Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * fs/f2fs/data.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8#include <linux/fs.h>
9#include <linux/f2fs_fs.h>
10#include <linux/buffer_head.h>
11#include <linux/sched/mm.h>
12#include <linux/mpage.h>
13#include <linux/writeback.h>
14#include <linux/pagevec.h>
15#include <linux/blkdev.h>
16#include <linux/bio.h>
17#include <linux/blk-crypto.h>
18#include <linux/swap.h>
19#include <linux/prefetch.h>
20#include <linux/uio.h>
21#include <linux/sched/signal.h>
22#include <linux/fiemap.h>
23#include <linux/iomap.h>
24
25#include "f2fs.h"
26#include "node.h"
27#include "segment.h"
28#include "iostat.h"
29#include <trace/events/f2fs.h>
30
31#define NUM_PREALLOC_POST_READ_CTXS 128
32
33static struct kmem_cache *bio_post_read_ctx_cache;
34static struct kmem_cache *bio_entry_slab;
35static mempool_t *bio_post_read_ctx_pool;
36static struct bio_set f2fs_bioset;
37
38#define F2FS_BIO_POOL_SIZE NR_CURSEG_TYPE
39
40int __init f2fs_init_bioset(void)
41{
42 return bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
43 0, BIOSET_NEED_BVECS);
44}
45
46void f2fs_destroy_bioset(void)
47{
48 bioset_exit(&f2fs_bioset);
49}
50
51static bool __is_cp_guaranteed(struct page *page)
52{
53 struct address_space *mapping = page->mapping;
54 struct inode *inode;
55 struct f2fs_sb_info *sbi;
56
57 if (!mapping)
58 return false;
59
60 inode = mapping->host;
61 sbi = F2FS_I_SB(inode);
62
63 if (inode->i_ino == F2FS_META_INO(sbi) ||
64 inode->i_ino == F2FS_NODE_INO(sbi) ||
65 S_ISDIR(inode->i_mode))
66 return true;
67
68 if (f2fs_is_compressed_page(page))
69 return false;
70 if ((S_ISREG(inode->i_mode) && IS_NOQUOTA(inode)) ||
71 page_private_gcing(page))
72 return true;
73 return false;
74}
75
76static enum count_type __read_io_type(struct page *page)
77{
78 struct address_space *mapping = page_file_mapping(page);
79
80 if (mapping) {
81 struct inode *inode = mapping->host;
82 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
83
84 if (inode->i_ino == F2FS_META_INO(sbi))
85 return F2FS_RD_META;
86
87 if (inode->i_ino == F2FS_NODE_INO(sbi))
88 return F2FS_RD_NODE;
89 }
90 return F2FS_RD_DATA;
91}
92
93/* postprocessing steps for read bios */
94enum bio_post_read_step {
95#ifdef CONFIG_FS_ENCRYPTION
96 STEP_DECRYPT = BIT(0),
97#else
98 STEP_DECRYPT = 0, /* compile out the decryption-related code */
99#endif
100#ifdef CONFIG_F2FS_FS_COMPRESSION
101 STEP_DECOMPRESS = BIT(1),
102#else
103 STEP_DECOMPRESS = 0, /* compile out the decompression-related code */
104#endif
105#ifdef CONFIG_FS_VERITY
106 STEP_VERITY = BIT(2),
107#else
108 STEP_VERITY = 0, /* compile out the verity-related code */
109#endif
110};
111
112struct bio_post_read_ctx {
113 struct bio *bio;
114 struct f2fs_sb_info *sbi;
115 struct work_struct work;
116 unsigned int enabled_steps;
117 /*
118 * decompression_attempted keeps track of whether
119 * f2fs_end_read_compressed_page() has been called on the pages in the
120 * bio that belong to a compressed cluster yet.
121 */
122 bool decompression_attempted;
123 block_t fs_blkaddr;
124};
125
126/*
127 * Update and unlock a bio's pages, and free the bio.
128 *
129 * This marks pages up-to-date only if there was no error in the bio (I/O error,
130 * decryption error, or verity error), as indicated by bio->bi_status.
131 *
132 * "Compressed pages" (pagecache pages backed by a compressed cluster on-disk)
133 * aren't marked up-to-date here, as decompression is done on a per-compression-
134 * cluster basis rather than a per-bio basis. Instead, we only must do two
135 * things for each compressed page here: call f2fs_end_read_compressed_page()
136 * with failed=true if an error occurred before it would have normally gotten
137 * called (i.e., I/O error or decryption error, but *not* verity error), and
138 * release the bio's reference to the decompress_io_ctx of the page's cluster.
139 */
140static void f2fs_finish_read_bio(struct bio *bio, bool in_task)
141{
142 struct bio_vec *bv;
143 struct bvec_iter_all iter_all;
144 struct bio_post_read_ctx *ctx = bio->bi_private;
145
146 bio_for_each_segment_all(bv, bio, iter_all) {
147 struct page *page = bv->bv_page;
148
149 if (f2fs_is_compressed_page(page)) {
150 if (ctx && !ctx->decompression_attempted)
151 f2fs_end_read_compressed_page(page, true, 0,
152 in_task);
153 f2fs_put_page_dic(page, in_task);
154 continue;
155 }
156
157 if (bio->bi_status)
158 ClearPageUptodate(page);
159 else
160 SetPageUptodate(page);
161 dec_page_count(F2FS_P_SB(page), __read_io_type(page));
162 unlock_page(page);
163 }
164
165 if (ctx)
166 mempool_free(ctx, bio_post_read_ctx_pool);
167 bio_put(bio);
168}
169
170static void f2fs_verify_bio(struct work_struct *work)
171{
172 struct bio_post_read_ctx *ctx =
173 container_of(work, struct bio_post_read_ctx, work);
174 struct bio *bio = ctx->bio;
175 bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS);
176
177 /*
178 * fsverity_verify_bio() may call readahead() again, and while verity
179 * will be disabled for this, decryption and/or decompression may still
180 * be needed, resulting in another bio_post_read_ctx being allocated.
181 * So to prevent deadlocks we need to release the current ctx to the
182 * mempool first. This assumes that verity is the last post-read step.
183 */
184 mempool_free(ctx, bio_post_read_ctx_pool);
185 bio->bi_private = NULL;
186
187 /*
188 * Verify the bio's pages with fs-verity. Exclude compressed pages,
189 * as those were handled separately by f2fs_end_read_compressed_page().
190 */
191 if (may_have_compressed_pages) {
192 struct bio_vec *bv;
193 struct bvec_iter_all iter_all;
194
195 bio_for_each_segment_all(bv, bio, iter_all) {
196 struct page *page = bv->bv_page;
197
198 if (!f2fs_is_compressed_page(page) &&
199 !fsverity_verify_page(page)) {
200 bio->bi_status = BLK_STS_IOERR;
201 break;
202 }
203 }
204 } else {
205 fsverity_verify_bio(bio);
206 }
207
208 f2fs_finish_read_bio(bio, true);
209}
210
211/*
212 * If the bio's data needs to be verified with fs-verity, then enqueue the
213 * verity work for the bio. Otherwise finish the bio now.
214 *
215 * Note that to avoid deadlocks, the verity work can't be done on the
216 * decryption/decompression workqueue. This is because verifying the data pages
217 * can involve reading verity metadata pages from the file, and these verity
218 * metadata pages may be encrypted and/or compressed.
219 */
220static void f2fs_verify_and_finish_bio(struct bio *bio, bool in_task)
221{
222 struct bio_post_read_ctx *ctx = bio->bi_private;
223
224 if (ctx && (ctx->enabled_steps & STEP_VERITY)) {
225 INIT_WORK(&ctx->work, f2fs_verify_bio);
226 fsverity_enqueue_verify_work(&ctx->work);
227 } else {
228 f2fs_finish_read_bio(bio, in_task);
229 }
230}
231
232/*
233 * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last
234 * remaining page was read by @ctx->bio.
235 *
236 * Note that a bio may span clusters (even a mix of compressed and uncompressed
237 * clusters) or be for just part of a cluster. STEP_DECOMPRESS just indicates
238 * that the bio includes at least one compressed page. The actual decompression
239 * is done on a per-cluster basis, not a per-bio basis.
240 */
241static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx,
242 bool in_task)
243{
244 struct bio_vec *bv;
245 struct bvec_iter_all iter_all;
246 bool all_compressed = true;
247 block_t blkaddr = ctx->fs_blkaddr;
248
249 bio_for_each_segment_all(bv, ctx->bio, iter_all) {
250 struct page *page = bv->bv_page;
251
252 if (f2fs_is_compressed_page(page))
253 f2fs_end_read_compressed_page(page, false, blkaddr,
254 in_task);
255 else
256 all_compressed = false;
257
258 blkaddr++;
259 }
260
261 ctx->decompression_attempted = true;
262
263 /*
264 * Optimization: if all the bio's pages are compressed, then scheduling
265 * the per-bio verity work is unnecessary, as verity will be fully
266 * handled at the compression cluster level.
267 */
268 if (all_compressed)
269 ctx->enabled_steps &= ~STEP_VERITY;
270}
271
272static void f2fs_post_read_work(struct work_struct *work)
273{
274 struct bio_post_read_ctx *ctx =
275 container_of(work, struct bio_post_read_ctx, work);
276 struct bio *bio = ctx->bio;
277
278 if ((ctx->enabled_steps & STEP_DECRYPT) && !fscrypt_decrypt_bio(bio)) {
279 f2fs_finish_read_bio(bio, true);
280 return;
281 }
282
283 if (ctx->enabled_steps & STEP_DECOMPRESS)
284 f2fs_handle_step_decompress(ctx, true);
285
286 f2fs_verify_and_finish_bio(bio, true);
287}
288
289static void f2fs_read_end_io(struct bio *bio)
290{
291 struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
292 struct bio_post_read_ctx *ctx;
293 bool intask = in_task();
294
295 iostat_update_and_unbind_ctx(bio);
296 ctx = bio->bi_private;
297
298 if (time_to_inject(sbi, FAULT_READ_IO))
299 bio->bi_status = BLK_STS_IOERR;
300
301 if (bio->bi_status) {
302 f2fs_finish_read_bio(bio, intask);
303 return;
304 }
305
306 if (ctx) {
307 unsigned int enabled_steps = ctx->enabled_steps &
308 (STEP_DECRYPT | STEP_DECOMPRESS);
309
310 /*
311 * If we have only decompression step between decompression and
312 * decrypt, we don't need post processing for this.
313 */
314 if (enabled_steps == STEP_DECOMPRESS &&
315 !f2fs_low_mem_mode(sbi)) {
316 f2fs_handle_step_decompress(ctx, intask);
317 } else if (enabled_steps) {
318 INIT_WORK(&ctx->work, f2fs_post_read_work);
319 queue_work(ctx->sbi->post_read_wq, &ctx->work);
320 return;
321 }
322 }
323
324 f2fs_verify_and_finish_bio(bio, intask);
325}
326
327static void f2fs_write_end_io(struct bio *bio)
328{
329 struct f2fs_sb_info *sbi;
330 struct bio_vec *bvec;
331 struct bvec_iter_all iter_all;
332
333 iostat_update_and_unbind_ctx(bio);
334 sbi = bio->bi_private;
335
336 if (time_to_inject(sbi, FAULT_WRITE_IO))
337 bio->bi_status = BLK_STS_IOERR;
338
339 bio_for_each_segment_all(bvec, bio, iter_all) {
340 struct page *page = bvec->bv_page;
341 enum count_type type = WB_DATA_TYPE(page);
342
343 if (page_private_dummy(page)) {
344 clear_page_private_dummy(page);
345 unlock_page(page);
346 mempool_free(page, sbi->write_io_dummy);
347
348 if (unlikely(bio->bi_status))
349 f2fs_stop_checkpoint(sbi, true,
350 STOP_CP_REASON_WRITE_FAIL);
351 continue;
352 }
353
354 fscrypt_finalize_bounce_page(&page);
355
356#ifdef CONFIG_F2FS_FS_COMPRESSION
357 if (f2fs_is_compressed_page(page)) {
358 f2fs_compress_write_end_io(bio, page);
359 continue;
360 }
361#endif
362
363 if (unlikely(bio->bi_status)) {
364 mapping_set_error(page->mapping, -EIO);
365 if (type == F2FS_WB_CP_DATA)
366 f2fs_stop_checkpoint(sbi, true,
367 STOP_CP_REASON_WRITE_FAIL);
368 }
369
370 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
371 page->index != nid_of_node(page));
372
373 dec_page_count(sbi, type);
374 if (f2fs_in_warm_node_list(sbi, page))
375 f2fs_del_fsync_node_entry(sbi, page);
376 clear_page_private_gcing(page);
377 end_page_writeback(page);
378 }
379 if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
380 wq_has_sleeper(&sbi->cp_wait))
381 wake_up(&sbi->cp_wait);
382
383 bio_put(bio);
384}
385
386#ifdef CONFIG_BLK_DEV_ZONED
387static void f2fs_zone_write_end_io(struct bio *bio)
388{
389 struct f2fs_bio_info *io = (struct f2fs_bio_info *)bio->bi_private;
390
391 bio->bi_private = io->bi_private;
392 complete(&io->zone_wait);
393 f2fs_write_end_io(bio);
394}
395#endif
396
397struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
398 block_t blk_addr, sector_t *sector)
399{
400 struct block_device *bdev = sbi->sb->s_bdev;
401 int i;
402
403 if (f2fs_is_multi_device(sbi)) {
404 for (i = 0; i < sbi->s_ndevs; i++) {
405 if (FDEV(i).start_blk <= blk_addr &&
406 FDEV(i).end_blk >= blk_addr) {
407 blk_addr -= FDEV(i).start_blk;
408 bdev = FDEV(i).bdev;
409 break;
410 }
411 }
412 }
413
414 if (sector)
415 *sector = SECTOR_FROM_BLOCK(blk_addr);
416 return bdev;
417}
418
419int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
420{
421 int i;
422
423 if (!f2fs_is_multi_device(sbi))
424 return 0;
425
426 for (i = 0; i < sbi->s_ndevs; i++)
427 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
428 return i;
429 return 0;
430}
431
432static blk_opf_t f2fs_io_flags(struct f2fs_io_info *fio)
433{
434 unsigned int temp_mask = GENMASK(NR_TEMP_TYPE - 1, 0);
435 unsigned int fua_flag, meta_flag, io_flag;
436 blk_opf_t op_flags = 0;
437
438 if (fio->op != REQ_OP_WRITE)
439 return 0;
440 if (fio->type == DATA)
441 io_flag = fio->sbi->data_io_flag;
442 else if (fio->type == NODE)
443 io_flag = fio->sbi->node_io_flag;
444 else
445 return 0;
446
447 fua_flag = io_flag & temp_mask;
448 meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
449
450 /*
451 * data/node io flag bits per temp:
452 * REQ_META | REQ_FUA |
453 * 5 | 4 | 3 | 2 | 1 | 0 |
454 * Cold | Warm | Hot | Cold | Warm | Hot |
455 */
456 if (BIT(fio->temp) & meta_flag)
457 op_flags |= REQ_META;
458 if (BIT(fio->temp) & fua_flag)
459 op_flags |= REQ_FUA;
460 return op_flags;
461}
462
463static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
464{
465 struct f2fs_sb_info *sbi = fio->sbi;
466 struct block_device *bdev;
467 sector_t sector;
468 struct bio *bio;
469
470 bdev = f2fs_target_device(sbi, fio->new_blkaddr, §or);
471 bio = bio_alloc_bioset(bdev, npages,
472 fio->op | fio->op_flags | f2fs_io_flags(fio),
473 GFP_NOIO, &f2fs_bioset);
474 bio->bi_iter.bi_sector = sector;
475 if (is_read_io(fio->op)) {
476 bio->bi_end_io = f2fs_read_end_io;
477 bio->bi_private = NULL;
478 } else {
479 bio->bi_end_io = f2fs_write_end_io;
480 bio->bi_private = sbi;
481 }
482 iostat_alloc_and_bind_ctx(sbi, bio, NULL);
483
484 if (fio->io_wbc)
485 wbc_init_bio(fio->io_wbc, bio);
486
487 return bio;
488}
489
490static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
491 pgoff_t first_idx,
492 const struct f2fs_io_info *fio,
493 gfp_t gfp_mask)
494{
495 /*
496 * The f2fs garbage collector sets ->encrypted_page when it wants to
497 * read/write raw data without encryption.
498 */
499 if (!fio || !fio->encrypted_page)
500 fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
501}
502
503static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
504 pgoff_t next_idx,
505 const struct f2fs_io_info *fio)
506{
507 /*
508 * The f2fs garbage collector sets ->encrypted_page when it wants to
509 * read/write raw data without encryption.
510 */
511 if (fio && fio->encrypted_page)
512 return !bio_has_crypt_ctx(bio);
513
514 return fscrypt_mergeable_bio(bio, inode, next_idx);
515}
516
517void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
518 enum page_type type)
519{
520 WARN_ON_ONCE(!is_read_io(bio_op(bio)));
521 trace_f2fs_submit_read_bio(sbi->sb, type, bio);
522
523 iostat_update_submit_ctx(bio, type);
524 submit_bio(bio);
525}
526
527static void f2fs_align_write_bio(struct f2fs_sb_info *sbi, struct bio *bio)
528{
529 unsigned int start =
530 (bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS) % F2FS_IO_SIZE(sbi);
531
532 if (start == 0)
533 return;
534
535 /* fill dummy pages */
536 for (; start < F2FS_IO_SIZE(sbi); start++) {
537 struct page *page =
538 mempool_alloc(sbi->write_io_dummy,
539 GFP_NOIO | __GFP_NOFAIL);
540 f2fs_bug_on(sbi, !page);
541
542 lock_page(page);
543
544 zero_user_segment(page, 0, PAGE_SIZE);
545 set_page_private_dummy(page);
546
547 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
548 f2fs_bug_on(sbi, 1);
549 }
550}
551
552static void f2fs_submit_write_bio(struct f2fs_sb_info *sbi, struct bio *bio,
553 enum page_type type)
554{
555 WARN_ON_ONCE(is_read_io(bio_op(bio)));
556
557 if (type == DATA || type == NODE) {
558 if (f2fs_lfs_mode(sbi) && current->plug)
559 blk_finish_plug(current->plug);
560
561 if (F2FS_IO_ALIGNED(sbi)) {
562 f2fs_align_write_bio(sbi, bio);
563 /*
564 * In the NODE case, we lose next block address chain.
565 * So, we need to do checkpoint in f2fs_sync_file.
566 */
567 if (type == NODE)
568 set_sbi_flag(sbi, SBI_NEED_CP);
569 }
570 }
571
572 trace_f2fs_submit_write_bio(sbi->sb, type, bio);
573 iostat_update_submit_ctx(bio, type);
574 submit_bio(bio);
575}
576
577static void __submit_merged_bio(struct f2fs_bio_info *io)
578{
579 struct f2fs_io_info *fio = &io->fio;
580
581 if (!io->bio)
582 return;
583
584 if (is_read_io(fio->op)) {
585 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
586 f2fs_submit_read_bio(io->sbi, io->bio, fio->type);
587 } else {
588 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
589 f2fs_submit_write_bio(io->sbi, io->bio, fio->type);
590 }
591 io->bio = NULL;
592}
593
594static bool __has_merged_page(struct bio *bio, struct inode *inode,
595 struct page *page, nid_t ino)
596{
597 struct bio_vec *bvec;
598 struct bvec_iter_all iter_all;
599
600 if (!bio)
601 return false;
602
603 if (!inode && !page && !ino)
604 return true;
605
606 bio_for_each_segment_all(bvec, bio, iter_all) {
607 struct page *target = bvec->bv_page;
608
609 if (fscrypt_is_bounce_page(target)) {
610 target = fscrypt_pagecache_page(target);
611 if (IS_ERR(target))
612 continue;
613 }
614 if (f2fs_is_compressed_page(target)) {
615 target = f2fs_compress_control_page(target);
616 if (IS_ERR(target))
617 continue;
618 }
619
620 if (inode && inode == target->mapping->host)
621 return true;
622 if (page && page == target)
623 return true;
624 if (ino && ino == ino_of_node(target))
625 return true;
626 }
627
628 return false;
629}
630
631int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi)
632{
633 int i;
634
635 for (i = 0; i < NR_PAGE_TYPE; i++) {
636 int n = (i == META) ? 1 : NR_TEMP_TYPE;
637 int j;
638
639 sbi->write_io[i] = f2fs_kmalloc(sbi,
640 array_size(n, sizeof(struct f2fs_bio_info)),
641 GFP_KERNEL);
642 if (!sbi->write_io[i])
643 return -ENOMEM;
644
645 for (j = HOT; j < n; j++) {
646 init_f2fs_rwsem(&sbi->write_io[i][j].io_rwsem);
647 sbi->write_io[i][j].sbi = sbi;
648 sbi->write_io[i][j].bio = NULL;
649 spin_lock_init(&sbi->write_io[i][j].io_lock);
650 INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
651 INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list);
652 init_f2fs_rwsem(&sbi->write_io[i][j].bio_list_lock);
653#ifdef CONFIG_BLK_DEV_ZONED
654 init_completion(&sbi->write_io[i][j].zone_wait);
655 sbi->write_io[i][j].zone_pending_bio = NULL;
656 sbi->write_io[i][j].bi_private = NULL;
657#endif
658 }
659 }
660
661 return 0;
662}
663
664static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
665 enum page_type type, enum temp_type temp)
666{
667 enum page_type btype = PAGE_TYPE_OF_BIO(type);
668 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
669
670 f2fs_down_write(&io->io_rwsem);
671
672 if (!io->bio)
673 goto unlock_out;
674
675 /* change META to META_FLUSH in the checkpoint procedure */
676 if (type >= META_FLUSH) {
677 io->fio.type = META_FLUSH;
678 io->bio->bi_opf |= REQ_META | REQ_PRIO | REQ_SYNC;
679 if (!test_opt(sbi, NOBARRIER))
680 io->bio->bi_opf |= REQ_PREFLUSH | REQ_FUA;
681 }
682 __submit_merged_bio(io);
683unlock_out:
684 f2fs_up_write(&io->io_rwsem);
685}
686
687static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
688 struct inode *inode, struct page *page,
689 nid_t ino, enum page_type type, bool force)
690{
691 enum temp_type temp;
692 bool ret = true;
693
694 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
695 if (!force) {
696 enum page_type btype = PAGE_TYPE_OF_BIO(type);
697 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
698
699 f2fs_down_read(&io->io_rwsem);
700 ret = __has_merged_page(io->bio, inode, page, ino);
701 f2fs_up_read(&io->io_rwsem);
702 }
703 if (ret)
704 __f2fs_submit_merged_write(sbi, type, temp);
705
706 /* TODO: use HOT temp only for meta pages now. */
707 if (type >= META)
708 break;
709 }
710}
711
712void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
713{
714 __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
715}
716
717void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
718 struct inode *inode, struct page *page,
719 nid_t ino, enum page_type type)
720{
721 __submit_merged_write_cond(sbi, inode, page, ino, type, false);
722}
723
724void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
725{
726 f2fs_submit_merged_write(sbi, DATA);
727 f2fs_submit_merged_write(sbi, NODE);
728 f2fs_submit_merged_write(sbi, META);
729}
730
731/*
732 * Fill the locked page with data located in the block address.
733 * A caller needs to unlock the page on failure.
734 */
735int f2fs_submit_page_bio(struct f2fs_io_info *fio)
736{
737 struct bio *bio;
738 struct page *page = fio->encrypted_page ?
739 fio->encrypted_page : fio->page;
740
741 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
742 fio->is_por ? META_POR : (__is_meta_io(fio) ?
743 META_GENERIC : DATA_GENERIC_ENHANCE))) {
744 f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR);
745 return -EFSCORRUPTED;
746 }
747
748 trace_f2fs_submit_page_bio(page, fio);
749
750 /* Allocate a new bio */
751 bio = __bio_alloc(fio, 1);
752
753 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
754 fio->page->index, fio, GFP_NOIO);
755
756 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
757 bio_put(bio);
758 return -EFAULT;
759 }
760
761 if (fio->io_wbc && !is_read_io(fio->op))
762 wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
763
764 inc_page_count(fio->sbi, is_read_io(fio->op) ?
765 __read_io_type(page) : WB_DATA_TYPE(fio->page));
766
767 if (is_read_io(bio_op(bio)))
768 f2fs_submit_read_bio(fio->sbi, bio, fio->type);
769 else
770 f2fs_submit_write_bio(fio->sbi, bio, fio->type);
771 return 0;
772}
773
774static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
775 block_t last_blkaddr, block_t cur_blkaddr)
776{
777 if (unlikely(sbi->max_io_bytes &&
778 bio->bi_iter.bi_size >= sbi->max_io_bytes))
779 return false;
780 if (last_blkaddr + 1 != cur_blkaddr)
781 return false;
782 return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL);
783}
784
785static bool io_type_is_mergeable(struct f2fs_bio_info *io,
786 struct f2fs_io_info *fio)
787{
788 if (io->fio.op != fio->op)
789 return false;
790 return io->fio.op_flags == fio->op_flags;
791}
792
793static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
794 struct f2fs_bio_info *io,
795 struct f2fs_io_info *fio,
796 block_t last_blkaddr,
797 block_t cur_blkaddr)
798{
799 if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) {
800 unsigned int filled_blocks =
801 F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size);
802 unsigned int io_size = F2FS_IO_SIZE(sbi);
803 unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt;
804
805 /* IOs in bio is aligned and left space of vectors is not enough */
806 if (!(filled_blocks % io_size) && left_vecs < io_size)
807 return false;
808 }
809 if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
810 return false;
811 return io_type_is_mergeable(io, fio);
812}
813
814static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
815 struct page *page, enum temp_type temp)
816{
817 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
818 struct bio_entry *be;
819
820 be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL);
821 be->bio = bio;
822 bio_get(bio);
823
824 if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
825 f2fs_bug_on(sbi, 1);
826
827 f2fs_down_write(&io->bio_list_lock);
828 list_add_tail(&be->list, &io->bio_list);
829 f2fs_up_write(&io->bio_list_lock);
830}
831
832static void del_bio_entry(struct bio_entry *be)
833{
834 list_del(&be->list);
835 kmem_cache_free(bio_entry_slab, be);
836}
837
838static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
839 struct page *page)
840{
841 struct f2fs_sb_info *sbi = fio->sbi;
842 enum temp_type temp;
843 bool found = false;
844 int ret = -EAGAIN;
845
846 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
847 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
848 struct list_head *head = &io->bio_list;
849 struct bio_entry *be;
850
851 f2fs_down_write(&io->bio_list_lock);
852 list_for_each_entry(be, head, list) {
853 if (be->bio != *bio)
854 continue;
855
856 found = true;
857
858 f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
859 *fio->last_block,
860 fio->new_blkaddr));
861 if (f2fs_crypt_mergeable_bio(*bio,
862 fio->page->mapping->host,
863 fio->page->index, fio) &&
864 bio_add_page(*bio, page, PAGE_SIZE, 0) ==
865 PAGE_SIZE) {
866 ret = 0;
867 break;
868 }
869
870 /* page can't be merged into bio; submit the bio */
871 del_bio_entry(be);
872 f2fs_submit_write_bio(sbi, *bio, DATA);
873 break;
874 }
875 f2fs_up_write(&io->bio_list_lock);
876 }
877
878 if (ret) {
879 bio_put(*bio);
880 *bio = NULL;
881 }
882
883 return ret;
884}
885
886void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
887 struct bio **bio, struct page *page)
888{
889 enum temp_type temp;
890 bool found = false;
891 struct bio *target = bio ? *bio : NULL;
892
893 f2fs_bug_on(sbi, !target && !page);
894
895 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
896 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
897 struct list_head *head = &io->bio_list;
898 struct bio_entry *be;
899
900 if (list_empty(head))
901 continue;
902
903 f2fs_down_read(&io->bio_list_lock);
904 list_for_each_entry(be, head, list) {
905 if (target)
906 found = (target == be->bio);
907 else
908 found = __has_merged_page(be->bio, NULL,
909 page, 0);
910 if (found)
911 break;
912 }
913 f2fs_up_read(&io->bio_list_lock);
914
915 if (!found)
916 continue;
917
918 found = false;
919
920 f2fs_down_write(&io->bio_list_lock);
921 list_for_each_entry(be, head, list) {
922 if (target)
923 found = (target == be->bio);
924 else
925 found = __has_merged_page(be->bio, NULL,
926 page, 0);
927 if (found) {
928 target = be->bio;
929 del_bio_entry(be);
930 break;
931 }
932 }
933 f2fs_up_write(&io->bio_list_lock);
934 }
935
936 if (found)
937 f2fs_submit_write_bio(sbi, target, DATA);
938 if (bio && *bio) {
939 bio_put(*bio);
940 *bio = NULL;
941 }
942}
943
944int f2fs_merge_page_bio(struct f2fs_io_info *fio)
945{
946 struct bio *bio = *fio->bio;
947 struct page *page = fio->encrypted_page ?
948 fio->encrypted_page : fio->page;
949
950 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
951 __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC)) {
952 f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR);
953 return -EFSCORRUPTED;
954 }
955
956 trace_f2fs_submit_page_bio(page, fio);
957
958 if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
959 fio->new_blkaddr))
960 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
961alloc_new:
962 if (!bio) {
963 bio = __bio_alloc(fio, BIO_MAX_VECS);
964 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
965 fio->page->index, fio, GFP_NOIO);
966
967 add_bio_entry(fio->sbi, bio, page, fio->temp);
968 } else {
969 if (add_ipu_page(fio, &bio, page))
970 goto alloc_new;
971 }
972
973 if (fio->io_wbc)
974 wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
975
976 inc_page_count(fio->sbi, WB_DATA_TYPE(page));
977
978 *fio->last_block = fio->new_blkaddr;
979 *fio->bio = bio;
980
981 return 0;
982}
983
984#ifdef CONFIG_BLK_DEV_ZONED
985static bool is_end_zone_blkaddr(struct f2fs_sb_info *sbi, block_t blkaddr)
986{
987 int devi = 0;
988
989 if (f2fs_is_multi_device(sbi)) {
990 devi = f2fs_target_device_index(sbi, blkaddr);
991 if (blkaddr < FDEV(devi).start_blk ||
992 blkaddr > FDEV(devi).end_blk) {
993 f2fs_err(sbi, "Invalid block %x", blkaddr);
994 return false;
995 }
996 blkaddr -= FDEV(devi).start_blk;
997 }
998 return bdev_zoned_model(FDEV(devi).bdev) == BLK_ZONED_HM &&
999 f2fs_blkz_is_seq(sbi, devi, blkaddr) &&
1000 (blkaddr % sbi->blocks_per_blkz == sbi->blocks_per_blkz - 1);
1001}
1002#endif
1003
1004void f2fs_submit_page_write(struct f2fs_io_info *fio)
1005{
1006 struct f2fs_sb_info *sbi = fio->sbi;
1007 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
1008 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
1009 struct page *bio_page;
1010
1011 f2fs_bug_on(sbi, is_read_io(fio->op));
1012
1013 f2fs_down_write(&io->io_rwsem);
1014
1015#ifdef CONFIG_BLK_DEV_ZONED
1016 if (f2fs_sb_has_blkzoned(sbi) && btype < META && io->zone_pending_bio) {
1017 wait_for_completion_io(&io->zone_wait);
1018 bio_put(io->zone_pending_bio);
1019 io->zone_pending_bio = NULL;
1020 io->bi_private = NULL;
1021 }
1022#endif
1023
1024next:
1025 if (fio->in_list) {
1026 spin_lock(&io->io_lock);
1027 if (list_empty(&io->io_list)) {
1028 spin_unlock(&io->io_lock);
1029 goto out;
1030 }
1031 fio = list_first_entry(&io->io_list,
1032 struct f2fs_io_info, list);
1033 list_del(&fio->list);
1034 spin_unlock(&io->io_lock);
1035 }
1036
1037 verify_fio_blkaddr(fio);
1038
1039 if (fio->encrypted_page)
1040 bio_page = fio->encrypted_page;
1041 else if (fio->compressed_page)
1042 bio_page = fio->compressed_page;
1043 else
1044 bio_page = fio->page;
1045
1046 /* set submitted = true as a return value */
1047 fio->submitted = 1;
1048
1049 inc_page_count(sbi, WB_DATA_TYPE(bio_page));
1050
1051 if (io->bio &&
1052 (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
1053 fio->new_blkaddr) ||
1054 !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
1055 bio_page->index, fio)))
1056 __submit_merged_bio(io);
1057alloc_new:
1058 if (io->bio == NULL) {
1059 if (F2FS_IO_ALIGNED(sbi) &&
1060 (fio->type == DATA || fio->type == NODE) &&
1061 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
1062 dec_page_count(sbi, WB_DATA_TYPE(bio_page));
1063 fio->retry = 1;
1064 goto skip;
1065 }
1066 io->bio = __bio_alloc(fio, BIO_MAX_VECS);
1067 f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
1068 bio_page->index, fio, GFP_NOIO);
1069 io->fio = *fio;
1070 }
1071
1072 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
1073 __submit_merged_bio(io);
1074 goto alloc_new;
1075 }
1076
1077 if (fio->io_wbc)
1078 wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
1079
1080 io->last_block_in_bio = fio->new_blkaddr;
1081
1082 trace_f2fs_submit_page_write(fio->page, fio);
1083skip:
1084 if (fio->in_list)
1085 goto next;
1086out:
1087#ifdef CONFIG_BLK_DEV_ZONED
1088 if (f2fs_sb_has_blkzoned(sbi) && btype < META &&
1089 is_end_zone_blkaddr(sbi, fio->new_blkaddr)) {
1090 bio_get(io->bio);
1091 reinit_completion(&io->zone_wait);
1092 io->bi_private = io->bio->bi_private;
1093 io->bio->bi_private = io;
1094 io->bio->bi_end_io = f2fs_zone_write_end_io;
1095 io->zone_pending_bio = io->bio;
1096 __submit_merged_bio(io);
1097 }
1098#endif
1099 if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1100 !f2fs_is_checkpoint_ready(sbi))
1101 __submit_merged_bio(io);
1102 f2fs_up_write(&io->io_rwsem);
1103}
1104
1105static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
1106 unsigned nr_pages, blk_opf_t op_flag,
1107 pgoff_t first_idx, bool for_write)
1108{
1109 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1110 struct bio *bio;
1111 struct bio_post_read_ctx *ctx = NULL;
1112 unsigned int post_read_steps = 0;
1113 sector_t sector;
1114 struct block_device *bdev = f2fs_target_device(sbi, blkaddr, §or);
1115
1116 bio = bio_alloc_bioset(bdev, bio_max_segs(nr_pages),
1117 REQ_OP_READ | op_flag,
1118 for_write ? GFP_NOIO : GFP_KERNEL, &f2fs_bioset);
1119 if (!bio)
1120 return ERR_PTR(-ENOMEM);
1121 bio->bi_iter.bi_sector = sector;
1122 f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
1123 bio->bi_end_io = f2fs_read_end_io;
1124
1125 if (fscrypt_inode_uses_fs_layer_crypto(inode))
1126 post_read_steps |= STEP_DECRYPT;
1127
1128 if (f2fs_need_verity(inode, first_idx))
1129 post_read_steps |= STEP_VERITY;
1130
1131 /*
1132 * STEP_DECOMPRESS is handled specially, since a compressed file might
1133 * contain both compressed and uncompressed clusters. We'll allocate a
1134 * bio_post_read_ctx if the file is compressed, but the caller is
1135 * responsible for enabling STEP_DECOMPRESS if it's actually needed.
1136 */
1137
1138 if (post_read_steps || f2fs_compressed_file(inode)) {
1139 /* Due to the mempool, this never fails. */
1140 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1141 ctx->bio = bio;
1142 ctx->sbi = sbi;
1143 ctx->enabled_steps = post_read_steps;
1144 ctx->fs_blkaddr = blkaddr;
1145 ctx->decompression_attempted = false;
1146 bio->bi_private = ctx;
1147 }
1148 iostat_alloc_and_bind_ctx(sbi, bio, ctx);
1149
1150 return bio;
1151}
1152
1153/* This can handle encryption stuffs */
1154static int f2fs_submit_page_read(struct inode *inode, struct page *page,
1155 block_t blkaddr, blk_opf_t op_flags,
1156 bool for_write)
1157{
1158 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1159 struct bio *bio;
1160
1161 bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1162 page->index, for_write);
1163 if (IS_ERR(bio))
1164 return PTR_ERR(bio);
1165
1166 /* wait for GCed page writeback via META_MAPPING */
1167 f2fs_wait_on_block_writeback(inode, blkaddr);
1168
1169 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1170 bio_put(bio);
1171 return -EFAULT;
1172 }
1173 inc_page_count(sbi, F2FS_RD_DATA);
1174 f2fs_update_iostat(sbi, NULL, FS_DATA_READ_IO, F2FS_BLKSIZE);
1175 f2fs_submit_read_bio(sbi, bio, DATA);
1176 return 0;
1177}
1178
1179static void __set_data_blkaddr(struct dnode_of_data *dn)
1180{
1181 struct f2fs_node *rn = F2FS_NODE(dn->node_page);
1182 __le32 *addr_array;
1183 int base = 0;
1184
1185 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
1186 base = get_extra_isize(dn->inode);
1187
1188 /* Get physical address of data block */
1189 addr_array = blkaddr_in_node(rn);
1190 addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1191}
1192
1193/*
1194 * Lock ordering for the change of data block address:
1195 * ->data_page
1196 * ->node_page
1197 * update block addresses in the node page
1198 */
1199void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
1200{
1201 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1202 __set_data_blkaddr(dn);
1203 if (set_page_dirty(dn->node_page))
1204 dn->node_changed = true;
1205}
1206
1207void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1208{
1209 dn->data_blkaddr = blkaddr;
1210 f2fs_set_data_blkaddr(dn);
1211 f2fs_update_read_extent_cache(dn);
1212}
1213
1214/* dn->ofs_in_node will be returned with up-to-date last block pointer */
1215int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1216{
1217 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1218 int err;
1219
1220 if (!count)
1221 return 0;
1222
1223 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1224 return -EPERM;
1225 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1226 return err;
1227
1228 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1229 dn->ofs_in_node, count);
1230
1231 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1232
1233 for (; count > 0; dn->ofs_in_node++) {
1234 block_t blkaddr = f2fs_data_blkaddr(dn);
1235
1236 if (blkaddr == NULL_ADDR) {
1237 dn->data_blkaddr = NEW_ADDR;
1238 __set_data_blkaddr(dn);
1239 count--;
1240 }
1241 }
1242
1243 if (set_page_dirty(dn->node_page))
1244 dn->node_changed = true;
1245 return 0;
1246}
1247
1248/* Should keep dn->ofs_in_node unchanged */
1249int f2fs_reserve_new_block(struct dnode_of_data *dn)
1250{
1251 unsigned int ofs_in_node = dn->ofs_in_node;
1252 int ret;
1253
1254 ret = f2fs_reserve_new_blocks(dn, 1);
1255 dn->ofs_in_node = ofs_in_node;
1256 return ret;
1257}
1258
1259int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1260{
1261 bool need_put = dn->inode_page ? false : true;
1262 int err;
1263
1264 err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1265 if (err)
1266 return err;
1267
1268 if (dn->data_blkaddr == NULL_ADDR)
1269 err = f2fs_reserve_new_block(dn);
1270 if (err || need_put)
1271 f2fs_put_dnode(dn);
1272 return err;
1273}
1274
1275struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1276 blk_opf_t op_flags, bool for_write,
1277 pgoff_t *next_pgofs)
1278{
1279 struct address_space *mapping = inode->i_mapping;
1280 struct dnode_of_data dn;
1281 struct page *page;
1282 int err;
1283
1284 page = f2fs_grab_cache_page(mapping, index, for_write);
1285 if (!page)
1286 return ERR_PTR(-ENOMEM);
1287
1288 if (f2fs_lookup_read_extent_cache_block(inode, index,
1289 &dn.data_blkaddr)) {
1290 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1291 DATA_GENERIC_ENHANCE_READ)) {
1292 err = -EFSCORRUPTED;
1293 f2fs_handle_error(F2FS_I_SB(inode),
1294 ERROR_INVALID_BLKADDR);
1295 goto put_err;
1296 }
1297 goto got_it;
1298 }
1299
1300 set_new_dnode(&dn, inode, NULL, NULL, 0);
1301 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1302 if (err) {
1303 if (err == -ENOENT && next_pgofs)
1304 *next_pgofs = f2fs_get_next_page_offset(&dn, index);
1305 goto put_err;
1306 }
1307 f2fs_put_dnode(&dn);
1308
1309 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1310 err = -ENOENT;
1311 if (next_pgofs)
1312 *next_pgofs = index + 1;
1313 goto put_err;
1314 }
1315 if (dn.data_blkaddr != NEW_ADDR &&
1316 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1317 dn.data_blkaddr,
1318 DATA_GENERIC_ENHANCE)) {
1319 err = -EFSCORRUPTED;
1320 f2fs_handle_error(F2FS_I_SB(inode),
1321 ERROR_INVALID_BLKADDR);
1322 goto put_err;
1323 }
1324got_it:
1325 if (PageUptodate(page)) {
1326 unlock_page(page);
1327 return page;
1328 }
1329
1330 /*
1331 * A new dentry page is allocated but not able to be written, since its
1332 * new inode page couldn't be allocated due to -ENOSPC.
1333 * In such the case, its blkaddr can be remained as NEW_ADDR.
1334 * see, f2fs_add_link -> f2fs_get_new_data_page ->
1335 * f2fs_init_inode_metadata.
1336 */
1337 if (dn.data_blkaddr == NEW_ADDR) {
1338 zero_user_segment(page, 0, PAGE_SIZE);
1339 if (!PageUptodate(page))
1340 SetPageUptodate(page);
1341 unlock_page(page);
1342 return page;
1343 }
1344
1345 err = f2fs_submit_page_read(inode, page, dn.data_blkaddr,
1346 op_flags, for_write);
1347 if (err)
1348 goto put_err;
1349 return page;
1350
1351put_err:
1352 f2fs_put_page(page, 1);
1353 return ERR_PTR(err);
1354}
1355
1356struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index,
1357 pgoff_t *next_pgofs)
1358{
1359 struct address_space *mapping = inode->i_mapping;
1360 struct page *page;
1361
1362 page = find_get_page(mapping, index);
1363 if (page && PageUptodate(page))
1364 return page;
1365 f2fs_put_page(page, 0);
1366
1367 page = f2fs_get_read_data_page(inode, index, 0, false, next_pgofs);
1368 if (IS_ERR(page))
1369 return page;
1370
1371 if (PageUptodate(page))
1372 return page;
1373
1374 wait_on_page_locked(page);
1375 if (unlikely(!PageUptodate(page))) {
1376 f2fs_put_page(page, 0);
1377 return ERR_PTR(-EIO);
1378 }
1379 return page;
1380}
1381
1382/*
1383 * If it tries to access a hole, return an error.
1384 * Because, the callers, functions in dir.c and GC, should be able to know
1385 * whether this page exists or not.
1386 */
1387struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1388 bool for_write)
1389{
1390 struct address_space *mapping = inode->i_mapping;
1391 struct page *page;
1392repeat:
1393 page = f2fs_get_read_data_page(inode, index, 0, for_write, NULL);
1394 if (IS_ERR(page))
1395 return page;
1396
1397 /* wait for read completion */
1398 lock_page(page);
1399 if (unlikely(page->mapping != mapping)) {
1400 f2fs_put_page(page, 1);
1401 goto repeat;
1402 }
1403 if (unlikely(!PageUptodate(page))) {
1404 f2fs_put_page(page, 1);
1405 return ERR_PTR(-EIO);
1406 }
1407 return page;
1408}
1409
1410/*
1411 * Caller ensures that this data page is never allocated.
1412 * A new zero-filled data page is allocated in the page cache.
1413 *
1414 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1415 * f2fs_unlock_op().
1416 * Note that, ipage is set only by make_empty_dir, and if any error occur,
1417 * ipage should be released by this function.
1418 */
1419struct page *f2fs_get_new_data_page(struct inode *inode,
1420 struct page *ipage, pgoff_t index, bool new_i_size)
1421{
1422 struct address_space *mapping = inode->i_mapping;
1423 struct page *page;
1424 struct dnode_of_data dn;
1425 int err;
1426
1427 page = f2fs_grab_cache_page(mapping, index, true);
1428 if (!page) {
1429 /*
1430 * before exiting, we should make sure ipage will be released
1431 * if any error occur.
1432 */
1433 f2fs_put_page(ipage, 1);
1434 return ERR_PTR(-ENOMEM);
1435 }
1436
1437 set_new_dnode(&dn, inode, ipage, NULL, 0);
1438 err = f2fs_reserve_block(&dn, index);
1439 if (err) {
1440 f2fs_put_page(page, 1);
1441 return ERR_PTR(err);
1442 }
1443 if (!ipage)
1444 f2fs_put_dnode(&dn);
1445
1446 if (PageUptodate(page))
1447 goto got_it;
1448
1449 if (dn.data_blkaddr == NEW_ADDR) {
1450 zero_user_segment(page, 0, PAGE_SIZE);
1451 if (!PageUptodate(page))
1452 SetPageUptodate(page);
1453 } else {
1454 f2fs_put_page(page, 1);
1455
1456 /* if ipage exists, blkaddr should be NEW_ADDR */
1457 f2fs_bug_on(F2FS_I_SB(inode), ipage);
1458 page = f2fs_get_lock_data_page(inode, index, true);
1459 if (IS_ERR(page))
1460 return page;
1461 }
1462got_it:
1463 if (new_i_size && i_size_read(inode) <
1464 ((loff_t)(index + 1) << PAGE_SHIFT))
1465 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1466 return page;
1467}
1468
1469static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1470{
1471 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1472 struct f2fs_summary sum;
1473 struct node_info ni;
1474 block_t old_blkaddr;
1475 blkcnt_t count = 1;
1476 int err;
1477
1478 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1479 return -EPERM;
1480
1481 err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
1482 if (err)
1483 return err;
1484
1485 dn->data_blkaddr = f2fs_data_blkaddr(dn);
1486 if (dn->data_blkaddr == NULL_ADDR) {
1487 err = inc_valid_block_count(sbi, dn->inode, &count);
1488 if (unlikely(err))
1489 return err;
1490 }
1491
1492 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1493 old_blkaddr = dn->data_blkaddr;
1494 f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1495 &sum, seg_type, NULL);
1496 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
1497 invalidate_mapping_pages(META_MAPPING(sbi),
1498 old_blkaddr, old_blkaddr);
1499 f2fs_invalidate_compress_page(sbi, old_blkaddr);
1500 }
1501 f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1502 return 0;
1503}
1504
1505static void f2fs_map_lock(struct f2fs_sb_info *sbi, int flag)
1506{
1507 if (flag == F2FS_GET_BLOCK_PRE_AIO)
1508 f2fs_down_read(&sbi->node_change);
1509 else
1510 f2fs_lock_op(sbi);
1511}
1512
1513static void f2fs_map_unlock(struct f2fs_sb_info *sbi, int flag)
1514{
1515 if (flag == F2FS_GET_BLOCK_PRE_AIO)
1516 f2fs_up_read(&sbi->node_change);
1517 else
1518 f2fs_unlock_op(sbi);
1519}
1520
1521int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index)
1522{
1523 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1524 int err = 0;
1525
1526 f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1527 if (!f2fs_lookup_read_extent_cache_block(dn->inode, index,
1528 &dn->data_blkaddr))
1529 err = f2fs_reserve_block(dn, index);
1530 f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1531
1532 return err;
1533}
1534
1535static int f2fs_map_no_dnode(struct inode *inode,
1536 struct f2fs_map_blocks *map, struct dnode_of_data *dn,
1537 pgoff_t pgoff)
1538{
1539 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1540
1541 /*
1542 * There is one exceptional case that read_node_page() may return
1543 * -ENOENT due to filesystem has been shutdown or cp_error, return
1544 * -EIO in that case.
1545 */
1546 if (map->m_may_create &&
1547 (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || f2fs_cp_error(sbi)))
1548 return -EIO;
1549
1550 if (map->m_next_pgofs)
1551 *map->m_next_pgofs = f2fs_get_next_page_offset(dn, pgoff);
1552 if (map->m_next_extent)
1553 *map->m_next_extent = f2fs_get_next_page_offset(dn, pgoff);
1554 return 0;
1555}
1556
1557static bool f2fs_map_blocks_cached(struct inode *inode,
1558 struct f2fs_map_blocks *map, int flag)
1559{
1560 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1561 unsigned int maxblocks = map->m_len;
1562 pgoff_t pgoff = (pgoff_t)map->m_lblk;
1563 struct extent_info ei = {};
1564
1565 if (!f2fs_lookup_read_extent_cache(inode, pgoff, &ei))
1566 return false;
1567
1568 map->m_pblk = ei.blk + pgoff - ei.fofs;
1569 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgoff);
1570 map->m_flags = F2FS_MAP_MAPPED;
1571 if (map->m_next_extent)
1572 *map->m_next_extent = pgoff + map->m_len;
1573
1574 /* for hardware encryption, but to avoid potential issue in future */
1575 if (flag == F2FS_GET_BLOCK_DIO)
1576 f2fs_wait_on_block_writeback_range(inode,
1577 map->m_pblk, map->m_len);
1578
1579 if (f2fs_allow_multi_device_dio(sbi, flag)) {
1580 int bidx = f2fs_target_device_index(sbi, map->m_pblk);
1581 struct f2fs_dev_info *dev = &sbi->devs[bidx];
1582
1583 map->m_bdev = dev->bdev;
1584 map->m_pblk -= dev->start_blk;
1585 map->m_len = min(map->m_len, dev->end_blk + 1 - map->m_pblk);
1586 } else {
1587 map->m_bdev = inode->i_sb->s_bdev;
1588 }
1589 return true;
1590}
1591
1592/*
1593 * f2fs_map_blocks() tries to find or build mapping relationship which
1594 * maps continuous logical blocks to physical blocks, and return such
1595 * info via f2fs_map_blocks structure.
1596 */
1597int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag)
1598{
1599 unsigned int maxblocks = map->m_len;
1600 struct dnode_of_data dn;
1601 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1602 int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1603 pgoff_t pgofs, end_offset, end;
1604 int err = 0, ofs = 1;
1605 unsigned int ofs_in_node, last_ofs_in_node;
1606 blkcnt_t prealloc;
1607 block_t blkaddr;
1608 unsigned int start_pgofs;
1609 int bidx = 0;
1610 bool is_hole;
1611
1612 if (!maxblocks)
1613 return 0;
1614
1615 if (!map->m_may_create && f2fs_map_blocks_cached(inode, map, flag))
1616 goto out;
1617
1618 map->m_bdev = inode->i_sb->s_bdev;
1619 map->m_multidev_dio =
1620 f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag);
1621
1622 map->m_len = 0;
1623 map->m_flags = 0;
1624
1625 /* it only supports block size == page size */
1626 pgofs = (pgoff_t)map->m_lblk;
1627 end = pgofs + maxblocks;
1628
1629next_dnode:
1630 if (map->m_may_create)
1631 f2fs_map_lock(sbi, flag);
1632
1633 /* When reading holes, we need its node page */
1634 set_new_dnode(&dn, inode, NULL, NULL, 0);
1635 err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1636 if (err) {
1637 if (flag == F2FS_GET_BLOCK_BMAP)
1638 map->m_pblk = 0;
1639 if (err == -ENOENT)
1640 err = f2fs_map_no_dnode(inode, map, &dn, pgofs);
1641 goto unlock_out;
1642 }
1643
1644 start_pgofs = pgofs;
1645 prealloc = 0;
1646 last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1647 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1648
1649next_block:
1650 blkaddr = f2fs_data_blkaddr(&dn);
1651 is_hole = !__is_valid_data_blkaddr(blkaddr);
1652 if (!is_hole &&
1653 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1654 err = -EFSCORRUPTED;
1655 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1656 goto sync_out;
1657 }
1658
1659 /* use out-place-update for direct IO under LFS mode */
1660 if (map->m_may_create &&
1661 (is_hole || (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO))) {
1662 if (unlikely(f2fs_cp_error(sbi))) {
1663 err = -EIO;
1664 goto sync_out;
1665 }
1666
1667 switch (flag) {
1668 case F2FS_GET_BLOCK_PRE_AIO:
1669 if (blkaddr == NULL_ADDR) {
1670 prealloc++;
1671 last_ofs_in_node = dn.ofs_in_node;
1672 }
1673 break;
1674 case F2FS_GET_BLOCK_PRE_DIO:
1675 case F2FS_GET_BLOCK_DIO:
1676 err = __allocate_data_block(&dn, map->m_seg_type);
1677 if (err)
1678 goto sync_out;
1679 if (flag == F2FS_GET_BLOCK_PRE_DIO)
1680 file_need_truncate(inode);
1681 set_inode_flag(inode, FI_APPEND_WRITE);
1682 break;
1683 default:
1684 WARN_ON_ONCE(1);
1685 err = -EIO;
1686 goto sync_out;
1687 }
1688
1689 blkaddr = dn.data_blkaddr;
1690 if (is_hole)
1691 map->m_flags |= F2FS_MAP_NEW;
1692 } else if (is_hole) {
1693 if (f2fs_compressed_file(inode) &&
1694 f2fs_sanity_check_cluster(&dn) &&
1695 (flag != F2FS_GET_BLOCK_FIEMAP ||
1696 IS_ENABLED(CONFIG_F2FS_CHECK_FS))) {
1697 err = -EFSCORRUPTED;
1698 f2fs_handle_error(sbi,
1699 ERROR_CORRUPTED_CLUSTER);
1700 goto sync_out;
1701 }
1702
1703 switch (flag) {
1704 case F2FS_GET_BLOCK_PRECACHE:
1705 goto sync_out;
1706 case F2FS_GET_BLOCK_BMAP:
1707 map->m_pblk = 0;
1708 goto sync_out;
1709 case F2FS_GET_BLOCK_FIEMAP:
1710 if (blkaddr == NULL_ADDR) {
1711 if (map->m_next_pgofs)
1712 *map->m_next_pgofs = pgofs + 1;
1713 goto sync_out;
1714 }
1715 break;
1716 default:
1717 /* for defragment case */
1718 if (map->m_next_pgofs)
1719 *map->m_next_pgofs = pgofs + 1;
1720 goto sync_out;
1721 }
1722 }
1723
1724 if (flag == F2FS_GET_BLOCK_PRE_AIO)
1725 goto skip;
1726
1727 if (map->m_multidev_dio)
1728 bidx = f2fs_target_device_index(sbi, blkaddr);
1729
1730 if (map->m_len == 0) {
1731 /* reserved delalloc block should be mapped for fiemap. */
1732 if (blkaddr == NEW_ADDR)
1733 map->m_flags |= F2FS_MAP_DELALLOC;
1734 map->m_flags |= F2FS_MAP_MAPPED;
1735
1736 map->m_pblk = blkaddr;
1737 map->m_len = 1;
1738
1739 if (map->m_multidev_dio)
1740 map->m_bdev = FDEV(bidx).bdev;
1741 } else if ((map->m_pblk != NEW_ADDR &&
1742 blkaddr == (map->m_pblk + ofs)) ||
1743 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1744 flag == F2FS_GET_BLOCK_PRE_DIO) {
1745 if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev)
1746 goto sync_out;
1747 ofs++;
1748 map->m_len++;
1749 } else {
1750 goto sync_out;
1751 }
1752
1753skip:
1754 dn.ofs_in_node++;
1755 pgofs++;
1756
1757 /* preallocate blocks in batch for one dnode page */
1758 if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1759 (pgofs == end || dn.ofs_in_node == end_offset)) {
1760
1761 dn.ofs_in_node = ofs_in_node;
1762 err = f2fs_reserve_new_blocks(&dn, prealloc);
1763 if (err)
1764 goto sync_out;
1765
1766 map->m_len += dn.ofs_in_node - ofs_in_node;
1767 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1768 err = -ENOSPC;
1769 goto sync_out;
1770 }
1771 dn.ofs_in_node = end_offset;
1772 }
1773
1774 if (pgofs >= end)
1775 goto sync_out;
1776 else if (dn.ofs_in_node < end_offset)
1777 goto next_block;
1778
1779 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1780 if (map->m_flags & F2FS_MAP_MAPPED) {
1781 unsigned int ofs = start_pgofs - map->m_lblk;
1782
1783 f2fs_update_read_extent_cache_range(&dn,
1784 start_pgofs, map->m_pblk + ofs,
1785 map->m_len - ofs);
1786 }
1787 }
1788
1789 f2fs_put_dnode(&dn);
1790
1791 if (map->m_may_create) {
1792 f2fs_map_unlock(sbi, flag);
1793 f2fs_balance_fs(sbi, dn.node_changed);
1794 }
1795 goto next_dnode;
1796
1797sync_out:
1798
1799 if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) {
1800 /*
1801 * for hardware encryption, but to avoid potential issue
1802 * in future
1803 */
1804 f2fs_wait_on_block_writeback_range(inode,
1805 map->m_pblk, map->m_len);
1806
1807 if (map->m_multidev_dio) {
1808 block_t blk_addr = map->m_pblk;
1809
1810 bidx = f2fs_target_device_index(sbi, map->m_pblk);
1811
1812 map->m_bdev = FDEV(bidx).bdev;
1813 map->m_pblk -= FDEV(bidx).start_blk;
1814
1815 if (map->m_may_create)
1816 f2fs_update_device_state(sbi, inode->i_ino,
1817 blk_addr, map->m_len);
1818
1819 f2fs_bug_on(sbi, blk_addr + map->m_len >
1820 FDEV(bidx).end_blk + 1);
1821 }
1822 }
1823
1824 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1825 if (map->m_flags & F2FS_MAP_MAPPED) {
1826 unsigned int ofs = start_pgofs - map->m_lblk;
1827
1828 f2fs_update_read_extent_cache_range(&dn,
1829 start_pgofs, map->m_pblk + ofs,
1830 map->m_len - ofs);
1831 }
1832 if (map->m_next_extent)
1833 *map->m_next_extent = pgofs + 1;
1834 }
1835 f2fs_put_dnode(&dn);
1836unlock_out:
1837 if (map->m_may_create) {
1838 f2fs_map_unlock(sbi, flag);
1839 f2fs_balance_fs(sbi, dn.node_changed);
1840 }
1841out:
1842 trace_f2fs_map_blocks(inode, map, flag, err);
1843 return err;
1844}
1845
1846bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1847{
1848 struct f2fs_map_blocks map;
1849 block_t last_lblk;
1850 int err;
1851
1852 if (pos + len > i_size_read(inode))
1853 return false;
1854
1855 map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1856 map.m_next_pgofs = NULL;
1857 map.m_next_extent = NULL;
1858 map.m_seg_type = NO_CHECK_TYPE;
1859 map.m_may_create = false;
1860 last_lblk = F2FS_BLK_ALIGN(pos + len);
1861
1862 while (map.m_lblk < last_lblk) {
1863 map.m_len = last_lblk - map.m_lblk;
1864 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
1865 if (err || map.m_len == 0)
1866 return false;
1867 map.m_lblk += map.m_len;
1868 }
1869 return true;
1870}
1871
1872static inline u64 bytes_to_blks(struct inode *inode, u64 bytes)
1873{
1874 return (bytes >> inode->i_blkbits);
1875}
1876
1877static inline u64 blks_to_bytes(struct inode *inode, u64 blks)
1878{
1879 return (blks << inode->i_blkbits);
1880}
1881
1882static int f2fs_xattr_fiemap(struct inode *inode,
1883 struct fiemap_extent_info *fieinfo)
1884{
1885 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1886 struct page *page;
1887 struct node_info ni;
1888 __u64 phys = 0, len;
1889 __u32 flags;
1890 nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1891 int err = 0;
1892
1893 if (f2fs_has_inline_xattr(inode)) {
1894 int offset;
1895
1896 page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1897 inode->i_ino, false);
1898 if (!page)
1899 return -ENOMEM;
1900
1901 err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false);
1902 if (err) {
1903 f2fs_put_page(page, 1);
1904 return err;
1905 }
1906
1907 phys = blks_to_bytes(inode, ni.blk_addr);
1908 offset = offsetof(struct f2fs_inode, i_addr) +
1909 sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1910 get_inline_xattr_addrs(inode));
1911
1912 phys += offset;
1913 len = inline_xattr_size(inode);
1914
1915 f2fs_put_page(page, 1);
1916
1917 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1918
1919 if (!xnid)
1920 flags |= FIEMAP_EXTENT_LAST;
1921
1922 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1923 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1924 if (err)
1925 return err;
1926 }
1927
1928 if (xnid) {
1929 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1930 if (!page)
1931 return -ENOMEM;
1932
1933 err = f2fs_get_node_info(sbi, xnid, &ni, false);
1934 if (err) {
1935 f2fs_put_page(page, 1);
1936 return err;
1937 }
1938
1939 phys = blks_to_bytes(inode, ni.blk_addr);
1940 len = inode->i_sb->s_blocksize;
1941
1942 f2fs_put_page(page, 1);
1943
1944 flags = FIEMAP_EXTENT_LAST;
1945 }
1946
1947 if (phys) {
1948 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1949 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1950 }
1951
1952 return (err < 0 ? err : 0);
1953}
1954
1955static loff_t max_inode_blocks(struct inode *inode)
1956{
1957 loff_t result = ADDRS_PER_INODE(inode);
1958 loff_t leaf_count = ADDRS_PER_BLOCK(inode);
1959
1960 /* two direct node blocks */
1961 result += (leaf_count * 2);
1962
1963 /* two indirect node blocks */
1964 leaf_count *= NIDS_PER_BLOCK;
1965 result += (leaf_count * 2);
1966
1967 /* one double indirect node block */
1968 leaf_count *= NIDS_PER_BLOCK;
1969 result += leaf_count;
1970
1971 return result;
1972}
1973
1974int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1975 u64 start, u64 len)
1976{
1977 struct f2fs_map_blocks map;
1978 sector_t start_blk, last_blk;
1979 pgoff_t next_pgofs;
1980 u64 logical = 0, phys = 0, size = 0;
1981 u32 flags = 0;
1982 int ret = 0;
1983 bool compr_cluster = false, compr_appended;
1984 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1985 unsigned int count_in_cluster = 0;
1986 loff_t maxbytes;
1987
1988 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1989 ret = f2fs_precache_extents(inode);
1990 if (ret)
1991 return ret;
1992 }
1993
1994 ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1995 if (ret)
1996 return ret;
1997
1998 inode_lock(inode);
1999
2000 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
2001 if (start > maxbytes) {
2002 ret = -EFBIG;
2003 goto out;
2004 }
2005
2006 if (len > maxbytes || (maxbytes - len) < start)
2007 len = maxbytes - start;
2008
2009 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
2010 ret = f2fs_xattr_fiemap(inode, fieinfo);
2011 goto out;
2012 }
2013
2014 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
2015 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
2016 if (ret != -EAGAIN)
2017 goto out;
2018 }
2019
2020 if (bytes_to_blks(inode, len) == 0)
2021 len = blks_to_bytes(inode, 1);
2022
2023 start_blk = bytes_to_blks(inode, start);
2024 last_blk = bytes_to_blks(inode, start + len - 1);
2025
2026next:
2027 memset(&map, 0, sizeof(map));
2028 map.m_lblk = start_blk;
2029 map.m_len = bytes_to_blks(inode, len);
2030 map.m_next_pgofs = &next_pgofs;
2031 map.m_seg_type = NO_CHECK_TYPE;
2032
2033 if (compr_cluster) {
2034 map.m_lblk += 1;
2035 map.m_len = cluster_size - count_in_cluster;
2036 }
2037
2038 ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
2039 if (ret)
2040 goto out;
2041
2042 /* HOLE */
2043 if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) {
2044 start_blk = next_pgofs;
2045
2046 if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode,
2047 max_inode_blocks(inode)))
2048 goto prep_next;
2049
2050 flags |= FIEMAP_EXTENT_LAST;
2051 }
2052
2053 compr_appended = false;
2054 /* In a case of compressed cluster, append this to the last extent */
2055 if (compr_cluster && ((map.m_flags & F2FS_MAP_DELALLOC) ||
2056 !(map.m_flags & F2FS_MAP_FLAGS))) {
2057 compr_appended = true;
2058 goto skip_fill;
2059 }
2060
2061 if (size) {
2062 flags |= FIEMAP_EXTENT_MERGED;
2063 if (IS_ENCRYPTED(inode))
2064 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
2065
2066 ret = fiemap_fill_next_extent(fieinfo, logical,
2067 phys, size, flags);
2068 trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
2069 if (ret)
2070 goto out;
2071 size = 0;
2072 }
2073
2074 if (start_blk > last_blk)
2075 goto out;
2076
2077skip_fill:
2078 if (map.m_pblk == COMPRESS_ADDR) {
2079 compr_cluster = true;
2080 count_in_cluster = 1;
2081 } else if (compr_appended) {
2082 unsigned int appended_blks = cluster_size -
2083 count_in_cluster + 1;
2084 size += blks_to_bytes(inode, appended_blks);
2085 start_blk += appended_blks;
2086 compr_cluster = false;
2087 } else {
2088 logical = blks_to_bytes(inode, start_blk);
2089 phys = __is_valid_data_blkaddr(map.m_pblk) ?
2090 blks_to_bytes(inode, map.m_pblk) : 0;
2091 size = blks_to_bytes(inode, map.m_len);
2092 flags = 0;
2093
2094 if (compr_cluster) {
2095 flags = FIEMAP_EXTENT_ENCODED;
2096 count_in_cluster += map.m_len;
2097 if (count_in_cluster == cluster_size) {
2098 compr_cluster = false;
2099 size += blks_to_bytes(inode, 1);
2100 }
2101 } else if (map.m_flags & F2FS_MAP_DELALLOC) {
2102 flags = FIEMAP_EXTENT_UNWRITTEN;
2103 }
2104
2105 start_blk += bytes_to_blks(inode, size);
2106 }
2107
2108prep_next:
2109 cond_resched();
2110 if (fatal_signal_pending(current))
2111 ret = -EINTR;
2112 else
2113 goto next;
2114out:
2115 if (ret == 1)
2116 ret = 0;
2117
2118 inode_unlock(inode);
2119 return ret;
2120}
2121
2122static inline loff_t f2fs_readpage_limit(struct inode *inode)
2123{
2124 if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2125 return inode->i_sb->s_maxbytes;
2126
2127 return i_size_read(inode);
2128}
2129
2130static int f2fs_read_single_page(struct inode *inode, struct page *page,
2131 unsigned nr_pages,
2132 struct f2fs_map_blocks *map,
2133 struct bio **bio_ret,
2134 sector_t *last_block_in_bio,
2135 bool is_readahead)
2136{
2137 struct bio *bio = *bio_ret;
2138 const unsigned blocksize = blks_to_bytes(inode, 1);
2139 sector_t block_in_file;
2140 sector_t last_block;
2141 sector_t last_block_in_file;
2142 sector_t block_nr;
2143 int ret = 0;
2144
2145 block_in_file = (sector_t)page_index(page);
2146 last_block = block_in_file + nr_pages;
2147 last_block_in_file = bytes_to_blks(inode,
2148 f2fs_readpage_limit(inode) + blocksize - 1);
2149 if (last_block > last_block_in_file)
2150 last_block = last_block_in_file;
2151
2152 /* just zeroing out page which is beyond EOF */
2153 if (block_in_file >= last_block)
2154 goto zero_out;
2155 /*
2156 * Map blocks using the previous result first.
2157 */
2158 if ((map->m_flags & F2FS_MAP_MAPPED) &&
2159 block_in_file > map->m_lblk &&
2160 block_in_file < (map->m_lblk + map->m_len))
2161 goto got_it;
2162
2163 /*
2164 * Then do more f2fs_map_blocks() calls until we are
2165 * done with this page.
2166 */
2167 map->m_lblk = block_in_file;
2168 map->m_len = last_block - block_in_file;
2169
2170 ret = f2fs_map_blocks(inode, map, F2FS_GET_BLOCK_DEFAULT);
2171 if (ret)
2172 goto out;
2173got_it:
2174 if ((map->m_flags & F2FS_MAP_MAPPED)) {
2175 block_nr = map->m_pblk + block_in_file - map->m_lblk;
2176 SetPageMappedToDisk(page);
2177
2178 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2179 DATA_GENERIC_ENHANCE_READ)) {
2180 ret = -EFSCORRUPTED;
2181 f2fs_handle_error(F2FS_I_SB(inode),
2182 ERROR_INVALID_BLKADDR);
2183 goto out;
2184 }
2185 } else {
2186zero_out:
2187 zero_user_segment(page, 0, PAGE_SIZE);
2188 if (f2fs_need_verity(inode, page->index) &&
2189 !fsverity_verify_page(page)) {
2190 ret = -EIO;
2191 goto out;
2192 }
2193 if (!PageUptodate(page))
2194 SetPageUptodate(page);
2195 unlock_page(page);
2196 goto out;
2197 }
2198
2199 /*
2200 * This page will go to BIO. Do we need to send this
2201 * BIO off first?
2202 */
2203 if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2204 *last_block_in_bio, block_nr) ||
2205 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2206submit_and_realloc:
2207 f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2208 bio = NULL;
2209 }
2210 if (bio == NULL) {
2211 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2212 is_readahead ? REQ_RAHEAD : 0, page->index,
2213 false);
2214 if (IS_ERR(bio)) {
2215 ret = PTR_ERR(bio);
2216 bio = NULL;
2217 goto out;
2218 }
2219 }
2220
2221 /*
2222 * If the page is under writeback, we need to wait for
2223 * its completion to see the correct decrypted data.
2224 */
2225 f2fs_wait_on_block_writeback(inode, block_nr);
2226
2227 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2228 goto submit_and_realloc;
2229
2230 inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2231 f2fs_update_iostat(F2FS_I_SB(inode), NULL, FS_DATA_READ_IO,
2232 F2FS_BLKSIZE);
2233 *last_block_in_bio = block_nr;
2234out:
2235 *bio_ret = bio;
2236 return ret;
2237}
2238
2239#ifdef CONFIG_F2FS_FS_COMPRESSION
2240int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2241 unsigned nr_pages, sector_t *last_block_in_bio,
2242 bool is_readahead, bool for_write)
2243{
2244 struct dnode_of_data dn;
2245 struct inode *inode = cc->inode;
2246 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2247 struct bio *bio = *bio_ret;
2248 unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2249 sector_t last_block_in_file;
2250 const unsigned blocksize = blks_to_bytes(inode, 1);
2251 struct decompress_io_ctx *dic = NULL;
2252 struct extent_info ei = {};
2253 bool from_dnode = true;
2254 int i;
2255 int ret = 0;
2256
2257 f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2258
2259 last_block_in_file = bytes_to_blks(inode,
2260 f2fs_readpage_limit(inode) + blocksize - 1);
2261
2262 /* get rid of pages beyond EOF */
2263 for (i = 0; i < cc->cluster_size; i++) {
2264 struct page *page = cc->rpages[i];
2265
2266 if (!page)
2267 continue;
2268 if ((sector_t)page->index >= last_block_in_file) {
2269 zero_user_segment(page, 0, PAGE_SIZE);
2270 if (!PageUptodate(page))
2271 SetPageUptodate(page);
2272 } else if (!PageUptodate(page)) {
2273 continue;
2274 }
2275 unlock_page(page);
2276 if (for_write)
2277 put_page(page);
2278 cc->rpages[i] = NULL;
2279 cc->nr_rpages--;
2280 }
2281
2282 /* we are done since all pages are beyond EOF */
2283 if (f2fs_cluster_is_empty(cc))
2284 goto out;
2285
2286 if (f2fs_lookup_read_extent_cache(inode, start_idx, &ei))
2287 from_dnode = false;
2288
2289 if (!from_dnode)
2290 goto skip_reading_dnode;
2291
2292 set_new_dnode(&dn, inode, NULL, NULL, 0);
2293 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2294 if (ret)
2295 goto out;
2296
2297 if (unlikely(f2fs_cp_error(sbi))) {
2298 ret = -EIO;
2299 goto out_put_dnode;
2300 }
2301 f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2302
2303skip_reading_dnode:
2304 for (i = 1; i < cc->cluster_size; i++) {
2305 block_t blkaddr;
2306
2307 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2308 dn.ofs_in_node + i) :
2309 ei.blk + i - 1;
2310
2311 if (!__is_valid_data_blkaddr(blkaddr))
2312 break;
2313
2314 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2315 ret = -EFAULT;
2316 goto out_put_dnode;
2317 }
2318 cc->nr_cpages++;
2319
2320 if (!from_dnode && i >= ei.c_len)
2321 break;
2322 }
2323
2324 /* nothing to decompress */
2325 if (cc->nr_cpages == 0) {
2326 ret = 0;
2327 goto out_put_dnode;
2328 }
2329
2330 dic = f2fs_alloc_dic(cc);
2331 if (IS_ERR(dic)) {
2332 ret = PTR_ERR(dic);
2333 goto out_put_dnode;
2334 }
2335
2336 for (i = 0; i < cc->nr_cpages; i++) {
2337 struct page *page = dic->cpages[i];
2338 block_t blkaddr;
2339 struct bio_post_read_ctx *ctx;
2340
2341 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2342 dn.ofs_in_node + i + 1) :
2343 ei.blk + i;
2344
2345 f2fs_wait_on_block_writeback(inode, blkaddr);
2346
2347 if (f2fs_load_compressed_page(sbi, page, blkaddr)) {
2348 if (atomic_dec_and_test(&dic->remaining_pages))
2349 f2fs_decompress_cluster(dic, true);
2350 continue;
2351 }
2352
2353 if (bio && (!page_is_mergeable(sbi, bio,
2354 *last_block_in_bio, blkaddr) ||
2355 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2356submit_and_realloc:
2357 f2fs_submit_read_bio(sbi, bio, DATA);
2358 bio = NULL;
2359 }
2360
2361 if (!bio) {
2362 bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2363 is_readahead ? REQ_RAHEAD : 0,
2364 page->index, for_write);
2365 if (IS_ERR(bio)) {
2366 ret = PTR_ERR(bio);
2367 f2fs_decompress_end_io(dic, ret, true);
2368 f2fs_put_dnode(&dn);
2369 *bio_ret = NULL;
2370 return ret;
2371 }
2372 }
2373
2374 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2375 goto submit_and_realloc;
2376
2377 ctx = get_post_read_ctx(bio);
2378 ctx->enabled_steps |= STEP_DECOMPRESS;
2379 refcount_inc(&dic->refcnt);
2380
2381 inc_page_count(sbi, F2FS_RD_DATA);
2382 f2fs_update_iostat(sbi, inode, FS_DATA_READ_IO, F2FS_BLKSIZE);
2383 *last_block_in_bio = blkaddr;
2384 }
2385
2386 if (from_dnode)
2387 f2fs_put_dnode(&dn);
2388
2389 *bio_ret = bio;
2390 return 0;
2391
2392out_put_dnode:
2393 if (from_dnode)
2394 f2fs_put_dnode(&dn);
2395out:
2396 for (i = 0; i < cc->cluster_size; i++) {
2397 if (cc->rpages[i]) {
2398 ClearPageUptodate(cc->rpages[i]);
2399 unlock_page(cc->rpages[i]);
2400 }
2401 }
2402 *bio_ret = bio;
2403 return ret;
2404}
2405#endif
2406
2407/*
2408 * This function was originally taken from fs/mpage.c, and customized for f2fs.
2409 * Major change was from block_size == page_size in f2fs by default.
2410 */
2411static int f2fs_mpage_readpages(struct inode *inode,
2412 struct readahead_control *rac, struct page *page)
2413{
2414 struct bio *bio = NULL;
2415 sector_t last_block_in_bio = 0;
2416 struct f2fs_map_blocks map;
2417#ifdef CONFIG_F2FS_FS_COMPRESSION
2418 struct compress_ctx cc = {
2419 .inode = inode,
2420 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2421 .cluster_size = F2FS_I(inode)->i_cluster_size,
2422 .cluster_idx = NULL_CLUSTER,
2423 .rpages = NULL,
2424 .cpages = NULL,
2425 .nr_rpages = 0,
2426 .nr_cpages = 0,
2427 };
2428 pgoff_t nc_cluster_idx = NULL_CLUSTER;
2429#endif
2430 unsigned nr_pages = rac ? readahead_count(rac) : 1;
2431 unsigned max_nr_pages = nr_pages;
2432 int ret = 0;
2433
2434 map.m_pblk = 0;
2435 map.m_lblk = 0;
2436 map.m_len = 0;
2437 map.m_flags = 0;
2438 map.m_next_pgofs = NULL;
2439 map.m_next_extent = NULL;
2440 map.m_seg_type = NO_CHECK_TYPE;
2441 map.m_may_create = false;
2442
2443 for (; nr_pages; nr_pages--) {
2444 if (rac) {
2445 page = readahead_page(rac);
2446 prefetchw(&page->flags);
2447 }
2448
2449#ifdef CONFIG_F2FS_FS_COMPRESSION
2450 if (f2fs_compressed_file(inode)) {
2451 /* there are remained compressed pages, submit them */
2452 if (!f2fs_cluster_can_merge_page(&cc, page->index)) {
2453 ret = f2fs_read_multi_pages(&cc, &bio,
2454 max_nr_pages,
2455 &last_block_in_bio,
2456 rac != NULL, false);
2457 f2fs_destroy_compress_ctx(&cc, false);
2458 if (ret)
2459 goto set_error_page;
2460 }
2461 if (cc.cluster_idx == NULL_CLUSTER) {
2462 if (nc_cluster_idx ==
2463 page->index >> cc.log_cluster_size) {
2464 goto read_single_page;
2465 }
2466
2467 ret = f2fs_is_compressed_cluster(inode, page->index);
2468 if (ret < 0)
2469 goto set_error_page;
2470 else if (!ret) {
2471 nc_cluster_idx =
2472 page->index >> cc.log_cluster_size;
2473 goto read_single_page;
2474 }
2475
2476 nc_cluster_idx = NULL_CLUSTER;
2477 }
2478 ret = f2fs_init_compress_ctx(&cc);
2479 if (ret)
2480 goto set_error_page;
2481
2482 f2fs_compress_ctx_add_page(&cc, page);
2483
2484 goto next_page;
2485 }
2486read_single_page:
2487#endif
2488
2489 ret = f2fs_read_single_page(inode, page, max_nr_pages, &map,
2490 &bio, &last_block_in_bio, rac);
2491 if (ret) {
2492#ifdef CONFIG_F2FS_FS_COMPRESSION
2493set_error_page:
2494#endif
2495 zero_user_segment(page, 0, PAGE_SIZE);
2496 unlock_page(page);
2497 }
2498#ifdef CONFIG_F2FS_FS_COMPRESSION
2499next_page:
2500#endif
2501 if (rac)
2502 put_page(page);
2503
2504#ifdef CONFIG_F2FS_FS_COMPRESSION
2505 if (f2fs_compressed_file(inode)) {
2506 /* last page */
2507 if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2508 ret = f2fs_read_multi_pages(&cc, &bio,
2509 max_nr_pages,
2510 &last_block_in_bio,
2511 rac != NULL, false);
2512 f2fs_destroy_compress_ctx(&cc, false);
2513 }
2514 }
2515#endif
2516 }
2517 if (bio)
2518 f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2519 return ret;
2520}
2521
2522static int f2fs_read_data_folio(struct file *file, struct folio *folio)
2523{
2524 struct page *page = &folio->page;
2525 struct inode *inode = page_file_mapping(page)->host;
2526 int ret = -EAGAIN;
2527
2528 trace_f2fs_readpage(page, DATA);
2529
2530 if (!f2fs_is_compress_backend_ready(inode)) {
2531 unlock_page(page);
2532 return -EOPNOTSUPP;
2533 }
2534
2535 /* If the file has inline data, try to read it directly */
2536 if (f2fs_has_inline_data(inode))
2537 ret = f2fs_read_inline_data(inode, page);
2538 if (ret == -EAGAIN)
2539 ret = f2fs_mpage_readpages(inode, NULL, page);
2540 return ret;
2541}
2542
2543static void f2fs_readahead(struct readahead_control *rac)
2544{
2545 struct inode *inode = rac->mapping->host;
2546
2547 trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2548
2549 if (!f2fs_is_compress_backend_ready(inode))
2550 return;
2551
2552 /* If the file has inline data, skip readahead */
2553 if (f2fs_has_inline_data(inode))
2554 return;
2555
2556 f2fs_mpage_readpages(inode, rac, NULL);
2557}
2558
2559int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2560{
2561 struct inode *inode = fio->page->mapping->host;
2562 struct page *mpage, *page;
2563 gfp_t gfp_flags = GFP_NOFS;
2564
2565 if (!f2fs_encrypted_file(inode))
2566 return 0;
2567
2568 page = fio->compressed_page ? fio->compressed_page : fio->page;
2569
2570 /* wait for GCed page writeback via META_MAPPING */
2571 f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2572
2573 if (fscrypt_inode_uses_inline_crypto(inode))
2574 return 0;
2575
2576retry_encrypt:
2577 fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2578 PAGE_SIZE, 0, gfp_flags);
2579 if (IS_ERR(fio->encrypted_page)) {
2580 /* flush pending IOs and wait for a while in the ENOMEM case */
2581 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2582 f2fs_flush_merged_writes(fio->sbi);
2583 memalloc_retry_wait(GFP_NOFS);
2584 gfp_flags |= __GFP_NOFAIL;
2585 goto retry_encrypt;
2586 }
2587 return PTR_ERR(fio->encrypted_page);
2588 }
2589
2590 mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2591 if (mpage) {
2592 if (PageUptodate(mpage))
2593 memcpy(page_address(mpage),
2594 page_address(fio->encrypted_page), PAGE_SIZE);
2595 f2fs_put_page(mpage, 1);
2596 }
2597 return 0;
2598}
2599
2600static inline bool check_inplace_update_policy(struct inode *inode,
2601 struct f2fs_io_info *fio)
2602{
2603 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2604
2605 if (IS_F2FS_IPU_HONOR_OPU_WRITE(sbi) &&
2606 is_inode_flag_set(inode, FI_OPU_WRITE))
2607 return false;
2608 if (IS_F2FS_IPU_FORCE(sbi))
2609 return true;
2610 if (IS_F2FS_IPU_SSR(sbi) && f2fs_need_SSR(sbi))
2611 return true;
2612 if (IS_F2FS_IPU_UTIL(sbi) && utilization(sbi) > SM_I(sbi)->min_ipu_util)
2613 return true;
2614 if (IS_F2FS_IPU_SSR_UTIL(sbi) && f2fs_need_SSR(sbi) &&
2615 utilization(sbi) > SM_I(sbi)->min_ipu_util)
2616 return true;
2617
2618 /*
2619 * IPU for rewrite async pages
2620 */
2621 if (IS_F2FS_IPU_ASYNC(sbi) && fio && fio->op == REQ_OP_WRITE &&
2622 !(fio->op_flags & REQ_SYNC) && !IS_ENCRYPTED(inode))
2623 return true;
2624
2625 /* this is only set during fdatasync */
2626 if (IS_F2FS_IPU_FSYNC(sbi) && is_inode_flag_set(inode, FI_NEED_IPU))
2627 return true;
2628
2629 if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2630 !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2631 return true;
2632
2633 return false;
2634}
2635
2636bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2637{
2638 /* swap file is migrating in aligned write mode */
2639 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2640 return false;
2641
2642 if (f2fs_is_pinned_file(inode))
2643 return true;
2644
2645 /* if this is cold file, we should overwrite to avoid fragmentation */
2646 if (file_is_cold(inode) && !is_inode_flag_set(inode, FI_OPU_WRITE))
2647 return true;
2648
2649 return check_inplace_update_policy(inode, fio);
2650}
2651
2652bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2653{
2654 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2655
2656 /* The below cases were checked when setting it. */
2657 if (f2fs_is_pinned_file(inode))
2658 return false;
2659 if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK))
2660 return true;
2661 if (f2fs_lfs_mode(sbi))
2662 return true;
2663 if (S_ISDIR(inode->i_mode))
2664 return true;
2665 if (IS_NOQUOTA(inode))
2666 return true;
2667 if (f2fs_is_atomic_file(inode))
2668 return true;
2669
2670 /* swap file is migrating in aligned write mode */
2671 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2672 return true;
2673
2674 if (is_inode_flag_set(inode, FI_OPU_WRITE))
2675 return true;
2676
2677 if (fio) {
2678 if (page_private_gcing(fio->page))
2679 return true;
2680 if (page_private_dummy(fio->page))
2681 return true;
2682 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2683 f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2684 return true;
2685 }
2686 return false;
2687}
2688
2689static inline bool need_inplace_update(struct f2fs_io_info *fio)
2690{
2691 struct inode *inode = fio->page->mapping->host;
2692
2693 if (f2fs_should_update_outplace(inode, fio))
2694 return false;
2695
2696 return f2fs_should_update_inplace(inode, fio);
2697}
2698
2699int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2700{
2701 struct page *page = fio->page;
2702 struct inode *inode = page->mapping->host;
2703 struct dnode_of_data dn;
2704 struct node_info ni;
2705 bool ipu_force = false;
2706 int err = 0;
2707
2708 /* Use COW inode to make dnode_of_data for atomic write */
2709 if (f2fs_is_atomic_file(inode))
2710 set_new_dnode(&dn, F2FS_I(inode)->cow_inode, NULL, NULL, 0);
2711 else
2712 set_new_dnode(&dn, inode, NULL, NULL, 0);
2713
2714 if (need_inplace_update(fio) &&
2715 f2fs_lookup_read_extent_cache_block(inode, page->index,
2716 &fio->old_blkaddr)) {
2717 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2718 DATA_GENERIC_ENHANCE)) {
2719 f2fs_handle_error(fio->sbi,
2720 ERROR_INVALID_BLKADDR);
2721 return -EFSCORRUPTED;
2722 }
2723
2724 ipu_force = true;
2725 fio->need_lock = LOCK_DONE;
2726 goto got_it;
2727 }
2728
2729 /* Deadlock due to between page->lock and f2fs_lock_op */
2730 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2731 return -EAGAIN;
2732
2733 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2734 if (err)
2735 goto out;
2736
2737 fio->old_blkaddr = dn.data_blkaddr;
2738
2739 /* This page is already truncated */
2740 if (fio->old_blkaddr == NULL_ADDR) {
2741 ClearPageUptodate(page);
2742 clear_page_private_gcing(page);
2743 goto out_writepage;
2744 }
2745got_it:
2746 if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2747 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2748 DATA_GENERIC_ENHANCE)) {
2749 err = -EFSCORRUPTED;
2750 f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR);
2751 goto out_writepage;
2752 }
2753
2754 /*
2755 * If current allocation needs SSR,
2756 * it had better in-place writes for updated data.
2757 */
2758 if (ipu_force ||
2759 (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2760 need_inplace_update(fio))) {
2761 err = f2fs_encrypt_one_page(fio);
2762 if (err)
2763 goto out_writepage;
2764
2765 set_page_writeback(page);
2766 f2fs_put_dnode(&dn);
2767 if (fio->need_lock == LOCK_REQ)
2768 f2fs_unlock_op(fio->sbi);
2769 err = f2fs_inplace_write_data(fio);
2770 if (err) {
2771 if (fscrypt_inode_uses_fs_layer_crypto(inode))
2772 fscrypt_finalize_bounce_page(&fio->encrypted_page);
2773 if (PageWriteback(page))
2774 end_page_writeback(page);
2775 } else {
2776 set_inode_flag(inode, FI_UPDATE_WRITE);
2777 }
2778 trace_f2fs_do_write_data_page(fio->page, IPU);
2779 return err;
2780 }
2781
2782 if (fio->need_lock == LOCK_RETRY) {
2783 if (!f2fs_trylock_op(fio->sbi)) {
2784 err = -EAGAIN;
2785 goto out_writepage;
2786 }
2787 fio->need_lock = LOCK_REQ;
2788 }
2789
2790 err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false);
2791 if (err)
2792 goto out_writepage;
2793
2794 fio->version = ni.version;
2795
2796 err = f2fs_encrypt_one_page(fio);
2797 if (err)
2798 goto out_writepage;
2799
2800 set_page_writeback(page);
2801
2802 if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2803 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2804
2805 /* LFS mode write path */
2806 f2fs_outplace_write_data(&dn, fio);
2807 trace_f2fs_do_write_data_page(page, OPU);
2808 set_inode_flag(inode, FI_APPEND_WRITE);
2809 if (page->index == 0)
2810 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
2811out_writepage:
2812 f2fs_put_dnode(&dn);
2813out:
2814 if (fio->need_lock == LOCK_REQ)
2815 f2fs_unlock_op(fio->sbi);
2816 return err;
2817}
2818
2819int f2fs_write_single_data_page(struct page *page, int *submitted,
2820 struct bio **bio,
2821 sector_t *last_block,
2822 struct writeback_control *wbc,
2823 enum iostat_type io_type,
2824 int compr_blocks,
2825 bool allow_balance)
2826{
2827 struct inode *inode = page->mapping->host;
2828 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2829 loff_t i_size = i_size_read(inode);
2830 const pgoff_t end_index = ((unsigned long long)i_size)
2831 >> PAGE_SHIFT;
2832 loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2833 unsigned offset = 0;
2834 bool need_balance_fs = false;
2835 bool quota_inode = IS_NOQUOTA(inode);
2836 int err = 0;
2837 struct f2fs_io_info fio = {
2838 .sbi = sbi,
2839 .ino = inode->i_ino,
2840 .type = DATA,
2841 .op = REQ_OP_WRITE,
2842 .op_flags = wbc_to_write_flags(wbc),
2843 .old_blkaddr = NULL_ADDR,
2844 .page = page,
2845 .encrypted_page = NULL,
2846 .submitted = 0,
2847 .compr_blocks = compr_blocks,
2848 .need_lock = LOCK_RETRY,
2849 .post_read = f2fs_post_read_required(inode) ? 1 : 0,
2850 .io_type = io_type,
2851 .io_wbc = wbc,
2852 .bio = bio,
2853 .last_block = last_block,
2854 };
2855
2856 trace_f2fs_writepage(page, DATA);
2857
2858 /* we should bypass data pages to proceed the kworker jobs */
2859 if (unlikely(f2fs_cp_error(sbi))) {
2860 mapping_set_error(page->mapping, -EIO);
2861 /*
2862 * don't drop any dirty dentry pages for keeping lastest
2863 * directory structure.
2864 */
2865 if (S_ISDIR(inode->i_mode) &&
2866 !is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2867 goto redirty_out;
2868
2869 /* keep data pages in remount-ro mode */
2870 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY)
2871 goto redirty_out;
2872 goto out;
2873 }
2874
2875 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2876 goto redirty_out;
2877
2878 if (page->index < end_index ||
2879 f2fs_verity_in_progress(inode) ||
2880 compr_blocks)
2881 goto write;
2882
2883 /*
2884 * If the offset is out-of-range of file size,
2885 * this page does not have to be written to disk.
2886 */
2887 offset = i_size & (PAGE_SIZE - 1);
2888 if ((page->index >= end_index + 1) || !offset)
2889 goto out;
2890
2891 zero_user_segment(page, offset, PAGE_SIZE);
2892write:
2893 if (f2fs_is_drop_cache(inode))
2894 goto out;
2895
2896 /* Dentry/quota blocks are controlled by checkpoint */
2897 if (S_ISDIR(inode->i_mode) || quota_inode) {
2898 /*
2899 * We need to wait for node_write to avoid block allocation during
2900 * checkpoint. This can only happen to quota writes which can cause
2901 * the below discard race condition.
2902 */
2903 if (quota_inode)
2904 f2fs_down_read(&sbi->node_write);
2905
2906 fio.need_lock = LOCK_DONE;
2907 err = f2fs_do_write_data_page(&fio);
2908
2909 if (quota_inode)
2910 f2fs_up_read(&sbi->node_write);
2911
2912 goto done;
2913 }
2914
2915 if (!wbc->for_reclaim)
2916 need_balance_fs = true;
2917 else if (has_not_enough_free_secs(sbi, 0, 0))
2918 goto redirty_out;
2919 else
2920 set_inode_flag(inode, FI_HOT_DATA);
2921
2922 err = -EAGAIN;
2923 if (f2fs_has_inline_data(inode)) {
2924 err = f2fs_write_inline_data(inode, page);
2925 if (!err)
2926 goto out;
2927 }
2928
2929 if (err == -EAGAIN) {
2930 err = f2fs_do_write_data_page(&fio);
2931 if (err == -EAGAIN) {
2932 fio.need_lock = LOCK_REQ;
2933 err = f2fs_do_write_data_page(&fio);
2934 }
2935 }
2936
2937 if (err) {
2938 file_set_keep_isize(inode);
2939 } else {
2940 spin_lock(&F2FS_I(inode)->i_size_lock);
2941 if (F2FS_I(inode)->last_disk_size < psize)
2942 F2FS_I(inode)->last_disk_size = psize;
2943 spin_unlock(&F2FS_I(inode)->i_size_lock);
2944 }
2945
2946done:
2947 if (err && err != -ENOENT)
2948 goto redirty_out;
2949
2950out:
2951 inode_dec_dirty_pages(inode);
2952 if (err) {
2953 ClearPageUptodate(page);
2954 clear_page_private_gcing(page);
2955 }
2956
2957 if (wbc->for_reclaim) {
2958 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2959 clear_inode_flag(inode, FI_HOT_DATA);
2960 f2fs_remove_dirty_inode(inode);
2961 submitted = NULL;
2962 }
2963 unlock_page(page);
2964 if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2965 !F2FS_I(inode)->wb_task && allow_balance)
2966 f2fs_balance_fs(sbi, need_balance_fs);
2967
2968 if (unlikely(f2fs_cp_error(sbi))) {
2969 f2fs_submit_merged_write(sbi, DATA);
2970 if (bio && *bio)
2971 f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2972 submitted = NULL;
2973 }
2974
2975 if (submitted)
2976 *submitted = fio.submitted;
2977
2978 return 0;
2979
2980redirty_out:
2981 redirty_page_for_writepage(wbc, page);
2982 /*
2983 * pageout() in MM translates EAGAIN, so calls handle_write_error()
2984 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2985 * file_write_and_wait_range() will see EIO error, which is critical
2986 * to return value of fsync() followed by atomic_write failure to user.
2987 */
2988 if (!err || wbc->for_reclaim)
2989 return AOP_WRITEPAGE_ACTIVATE;
2990 unlock_page(page);
2991 return err;
2992}
2993
2994static int f2fs_write_data_page(struct page *page,
2995 struct writeback_control *wbc)
2996{
2997#ifdef CONFIG_F2FS_FS_COMPRESSION
2998 struct inode *inode = page->mapping->host;
2999
3000 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
3001 goto out;
3002
3003 if (f2fs_compressed_file(inode)) {
3004 if (f2fs_is_compressed_cluster(inode, page->index)) {
3005 redirty_page_for_writepage(wbc, page);
3006 return AOP_WRITEPAGE_ACTIVATE;
3007 }
3008 }
3009out:
3010#endif
3011
3012 return f2fs_write_single_data_page(page, NULL, NULL, NULL,
3013 wbc, FS_DATA_IO, 0, true);
3014}
3015
3016/*
3017 * This function was copied from write_cache_pages from mm/page-writeback.c.
3018 * The major change is making write step of cold data page separately from
3019 * warm/hot data page.
3020 */
3021static int f2fs_write_cache_pages(struct address_space *mapping,
3022 struct writeback_control *wbc,
3023 enum iostat_type io_type)
3024{
3025 int ret = 0;
3026 int done = 0, retry = 0;
3027 struct page *pages[F2FS_ONSTACK_PAGES];
3028 struct folio_batch fbatch;
3029 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
3030 struct bio *bio = NULL;
3031 sector_t last_block;
3032#ifdef CONFIG_F2FS_FS_COMPRESSION
3033 struct inode *inode = mapping->host;
3034 struct compress_ctx cc = {
3035 .inode = inode,
3036 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
3037 .cluster_size = F2FS_I(inode)->i_cluster_size,
3038 .cluster_idx = NULL_CLUSTER,
3039 .rpages = NULL,
3040 .nr_rpages = 0,
3041 .cpages = NULL,
3042 .valid_nr_cpages = 0,
3043 .rbuf = NULL,
3044 .cbuf = NULL,
3045 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
3046 .private = NULL,
3047 };
3048#endif
3049 int nr_folios, p, idx;
3050 int nr_pages;
3051 pgoff_t index;
3052 pgoff_t end; /* Inclusive */
3053 pgoff_t done_index;
3054 int range_whole = 0;
3055 xa_mark_t tag;
3056 int nwritten = 0;
3057 int submitted = 0;
3058 int i;
3059
3060 folio_batch_init(&fbatch);
3061
3062 if (get_dirty_pages(mapping->host) <=
3063 SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
3064 set_inode_flag(mapping->host, FI_HOT_DATA);
3065 else
3066 clear_inode_flag(mapping->host, FI_HOT_DATA);
3067
3068 if (wbc->range_cyclic) {
3069 index = mapping->writeback_index; /* prev offset */
3070 end = -1;
3071 } else {
3072 index = wbc->range_start >> PAGE_SHIFT;
3073 end = wbc->range_end >> PAGE_SHIFT;
3074 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3075 range_whole = 1;
3076 }
3077 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3078 tag = PAGECACHE_TAG_TOWRITE;
3079 else
3080 tag = PAGECACHE_TAG_DIRTY;
3081retry:
3082 retry = 0;
3083 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3084 tag_pages_for_writeback(mapping, index, end);
3085 done_index = index;
3086 while (!done && !retry && (index <= end)) {
3087 nr_pages = 0;
3088again:
3089 nr_folios = filemap_get_folios_tag(mapping, &index, end,
3090 tag, &fbatch);
3091 if (nr_folios == 0) {
3092 if (nr_pages)
3093 goto write;
3094 break;
3095 }
3096
3097 for (i = 0; i < nr_folios; i++) {
3098 struct folio *folio = fbatch.folios[i];
3099
3100 idx = 0;
3101 p = folio_nr_pages(folio);
3102add_more:
3103 pages[nr_pages] = folio_page(folio, idx);
3104 folio_get(folio);
3105 if (++nr_pages == F2FS_ONSTACK_PAGES) {
3106 index = folio->index + idx + 1;
3107 folio_batch_release(&fbatch);
3108 goto write;
3109 }
3110 if (++idx < p)
3111 goto add_more;
3112 }
3113 folio_batch_release(&fbatch);
3114 goto again;
3115write:
3116 for (i = 0; i < nr_pages; i++) {
3117 struct page *page = pages[i];
3118 struct folio *folio = page_folio(page);
3119 bool need_readd;
3120readd:
3121 need_readd = false;
3122#ifdef CONFIG_F2FS_FS_COMPRESSION
3123 if (f2fs_compressed_file(inode)) {
3124 void *fsdata = NULL;
3125 struct page *pagep;
3126 int ret2;
3127
3128 ret = f2fs_init_compress_ctx(&cc);
3129 if (ret) {
3130 done = 1;
3131 break;
3132 }
3133
3134 if (!f2fs_cluster_can_merge_page(&cc,
3135 folio->index)) {
3136 ret = f2fs_write_multi_pages(&cc,
3137 &submitted, wbc, io_type);
3138 if (!ret)
3139 need_readd = true;
3140 goto result;
3141 }
3142
3143 if (unlikely(f2fs_cp_error(sbi)))
3144 goto lock_folio;
3145
3146 if (!f2fs_cluster_is_empty(&cc))
3147 goto lock_folio;
3148
3149 if (f2fs_all_cluster_page_ready(&cc,
3150 pages, i, nr_pages, true))
3151 goto lock_folio;
3152
3153 ret2 = f2fs_prepare_compress_overwrite(
3154 inode, &pagep,
3155 folio->index, &fsdata);
3156 if (ret2 < 0) {
3157 ret = ret2;
3158 done = 1;
3159 break;
3160 } else if (ret2 &&
3161 (!f2fs_compress_write_end(inode,
3162 fsdata, folio->index, 1) ||
3163 !f2fs_all_cluster_page_ready(&cc,
3164 pages, i, nr_pages,
3165 false))) {
3166 retry = 1;
3167 break;
3168 }
3169 }
3170#endif
3171 /* give a priority to WB_SYNC threads */
3172 if (atomic_read(&sbi->wb_sync_req[DATA]) &&
3173 wbc->sync_mode == WB_SYNC_NONE) {
3174 done = 1;
3175 break;
3176 }
3177#ifdef CONFIG_F2FS_FS_COMPRESSION
3178lock_folio:
3179#endif
3180 done_index = folio->index;
3181retry_write:
3182 folio_lock(folio);
3183
3184 if (unlikely(folio->mapping != mapping)) {
3185continue_unlock:
3186 folio_unlock(folio);
3187 continue;
3188 }
3189
3190 if (!folio_test_dirty(folio)) {
3191 /* someone wrote it for us */
3192 goto continue_unlock;
3193 }
3194
3195 if (folio_test_writeback(folio)) {
3196 if (wbc->sync_mode == WB_SYNC_NONE)
3197 goto continue_unlock;
3198 f2fs_wait_on_page_writeback(&folio->page, DATA, true, true);
3199 }
3200
3201 if (!folio_clear_dirty_for_io(folio))
3202 goto continue_unlock;
3203
3204#ifdef CONFIG_F2FS_FS_COMPRESSION
3205 if (f2fs_compressed_file(inode)) {
3206 folio_get(folio);
3207 f2fs_compress_ctx_add_page(&cc, &folio->page);
3208 continue;
3209 }
3210#endif
3211 ret = f2fs_write_single_data_page(&folio->page,
3212 &submitted, &bio, &last_block,
3213 wbc, io_type, 0, true);
3214 if (ret == AOP_WRITEPAGE_ACTIVATE)
3215 folio_unlock(folio);
3216#ifdef CONFIG_F2FS_FS_COMPRESSION
3217result:
3218#endif
3219 nwritten += submitted;
3220 wbc->nr_to_write -= submitted;
3221
3222 if (unlikely(ret)) {
3223 /*
3224 * keep nr_to_write, since vfs uses this to
3225 * get # of written pages.
3226 */
3227 if (ret == AOP_WRITEPAGE_ACTIVATE) {
3228 ret = 0;
3229 goto next;
3230 } else if (ret == -EAGAIN) {
3231 ret = 0;
3232 if (wbc->sync_mode == WB_SYNC_ALL) {
3233 f2fs_io_schedule_timeout(
3234 DEFAULT_IO_TIMEOUT);
3235 goto retry_write;
3236 }
3237 goto next;
3238 }
3239 done_index = folio->index +
3240 folio_nr_pages(folio);
3241 done = 1;
3242 break;
3243 }
3244
3245 if (wbc->nr_to_write <= 0 &&
3246 wbc->sync_mode == WB_SYNC_NONE) {
3247 done = 1;
3248 break;
3249 }
3250next:
3251 if (need_readd)
3252 goto readd;
3253 }
3254 release_pages(pages, nr_pages);
3255 cond_resched();
3256 }
3257#ifdef CONFIG_F2FS_FS_COMPRESSION
3258 /* flush remained pages in compress cluster */
3259 if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3260 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3261 nwritten += submitted;
3262 wbc->nr_to_write -= submitted;
3263 if (ret) {
3264 done = 1;
3265 retry = 0;
3266 }
3267 }
3268 if (f2fs_compressed_file(inode))
3269 f2fs_destroy_compress_ctx(&cc, false);
3270#endif
3271 if (retry) {
3272 index = 0;
3273 end = -1;
3274 goto retry;
3275 }
3276 if (wbc->range_cyclic && !done)
3277 done_index = 0;
3278 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3279 mapping->writeback_index = done_index;
3280
3281 if (nwritten)
3282 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3283 NULL, 0, DATA);
3284 /* submit cached bio of IPU write */
3285 if (bio)
3286 f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3287
3288 return ret;
3289}
3290
3291static inline bool __should_serialize_io(struct inode *inode,
3292 struct writeback_control *wbc)
3293{
3294 /* to avoid deadlock in path of data flush */
3295 if (F2FS_I(inode)->wb_task)
3296 return false;
3297
3298 if (!S_ISREG(inode->i_mode))
3299 return false;
3300 if (IS_NOQUOTA(inode))
3301 return false;
3302
3303 if (f2fs_need_compress_data(inode))
3304 return true;
3305 if (wbc->sync_mode != WB_SYNC_ALL)
3306 return true;
3307 if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3308 return true;
3309 return false;
3310}
3311
3312static int __f2fs_write_data_pages(struct address_space *mapping,
3313 struct writeback_control *wbc,
3314 enum iostat_type io_type)
3315{
3316 struct inode *inode = mapping->host;
3317 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3318 struct blk_plug plug;
3319 int ret;
3320 bool locked = false;
3321
3322 /* deal with chardevs and other special file */
3323 if (!mapping->a_ops->writepage)
3324 return 0;
3325
3326 /* skip writing if there is no dirty page in this inode */
3327 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3328 return 0;
3329
3330 /* during POR, we don't need to trigger writepage at all. */
3331 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3332 goto skip_write;
3333
3334 if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3335 wbc->sync_mode == WB_SYNC_NONE &&
3336 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3337 f2fs_available_free_memory(sbi, DIRTY_DENTS))
3338 goto skip_write;
3339
3340 /* skip writing in file defragment preparing stage */
3341 if (is_inode_flag_set(inode, FI_SKIP_WRITES))
3342 goto skip_write;
3343
3344 trace_f2fs_writepages(mapping->host, wbc, DATA);
3345
3346 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3347 if (wbc->sync_mode == WB_SYNC_ALL)
3348 atomic_inc(&sbi->wb_sync_req[DATA]);
3349 else if (atomic_read(&sbi->wb_sync_req[DATA])) {
3350 /* to avoid potential deadlock */
3351 if (current->plug)
3352 blk_finish_plug(current->plug);
3353 goto skip_write;
3354 }
3355
3356 if (__should_serialize_io(inode, wbc)) {
3357 mutex_lock(&sbi->writepages);
3358 locked = true;
3359 }
3360
3361 blk_start_plug(&plug);
3362 ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3363 blk_finish_plug(&plug);
3364
3365 if (locked)
3366 mutex_unlock(&sbi->writepages);
3367
3368 if (wbc->sync_mode == WB_SYNC_ALL)
3369 atomic_dec(&sbi->wb_sync_req[DATA]);
3370 /*
3371 * if some pages were truncated, we cannot guarantee its mapping->host
3372 * to detect pending bios.
3373 */
3374
3375 f2fs_remove_dirty_inode(inode);
3376 return ret;
3377
3378skip_write:
3379 wbc->pages_skipped += get_dirty_pages(inode);
3380 trace_f2fs_writepages(mapping->host, wbc, DATA);
3381 return 0;
3382}
3383
3384static int f2fs_write_data_pages(struct address_space *mapping,
3385 struct writeback_control *wbc)
3386{
3387 struct inode *inode = mapping->host;
3388
3389 return __f2fs_write_data_pages(mapping, wbc,
3390 F2FS_I(inode)->cp_task == current ?
3391 FS_CP_DATA_IO : FS_DATA_IO);
3392}
3393
3394void f2fs_write_failed(struct inode *inode, loff_t to)
3395{
3396 loff_t i_size = i_size_read(inode);
3397
3398 if (IS_NOQUOTA(inode))
3399 return;
3400
3401 /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3402 if (to > i_size && !f2fs_verity_in_progress(inode)) {
3403 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3404 filemap_invalidate_lock(inode->i_mapping);
3405
3406 truncate_pagecache(inode, i_size);
3407 f2fs_truncate_blocks(inode, i_size, true);
3408
3409 filemap_invalidate_unlock(inode->i_mapping);
3410 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3411 }
3412}
3413
3414static int prepare_write_begin(struct f2fs_sb_info *sbi,
3415 struct page *page, loff_t pos, unsigned len,
3416 block_t *blk_addr, bool *node_changed)
3417{
3418 struct inode *inode = page->mapping->host;
3419 pgoff_t index = page->index;
3420 struct dnode_of_data dn;
3421 struct page *ipage;
3422 bool locked = false;
3423 int flag = F2FS_GET_BLOCK_PRE_AIO;
3424 int err = 0;
3425
3426 /*
3427 * If a whole page is being written and we already preallocated all the
3428 * blocks, then there is no need to get a block address now.
3429 */
3430 if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL))
3431 return 0;
3432
3433 /* f2fs_lock_op avoids race between write CP and convert_inline_page */
3434 if (f2fs_has_inline_data(inode)) {
3435 if (pos + len > MAX_INLINE_DATA(inode))
3436 flag = F2FS_GET_BLOCK_DEFAULT;
3437 f2fs_map_lock(sbi, flag);
3438 locked = true;
3439 } else if ((pos & PAGE_MASK) >= i_size_read(inode)) {
3440 f2fs_map_lock(sbi, flag);
3441 locked = true;
3442 }
3443
3444restart:
3445 /* check inline_data */
3446 ipage = f2fs_get_node_page(sbi, inode->i_ino);
3447 if (IS_ERR(ipage)) {
3448 err = PTR_ERR(ipage);
3449 goto unlock_out;
3450 }
3451
3452 set_new_dnode(&dn, inode, ipage, ipage, 0);
3453
3454 if (f2fs_has_inline_data(inode)) {
3455 if (pos + len <= MAX_INLINE_DATA(inode)) {
3456 f2fs_do_read_inline_data(page, ipage);
3457 set_inode_flag(inode, FI_DATA_EXIST);
3458 if (inode->i_nlink)
3459 set_page_private_inline(ipage);
3460 goto out;
3461 }
3462 err = f2fs_convert_inline_page(&dn, page);
3463 if (err || dn.data_blkaddr != NULL_ADDR)
3464 goto out;
3465 }
3466
3467 if (!f2fs_lookup_read_extent_cache_block(inode, index,
3468 &dn.data_blkaddr)) {
3469 if (locked) {
3470 err = f2fs_reserve_block(&dn, index);
3471 goto out;
3472 }
3473
3474 /* hole case */
3475 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3476 if (!err && dn.data_blkaddr != NULL_ADDR)
3477 goto out;
3478 f2fs_put_dnode(&dn);
3479 f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3480 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3481 locked = true;
3482 goto restart;
3483 }
3484out:
3485 if (!err) {
3486 /* convert_inline_page can make node_changed */
3487 *blk_addr = dn.data_blkaddr;
3488 *node_changed = dn.node_changed;
3489 }
3490 f2fs_put_dnode(&dn);
3491unlock_out:
3492 if (locked)
3493 f2fs_map_unlock(sbi, flag);
3494 return err;
3495}
3496
3497static int __find_data_block(struct inode *inode, pgoff_t index,
3498 block_t *blk_addr)
3499{
3500 struct dnode_of_data dn;
3501 struct page *ipage;
3502 int err = 0;
3503
3504 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
3505 if (IS_ERR(ipage))
3506 return PTR_ERR(ipage);
3507
3508 set_new_dnode(&dn, inode, ipage, ipage, 0);
3509
3510 if (!f2fs_lookup_read_extent_cache_block(inode, index,
3511 &dn.data_blkaddr)) {
3512 /* hole case */
3513 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3514 if (err) {
3515 dn.data_blkaddr = NULL_ADDR;
3516 err = 0;
3517 }
3518 }
3519 *blk_addr = dn.data_blkaddr;
3520 f2fs_put_dnode(&dn);
3521 return err;
3522}
3523
3524static int __reserve_data_block(struct inode *inode, pgoff_t index,
3525 block_t *blk_addr, bool *node_changed)
3526{
3527 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3528 struct dnode_of_data dn;
3529 struct page *ipage;
3530 int err = 0;
3531
3532 f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3533
3534 ipage = f2fs_get_node_page(sbi, inode->i_ino);
3535 if (IS_ERR(ipage)) {
3536 err = PTR_ERR(ipage);
3537 goto unlock_out;
3538 }
3539 set_new_dnode(&dn, inode, ipage, ipage, 0);
3540
3541 if (!f2fs_lookup_read_extent_cache_block(dn.inode, index,
3542 &dn.data_blkaddr))
3543 err = f2fs_reserve_block(&dn, index);
3544
3545 *blk_addr = dn.data_blkaddr;
3546 *node_changed = dn.node_changed;
3547 f2fs_put_dnode(&dn);
3548
3549unlock_out:
3550 f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3551 return err;
3552}
3553
3554static int prepare_atomic_write_begin(struct f2fs_sb_info *sbi,
3555 struct page *page, loff_t pos, unsigned int len,
3556 block_t *blk_addr, bool *node_changed, bool *use_cow)
3557{
3558 struct inode *inode = page->mapping->host;
3559 struct inode *cow_inode = F2FS_I(inode)->cow_inode;
3560 pgoff_t index = page->index;
3561 int err = 0;
3562 block_t ori_blk_addr = NULL_ADDR;
3563
3564 /* If pos is beyond the end of file, reserve a new block in COW inode */
3565 if ((pos & PAGE_MASK) >= i_size_read(inode))
3566 goto reserve_block;
3567
3568 /* Look for the block in COW inode first */
3569 err = __find_data_block(cow_inode, index, blk_addr);
3570 if (err) {
3571 return err;
3572 } else if (*blk_addr != NULL_ADDR) {
3573 *use_cow = true;
3574 return 0;
3575 }
3576
3577 if (is_inode_flag_set(inode, FI_ATOMIC_REPLACE))
3578 goto reserve_block;
3579
3580 /* Look for the block in the original inode */
3581 err = __find_data_block(inode, index, &ori_blk_addr);
3582 if (err)
3583 return err;
3584
3585reserve_block:
3586 /* Finally, we should reserve a new block in COW inode for the update */
3587 err = __reserve_data_block(cow_inode, index, blk_addr, node_changed);
3588 if (err)
3589 return err;
3590 inc_atomic_write_cnt(inode);
3591
3592 if (ori_blk_addr != NULL_ADDR)
3593 *blk_addr = ori_blk_addr;
3594 return 0;
3595}
3596
3597static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3598 loff_t pos, unsigned len, struct page **pagep, void **fsdata)
3599{
3600 struct inode *inode = mapping->host;
3601 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3602 struct page *page = NULL;
3603 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
3604 bool need_balance = false;
3605 bool use_cow = false;
3606 block_t blkaddr = NULL_ADDR;
3607 int err = 0;
3608
3609 trace_f2fs_write_begin(inode, pos, len);
3610
3611 if (!f2fs_is_checkpoint_ready(sbi)) {
3612 err = -ENOSPC;
3613 goto fail;
3614 }
3615
3616 /*
3617 * We should check this at this moment to avoid deadlock on inode page
3618 * and #0 page. The locking rule for inline_data conversion should be:
3619 * lock_page(page #0) -> lock_page(inode_page)
3620 */
3621 if (index != 0) {
3622 err = f2fs_convert_inline_inode(inode);
3623 if (err)
3624 goto fail;
3625 }
3626
3627#ifdef CONFIG_F2FS_FS_COMPRESSION
3628 if (f2fs_compressed_file(inode)) {
3629 int ret;
3630
3631 *fsdata = NULL;
3632
3633 if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode)))
3634 goto repeat;
3635
3636 ret = f2fs_prepare_compress_overwrite(inode, pagep,
3637 index, fsdata);
3638 if (ret < 0) {
3639 err = ret;
3640 goto fail;
3641 } else if (ret) {
3642 return 0;
3643 }
3644 }
3645#endif
3646
3647repeat:
3648 /*
3649 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3650 * wait_for_stable_page. Will wait that below with our IO control.
3651 */
3652 page = f2fs_pagecache_get_page(mapping, index,
3653 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3654 if (!page) {
3655 err = -ENOMEM;
3656 goto fail;
3657 }
3658
3659 /* TODO: cluster can be compressed due to race with .writepage */
3660
3661 *pagep = page;
3662
3663 if (f2fs_is_atomic_file(inode))
3664 err = prepare_atomic_write_begin(sbi, page, pos, len,
3665 &blkaddr, &need_balance, &use_cow);
3666 else
3667 err = prepare_write_begin(sbi, page, pos, len,
3668 &blkaddr, &need_balance);
3669 if (err)
3670 goto fail;
3671
3672 if (need_balance && !IS_NOQUOTA(inode) &&
3673 has_not_enough_free_secs(sbi, 0, 0)) {
3674 unlock_page(page);
3675 f2fs_balance_fs(sbi, true);
3676 lock_page(page);
3677 if (page->mapping != mapping) {
3678 /* The page got truncated from under us */
3679 f2fs_put_page(page, 1);
3680 goto repeat;
3681 }
3682 }
3683
3684 f2fs_wait_on_page_writeback(page, DATA, false, true);
3685
3686 if (len == PAGE_SIZE || PageUptodate(page))
3687 return 0;
3688
3689 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3690 !f2fs_verity_in_progress(inode)) {
3691 zero_user_segment(page, len, PAGE_SIZE);
3692 return 0;
3693 }
3694
3695 if (blkaddr == NEW_ADDR) {
3696 zero_user_segment(page, 0, PAGE_SIZE);
3697 SetPageUptodate(page);
3698 } else {
3699 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3700 DATA_GENERIC_ENHANCE_READ)) {
3701 err = -EFSCORRUPTED;
3702 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
3703 goto fail;
3704 }
3705 err = f2fs_submit_page_read(use_cow ?
3706 F2FS_I(inode)->cow_inode : inode, page,
3707 blkaddr, 0, true);
3708 if (err)
3709 goto fail;
3710
3711 lock_page(page);
3712 if (unlikely(page->mapping != mapping)) {
3713 f2fs_put_page(page, 1);
3714 goto repeat;
3715 }
3716 if (unlikely(!PageUptodate(page))) {
3717 err = -EIO;
3718 goto fail;
3719 }
3720 }
3721 return 0;
3722
3723fail:
3724 f2fs_put_page(page, 1);
3725 f2fs_write_failed(inode, pos + len);
3726 return err;
3727}
3728
3729static int f2fs_write_end(struct file *file,
3730 struct address_space *mapping,
3731 loff_t pos, unsigned len, unsigned copied,
3732 struct page *page, void *fsdata)
3733{
3734 struct inode *inode = page->mapping->host;
3735
3736 trace_f2fs_write_end(inode, pos, len, copied);
3737
3738 /*
3739 * This should be come from len == PAGE_SIZE, and we expect copied
3740 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3741 * let generic_perform_write() try to copy data again through copied=0.
3742 */
3743 if (!PageUptodate(page)) {
3744 if (unlikely(copied != len))
3745 copied = 0;
3746 else
3747 SetPageUptodate(page);
3748 }
3749
3750#ifdef CONFIG_F2FS_FS_COMPRESSION
3751 /* overwrite compressed file */
3752 if (f2fs_compressed_file(inode) && fsdata) {
3753 f2fs_compress_write_end(inode, fsdata, page->index, copied);
3754 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3755
3756 if (pos + copied > i_size_read(inode) &&
3757 !f2fs_verity_in_progress(inode))
3758 f2fs_i_size_write(inode, pos + copied);
3759 return copied;
3760 }
3761#endif
3762
3763 if (!copied)
3764 goto unlock_out;
3765
3766 set_page_dirty(page);
3767
3768 if (pos + copied > i_size_read(inode) &&
3769 !f2fs_verity_in_progress(inode)) {
3770 f2fs_i_size_write(inode, pos + copied);
3771 if (f2fs_is_atomic_file(inode))
3772 f2fs_i_size_write(F2FS_I(inode)->cow_inode,
3773 pos + copied);
3774 }
3775unlock_out:
3776 f2fs_put_page(page, 1);
3777 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3778 return copied;
3779}
3780
3781void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length)
3782{
3783 struct inode *inode = folio->mapping->host;
3784 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3785
3786 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3787 (offset || length != folio_size(folio)))
3788 return;
3789
3790 if (folio_test_dirty(folio)) {
3791 if (inode->i_ino == F2FS_META_INO(sbi)) {
3792 dec_page_count(sbi, F2FS_DIRTY_META);
3793 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3794 dec_page_count(sbi, F2FS_DIRTY_NODES);
3795 } else {
3796 inode_dec_dirty_pages(inode);
3797 f2fs_remove_dirty_inode(inode);
3798 }
3799 }
3800 clear_page_private_all(&folio->page);
3801}
3802
3803bool f2fs_release_folio(struct folio *folio, gfp_t wait)
3804{
3805 /* If this is dirty folio, keep private data */
3806 if (folio_test_dirty(folio))
3807 return false;
3808
3809 clear_page_private_all(&folio->page);
3810 return true;
3811}
3812
3813static bool f2fs_dirty_data_folio(struct address_space *mapping,
3814 struct folio *folio)
3815{
3816 struct inode *inode = mapping->host;
3817
3818 trace_f2fs_set_page_dirty(&folio->page, DATA);
3819
3820 if (!folio_test_uptodate(folio))
3821 folio_mark_uptodate(folio);
3822 BUG_ON(folio_test_swapcache(folio));
3823
3824 if (filemap_dirty_folio(mapping, folio)) {
3825 f2fs_update_dirty_folio(inode, folio);
3826 return true;
3827 }
3828 return false;
3829}
3830
3831
3832static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3833{
3834#ifdef CONFIG_F2FS_FS_COMPRESSION
3835 struct dnode_of_data dn;
3836 sector_t start_idx, blknr = 0;
3837 int ret;
3838
3839 start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3840
3841 set_new_dnode(&dn, inode, NULL, NULL, 0);
3842 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3843 if (ret)
3844 return 0;
3845
3846 if (dn.data_blkaddr != COMPRESS_ADDR) {
3847 dn.ofs_in_node += block - start_idx;
3848 blknr = f2fs_data_blkaddr(&dn);
3849 if (!__is_valid_data_blkaddr(blknr))
3850 blknr = 0;
3851 }
3852
3853 f2fs_put_dnode(&dn);
3854 return blknr;
3855#else
3856 return 0;
3857#endif
3858}
3859
3860
3861static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3862{
3863 struct inode *inode = mapping->host;
3864 sector_t blknr = 0;
3865
3866 if (f2fs_has_inline_data(inode))
3867 goto out;
3868
3869 /* make sure allocating whole blocks */
3870 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3871 filemap_write_and_wait(mapping);
3872
3873 /* Block number less than F2FS MAX BLOCKS */
3874 if (unlikely(block >= max_file_blocks(inode)))
3875 goto out;
3876
3877 if (f2fs_compressed_file(inode)) {
3878 blknr = f2fs_bmap_compress(inode, block);
3879 } else {
3880 struct f2fs_map_blocks map;
3881
3882 memset(&map, 0, sizeof(map));
3883 map.m_lblk = block;
3884 map.m_len = 1;
3885 map.m_next_pgofs = NULL;
3886 map.m_seg_type = NO_CHECK_TYPE;
3887
3888 if (!f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_BMAP))
3889 blknr = map.m_pblk;
3890 }
3891out:
3892 trace_f2fs_bmap(inode, block, blknr);
3893 return blknr;
3894}
3895
3896#ifdef CONFIG_SWAP
3897static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk,
3898 unsigned int blkcnt)
3899{
3900 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3901 unsigned int blkofs;
3902 unsigned int blk_per_sec = BLKS_PER_SEC(sbi);
3903 unsigned int secidx = start_blk / blk_per_sec;
3904 unsigned int end_sec = secidx + blkcnt / blk_per_sec;
3905 int ret = 0;
3906
3907 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3908 filemap_invalidate_lock(inode->i_mapping);
3909
3910 set_inode_flag(inode, FI_ALIGNED_WRITE);
3911 set_inode_flag(inode, FI_OPU_WRITE);
3912
3913 for (; secidx < end_sec; secidx++) {
3914 f2fs_down_write(&sbi->pin_sem);
3915
3916 f2fs_lock_op(sbi);
3917 f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
3918 f2fs_unlock_op(sbi);
3919
3920 set_inode_flag(inode, FI_SKIP_WRITES);
3921
3922 for (blkofs = 0; blkofs < blk_per_sec; blkofs++) {
3923 struct page *page;
3924 unsigned int blkidx = secidx * blk_per_sec + blkofs;
3925
3926 page = f2fs_get_lock_data_page(inode, blkidx, true);
3927 if (IS_ERR(page)) {
3928 f2fs_up_write(&sbi->pin_sem);
3929 ret = PTR_ERR(page);
3930 goto done;
3931 }
3932
3933 set_page_dirty(page);
3934 f2fs_put_page(page, 1);
3935 }
3936
3937 clear_inode_flag(inode, FI_SKIP_WRITES);
3938
3939 ret = filemap_fdatawrite(inode->i_mapping);
3940
3941 f2fs_up_write(&sbi->pin_sem);
3942
3943 if (ret)
3944 break;
3945 }
3946
3947done:
3948 clear_inode_flag(inode, FI_SKIP_WRITES);
3949 clear_inode_flag(inode, FI_OPU_WRITE);
3950 clear_inode_flag(inode, FI_ALIGNED_WRITE);
3951
3952 filemap_invalidate_unlock(inode->i_mapping);
3953 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3954
3955 return ret;
3956}
3957
3958static int check_swap_activate(struct swap_info_struct *sis,
3959 struct file *swap_file, sector_t *span)
3960{
3961 struct address_space *mapping = swap_file->f_mapping;
3962 struct inode *inode = mapping->host;
3963 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3964 sector_t cur_lblock;
3965 sector_t last_lblock;
3966 sector_t pblock;
3967 sector_t lowest_pblock = -1;
3968 sector_t highest_pblock = 0;
3969 int nr_extents = 0;
3970 unsigned long nr_pblocks;
3971 unsigned int blks_per_sec = BLKS_PER_SEC(sbi);
3972 unsigned int sec_blks_mask = BLKS_PER_SEC(sbi) - 1;
3973 unsigned int not_aligned = 0;
3974 int ret = 0;
3975
3976 /*
3977 * Map all the blocks into the extent list. This code doesn't try
3978 * to be very smart.
3979 */
3980 cur_lblock = 0;
3981 last_lblock = bytes_to_blks(inode, i_size_read(inode));
3982
3983 while (cur_lblock < last_lblock && cur_lblock < sis->max) {
3984 struct f2fs_map_blocks map;
3985retry:
3986 cond_resched();
3987
3988 memset(&map, 0, sizeof(map));
3989 map.m_lblk = cur_lblock;
3990 map.m_len = last_lblock - cur_lblock;
3991 map.m_next_pgofs = NULL;
3992 map.m_next_extent = NULL;
3993 map.m_seg_type = NO_CHECK_TYPE;
3994 map.m_may_create = false;
3995
3996 ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
3997 if (ret)
3998 goto out;
3999
4000 /* hole */
4001 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
4002 f2fs_err(sbi, "Swapfile has holes");
4003 ret = -EINVAL;
4004 goto out;
4005 }
4006
4007 pblock = map.m_pblk;
4008 nr_pblocks = map.m_len;
4009
4010 if ((pblock - SM_I(sbi)->main_blkaddr) & sec_blks_mask ||
4011 nr_pblocks & sec_blks_mask) {
4012 not_aligned++;
4013
4014 nr_pblocks = roundup(nr_pblocks, blks_per_sec);
4015 if (cur_lblock + nr_pblocks > sis->max)
4016 nr_pblocks -= blks_per_sec;
4017
4018 if (!nr_pblocks) {
4019 /* this extent is last one */
4020 nr_pblocks = map.m_len;
4021 f2fs_warn(sbi, "Swapfile: last extent is not aligned to section");
4022 goto next;
4023 }
4024
4025 ret = f2fs_migrate_blocks(inode, cur_lblock,
4026 nr_pblocks);
4027 if (ret)
4028 goto out;
4029 goto retry;
4030 }
4031next:
4032 if (cur_lblock + nr_pblocks >= sis->max)
4033 nr_pblocks = sis->max - cur_lblock;
4034
4035 if (cur_lblock) { /* exclude the header page */
4036 if (pblock < lowest_pblock)
4037 lowest_pblock = pblock;
4038 if (pblock + nr_pblocks - 1 > highest_pblock)
4039 highest_pblock = pblock + nr_pblocks - 1;
4040 }
4041
4042 /*
4043 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
4044 */
4045 ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
4046 if (ret < 0)
4047 goto out;
4048 nr_extents += ret;
4049 cur_lblock += nr_pblocks;
4050 }
4051 ret = nr_extents;
4052 *span = 1 + highest_pblock - lowest_pblock;
4053 if (cur_lblock == 0)
4054 cur_lblock = 1; /* force Empty message */
4055 sis->max = cur_lblock;
4056 sis->pages = cur_lblock - 1;
4057 sis->highest_bit = cur_lblock - 1;
4058out:
4059 if (not_aligned)
4060 f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%u * N)",
4061 not_aligned, blks_per_sec * F2FS_BLKSIZE);
4062 return ret;
4063}
4064
4065static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4066 sector_t *span)
4067{
4068 struct inode *inode = file_inode(file);
4069 int ret;
4070
4071 if (!S_ISREG(inode->i_mode))
4072 return -EINVAL;
4073
4074 if (f2fs_readonly(F2FS_I_SB(inode)->sb))
4075 return -EROFS;
4076
4077 if (f2fs_lfs_mode(F2FS_I_SB(inode))) {
4078 f2fs_err(F2FS_I_SB(inode),
4079 "Swapfile not supported in LFS mode");
4080 return -EINVAL;
4081 }
4082
4083 ret = f2fs_convert_inline_inode(inode);
4084 if (ret)
4085 return ret;
4086
4087 if (!f2fs_disable_compressed_file(inode))
4088 return -EINVAL;
4089
4090 f2fs_precache_extents(inode);
4091
4092 ret = check_swap_activate(sis, file, span);
4093 if (ret < 0)
4094 return ret;
4095
4096 stat_inc_swapfile_inode(inode);
4097 set_inode_flag(inode, FI_PIN_FILE);
4098 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
4099 return ret;
4100}
4101
4102static void f2fs_swap_deactivate(struct file *file)
4103{
4104 struct inode *inode = file_inode(file);
4105
4106 stat_dec_swapfile_inode(inode);
4107 clear_inode_flag(inode, FI_PIN_FILE);
4108}
4109#else
4110static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4111 sector_t *span)
4112{
4113 return -EOPNOTSUPP;
4114}
4115
4116static void f2fs_swap_deactivate(struct file *file)
4117{
4118}
4119#endif
4120
4121const struct address_space_operations f2fs_dblock_aops = {
4122 .read_folio = f2fs_read_data_folio,
4123 .readahead = f2fs_readahead,
4124 .writepage = f2fs_write_data_page,
4125 .writepages = f2fs_write_data_pages,
4126 .write_begin = f2fs_write_begin,
4127 .write_end = f2fs_write_end,
4128 .dirty_folio = f2fs_dirty_data_folio,
4129 .migrate_folio = filemap_migrate_folio,
4130 .invalidate_folio = f2fs_invalidate_folio,
4131 .release_folio = f2fs_release_folio,
4132 .bmap = f2fs_bmap,
4133 .swap_activate = f2fs_swap_activate,
4134 .swap_deactivate = f2fs_swap_deactivate,
4135};
4136
4137void f2fs_clear_page_cache_dirty_tag(struct page *page)
4138{
4139 struct address_space *mapping = page_mapping(page);
4140 unsigned long flags;
4141
4142 xa_lock_irqsave(&mapping->i_pages, flags);
4143 __xa_clear_mark(&mapping->i_pages, page_index(page),
4144 PAGECACHE_TAG_DIRTY);
4145 xa_unlock_irqrestore(&mapping->i_pages, flags);
4146}
4147
4148int __init f2fs_init_post_read_processing(void)
4149{
4150 bio_post_read_ctx_cache =
4151 kmem_cache_create("f2fs_bio_post_read_ctx",
4152 sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4153 if (!bio_post_read_ctx_cache)
4154 goto fail;
4155 bio_post_read_ctx_pool =
4156 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4157 bio_post_read_ctx_cache);
4158 if (!bio_post_read_ctx_pool)
4159 goto fail_free_cache;
4160 return 0;
4161
4162fail_free_cache:
4163 kmem_cache_destroy(bio_post_read_ctx_cache);
4164fail:
4165 return -ENOMEM;
4166}
4167
4168void f2fs_destroy_post_read_processing(void)
4169{
4170 mempool_destroy(bio_post_read_ctx_pool);
4171 kmem_cache_destroy(bio_post_read_ctx_cache);
4172}
4173
4174int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4175{
4176 if (!f2fs_sb_has_encrypt(sbi) &&
4177 !f2fs_sb_has_verity(sbi) &&
4178 !f2fs_sb_has_compression(sbi))
4179 return 0;
4180
4181 sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4182 WQ_UNBOUND | WQ_HIGHPRI,
4183 num_online_cpus());
4184 return sbi->post_read_wq ? 0 : -ENOMEM;
4185}
4186
4187void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4188{
4189 if (sbi->post_read_wq)
4190 destroy_workqueue(sbi->post_read_wq);
4191}
4192
4193int __init f2fs_init_bio_entry_cache(void)
4194{
4195 bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4196 sizeof(struct bio_entry));
4197 return bio_entry_slab ? 0 : -ENOMEM;
4198}
4199
4200void f2fs_destroy_bio_entry_cache(void)
4201{
4202 kmem_cache_destroy(bio_entry_slab);
4203}
4204
4205static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
4206 unsigned int flags, struct iomap *iomap,
4207 struct iomap *srcmap)
4208{
4209 struct f2fs_map_blocks map = {};
4210 pgoff_t next_pgofs = 0;
4211 int err;
4212
4213 map.m_lblk = bytes_to_blks(inode, offset);
4214 map.m_len = bytes_to_blks(inode, offset + length - 1) - map.m_lblk + 1;
4215 map.m_next_pgofs = &next_pgofs;
4216 map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint);
4217 if (flags & IOMAP_WRITE)
4218 map.m_may_create = true;
4219
4220 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DIO);
4221 if (err)
4222 return err;
4223
4224 iomap->offset = blks_to_bytes(inode, map.m_lblk);
4225
4226 /*
4227 * When inline encryption is enabled, sometimes I/O to an encrypted file
4228 * has to be broken up to guarantee DUN contiguity. Handle this by
4229 * limiting the length of the mapping returned.
4230 */
4231 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
4232
4233 /*
4234 * We should never see delalloc or compressed extents here based on
4235 * prior flushing and checks.
4236 */
4237 if (WARN_ON_ONCE(map.m_pblk == NEW_ADDR))
4238 return -EINVAL;
4239 if (WARN_ON_ONCE(map.m_pblk == COMPRESS_ADDR))
4240 return -EINVAL;
4241
4242 if (map.m_pblk != NULL_ADDR) {
4243 iomap->length = blks_to_bytes(inode, map.m_len);
4244 iomap->type = IOMAP_MAPPED;
4245 iomap->flags |= IOMAP_F_MERGED;
4246 iomap->bdev = map.m_bdev;
4247 iomap->addr = blks_to_bytes(inode, map.m_pblk);
4248 } else {
4249 if (flags & IOMAP_WRITE)
4250 return -ENOTBLK;
4251 iomap->length = blks_to_bytes(inode, next_pgofs) -
4252 iomap->offset;
4253 iomap->type = IOMAP_HOLE;
4254 iomap->addr = IOMAP_NULL_ADDR;
4255 }
4256
4257 if (map.m_flags & F2FS_MAP_NEW)
4258 iomap->flags |= IOMAP_F_NEW;
4259 if ((inode->i_state & I_DIRTY_DATASYNC) ||
4260 offset + length > i_size_read(inode))
4261 iomap->flags |= IOMAP_F_DIRTY;
4262
4263 return 0;
4264}
4265
4266const struct iomap_ops f2fs_iomap_ops = {
4267 .iomap_begin = f2fs_iomap_begin,
4268};