((iter).bi_sector + bvec_iter_sectors((iter)))
41
42#define bio_sectors(bio) bvec_iter_sectors((bio)->bi_iter)
43#define bio_end_sector(bio) bvec_iter_end_sector((bio)->bi_iter)
44
45/*
46 * Return the data direction, READ or WRITE.
47 */
48#define bio_data_dir(bio) \
49 (op_is_write(bio_op(bio)) ? WRITE : READ)
50
51/*
52 * Check whether this bio carries any data or not. A NULL bio is allowed.
53 */
54static inline bool bio_has_data(struct bio *bio)
55{
56 if (bio &&
57 bio->bi_iter.bi_size &&
58 bio_op(bio) != REQ_OP_DISCARD &&
59 bio_op(bio) != REQ_OP_SECURE_ERASE &&
60 bio_op(bio) != REQ_OP_WRITE_ZEROES)
61 return true;
62
63 return false;
64}
65
66static inline bool bio_no_advance_iter(const struct bio *bio)
67{
68 return bio_op(bio) == REQ_OP_DISCARD ||
69 bio_op(bio) == REQ_OP_SECURE_ERASE ||
70 bio_op(bio) == REQ_OP_WRITE_ZEROES;
71}
72
73static inline void *bio_data(struct bio *bio)
74{
75 if (bio_has_data(bio))
76 return page_address(bio_page(bio)) + bio_offset(bio);
77
78 return NULL;
79}
80
81static inline bool bio_next_segment(const struct bio *bio,
82 struct bvec_iter_all *iter)
83{
84 if (iter->idx >= bio->bi_vcnt)
85 return false;
86
87 bvec_advance(&bio->bi_io_vec[iter->idx], iter);
88 return true;
89}
90
91/*
92 * drivers should _never_ use the all version - the bio may have been split
93 * before it got to the driver and the driver won't own all of it
94 */
95#define bio_for_each_segment_all(bvl, bio, iter) \
96 for (bvl = bvec_init_iter_all(&iter); bio_next_segment((bio), &iter); )
97
98static inline void bio_advance_iter(const struct bio *bio,
99 struct bvec_iter *iter, unsigned int bytes)
100{
101 iter->bi_sector += bytes >> 9;
102
103 if (bio_no_advance_iter(bio))
104 iter->bi_size -= bytes;
105 else
106 bvec_iter_advance(bio->bi_io_vec, iter, bytes);
107 /* TODO: It is reasonable to complete bio with error here. */
108}
109
110/* @bytes should be less or equal to bvec[i->bi_idx].bv_len */
111static inline void bio_advance_iter_single(const struct bio *bio,
112 struct bvec_iter *iter,
113 unsigned int bytes)
114{
115 iter->bi_sector += bytes >> 9;
116
117 if (bio_no_advance_iter(bio))
118 iter->bi_size -= bytes;
119 else
120 bvec_iter_advance_single(bio->bi_io_vec, iter, bytes);
121}
122
123void __bio_advance(struct bio *, unsigned bytes);
124
125/**
126 * bio_advance - increment/complete a bio by some number of bytes
127 * @bio: bio to advance
128 * @nbytes: number of bytes to complete
129 *
130 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
131 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
132 * be updated on the last bvec as well.
133 *
134 * @bio will then represent the remaining, uncompleted portion of the io.
135 */
136static inline void bio_advance(struct bio *bio, unsigned int nbytes)
137{
138 if (nbytes == bio->bi_iter.bi_size) {
139 bio->bi_iter.bi_size = 0;
140 return;
141 }
142 __bio_advance(bio, nbytes);
143}
144
145#define __bio_for_each_segment(bvl, bio, iter, start) \
146 for (iter = (start); \
147 (iter).bi_size && \
148 ((bvl = bio_iter_iovec((bio), (iter))), 1); \
149 bio_advance_iter_single((bio), &(iter), (bvl).bv_len))
150
151#define bio_for_each_segment(bvl, bio, iter) \
152 __bio_for_each_segment(bvl, bio, iter, (bio)->bi_iter)
153
154#define __bio_for_each_bvec(bvl, bio, iter, start) \
155 for (iter = (start); \
156 (iter).bi_size && \
157 ((bvl = mp_bvec_iter_bvec((bio)->bi_io_vec, (iter))), 1); \
158 bio_advance_iter_single((bio), &(iter), (bvl).bv_len))
159
160/* iterate over multi-page bvec */
161#define bio_for_each_bvec(bvl, bio, iter) \
162 __bio_for_each_bvec(bvl, bio, iter, (bio)->bi_iter)
163
164/*
165 * Iterate over all multi-page bvecs. Drivers shouldn't use this version for the
166 * same reasons as bio_for_each_segment_all().
167 */
168#define bio_for_each_bvec_all(bvl, bio, i) \
169 for (i = 0, bvl = bio_first_bvec_all(bio); \
170 i < (bio)->bi_vcnt; i++, bvl++)
171
172#define bio_iter_last(bvec, iter) ((iter).bi_size == (bvec).bv_len)
173
174static inline unsigned bio_segments(struct bio *bio)
175{
176 unsigned segs = 0;
177 struct bio_vec bv;
178 struct bvec_iter iter;
179
180 /*
181 * We special case discard/write same/write zeroes, because they
182 * interpret bi_size differently:
183 */
184
185 switch (bio_op(bio)) {
186 case REQ_OP_DISCARD:
187 case REQ_OP_SECURE_ERASE:
188 case REQ_OP_WRITE_ZEROES:
189 return 0;
190 default:
191 break;
192 }
193
194 bio_for_each_segment(bv, bio, iter)
195 segs++;
196
197 return segs;
198}
199
200/*
201 * get a reference to a bio, so it won't disappear. the intended use is
202 * something like:
203 *
204 * bio_get(bio);
205 * submit_bio(rw, bio);
206 * if (bio->bi_flags ...)
207 * do_something
208 * bio_put(bio);
209 *
210 * without the bio_get(), it could potentially complete I/O before submit_bio
211 * returns. and then bio would be freed memory when if (bio->bi_flags ...)
212 * runs
213 */
214static inline void bio_get(struct bio *bio)
215{
216 bio->bi_flags |= (1 << BIO_REFFED);
217 smp_mb__before_atomic();
218 atomic_inc(&bio->__bi_cnt);
219}
220
221static inline void bio_cnt_set(struct bio *bio, unsigned int count)
222{
223 if (count != 1) {
224 bio->bi_flags |= (1 << BIO_REFFED);
225 smp_mb();
226 }
227 atomic_set(&bio->__bi_cnt, count);
228}
229
230static inline bool bio_flagged(struct bio *bio, unsigned int bit)
231{
232 return bio->bi_flags & (1U << bit);
233}
234
235static inline void bio_set_flag(struct bio *bio, unsigned int bit)
236{
237 bio->bi_flags |= (1U << bit);
238}
239
240static inline void bio_clear_flag(struct bio *bio, unsigned int bit)
241{
242 bio->bi_flags &= ~(1U << bit);
243}
244
245static inline struct bio_vec *bio_first_bvec_all(struct bio *bio)
246{
247 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
248 return bio->bi_io_vec;
249}
250
251static inline struct page *bio_first_page_all(struct bio *bio)
252{
253 return bio_first_bvec_all(bio)->bv_page;
254}
255
256static inline struct bio_vec *bio_last_bvec_all(struct bio *bio)
257{
258 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
259 return &bio->bi_io_vec[bio->bi_vcnt - 1];
260}
261
262/**
263 * struct folio_iter - State for iterating all folios in a bio.
264 * @folio: The current folio we're iterating. NULL after the last folio.
265 * @offset: The byte offset within the current folio.
266 * @length: The number of bytes in this iteration (will not cross folio
267 * boundary).
268 */
269struct folio_iter {
270 struct folio *folio;
271 size_t offset;
272 size_t length;
273 /* private: for use by the iterator */
274 struct folio *_next;
275 size_t _seg_count;
276 int _i;
277};
278
279static inline void bio_first_folio(struct folio_iter *fi, struct bio *bio,
280 int i)
281{
282 struct bio_vec *bvec = bio_first_bvec_all(bio) + i;
283
284 fi->folio = page_folio(bvec->bv_page);
285 fi->offset = bvec->bv_offset +
286 PAGE_SIZE * (bvec->bv_page - &fi->folio->page);
287 fi->_seg_count = bvec->bv_len;
288 fi->length = min(folio_size(fi->folio) - fi->offset, fi->_seg_count);
289 fi->_next = folio_next(fi->folio);
290 fi->_i = i;
291}
292
293static inline void bio_next_folio(struct folio_iter *fi, struct bio *bio)
294{
295 fi->_seg_count -= fi->length;
296 if (fi->_seg_count) {
297 fi->folio = fi->_next;
298 fi->offset = 0;
299 fi->length = min(folio_size(fi->folio), fi->_seg_count);
300 fi->_next = folio_next(fi->folio);
301 } else if (fi->_i + 1 < bio->bi_vcnt) {
302 bio_first_folio(fi, bio, fi->_i + 1);
303 } else {
304 fi->folio = NULL;
305 }
306}
307
308/**
309 * bio_for_each_folio_all - Iterate over each folio in a bio.
310 * @fi: struct folio_iter which is updated for each folio.
311 * @bio: struct bio to iterate over.
312 */
313#define bio_for_each_folio_all(fi, bio) \
314 for (bio_first_folio(&fi, bio, 0); fi.folio; bio_next_folio(&fi, bio))
315
316enum bip_flags {
317 BIP_BLOCK_INTEGRITY = 1 << 0, /* block layer owns integrity data */
318 BIP_MAPPED_INTEGRITY = 1 << 1, /* ref tag has been remapped */
319 BIP_CTRL_NOCHECK = 1 << 2, /* disable HBA integrity checking */
320 BIP_DISK_NOCHECK = 1 << 3, /* disable disk integrity checking */
321 BIP_IP_CHECKSUM = 1 << 4, /* IP checksum */
322};
323
324/*
325 * bio integrity payload
326 */
327struct bio_integrity_payload {
328 struct bio *bip_bio; /* parent bio */
329
330 struct bvec_iter bip_iter;
331
332 unsigned short bip_vcnt; /* # of integrity bio_vecs */
333 unsigned short bip_max_vcnt; /* integrity bio_vec slots */
334 unsigned short bip_flags; /* control flags */
335
336 struct bvec_iter bio_iter; /* for rewinding parent bio */
337
338 struct work_struct bip_work; /* I/O completion */
339
340 struct bio_vec *bip_vec;
341 struct bio_vec bip_inline_vecs[];/* embedded bvec array */
342};
343
344#if defined(CONFIG_BLK_DEV_INTEGRITY)
345
346static inline struct bio_integrity_payload *bio_integrity(struct bio *bio)
347{
348 if (bio->bi_opf & REQ_INTEGRITY)
349 return bio->bi_integrity;
350
351 return NULL;
352}
353
354static inline bool bio_integrity_flagged(struct bio *bio, enum bip_flags flag)
355{
356 struct bio_integrity_payload *bip = bio_integrity(bio);
357
358 if (bip)
359 return bip->bip_flags & flag;
360
361 return false;
362}
363
364static inline sector_t bip_get_seed(struct bio_integrity_payload *bip)
365{
366 return bip->bip_iter.bi_sector;
367}
368
369static inline void bip_set_seed(struct bio_integrity_payload *bip,
370 sector_t seed)
371{
372 bip->bip_iter.bi_sector = seed;
373}
374
375#endif /* CONFIG_BLK_DEV_INTEGRITY */
376
377void bio_trim(struct bio *bio, sector_t offset, sector_t size);
378extern struct bio *bio_split(struct bio *bio, int sectors,
379 gfp_t gfp, struct bio_set *bs);
380struct bio *bio_split_rw(struct bio *bio, const struct queue_limits *lim,
381 unsigned *segs, struct bio_set *bs, unsigned max_bytes);
382
383/**
384 * bio_next_split - get next @sectors from a bio, splitting if necessary
385 * @bio: bio to split
386 * @sectors: number of sectors to split from the front of @bio
387 * @gfp: gfp mask
388 * @bs: bio set to allocate from
389 *
390 * Return: a bio representing the next @sectors of @bio - if the bio is smaller
391 * than @sectors, returns the original bio unchanged.
392 */
393static inline struct bio *bio_next_split(struct bio *bio, int sectors,
394 gfp_t gfp, struct bio_set *bs)
395{
396 if (sectors >= bio_sectors(bio))
397 return bio;
398
399 return bio_split(bio, sectors, gfp, bs);
400}
401
402enum {
403 BIOSET_NEED_BVECS = BIT(0),
404 BIOSET_NEED_RESCUER = BIT(1),
405 BIOSET_PERCPU_CACHE = BIT(2),
406};
407extern int bioset_init(struct bio_set *, unsigned int, unsigned int, int flags);
408extern void bioset_exit(struct bio_set *);
409extern int biovec_init_pool(mempool_t *pool, int pool_entries);
410
411struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs,
412 blk_opf_t opf, gfp_t gfp_mask,
413 struct bio_set *bs);
414struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask);
415extern void bio_put(struct bio *);
416
417struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src,
418 gfp_t gfp, struct bio_set *bs);
419int bio_init_clone(struct block_device *bdev, struct bio *bio,
420 struct bio *bio_src, gfp_t gfp);
421
422extern struct bio_set fs_bio_set;
423
424static inline struct bio *bio_alloc(struct block_device *bdev,
425 unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp_mask)
426{
427 return bio_alloc_bioset(bdev, nr_vecs, opf, gfp_mask, &fs_bio_set);
428}
429
430void submit_bio(struct bio *bio);
431
432extern void bio_endio(struct bio *);
433
434static inline void bio_io_error(struct bio *bio)
435{
436 bio->bi_status = BLK_STS_IOERR;
437 bio_endio(bio);
438}
439
440static inline void bio_wouldblock_error(struct bio *bio)
441{
442 bio_set_flag(bio, BIO_QUIET);
443 bio->bi_status = BLK_STS_AGAIN;
444 bio_endio(bio);
445}
446
447/*
448 * Calculate number of bvec segments that should be allocated to fit data
449 * pointed by @iter. If @iter is backed by bvec it's going to be reused
450 * instead of allocating a new one.
451 */
452static inline int bio_iov_vecs_to_alloc(struct iov_iter *iter, int max_segs)
453{
454 if (iov_iter_is_bvec(iter))
455 return 0;
456 return iov_iter_npages(iter, max_segs);
457}
458
459struct request_queue;
460
461extern int submit_bio_wait(struct bio *bio);
462void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table,
463 unsigned short max_vecs, blk_opf_t opf);
464extern void bio_uninit(struct bio *);
465void bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf);
466void bio_chain(struct bio *, struct bio *);
467
468int __must_check bio_add_page(struct bio *bio, struct page *page, unsigned len,
469 unsigned off);
470bool __must_check bio_add_folio(struct bio *bio, struct folio *folio,
471 size_t len, size_t off);
472extern int bio_add_pc_page(struct request_queue *, struct bio *, struct page *,
473 unsigned int, unsigned int);
474int bio_add_zone_append_page(struct bio *bio, struct page *page,
475 unsigned int len, unsigned int offset);
476void __bio_add_page(struct bio *bio, struct page *page,
477 unsigned int len, unsigned int off);
478void bio_add_folio_nofail(struct bio *bio, struct folio *folio, size_t len,
479 size_t off);
480int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter);
481void bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter);
482void __bio_release_pages(struct bio *bio, bool mark_dirty);
483extern void bio_set_pages_dirty(struct bio *bio);
484extern void bio_check_pages_dirty(struct bio *bio);
485
486extern void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
487 struct bio *src, struct bvec_iter *src_iter);
488extern void bio_copy_data(struct bio *dst, struct bio *src);
489extern void bio_free_pages(struct bio *bio);
490void guard_bio_eod(struct bio *bio);
491void zero_fill_bio(struct bio *bio);
492
493static inline void bio_release_pages(struct bio *bio, bool mark_dirty)
494{
495 if (bio_flagged(bio, BIO_PAGE_PINNED))
496 __bio_release_pages(bio, mark_dirty);
497}
498
499#define bio_dev(bio) \
500 disk_devt((bio)->bi_bdev->bd_disk)
501
502#ifdef CONFIG_BLK_CGROUP
503void bio_associate_blkg(struct bio *bio);
504void bio_associate_blkg_from_css(struct bio *bio,
505 struct cgroup_subsys_state *css);
506void bio_clone_blkg_association(struct bio *dst, struct bio *src);
507void blkcg_punt_bio_submit(struct bio *bio);
508#else /* CONFIG_BLK_CGROUP */
509static inline void bio_associate_blkg(struct bio *bio) { }
510static inline void bio_associate_blkg_from_css(struct bio *bio,
511 struct cgroup_subsys_state *css)
512{ }
513static inline void bio_clone_blkg_association(struct bio *dst,
514 struct bio *src) { }
515static inline void blkcg_punt_bio_submit(struct bio *bio)
516{
517 submit_bio(bio);
518}
519#endif /* CONFIG_BLK_CGROUP */
520
521static inline void bio_set_dev(struct bio *bio, struct block_device *bdev)
522{
523 bio_clear_flag(bio, BIO_REMAPPED);
524 if (bio->bi_bdev != bdev)
525 bio_clear_flag(bio, BIO_BPS_THROTTLED);
526 bio->bi_bdev = bdev;
527 bio_associate_blkg(bio);
528}
529
530/*
531 * BIO list management for use by remapping drivers (e.g. DM or MD) and loop.
532 *
533 * A bio_list anchors a singly-linked list of bios chained through the bi_next
534 * member of the bio. The bio_list also caches the last list member to allow
535 * fast access to the tail.
536 */
537struct bio_list {
538 struct bio *head;
539 struct bio *tail;
540};
541
542static inline int bio_list_empty(const struct bio_list *bl)
543{
544 return bl->head == NULL;
545}
546
547static inline void bio_list_init(struct bio_list *bl)
548{
549 bl->head = bl->tail = NULL;
550}
551
552#define BIO_EMPTY_LIST { NULL, NULL }
553
554#define bio_list_for_each(bio, bl) \
555 for (bio = (bl)->head; bio; bio = bio->bi_next)
556
557static inline unsigned bio_list_size(const struct bio_list *bl)
558{
559 unsigned sz = 0;
560 struct bio *bio;
561
562 bio_list_for_each(bio, bl)
563 sz++;
564
565 return sz;
566}
567
568static inline void bio_list_add(struct bio_list *bl, struct bio *bio)
569{
570 bio->bi_next = NULL;
571
572 if (bl->tail)
573 bl->tail->bi_next = bio;
574 else
575 bl->head = bio;
576
577 bl->tail = bio;
578}
579
580static inline void bio_list_add_head(struct bio_list *bl, struct bio *bio)
581{
582 bio->bi_next = bl->head;
583
584 bl->head = bio;
585
586 if (!bl->tail)
587 bl->tail = bio;
588}
589
590static inline void bio_list_merge(struct bio_list *bl, struct bio_list *bl2)
591{
592 if (!bl2->head)
593 return;
594
595 if (bl->tail)
596 bl->tail->bi_next = bl2->head;
597 else
598 bl->head = bl2->head;
599
600 bl->tail = bl2->tail;
601}
602
603static inline void bio_list_merge_head(struct bio_list *bl,
604 struct bio_list *bl2)
605{
606 if (!bl2->head)
607 return;
608
609 if (bl->head)
610 bl2->tail->bi_next = bl->head;
611 else
612 bl->tail = bl2->tail;
613
614 bl->head = bl2->head;
615}
616
617static inline struct bio *bio_list_peek(struct bio_list *bl)
618{
619 return bl->head;
620}
621
622static inline struct bio *bio_list_pop(struct bio_list *bl)
623{
624 struct bio *bio = bl->head;
625
626 if (bio) {
627 bl->head = bl->head->bi_next;
628 if (!bl->head)
629 bl->tail = NULL;
630
631 bio->bi_next = NULL;
632 }
633
634 return bio;
635}
636
637static inline struct bio *bio_list_get(struct bio_list *bl)
638{
639 struct bio *bio = bl->head;
640
641 bl->head = bl->tail = NULL;
642
643 return bio;
644}
645
646/*
647 * Increment chain count for the bio. Make sure the CHAIN flag update
648 * is visible before the raised count.
649 */
650static inline void bio_inc_remaining(struct bio *bio)
651{
652 bio_set_flag(bio, BIO_CHAIN);
653 smp_mb__before_atomic();
654 atomic_inc(&bio->__bi_remaining);
655}
656
657/*
658 * bio_set is used to allow other portions of the IO system to
659 * allocate their own private memory pools for bio and iovec structures.
660 * These memory pools in turn all allocate from the bio_slab
661 * and the bvec_slabs[].
662 */
663#define BIO_POOL_SIZE 2
664
665struct bio_set {
666 struct kmem_cache *bio_slab;
667 unsigned int front_pad;
668
669 /*
670 * per-cpu bio alloc cache
671 */
672 struct bio_alloc_cache __percpu *cache;
673
674 mempool_t bio_pool;
675 mempool_t bvec_pool;
676#if defined(CONFIG_BLK_DEV_INTEGRITY)
677 mempool_t bio_integrity_pool;
678 mempool_t bvec_integrity_pool;
679#endif
680
681 unsigned int back_pad;
682 /*
683 * Deadlock avoidance for stacking block drivers: see comments in
684 * bio_alloc_bioset() for details
685 */
686 spinlock_t rescue_lock;
687 struct bio_list rescue_list;
688 struct work_struct rescue_work;
689 struct workqueue_struct *rescue_workqueue;
690
691 /*
692 * Hot un-plug notifier for the per-cpu cache, if used
693 */
694 struct hlist_node cpuhp_dead;
695};
696
697static inline bool bioset_initialized(struct bio_set *bs)
698{
699 return bs->bio_slab != NULL;
700}
701
702#if defined(CONFIG_BLK_DEV_INTEGRITY)
703
704#define bip_for_each_vec(bvl, bip, iter) \
705 for_each_bvec(bvl, (bip)->bip_vec, iter, (bip)->bip_iter)
706
707#define bio_for_each_integrity_vec(_bvl, _bio, _iter) \
708 for_each_bio(_bio) \
709 bip_for_each_vec(_bvl, _bio->bi_integrity, _iter)
710
711extern struct bio_integrity_payload *bio_integrity_alloc(struct bio *, gfp_t, unsigned int);
712extern int bio_integrity_add_page(struct bio *, struct page *, unsigned int, unsigned int);
713extern bool bio_integrity_prep(struct bio *);
714extern void bio_integrity_advance(struct bio *, unsigned int);
715extern void bio_integrity_trim(struct bio *);
716extern int bio_integrity_clone(struct bio *, struct bio *, gfp_t);
717extern int bioset_integrity_create(struct bio_set *, int);
718extern void bioset_integrity_free(struct bio_set *);
719extern void bio_integrity_init(void);
720
721#else /* CONFIG_BLK_DEV_INTEGRITY */
722
723static inline void *bio_integrity(struct bio *bio)
724{
725 return NULL;
726}
727
728static inline int bioset_integrity_create(struct bio_set *bs, int pool_size)
729{
730 return 0;
731}
732
733static inline void bioset_integrity_free (struct bio_set *bs)
734{
735 return;
736}
737
738static inline bool bio_integrity_prep(struct bio *bio)
739{
740 return true;
741}
742
743static inline int bio_integrity_clone(struct bio *bio, struct bio *bio_src,
744 gfp_t gfp_mask)
745{
746 return 0;
747}
748
749static inline void bio_integrity_advance(struct bio *bio,
750 unsigned int bytes_done)
751{
752 return;
753}
754
755static inline void bio_integrity_trim(struct bio *bio)
756{
757 return;
758}
759
760static inline void bio_integrity_init(void)
761{
762 return;
763}
764
765static inline bool bio_integrity_flagged(struct bio *bio, enum bip_flags flag)
766{
767 return false;
768}
769
770static inline void *bio_integrity_alloc(struct bio * bio, gfp_t gfp,
771 unsigned int nr)
772{
773 return ERR_PTR(-EINVAL);
774}
775
776static inline int bio_integrity_add_page(struct bio *bio, struct page *page,
777 unsigned int len, unsigned int offset)
778{
779 return 0;
780}
781
782#endif /* CONFIG_BLK_DEV_INTEGRITY */
783
784/*
785 * Mark a bio as polled. Note that for async polled IO, the caller must
786 * expect -EWOULDBLOCK if we cannot allocate a request (or other resources).
787 * We cannot block waiting for requests on polled IO, as those completions
788 * must be found by the caller. This is different than IRQ driven IO, where
789 * it's safe to wait for IO to complete.
790 */
791static inline void bio_set_polled(struct bio *bio, struct kiocb *kiocb)
792{
793 bio->bi_opf |= REQ_POLLED;
794 if (kiocb->ki_flags & IOCB_NOWAIT)
795 bio->bi_opf |= REQ_NOWAIT;
796}
797
798static inline void bio_clear_polled(struct bio *bio)
799{
800 bio->bi_opf &= ~REQ_POLLED;
801}
802
803struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev,
804 unsigned int nr_pages, blk_opf_t opf, gfp_t gfp);
805
806#endif /* __LINUX_BIO_H */