Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/fs/buffer.c
4 *
5 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
6 */
7
8/*
9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 *
11 * Removed a lot of unnecessary code and simplified things now that
12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 *
14 * Speed up hash, lru, and free list operations. Use gfp() for allocating
15 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 *
17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 *
19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20 */
21
22#include <linux/kernel.h>
23#include <linux/sched/signal.h>
24#include <linux/syscalls.h>
25#include <linux/fs.h>
26#include <linux/iomap.h>
27#include <linux/mm.h>
28#include <linux/percpu.h>
29#include <linux/slab.h>
30#include <linux/capability.h>
31#include <linux/blkdev.h>
32#include <linux/file.h>
33#include <linux/quotaops.h>
34#include <linux/highmem.h>
35#include <linux/export.h>
36#include <linux/backing-dev.h>
37#include <linux/writeback.h>
38#include <linux/hash.h>
39#include <linux/suspend.h>
40#include <linux/buffer_head.h>
41#include <linux/task_io_accounting_ops.h>
42#include <linux/bio.h>
43#include <linux/cpu.h>
44#include <linux/bitops.h>
45#include <linux/mpage.h>
46#include <linux/bit_spinlock.h>
47#include <linux/pagevec.h>
48#include <linux/sched/mm.h>
49#include <trace/events/block.h>
50#include <linux/fscrypt.h>
51#include <linux/fsverity.h>
52
53#include "internal.h"
54
55static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
56static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
57 struct writeback_control *wbc);
58
59#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
60
61inline void touch_buffer(struct buffer_head *bh)
62{
63 trace_block_touch_buffer(bh);
64 folio_mark_accessed(bh->b_folio);
65}
66EXPORT_SYMBOL(touch_buffer);
67
68void __lock_buffer(struct buffer_head *bh)
69{
70 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
71}
72EXPORT_SYMBOL(__lock_buffer);
73
74void unlock_buffer(struct buffer_head *bh)
75{
76 clear_bit_unlock(BH_Lock, &bh->b_state);
77 smp_mb__after_atomic();
78 wake_up_bit(&bh->b_state, BH_Lock);
79}
80EXPORT_SYMBOL(unlock_buffer);
81
82/*
83 * Returns if the folio has dirty or writeback buffers. If all the buffers
84 * are unlocked and clean then the folio_test_dirty information is stale. If
85 * any of the buffers are locked, it is assumed they are locked for IO.
86 */
87void buffer_check_dirty_writeback(struct folio *folio,
88 bool *dirty, bool *writeback)
89{
90 struct buffer_head *head, *bh;
91 *dirty = false;
92 *writeback = false;
93
94 BUG_ON(!folio_test_locked(folio));
95
96 head = folio_buffers(folio);
97 if (!head)
98 return;
99
100 if (folio_test_writeback(folio))
101 *writeback = true;
102
103 bh = head;
104 do {
105 if (buffer_locked(bh))
106 *writeback = true;
107
108 if (buffer_dirty(bh))
109 *dirty = true;
110
111 bh = bh->b_this_page;
112 } while (bh != head);
113}
114
115/*
116 * Block until a buffer comes unlocked. This doesn't stop it
117 * from becoming locked again - you have to lock it yourself
118 * if you want to preserve its state.
119 */
120void __wait_on_buffer(struct buffer_head * bh)
121{
122 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
123}
124EXPORT_SYMBOL(__wait_on_buffer);
125
126static void buffer_io_error(struct buffer_head *bh, char *msg)
127{
128 if (!test_bit(BH_Quiet, &bh->b_state))
129 printk_ratelimited(KERN_ERR
130 "Buffer I/O error on dev %pg, logical block %llu%s\n",
131 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
132}
133
134/*
135 * End-of-IO handler helper function which does not touch the bh after
136 * unlocking it.
137 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
138 * a race there is benign: unlock_buffer() only use the bh's address for
139 * hashing after unlocking the buffer, so it doesn't actually touch the bh
140 * itself.
141 */
142static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
143{
144 if (uptodate) {
145 set_buffer_uptodate(bh);
146 } else {
147 /* This happens, due to failed read-ahead attempts. */
148 clear_buffer_uptodate(bh);
149 }
150 unlock_buffer(bh);
151}
152
153/*
154 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
155 * unlock the buffer.
156 */
157void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
158{
159 __end_buffer_read_notouch(bh, uptodate);
160 put_bh(bh);
161}
162EXPORT_SYMBOL(end_buffer_read_sync);
163
164void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
165{
166 if (uptodate) {
167 set_buffer_uptodate(bh);
168 } else {
169 buffer_io_error(bh, ", lost sync page write");
170 mark_buffer_write_io_error(bh);
171 clear_buffer_uptodate(bh);
172 }
173 unlock_buffer(bh);
174 put_bh(bh);
175}
176EXPORT_SYMBOL(end_buffer_write_sync);
177
178/*
179 * Various filesystems appear to want __find_get_block to be non-blocking.
180 * But it's the page lock which protects the buffers. To get around this,
181 * we get exclusion from try_to_free_buffers with the blockdev mapping's
182 * private_lock.
183 *
184 * Hack idea: for the blockdev mapping, private_lock contention
185 * may be quite high. This code could TryLock the page, and if that
186 * succeeds, there is no need to take private_lock.
187 */
188static struct buffer_head *
189__find_get_block_slow(struct block_device *bdev, sector_t block)
190{
191 struct inode *bd_inode = bdev->bd_inode;
192 struct address_space *bd_mapping = bd_inode->i_mapping;
193 struct buffer_head *ret = NULL;
194 pgoff_t index;
195 struct buffer_head *bh;
196 struct buffer_head *head;
197 struct folio *folio;
198 int all_mapped = 1;
199 static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
200
201 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
202 folio = __filemap_get_folio(bd_mapping, index, FGP_ACCESSED, 0);
203 if (IS_ERR(folio))
204 goto out;
205
206 spin_lock(&bd_mapping->private_lock);
207 head = folio_buffers(folio);
208 if (!head)
209 goto out_unlock;
210 bh = head;
211 do {
212 if (!buffer_mapped(bh))
213 all_mapped = 0;
214 else if (bh->b_blocknr == block) {
215 ret = bh;
216 get_bh(bh);
217 goto out_unlock;
218 }
219 bh = bh->b_this_page;
220 } while (bh != head);
221
222 /* we might be here because some of the buffers on this page are
223 * not mapped. This is due to various races between
224 * file io on the block device and getblk. It gets dealt with
225 * elsewhere, don't buffer_error if we had some unmapped buffers
226 */
227 ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
228 if (all_mapped && __ratelimit(&last_warned)) {
229 printk("__find_get_block_slow() failed. block=%llu, "
230 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
231 "device %pg blocksize: %d\n",
232 (unsigned long long)block,
233 (unsigned long long)bh->b_blocknr,
234 bh->b_state, bh->b_size, bdev,
235 1 << bd_inode->i_blkbits);
236 }
237out_unlock:
238 spin_unlock(&bd_mapping->private_lock);
239 folio_put(folio);
240out:
241 return ret;
242}
243
244static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
245{
246 unsigned long flags;
247 struct buffer_head *first;
248 struct buffer_head *tmp;
249 struct folio *folio;
250 int folio_uptodate = 1;
251
252 BUG_ON(!buffer_async_read(bh));
253
254 folio = bh->b_folio;
255 if (uptodate) {
256 set_buffer_uptodate(bh);
257 } else {
258 clear_buffer_uptodate(bh);
259 buffer_io_error(bh, ", async page read");
260 folio_set_error(folio);
261 }
262
263 /*
264 * Be _very_ careful from here on. Bad things can happen if
265 * two buffer heads end IO at almost the same time and both
266 * decide that the page is now completely done.
267 */
268 first = folio_buffers(folio);
269 spin_lock_irqsave(&first->b_uptodate_lock, flags);
270 clear_buffer_async_read(bh);
271 unlock_buffer(bh);
272 tmp = bh;
273 do {
274 if (!buffer_uptodate(tmp))
275 folio_uptodate = 0;
276 if (buffer_async_read(tmp)) {
277 BUG_ON(!buffer_locked(tmp));
278 goto still_busy;
279 }
280 tmp = tmp->b_this_page;
281 } while (tmp != bh);
282 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
283
284 /*
285 * If all of the buffers are uptodate then we can set the page
286 * uptodate.
287 */
288 if (folio_uptodate)
289 folio_mark_uptodate(folio);
290 folio_unlock(folio);
291 return;
292
293still_busy:
294 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
295 return;
296}
297
298struct postprocess_bh_ctx {
299 struct work_struct work;
300 struct buffer_head *bh;
301};
302
303static void verify_bh(struct work_struct *work)
304{
305 struct postprocess_bh_ctx *ctx =
306 container_of(work, struct postprocess_bh_ctx, work);
307 struct buffer_head *bh = ctx->bh;
308 bool valid;
309
310 valid = fsverity_verify_blocks(bh->b_folio, bh->b_size, bh_offset(bh));
311 end_buffer_async_read(bh, valid);
312 kfree(ctx);
313}
314
315static bool need_fsverity(struct buffer_head *bh)
316{
317 struct folio *folio = bh->b_folio;
318 struct inode *inode = folio->mapping->host;
319
320 return fsverity_active(inode) &&
321 /* needed by ext4 */
322 folio->index < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
323}
324
325static void decrypt_bh(struct work_struct *work)
326{
327 struct postprocess_bh_ctx *ctx =
328 container_of(work, struct postprocess_bh_ctx, work);
329 struct buffer_head *bh = ctx->bh;
330 int err;
331
332 err = fscrypt_decrypt_pagecache_blocks(bh->b_folio, bh->b_size,
333 bh_offset(bh));
334 if (err == 0 && need_fsverity(bh)) {
335 /*
336 * We use different work queues for decryption and for verity
337 * because verity may require reading metadata pages that need
338 * decryption, and we shouldn't recurse to the same workqueue.
339 */
340 INIT_WORK(&ctx->work, verify_bh);
341 fsverity_enqueue_verify_work(&ctx->work);
342 return;
343 }
344 end_buffer_async_read(bh, err == 0);
345 kfree(ctx);
346}
347
348/*
349 * I/O completion handler for block_read_full_folio() - pages
350 * which come unlocked at the end of I/O.
351 */
352static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
353{
354 struct inode *inode = bh->b_folio->mapping->host;
355 bool decrypt = fscrypt_inode_uses_fs_layer_crypto(inode);
356 bool verify = need_fsverity(bh);
357
358 /* Decrypt (with fscrypt) and/or verify (with fsverity) if needed. */
359 if (uptodate && (decrypt || verify)) {
360 struct postprocess_bh_ctx *ctx =
361 kmalloc(sizeof(*ctx), GFP_ATOMIC);
362
363 if (ctx) {
364 ctx->bh = bh;
365 if (decrypt) {
366 INIT_WORK(&ctx->work, decrypt_bh);
367 fscrypt_enqueue_decrypt_work(&ctx->work);
368 } else {
369 INIT_WORK(&ctx->work, verify_bh);
370 fsverity_enqueue_verify_work(&ctx->work);
371 }
372 return;
373 }
374 uptodate = 0;
375 }
376 end_buffer_async_read(bh, uptodate);
377}
378
379/*
380 * Completion handler for block_write_full_page() - pages which are unlocked
381 * during I/O, and which have PageWriteback cleared upon I/O completion.
382 */
383void end_buffer_async_write(struct buffer_head *bh, int uptodate)
384{
385 unsigned long flags;
386 struct buffer_head *first;
387 struct buffer_head *tmp;
388 struct folio *folio;
389
390 BUG_ON(!buffer_async_write(bh));
391
392 folio = bh->b_folio;
393 if (uptodate) {
394 set_buffer_uptodate(bh);
395 } else {
396 buffer_io_error(bh, ", lost async page write");
397 mark_buffer_write_io_error(bh);
398 clear_buffer_uptodate(bh);
399 folio_set_error(folio);
400 }
401
402 first = folio_buffers(folio);
403 spin_lock_irqsave(&first->b_uptodate_lock, flags);
404
405 clear_buffer_async_write(bh);
406 unlock_buffer(bh);
407 tmp = bh->b_this_page;
408 while (tmp != bh) {
409 if (buffer_async_write(tmp)) {
410 BUG_ON(!buffer_locked(tmp));
411 goto still_busy;
412 }
413 tmp = tmp->b_this_page;
414 }
415 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
416 folio_end_writeback(folio);
417 return;
418
419still_busy:
420 spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
421 return;
422}
423EXPORT_SYMBOL(end_buffer_async_write);
424
425/*
426 * If a page's buffers are under async readin (end_buffer_async_read
427 * completion) then there is a possibility that another thread of
428 * control could lock one of the buffers after it has completed
429 * but while some of the other buffers have not completed. This
430 * locked buffer would confuse end_buffer_async_read() into not unlocking
431 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
432 * that this buffer is not under async I/O.
433 *
434 * The page comes unlocked when it has no locked buffer_async buffers
435 * left.
436 *
437 * PageLocked prevents anyone starting new async I/O reads any of
438 * the buffers.
439 *
440 * PageWriteback is used to prevent simultaneous writeout of the same
441 * page.
442 *
443 * PageLocked prevents anyone from starting writeback of a page which is
444 * under read I/O (PageWriteback is only ever set against a locked page).
445 */
446static void mark_buffer_async_read(struct buffer_head *bh)
447{
448 bh->b_end_io = end_buffer_async_read_io;
449 set_buffer_async_read(bh);
450}
451
452static void mark_buffer_async_write_endio(struct buffer_head *bh,
453 bh_end_io_t *handler)
454{
455 bh->b_end_io = handler;
456 set_buffer_async_write(bh);
457}
458
459void mark_buffer_async_write(struct buffer_head *bh)
460{
461 mark_buffer_async_write_endio(bh, end_buffer_async_write);
462}
463EXPORT_SYMBOL(mark_buffer_async_write);
464
465
466/*
467 * fs/buffer.c contains helper functions for buffer-backed address space's
468 * fsync functions. A common requirement for buffer-based filesystems is
469 * that certain data from the backing blockdev needs to be written out for
470 * a successful fsync(). For example, ext2 indirect blocks need to be
471 * written back and waited upon before fsync() returns.
472 *
473 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
474 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
475 * management of a list of dependent buffers at ->i_mapping->private_list.
476 *
477 * Locking is a little subtle: try_to_free_buffers() will remove buffers
478 * from their controlling inode's queue when they are being freed. But
479 * try_to_free_buffers() will be operating against the *blockdev* mapping
480 * at the time, not against the S_ISREG file which depends on those buffers.
481 * So the locking for private_list is via the private_lock in the address_space
482 * which backs the buffers. Which is different from the address_space
483 * against which the buffers are listed. So for a particular address_space,
484 * mapping->private_lock does *not* protect mapping->private_list! In fact,
485 * mapping->private_list will always be protected by the backing blockdev's
486 * ->private_lock.
487 *
488 * Which introduces a requirement: all buffers on an address_space's
489 * ->private_list must be from the same address_space: the blockdev's.
490 *
491 * address_spaces which do not place buffers at ->private_list via these
492 * utility functions are free to use private_lock and private_list for
493 * whatever they want. The only requirement is that list_empty(private_list)
494 * be true at clear_inode() time.
495 *
496 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
497 * filesystems should do that. invalidate_inode_buffers() should just go
498 * BUG_ON(!list_empty).
499 *
500 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
501 * take an address_space, not an inode. And it should be called
502 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
503 * queued up.
504 *
505 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
506 * list if it is already on a list. Because if the buffer is on a list,
507 * it *must* already be on the right one. If not, the filesystem is being
508 * silly. This will save a ton of locking. But first we have to ensure
509 * that buffers are taken *off* the old inode's list when they are freed
510 * (presumably in truncate). That requires careful auditing of all
511 * filesystems (do it inside bforget()). It could also be done by bringing
512 * b_inode back.
513 */
514
515/*
516 * The buffer's backing address_space's private_lock must be held
517 */
518static void __remove_assoc_queue(struct buffer_head *bh)
519{
520 list_del_init(&bh->b_assoc_buffers);
521 WARN_ON(!bh->b_assoc_map);
522 bh->b_assoc_map = NULL;
523}
524
525int inode_has_buffers(struct inode *inode)
526{
527 return !list_empty(&inode->i_data.private_list);
528}
529
530/*
531 * osync is designed to support O_SYNC io. It waits synchronously for
532 * all already-submitted IO to complete, but does not queue any new
533 * writes to the disk.
534 *
535 * To do O_SYNC writes, just queue the buffer writes with write_dirty_buffer
536 * as you dirty the buffers, and then use osync_inode_buffers to wait for
537 * completion. Any other dirty buffers which are not yet queued for
538 * write will not be flushed to disk by the osync.
539 */
540static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
541{
542 struct buffer_head *bh;
543 struct list_head *p;
544 int err = 0;
545
546 spin_lock(lock);
547repeat:
548 list_for_each_prev(p, list) {
549 bh = BH_ENTRY(p);
550 if (buffer_locked(bh)) {
551 get_bh(bh);
552 spin_unlock(lock);
553 wait_on_buffer(bh);
554 if (!buffer_uptodate(bh))
555 err = -EIO;
556 brelse(bh);
557 spin_lock(lock);
558 goto repeat;
559 }
560 }
561 spin_unlock(lock);
562 return err;
563}
564
565void emergency_thaw_bdev(struct super_block *sb)
566{
567 while (sb->s_bdev && !thaw_bdev(sb->s_bdev))
568 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
569}
570
571/**
572 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
573 * @mapping: the mapping which wants those buffers written
574 *
575 * Starts I/O against the buffers at mapping->private_list, and waits upon
576 * that I/O.
577 *
578 * Basically, this is a convenience function for fsync().
579 * @mapping is a file or directory which needs those buffers to be written for
580 * a successful fsync().
581 */
582int sync_mapping_buffers(struct address_space *mapping)
583{
584 struct address_space *buffer_mapping = mapping->private_data;
585
586 if (buffer_mapping == NULL || list_empty(&mapping->private_list))
587 return 0;
588
589 return fsync_buffers_list(&buffer_mapping->private_lock,
590 &mapping->private_list);
591}
592EXPORT_SYMBOL(sync_mapping_buffers);
593
594/**
595 * generic_buffers_fsync_noflush - generic buffer fsync implementation
596 * for simple filesystems with no inode lock
597 *
598 * @file: file to synchronize
599 * @start: start offset in bytes
600 * @end: end offset in bytes (inclusive)
601 * @datasync: only synchronize essential metadata if true
602 *
603 * This is a generic implementation of the fsync method for simple
604 * filesystems which track all non-inode metadata in the buffers list
605 * hanging off the address_space structure.
606 */
607int generic_buffers_fsync_noflush(struct file *file, loff_t start, loff_t end,
608 bool datasync)
609{
610 struct inode *inode = file->f_mapping->host;
611 int err;
612 int ret;
613
614 err = file_write_and_wait_range(file, start, end);
615 if (err)
616 return err;
617
618 ret = sync_mapping_buffers(inode->i_mapping);
619 if (!(inode->i_state & I_DIRTY_ALL))
620 goto out;
621 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
622 goto out;
623
624 err = sync_inode_metadata(inode, 1);
625 if (ret == 0)
626 ret = err;
627
628out:
629 /* check and advance again to catch errors after syncing out buffers */
630 err = file_check_and_advance_wb_err(file);
631 if (ret == 0)
632 ret = err;
633 return ret;
634}
635EXPORT_SYMBOL(generic_buffers_fsync_noflush);
636
637/**
638 * generic_buffers_fsync - generic buffer fsync implementation
639 * for simple filesystems with no inode lock
640 *
641 * @file: file to synchronize
642 * @start: start offset in bytes
643 * @end: end offset in bytes (inclusive)
644 * @datasync: only synchronize essential metadata if true
645 *
646 * This is a generic implementation of the fsync method for simple
647 * filesystems which track all non-inode metadata in the buffers list
648 * hanging off the address_space structure. This also makes sure that
649 * a device cache flush operation is called at the end.
650 */
651int generic_buffers_fsync(struct file *file, loff_t start, loff_t end,
652 bool datasync)
653{
654 struct inode *inode = file->f_mapping->host;
655 int ret;
656
657 ret = generic_buffers_fsync_noflush(file, start, end, datasync);
658 if (!ret)
659 ret = blkdev_issue_flush(inode->i_sb->s_bdev);
660 return ret;
661}
662EXPORT_SYMBOL(generic_buffers_fsync);
663
664/*
665 * Called when we've recently written block `bblock', and it is known that
666 * `bblock' was for a buffer_boundary() buffer. This means that the block at
667 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
668 * dirty, schedule it for IO. So that indirects merge nicely with their data.
669 */
670void write_boundary_block(struct block_device *bdev,
671 sector_t bblock, unsigned blocksize)
672{
673 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
674 if (bh) {
675 if (buffer_dirty(bh))
676 write_dirty_buffer(bh, 0);
677 put_bh(bh);
678 }
679}
680
681void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
682{
683 struct address_space *mapping = inode->i_mapping;
684 struct address_space *buffer_mapping = bh->b_folio->mapping;
685
686 mark_buffer_dirty(bh);
687 if (!mapping->private_data) {
688 mapping->private_data = buffer_mapping;
689 } else {
690 BUG_ON(mapping->private_data != buffer_mapping);
691 }
692 if (!bh->b_assoc_map) {
693 spin_lock(&buffer_mapping->private_lock);
694 list_move_tail(&bh->b_assoc_buffers,
695 &mapping->private_list);
696 bh->b_assoc_map = mapping;
697 spin_unlock(&buffer_mapping->private_lock);
698 }
699}
700EXPORT_SYMBOL(mark_buffer_dirty_inode);
701
702/*
703 * Add a page to the dirty page list.
704 *
705 * It is a sad fact of life that this function is called from several places
706 * deeply under spinlocking. It may not sleep.
707 *
708 * If the page has buffers, the uptodate buffers are set dirty, to preserve
709 * dirty-state coherency between the page and the buffers. It the page does
710 * not have buffers then when they are later attached they will all be set
711 * dirty.
712 *
713 * The buffers are dirtied before the page is dirtied. There's a small race
714 * window in which a writepage caller may see the page cleanness but not the
715 * buffer dirtiness. That's fine. If this code were to set the page dirty
716 * before the buffers, a concurrent writepage caller could clear the page dirty
717 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
718 * page on the dirty page list.
719 *
720 * We use private_lock to lock against try_to_free_buffers while using the
721 * page's buffer list. Also use this to protect against clean buffers being
722 * added to the page after it was set dirty.
723 *
724 * FIXME: may need to call ->reservepage here as well. That's rather up to the
725 * address_space though.
726 */
727bool block_dirty_folio(struct address_space *mapping, struct folio *folio)
728{
729 struct buffer_head *head;
730 bool newly_dirty;
731
732 spin_lock(&mapping->private_lock);
733 head = folio_buffers(folio);
734 if (head) {
735 struct buffer_head *bh = head;
736
737 do {
738 set_buffer_dirty(bh);
739 bh = bh->b_this_page;
740 } while (bh != head);
741 }
742 /*
743 * Lock out page's memcg migration to keep PageDirty
744 * synchronized with per-memcg dirty page counters.
745 */
746 folio_memcg_lock(folio);
747 newly_dirty = !folio_test_set_dirty(folio);
748 spin_unlock(&mapping->private_lock);
749
750 if (newly_dirty)
751 __folio_mark_dirty(folio, mapping, 1);
752
753 folio_memcg_unlock(folio);
754
755 if (newly_dirty)
756 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
757
758 return newly_dirty;
759}
760EXPORT_SYMBOL(block_dirty_folio);
761
762/*
763 * Write out and wait upon a list of buffers.
764 *
765 * We have conflicting pressures: we want to make sure that all
766 * initially dirty buffers get waited on, but that any subsequently
767 * dirtied buffers don't. After all, we don't want fsync to last
768 * forever if somebody is actively writing to the file.
769 *
770 * Do this in two main stages: first we copy dirty buffers to a
771 * temporary inode list, queueing the writes as we go. Then we clean
772 * up, waiting for those writes to complete.
773 *
774 * During this second stage, any subsequent updates to the file may end
775 * up refiling the buffer on the original inode's dirty list again, so
776 * there is a chance we will end up with a buffer queued for write but
777 * not yet completed on that list. So, as a final cleanup we go through
778 * the osync code to catch these locked, dirty buffers without requeuing
779 * any newly dirty buffers for write.
780 */
781static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
782{
783 struct buffer_head *bh;
784 struct list_head tmp;
785 struct address_space *mapping;
786 int err = 0, err2;
787 struct blk_plug plug;
788
789 INIT_LIST_HEAD(&tmp);
790 blk_start_plug(&plug);
791
792 spin_lock(lock);
793 while (!list_empty(list)) {
794 bh = BH_ENTRY(list->next);
795 mapping = bh->b_assoc_map;
796 __remove_assoc_queue(bh);
797 /* Avoid race with mark_buffer_dirty_inode() which does
798 * a lockless check and we rely on seeing the dirty bit */
799 smp_mb();
800 if (buffer_dirty(bh) || buffer_locked(bh)) {
801 list_add(&bh->b_assoc_buffers, &tmp);
802 bh->b_assoc_map = mapping;
803 if (buffer_dirty(bh)) {
804 get_bh(bh);
805 spin_unlock(lock);
806 /*
807 * Ensure any pending I/O completes so that
808 * write_dirty_buffer() actually writes the
809 * current contents - it is a noop if I/O is
810 * still in flight on potentially older
811 * contents.
812 */
813 write_dirty_buffer(bh, REQ_SYNC);
814
815 /*
816 * Kick off IO for the previous mapping. Note
817 * that we will not run the very last mapping,
818 * wait_on_buffer() will do that for us
819 * through sync_buffer().
820 */
821 brelse(bh);
822 spin_lock(lock);
823 }
824 }
825 }
826
827 spin_unlock(lock);
828 blk_finish_plug(&plug);
829 spin_lock(lock);
830
831 while (!list_empty(&tmp)) {
832 bh = BH_ENTRY(tmp.prev);
833 get_bh(bh);
834 mapping = bh->b_assoc_map;
835 __remove_assoc_queue(bh);
836 /* Avoid race with mark_buffer_dirty_inode() which does
837 * a lockless check and we rely on seeing the dirty bit */
838 smp_mb();
839 if (buffer_dirty(bh)) {
840 list_add(&bh->b_assoc_buffers,
841 &mapping->private_list);
842 bh->b_assoc_map = mapping;
843 }
844 spin_unlock(lock);
845 wait_on_buffer(bh);
846 if (!buffer_uptodate(bh))
847 err = -EIO;
848 brelse(bh);
849 spin_lock(lock);
850 }
851
852 spin_unlock(lock);
853 err2 = osync_buffers_list(lock, list);
854 if (err)
855 return err;
856 else
857 return err2;
858}
859
860/*
861 * Invalidate any and all dirty buffers on a given inode. We are
862 * probably unmounting the fs, but that doesn't mean we have already
863 * done a sync(). Just drop the buffers from the inode list.
864 *
865 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
866 * assumes that all the buffers are against the blockdev. Not true
867 * for reiserfs.
868 */
869void invalidate_inode_buffers(struct inode *inode)
870{
871 if (inode_has_buffers(inode)) {
872 struct address_space *mapping = &inode->i_data;
873 struct list_head *list = &mapping->private_list;
874 struct address_space *buffer_mapping = mapping->private_data;
875
876 spin_lock(&buffer_mapping->private_lock);
877 while (!list_empty(list))
878 __remove_assoc_queue(BH_ENTRY(list->next));
879 spin_unlock(&buffer_mapping->private_lock);
880 }
881}
882EXPORT_SYMBOL(invalidate_inode_buffers);
883
884/*
885 * Remove any clean buffers from the inode's buffer list. This is called
886 * when we're trying to free the inode itself. Those buffers can pin it.
887 *
888 * Returns true if all buffers were removed.
889 */
890int remove_inode_buffers(struct inode *inode)
891{
892 int ret = 1;
893
894 if (inode_has_buffers(inode)) {
895 struct address_space *mapping = &inode->i_data;
896 struct list_head *list = &mapping->private_list;
897 struct address_space *buffer_mapping = mapping->private_data;
898
899 spin_lock(&buffer_mapping->private_lock);
900 while (!list_empty(list)) {
901 struct buffer_head *bh = BH_ENTRY(list->next);
902 if (buffer_dirty(bh)) {
903 ret = 0;
904 break;
905 }
906 __remove_assoc_queue(bh);
907 }
908 spin_unlock(&buffer_mapping->private_lock);
909 }
910 return ret;
911}
912
913/*
914 * Create the appropriate buffers when given a folio for data area and
915 * the size of each buffer.. Use the bh->b_this_page linked list to
916 * follow the buffers created. Return NULL if unable to create more
917 * buffers.
918 *
919 * The retry flag is used to differentiate async IO (paging, swapping)
920 * which may not fail from ordinary buffer allocations.
921 */
922struct buffer_head *folio_alloc_buffers(struct folio *folio, unsigned long size,
923 bool retry)
924{
925 struct buffer_head *bh, *head;
926 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
927 long offset;
928 struct mem_cgroup *memcg, *old_memcg;
929
930 if (retry)
931 gfp |= __GFP_NOFAIL;
932
933 /* The folio lock pins the memcg */
934 memcg = folio_memcg(folio);
935 old_memcg = set_active_memcg(memcg);
936
937 head = NULL;
938 offset = folio_size(folio);
939 while ((offset -= size) >= 0) {
940 bh = alloc_buffer_head(gfp);
941 if (!bh)
942 goto no_grow;
943
944 bh->b_this_page = head;
945 bh->b_blocknr = -1;
946 head = bh;
947
948 bh->b_size = size;
949
950 /* Link the buffer to its folio */
951 folio_set_bh(bh, folio, offset);
952 }
953out:
954 set_active_memcg(old_memcg);
955 return head;
956/*
957 * In case anything failed, we just free everything we got.
958 */
959no_grow:
960 if (head) {
961 do {
962 bh = head;
963 head = head->b_this_page;
964 free_buffer_head(bh);
965 } while (head);
966 }
967
968 goto out;
969}
970EXPORT_SYMBOL_GPL(folio_alloc_buffers);
971
972struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
973 bool retry)
974{
975 return folio_alloc_buffers(page_folio(page), size, retry);
976}
977EXPORT_SYMBOL_GPL(alloc_page_buffers);
978
979static inline void link_dev_buffers(struct folio *folio,
980 struct buffer_head *head)
981{
982 struct buffer_head *bh, *tail;
983
984 bh = head;
985 do {
986 tail = bh;
987 bh = bh->b_this_page;
988 } while (bh);
989 tail->b_this_page = head;
990 folio_attach_private(folio, head);
991}
992
993static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
994{
995 sector_t retval = ~((sector_t)0);
996 loff_t sz = bdev_nr_bytes(bdev);
997
998 if (sz) {
999 unsigned int sizebits = blksize_bits(size);
1000 retval = (sz >> sizebits);
1001 }
1002 return retval;
1003}
1004
1005/*
1006 * Initialise the state of a blockdev folio's buffers.
1007 */
1008static sector_t folio_init_buffers(struct folio *folio,
1009 struct block_device *bdev, sector_t block, int size)
1010{
1011 struct buffer_head *head = folio_buffers(folio);
1012 struct buffer_head *bh = head;
1013 bool uptodate = folio_test_uptodate(folio);
1014 sector_t end_block = blkdev_max_block(bdev, size);
1015
1016 do {
1017 if (!buffer_mapped(bh)) {
1018 bh->b_end_io = NULL;
1019 bh->b_private = NULL;
1020 bh->b_bdev = bdev;
1021 bh->b_blocknr = block;
1022 if (uptodate)
1023 set_buffer_uptodate(bh);
1024 if (block < end_block)
1025 set_buffer_mapped(bh);
1026 }
1027 block++;
1028 bh = bh->b_this_page;
1029 } while (bh != head);
1030
1031 /*
1032 * Caller needs to validate requested block against end of device.
1033 */
1034 return end_block;
1035}
1036
1037/*
1038 * Create the page-cache page that contains the requested block.
1039 *
1040 * This is used purely for blockdev mappings.
1041 */
1042static int
1043grow_dev_page(struct block_device *bdev, sector_t block,
1044 pgoff_t index, int size, int sizebits, gfp_t gfp)
1045{
1046 struct inode *inode = bdev->bd_inode;
1047 struct folio *folio;
1048 struct buffer_head *bh;
1049 sector_t end_block;
1050 int ret = 0;
1051 gfp_t gfp_mask;
1052
1053 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
1054
1055 /*
1056 * XXX: __getblk_slow() can not really deal with failure and
1057 * will endlessly loop on improvised global reclaim. Prefer
1058 * looping in the allocator rather than here, at least that
1059 * code knows what it's doing.
1060 */
1061 gfp_mask |= __GFP_NOFAIL;
1062
1063 folio = __filemap_get_folio(inode->i_mapping, index,
1064 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp_mask);
1065
1066 bh = folio_buffers(folio);
1067 if (bh) {
1068 if (bh->b_size == size) {
1069 end_block = folio_init_buffers(folio, bdev,
1070 (sector_t)index << sizebits, size);
1071 goto done;
1072 }
1073 if (!try_to_free_buffers(folio))
1074 goto failed;
1075 }
1076
1077 bh = folio_alloc_buffers(folio, size, true);
1078
1079 /*
1080 * Link the folio to the buffers and initialise them. Take the
1081 * lock to be atomic wrt __find_get_block(), which does not
1082 * run under the folio lock.
1083 */
1084 spin_lock(&inode->i_mapping->private_lock);
1085 link_dev_buffers(folio, bh);
1086 end_block = folio_init_buffers(folio, bdev,
1087 (sector_t)index << sizebits, size);
1088 spin_unlock(&inode->i_mapping->private_lock);
1089done:
1090 ret = (block < end_block) ? 1 : -ENXIO;
1091failed:
1092 folio_unlock(folio);
1093 folio_put(folio);
1094 return ret;
1095}
1096
1097/*
1098 * Create buffers for the specified block device block's page. If
1099 * that page was dirty, the buffers are set dirty also.
1100 */
1101static int
1102grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1103{
1104 pgoff_t index;
1105 int sizebits;
1106
1107 sizebits = PAGE_SHIFT - __ffs(size);
1108 index = block >> sizebits;
1109
1110 /*
1111 * Check for a block which wants to lie outside our maximum possible
1112 * pagecache index. (this comparison is done using sector_t types).
1113 */
1114 if (unlikely(index != block >> sizebits)) {
1115 printk(KERN_ERR "%s: requested out-of-range block %llu for "
1116 "device %pg\n",
1117 __func__, (unsigned long long)block,
1118 bdev);
1119 return -EIO;
1120 }
1121
1122 /* Create a page with the proper size buffers.. */
1123 return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1124}
1125
1126static struct buffer_head *
1127__getblk_slow(struct block_device *bdev, sector_t block,
1128 unsigned size, gfp_t gfp)
1129{
1130 /* Size must be multiple of hard sectorsize */
1131 if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1132 (size < 512 || size > PAGE_SIZE))) {
1133 printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1134 size);
1135 printk(KERN_ERR "logical block size: %d\n",
1136 bdev_logical_block_size(bdev));
1137
1138 dump_stack();
1139 return NULL;
1140 }
1141
1142 for (;;) {
1143 struct buffer_head *bh;
1144 int ret;
1145
1146 bh = __find_get_block(bdev, block, size);
1147 if (bh)
1148 return bh;
1149
1150 ret = grow_buffers(bdev, block, size, gfp);
1151 if (ret < 0)
1152 return NULL;
1153 }
1154}
1155
1156/*
1157 * The relationship between dirty buffers and dirty pages:
1158 *
1159 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1160 * the page is tagged dirty in the page cache.
1161 *
1162 * At all times, the dirtiness of the buffers represents the dirtiness of
1163 * subsections of the page. If the page has buffers, the page dirty bit is
1164 * merely a hint about the true dirty state.
1165 *
1166 * When a page is set dirty in its entirety, all its buffers are marked dirty
1167 * (if the page has buffers).
1168 *
1169 * When a buffer is marked dirty, its page is dirtied, but the page's other
1170 * buffers are not.
1171 *
1172 * Also. When blockdev buffers are explicitly read with bread(), they
1173 * individually become uptodate. But their backing page remains not
1174 * uptodate - even if all of its buffers are uptodate. A subsequent
1175 * block_read_full_folio() against that folio will discover all the uptodate
1176 * buffers, will set the folio uptodate and will perform no I/O.
1177 */
1178
1179/**
1180 * mark_buffer_dirty - mark a buffer_head as needing writeout
1181 * @bh: the buffer_head to mark dirty
1182 *
1183 * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1184 * its backing page dirty, then tag the page as dirty in the page cache
1185 * and then attach the address_space's inode to its superblock's dirty
1186 * inode list.
1187 *
1188 * mark_buffer_dirty() is atomic. It takes bh->b_folio->mapping->private_lock,
1189 * i_pages lock and mapping->host->i_lock.
1190 */
1191void mark_buffer_dirty(struct buffer_head *bh)
1192{
1193 WARN_ON_ONCE(!buffer_uptodate(bh));
1194
1195 trace_block_dirty_buffer(bh);
1196
1197 /*
1198 * Very *carefully* optimize the it-is-already-dirty case.
1199 *
1200 * Don't let the final "is it dirty" escape to before we
1201 * perhaps modified the buffer.
1202 */
1203 if (buffer_dirty(bh)) {
1204 smp_mb();
1205 if (buffer_dirty(bh))
1206 return;
1207 }
1208
1209 if (!test_set_buffer_dirty(bh)) {
1210 struct folio *folio = bh->b_folio;
1211 struct address_space *mapping = NULL;
1212
1213 folio_memcg_lock(folio);
1214 if (!folio_test_set_dirty(folio)) {
1215 mapping = folio->mapping;
1216 if (mapping)
1217 __folio_mark_dirty(folio, mapping, 0);
1218 }
1219 folio_memcg_unlock(folio);
1220 if (mapping)
1221 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1222 }
1223}
1224EXPORT_SYMBOL(mark_buffer_dirty);
1225
1226void mark_buffer_write_io_error(struct buffer_head *bh)
1227{
1228 struct super_block *sb;
1229
1230 set_buffer_write_io_error(bh);
1231 /* FIXME: do we need to set this in both places? */
1232 if (bh->b_folio && bh->b_folio->mapping)
1233 mapping_set_error(bh->b_folio->mapping, -EIO);
1234 if (bh->b_assoc_map)
1235 mapping_set_error(bh->b_assoc_map, -EIO);
1236 rcu_read_lock();
1237 sb = READ_ONCE(bh->b_bdev->bd_super);
1238 if (sb)
1239 errseq_set(&sb->s_wb_err, -EIO);
1240 rcu_read_unlock();
1241}
1242EXPORT_SYMBOL(mark_buffer_write_io_error);
1243
1244/*
1245 * Decrement a buffer_head's reference count. If all buffers against a page
1246 * have zero reference count, are clean and unlocked, and if the page is clean
1247 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1248 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1249 * a page but it ends up not being freed, and buffers may later be reattached).
1250 */
1251void __brelse(struct buffer_head * buf)
1252{
1253 if (atomic_read(&buf->b_count)) {
1254 put_bh(buf);
1255 return;
1256 }
1257 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1258}
1259EXPORT_SYMBOL(__brelse);
1260
1261/*
1262 * bforget() is like brelse(), except it discards any
1263 * potentially dirty data.
1264 */
1265void __bforget(struct buffer_head *bh)
1266{
1267 clear_buffer_dirty(bh);
1268 if (bh->b_assoc_map) {
1269 struct address_space *buffer_mapping = bh->b_folio->mapping;
1270
1271 spin_lock(&buffer_mapping->private_lock);
1272 list_del_init(&bh->b_assoc_buffers);
1273 bh->b_assoc_map = NULL;
1274 spin_unlock(&buffer_mapping->private_lock);
1275 }
1276 __brelse(bh);
1277}
1278EXPORT_SYMBOL(__bforget);
1279
1280static struct buffer_head *__bread_slow(struct buffer_head *bh)
1281{
1282 lock_buffer(bh);
1283 if (buffer_uptodate(bh)) {
1284 unlock_buffer(bh);
1285 return bh;
1286 } else {
1287 get_bh(bh);
1288 bh->b_end_io = end_buffer_read_sync;
1289 submit_bh(REQ_OP_READ, bh);
1290 wait_on_buffer(bh);
1291 if (buffer_uptodate(bh))
1292 return bh;
1293 }
1294 brelse(bh);
1295 return NULL;
1296}
1297
1298/*
1299 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1300 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1301 * refcount elevated by one when they're in an LRU. A buffer can only appear
1302 * once in a particular CPU's LRU. A single buffer can be present in multiple
1303 * CPU's LRUs at the same time.
1304 *
1305 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1306 * sb_find_get_block().
1307 *
1308 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1309 * a local interrupt disable for that.
1310 */
1311
1312#define BH_LRU_SIZE 16
1313
1314struct bh_lru {
1315 struct buffer_head *bhs[BH_LRU_SIZE];
1316};
1317
1318static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1319
1320#ifdef CONFIG_SMP
1321#define bh_lru_lock() local_irq_disable()
1322#define bh_lru_unlock() local_irq_enable()
1323#else
1324#define bh_lru_lock() preempt_disable()
1325#define bh_lru_unlock() preempt_enable()
1326#endif
1327
1328static inline void check_irqs_on(void)
1329{
1330#ifdef irqs_disabled
1331 BUG_ON(irqs_disabled());
1332#endif
1333}
1334
1335/*
1336 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is
1337 * inserted at the front, and the buffer_head at the back if any is evicted.
1338 * Or, if already in the LRU it is moved to the front.
1339 */
1340static void bh_lru_install(struct buffer_head *bh)
1341{
1342 struct buffer_head *evictee = bh;
1343 struct bh_lru *b;
1344 int i;
1345
1346 check_irqs_on();
1347 bh_lru_lock();
1348
1349 /*
1350 * the refcount of buffer_head in bh_lru prevents dropping the
1351 * attached page(i.e., try_to_free_buffers) so it could cause
1352 * failing page migration.
1353 * Skip putting upcoming bh into bh_lru until migration is done.
1354 */
1355 if (lru_cache_disabled()) {
1356 bh_lru_unlock();
1357 return;
1358 }
1359
1360 b = this_cpu_ptr(&bh_lrus);
1361 for (i = 0; i < BH_LRU_SIZE; i++) {
1362 swap(evictee, b->bhs[i]);
1363 if (evictee == bh) {
1364 bh_lru_unlock();
1365 return;
1366 }
1367 }
1368
1369 get_bh(bh);
1370 bh_lru_unlock();
1371 brelse(evictee);
1372}
1373
1374/*
1375 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1376 */
1377static struct buffer_head *
1378lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1379{
1380 struct buffer_head *ret = NULL;
1381 unsigned int i;
1382
1383 check_irqs_on();
1384 bh_lru_lock();
1385 for (i = 0; i < BH_LRU_SIZE; i++) {
1386 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1387
1388 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1389 bh->b_size == size) {
1390 if (i) {
1391 while (i) {
1392 __this_cpu_write(bh_lrus.bhs[i],
1393 __this_cpu_read(bh_lrus.bhs[i - 1]));
1394 i--;
1395 }
1396 __this_cpu_write(bh_lrus.bhs[0], bh);
1397 }
1398 get_bh(bh);
1399 ret = bh;
1400 break;
1401 }
1402 }
1403 bh_lru_unlock();
1404 return ret;
1405}
1406
1407/*
1408 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1409 * it in the LRU and mark it as accessed. If it is not present then return
1410 * NULL
1411 */
1412struct buffer_head *
1413__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1414{
1415 struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1416
1417 if (bh == NULL) {
1418 /* __find_get_block_slow will mark the page accessed */
1419 bh = __find_get_block_slow(bdev, block);
1420 if (bh)
1421 bh_lru_install(bh);
1422 } else
1423 touch_buffer(bh);
1424
1425 return bh;
1426}
1427EXPORT_SYMBOL(__find_get_block);
1428
1429/*
1430 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1431 * which corresponds to the passed block_device, block and size. The
1432 * returned buffer has its reference count incremented.
1433 *
1434 * __getblk_gfp() will lock up the machine if grow_dev_page's
1435 * try_to_free_buffers() attempt is failing. FIXME, perhaps?
1436 */
1437struct buffer_head *
1438__getblk_gfp(struct block_device *bdev, sector_t block,
1439 unsigned size, gfp_t gfp)
1440{
1441 struct buffer_head *bh = __find_get_block(bdev, block, size);
1442
1443 might_sleep();
1444 if (bh == NULL)
1445 bh = __getblk_slow(bdev, block, size, gfp);
1446 return bh;
1447}
1448EXPORT_SYMBOL(__getblk_gfp);
1449
1450/*
1451 * Do async read-ahead on a buffer..
1452 */
1453void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1454{
1455 struct buffer_head *bh = __getblk(bdev, block, size);
1456 if (likely(bh)) {
1457 bh_readahead(bh, REQ_RAHEAD);
1458 brelse(bh);
1459 }
1460}
1461EXPORT_SYMBOL(__breadahead);
1462
1463/**
1464 * __bread_gfp() - reads a specified block and returns the bh
1465 * @bdev: the block_device to read from
1466 * @block: number of block
1467 * @size: size (in bytes) to read
1468 * @gfp: page allocation flag
1469 *
1470 * Reads a specified block, and returns buffer head that contains it.
1471 * The page cache can be allocated from non-movable area
1472 * not to prevent page migration if you set gfp to zero.
1473 * It returns NULL if the block was unreadable.
1474 */
1475struct buffer_head *
1476__bread_gfp(struct block_device *bdev, sector_t block,
1477 unsigned size, gfp_t gfp)
1478{
1479 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1480
1481 if (likely(bh) && !buffer_uptodate(bh))
1482 bh = __bread_slow(bh);
1483 return bh;
1484}
1485EXPORT_SYMBOL(__bread_gfp);
1486
1487static void __invalidate_bh_lrus(struct bh_lru *b)
1488{
1489 int i;
1490
1491 for (i = 0; i < BH_LRU_SIZE; i++) {
1492 brelse(b->bhs[i]);
1493 b->bhs[i] = NULL;
1494 }
1495}
1496/*
1497 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1498 * This doesn't race because it runs in each cpu either in irq
1499 * or with preempt disabled.
1500 */
1501static void invalidate_bh_lru(void *arg)
1502{
1503 struct bh_lru *b = &get_cpu_var(bh_lrus);
1504
1505 __invalidate_bh_lrus(b);
1506 put_cpu_var(bh_lrus);
1507}
1508
1509bool has_bh_in_lru(int cpu, void *dummy)
1510{
1511 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1512 int i;
1513
1514 for (i = 0; i < BH_LRU_SIZE; i++) {
1515 if (b->bhs[i])
1516 return true;
1517 }
1518
1519 return false;
1520}
1521
1522void invalidate_bh_lrus(void)
1523{
1524 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1525}
1526EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1527
1528/*
1529 * It's called from workqueue context so we need a bh_lru_lock to close
1530 * the race with preemption/irq.
1531 */
1532void invalidate_bh_lrus_cpu(void)
1533{
1534 struct bh_lru *b;
1535
1536 bh_lru_lock();
1537 b = this_cpu_ptr(&bh_lrus);
1538 __invalidate_bh_lrus(b);
1539 bh_lru_unlock();
1540}
1541
1542void set_bh_page(struct buffer_head *bh,
1543 struct page *page, unsigned long offset)
1544{
1545 bh->b_page = page;
1546 BUG_ON(offset >= PAGE_SIZE);
1547 if (PageHighMem(page))
1548 /*
1549 * This catches illegal uses and preserves the offset:
1550 */
1551 bh->b_data = (char *)(0 + offset);
1552 else
1553 bh->b_data = page_address(page) + offset;
1554}
1555EXPORT_SYMBOL(set_bh_page);
1556
1557void folio_set_bh(struct buffer_head *bh, struct folio *folio,
1558 unsigned long offset)
1559{
1560 bh->b_folio = folio;
1561 BUG_ON(offset >= folio_size(folio));
1562 if (folio_test_highmem(folio))
1563 /*
1564 * This catches illegal uses and preserves the offset:
1565 */
1566 bh->b_data = (char *)(0 + offset);
1567 else
1568 bh->b_data = folio_address(folio) + offset;
1569}
1570EXPORT_SYMBOL(folio_set_bh);
1571
1572/*
1573 * Called when truncating a buffer on a page completely.
1574 */
1575
1576/* Bits that are cleared during an invalidate */
1577#define BUFFER_FLAGS_DISCARD \
1578 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1579 1 << BH_Delay | 1 << BH_Unwritten)
1580
1581static void discard_buffer(struct buffer_head * bh)
1582{
1583 unsigned long b_state;
1584
1585 lock_buffer(bh);
1586 clear_buffer_dirty(bh);
1587 bh->b_bdev = NULL;
1588 b_state = READ_ONCE(bh->b_state);
1589 do {
1590 } while (!try_cmpxchg(&bh->b_state, &b_state,
1591 b_state & ~BUFFER_FLAGS_DISCARD));
1592 unlock_buffer(bh);
1593}
1594
1595/**
1596 * block_invalidate_folio - Invalidate part or all of a buffer-backed folio.
1597 * @folio: The folio which is affected.
1598 * @offset: start of the range to invalidate
1599 * @length: length of the range to invalidate
1600 *
1601 * block_invalidate_folio() is called when all or part of the folio has been
1602 * invalidated by a truncate operation.
1603 *
1604 * block_invalidate_folio() does not have to release all buffers, but it must
1605 * ensure that no dirty buffer is left outside @offset and that no I/O
1606 * is underway against any of the blocks which are outside the truncation
1607 * point. Because the caller is about to free (and possibly reuse) those
1608 * blocks on-disk.
1609 */
1610void block_invalidate_folio(struct folio *folio, size_t offset, size_t length)
1611{
1612 struct buffer_head *head, *bh, *next;
1613 size_t curr_off = 0;
1614 size_t stop = length + offset;
1615
1616 BUG_ON(!folio_test_locked(folio));
1617
1618 /*
1619 * Check for overflow
1620 */
1621 BUG_ON(stop > folio_size(folio) || stop < length);
1622
1623 head = folio_buffers(folio);
1624 if (!head)
1625 return;
1626
1627 bh = head;
1628 do {
1629 size_t next_off = curr_off + bh->b_size;
1630 next = bh->b_this_page;
1631
1632 /*
1633 * Are we still fully in range ?
1634 */
1635 if (next_off > stop)
1636 goto out;
1637
1638 /*
1639 * is this block fully invalidated?
1640 */
1641 if (offset <= curr_off)
1642 discard_buffer(bh);
1643 curr_off = next_off;
1644 bh = next;
1645 } while (bh != head);
1646
1647 /*
1648 * We release buffers only if the entire folio is being invalidated.
1649 * The get_block cached value has been unconditionally invalidated,
1650 * so real IO is not possible anymore.
1651 */
1652 if (length == folio_size(folio))
1653 filemap_release_folio(folio, 0);
1654out:
1655 return;
1656}
1657EXPORT_SYMBOL(block_invalidate_folio);
1658
1659/*
1660 * We attach and possibly dirty the buffers atomically wrt
1661 * block_dirty_folio() via private_lock. try_to_free_buffers
1662 * is already excluded via the folio lock.
1663 */
1664void folio_create_empty_buffers(struct folio *folio, unsigned long blocksize,
1665 unsigned long b_state)
1666{
1667 struct buffer_head *bh, *head, *tail;
1668
1669 head = folio_alloc_buffers(folio, blocksize, true);
1670 bh = head;
1671 do {
1672 bh->b_state |= b_state;
1673 tail = bh;
1674 bh = bh->b_this_page;
1675 } while (bh);
1676 tail->b_this_page = head;
1677
1678 spin_lock(&folio->mapping->private_lock);
1679 if (folio_test_uptodate(folio) || folio_test_dirty(folio)) {
1680 bh = head;
1681 do {
1682 if (folio_test_dirty(folio))
1683 set_buffer_dirty(bh);
1684 if (folio_test_uptodate(folio))
1685 set_buffer_uptodate(bh);
1686 bh = bh->b_this_page;
1687 } while (bh != head);
1688 }
1689 folio_attach_private(folio, head);
1690 spin_unlock(&folio->mapping->private_lock);
1691}
1692EXPORT_SYMBOL(folio_create_empty_buffers);
1693
1694void create_empty_buffers(struct page *page,
1695 unsigned long blocksize, unsigned long b_state)
1696{
1697 folio_create_empty_buffers(page_folio(page), blocksize, b_state);
1698}
1699EXPORT_SYMBOL(create_empty_buffers);
1700
1701/**
1702 * clean_bdev_aliases: clean a range of buffers in block device
1703 * @bdev: Block device to clean buffers in
1704 * @block: Start of a range of blocks to clean
1705 * @len: Number of blocks to clean
1706 *
1707 * We are taking a range of blocks for data and we don't want writeback of any
1708 * buffer-cache aliases starting from return from this function and until the
1709 * moment when something will explicitly mark the buffer dirty (hopefully that
1710 * will not happen until we will free that block ;-) We don't even need to mark
1711 * it not-uptodate - nobody can expect anything from a newly allocated buffer
1712 * anyway. We used to use unmap_buffer() for such invalidation, but that was
1713 * wrong. We definitely don't want to mark the alias unmapped, for example - it
1714 * would confuse anyone who might pick it with bread() afterwards...
1715 *
1716 * Also.. Note that bforget() doesn't lock the buffer. So there can be
1717 * writeout I/O going on against recently-freed buffers. We don't wait on that
1718 * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1719 * need to. That happens here.
1720 */
1721void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1722{
1723 struct inode *bd_inode = bdev->bd_inode;
1724 struct address_space *bd_mapping = bd_inode->i_mapping;
1725 struct folio_batch fbatch;
1726 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1727 pgoff_t end;
1728 int i, count;
1729 struct buffer_head *bh;
1730 struct buffer_head *head;
1731
1732 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1733 folio_batch_init(&fbatch);
1734 while (filemap_get_folios(bd_mapping, &index, end, &fbatch)) {
1735 count = folio_batch_count(&fbatch);
1736 for (i = 0; i < count; i++) {
1737 struct folio *folio = fbatch.folios[i];
1738
1739 if (!folio_buffers(folio))
1740 continue;
1741 /*
1742 * We use folio lock instead of bd_mapping->private_lock
1743 * to pin buffers here since we can afford to sleep and
1744 * it scales better than a global spinlock lock.
1745 */
1746 folio_lock(folio);
1747 /* Recheck when the folio is locked which pins bhs */
1748 head = folio_buffers(folio);
1749 if (!head)
1750 goto unlock_page;
1751 bh = head;
1752 do {
1753 if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1754 goto next;
1755 if (bh->b_blocknr >= block + len)
1756 break;
1757 clear_buffer_dirty(bh);
1758 wait_on_buffer(bh);
1759 clear_buffer_req(bh);
1760next:
1761 bh = bh->b_this_page;
1762 } while (bh != head);
1763unlock_page:
1764 folio_unlock(folio);
1765 }
1766 folio_batch_release(&fbatch);
1767 cond_resched();
1768 /* End of range already reached? */
1769 if (index > end || !index)
1770 break;
1771 }
1772}
1773EXPORT_SYMBOL(clean_bdev_aliases);
1774
1775/*
1776 * Size is a power-of-two in the range 512..PAGE_SIZE,
1777 * and the case we care about most is PAGE_SIZE.
1778 *
1779 * So this *could* possibly be written with those
1780 * constraints in mind (relevant mostly if some
1781 * architecture has a slow bit-scan instruction)
1782 */
1783static inline int block_size_bits(unsigned int blocksize)
1784{
1785 return ilog2(blocksize);
1786}
1787
1788static struct buffer_head *folio_create_buffers(struct folio *folio,
1789 struct inode *inode,
1790 unsigned int b_state)
1791{
1792 BUG_ON(!folio_test_locked(folio));
1793
1794 if (!folio_buffers(folio))
1795 folio_create_empty_buffers(folio,
1796 1 << READ_ONCE(inode->i_blkbits),
1797 b_state);
1798 return folio_buffers(folio);
1799}
1800
1801/*
1802 * NOTE! All mapped/uptodate combinations are valid:
1803 *
1804 * Mapped Uptodate Meaning
1805 *
1806 * No No "unknown" - must do get_block()
1807 * No Yes "hole" - zero-filled
1808 * Yes No "allocated" - allocated on disk, not read in
1809 * Yes Yes "valid" - allocated and up-to-date in memory.
1810 *
1811 * "Dirty" is valid only with the last case (mapped+uptodate).
1812 */
1813
1814/*
1815 * While block_write_full_page is writing back the dirty buffers under
1816 * the page lock, whoever dirtied the buffers may decide to clean them
1817 * again at any time. We handle that by only looking at the buffer
1818 * state inside lock_buffer().
1819 *
1820 * If block_write_full_page() is called for regular writeback
1821 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1822 * locked buffer. This only can happen if someone has written the buffer
1823 * directly, with submit_bh(). At the address_space level PageWriteback
1824 * prevents this contention from occurring.
1825 *
1826 * If block_write_full_page() is called with wbc->sync_mode ==
1827 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1828 * causes the writes to be flagged as synchronous writes.
1829 */
1830int __block_write_full_folio(struct inode *inode, struct folio *folio,
1831 get_block_t *get_block, struct writeback_control *wbc,
1832 bh_end_io_t *handler)
1833{
1834 int err;
1835 sector_t block;
1836 sector_t last_block;
1837 struct buffer_head *bh, *head;
1838 unsigned int blocksize, bbits;
1839 int nr_underway = 0;
1840 blk_opf_t write_flags = wbc_to_write_flags(wbc);
1841
1842 head = folio_create_buffers(folio, inode,
1843 (1 << BH_Dirty) | (1 << BH_Uptodate));
1844
1845 /*
1846 * Be very careful. We have no exclusion from block_dirty_folio
1847 * here, and the (potentially unmapped) buffers may become dirty at
1848 * any time. If a buffer becomes dirty here after we've inspected it
1849 * then we just miss that fact, and the folio stays dirty.
1850 *
1851 * Buffers outside i_size may be dirtied by block_dirty_folio;
1852 * handle that here by just cleaning them.
1853 */
1854
1855 bh = head;
1856 blocksize = bh->b_size;
1857 bbits = block_size_bits(blocksize);
1858
1859 block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
1860 last_block = (i_size_read(inode) - 1) >> bbits;
1861
1862 /*
1863 * Get all the dirty buffers mapped to disk addresses and
1864 * handle any aliases from the underlying blockdev's mapping.
1865 */
1866 do {
1867 if (block > last_block) {
1868 /*
1869 * mapped buffers outside i_size will occur, because
1870 * this folio can be outside i_size when there is a
1871 * truncate in progress.
1872 */
1873 /*
1874 * The buffer was zeroed by block_write_full_page()
1875 */
1876 clear_buffer_dirty(bh);
1877 set_buffer_uptodate(bh);
1878 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1879 buffer_dirty(bh)) {
1880 WARN_ON(bh->b_size != blocksize);
1881 err = get_block(inode, block, bh, 1);
1882 if (err)
1883 goto recover;
1884 clear_buffer_delay(bh);
1885 if (buffer_new(bh)) {
1886 /* blockdev mappings never come here */
1887 clear_buffer_new(bh);
1888 clean_bdev_bh_alias(bh);
1889 }
1890 }
1891 bh = bh->b_this_page;
1892 block++;
1893 } while (bh != head);
1894
1895 do {
1896 if (!buffer_mapped(bh))
1897 continue;
1898 /*
1899 * If it's a fully non-blocking write attempt and we cannot
1900 * lock the buffer then redirty the folio. Note that this can
1901 * potentially cause a busy-wait loop from writeback threads
1902 * and kswapd activity, but those code paths have their own
1903 * higher-level throttling.
1904 */
1905 if (wbc->sync_mode != WB_SYNC_NONE) {
1906 lock_buffer(bh);
1907 } else if (!trylock_buffer(bh)) {
1908 folio_redirty_for_writepage(wbc, folio);
1909 continue;
1910 }
1911 if (test_clear_buffer_dirty(bh)) {
1912 mark_buffer_async_write_endio(bh, handler);
1913 } else {
1914 unlock_buffer(bh);
1915 }
1916 } while ((bh = bh->b_this_page) != head);
1917
1918 /*
1919 * The folio and its buffers are protected by the writeback flag,
1920 * so we can drop the bh refcounts early.
1921 */
1922 BUG_ON(folio_test_writeback(folio));
1923 folio_start_writeback(folio);
1924
1925 do {
1926 struct buffer_head *next = bh->b_this_page;
1927 if (buffer_async_write(bh)) {
1928 submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc);
1929 nr_underway++;
1930 }
1931 bh = next;
1932 } while (bh != head);
1933 folio_unlock(folio);
1934
1935 err = 0;
1936done:
1937 if (nr_underway == 0) {
1938 /*
1939 * The folio was marked dirty, but the buffers were
1940 * clean. Someone wrote them back by hand with
1941 * write_dirty_buffer/submit_bh. A rare case.
1942 */
1943 folio_end_writeback(folio);
1944
1945 /*
1946 * The folio and buffer_heads can be released at any time from
1947 * here on.
1948 */
1949 }
1950 return err;
1951
1952recover:
1953 /*
1954 * ENOSPC, or some other error. We may already have added some
1955 * blocks to the file, so we need to write these out to avoid
1956 * exposing stale data.
1957 * The folio is currently locked and not marked for writeback
1958 */
1959 bh = head;
1960 /* Recovery: lock and submit the mapped buffers */
1961 do {
1962 if (buffer_mapped(bh) && buffer_dirty(bh) &&
1963 !buffer_delay(bh)) {
1964 lock_buffer(bh);
1965 mark_buffer_async_write_endio(bh, handler);
1966 } else {
1967 /*
1968 * The buffer may have been set dirty during
1969 * attachment to a dirty folio.
1970 */
1971 clear_buffer_dirty(bh);
1972 }
1973 } while ((bh = bh->b_this_page) != head);
1974 folio_set_error(folio);
1975 BUG_ON(folio_test_writeback(folio));
1976 mapping_set_error(folio->mapping, err);
1977 folio_start_writeback(folio);
1978 do {
1979 struct buffer_head *next = bh->b_this_page;
1980 if (buffer_async_write(bh)) {
1981 clear_buffer_dirty(bh);
1982 submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc);
1983 nr_underway++;
1984 }
1985 bh = next;
1986 } while (bh != head);
1987 folio_unlock(folio);
1988 goto done;
1989}
1990EXPORT_SYMBOL(__block_write_full_folio);
1991
1992/*
1993 * If a folio has any new buffers, zero them out here, and mark them uptodate
1994 * and dirty so they'll be written out (in order to prevent uninitialised
1995 * block data from leaking). And clear the new bit.
1996 */
1997void folio_zero_new_buffers(struct folio *folio, size_t from, size_t to)
1998{
1999 size_t block_start, block_end;
2000 struct buffer_head *head, *bh;
2001
2002 BUG_ON(!folio_test_locked(folio));
2003 head = folio_buffers(folio);
2004 if (!head)
2005 return;
2006
2007 bh = head;
2008 block_start = 0;
2009 do {
2010 block_end = block_start + bh->b_size;
2011
2012 if (buffer_new(bh)) {
2013 if (block_end > from && block_start < to) {
2014 if (!folio_test_uptodate(folio)) {
2015 size_t start, xend;
2016
2017 start = max(from, block_start);
2018 xend = min(to, block_end);
2019
2020 folio_zero_segment(folio, start, xend);
2021 set_buffer_uptodate(bh);
2022 }
2023
2024 clear_buffer_new(bh);
2025 mark_buffer_dirty(bh);
2026 }
2027 }
2028
2029 block_start = block_end;
2030 bh = bh->b_this_page;
2031 } while (bh != head);
2032}
2033EXPORT_SYMBOL(folio_zero_new_buffers);
2034
2035static void
2036iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
2037 const struct iomap *iomap)
2038{
2039 loff_t offset = block << inode->i_blkbits;
2040
2041 bh->b_bdev = iomap->bdev;
2042
2043 /*
2044 * Block points to offset in file we need to map, iomap contains
2045 * the offset at which the map starts. If the map ends before the
2046 * current block, then do not map the buffer and let the caller
2047 * handle it.
2048 */
2049 BUG_ON(offset >= iomap->offset + iomap->length);
2050
2051 switch (iomap->type) {
2052 case IOMAP_HOLE:
2053 /*
2054 * If the buffer is not up to date or beyond the current EOF,
2055 * we need to mark it as new to ensure sub-block zeroing is
2056 * executed if necessary.
2057 */
2058 if (!buffer_uptodate(bh) ||
2059 (offset >= i_size_read(inode)))
2060 set_buffer_new(bh);
2061 break;
2062 case IOMAP_DELALLOC:
2063 if (!buffer_uptodate(bh) ||
2064 (offset >= i_size_read(inode)))
2065 set_buffer_new(bh);
2066 set_buffer_uptodate(bh);
2067 set_buffer_mapped(bh);
2068 set_buffer_delay(bh);
2069 break;
2070 case IOMAP_UNWRITTEN:
2071 /*
2072 * For unwritten regions, we always need to ensure that regions
2073 * in the block we are not writing to are zeroed. Mark the
2074 * buffer as new to ensure this.
2075 */
2076 set_buffer_new(bh);
2077 set_buffer_unwritten(bh);
2078 fallthrough;
2079 case IOMAP_MAPPED:
2080 if ((iomap->flags & IOMAP_F_NEW) ||
2081 offset >= i_size_read(inode))
2082 set_buffer_new(bh);
2083 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
2084 inode->i_blkbits;
2085 set_buffer_mapped(bh);
2086 break;
2087 }
2088}
2089
2090int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len,
2091 get_block_t *get_block, const struct iomap *iomap)
2092{
2093 unsigned from = pos & (PAGE_SIZE - 1);
2094 unsigned to = from + len;
2095 struct inode *inode = folio->mapping->host;
2096 unsigned block_start, block_end;
2097 sector_t block;
2098 int err = 0;
2099 unsigned blocksize, bbits;
2100 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2101
2102 BUG_ON(!folio_test_locked(folio));
2103 BUG_ON(from > PAGE_SIZE);
2104 BUG_ON(to > PAGE_SIZE);
2105 BUG_ON(from > to);
2106
2107 head = folio_create_buffers(folio, inode, 0);
2108 blocksize = head->b_size;
2109 bbits = block_size_bits(blocksize);
2110
2111 block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
2112
2113 for(bh = head, block_start = 0; bh != head || !block_start;
2114 block++, block_start=block_end, bh = bh->b_this_page) {
2115 block_end = block_start + blocksize;
2116 if (block_end <= from || block_start >= to) {
2117 if (folio_test_uptodate(folio)) {
2118 if (!buffer_uptodate(bh))
2119 set_buffer_uptodate(bh);
2120 }
2121 continue;
2122 }
2123 if (buffer_new(bh))
2124 clear_buffer_new(bh);
2125 if (!buffer_mapped(bh)) {
2126 WARN_ON(bh->b_size != blocksize);
2127 if (get_block) {
2128 err = get_block(inode, block, bh, 1);
2129 if (err)
2130 break;
2131 } else {
2132 iomap_to_bh(inode, block, bh, iomap);
2133 }
2134
2135 if (buffer_new(bh)) {
2136 clean_bdev_bh_alias(bh);
2137 if (folio_test_uptodate(folio)) {
2138 clear_buffer_new(bh);
2139 set_buffer_uptodate(bh);
2140 mark_buffer_dirty(bh);
2141 continue;
2142 }
2143 if (block_end > to || block_start < from)
2144 folio_zero_segments(folio,
2145 to, block_end,
2146 block_start, from);
2147 continue;
2148 }
2149 }
2150 if (folio_test_uptodate(folio)) {
2151 if (!buffer_uptodate(bh))
2152 set_buffer_uptodate(bh);
2153 continue;
2154 }
2155 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2156 !buffer_unwritten(bh) &&
2157 (block_start < from || block_end > to)) {
2158 bh_read_nowait(bh, 0);
2159 *wait_bh++=bh;
2160 }
2161 }
2162 /*
2163 * If we issued read requests - let them complete.
2164 */
2165 while(wait_bh > wait) {
2166 wait_on_buffer(*--wait_bh);
2167 if (!buffer_uptodate(*wait_bh))
2168 err = -EIO;
2169 }
2170 if (unlikely(err))
2171 folio_zero_new_buffers(folio, from, to);
2172 return err;
2173}
2174
2175int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2176 get_block_t *get_block)
2177{
2178 return __block_write_begin_int(page_folio(page), pos, len, get_block,
2179 NULL);
2180}
2181EXPORT_SYMBOL(__block_write_begin);
2182
2183static int __block_commit_write(struct inode *inode, struct folio *folio,
2184 size_t from, size_t to)
2185{
2186 size_t block_start, block_end;
2187 bool partial = false;
2188 unsigned blocksize;
2189 struct buffer_head *bh, *head;
2190
2191 bh = head = folio_buffers(folio);
2192 blocksize = bh->b_size;
2193
2194 block_start = 0;
2195 do {
2196 block_end = block_start + blocksize;
2197 if (block_end <= from || block_start >= to) {
2198 if (!buffer_uptodate(bh))
2199 partial = true;
2200 } else {
2201 set_buffer_uptodate(bh);
2202 mark_buffer_dirty(bh);
2203 }
2204 if (buffer_new(bh))
2205 clear_buffer_new(bh);
2206
2207 block_start = block_end;
2208 bh = bh->b_this_page;
2209 } while (bh != head);
2210
2211 /*
2212 * If this is a partial write which happened to make all buffers
2213 * uptodate then we can optimize away a bogus read_folio() for
2214 * the next read(). Here we 'discover' whether the folio went
2215 * uptodate as a result of this (potentially partial) write.
2216 */
2217 if (!partial)
2218 folio_mark_uptodate(folio);
2219 return 0;
2220}
2221
2222/*
2223 * block_write_begin takes care of the basic task of block allocation and
2224 * bringing partial write blocks uptodate first.
2225 *
2226 * The filesystem needs to handle block truncation upon failure.
2227 */
2228int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2229 struct page **pagep, get_block_t *get_block)
2230{
2231 pgoff_t index = pos >> PAGE_SHIFT;
2232 struct page *page;
2233 int status;
2234
2235 page = grab_cache_page_write_begin(mapping, index);
2236 if (!page)
2237 return -ENOMEM;
2238
2239 status = __block_write_begin(page, pos, len, get_block);
2240 if (unlikely(status)) {
2241 unlock_page(page);
2242 put_page(page);
2243 page = NULL;
2244 }
2245
2246 *pagep = page;
2247 return status;
2248}
2249EXPORT_SYMBOL(block_write_begin);
2250
2251int block_write_end(struct file *file, struct address_space *mapping,
2252 loff_t pos, unsigned len, unsigned copied,
2253 struct page *page, void *fsdata)
2254{
2255 struct folio *folio = page_folio(page);
2256 struct inode *inode = mapping->host;
2257 size_t start = pos - folio_pos(folio);
2258
2259 if (unlikely(copied < len)) {
2260 /*
2261 * The buffers that were written will now be uptodate, so
2262 * we don't have to worry about a read_folio reading them
2263 * and overwriting a partial write. However if we have
2264 * encountered a short write and only partially written
2265 * into a buffer, it will not be marked uptodate, so a
2266 * read_folio might come in and destroy our partial write.
2267 *
2268 * Do the simplest thing, and just treat any short write to a
2269 * non uptodate folio as a zero-length write, and force the
2270 * caller to redo the whole thing.
2271 */
2272 if (!folio_test_uptodate(folio))
2273 copied = 0;
2274
2275 folio_zero_new_buffers(folio, start+copied, start+len);
2276 }
2277 flush_dcache_folio(folio);
2278
2279 /* This could be a short (even 0-length) commit */
2280 __block_commit_write(inode, folio, start, start + copied);
2281
2282 return copied;
2283}
2284EXPORT_SYMBOL(block_write_end);
2285
2286int generic_write_end(struct file *file, struct address_space *mapping,
2287 loff_t pos, unsigned len, unsigned copied,
2288 struct page *page, void *fsdata)
2289{
2290 struct inode *inode = mapping->host;
2291 loff_t old_size = inode->i_size;
2292 bool i_size_changed = false;
2293
2294 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2295
2296 /*
2297 * No need to use i_size_read() here, the i_size cannot change under us
2298 * because we hold i_rwsem.
2299 *
2300 * But it's important to update i_size while still holding page lock:
2301 * page writeout could otherwise come in and zero beyond i_size.
2302 */
2303 if (pos + copied > inode->i_size) {
2304 i_size_write(inode, pos + copied);
2305 i_size_changed = true;
2306 }
2307
2308 unlock_page(page);
2309 put_page(page);
2310
2311 if (old_size < pos)
2312 pagecache_isize_extended(inode, old_size, pos);
2313 /*
2314 * Don't mark the inode dirty under page lock. First, it unnecessarily
2315 * makes the holding time of page lock longer. Second, it forces lock
2316 * ordering of page lock and transaction start for journaling
2317 * filesystems.
2318 */
2319 if (i_size_changed)
2320 mark_inode_dirty(inode);
2321 return copied;
2322}
2323EXPORT_SYMBOL(generic_write_end);
2324
2325/*
2326 * block_is_partially_uptodate checks whether buffers within a folio are
2327 * uptodate or not.
2328 *
2329 * Returns true if all buffers which correspond to the specified part
2330 * of the folio are uptodate.
2331 */
2332bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
2333{
2334 unsigned block_start, block_end, blocksize;
2335 unsigned to;
2336 struct buffer_head *bh, *head;
2337 bool ret = true;
2338
2339 head = folio_buffers(folio);
2340 if (!head)
2341 return false;
2342 blocksize = head->b_size;
2343 to = min_t(unsigned, folio_size(folio) - from, count);
2344 to = from + to;
2345 if (from < blocksize && to > folio_size(folio) - blocksize)
2346 return false;
2347
2348 bh = head;
2349 block_start = 0;
2350 do {
2351 block_end = block_start + blocksize;
2352 if (block_end > from && block_start < to) {
2353 if (!buffer_uptodate(bh)) {
2354 ret = false;
2355 break;
2356 }
2357 if (block_end >= to)
2358 break;
2359 }
2360 block_start = block_end;
2361 bh = bh->b_this_page;
2362 } while (bh != head);
2363
2364 return ret;
2365}
2366EXPORT_SYMBOL(block_is_partially_uptodate);
2367
2368/*
2369 * Generic "read_folio" function for block devices that have the normal
2370 * get_block functionality. This is most of the block device filesystems.
2371 * Reads the folio asynchronously --- the unlock_buffer() and
2372 * set/clear_buffer_uptodate() functions propagate buffer state into the
2373 * folio once IO has completed.
2374 */
2375int block_read_full_folio(struct folio *folio, get_block_t *get_block)
2376{
2377 struct inode *inode = folio->mapping->host;
2378 sector_t iblock, lblock;
2379 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2380 unsigned int blocksize, bbits;
2381 int nr, i;
2382 int fully_mapped = 1;
2383 bool page_error = false;
2384 loff_t limit = i_size_read(inode);
2385
2386 /* This is needed for ext4. */
2387 if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2388 limit = inode->i_sb->s_maxbytes;
2389
2390 VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2391
2392 head = folio_create_buffers(folio, inode, 0);
2393 blocksize = head->b_size;
2394 bbits = block_size_bits(blocksize);
2395
2396 iblock = (sector_t)folio->index << (PAGE_SHIFT - bbits);
2397 lblock = (limit+blocksize-1) >> bbits;
2398 bh = head;
2399 nr = 0;
2400 i = 0;
2401
2402 do {
2403 if (buffer_uptodate(bh))
2404 continue;
2405
2406 if (!buffer_mapped(bh)) {
2407 int err = 0;
2408
2409 fully_mapped = 0;
2410 if (iblock < lblock) {
2411 WARN_ON(bh->b_size != blocksize);
2412 err = get_block(inode, iblock, bh, 0);
2413 if (err) {
2414 folio_set_error(folio);
2415 page_error = true;
2416 }
2417 }
2418 if (!buffer_mapped(bh)) {
2419 folio_zero_range(folio, i * blocksize,
2420 blocksize);
2421 if (!err)
2422 set_buffer_uptodate(bh);
2423 continue;
2424 }
2425 /*
2426 * get_block() might have updated the buffer
2427 * synchronously
2428 */
2429 if (buffer_uptodate(bh))
2430 continue;
2431 }
2432 arr[nr++] = bh;
2433 } while (i++, iblock++, (bh = bh->b_this_page) != head);
2434
2435 if (fully_mapped)
2436 folio_set_mappedtodisk(folio);
2437
2438 if (!nr) {
2439 /*
2440 * All buffers are uptodate - we can set the folio uptodate
2441 * as well. But not if get_block() returned an error.
2442 */
2443 if (!page_error)
2444 folio_mark_uptodate(folio);
2445 folio_unlock(folio);
2446 return 0;
2447 }
2448
2449 /* Stage two: lock the buffers */
2450 for (i = 0; i < nr; i++) {
2451 bh = arr[i];
2452 lock_buffer(bh);
2453 mark_buffer_async_read(bh);
2454 }
2455
2456 /*
2457 * Stage 3: start the IO. Check for uptodateness
2458 * inside the buffer lock in case another process reading
2459 * the underlying blockdev brought it uptodate (the sct fix).
2460 */
2461 for (i = 0; i < nr; i++) {
2462 bh = arr[i];
2463 if (buffer_uptodate(bh))
2464 end_buffer_async_read(bh, 1);
2465 else
2466 submit_bh(REQ_OP_READ, bh);
2467 }
2468 return 0;
2469}
2470EXPORT_SYMBOL(block_read_full_folio);
2471
2472/* utility function for filesystems that need to do work on expanding
2473 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2474 * deal with the hole.
2475 */
2476int generic_cont_expand_simple(struct inode *inode, loff_t size)
2477{
2478 struct address_space *mapping = inode->i_mapping;
2479 const struct address_space_operations *aops = mapping->a_ops;
2480 struct page *page;
2481 void *fsdata = NULL;
2482 int err;
2483
2484 err = inode_newsize_ok(inode, size);
2485 if (err)
2486 goto out;
2487
2488 err = aops->write_begin(NULL, mapping, size, 0, &page, &fsdata);
2489 if (err)
2490 goto out;
2491
2492 err = aops->write_end(NULL, mapping, size, 0, 0, page, fsdata);
2493 BUG_ON(err > 0);
2494
2495out:
2496 return err;
2497}
2498EXPORT_SYMBOL(generic_cont_expand_simple);
2499
2500static int cont_expand_zero(struct file *file, struct address_space *mapping,
2501 loff_t pos, loff_t *bytes)
2502{
2503 struct inode *inode = mapping->host;
2504 const struct address_space_operations *aops = mapping->a_ops;
2505 unsigned int blocksize = i_blocksize(inode);
2506 struct page *page;
2507 void *fsdata = NULL;
2508 pgoff_t index, curidx;
2509 loff_t curpos;
2510 unsigned zerofrom, offset, len;
2511 int err = 0;
2512
2513 index = pos >> PAGE_SHIFT;
2514 offset = pos & ~PAGE_MASK;
2515
2516 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2517 zerofrom = curpos & ~PAGE_MASK;
2518 if (zerofrom & (blocksize-1)) {
2519 *bytes |= (blocksize-1);
2520 (*bytes)++;
2521 }
2522 len = PAGE_SIZE - zerofrom;
2523
2524 err = aops->write_begin(file, mapping, curpos, len,
2525 &page, &fsdata);
2526 if (err)
2527 goto out;
2528 zero_user(page, zerofrom, len);
2529 err = aops->write_end(file, mapping, curpos, len, len,
2530 page, fsdata);
2531 if (err < 0)
2532 goto out;
2533 BUG_ON(err != len);
2534 err = 0;
2535
2536 balance_dirty_pages_ratelimited(mapping);
2537
2538 if (fatal_signal_pending(current)) {
2539 err = -EINTR;
2540 goto out;
2541 }
2542 }
2543
2544 /* page covers the boundary, find the boundary offset */
2545 if (index == curidx) {
2546 zerofrom = curpos & ~PAGE_MASK;
2547 /* if we will expand the thing last block will be filled */
2548 if (offset <= zerofrom) {
2549 goto out;
2550 }
2551 if (zerofrom & (blocksize-1)) {
2552 *bytes |= (blocksize-1);
2553 (*bytes)++;
2554 }
2555 len = offset - zerofrom;
2556
2557 err = aops->write_begin(file, mapping, curpos, len,
2558 &page, &fsdata);
2559 if (err)
2560 goto out;
2561 zero_user(page, zerofrom, len);
2562 err = aops->write_end(file, mapping, curpos, len, len,
2563 page, fsdata);
2564 if (err < 0)
2565 goto out;
2566 BUG_ON(err != len);
2567 err = 0;
2568 }
2569out:
2570 return err;
2571}
2572
2573/*
2574 * For moronic filesystems that do not allow holes in file.
2575 * We may have to extend the file.
2576 */
2577int cont_write_begin(struct file *file, struct address_space *mapping,
2578 loff_t pos, unsigned len,
2579 struct page **pagep, void **fsdata,
2580 get_block_t *get_block, loff_t *bytes)
2581{
2582 struct inode *inode = mapping->host;
2583 unsigned int blocksize = i_blocksize(inode);
2584 unsigned int zerofrom;
2585 int err;
2586
2587 err = cont_expand_zero(file, mapping, pos, bytes);
2588 if (err)
2589 return err;
2590
2591 zerofrom = *bytes & ~PAGE_MASK;
2592 if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2593 *bytes |= (blocksize-1);
2594 (*bytes)++;
2595 }
2596
2597 return block_write_begin(mapping, pos, len, pagep, get_block);
2598}
2599EXPORT_SYMBOL(cont_write_begin);
2600
2601int block_commit_write(struct page *page, unsigned from, unsigned to)
2602{
2603 struct folio *folio = page_folio(page);
2604 struct inode *inode = folio->mapping->host;
2605 __block_commit_write(inode, folio, from, to);
2606 return 0;
2607}
2608EXPORT_SYMBOL(block_commit_write);
2609
2610/*
2611 * block_page_mkwrite() is not allowed to change the file size as it gets
2612 * called from a page fault handler when a page is first dirtied. Hence we must
2613 * be careful to check for EOF conditions here. We set the page up correctly
2614 * for a written page which means we get ENOSPC checking when writing into
2615 * holes and correct delalloc and unwritten extent mapping on filesystems that
2616 * support these features.
2617 *
2618 * We are not allowed to take the i_mutex here so we have to play games to
2619 * protect against truncate races as the page could now be beyond EOF. Because
2620 * truncate writes the inode size before removing pages, once we have the
2621 * page lock we can determine safely if the page is beyond EOF. If it is not
2622 * beyond EOF, then the page is guaranteed safe against truncation until we
2623 * unlock the page.
2624 *
2625 * Direct callers of this function should protect against filesystem freezing
2626 * using sb_start_pagefault() - sb_end_pagefault() functions.
2627 */
2628int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2629 get_block_t get_block)
2630{
2631 struct folio *folio = page_folio(vmf->page);
2632 struct inode *inode = file_inode(vma->vm_file);
2633 unsigned long end;
2634 loff_t size;
2635 int ret;
2636
2637 folio_lock(folio);
2638 size = i_size_read(inode);
2639 if ((folio->mapping != inode->i_mapping) ||
2640 (folio_pos(folio) >= size)) {
2641 /* We overload EFAULT to mean page got truncated */
2642 ret = -EFAULT;
2643 goto out_unlock;
2644 }
2645
2646 end = folio_size(folio);
2647 /* folio is wholly or partially inside EOF */
2648 if (folio_pos(folio) + end > size)
2649 end = size - folio_pos(folio);
2650
2651 ret = __block_write_begin_int(folio, 0, end, get_block, NULL);
2652 if (!ret)
2653 ret = __block_commit_write(inode, folio, 0, end);
2654
2655 if (unlikely(ret < 0))
2656 goto out_unlock;
2657 folio_mark_dirty(folio);
2658 folio_wait_stable(folio);
2659 return 0;
2660out_unlock:
2661 folio_unlock(folio);
2662 return ret;
2663}
2664EXPORT_SYMBOL(block_page_mkwrite);
2665
2666int block_truncate_page(struct address_space *mapping,
2667 loff_t from, get_block_t *get_block)
2668{
2669 pgoff_t index = from >> PAGE_SHIFT;
2670 unsigned blocksize;
2671 sector_t iblock;
2672 size_t offset, length, pos;
2673 struct inode *inode = mapping->host;
2674 struct folio *folio;
2675 struct buffer_head *bh;
2676 int err = 0;
2677
2678 blocksize = i_blocksize(inode);
2679 length = from & (blocksize - 1);
2680
2681 /* Block boundary? Nothing to do */
2682 if (!length)
2683 return 0;
2684
2685 length = blocksize - length;
2686 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2687
2688 folio = filemap_grab_folio(mapping, index);
2689 if (IS_ERR(folio))
2690 return PTR_ERR(folio);
2691
2692 bh = folio_buffers(folio);
2693 if (!bh) {
2694 folio_create_empty_buffers(folio, blocksize, 0);
2695 bh = folio_buffers(folio);
2696 }
2697
2698 /* Find the buffer that contains "offset" */
2699 offset = offset_in_folio(folio, from);
2700 pos = blocksize;
2701 while (offset >= pos) {
2702 bh = bh->b_this_page;
2703 iblock++;
2704 pos += blocksize;
2705 }
2706
2707 if (!buffer_mapped(bh)) {
2708 WARN_ON(bh->b_size != blocksize);
2709 err = get_block(inode, iblock, bh, 0);
2710 if (err)
2711 goto unlock;
2712 /* unmapped? It's a hole - nothing to do */
2713 if (!buffer_mapped(bh))
2714 goto unlock;
2715 }
2716
2717 /* Ok, it's mapped. Make sure it's up-to-date */
2718 if (folio_test_uptodate(folio))
2719 set_buffer_uptodate(bh);
2720
2721 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2722 err = bh_read(bh, 0);
2723 /* Uhhuh. Read error. Complain and punt. */
2724 if (err < 0)
2725 goto unlock;
2726 }
2727
2728 folio_zero_range(folio, offset, length);
2729 mark_buffer_dirty(bh);
2730
2731unlock:
2732 folio_unlock(folio);
2733 folio_put(folio);
2734
2735 return err;
2736}
2737EXPORT_SYMBOL(block_truncate_page);
2738
2739/*
2740 * The generic ->writepage function for buffer-backed address_spaces
2741 */
2742int block_write_full_page(struct page *page, get_block_t *get_block,
2743 struct writeback_control *wbc)
2744{
2745 struct folio *folio = page_folio(page);
2746 struct inode * const inode = folio->mapping->host;
2747 loff_t i_size = i_size_read(inode);
2748
2749 /* Is the folio fully inside i_size? */
2750 if (folio_pos(folio) + folio_size(folio) <= i_size)
2751 return __block_write_full_folio(inode, folio, get_block, wbc,
2752 end_buffer_async_write);
2753
2754 /* Is the folio fully outside i_size? (truncate in progress) */
2755 if (folio_pos(folio) >= i_size) {
2756 folio_unlock(folio);
2757 return 0; /* don't care */
2758 }
2759
2760 /*
2761 * The folio straddles i_size. It must be zeroed out on each and every
2762 * writepage invocation because it may be mmapped. "A file is mapped
2763 * in multiples of the page size. For a file that is not a multiple of
2764 * the page size, the remaining memory is zeroed when mapped, and
2765 * writes to that region are not written out to the file."
2766 */
2767 folio_zero_segment(folio, offset_in_folio(folio, i_size),
2768 folio_size(folio));
2769 return __block_write_full_folio(inode, folio, get_block, wbc,
2770 end_buffer_async_write);
2771}
2772EXPORT_SYMBOL(block_write_full_page);
2773
2774sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2775 get_block_t *get_block)
2776{
2777 struct inode *inode = mapping->host;
2778 struct buffer_head tmp = {
2779 .b_size = i_blocksize(inode),
2780 };
2781
2782 get_block(inode, block, &tmp, 0);
2783 return tmp.b_blocknr;
2784}
2785EXPORT_SYMBOL(generic_block_bmap);
2786
2787static void end_bio_bh_io_sync(struct bio *bio)
2788{
2789 struct buffer_head *bh = bio->bi_private;
2790
2791 if (unlikely(bio_flagged(bio, BIO_QUIET)))
2792 set_bit(BH_Quiet, &bh->b_state);
2793
2794 bh->b_end_io(bh, !bio->bi_status);
2795 bio_put(bio);
2796}
2797
2798static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
2799 struct writeback_control *wbc)
2800{
2801 const enum req_op op = opf & REQ_OP_MASK;
2802 struct bio *bio;
2803
2804 BUG_ON(!buffer_locked(bh));
2805 BUG_ON(!buffer_mapped(bh));
2806 BUG_ON(!bh->b_end_io);
2807 BUG_ON(buffer_delay(bh));
2808 BUG_ON(buffer_unwritten(bh));
2809
2810 /*
2811 * Only clear out a write error when rewriting
2812 */
2813 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
2814 clear_buffer_write_io_error(bh);
2815
2816 if (buffer_meta(bh))
2817 opf |= REQ_META;
2818 if (buffer_prio(bh))
2819 opf |= REQ_PRIO;
2820
2821 bio = bio_alloc(bh->b_bdev, 1, opf, GFP_NOIO);
2822
2823 fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
2824
2825 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2826
2827 __bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
2828
2829 bio->bi_end_io = end_bio_bh_io_sync;
2830 bio->bi_private = bh;
2831
2832 /* Take care of bh's that straddle the end of the device */
2833 guard_bio_eod(bio);
2834
2835 if (wbc) {
2836 wbc_init_bio(wbc, bio);
2837 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
2838 }
2839
2840 submit_bio(bio);
2841}
2842
2843void submit_bh(blk_opf_t opf, struct buffer_head *bh)
2844{
2845 submit_bh_wbc(opf, bh, NULL);
2846}
2847EXPORT_SYMBOL(submit_bh);
2848
2849void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2850{
2851 lock_buffer(bh);
2852 if (!test_clear_buffer_dirty(bh)) {
2853 unlock_buffer(bh);
2854 return;
2855 }
2856 bh->b_end_io = end_buffer_write_sync;
2857 get_bh(bh);
2858 submit_bh(REQ_OP_WRITE | op_flags, bh);
2859}
2860EXPORT_SYMBOL(write_dirty_buffer);
2861
2862/*
2863 * For a data-integrity writeout, we need to wait upon any in-progress I/O
2864 * and then start new I/O and then wait upon it. The caller must have a ref on
2865 * the buffer_head.
2866 */
2867int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2868{
2869 WARN_ON(atomic_read(&bh->b_count) < 1);
2870 lock_buffer(bh);
2871 if (test_clear_buffer_dirty(bh)) {
2872 /*
2873 * The bh should be mapped, but it might not be if the
2874 * device was hot-removed. Not much we can do but fail the I/O.
2875 */
2876 if (!buffer_mapped(bh)) {
2877 unlock_buffer(bh);
2878 return -EIO;
2879 }
2880
2881 get_bh(bh);
2882 bh->b_end_io = end_buffer_write_sync;
2883 submit_bh(REQ_OP_WRITE | op_flags, bh);
2884 wait_on_buffer(bh);
2885 if (!buffer_uptodate(bh))
2886 return -EIO;
2887 } else {
2888 unlock_buffer(bh);
2889 }
2890 return 0;
2891}
2892EXPORT_SYMBOL(__sync_dirty_buffer);
2893
2894int sync_dirty_buffer(struct buffer_head *bh)
2895{
2896 return __sync_dirty_buffer(bh, REQ_SYNC);
2897}
2898EXPORT_SYMBOL(sync_dirty_buffer);
2899
2900/*
2901 * try_to_free_buffers() checks if all the buffers on this particular folio
2902 * are unused, and releases them if so.
2903 *
2904 * Exclusion against try_to_free_buffers may be obtained by either
2905 * locking the folio or by holding its mapping's private_lock.
2906 *
2907 * If the folio is dirty but all the buffers are clean then we need to
2908 * be sure to mark the folio clean as well. This is because the folio
2909 * may be against a block device, and a later reattachment of buffers
2910 * to a dirty folio will set *all* buffers dirty. Which would corrupt
2911 * filesystem data on the same device.
2912 *
2913 * The same applies to regular filesystem folios: if all the buffers are
2914 * clean then we set the folio clean and proceed. To do that, we require
2915 * total exclusion from block_dirty_folio(). That is obtained with
2916 * private_lock.
2917 *
2918 * try_to_free_buffers() is non-blocking.
2919 */
2920static inline int buffer_busy(struct buffer_head *bh)
2921{
2922 return atomic_read(&bh->b_count) |
2923 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2924}
2925
2926static bool
2927drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free)
2928{
2929 struct buffer_head *head = folio_buffers(folio);
2930 struct buffer_head *bh;
2931
2932 bh = head;
2933 do {
2934 if (buffer_busy(bh))
2935 goto failed;
2936 bh = bh->b_this_page;
2937 } while (bh != head);
2938
2939 do {
2940 struct buffer_head *next = bh->b_this_page;
2941
2942 if (bh->b_assoc_map)
2943 __remove_assoc_queue(bh);
2944 bh = next;
2945 } while (bh != head);
2946 *buffers_to_free = head;
2947 folio_detach_private(folio);
2948 return true;
2949failed:
2950 return false;
2951}
2952
2953bool try_to_free_buffers(struct folio *folio)
2954{
2955 struct address_space * const mapping = folio->mapping;
2956 struct buffer_head *buffers_to_free = NULL;
2957 bool ret = 0;
2958
2959 BUG_ON(!folio_test_locked(folio));
2960 if (folio_test_writeback(folio))
2961 return false;
2962
2963 if (mapping == NULL) { /* can this still happen? */
2964 ret = drop_buffers(folio, &buffers_to_free);
2965 goto out;
2966 }
2967
2968 spin_lock(&mapping->private_lock);
2969 ret = drop_buffers(folio, &buffers_to_free);
2970
2971 /*
2972 * If the filesystem writes its buffers by hand (eg ext3)
2973 * then we can have clean buffers against a dirty folio. We
2974 * clean the folio here; otherwise the VM will never notice
2975 * that the filesystem did any IO at all.
2976 *
2977 * Also, during truncate, discard_buffer will have marked all
2978 * the folio's buffers clean. We discover that here and clean
2979 * the folio also.
2980 *
2981 * private_lock must be held over this entire operation in order
2982 * to synchronise against block_dirty_folio and prevent the
2983 * dirty bit from being lost.
2984 */
2985 if (ret)
2986 folio_cancel_dirty(folio);
2987 spin_unlock(&mapping->private_lock);
2988out:
2989 if (buffers_to_free) {
2990 struct buffer_head *bh = buffers_to_free;
2991
2992 do {
2993 struct buffer_head *next = bh->b_this_page;
2994 free_buffer_head(bh);
2995 bh = next;
2996 } while (bh != buffers_to_free);
2997 }
2998 return ret;
2999}
3000EXPORT_SYMBOL(try_to_free_buffers);
3001
3002/*
3003 * Buffer-head allocation
3004 */
3005static struct kmem_cache *bh_cachep __read_mostly;
3006
3007/*
3008 * Once the number of bh's in the machine exceeds this level, we start
3009 * stripping them in writeback.
3010 */
3011static unsigned long max_buffer_heads;
3012
3013int buffer_heads_over_limit;
3014
3015struct bh_accounting {
3016 int nr; /* Number of live bh's */
3017 int ratelimit; /* Limit cacheline bouncing */
3018};
3019
3020static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3021
3022static void recalc_bh_state(void)
3023{
3024 int i;
3025 int tot = 0;
3026
3027 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3028 return;
3029 __this_cpu_write(bh_accounting.ratelimit, 0);
3030 for_each_online_cpu(i)
3031 tot += per_cpu(bh_accounting, i).nr;
3032 buffer_heads_over_limit = (tot > max_buffer_heads);
3033}
3034
3035struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3036{
3037 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3038 if (ret) {
3039 INIT_LIST_HEAD(&ret->b_assoc_buffers);
3040 spin_lock_init(&ret->b_uptodate_lock);
3041 preempt_disable();
3042 __this_cpu_inc(bh_accounting.nr);
3043 recalc_bh_state();
3044 preempt_enable();
3045 }
3046 return ret;
3047}
3048EXPORT_SYMBOL(alloc_buffer_head);
3049
3050void free_buffer_head(struct buffer_head *bh)
3051{
3052 BUG_ON(!list_empty(&bh->b_assoc_buffers));
3053 kmem_cache_free(bh_cachep, bh);
3054 preempt_disable();
3055 __this_cpu_dec(bh_accounting.nr);
3056 recalc_bh_state();
3057 preempt_enable();
3058}
3059EXPORT_SYMBOL(free_buffer_head);
3060
3061static int buffer_exit_cpu_dead(unsigned int cpu)
3062{
3063 int i;
3064 struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3065
3066 for (i = 0; i < BH_LRU_SIZE; i++) {
3067 brelse(b->bhs[i]);
3068 b->bhs[i] = NULL;
3069 }
3070 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3071 per_cpu(bh_accounting, cpu).nr = 0;
3072 return 0;
3073}
3074
3075/**
3076 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3077 * @bh: struct buffer_head
3078 *
3079 * Return true if the buffer is up-to-date and false,
3080 * with the buffer locked, if not.
3081 */
3082int bh_uptodate_or_lock(struct buffer_head *bh)
3083{
3084 if (!buffer_uptodate(bh)) {
3085 lock_buffer(bh);
3086 if (!buffer_uptodate(bh))
3087 return 0;
3088 unlock_buffer(bh);
3089 }
3090 return 1;
3091}
3092EXPORT_SYMBOL(bh_uptodate_or_lock);
3093
3094/**
3095 * __bh_read - Submit read for a locked buffer
3096 * @bh: struct buffer_head
3097 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3098 * @wait: wait until reading finish
3099 *
3100 * Returns zero on success or don't wait, and -EIO on error.
3101 */
3102int __bh_read(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
3103{
3104 int ret = 0;
3105
3106 BUG_ON(!buffer_locked(bh));
3107
3108 get_bh(bh);
3109 bh->b_end_io = end_buffer_read_sync;
3110 submit_bh(REQ_OP_READ | op_flags, bh);
3111 if (wait) {
3112 wait_on_buffer(bh);
3113 if (!buffer_uptodate(bh))
3114 ret = -EIO;
3115 }
3116 return ret;
3117}
3118EXPORT_SYMBOL(__bh_read);
3119
3120/**
3121 * __bh_read_batch - Submit read for a batch of unlocked buffers
3122 * @nr: entry number of the buffer batch
3123 * @bhs: a batch of struct buffer_head
3124 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3125 * @force_lock: force to get a lock on the buffer if set, otherwise drops any
3126 * buffer that cannot lock.
3127 *
3128 * Returns zero on success or don't wait, and -EIO on error.
3129 */
3130void __bh_read_batch(int nr, struct buffer_head *bhs[],
3131 blk_opf_t op_flags, bool force_lock)
3132{
3133 int i;
3134
3135 for (i = 0; i < nr; i++) {
3136 struct buffer_head *bh = bhs[i];
3137
3138 if (buffer_uptodate(bh))
3139 continue;
3140
3141 if (force_lock)
3142 lock_buffer(bh);
3143 else
3144 if (!trylock_buffer(bh))
3145 continue;
3146
3147 if (buffer_uptodate(bh)) {
3148 unlock_buffer(bh);
3149 continue;
3150 }
3151
3152 bh->b_end_io = end_buffer_read_sync;
3153 get_bh(bh);
3154 submit_bh(REQ_OP_READ | op_flags, bh);
3155 }
3156}
3157EXPORT_SYMBOL(__bh_read_batch);
3158
3159void __init buffer_init(void)
3160{
3161 unsigned long nrpages;
3162 int ret;
3163
3164 bh_cachep = kmem_cache_create("buffer_head",
3165 sizeof(struct buffer_head), 0,
3166 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3167 SLAB_MEM_SPREAD),
3168 NULL);
3169
3170 /*
3171 * Limit the bh occupancy to 10% of ZONE_NORMAL
3172 */
3173 nrpages = (nr_free_buffer_pages() * 10) / 100;
3174 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3175 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3176 NULL, buffer_exit_cpu_dead);
3177 WARN_ON(ret < 0);
3178}