Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2009 Oracle. All rights reserved.
4 */
5
6#include <linux/sched.h>
7#include <linux/pagemap.h>
8#include <linux/writeback.h>
9#include <linux/blkdev.h>
10#include <linux/rbtree.h>
11#include <linux/slab.h>
12#include <linux/error-injection.h>
13#include "ctree.h"
14#include "disk-io.h"
15#include "transaction.h"
16#include "volumes.h"
17#include "locking.h"
18#include "btrfs_inode.h"
19#include "async-thread.h"
20#include "free-space-cache.h"
21#include "qgroup.h"
22#include "print-tree.h"
23#include "delalloc-space.h"
24#include "block-group.h"
25#include "backref.h"
26#include "misc.h"
27#include "subpage.h"
28#include "zoned.h"
29#include "inode-item.h"
30#include "space-info.h"
31#include "fs.h"
32#include "accessors.h"
33#include "extent-tree.h"
34#include "root-tree.h"
35#include "file-item.h"
36#include "relocation.h"
37#include "super.h"
38#include "tree-checker.h"
39
40/*
41 * Relocation overview
42 *
43 * [What does relocation do]
44 *
45 * The objective of relocation is to relocate all extents of the target block
46 * group to other block groups.
47 * This is utilized by resize (shrink only), profile converting, compacting
48 * space, or balance routine to spread chunks over devices.
49 *
50 * Before | After
51 * ------------------------------------------------------------------
52 * BG A: 10 data extents | BG A: deleted
53 * BG B: 2 data extents | BG B: 10 data extents (2 old + 8 relocated)
54 * BG C: 1 extents | BG C: 3 data extents (1 old + 2 relocated)
55 *
56 * [How does relocation work]
57 *
58 * 1. Mark the target block group read-only
59 * New extents won't be allocated from the target block group.
60 *
61 * 2.1 Record each extent in the target block group
62 * To build a proper map of extents to be relocated.
63 *
64 * 2.2 Build data reloc tree and reloc trees
65 * Data reloc tree will contain an inode, recording all newly relocated
66 * data extents.
67 * There will be only one data reloc tree for one data block group.
68 *
69 * Reloc tree will be a special snapshot of its source tree, containing
70 * relocated tree blocks.
71 * Each tree referring to a tree block in target block group will get its
72 * reloc tree built.
73 *
74 * 2.3 Swap source tree with its corresponding reloc tree
75 * Each involved tree only refers to new extents after swap.
76 *
77 * 3. Cleanup reloc trees and data reloc tree.
78 * As old extents in the target block group are still referenced by reloc
79 * trees, we need to clean them up before really freeing the target block
80 * group.
81 *
82 * The main complexity is in steps 2.2 and 2.3.
83 *
84 * The entry point of relocation is relocate_block_group() function.
85 */
86
87#define RELOCATION_RESERVED_NODES 256
88/*
89 * map address of tree root to tree
90 */
91struct mapping_node {
92 struct {
93 struct rb_node rb_node;
94 u64 bytenr;
95 }; /* Use rb_simle_node for search/insert */
96 void *data;
97};
98
99struct mapping_tree {
100 struct rb_root rb_root;
101 spinlock_t lock;
102};
103
104/*
105 * present a tree block to process
106 */
107struct tree_block {
108 struct {
109 struct rb_node rb_node;
110 u64 bytenr;
111 }; /* Use rb_simple_node for search/insert */
112 u64 owner;
113 struct btrfs_key key;
114 unsigned int level:8;
115 unsigned int key_ready:1;
116};
117
118#define MAX_EXTENTS 128
119
120struct file_extent_cluster {
121 u64 start;
122 u64 end;
123 u64 boundary[MAX_EXTENTS];
124 unsigned int nr;
125};
126
127struct reloc_control {
128 /* block group to relocate */
129 struct btrfs_block_group *block_group;
130 /* extent tree */
131 struct btrfs_root *extent_root;
132 /* inode for moving data */
133 struct inode *data_inode;
134
135 struct btrfs_block_rsv *block_rsv;
136
137 struct btrfs_backref_cache backref_cache;
138
139 struct file_extent_cluster cluster;
140 /* tree blocks have been processed */
141 struct extent_io_tree processed_blocks;
142 /* map start of tree root to corresponding reloc tree */
143 struct mapping_tree reloc_root_tree;
144 /* list of reloc trees */
145 struct list_head reloc_roots;
146 /* list of subvolume trees that get relocated */
147 struct list_head dirty_subvol_roots;
148 /* size of metadata reservation for merging reloc trees */
149 u64 merging_rsv_size;
150 /* size of relocated tree nodes */
151 u64 nodes_relocated;
152 /* reserved size for block group relocation*/
153 u64 reserved_bytes;
154
155 u64 search_start;
156 u64 extents_found;
157
158 unsigned int stage:8;
159 unsigned int create_reloc_tree:1;
160 unsigned int merge_reloc_tree:1;
161 unsigned int found_file_extent:1;
162};
163
164/* stages of data relocation */
165#define MOVE_DATA_EXTENTS 0
166#define UPDATE_DATA_PTRS 1
167
168static void mark_block_processed(struct reloc_control *rc,
169 struct btrfs_backref_node *node)
170{
171 u32 blocksize;
172
173 if (node->level == 0 ||
174 in_range(node->bytenr, rc->block_group->start,
175 rc->block_group->length)) {
176 blocksize = rc->extent_root->fs_info->nodesize;
177 set_extent_bit(&rc->processed_blocks, node->bytenr,
178 node->bytenr + blocksize - 1, EXTENT_DIRTY, NULL);
179 }
180 node->processed = 1;
181}
182
183
184static void mapping_tree_init(struct mapping_tree *tree)
185{
186 tree->rb_root = RB_ROOT;
187 spin_lock_init(&tree->lock);
188}
189
190/*
191 * walk up backref nodes until reach node presents tree root
192 */
193static struct btrfs_backref_node *walk_up_backref(
194 struct btrfs_backref_node *node,
195 struct btrfs_backref_edge *edges[], int *index)
196{
197 struct btrfs_backref_edge *edge;
198 int idx = *index;
199
200 while (!list_empty(&node->upper)) {
201 edge = list_entry(node->upper.next,
202 struct btrfs_backref_edge, list[LOWER]);
203 edges[idx++] = edge;
204 node = edge->node[UPPER];
205 }
206 BUG_ON(node->detached);
207 *index = idx;
208 return node;
209}
210
211/*
212 * walk down backref nodes to find start of next reference path
213 */
214static struct btrfs_backref_node *walk_down_backref(
215 struct btrfs_backref_edge *edges[], int *index)
216{
217 struct btrfs_backref_edge *edge;
218 struct btrfs_backref_node *lower;
219 int idx = *index;
220
221 while (idx > 0) {
222 edge = edges[idx - 1];
223 lower = edge->node[LOWER];
224 if (list_is_last(&edge->list[LOWER], &lower->upper)) {
225 idx--;
226 continue;
227 }
228 edge = list_entry(edge->list[LOWER].next,
229 struct btrfs_backref_edge, list[LOWER]);
230 edges[idx - 1] = edge;
231 *index = idx;
232 return edge->node[UPPER];
233 }
234 *index = 0;
235 return NULL;
236}
237
238static void update_backref_node(struct btrfs_backref_cache *cache,
239 struct btrfs_backref_node *node, u64 bytenr)
240{
241 struct rb_node *rb_node;
242 rb_erase(&node->rb_node, &cache->rb_root);
243 node->bytenr = bytenr;
244 rb_node = rb_simple_insert(&cache->rb_root, node->bytenr, &node->rb_node);
245 if (rb_node)
246 btrfs_backref_panic(cache->fs_info, bytenr, -EEXIST);
247}
248
249/*
250 * update backref cache after a transaction commit
251 */
252static int update_backref_cache(struct btrfs_trans_handle *trans,
253 struct btrfs_backref_cache *cache)
254{
255 struct btrfs_backref_node *node;
256 int level = 0;
257
258 if (cache->last_trans == 0) {
259 cache->last_trans = trans->transid;
260 return 0;
261 }
262
263 if (cache->last_trans == trans->transid)
264 return 0;
265
266 /*
267 * detached nodes are used to avoid unnecessary backref
268 * lookup. transaction commit changes the extent tree.
269 * so the detached nodes are no longer useful.
270 */
271 while (!list_empty(&cache->detached)) {
272 node = list_entry(cache->detached.next,
273 struct btrfs_backref_node, list);
274 btrfs_backref_cleanup_node(cache, node);
275 }
276
277 while (!list_empty(&cache->changed)) {
278 node = list_entry(cache->changed.next,
279 struct btrfs_backref_node, list);
280 list_del_init(&node->list);
281 BUG_ON(node->pending);
282 update_backref_node(cache, node, node->new_bytenr);
283 }
284
285 /*
286 * some nodes can be left in the pending list if there were
287 * errors during processing the pending nodes.
288 */
289 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
290 list_for_each_entry(node, &cache->pending[level], list) {
291 BUG_ON(!node->pending);
292 if (node->bytenr == node->new_bytenr)
293 continue;
294 update_backref_node(cache, node, node->new_bytenr);
295 }
296 }
297
298 cache->last_trans = 0;
299 return 1;
300}
301
302static bool reloc_root_is_dead(struct btrfs_root *root)
303{
304 /*
305 * Pair with set_bit/clear_bit in clean_dirty_subvols and
306 * btrfs_update_reloc_root. We need to see the updated bit before
307 * trying to access reloc_root
308 */
309 smp_rmb();
310 if (test_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state))
311 return true;
312 return false;
313}
314
315/*
316 * Check if this subvolume tree has valid reloc tree.
317 *
318 * Reloc tree after swap is considered dead, thus not considered as valid.
319 * This is enough for most callers, as they don't distinguish dead reloc root
320 * from no reloc root. But btrfs_should_ignore_reloc_root() below is a
321 * special case.
322 */
323static bool have_reloc_root(struct btrfs_root *root)
324{
325 if (reloc_root_is_dead(root))
326 return false;
327 if (!root->reloc_root)
328 return false;
329 return true;
330}
331
332int btrfs_should_ignore_reloc_root(struct btrfs_root *root)
333{
334 struct btrfs_root *reloc_root;
335
336 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
337 return 0;
338
339 /* This root has been merged with its reloc tree, we can ignore it */
340 if (reloc_root_is_dead(root))
341 return 1;
342
343 reloc_root = root->reloc_root;
344 if (!reloc_root)
345 return 0;
346
347 if (btrfs_header_generation(reloc_root->commit_root) ==
348 root->fs_info->running_transaction->transid)
349 return 0;
350 /*
351 * if there is reloc tree and it was created in previous
352 * transaction backref lookup can find the reloc tree,
353 * so backref node for the fs tree root is useless for
354 * relocation.
355 */
356 return 1;
357}
358
359/*
360 * find reloc tree by address of tree root
361 */
362struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info, u64 bytenr)
363{
364 struct reloc_control *rc = fs_info->reloc_ctl;
365 struct rb_node *rb_node;
366 struct mapping_node *node;
367 struct btrfs_root *root = NULL;
368
369 ASSERT(rc);
370 spin_lock(&rc->reloc_root_tree.lock);
371 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root, bytenr);
372 if (rb_node) {
373 node = rb_entry(rb_node, struct mapping_node, rb_node);
374 root = node->data;
375 }
376 spin_unlock(&rc->reloc_root_tree.lock);
377 return btrfs_grab_root(root);
378}
379
380/*
381 * For useless nodes, do two major clean ups:
382 *
383 * - Cleanup the children edges and nodes
384 * If child node is also orphan (no parent) during cleanup, then the child
385 * node will also be cleaned up.
386 *
387 * - Freeing up leaves (level 0), keeps nodes detached
388 * For nodes, the node is still cached as "detached"
389 *
390 * Return false if @node is not in the @useless_nodes list.
391 * Return true if @node is in the @useless_nodes list.
392 */
393static bool handle_useless_nodes(struct reloc_control *rc,
394 struct btrfs_backref_node *node)
395{
396 struct btrfs_backref_cache *cache = &rc->backref_cache;
397 struct list_head *useless_node = &cache->useless_node;
398 bool ret = false;
399
400 while (!list_empty(useless_node)) {
401 struct btrfs_backref_node *cur;
402
403 cur = list_first_entry(useless_node, struct btrfs_backref_node,
404 list);
405 list_del_init(&cur->list);
406
407 /* Only tree root nodes can be added to @useless_nodes */
408 ASSERT(list_empty(&cur->upper));
409
410 if (cur == node)
411 ret = true;
412
413 /* The node is the lowest node */
414 if (cur->lowest) {
415 list_del_init(&cur->lower);
416 cur->lowest = 0;
417 }
418
419 /* Cleanup the lower edges */
420 while (!list_empty(&cur->lower)) {
421 struct btrfs_backref_edge *edge;
422 struct btrfs_backref_node *lower;
423
424 edge = list_entry(cur->lower.next,
425 struct btrfs_backref_edge, list[UPPER]);
426 list_del(&edge->list[UPPER]);
427 list_del(&edge->list[LOWER]);
428 lower = edge->node[LOWER];
429 btrfs_backref_free_edge(cache, edge);
430
431 /* Child node is also orphan, queue for cleanup */
432 if (list_empty(&lower->upper))
433 list_add(&lower->list, useless_node);
434 }
435 /* Mark this block processed for relocation */
436 mark_block_processed(rc, cur);
437
438 /*
439 * Backref nodes for tree leaves are deleted from the cache.
440 * Backref nodes for upper level tree blocks are left in the
441 * cache to avoid unnecessary backref lookup.
442 */
443 if (cur->level > 0) {
444 list_add(&cur->list, &cache->detached);
445 cur->detached = 1;
446 } else {
447 rb_erase(&cur->rb_node, &cache->rb_root);
448 btrfs_backref_free_node(cache, cur);
449 }
450 }
451 return ret;
452}
453
454/*
455 * Build backref tree for a given tree block. Root of the backref tree
456 * corresponds the tree block, leaves of the backref tree correspond roots of
457 * b-trees that reference the tree block.
458 *
459 * The basic idea of this function is check backrefs of a given block to find
460 * upper level blocks that reference the block, and then check backrefs of
461 * these upper level blocks recursively. The recursion stops when tree root is
462 * reached or backrefs for the block is cached.
463 *
464 * NOTE: if we find that backrefs for a block are cached, we know backrefs for
465 * all upper level blocks that directly/indirectly reference the block are also
466 * cached.
467 */
468static noinline_for_stack struct btrfs_backref_node *build_backref_tree(
469 struct reloc_control *rc, struct btrfs_key *node_key,
470 int level, u64 bytenr)
471{
472 struct btrfs_backref_iter *iter;
473 struct btrfs_backref_cache *cache = &rc->backref_cache;
474 /* For searching parent of TREE_BLOCK_REF */
475 struct btrfs_path *path;
476 struct btrfs_backref_node *cur;
477 struct btrfs_backref_node *node = NULL;
478 struct btrfs_backref_edge *edge;
479 int ret;
480 int err = 0;
481
482 iter = btrfs_backref_iter_alloc(rc->extent_root->fs_info);
483 if (!iter)
484 return ERR_PTR(-ENOMEM);
485 path = btrfs_alloc_path();
486 if (!path) {
487 err = -ENOMEM;
488 goto out;
489 }
490
491 node = btrfs_backref_alloc_node(cache, bytenr, level);
492 if (!node) {
493 err = -ENOMEM;
494 goto out;
495 }
496
497 node->lowest = 1;
498 cur = node;
499
500 /* Breadth-first search to build backref cache */
501 do {
502 ret = btrfs_backref_add_tree_node(cache, path, iter, node_key,
503 cur);
504 if (ret < 0) {
505 err = ret;
506 goto out;
507 }
508 edge = list_first_entry_or_null(&cache->pending_edge,
509 struct btrfs_backref_edge, list[UPPER]);
510 /*
511 * The pending list isn't empty, take the first block to
512 * process
513 */
514 if (edge) {
515 list_del_init(&edge->list[UPPER]);
516 cur = edge->node[UPPER];
517 }
518 } while (edge);
519
520 /* Finish the upper linkage of newly added edges/nodes */
521 ret = btrfs_backref_finish_upper_links(cache, node);
522 if (ret < 0) {
523 err = ret;
524 goto out;
525 }
526
527 if (handle_useless_nodes(rc, node))
528 node = NULL;
529out:
530 btrfs_backref_iter_free(iter);
531 btrfs_free_path(path);
532 if (err) {
533 btrfs_backref_error_cleanup(cache, node);
534 return ERR_PTR(err);
535 }
536 ASSERT(!node || !node->detached);
537 ASSERT(list_empty(&cache->useless_node) &&
538 list_empty(&cache->pending_edge));
539 return node;
540}
541
542/*
543 * helper to add backref node for the newly created snapshot.
544 * the backref node is created by cloning backref node that
545 * corresponds to root of source tree
546 */
547static int clone_backref_node(struct btrfs_trans_handle *trans,
548 struct reloc_control *rc,
549 struct btrfs_root *src,
550 struct btrfs_root *dest)
551{
552 struct btrfs_root *reloc_root = src->reloc_root;
553 struct btrfs_backref_cache *cache = &rc->backref_cache;
554 struct btrfs_backref_node *node = NULL;
555 struct btrfs_backref_node *new_node;
556 struct btrfs_backref_edge *edge;
557 struct btrfs_backref_edge *new_edge;
558 struct rb_node *rb_node;
559
560 if (cache->last_trans > 0)
561 update_backref_cache(trans, cache);
562
563 rb_node = rb_simple_search(&cache->rb_root, src->commit_root->start);
564 if (rb_node) {
565 node = rb_entry(rb_node, struct btrfs_backref_node, rb_node);
566 if (node->detached)
567 node = NULL;
568 else
569 BUG_ON(node->new_bytenr != reloc_root->node->start);
570 }
571
572 if (!node) {
573 rb_node = rb_simple_search(&cache->rb_root,
574 reloc_root->commit_root->start);
575 if (rb_node) {
576 node = rb_entry(rb_node, struct btrfs_backref_node,
577 rb_node);
578 BUG_ON(node->detached);
579 }
580 }
581
582 if (!node)
583 return 0;
584
585 new_node = btrfs_backref_alloc_node(cache, dest->node->start,
586 node->level);
587 if (!new_node)
588 return -ENOMEM;
589
590 new_node->lowest = node->lowest;
591 new_node->checked = 1;
592 new_node->root = btrfs_grab_root(dest);
593 ASSERT(new_node->root);
594
595 if (!node->lowest) {
596 list_for_each_entry(edge, &node->lower, list[UPPER]) {
597 new_edge = btrfs_backref_alloc_edge(cache);
598 if (!new_edge)
599 goto fail;
600
601 btrfs_backref_link_edge(new_edge, edge->node[LOWER],
602 new_node, LINK_UPPER);
603 }
604 } else {
605 list_add_tail(&new_node->lower, &cache->leaves);
606 }
607
608 rb_node = rb_simple_insert(&cache->rb_root, new_node->bytenr,
609 &new_node->rb_node);
610 if (rb_node)
611 btrfs_backref_panic(trans->fs_info, new_node->bytenr, -EEXIST);
612
613 if (!new_node->lowest) {
614 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
615 list_add_tail(&new_edge->list[LOWER],
616 &new_edge->node[LOWER]->upper);
617 }
618 }
619 return 0;
620fail:
621 while (!list_empty(&new_node->lower)) {
622 new_edge = list_entry(new_node->lower.next,
623 struct btrfs_backref_edge, list[UPPER]);
624 list_del(&new_edge->list[UPPER]);
625 btrfs_backref_free_edge(cache, new_edge);
626 }
627 btrfs_backref_free_node(cache, new_node);
628 return -ENOMEM;
629}
630
631/*
632 * helper to add 'address of tree root -> reloc tree' mapping
633 */
634static int __must_check __add_reloc_root(struct btrfs_root *root)
635{
636 struct btrfs_fs_info *fs_info = root->fs_info;
637 struct rb_node *rb_node;
638 struct mapping_node *node;
639 struct reloc_control *rc = fs_info->reloc_ctl;
640
641 node = kmalloc(sizeof(*node), GFP_NOFS);
642 if (!node)
643 return -ENOMEM;
644
645 node->bytenr = root->commit_root->start;
646 node->data = root;
647
648 spin_lock(&rc->reloc_root_tree.lock);
649 rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
650 node->bytenr, &node->rb_node);
651 spin_unlock(&rc->reloc_root_tree.lock);
652 if (rb_node) {
653 btrfs_err(fs_info,
654 "Duplicate root found for start=%llu while inserting into relocation tree",
655 node->bytenr);
656 return -EEXIST;
657 }
658
659 list_add_tail(&root->root_list, &rc->reloc_roots);
660 return 0;
661}
662
663/*
664 * helper to delete the 'address of tree root -> reloc tree'
665 * mapping
666 */
667static void __del_reloc_root(struct btrfs_root *root)
668{
669 struct btrfs_fs_info *fs_info = root->fs_info;
670 struct rb_node *rb_node;
671 struct mapping_node *node = NULL;
672 struct reloc_control *rc = fs_info->reloc_ctl;
673 bool put_ref = false;
674
675 if (rc && root->node) {
676 spin_lock(&rc->reloc_root_tree.lock);
677 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
678 root->commit_root->start);
679 if (rb_node) {
680 node = rb_entry(rb_node, struct mapping_node, rb_node);
681 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
682 RB_CLEAR_NODE(&node->rb_node);
683 }
684 spin_unlock(&rc->reloc_root_tree.lock);
685 ASSERT(!node || (struct btrfs_root *)node->data == root);
686 }
687
688 /*
689 * We only put the reloc root here if it's on the list. There's a lot
690 * of places where the pattern is to splice the rc->reloc_roots, process
691 * the reloc roots, and then add the reloc root back onto
692 * rc->reloc_roots. If we call __del_reloc_root while it's off of the
693 * list we don't want the reference being dropped, because the guy
694 * messing with the list is in charge of the reference.
695 */
696 spin_lock(&fs_info->trans_lock);
697 if (!list_empty(&root->root_list)) {
698 put_ref = true;
699 list_del_init(&root->root_list);
700 }
701 spin_unlock(&fs_info->trans_lock);
702 if (put_ref)
703 btrfs_put_root(root);
704 kfree(node);
705}
706
707/*
708 * helper to update the 'address of tree root -> reloc tree'
709 * mapping
710 */
711static int __update_reloc_root(struct btrfs_root *root)
712{
713 struct btrfs_fs_info *fs_info = root->fs_info;
714 struct rb_node *rb_node;
715 struct mapping_node *node = NULL;
716 struct reloc_control *rc = fs_info->reloc_ctl;
717
718 spin_lock(&rc->reloc_root_tree.lock);
719 rb_node = rb_simple_search(&rc->reloc_root_tree.rb_root,
720 root->commit_root->start);
721 if (rb_node) {
722 node = rb_entry(rb_node, struct mapping_node, rb_node);
723 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
724 }
725 spin_unlock(&rc->reloc_root_tree.lock);
726
727 if (!node)
728 return 0;
729 BUG_ON((struct btrfs_root *)node->data != root);
730
731 spin_lock(&rc->reloc_root_tree.lock);
732 node->bytenr = root->node->start;
733 rb_node = rb_simple_insert(&rc->reloc_root_tree.rb_root,
734 node->bytenr, &node->rb_node);
735 spin_unlock(&rc->reloc_root_tree.lock);
736 if (rb_node)
737 btrfs_backref_panic(fs_info, node->bytenr, -EEXIST);
738 return 0;
739}
740
741static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
742 struct btrfs_root *root, u64 objectid)
743{
744 struct btrfs_fs_info *fs_info = root->fs_info;
745 struct btrfs_root *reloc_root;
746 struct extent_buffer *eb;
747 struct btrfs_root_item *root_item;
748 struct btrfs_key root_key;
749 int ret = 0;
750 bool must_abort = false;
751
752 root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
753 if (!root_item)
754 return ERR_PTR(-ENOMEM);
755
756 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
757 root_key.type = BTRFS_ROOT_ITEM_KEY;
758 root_key.offset = objectid;
759
760 if (root->root_key.objectid == objectid) {
761 u64 commit_root_gen;
762
763 /* called by btrfs_init_reloc_root */
764 ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
765 BTRFS_TREE_RELOC_OBJECTID);
766 if (ret)
767 goto fail;
768
769 /*
770 * Set the last_snapshot field to the generation of the commit
771 * root - like this ctree.c:btrfs_block_can_be_shared() behaves
772 * correctly (returns true) when the relocation root is created
773 * either inside the critical section of a transaction commit
774 * (through transaction.c:qgroup_account_snapshot()) and when
775 * it's created before the transaction commit is started.
776 */
777 commit_root_gen = btrfs_header_generation(root->commit_root);
778 btrfs_set_root_last_snapshot(&root->root_item, commit_root_gen);
779 } else {
780 /*
781 * called by btrfs_reloc_post_snapshot_hook.
782 * the source tree is a reloc tree, all tree blocks
783 * modified after it was created have RELOC flag
784 * set in their headers. so it's OK to not update
785 * the 'last_snapshot'.
786 */
787 ret = btrfs_copy_root(trans, root, root->node, &eb,
788 BTRFS_TREE_RELOC_OBJECTID);
789 if (ret)
790 goto fail;
791 }
792
793 /*
794 * We have changed references at this point, we must abort the
795 * transaction if anything fails.
796 */
797 must_abort = true;
798
799 memcpy(root_item, &root->root_item, sizeof(*root_item));
800 btrfs_set_root_bytenr(root_item, eb->start);
801 btrfs_set_root_level(root_item, btrfs_header_level(eb));
802 btrfs_set_root_generation(root_item, trans->transid);
803
804 if (root->root_key.objectid == objectid) {
805 btrfs_set_root_refs(root_item, 0);
806 memset(&root_item->drop_progress, 0,
807 sizeof(struct btrfs_disk_key));
808 btrfs_set_root_drop_level(root_item, 0);
809 }
810
811 btrfs_tree_unlock(eb);
812 free_extent_buffer(eb);
813
814 ret = btrfs_insert_root(trans, fs_info->tree_root,
815 &root_key, root_item);
816 if (ret)
817 goto fail;
818
819 kfree(root_item);
820
821 reloc_root = btrfs_read_tree_root(fs_info->tree_root, &root_key);
822 if (IS_ERR(reloc_root)) {
823 ret = PTR_ERR(reloc_root);
824 goto abort;
825 }
826 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
827 reloc_root->last_trans = trans->transid;
828 return reloc_root;
829fail:
830 kfree(root_item);
831abort:
832 if (must_abort)
833 btrfs_abort_transaction(trans, ret);
834 return ERR_PTR(ret);
835}
836
837/*
838 * create reloc tree for a given fs tree. reloc tree is just a
839 * snapshot of the fs tree with special root objectid.
840 *
841 * The reloc_root comes out of here with two references, one for
842 * root->reloc_root, and another for being on the rc->reloc_roots list.
843 */
844int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
845 struct btrfs_root *root)
846{
847 struct btrfs_fs_info *fs_info = root->fs_info;
848 struct btrfs_root *reloc_root;
849 struct reloc_control *rc = fs_info->reloc_ctl;
850 struct btrfs_block_rsv *rsv;
851 int clear_rsv = 0;
852 int ret;
853
854 if (!rc)
855 return 0;
856
857 /*
858 * The subvolume has reloc tree but the swap is finished, no need to
859 * create/update the dead reloc tree
860 */
861 if (reloc_root_is_dead(root))
862 return 0;
863
864 /*
865 * This is subtle but important. We do not do
866 * record_root_in_transaction for reloc roots, instead we record their
867 * corresponding fs root, and then here we update the last trans for the
868 * reloc root. This means that we have to do this for the entire life
869 * of the reloc root, regardless of which stage of the relocation we are
870 * in.
871 */
872 if (root->reloc_root) {
873 reloc_root = root->reloc_root;
874 reloc_root->last_trans = trans->transid;
875 return 0;
876 }
877
878 /*
879 * We are merging reloc roots, we do not need new reloc trees. Also
880 * reloc trees never need their own reloc tree.
881 */
882 if (!rc->create_reloc_tree ||
883 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
884 return 0;
885
886 if (!trans->reloc_reserved) {
887 rsv = trans->block_rsv;
888 trans->block_rsv = rc->block_rsv;
889 clear_rsv = 1;
890 }
891 reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
892 if (clear_rsv)
893 trans->block_rsv = rsv;
894 if (IS_ERR(reloc_root))
895 return PTR_ERR(reloc_root);
896
897 ret = __add_reloc_root(reloc_root);
898 ASSERT(ret != -EEXIST);
899 if (ret) {
900 /* Pairs with create_reloc_root */
901 btrfs_put_root(reloc_root);
902 return ret;
903 }
904 root->reloc_root = btrfs_grab_root(reloc_root);
905 return 0;
906}
907
908/*
909 * update root item of reloc tree
910 */
911int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
912 struct btrfs_root *root)
913{
914 struct btrfs_fs_info *fs_info = root->fs_info;
915 struct btrfs_root *reloc_root;
916 struct btrfs_root_item *root_item;
917 int ret;
918
919 if (!have_reloc_root(root))
920 return 0;
921
922 reloc_root = root->reloc_root;
923 root_item = &reloc_root->root_item;
924
925 /*
926 * We are probably ok here, but __del_reloc_root() will drop its ref of
927 * the root. We have the ref for root->reloc_root, but just in case
928 * hold it while we update the reloc root.
929 */
930 btrfs_grab_root(reloc_root);
931
932 /* root->reloc_root will stay until current relocation finished */
933 if (fs_info->reloc_ctl->merge_reloc_tree &&
934 btrfs_root_refs(root_item) == 0) {
935 set_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
936 /*
937 * Mark the tree as dead before we change reloc_root so
938 * have_reloc_root will not touch it from now on.
939 */
940 smp_wmb();
941 __del_reloc_root(reloc_root);
942 }
943
944 if (reloc_root->commit_root != reloc_root->node) {
945 __update_reloc_root(reloc_root);
946 btrfs_set_root_node(root_item, reloc_root->node);
947 free_extent_buffer(reloc_root->commit_root);
948 reloc_root->commit_root = btrfs_root_node(reloc_root);
949 }
950
951 ret = btrfs_update_root(trans, fs_info->tree_root,
952 &reloc_root->root_key, root_item);
953 btrfs_put_root(reloc_root);
954 return ret;
955}
956
957/*
958 * helper to find first cached inode with inode number >= objectid
959 * in a subvolume
960 */
961static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
962{
963 struct rb_node *node;
964 struct rb_node *prev;
965 struct btrfs_inode *entry;
966 struct inode *inode;
967
968 spin_lock(&root->inode_lock);
969again:
970 node = root->inode_tree.rb_node;
971 prev = NULL;
972 while (node) {
973 prev = node;
974 entry = rb_entry(node, struct btrfs_inode, rb_node);
975
976 if (objectid < btrfs_ino(entry))
977 node = node->rb_left;
978 else if (objectid > btrfs_ino(entry))
979 node = node->rb_right;
980 else
981 break;
982 }
983 if (!node) {
984 while (prev) {
985 entry = rb_entry(prev, struct btrfs_inode, rb_node);
986 if (objectid <= btrfs_ino(entry)) {
987 node = prev;
988 break;
989 }
990 prev = rb_next(prev);
991 }
992 }
993 while (node) {
994 entry = rb_entry(node, struct btrfs_inode, rb_node);
995 inode = igrab(&entry->vfs_inode);
996 if (inode) {
997 spin_unlock(&root->inode_lock);
998 return inode;
999 }
1000
1001 objectid = btrfs_ino(entry) + 1;
1002 if (cond_resched_lock(&root->inode_lock))
1003 goto again;
1004
1005 node = rb_next(node);
1006 }
1007 spin_unlock(&root->inode_lock);
1008 return NULL;
1009}
1010
1011/*
1012 * get new location of data
1013 */
1014static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1015 u64 bytenr, u64 num_bytes)
1016{
1017 struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1018 struct btrfs_path *path;
1019 struct btrfs_file_extent_item *fi;
1020 struct extent_buffer *leaf;
1021 int ret;
1022
1023 path = btrfs_alloc_path();
1024 if (!path)
1025 return -ENOMEM;
1026
1027 bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1028 ret = btrfs_lookup_file_extent(NULL, root, path,
1029 btrfs_ino(BTRFS_I(reloc_inode)), bytenr, 0);
1030 if (ret < 0)
1031 goto out;
1032 if (ret > 0) {
1033 ret = -ENOENT;
1034 goto out;
1035 }
1036
1037 leaf = path->nodes[0];
1038 fi = btrfs_item_ptr(leaf, path->slots[0],
1039 struct btrfs_file_extent_item);
1040
1041 BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1042 btrfs_file_extent_compression(leaf, fi) ||
1043 btrfs_file_extent_encryption(leaf, fi) ||
1044 btrfs_file_extent_other_encoding(leaf, fi));
1045
1046 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1047 ret = -EINVAL;
1048 goto out;
1049 }
1050
1051 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1052 ret = 0;
1053out:
1054 btrfs_free_path(path);
1055 return ret;
1056}
1057
1058/*
1059 * update file extent items in the tree leaf to point to
1060 * the new locations.
1061 */
1062static noinline_for_stack
1063int replace_file_extents(struct btrfs_trans_handle *trans,
1064 struct reloc_control *rc,
1065 struct btrfs_root *root,
1066 struct extent_buffer *leaf)
1067{
1068 struct btrfs_fs_info *fs_info = root->fs_info;
1069 struct btrfs_key key;
1070 struct btrfs_file_extent_item *fi;
1071 struct inode *inode = NULL;
1072 u64 parent;
1073 u64 bytenr;
1074 u64 new_bytenr = 0;
1075 u64 num_bytes;
1076 u64 end;
1077 u32 nritems;
1078 u32 i;
1079 int ret = 0;
1080 int first = 1;
1081 int dirty = 0;
1082
1083 if (rc->stage != UPDATE_DATA_PTRS)
1084 return 0;
1085
1086 /* reloc trees always use full backref */
1087 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1088 parent = leaf->start;
1089 else
1090 parent = 0;
1091
1092 nritems = btrfs_header_nritems(leaf);
1093 for (i = 0; i < nritems; i++) {
1094 struct btrfs_ref ref = { 0 };
1095
1096 cond_resched();
1097 btrfs_item_key_to_cpu(leaf, &key, i);
1098 if (key.type != BTRFS_EXTENT_DATA_KEY)
1099 continue;
1100 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1101 if (btrfs_file_extent_type(leaf, fi) ==
1102 BTRFS_FILE_EXTENT_INLINE)
1103 continue;
1104 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1105 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1106 if (bytenr == 0)
1107 continue;
1108 if (!in_range(bytenr, rc->block_group->start,
1109 rc->block_group->length))
1110 continue;
1111
1112 /*
1113 * if we are modifying block in fs tree, wait for read_folio
1114 * to complete and drop the extent cache
1115 */
1116 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1117 if (first) {
1118 inode = find_next_inode(root, key.objectid);
1119 first = 0;
1120 } else if (inode && btrfs_ino(BTRFS_I(inode)) < key.objectid) {
1121 btrfs_add_delayed_iput(BTRFS_I(inode));
1122 inode = find_next_inode(root, key.objectid);
1123 }
1124 if (inode && btrfs_ino(BTRFS_I(inode)) == key.objectid) {
1125 struct extent_state *cached_state = NULL;
1126
1127 end = key.offset +
1128 btrfs_file_extent_num_bytes(leaf, fi);
1129 WARN_ON(!IS_ALIGNED(key.offset,
1130 fs_info->sectorsize));
1131 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1132 end--;
1133 ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1134 key.offset, end,
1135 &cached_state);
1136 if (!ret)
1137 continue;
1138
1139 btrfs_drop_extent_map_range(BTRFS_I(inode),
1140 key.offset, end, true);
1141 unlock_extent(&BTRFS_I(inode)->io_tree,
1142 key.offset, end, &cached_state);
1143 }
1144 }
1145
1146 ret = get_new_location(rc->data_inode, &new_bytenr,
1147 bytenr, num_bytes);
1148 if (ret) {
1149 /*
1150 * Don't have to abort since we've not changed anything
1151 * in the file extent yet.
1152 */
1153 break;
1154 }
1155
1156 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1157 dirty = 1;
1158
1159 key.offset -= btrfs_file_extent_offset(leaf, fi);
1160 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1161 num_bytes, parent);
1162 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1163 key.objectid, key.offset,
1164 root->root_key.objectid, false);
1165 ret = btrfs_inc_extent_ref(trans, &ref);
1166 if (ret) {
1167 btrfs_abort_transaction(trans, ret);
1168 break;
1169 }
1170
1171 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, bytenr,
1172 num_bytes, parent);
1173 btrfs_init_data_ref(&ref, btrfs_header_owner(leaf),
1174 key.objectid, key.offset,
1175 root->root_key.objectid, false);
1176 ret = btrfs_free_extent(trans, &ref);
1177 if (ret) {
1178 btrfs_abort_transaction(trans, ret);
1179 break;
1180 }
1181 }
1182 if (dirty)
1183 btrfs_mark_buffer_dirty(leaf);
1184 if (inode)
1185 btrfs_add_delayed_iput(BTRFS_I(inode));
1186 return ret;
1187}
1188
1189static noinline_for_stack
1190int memcmp_node_keys(struct extent_buffer *eb, int slot,
1191 struct btrfs_path *path, int level)
1192{
1193 struct btrfs_disk_key key1;
1194 struct btrfs_disk_key key2;
1195 btrfs_node_key(eb, &key1, slot);
1196 btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1197 return memcmp(&key1, &key2, sizeof(key1));
1198}
1199
1200/*
1201 * try to replace tree blocks in fs tree with the new blocks
1202 * in reloc tree. tree blocks haven't been modified since the
1203 * reloc tree was create can be replaced.
1204 *
1205 * if a block was replaced, level of the block + 1 is returned.
1206 * if no block got replaced, 0 is returned. if there are other
1207 * errors, a negative error number is returned.
1208 */
1209static noinline_for_stack
1210int replace_path(struct btrfs_trans_handle *trans, struct reloc_control *rc,
1211 struct btrfs_root *dest, struct btrfs_root *src,
1212 struct btrfs_path *path, struct btrfs_key *next_key,
1213 int lowest_level, int max_level)
1214{
1215 struct btrfs_fs_info *fs_info = dest->fs_info;
1216 struct extent_buffer *eb;
1217 struct extent_buffer *parent;
1218 struct btrfs_ref ref = { 0 };
1219 struct btrfs_key key;
1220 u64 old_bytenr;
1221 u64 new_bytenr;
1222 u64 old_ptr_gen;
1223 u64 new_ptr_gen;
1224 u64 last_snapshot;
1225 u32 blocksize;
1226 int cow = 0;
1227 int level;
1228 int ret;
1229 int slot;
1230
1231 ASSERT(src->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1232 ASSERT(dest->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1233
1234 last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1235again:
1236 slot = path->slots[lowest_level];
1237 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1238
1239 eb = btrfs_lock_root_node(dest);
1240 level = btrfs_header_level(eb);
1241
1242 if (level < lowest_level) {
1243 btrfs_tree_unlock(eb);
1244 free_extent_buffer(eb);
1245 return 0;
1246 }
1247
1248 if (cow) {
1249 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb,
1250 BTRFS_NESTING_COW);
1251 if (ret) {
1252 btrfs_tree_unlock(eb);
1253 free_extent_buffer(eb);
1254 return ret;
1255 }
1256 }
1257
1258 if (next_key) {
1259 next_key->objectid = (u64)-1;
1260 next_key->type = (u8)-1;
1261 next_key->offset = (u64)-1;
1262 }
1263
1264 parent = eb;
1265 while (1) {
1266 level = btrfs_header_level(parent);
1267 ASSERT(level >= lowest_level);
1268
1269 ret = btrfs_bin_search(parent, 0, &key, &slot);
1270 if (ret < 0)
1271 break;
1272 if (ret && slot > 0)
1273 slot--;
1274
1275 if (next_key && slot + 1 < btrfs_header_nritems(parent))
1276 btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1277
1278 old_bytenr = btrfs_node_blockptr(parent, slot);
1279 blocksize = fs_info->nodesize;
1280 old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1281
1282 if (level <= max_level) {
1283 eb = path->nodes[level];
1284 new_bytenr = btrfs_node_blockptr(eb,
1285 path->slots[level]);
1286 new_ptr_gen = btrfs_node_ptr_generation(eb,
1287 path->slots[level]);
1288 } else {
1289 new_bytenr = 0;
1290 new_ptr_gen = 0;
1291 }
1292
1293 if (WARN_ON(new_bytenr > 0 && new_bytenr == old_bytenr)) {
1294 ret = level;
1295 break;
1296 }
1297
1298 if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1299 memcmp_node_keys(parent, slot, path, level)) {
1300 if (level <= lowest_level) {
1301 ret = 0;
1302 break;
1303 }
1304
1305 eb = btrfs_read_node_slot(parent, slot);
1306 if (IS_ERR(eb)) {
1307 ret = PTR_ERR(eb);
1308 break;
1309 }
1310 btrfs_tree_lock(eb);
1311 if (cow) {
1312 ret = btrfs_cow_block(trans, dest, eb, parent,
1313 slot, &eb,
1314 BTRFS_NESTING_COW);
1315 if (ret) {
1316 btrfs_tree_unlock(eb);
1317 free_extent_buffer(eb);
1318 break;
1319 }
1320 }
1321
1322 btrfs_tree_unlock(parent);
1323 free_extent_buffer(parent);
1324
1325 parent = eb;
1326 continue;
1327 }
1328
1329 if (!cow) {
1330 btrfs_tree_unlock(parent);
1331 free_extent_buffer(parent);
1332 cow = 1;
1333 goto again;
1334 }
1335
1336 btrfs_node_key_to_cpu(path->nodes[level], &key,
1337 path->slots[level]);
1338 btrfs_release_path(path);
1339
1340 path->lowest_level = level;
1341 set_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state);
1342 ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1343 clear_bit(BTRFS_ROOT_RESET_LOCKDEP_CLASS, &src->state);
1344 path->lowest_level = 0;
1345 if (ret) {
1346 if (ret > 0)
1347 ret = -ENOENT;
1348 break;
1349 }
1350
1351 /*
1352 * Info qgroup to trace both subtrees.
1353 *
1354 * We must trace both trees.
1355 * 1) Tree reloc subtree
1356 * If not traced, we will leak data numbers
1357 * 2) Fs subtree
1358 * If not traced, we will double count old data
1359 *
1360 * We don't scan the subtree right now, but only record
1361 * the swapped tree blocks.
1362 * The real subtree rescan is delayed until we have new
1363 * CoW on the subtree root node before transaction commit.
1364 */
1365 ret = btrfs_qgroup_add_swapped_blocks(trans, dest,
1366 rc->block_group, parent, slot,
1367 path->nodes[level], path->slots[level],
1368 last_snapshot);
1369 if (ret < 0)
1370 break;
1371 /*
1372 * swap blocks in fs tree and reloc tree.
1373 */
1374 btrfs_set_node_blockptr(parent, slot, new_bytenr);
1375 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1376 btrfs_mark_buffer_dirty(parent);
1377
1378 btrfs_set_node_blockptr(path->nodes[level],
1379 path->slots[level], old_bytenr);
1380 btrfs_set_node_ptr_generation(path->nodes[level],
1381 path->slots[level], old_ptr_gen);
1382 btrfs_mark_buffer_dirty(path->nodes[level]);
1383
1384 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, old_bytenr,
1385 blocksize, path->nodes[level]->start);
1386 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid,
1387 0, true);
1388 ret = btrfs_inc_extent_ref(trans, &ref);
1389 if (ret) {
1390 btrfs_abort_transaction(trans, ret);
1391 break;
1392 }
1393 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF, new_bytenr,
1394 blocksize, 0);
1395 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid, 0,
1396 true);
1397 ret = btrfs_inc_extent_ref(trans, &ref);
1398 if (ret) {
1399 btrfs_abort_transaction(trans, ret);
1400 break;
1401 }
1402
1403 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, new_bytenr,
1404 blocksize, path->nodes[level]->start);
1405 btrfs_init_tree_ref(&ref, level - 1, src->root_key.objectid,
1406 0, true);
1407 ret = btrfs_free_extent(trans, &ref);
1408 if (ret) {
1409 btrfs_abort_transaction(trans, ret);
1410 break;
1411 }
1412
1413 btrfs_init_generic_ref(&ref, BTRFS_DROP_DELAYED_REF, old_bytenr,
1414 blocksize, 0);
1415 btrfs_init_tree_ref(&ref, level - 1, dest->root_key.objectid,
1416 0, true);
1417 ret = btrfs_free_extent(trans, &ref);
1418 if (ret) {
1419 btrfs_abort_transaction(trans, ret);
1420 break;
1421 }
1422
1423 btrfs_unlock_up_safe(path, 0);
1424
1425 ret = level;
1426 break;
1427 }
1428 btrfs_tree_unlock(parent);
1429 free_extent_buffer(parent);
1430 return ret;
1431}
1432
1433/*
1434 * helper to find next relocated block in reloc tree
1435 */
1436static noinline_for_stack
1437int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1438 int *level)
1439{
1440 struct extent_buffer *eb;
1441 int i;
1442 u64 last_snapshot;
1443 u32 nritems;
1444
1445 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1446
1447 for (i = 0; i < *level; i++) {
1448 free_extent_buffer(path->nodes[i]);
1449 path->nodes[i] = NULL;
1450 }
1451
1452 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1453 eb = path->nodes[i];
1454 nritems = btrfs_header_nritems(eb);
1455 while (path->slots[i] + 1 < nritems) {
1456 path->slots[i]++;
1457 if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1458 last_snapshot)
1459 continue;
1460
1461 *level = i;
1462 return 0;
1463 }
1464 free_extent_buffer(path->nodes[i]);
1465 path->nodes[i] = NULL;
1466 }
1467 return 1;
1468}
1469
1470/*
1471 * walk down reloc tree to find relocated block of lowest level
1472 */
1473static noinline_for_stack
1474int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1475 int *level)
1476{
1477 struct extent_buffer *eb = NULL;
1478 int i;
1479 u64 ptr_gen = 0;
1480 u64 last_snapshot;
1481 u32 nritems;
1482
1483 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1484
1485 for (i = *level; i > 0; i--) {
1486 eb = path->nodes[i];
1487 nritems = btrfs_header_nritems(eb);
1488 while (path->slots[i] < nritems) {
1489 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1490 if (ptr_gen > last_snapshot)
1491 break;
1492 path->slots[i]++;
1493 }
1494 if (path->slots[i] >= nritems) {
1495 if (i == *level)
1496 break;
1497 *level = i + 1;
1498 return 0;
1499 }
1500 if (i == 1) {
1501 *level = i;
1502 return 0;
1503 }
1504
1505 eb = btrfs_read_node_slot(eb, path->slots[i]);
1506 if (IS_ERR(eb))
1507 return PTR_ERR(eb);
1508 BUG_ON(btrfs_header_level(eb) != i - 1);
1509 path->nodes[i - 1] = eb;
1510 path->slots[i - 1] = 0;
1511 }
1512 return 1;
1513}
1514
1515/*
1516 * invalidate extent cache for file extents whose key in range of
1517 * [min_key, max_key)
1518 */
1519static int invalidate_extent_cache(struct btrfs_root *root,
1520 struct btrfs_key *min_key,
1521 struct btrfs_key *max_key)
1522{
1523 struct btrfs_fs_info *fs_info = root->fs_info;
1524 struct inode *inode = NULL;
1525 u64 objectid;
1526 u64 start, end;
1527 u64 ino;
1528
1529 objectid = min_key->objectid;
1530 while (1) {
1531 struct extent_state *cached_state = NULL;
1532
1533 cond_resched();
1534 iput(inode);
1535
1536 if (objectid > max_key->objectid)
1537 break;
1538
1539 inode = find_next_inode(root, objectid);
1540 if (!inode)
1541 break;
1542 ino = btrfs_ino(BTRFS_I(inode));
1543
1544 if (ino > max_key->objectid) {
1545 iput(inode);
1546 break;
1547 }
1548
1549 objectid = ino + 1;
1550 if (!S_ISREG(inode->i_mode))
1551 continue;
1552
1553 if (unlikely(min_key->objectid == ino)) {
1554 if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1555 continue;
1556 if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1557 start = 0;
1558 else {
1559 start = min_key->offset;
1560 WARN_ON(!IS_ALIGNED(start, fs_info->sectorsize));
1561 }
1562 } else {
1563 start = 0;
1564 }
1565
1566 if (unlikely(max_key->objectid == ino)) {
1567 if (max_key->type < BTRFS_EXTENT_DATA_KEY)
1568 continue;
1569 if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
1570 end = (u64)-1;
1571 } else {
1572 if (max_key->offset == 0)
1573 continue;
1574 end = max_key->offset;
1575 WARN_ON(!IS_ALIGNED(end, fs_info->sectorsize));
1576 end--;
1577 }
1578 } else {
1579 end = (u64)-1;
1580 }
1581
1582 /* the lock_extent waits for read_folio to complete */
1583 lock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state);
1584 btrfs_drop_extent_map_range(BTRFS_I(inode), start, end, true);
1585 unlock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state);
1586 }
1587 return 0;
1588}
1589
1590static int find_next_key(struct btrfs_path *path, int level,
1591 struct btrfs_key *key)
1592
1593{
1594 while (level < BTRFS_MAX_LEVEL) {
1595 if (!path->nodes[level])
1596 break;
1597 if (path->slots[level] + 1 <
1598 btrfs_header_nritems(path->nodes[level])) {
1599 btrfs_node_key_to_cpu(path->nodes[level], key,
1600 path->slots[level] + 1);
1601 return 0;
1602 }
1603 level++;
1604 }
1605 return 1;
1606}
1607
1608/*
1609 * Insert current subvolume into reloc_control::dirty_subvol_roots
1610 */
1611static int insert_dirty_subvol(struct btrfs_trans_handle *trans,
1612 struct reloc_control *rc,
1613 struct btrfs_root *root)
1614{
1615 struct btrfs_root *reloc_root = root->reloc_root;
1616 struct btrfs_root_item *reloc_root_item;
1617 int ret;
1618
1619 /* @root must be a subvolume tree root with a valid reloc tree */
1620 ASSERT(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1621 ASSERT(reloc_root);
1622
1623 reloc_root_item = &reloc_root->root_item;
1624 memset(&reloc_root_item->drop_progress, 0,
1625 sizeof(reloc_root_item->drop_progress));
1626 btrfs_set_root_drop_level(reloc_root_item, 0);
1627 btrfs_set_root_refs(reloc_root_item, 0);
1628 ret = btrfs_update_reloc_root(trans, root);
1629 if (ret)
1630 return ret;
1631
1632 if (list_empty(&root->reloc_dirty_list)) {
1633 btrfs_grab_root(root);
1634 list_add_tail(&root->reloc_dirty_list, &rc->dirty_subvol_roots);
1635 }
1636
1637 return 0;
1638}
1639
1640static int clean_dirty_subvols(struct reloc_control *rc)
1641{
1642 struct btrfs_root *root;
1643 struct btrfs_root *next;
1644 int ret = 0;
1645 int ret2;
1646
1647 list_for_each_entry_safe(root, next, &rc->dirty_subvol_roots,
1648 reloc_dirty_list) {
1649 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1650 /* Merged subvolume, cleanup its reloc root */
1651 struct btrfs_root *reloc_root = root->reloc_root;
1652
1653 list_del_init(&root->reloc_dirty_list);
1654 root->reloc_root = NULL;
1655 /*
1656 * Need barrier to ensure clear_bit() only happens after
1657 * root->reloc_root = NULL. Pairs with have_reloc_root.
1658 */
1659 smp_wmb();
1660 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE, &root->state);
1661 if (reloc_root) {
1662 /*
1663 * btrfs_drop_snapshot drops our ref we hold for
1664 * ->reloc_root. If it fails however we must
1665 * drop the ref ourselves.
1666 */
1667 ret2 = btrfs_drop_snapshot(reloc_root, 0, 1);
1668 if (ret2 < 0) {
1669 btrfs_put_root(reloc_root);
1670 if (!ret)
1671 ret = ret2;
1672 }
1673 }
1674 btrfs_put_root(root);
1675 } else {
1676 /* Orphan reloc tree, just clean it up */
1677 ret2 = btrfs_drop_snapshot(root, 0, 1);
1678 if (ret2 < 0) {
1679 btrfs_put_root(root);
1680 if (!ret)
1681 ret = ret2;
1682 }
1683 }
1684 }
1685 return ret;
1686}
1687
1688/*
1689 * merge the relocated tree blocks in reloc tree with corresponding
1690 * fs tree.
1691 */
1692static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
1693 struct btrfs_root *root)
1694{
1695 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1696 struct btrfs_key key;
1697 struct btrfs_key next_key;
1698 struct btrfs_trans_handle *trans = NULL;
1699 struct btrfs_root *reloc_root;
1700 struct btrfs_root_item *root_item;
1701 struct btrfs_path *path;
1702 struct extent_buffer *leaf;
1703 int reserve_level;
1704 int level;
1705 int max_level;
1706 int replaced = 0;
1707 int ret = 0;
1708 u32 min_reserved;
1709
1710 path = btrfs_alloc_path();
1711 if (!path)
1712 return -ENOMEM;
1713 path->reada = READA_FORWARD;
1714
1715 reloc_root = root->reloc_root;
1716 root_item = &reloc_root->root_item;
1717
1718 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
1719 level = btrfs_root_level(root_item);
1720 atomic_inc(&reloc_root->node->refs);
1721 path->nodes[level] = reloc_root->node;
1722 path->slots[level] = 0;
1723 } else {
1724 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
1725
1726 level = btrfs_root_drop_level(root_item);
1727 BUG_ON(level == 0);
1728 path->lowest_level = level;
1729 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
1730 path->lowest_level = 0;
1731 if (ret < 0) {
1732 btrfs_free_path(path);
1733 return ret;
1734 }
1735
1736 btrfs_node_key_to_cpu(path->nodes[level], &next_key,
1737 path->slots[level]);
1738 WARN_ON(memcmp(&key, &next_key, sizeof(key)));
1739
1740 btrfs_unlock_up_safe(path, 0);
1741 }
1742
1743 /*
1744 * In merge_reloc_root(), we modify the upper level pointer to swap the
1745 * tree blocks between reloc tree and subvolume tree. Thus for tree
1746 * block COW, we COW at most from level 1 to root level for each tree.
1747 *
1748 * Thus the needed metadata size is at most root_level * nodesize,
1749 * and * 2 since we have two trees to COW.
1750 */
1751 reserve_level = max_t(int, 1, btrfs_root_level(root_item));
1752 min_reserved = fs_info->nodesize * reserve_level * 2;
1753 memset(&next_key, 0, sizeof(next_key));
1754
1755 while (1) {
1756 ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
1757 min_reserved,
1758 BTRFS_RESERVE_FLUSH_LIMIT);
1759 if (ret)
1760 goto out;
1761 trans = btrfs_start_transaction(root, 0);
1762 if (IS_ERR(trans)) {
1763 ret = PTR_ERR(trans);
1764 trans = NULL;
1765 goto out;
1766 }
1767
1768 /*
1769 * At this point we no longer have a reloc_control, so we can't
1770 * depend on btrfs_init_reloc_root to update our last_trans.
1771 *
1772 * But that's ok, we started the trans handle on our
1773 * corresponding fs_root, which means it's been added to the
1774 * dirty list. At commit time we'll still call
1775 * btrfs_update_reloc_root() and update our root item
1776 * appropriately.
1777 */
1778 reloc_root->last_trans = trans->transid;
1779 trans->block_rsv = rc->block_rsv;
1780
1781 replaced = 0;
1782 max_level = level;
1783
1784 ret = walk_down_reloc_tree(reloc_root, path, &level);
1785 if (ret < 0)
1786 goto out;
1787 if (ret > 0)
1788 break;
1789
1790 if (!find_next_key(path, level, &key) &&
1791 btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
1792 ret = 0;
1793 } else {
1794 ret = replace_path(trans, rc, root, reloc_root, path,
1795 &next_key, level, max_level);
1796 }
1797 if (ret < 0)
1798 goto out;
1799 if (ret > 0) {
1800 level = ret;
1801 btrfs_node_key_to_cpu(path->nodes[level], &key,
1802 path->slots[level]);
1803 replaced = 1;
1804 }
1805
1806 ret = walk_up_reloc_tree(reloc_root, path, &level);
1807 if (ret > 0)
1808 break;
1809
1810 BUG_ON(level == 0);
1811 /*
1812 * save the merging progress in the drop_progress.
1813 * this is OK since root refs == 1 in this case.
1814 */
1815 btrfs_node_key(path->nodes[level], &root_item->drop_progress,
1816 path->slots[level]);
1817 btrfs_set_root_drop_level(root_item, level);
1818
1819 btrfs_end_transaction_throttle(trans);
1820 trans = NULL;
1821
1822 btrfs_btree_balance_dirty(fs_info);
1823
1824 if (replaced && rc->stage == UPDATE_DATA_PTRS)
1825 invalidate_extent_cache(root, &key, &next_key);
1826 }
1827
1828 /*
1829 * handle the case only one block in the fs tree need to be
1830 * relocated and the block is tree root.
1831 */
1832 leaf = btrfs_lock_root_node(root);
1833 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf,
1834 BTRFS_NESTING_COW);
1835 btrfs_tree_unlock(leaf);
1836 free_extent_buffer(leaf);
1837out:
1838 btrfs_free_path(path);
1839
1840 if (ret == 0) {
1841 ret = insert_dirty_subvol(trans, rc, root);
1842 if (ret)
1843 btrfs_abort_transaction(trans, ret);
1844 }
1845
1846 if (trans)
1847 btrfs_end_transaction_throttle(trans);
1848
1849 btrfs_btree_balance_dirty(fs_info);
1850
1851 if (replaced && rc->stage == UPDATE_DATA_PTRS)
1852 invalidate_extent_cache(root, &key, &next_key);
1853
1854 return ret;
1855}
1856
1857static noinline_for_stack
1858int prepare_to_merge(struct reloc_control *rc, int err)
1859{
1860 struct btrfs_root *root = rc->extent_root;
1861 struct btrfs_fs_info *fs_info = root->fs_info;
1862 struct btrfs_root *reloc_root;
1863 struct btrfs_trans_handle *trans;
1864 LIST_HEAD(reloc_roots);
1865 u64 num_bytes = 0;
1866 int ret;
1867
1868 mutex_lock(&fs_info->reloc_mutex);
1869 rc->merging_rsv_size += fs_info->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
1870 rc->merging_rsv_size += rc->nodes_relocated * 2;
1871 mutex_unlock(&fs_info->reloc_mutex);
1872
1873again:
1874 if (!err) {
1875 num_bytes = rc->merging_rsv_size;
1876 ret = btrfs_block_rsv_add(fs_info, rc->block_rsv, num_bytes,
1877 BTRFS_RESERVE_FLUSH_ALL);
1878 if (ret)
1879 err = ret;
1880 }
1881
1882 trans = btrfs_join_transaction(rc->extent_root);
1883 if (IS_ERR(trans)) {
1884 if (!err)
1885 btrfs_block_rsv_release(fs_info, rc->block_rsv,
1886 num_bytes, NULL);
1887 return PTR_ERR(trans);
1888 }
1889
1890 if (!err) {
1891 if (num_bytes != rc->merging_rsv_size) {
1892 btrfs_end_transaction(trans);
1893 btrfs_block_rsv_release(fs_info, rc->block_rsv,
1894 num_bytes, NULL);
1895 goto again;
1896 }
1897 }
1898
1899 rc->merge_reloc_tree = 1;
1900
1901 while (!list_empty(&rc->reloc_roots)) {
1902 reloc_root = list_entry(rc->reloc_roots.next,
1903 struct btrfs_root, root_list);
1904 list_del_init(&reloc_root->root_list);
1905
1906 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
1907 false);
1908 if (IS_ERR(root)) {
1909 /*
1910 * Even if we have an error we need this reloc root
1911 * back on our list so we can clean up properly.
1912 */
1913 list_add(&reloc_root->root_list, &reloc_roots);
1914 btrfs_abort_transaction(trans, (int)PTR_ERR(root));
1915 if (!err)
1916 err = PTR_ERR(root);
1917 break;
1918 }
1919
1920 if (unlikely(root->reloc_root != reloc_root)) {
1921 if (root->reloc_root) {
1922 btrfs_err(fs_info,
1923"reloc tree mismatch, root %lld has reloc root key (%lld %u %llu) gen %llu, expect reloc root key (%lld %u %llu) gen %llu",
1924 root->root_key.objectid,
1925 root->reloc_root->root_key.objectid,
1926 root->reloc_root->root_key.type,
1927 root->reloc_root->root_key.offset,
1928 btrfs_root_generation(
1929 &root->reloc_root->root_item),
1930 reloc_root->root_key.objectid,
1931 reloc_root->root_key.type,
1932 reloc_root->root_key.offset,
1933 btrfs_root_generation(
1934 &reloc_root->root_item));
1935 } else {
1936 btrfs_err(fs_info,
1937"reloc tree mismatch, root %lld has no reloc root, expect reloc root key (%lld %u %llu) gen %llu",
1938 root->root_key.objectid,
1939 reloc_root->root_key.objectid,
1940 reloc_root->root_key.type,
1941 reloc_root->root_key.offset,
1942 btrfs_root_generation(
1943 &reloc_root->root_item));
1944 }
1945 list_add(&reloc_root->root_list, &reloc_roots);
1946 btrfs_put_root(root);
1947 btrfs_abort_transaction(trans, -EUCLEAN);
1948 if (!err)
1949 err = -EUCLEAN;
1950 break;
1951 }
1952
1953 /*
1954 * set reference count to 1, so btrfs_recover_relocation
1955 * knows it should resumes merging
1956 */
1957 if (!err)
1958 btrfs_set_root_refs(&reloc_root->root_item, 1);
1959 ret = btrfs_update_reloc_root(trans, root);
1960
1961 /*
1962 * Even if we have an error we need this reloc root back on our
1963 * list so we can clean up properly.
1964 */
1965 list_add(&reloc_root->root_list, &reloc_roots);
1966 btrfs_put_root(root);
1967
1968 if (ret) {
1969 btrfs_abort_transaction(trans, ret);
1970 if (!err)
1971 err = ret;
1972 break;
1973 }
1974 }
1975
1976 list_splice(&reloc_roots, &rc->reloc_roots);
1977
1978 if (!err)
1979 err = btrfs_commit_transaction(trans);
1980 else
1981 btrfs_end_transaction(trans);
1982 return err;
1983}
1984
1985static noinline_for_stack
1986void free_reloc_roots(struct list_head *list)
1987{
1988 struct btrfs_root *reloc_root, *tmp;
1989
1990 list_for_each_entry_safe(reloc_root, tmp, list, root_list)
1991 __del_reloc_root(reloc_root);
1992}
1993
1994static noinline_for_stack
1995void merge_reloc_roots(struct reloc_control *rc)
1996{
1997 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
1998 struct btrfs_root *root;
1999 struct btrfs_root *reloc_root;
2000 LIST_HEAD(reloc_roots);
2001 int found = 0;
2002 int ret = 0;
2003again:
2004 root = rc->extent_root;
2005
2006 /*
2007 * this serializes us with btrfs_record_root_in_transaction,
2008 * we have to make sure nobody is in the middle of
2009 * adding their roots to the list while we are
2010 * doing this splice
2011 */
2012 mutex_lock(&fs_info->reloc_mutex);
2013 list_splice_init(&rc->reloc_roots, &reloc_roots);
2014 mutex_unlock(&fs_info->reloc_mutex);
2015
2016 while (!list_empty(&reloc_roots)) {
2017 found = 1;
2018 reloc_root = list_entry(reloc_roots.next,
2019 struct btrfs_root, root_list);
2020
2021 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
2022 false);
2023 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2024 if (WARN_ON(IS_ERR(root))) {
2025 /*
2026 * For recovery we read the fs roots on mount,
2027 * and if we didn't find the root then we marked
2028 * the reloc root as a garbage root. For normal
2029 * relocation obviously the root should exist in
2030 * memory. However there's no reason we can't
2031 * handle the error properly here just in case.
2032 */
2033 ret = PTR_ERR(root);
2034 goto out;
2035 }
2036 if (WARN_ON(root->reloc_root != reloc_root)) {
2037 /*
2038 * This can happen if on-disk metadata has some
2039 * corruption, e.g. bad reloc tree key offset.
2040 */
2041 ret = -EINVAL;
2042 goto out;
2043 }
2044 ret = merge_reloc_root(rc, root);
2045 btrfs_put_root(root);
2046 if (ret) {
2047 if (list_empty(&reloc_root->root_list))
2048 list_add_tail(&reloc_root->root_list,
2049 &reloc_roots);
2050 goto out;
2051 }
2052 } else {
2053 if (!IS_ERR(root)) {
2054 if (root->reloc_root == reloc_root) {
2055 root->reloc_root = NULL;
2056 btrfs_put_root(reloc_root);
2057 }
2058 clear_bit(BTRFS_ROOT_DEAD_RELOC_TREE,
2059 &root->state);
2060 btrfs_put_root(root);
2061 }
2062
2063 list_del_init(&reloc_root->root_list);
2064 /* Don't forget to queue this reloc root for cleanup */
2065 list_add_tail(&reloc_root->reloc_dirty_list,
2066 &rc->dirty_subvol_roots);
2067 }
2068 }
2069
2070 if (found) {
2071 found = 0;
2072 goto again;
2073 }
2074out:
2075 if (ret) {
2076 btrfs_handle_fs_error(fs_info, ret, NULL);
2077 free_reloc_roots(&reloc_roots);
2078
2079 /* new reloc root may be added */
2080 mutex_lock(&fs_info->reloc_mutex);
2081 list_splice_init(&rc->reloc_roots, &reloc_roots);
2082 mutex_unlock(&fs_info->reloc_mutex);
2083 free_reloc_roots(&reloc_roots);
2084 }
2085
2086 /*
2087 * We used to have
2088 *
2089 * BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2090 *
2091 * here, but it's wrong. If we fail to start the transaction in
2092 * prepare_to_merge() we will have only 0 ref reloc roots, none of which
2093 * have actually been removed from the reloc_root_tree rb tree. This is
2094 * fine because we're bailing here, and we hold a reference on the root
2095 * for the list that holds it, so these roots will be cleaned up when we
2096 * do the reloc_dirty_list afterwards. Meanwhile the root->reloc_root
2097 * will be cleaned up on unmount.
2098 *
2099 * The remaining nodes will be cleaned up by free_reloc_control.
2100 */
2101}
2102
2103static void free_block_list(struct rb_root *blocks)
2104{
2105 struct tree_block *block;
2106 struct rb_node *rb_node;
2107 while ((rb_node = rb_first(blocks))) {
2108 block = rb_entry(rb_node, struct tree_block, rb_node);
2109 rb_erase(rb_node, blocks);
2110 kfree(block);
2111 }
2112}
2113
2114static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2115 struct btrfs_root *reloc_root)
2116{
2117 struct btrfs_fs_info *fs_info = reloc_root->fs_info;
2118 struct btrfs_root *root;
2119 int ret;
2120
2121 if (reloc_root->last_trans == trans->transid)
2122 return 0;
2123
2124 root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset, false);
2125
2126 /*
2127 * This should succeed, since we can't have a reloc root without having
2128 * already looked up the actual root and created the reloc root for this
2129 * root.
2130 *
2131 * However if there's some sort of corruption where we have a ref to a
2132 * reloc root without a corresponding root this could return ENOENT.
2133 */
2134 if (IS_ERR(root)) {
2135 ASSERT(0);
2136 return PTR_ERR(root);
2137 }
2138 if (root->reloc_root != reloc_root) {
2139 ASSERT(0);
2140 btrfs_err(fs_info,
2141 "root %llu has two reloc roots associated with it",
2142 reloc_root->root_key.offset);
2143 btrfs_put_root(root);
2144 return -EUCLEAN;
2145 }
2146 ret = btrfs_record_root_in_trans(trans, root);
2147 btrfs_put_root(root);
2148
2149 return ret;
2150}
2151
2152static noinline_for_stack
2153struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2154 struct reloc_control *rc,
2155 struct btrfs_backref_node *node,
2156 struct btrfs_backref_edge *edges[])
2157{
2158 struct btrfs_backref_node *next;
2159 struct btrfs_root *root;
2160 int index = 0;
2161 int ret;
2162
2163 next = node;
2164 while (1) {
2165 cond_resched();
2166 next = walk_up_backref(next, edges, &index);
2167 root = next->root;
2168
2169 /*
2170 * If there is no root, then our references for this block are
2171 * incomplete, as we should be able to walk all the way up to a
2172 * block that is owned by a root.
2173 *
2174 * This path is only for SHAREABLE roots, so if we come upon a
2175 * non-SHAREABLE root then we have backrefs that resolve
2176 * improperly.
2177 *
2178 * Both of these cases indicate file system corruption, or a bug
2179 * in the backref walking code.
2180 */
2181 if (!root) {
2182 ASSERT(0);
2183 btrfs_err(trans->fs_info,
2184 "bytenr %llu doesn't have a backref path ending in a root",
2185 node->bytenr);
2186 return ERR_PTR(-EUCLEAN);
2187 }
2188 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2189 ASSERT(0);
2190 btrfs_err(trans->fs_info,
2191 "bytenr %llu has multiple refs with one ending in a non-shareable root",
2192 node->bytenr);
2193 return ERR_PTR(-EUCLEAN);
2194 }
2195
2196 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2197 ret = record_reloc_root_in_trans(trans, root);
2198 if (ret)
2199 return ERR_PTR(ret);
2200 break;
2201 }
2202
2203 ret = btrfs_record_root_in_trans(trans, root);
2204 if (ret)
2205 return ERR_PTR(ret);
2206 root = root->reloc_root;
2207
2208 /*
2209 * We could have raced with another thread which failed, so
2210 * root->reloc_root may not be set, return ENOENT in this case.
2211 */
2212 if (!root)
2213 return ERR_PTR(-ENOENT);
2214
2215 if (next->new_bytenr != root->node->start) {
2216 /*
2217 * We just created the reloc root, so we shouldn't have
2218 * ->new_bytenr set and this shouldn't be in the changed
2219 * list. If it is then we have multiple roots pointing
2220 * at the same bytenr which indicates corruption, or
2221 * we've made a mistake in the backref walking code.
2222 */
2223 ASSERT(next->new_bytenr == 0);
2224 ASSERT(list_empty(&next->list));
2225 if (next->new_bytenr || !list_empty(&next->list)) {
2226 btrfs_err(trans->fs_info,
2227 "bytenr %llu possibly has multiple roots pointing at the same bytenr %llu",
2228 node->bytenr, next->bytenr);
2229 return ERR_PTR(-EUCLEAN);
2230 }
2231
2232 next->new_bytenr = root->node->start;
2233 btrfs_put_root(next->root);
2234 next->root = btrfs_grab_root(root);
2235 ASSERT(next->root);
2236 list_add_tail(&next->list,
2237 &rc->backref_cache.changed);
2238 mark_block_processed(rc, next);
2239 break;
2240 }
2241
2242 WARN_ON(1);
2243 root = NULL;
2244 next = walk_down_backref(edges, &index);
2245 if (!next || next->level <= node->level)
2246 break;
2247 }
2248 if (!root) {
2249 /*
2250 * This can happen if there's fs corruption or if there's a bug
2251 * in the backref lookup code.
2252 */
2253 ASSERT(0);
2254 return ERR_PTR(-ENOENT);
2255 }
2256
2257 next = node;
2258 /* setup backref node path for btrfs_reloc_cow_block */
2259 while (1) {
2260 rc->backref_cache.path[next->level] = next;
2261 if (--index < 0)
2262 break;
2263 next = edges[index]->node[UPPER];
2264 }
2265 return root;
2266}
2267
2268/*
2269 * Select a tree root for relocation.
2270 *
2271 * Return NULL if the block is not shareable. We should use do_relocation() in
2272 * this case.
2273 *
2274 * Return a tree root pointer if the block is shareable.
2275 * Return -ENOENT if the block is root of reloc tree.
2276 */
2277static noinline_for_stack
2278struct btrfs_root *select_one_root(struct btrfs_backref_node *node)
2279{
2280 struct btrfs_backref_node *next;
2281 struct btrfs_root *root;
2282 struct btrfs_root *fs_root = NULL;
2283 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2284 int index = 0;
2285
2286 next = node;
2287 while (1) {
2288 cond_resched();
2289 next = walk_up_backref(next, edges, &index);
2290 root = next->root;
2291
2292 /*
2293 * This can occur if we have incomplete extent refs leading all
2294 * the way up a particular path, in this case return -EUCLEAN.
2295 */
2296 if (!root)
2297 return ERR_PTR(-EUCLEAN);
2298
2299 /* No other choice for non-shareable tree */
2300 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
2301 return root;
2302
2303 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2304 fs_root = root;
2305
2306 if (next != node)
2307 return NULL;
2308
2309 next = walk_down_backref(edges, &index);
2310 if (!next || next->level <= node->level)
2311 break;
2312 }
2313
2314 if (!fs_root)
2315 return ERR_PTR(-ENOENT);
2316 return fs_root;
2317}
2318
2319static noinline_for_stack
2320u64 calcu_metadata_size(struct reloc_control *rc,
2321 struct btrfs_backref_node *node, int reserve)
2322{
2323 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2324 struct btrfs_backref_node *next = node;
2325 struct btrfs_backref_edge *edge;
2326 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2327 u64 num_bytes = 0;
2328 int index = 0;
2329
2330 BUG_ON(reserve && node->processed);
2331
2332 while (next) {
2333 cond_resched();
2334 while (1) {
2335 if (next->processed && (reserve || next != node))
2336 break;
2337
2338 num_bytes += fs_info->nodesize;
2339
2340 if (list_empty(&next->upper))
2341 break;
2342
2343 edge = list_entry(next->upper.next,
2344 struct btrfs_backref_edge, list[LOWER]);
2345 edges[index++] = edge;
2346 next = edge->node[UPPER];
2347 }
2348 next = walk_down_backref(edges, &index);
2349 }
2350 return num_bytes;
2351}
2352
2353static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2354 struct reloc_control *rc,
2355 struct btrfs_backref_node *node)
2356{
2357 struct btrfs_root *root = rc->extent_root;
2358 struct btrfs_fs_info *fs_info = root->fs_info;
2359 u64 num_bytes;
2360 int ret;
2361 u64 tmp;
2362
2363 num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2364
2365 trans->block_rsv = rc->block_rsv;
2366 rc->reserved_bytes += num_bytes;
2367
2368 /*
2369 * We are under a transaction here so we can only do limited flushing.
2370 * If we get an enospc just kick back -EAGAIN so we know to drop the
2371 * transaction and try to refill when we can flush all the things.
2372 */
2373 ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv, num_bytes,
2374 BTRFS_RESERVE_FLUSH_LIMIT);
2375 if (ret) {
2376 tmp = fs_info->nodesize * RELOCATION_RESERVED_NODES;
2377 while (tmp <= rc->reserved_bytes)
2378 tmp <<= 1;
2379 /*
2380 * only one thread can access block_rsv at this point,
2381 * so we don't need hold lock to protect block_rsv.
2382 * we expand more reservation size here to allow enough
2383 * space for relocation and we will return earlier in
2384 * enospc case.
2385 */
2386 rc->block_rsv->size = tmp + fs_info->nodesize *
2387 RELOCATION_RESERVED_NODES;
2388 return -EAGAIN;
2389 }
2390
2391 return 0;
2392}
2393
2394/*
2395 * relocate a block tree, and then update pointers in upper level
2396 * blocks that reference the block to point to the new location.
2397 *
2398 * if called by link_to_upper, the block has already been relocated.
2399 * in that case this function just updates pointers.
2400 */
2401static int do_relocation(struct btrfs_trans_handle *trans,
2402 struct reloc_control *rc,
2403 struct btrfs_backref_node *node,
2404 struct btrfs_key *key,
2405 struct btrfs_path *path, int lowest)
2406{
2407 struct btrfs_backref_node *upper;
2408 struct btrfs_backref_edge *edge;
2409 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2410 struct btrfs_root *root;
2411 struct extent_buffer *eb;
2412 u32 blocksize;
2413 u64 bytenr;
2414 int slot;
2415 int ret = 0;
2416
2417 /*
2418 * If we are lowest then this is the first time we're processing this
2419 * block, and thus shouldn't have an eb associated with it yet.
2420 */
2421 ASSERT(!lowest || !node->eb);
2422
2423 path->lowest_level = node->level + 1;
2424 rc->backref_cache.path[node->level] = node;
2425 list_for_each_entry(edge, &node->upper, list[LOWER]) {
2426 struct btrfs_ref ref = { 0 };
2427
2428 cond_resched();
2429
2430 upper = edge->node[UPPER];
2431 root = select_reloc_root(trans, rc, upper, edges);
2432 if (IS_ERR(root)) {
2433 ret = PTR_ERR(root);
2434 goto next;
2435 }
2436
2437 if (upper->eb && !upper->locked) {
2438 if (!lowest) {
2439 ret = btrfs_bin_search(upper->eb, 0, key, &slot);
2440 if (ret < 0)
2441 goto next;
2442 BUG_ON(ret);
2443 bytenr = btrfs_node_blockptr(upper->eb, slot);
2444 if (node->eb->start == bytenr)
2445 goto next;
2446 }
2447 btrfs_backref_drop_node_buffer(upper);
2448 }
2449
2450 if (!upper->eb) {
2451 ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2452 if (ret) {
2453 if (ret > 0)
2454 ret = -ENOENT;
2455
2456 btrfs_release_path(path);
2457 break;
2458 }
2459
2460 if (!upper->eb) {
2461 upper->eb = path->nodes[upper->level];
2462 path->nodes[upper->level] = NULL;
2463 } else {
2464 BUG_ON(upper->eb != path->nodes[upper->level]);
2465 }
2466
2467 upper->locked = 1;
2468 path->locks[upper->level] = 0;
2469
2470 slot = path->slots[upper->level];
2471 btrfs_release_path(path);
2472 } else {
2473 ret = btrfs_bin_search(upper->eb, 0, key, &slot);
2474 if (ret < 0)
2475 goto next;
2476 BUG_ON(ret);
2477 }
2478
2479 bytenr = btrfs_node_blockptr(upper->eb, slot);
2480 if (lowest) {
2481 if (bytenr != node->bytenr) {
2482 btrfs_err(root->fs_info,
2483 "lowest leaf/node mismatch: bytenr %llu node->bytenr %llu slot %d upper %llu",
2484 bytenr, node->bytenr, slot,
2485 upper->eb->start);
2486 ret = -EIO;
2487 goto next;
2488 }
2489 } else {
2490 if (node->eb->start == bytenr)
2491 goto next;
2492 }
2493
2494 blocksize = root->fs_info->nodesize;
2495 eb = btrfs_read_node_slot(upper->eb, slot);
2496 if (IS_ERR(eb)) {
2497 ret = PTR_ERR(eb);
2498 goto next;
2499 }
2500 btrfs_tree_lock(eb);
2501
2502 if (!node->eb) {
2503 ret = btrfs_cow_block(trans, root, eb, upper->eb,
2504 slot, &eb, BTRFS_NESTING_COW);
2505 btrfs_tree_unlock(eb);
2506 free_extent_buffer(eb);
2507 if (ret < 0)
2508 goto next;
2509 /*
2510 * We've just COWed this block, it should have updated
2511 * the correct backref node entry.
2512 */
2513 ASSERT(node->eb == eb);
2514 } else {
2515 btrfs_set_node_blockptr(upper->eb, slot,
2516 node->eb->start);
2517 btrfs_set_node_ptr_generation(upper->eb, slot,
2518 trans->transid);
2519 btrfs_mark_buffer_dirty(upper->eb);
2520
2521 btrfs_init_generic_ref(&ref, BTRFS_ADD_DELAYED_REF,
2522 node->eb->start, blocksize,
2523 upper->eb->start);
2524 btrfs_init_tree_ref(&ref, node->level,
2525 btrfs_header_owner(upper->eb),
2526 root->root_key.objectid, false);
2527 ret = btrfs_inc_extent_ref(trans, &ref);
2528 if (!ret)
2529 ret = btrfs_drop_subtree(trans, root, eb,
2530 upper->eb);
2531 if (ret)
2532 btrfs_abort_transaction(trans, ret);
2533 }
2534next:
2535 if (!upper->pending)
2536 btrfs_backref_drop_node_buffer(upper);
2537 else
2538 btrfs_backref_unlock_node_buffer(upper);
2539 if (ret)
2540 break;
2541 }
2542
2543 if (!ret && node->pending) {
2544 btrfs_backref_drop_node_buffer(node);
2545 list_move_tail(&node->list, &rc->backref_cache.changed);
2546 node->pending = 0;
2547 }
2548
2549 path->lowest_level = 0;
2550
2551 /*
2552 * We should have allocated all of our space in the block rsv and thus
2553 * shouldn't ENOSPC.
2554 */
2555 ASSERT(ret != -ENOSPC);
2556 return ret;
2557}
2558
2559static int link_to_upper(struct btrfs_trans_handle *trans,
2560 struct reloc_control *rc,
2561 struct btrfs_backref_node *node,
2562 struct btrfs_path *path)
2563{
2564 struct btrfs_key key;
2565
2566 btrfs_node_key_to_cpu(node->eb, &key, 0);
2567 return do_relocation(trans, rc, node, &key, path, 0);
2568}
2569
2570static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2571 struct reloc_control *rc,
2572 struct btrfs_path *path, int err)
2573{
2574 LIST_HEAD(list);
2575 struct btrfs_backref_cache *cache = &rc->backref_cache;
2576 struct btrfs_backref_node *node;
2577 int level;
2578 int ret;
2579
2580 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2581 while (!list_empty(&cache->pending[level])) {
2582 node = list_entry(cache->pending[level].next,
2583 struct btrfs_backref_node, list);
2584 list_move_tail(&node->list, &list);
2585 BUG_ON(!node->pending);
2586
2587 if (!err) {
2588 ret = link_to_upper(trans, rc, node, path);
2589 if (ret < 0)
2590 err = ret;
2591 }
2592 }
2593 list_splice_init(&list, &cache->pending[level]);
2594 }
2595 return err;
2596}
2597
2598/*
2599 * mark a block and all blocks directly/indirectly reference the block
2600 * as processed.
2601 */
2602static void update_processed_blocks(struct reloc_control *rc,
2603 struct btrfs_backref_node *node)
2604{
2605 struct btrfs_backref_node *next = node;
2606 struct btrfs_backref_edge *edge;
2607 struct btrfs_backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2608 int index = 0;
2609
2610 while (next) {
2611 cond_resched();
2612 while (1) {
2613 if (next->processed)
2614 break;
2615
2616 mark_block_processed(rc, next);
2617
2618 if (list_empty(&next->upper))
2619 break;
2620
2621 edge = list_entry(next->upper.next,
2622 struct btrfs_backref_edge, list[LOWER]);
2623 edges[index++] = edge;
2624 next = edge->node[UPPER];
2625 }
2626 next = walk_down_backref(edges, &index);
2627 }
2628}
2629
2630static int tree_block_processed(u64 bytenr, struct reloc_control *rc)
2631{
2632 u32 blocksize = rc->extent_root->fs_info->nodesize;
2633
2634 if (test_range_bit(&rc->processed_blocks, bytenr,
2635 bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2636 return 1;
2637 return 0;
2638}
2639
2640static int get_tree_block_key(struct btrfs_fs_info *fs_info,
2641 struct tree_block *block)
2642{
2643 struct btrfs_tree_parent_check check = {
2644 .level = block->level,
2645 .owner_root = block->owner,
2646 .transid = block->key.offset
2647 };
2648 struct extent_buffer *eb;
2649
2650 eb = read_tree_block(fs_info, block->bytenr, &check);
2651 if (IS_ERR(eb))
2652 return PTR_ERR(eb);
2653 if (!extent_buffer_uptodate(eb)) {
2654 free_extent_buffer(eb);
2655 return -EIO;
2656 }
2657 if (block->level == 0)
2658 btrfs_item_key_to_cpu(eb, &block->key, 0);
2659 else
2660 btrfs_node_key_to_cpu(eb, &block->key, 0);
2661 free_extent_buffer(eb);
2662 block->key_ready = 1;
2663 return 0;
2664}
2665
2666/*
2667 * helper function to relocate a tree block
2668 */
2669static int relocate_tree_block(struct btrfs_trans_handle *trans,
2670 struct reloc_control *rc,
2671 struct btrfs_backref_node *node,
2672 struct btrfs_key *key,
2673 struct btrfs_path *path)
2674{
2675 struct btrfs_root *root;
2676 int ret = 0;
2677
2678 if (!node)
2679 return 0;
2680
2681 /*
2682 * If we fail here we want to drop our backref_node because we are going
2683 * to start over and regenerate the tree for it.
2684 */
2685 ret = reserve_metadata_space(trans, rc, node);
2686 if (ret)
2687 goto out;
2688
2689 BUG_ON(node->processed);
2690 root = select_one_root(node);
2691 if (IS_ERR(root)) {
2692 ret = PTR_ERR(root);
2693
2694 /* See explanation in select_one_root for the -EUCLEAN case. */
2695 ASSERT(ret == -ENOENT);
2696 if (ret == -ENOENT) {
2697 ret = 0;
2698 update_processed_blocks(rc, node);
2699 }
2700 goto out;
2701 }
2702
2703 if (root) {
2704 if (test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) {
2705 /*
2706 * This block was the root block of a root, and this is
2707 * the first time we're processing the block and thus it
2708 * should not have had the ->new_bytenr modified and
2709 * should have not been included on the changed list.
2710 *
2711 * However in the case of corruption we could have
2712 * multiple refs pointing to the same block improperly,
2713 * and thus we would trip over these checks. ASSERT()
2714 * for the developer case, because it could indicate a
2715 * bug in the backref code, however error out for a
2716 * normal user in the case of corruption.
2717 */
2718 ASSERT(node->new_bytenr == 0);
2719 ASSERT(list_empty(&node->list));
2720 if (node->new_bytenr || !list_empty(&node->list)) {
2721 btrfs_err(root->fs_info,
2722 "bytenr %llu has improper references to it",
2723 node->bytenr);
2724 ret = -EUCLEAN;
2725 goto out;
2726 }
2727 ret = btrfs_record_root_in_trans(trans, root);
2728 if (ret)
2729 goto out;
2730 /*
2731 * Another thread could have failed, need to check if we
2732 * have reloc_root actually set.
2733 */
2734 if (!root->reloc_root) {
2735 ret = -ENOENT;
2736 goto out;
2737 }
2738 root = root->reloc_root;
2739 node->new_bytenr = root->node->start;
2740 btrfs_put_root(node->root);
2741 node->root = btrfs_grab_root(root);
2742 ASSERT(node->root);
2743 list_add_tail(&node->list, &rc->backref_cache.changed);
2744 } else {
2745 path->lowest_level = node->level;
2746 if (root == root->fs_info->chunk_root)
2747 btrfs_reserve_chunk_metadata(trans, false);
2748 ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2749 btrfs_release_path(path);
2750 if (root == root->fs_info->chunk_root)
2751 btrfs_trans_release_chunk_metadata(trans);
2752 if (ret > 0)
2753 ret = 0;
2754 }
2755 if (!ret)
2756 update_processed_blocks(rc, node);
2757 } else {
2758 ret = do_relocation(trans, rc, node, key, path, 1);
2759 }
2760out:
2761 if (ret || node->level == 0 || node->cowonly)
2762 btrfs_backref_cleanup_node(&rc->backref_cache, node);
2763 return ret;
2764}
2765
2766/*
2767 * relocate a list of blocks
2768 */
2769static noinline_for_stack
2770int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2771 struct reloc_control *rc, struct rb_root *blocks)
2772{
2773 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
2774 struct btrfs_backref_node *node;
2775 struct btrfs_path *path;
2776 struct tree_block *block;
2777 struct tree_block *next;
2778 int ret;
2779 int err = 0;
2780
2781 path = btrfs_alloc_path();
2782 if (!path) {
2783 err = -ENOMEM;
2784 goto out_free_blocks;
2785 }
2786
2787 /* Kick in readahead for tree blocks with missing keys */
2788 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2789 if (!block->key_ready)
2790 btrfs_readahead_tree_block(fs_info, block->bytenr,
2791 block->owner, 0,
2792 block->level);
2793 }
2794
2795 /* Get first keys */
2796 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2797 if (!block->key_ready) {
2798 err = get_tree_block_key(fs_info, block);
2799 if (err)
2800 goto out_free_path;
2801 }
2802 }
2803
2804 /* Do tree relocation */
2805 rbtree_postorder_for_each_entry_safe(block, next, blocks, rb_node) {
2806 node = build_backref_tree(rc, &block->key,
2807 block->level, block->bytenr);
2808 if (IS_ERR(node)) {
2809 err = PTR_ERR(node);
2810 goto out;
2811 }
2812
2813 ret = relocate_tree_block(trans, rc, node, &block->key,
2814 path);
2815 if (ret < 0) {
2816 err = ret;
2817 break;
2818 }
2819 }
2820out:
2821 err = finish_pending_nodes(trans, rc, path, err);
2822
2823out_free_path:
2824 btrfs_free_path(path);
2825out_free_blocks:
2826 free_block_list(blocks);
2827 return err;
2828}
2829
2830static noinline_for_stack int prealloc_file_extent_cluster(
2831 struct btrfs_inode *inode,
2832 struct file_extent_cluster *cluster)
2833{
2834 u64 alloc_hint = 0;
2835 u64 start;
2836 u64 end;
2837 u64 offset = inode->index_cnt;
2838 u64 num_bytes;
2839 int nr;
2840 int ret = 0;
2841 u64 i_size = i_size_read(&inode->vfs_inode);
2842 u64 prealloc_start = cluster->start - offset;
2843 u64 prealloc_end = cluster->end - offset;
2844 u64 cur_offset = prealloc_start;
2845
2846 /*
2847 * For subpage case, previous i_size may not be aligned to PAGE_SIZE.
2848 * This means the range [i_size, PAGE_END + 1) is filled with zeros by
2849 * btrfs_do_readpage() call of previously relocated file cluster.
2850 *
2851 * If the current cluster starts in the above range, btrfs_do_readpage()
2852 * will skip the read, and relocate_one_page() will later writeback
2853 * the padding zeros as new data, causing data corruption.
2854 *
2855 * Here we have to manually invalidate the range (i_size, PAGE_END + 1).
2856 */
2857 if (!PAGE_ALIGNED(i_size)) {
2858 struct address_space *mapping = inode->vfs_inode.i_mapping;
2859 struct btrfs_fs_info *fs_info = inode->root->fs_info;
2860 const u32 sectorsize = fs_info->sectorsize;
2861 struct page *page;
2862
2863 ASSERT(sectorsize < PAGE_SIZE);
2864 ASSERT(IS_ALIGNED(i_size, sectorsize));
2865
2866 /*
2867 * Subpage can't handle page with DIRTY but without UPTODATE
2868 * bit as it can lead to the following deadlock:
2869 *
2870 * btrfs_read_folio()
2871 * | Page already *locked*
2872 * |- btrfs_lock_and_flush_ordered_range()
2873 * |- btrfs_start_ordered_extent()
2874 * |- extent_write_cache_pages()
2875 * |- lock_page()
2876 * We try to lock the page we already hold.
2877 *
2878 * Here we just writeback the whole data reloc inode, so that
2879 * we will be ensured to have no dirty range in the page, and
2880 * are safe to clear the uptodate bits.
2881 *
2882 * This shouldn't cause too much overhead, as we need to write
2883 * the data back anyway.
2884 */
2885 ret = filemap_write_and_wait(mapping);
2886 if (ret < 0)
2887 return ret;
2888
2889 clear_extent_bits(&inode->io_tree, i_size,
2890 round_up(i_size, PAGE_SIZE) - 1,
2891 EXTENT_UPTODATE);
2892 page = find_lock_page(mapping, i_size >> PAGE_SHIFT);
2893 /*
2894 * If page is freed we don't need to do anything then, as we
2895 * will re-read the whole page anyway.
2896 */
2897 if (page) {
2898 btrfs_subpage_clear_uptodate(fs_info, page, i_size,
2899 round_up(i_size, PAGE_SIZE) - i_size);
2900 unlock_page(page);
2901 put_page(page);
2902 }
2903 }
2904
2905 BUG_ON(cluster->start != cluster->boundary[0]);
2906 ret = btrfs_alloc_data_chunk_ondemand(inode,
2907 prealloc_end + 1 - prealloc_start);
2908 if (ret)
2909 return ret;
2910
2911 btrfs_inode_lock(inode, 0);
2912 for (nr = 0; nr < cluster->nr; nr++) {
2913 struct extent_state *cached_state = NULL;
2914
2915 start = cluster->boundary[nr] - offset;
2916 if (nr + 1 < cluster->nr)
2917 end = cluster->boundary[nr + 1] - 1 - offset;
2918 else
2919 end = cluster->end - offset;
2920
2921 lock_extent(&inode->io_tree, start, end, &cached_state);
2922 num_bytes = end + 1 - start;
2923 ret = btrfs_prealloc_file_range(&inode->vfs_inode, 0, start,
2924 num_bytes, num_bytes,
2925 end + 1, &alloc_hint);
2926 cur_offset = end + 1;
2927 unlock_extent(&inode->io_tree, start, end, &cached_state);
2928 if (ret)
2929 break;
2930 }
2931 btrfs_inode_unlock(inode, 0);
2932
2933 if (cur_offset < prealloc_end)
2934 btrfs_free_reserved_data_space_noquota(inode->root->fs_info,
2935 prealloc_end + 1 - cur_offset);
2936 return ret;
2937}
2938
2939static noinline_for_stack int setup_relocation_extent_mapping(struct inode *inode,
2940 u64 start, u64 end, u64 block_start)
2941{
2942 struct extent_map *em;
2943 struct extent_state *cached_state = NULL;
2944 int ret = 0;
2945
2946 em = alloc_extent_map();
2947 if (!em)
2948 return -ENOMEM;
2949
2950 em->start = start;
2951 em->len = end + 1 - start;
2952 em->block_len = em->len;
2953 em->block_start = block_start;
2954 set_bit(EXTENT_FLAG_PINNED, &em->flags);
2955
2956 lock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state);
2957 ret = btrfs_replace_extent_map_range(BTRFS_I(inode), em, false);
2958 unlock_extent(&BTRFS_I(inode)->io_tree, start, end, &cached_state);
2959 free_extent_map(em);
2960
2961 return ret;
2962}
2963
2964/*
2965 * Allow error injection to test balance/relocation cancellation
2966 */
2967noinline int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info)
2968{
2969 return atomic_read(&fs_info->balance_cancel_req) ||
2970 atomic_read(&fs_info->reloc_cancel_req) ||
2971 fatal_signal_pending(current);
2972}
2973ALLOW_ERROR_INJECTION(btrfs_should_cancel_balance, TRUE);
2974
2975static u64 get_cluster_boundary_end(struct file_extent_cluster *cluster,
2976 int cluster_nr)
2977{
2978 /* Last extent, use cluster end directly */
2979 if (cluster_nr >= cluster->nr - 1)
2980 return cluster->end;
2981
2982 /* Use next boundary start*/
2983 return cluster->boundary[cluster_nr + 1] - 1;
2984}
2985
2986static int relocate_one_page(struct inode *inode, struct file_ra_state *ra,
2987 struct file_extent_cluster *cluster,
2988 int *cluster_nr, unsigned long page_index)
2989{
2990 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2991 u64 offset = BTRFS_I(inode)->index_cnt;
2992 const unsigned long last_index = (cluster->end - offset) >> PAGE_SHIFT;
2993 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
2994 struct page *page;
2995 u64 page_start;
2996 u64 page_end;
2997 u64 cur;
2998 int ret;
2999
3000 ASSERT(page_index <= last_index);
3001 page = find_lock_page(inode->i_mapping, page_index);
3002 if (!page) {
3003 page_cache_sync_readahead(inode->i_mapping, ra, NULL,
3004 page_index, last_index + 1 - page_index);
3005 page = find_or_create_page(inode->i_mapping, page_index, mask);
3006 if (!page)
3007 return -ENOMEM;
3008 }
3009 ret = set_page_extent_mapped(page);
3010 if (ret < 0)
3011 goto release_page;
3012
3013 if (PageReadahead(page))
3014 page_cache_async_readahead(inode->i_mapping, ra, NULL,
3015 page_folio(page), page_index,
3016 last_index + 1 - page_index);
3017
3018 if (!PageUptodate(page)) {
3019 btrfs_read_folio(NULL, page_folio(page));
3020 lock_page(page);
3021 if (!PageUptodate(page)) {
3022 ret = -EIO;
3023 goto release_page;
3024 }
3025 }
3026
3027 page_start = page_offset(page);
3028 page_end = page_start + PAGE_SIZE - 1;
3029
3030 /*
3031 * Start from the cluster, as for subpage case, the cluster can start
3032 * inside the page.
3033 */
3034 cur = max(page_start, cluster->boundary[*cluster_nr] - offset);
3035 while (cur <= page_end) {
3036 struct extent_state *cached_state = NULL;
3037 u64 extent_start = cluster->boundary[*cluster_nr] - offset;
3038 u64 extent_end = get_cluster_boundary_end(cluster,
3039 *cluster_nr) - offset;
3040 u64 clamped_start = max(page_start, extent_start);
3041 u64 clamped_end = min(page_end, extent_end);
3042 u32 clamped_len = clamped_end + 1 - clamped_start;
3043
3044 /* Reserve metadata for this range */
3045 ret = btrfs_delalloc_reserve_metadata(BTRFS_I(inode),
3046 clamped_len, clamped_len,
3047 false);
3048 if (ret)
3049 goto release_page;
3050
3051 /* Mark the range delalloc and dirty for later writeback */
3052 lock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end,
3053 &cached_state);
3054 ret = btrfs_set_extent_delalloc(BTRFS_I(inode), clamped_start,
3055 clamped_end, 0, &cached_state);
3056 if (ret) {
3057 clear_extent_bit(&BTRFS_I(inode)->io_tree,
3058 clamped_start, clamped_end,
3059 EXTENT_LOCKED | EXTENT_BOUNDARY,
3060 &cached_state);
3061 btrfs_delalloc_release_metadata(BTRFS_I(inode),
3062 clamped_len, true);
3063 btrfs_delalloc_release_extents(BTRFS_I(inode),
3064 clamped_len);
3065 goto release_page;
3066 }
3067 btrfs_page_set_dirty(fs_info, page, clamped_start, clamped_len);
3068
3069 /*
3070 * Set the boundary if it's inside the page.
3071 * Data relocation requires the destination extents to have the
3072 * same size as the source.
3073 * EXTENT_BOUNDARY bit prevents current extent from being merged
3074 * with previous extent.
3075 */
3076 if (in_range(cluster->boundary[*cluster_nr] - offset,
3077 page_start, PAGE_SIZE)) {
3078 u64 boundary_start = cluster->boundary[*cluster_nr] -
3079 offset;
3080 u64 boundary_end = boundary_start +
3081 fs_info->sectorsize - 1;
3082
3083 set_extent_bit(&BTRFS_I(inode)->io_tree,
3084 boundary_start, boundary_end,
3085 EXTENT_BOUNDARY, NULL);
3086 }
3087 unlock_extent(&BTRFS_I(inode)->io_tree, clamped_start, clamped_end,
3088 &cached_state);
3089 btrfs_delalloc_release_extents(BTRFS_I(inode), clamped_len);
3090 cur += clamped_len;
3091
3092 /* Crossed extent end, go to next extent */
3093 if (cur >= extent_end) {
3094 (*cluster_nr)++;
3095 /* Just finished the last extent of the cluster, exit. */
3096 if (*cluster_nr >= cluster->nr)
3097 break;
3098 }
3099 }
3100 unlock_page(page);
3101 put_page(page);
3102
3103 balance_dirty_pages_ratelimited(inode->i_mapping);
3104 btrfs_throttle(fs_info);
3105 if (btrfs_should_cancel_balance(fs_info))
3106 ret = -ECANCELED;
3107 return ret;
3108
3109release_page:
3110 unlock_page(page);
3111 put_page(page);
3112 return ret;
3113}
3114
3115static int relocate_file_extent_cluster(struct inode *inode,
3116 struct file_extent_cluster *cluster)
3117{
3118 u64 offset = BTRFS_I(inode)->index_cnt;
3119 unsigned long index;
3120 unsigned long last_index;
3121 struct file_ra_state *ra;
3122 int cluster_nr = 0;
3123 int ret = 0;
3124
3125 if (!cluster->nr)
3126 return 0;
3127
3128 ra = kzalloc(sizeof(*ra), GFP_NOFS);
3129 if (!ra)
3130 return -ENOMEM;
3131
3132 ret = prealloc_file_extent_cluster(BTRFS_I(inode), cluster);
3133 if (ret)
3134 goto out;
3135
3136 file_ra_state_init(ra, inode->i_mapping);
3137
3138 ret = setup_relocation_extent_mapping(inode, cluster->start - offset,
3139 cluster->end - offset, cluster->start);
3140 if (ret)
3141 goto out;
3142
3143 last_index = (cluster->end - offset) >> PAGE_SHIFT;
3144 for (index = (cluster->start - offset) >> PAGE_SHIFT;
3145 index <= last_index && !ret; index++)
3146 ret = relocate_one_page(inode, ra, cluster, &cluster_nr, index);
3147 if (ret == 0)
3148 WARN_ON(cluster_nr != cluster->nr);
3149out:
3150 kfree(ra);
3151 return ret;
3152}
3153
3154static noinline_for_stack
3155int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3156 struct file_extent_cluster *cluster)
3157{
3158 int ret;
3159
3160 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3161 ret = relocate_file_extent_cluster(inode, cluster);
3162 if (ret)
3163 return ret;
3164 cluster->nr = 0;
3165 }
3166
3167 if (!cluster->nr)
3168 cluster->start = extent_key->objectid;
3169 else
3170 BUG_ON(cluster->nr >= MAX_EXTENTS);
3171 cluster->end = extent_key->objectid + extent_key->offset - 1;
3172 cluster->boundary[cluster->nr] = extent_key->objectid;
3173 cluster->nr++;
3174
3175 if (cluster->nr >= MAX_EXTENTS) {
3176 ret = relocate_file_extent_cluster(inode, cluster);
3177 if (ret)
3178 return ret;
3179 cluster->nr = 0;
3180 }
3181 return 0;
3182}
3183
3184/*
3185 * helper to add a tree block to the list.
3186 * the major work is getting the generation and level of the block
3187 */
3188static int add_tree_block(struct reloc_control *rc,
3189 struct btrfs_key *extent_key,
3190 struct btrfs_path *path,
3191 struct rb_root *blocks)
3192{
3193 struct extent_buffer *eb;
3194 struct btrfs_extent_item *ei;
3195 struct btrfs_tree_block_info *bi;
3196 struct tree_block *block;
3197 struct rb_node *rb_node;
3198 u32 item_size;
3199 int level = -1;
3200 u64 generation;
3201 u64 owner = 0;
3202
3203 eb = path->nodes[0];
3204 item_size = btrfs_item_size(eb, path->slots[0]);
3205
3206 if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3207 item_size >= sizeof(*ei) + sizeof(*bi)) {
3208 unsigned long ptr = 0, end;
3209
3210 ei = btrfs_item_ptr(eb, path->slots[0],
3211 struct btrfs_extent_item);
3212 end = (unsigned long)ei + item_size;
3213 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3214 bi = (struct btrfs_tree_block_info *)(ei + 1);
3215 level = btrfs_tree_block_level(eb, bi);
3216 ptr = (unsigned long)(bi + 1);
3217 } else {
3218 level = (int)extent_key->offset;
3219 ptr = (unsigned long)(ei + 1);
3220 }
3221 generation = btrfs_extent_generation(eb, ei);
3222
3223 /*
3224 * We're reading random blocks without knowing their owner ahead
3225 * of time. This is ok most of the time, as all reloc roots and
3226 * fs roots have the same lock type. However normal trees do
3227 * not, and the only way to know ahead of time is to read the
3228 * inline ref offset. We know it's an fs root if
3229 *
3230 * 1. There's more than one ref.
3231 * 2. There's a SHARED_DATA_REF_KEY set.
3232 * 3. FULL_BACKREF is set on the flags.
3233 *
3234 * Otherwise it's safe to assume that the ref offset == the
3235 * owner of this block, so we can use that when calling
3236 * read_tree_block.
3237 */
3238 if (btrfs_extent_refs(eb, ei) == 1 &&
3239 !(btrfs_extent_flags(eb, ei) &
3240 BTRFS_BLOCK_FLAG_FULL_BACKREF) &&
3241 ptr < end) {
3242 struct btrfs_extent_inline_ref *iref;
3243 int type;
3244
3245 iref = (struct btrfs_extent_inline_ref *)ptr;
3246 type = btrfs_get_extent_inline_ref_type(eb, iref,
3247 BTRFS_REF_TYPE_BLOCK);
3248 if (type == BTRFS_REF_TYPE_INVALID)
3249 return -EINVAL;
3250 if (type == BTRFS_TREE_BLOCK_REF_KEY)
3251 owner = btrfs_extent_inline_ref_offset(eb, iref);
3252 }
3253 } else if (unlikely(item_size == sizeof(struct btrfs_extent_item_v0))) {
3254 btrfs_print_v0_err(eb->fs_info);
3255 btrfs_handle_fs_error(eb->fs_info, -EINVAL, NULL);
3256 return -EINVAL;
3257 } else {
3258 BUG();
3259 }
3260
3261 btrfs_release_path(path);
3262
3263 BUG_ON(level == -1);
3264
3265 block = kmalloc(sizeof(*block), GFP_NOFS);
3266 if (!block)
3267 return -ENOMEM;
3268
3269 block->bytenr = extent_key->objectid;
3270 block->key.objectid = rc->extent_root->fs_info->nodesize;
3271 block->key.offset = generation;
3272 block->level = level;
3273 block->key_ready = 0;
3274 block->owner = owner;
3275
3276 rb_node = rb_simple_insert(blocks, block->bytenr, &block->rb_node);
3277 if (rb_node)
3278 btrfs_backref_panic(rc->extent_root->fs_info, block->bytenr,
3279 -EEXIST);
3280
3281 return 0;
3282}
3283
3284/*
3285 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3286 */
3287static int __add_tree_block(struct reloc_control *rc,
3288 u64 bytenr, u32 blocksize,
3289 struct rb_root *blocks)
3290{
3291 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3292 struct btrfs_path *path;
3293 struct btrfs_key key;
3294 int ret;
3295 bool skinny = btrfs_fs_incompat(fs_info, SKINNY_METADATA);
3296
3297 if (tree_block_processed(bytenr, rc))
3298 return 0;
3299
3300 if (rb_simple_search(blocks, bytenr))
3301 return 0;
3302
3303 path = btrfs_alloc_path();
3304 if (!path)
3305 return -ENOMEM;
3306again:
3307 key.objectid = bytenr;
3308 if (skinny) {
3309 key.type = BTRFS_METADATA_ITEM_KEY;
3310 key.offset = (u64)-1;
3311 } else {
3312 key.type = BTRFS_EXTENT_ITEM_KEY;
3313 key.offset = blocksize;
3314 }
3315
3316 path->search_commit_root = 1;
3317 path->skip_locking = 1;
3318 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3319 if (ret < 0)
3320 goto out;
3321
3322 if (ret > 0 && skinny) {
3323 if (path->slots[0]) {
3324 path->slots[0]--;
3325 btrfs_item_key_to_cpu(path->nodes[0], &key,
3326 path->slots[0]);
3327 if (key.objectid == bytenr &&
3328 (key.type == BTRFS_METADATA_ITEM_KEY ||
3329 (key.type == BTRFS_EXTENT_ITEM_KEY &&
3330 key.offset == blocksize)))
3331 ret = 0;
3332 }
3333
3334 if (ret) {
3335 skinny = false;
3336 btrfs_release_path(path);
3337 goto again;
3338 }
3339 }
3340 if (ret) {
3341 ASSERT(ret == 1);
3342 btrfs_print_leaf(path->nodes[0]);
3343 btrfs_err(fs_info,
3344 "tree block extent item (%llu) is not found in extent tree",
3345 bytenr);
3346 WARN_ON(1);
3347 ret = -EINVAL;
3348 goto out;
3349 }
3350
3351 ret = add_tree_block(rc, &key, path, blocks);
3352out:
3353 btrfs_free_path(path);
3354 return ret;
3355}
3356
3357static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3358 struct btrfs_block_group *block_group,
3359 struct inode *inode,
3360 u64 ino)
3361{
3362 struct btrfs_root *root = fs_info->tree_root;
3363 struct btrfs_trans_handle *trans;
3364 int ret = 0;
3365
3366 if (inode)
3367 goto truncate;
3368
3369 inode = btrfs_iget(fs_info->sb, ino, root);
3370 if (IS_ERR(inode))
3371 return -ENOENT;
3372
3373truncate:
3374 ret = btrfs_check_trunc_cache_free_space(fs_info,
3375 &fs_info->global_block_rsv);
3376 if (ret)
3377 goto out;
3378
3379 trans = btrfs_join_transaction(root);
3380 if (IS_ERR(trans)) {
3381 ret = PTR_ERR(trans);
3382 goto out;
3383 }
3384
3385 ret = btrfs_truncate_free_space_cache(trans, block_group, inode);
3386
3387 btrfs_end_transaction(trans);
3388 btrfs_btree_balance_dirty(fs_info);
3389out:
3390 iput(inode);
3391 return ret;
3392}
3393
3394/*
3395 * Locate the free space cache EXTENT_DATA in root tree leaf and delete the
3396 * cache inode, to avoid free space cache data extent blocking data relocation.
3397 */
3398static int delete_v1_space_cache(struct extent_buffer *leaf,
3399 struct btrfs_block_group *block_group,
3400 u64 data_bytenr)
3401{
3402 u64 space_cache_ino;
3403 struct btrfs_file_extent_item *ei;
3404 struct btrfs_key key;
3405 bool found = false;
3406 int i;
3407 int ret;
3408
3409 if (btrfs_header_owner(leaf) != BTRFS_ROOT_TREE_OBJECTID)
3410 return 0;
3411
3412 for (i = 0; i < btrfs_header_nritems(leaf); i++) {
3413 u8 type;
3414
3415 btrfs_item_key_to_cpu(leaf, &key, i);
3416 if (key.type != BTRFS_EXTENT_DATA_KEY)
3417 continue;
3418 ei = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
3419 type = btrfs_file_extent_type(leaf, ei);
3420
3421 if ((type == BTRFS_FILE_EXTENT_REG ||
3422 type == BTRFS_FILE_EXTENT_PREALLOC) &&
3423 btrfs_file_extent_disk_bytenr(leaf, ei) == data_bytenr) {
3424 found = true;
3425 space_cache_ino = key.objectid;
3426 break;
3427 }
3428 }
3429 if (!found)
3430 return -ENOENT;
3431 ret = delete_block_group_cache(leaf->fs_info, block_group, NULL,
3432 space_cache_ino);
3433 return ret;
3434}
3435
3436/*
3437 * helper to find all tree blocks that reference a given data extent
3438 */
3439static noinline_for_stack
3440int add_data_references(struct reloc_control *rc,
3441 struct btrfs_key *extent_key,
3442 struct btrfs_path *path,
3443 struct rb_root *blocks)
3444{
3445 struct btrfs_backref_walk_ctx ctx = { 0 };
3446 struct ulist_iterator leaf_uiter;
3447 struct ulist_node *ref_node = NULL;
3448 const u32 blocksize = rc->extent_root->fs_info->nodesize;
3449 int ret = 0;
3450
3451 btrfs_release_path(path);
3452
3453 ctx.bytenr = extent_key->objectid;
3454 ctx.skip_inode_ref_list = true;
3455 ctx.fs_info = rc->extent_root->fs_info;
3456
3457 ret = btrfs_find_all_leafs(&ctx);
3458 if (ret < 0)
3459 return ret;
3460
3461 ULIST_ITER_INIT(&leaf_uiter);
3462 while ((ref_node = ulist_next(ctx.refs, &leaf_uiter))) {
3463 struct btrfs_tree_parent_check check = { 0 };
3464 struct extent_buffer *eb;
3465
3466 eb = read_tree_block(ctx.fs_info, ref_node->val, &check);
3467 if (IS_ERR(eb)) {
3468 ret = PTR_ERR(eb);
3469 break;
3470 }
3471 ret = delete_v1_space_cache(eb, rc->block_group,
3472 extent_key->objectid);
3473 free_extent_buffer(eb);
3474 if (ret < 0)
3475 break;
3476 ret = __add_tree_block(rc, ref_node->val, blocksize, blocks);
3477 if (ret < 0)
3478 break;
3479 }
3480 if (ret < 0)
3481 free_block_list(blocks);
3482 ulist_free(ctx.refs);
3483 return ret;
3484}
3485
3486/*
3487 * helper to find next unprocessed extent
3488 */
3489static noinline_for_stack
3490int find_next_extent(struct reloc_control *rc, struct btrfs_path *path,
3491 struct btrfs_key *extent_key)
3492{
3493 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3494 struct btrfs_key key;
3495 struct extent_buffer *leaf;
3496 u64 start, end, last;
3497 int ret;
3498
3499 last = rc->block_group->start + rc->block_group->length;
3500 while (1) {
3501 cond_resched();
3502 if (rc->search_start >= last) {
3503 ret = 1;
3504 break;
3505 }
3506
3507 key.objectid = rc->search_start;
3508 key.type = BTRFS_EXTENT_ITEM_KEY;
3509 key.offset = 0;
3510
3511 path->search_commit_root = 1;
3512 path->skip_locking = 1;
3513 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3514 0, 0);
3515 if (ret < 0)
3516 break;
3517next:
3518 leaf = path->nodes[0];
3519 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3520 ret = btrfs_next_leaf(rc->extent_root, path);
3521 if (ret != 0)
3522 break;
3523 leaf = path->nodes[0];
3524 }
3525
3526 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3527 if (key.objectid >= last) {
3528 ret = 1;
3529 break;
3530 }
3531
3532 if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3533 key.type != BTRFS_METADATA_ITEM_KEY) {
3534 path->slots[0]++;
3535 goto next;
3536 }
3537
3538 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3539 key.objectid + key.offset <= rc->search_start) {
3540 path->slots[0]++;
3541 goto next;
3542 }
3543
3544 if (key.type == BTRFS_METADATA_ITEM_KEY &&
3545 key.objectid + fs_info->nodesize <=
3546 rc->search_start) {
3547 path->slots[0]++;
3548 goto next;
3549 }
3550
3551 ret = find_first_extent_bit(&rc->processed_blocks,
3552 key.objectid, &start, &end,
3553 EXTENT_DIRTY, NULL);
3554
3555 if (ret == 0 && start <= key.objectid) {
3556 btrfs_release_path(path);
3557 rc->search_start = end + 1;
3558 } else {
3559 if (key.type == BTRFS_EXTENT_ITEM_KEY)
3560 rc->search_start = key.objectid + key.offset;
3561 else
3562 rc->search_start = key.objectid +
3563 fs_info->nodesize;
3564 memcpy(extent_key, &key, sizeof(key));
3565 return 0;
3566 }
3567 }
3568 btrfs_release_path(path);
3569 return ret;
3570}
3571
3572static void set_reloc_control(struct reloc_control *rc)
3573{
3574 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3575
3576 mutex_lock(&fs_info->reloc_mutex);
3577 fs_info->reloc_ctl = rc;
3578 mutex_unlock(&fs_info->reloc_mutex);
3579}
3580
3581static void unset_reloc_control(struct reloc_control *rc)
3582{
3583 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3584
3585 mutex_lock(&fs_info->reloc_mutex);
3586 fs_info->reloc_ctl = NULL;
3587 mutex_unlock(&fs_info->reloc_mutex);
3588}
3589
3590static noinline_for_stack
3591int prepare_to_relocate(struct reloc_control *rc)
3592{
3593 struct btrfs_trans_handle *trans;
3594 int ret;
3595
3596 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root->fs_info,
3597 BTRFS_BLOCK_RSV_TEMP);
3598 if (!rc->block_rsv)
3599 return -ENOMEM;
3600
3601 memset(&rc->cluster, 0, sizeof(rc->cluster));
3602 rc->search_start = rc->block_group->start;
3603 rc->extents_found = 0;
3604 rc->nodes_relocated = 0;
3605 rc->merging_rsv_size = 0;
3606 rc->reserved_bytes = 0;
3607 rc->block_rsv->size = rc->extent_root->fs_info->nodesize *
3608 RELOCATION_RESERVED_NODES;
3609 ret = btrfs_block_rsv_refill(rc->extent_root->fs_info,
3610 rc->block_rsv, rc->block_rsv->size,
3611 BTRFS_RESERVE_FLUSH_ALL);
3612 if (ret)
3613 return ret;
3614
3615 rc->create_reloc_tree = 1;
3616 set_reloc_control(rc);
3617
3618 trans = btrfs_join_transaction(rc->extent_root);
3619 if (IS_ERR(trans)) {
3620 unset_reloc_control(rc);
3621 /*
3622 * extent tree is not a ref_cow tree and has no reloc_root to
3623 * cleanup. And callers are responsible to free the above
3624 * block rsv.
3625 */
3626 return PTR_ERR(trans);
3627 }
3628
3629 ret = btrfs_commit_transaction(trans);
3630 if (ret)
3631 unset_reloc_control(rc);
3632
3633 return ret;
3634}
3635
3636static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3637{
3638 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3639 struct rb_root blocks = RB_ROOT;
3640 struct btrfs_key key;
3641 struct btrfs_trans_handle *trans = NULL;
3642 struct btrfs_path *path;
3643 struct btrfs_extent_item *ei;
3644 u64 flags;
3645 int ret;
3646 int err = 0;
3647 int progress = 0;
3648
3649 path = btrfs_alloc_path();
3650 if (!path)
3651 return -ENOMEM;
3652 path->reada = READA_FORWARD;
3653
3654 ret = prepare_to_relocate(rc);
3655 if (ret) {
3656 err = ret;
3657 goto out_free;
3658 }
3659
3660 while (1) {
3661 rc->reserved_bytes = 0;
3662 ret = btrfs_block_rsv_refill(fs_info, rc->block_rsv,
3663 rc->block_rsv->size,
3664 BTRFS_RESERVE_FLUSH_ALL);
3665 if (ret) {
3666 err = ret;
3667 break;
3668 }
3669 progress++;
3670 trans = btrfs_start_transaction(rc->extent_root, 0);
3671 if (IS_ERR(trans)) {
3672 err = PTR_ERR(trans);
3673 trans = NULL;
3674 break;
3675 }
3676restart:
3677 if (update_backref_cache(trans, &rc->backref_cache)) {
3678 btrfs_end_transaction(trans);
3679 trans = NULL;
3680 continue;
3681 }
3682
3683 ret = find_next_extent(rc, path, &key);
3684 if (ret < 0)
3685 err = ret;
3686 if (ret != 0)
3687 break;
3688
3689 rc->extents_found++;
3690
3691 ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3692 struct btrfs_extent_item);
3693 flags = btrfs_extent_flags(path->nodes[0], ei);
3694
3695 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3696 ret = add_tree_block(rc, &key, path, &blocks);
3697 } else if (rc->stage == UPDATE_DATA_PTRS &&
3698 (flags & BTRFS_EXTENT_FLAG_DATA)) {
3699 ret = add_data_references(rc, &key, path, &blocks);
3700 } else {
3701 btrfs_release_path(path);
3702 ret = 0;
3703 }
3704 if (ret < 0) {
3705 err = ret;
3706 break;
3707 }
3708
3709 if (!RB_EMPTY_ROOT(&blocks)) {
3710 ret = relocate_tree_blocks(trans, rc, &blocks);
3711 if (ret < 0) {
3712 if (ret != -EAGAIN) {
3713 err = ret;
3714 break;
3715 }
3716 rc->extents_found--;
3717 rc->search_start = key.objectid;
3718 }
3719 }
3720
3721 btrfs_end_transaction_throttle(trans);
3722 btrfs_btree_balance_dirty(fs_info);
3723 trans = NULL;
3724
3725 if (rc->stage == MOVE_DATA_EXTENTS &&
3726 (flags & BTRFS_EXTENT_FLAG_DATA)) {
3727 rc->found_file_extent = 1;
3728 ret = relocate_data_extent(rc->data_inode,
3729 &key, &rc->cluster);
3730 if (ret < 0) {
3731 err = ret;
3732 break;
3733 }
3734 }
3735 if (btrfs_should_cancel_balance(fs_info)) {
3736 err = -ECANCELED;
3737 break;
3738 }
3739 }
3740 if (trans && progress && err == -ENOSPC) {
3741 ret = btrfs_force_chunk_alloc(trans, rc->block_group->flags);
3742 if (ret == 1) {
3743 err = 0;
3744 progress = 0;
3745 goto restart;
3746 }
3747 }
3748
3749 btrfs_release_path(path);
3750 clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY);
3751
3752 if (trans) {
3753 btrfs_end_transaction_throttle(trans);
3754 btrfs_btree_balance_dirty(fs_info);
3755 }
3756
3757 if (!err) {
3758 ret = relocate_file_extent_cluster(rc->data_inode,
3759 &rc->cluster);
3760 if (ret < 0)
3761 err = ret;
3762 }
3763
3764 rc->create_reloc_tree = 0;
3765 set_reloc_control(rc);
3766
3767 btrfs_backref_release_cache(&rc->backref_cache);
3768 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3769
3770 /*
3771 * Even in the case when the relocation is cancelled, we should all go
3772 * through prepare_to_merge() and merge_reloc_roots().
3773 *
3774 * For error (including cancelled balance), prepare_to_merge() will
3775 * mark all reloc trees orphan, then queue them for cleanup in
3776 * merge_reloc_roots()
3777 */
3778 err = prepare_to_merge(rc, err);
3779
3780 merge_reloc_roots(rc);
3781
3782 rc->merge_reloc_tree = 0;
3783 unset_reloc_control(rc);
3784 btrfs_block_rsv_release(fs_info, rc->block_rsv, (u64)-1, NULL);
3785
3786 /* get rid of pinned extents */
3787 trans = btrfs_join_transaction(rc->extent_root);
3788 if (IS_ERR(trans)) {
3789 err = PTR_ERR(trans);
3790 goto out_free;
3791 }
3792 ret = btrfs_commit_transaction(trans);
3793 if (ret && !err)
3794 err = ret;
3795out_free:
3796 ret = clean_dirty_subvols(rc);
3797 if (ret < 0 && !err)
3798 err = ret;
3799 btrfs_free_block_rsv(fs_info, rc->block_rsv);
3800 btrfs_free_path(path);
3801 return err;
3802}
3803
3804static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
3805 struct btrfs_root *root, u64 objectid)
3806{
3807 struct btrfs_path *path;
3808 struct btrfs_inode_item *item;
3809 struct extent_buffer *leaf;
3810 int ret;
3811
3812 path = btrfs_alloc_path();
3813 if (!path)
3814 return -ENOMEM;
3815
3816 ret = btrfs_insert_empty_inode(trans, root, path, objectid);
3817 if (ret)
3818 goto out;
3819
3820 leaf = path->nodes[0];
3821 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
3822 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item));
3823 btrfs_set_inode_generation(leaf, item, 1);
3824 btrfs_set_inode_size(leaf, item, 0);
3825 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
3826 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
3827 BTRFS_INODE_PREALLOC);
3828 btrfs_mark_buffer_dirty(leaf);
3829out:
3830 btrfs_free_path(path);
3831 return ret;
3832}
3833
3834static void delete_orphan_inode(struct btrfs_trans_handle *trans,
3835 struct btrfs_root *root, u64 objectid)
3836{
3837 struct btrfs_path *path;
3838 struct btrfs_key key;
3839 int ret = 0;
3840
3841 path = btrfs_alloc_path();
3842 if (!path) {
3843 ret = -ENOMEM;
3844 goto out;
3845 }
3846
3847 key.objectid = objectid;
3848 key.type = BTRFS_INODE_ITEM_KEY;
3849 key.offset = 0;
3850 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3851 if (ret) {
3852 if (ret > 0)
3853 ret = -ENOENT;
3854 goto out;
3855 }
3856 ret = btrfs_del_item(trans, root, path);
3857out:
3858 if (ret)
3859 btrfs_abort_transaction(trans, ret);
3860 btrfs_free_path(path);
3861}
3862
3863/*
3864 * helper to create inode for data relocation.
3865 * the inode is in data relocation tree and its link count is 0
3866 */
3867static noinline_for_stack
3868struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
3869 struct btrfs_block_group *group)
3870{
3871 struct inode *inode = NULL;
3872 struct btrfs_trans_handle *trans;
3873 struct btrfs_root *root;
3874 u64 objectid;
3875 int err = 0;
3876
3877 root = btrfs_grab_root(fs_info->data_reloc_root);
3878 trans = btrfs_start_transaction(root, 6);
3879 if (IS_ERR(trans)) {
3880 btrfs_put_root(root);
3881 return ERR_CAST(trans);
3882 }
3883
3884 err = btrfs_get_free_objectid(root, &objectid);
3885 if (err)
3886 goto out;
3887
3888 err = __insert_orphan_inode(trans, root, objectid);
3889 if (err)
3890 goto out;
3891
3892 inode = btrfs_iget(fs_info->sb, objectid, root);
3893 if (IS_ERR(inode)) {
3894 delete_orphan_inode(trans, root, objectid);
3895 err = PTR_ERR(inode);
3896 inode = NULL;
3897 goto out;
3898 }
3899 BTRFS_I(inode)->index_cnt = group->start;
3900
3901 err = btrfs_orphan_add(trans, BTRFS_I(inode));
3902out:
3903 btrfs_put_root(root);
3904 btrfs_end_transaction(trans);
3905 btrfs_btree_balance_dirty(fs_info);
3906 if (err) {
3907 iput(inode);
3908 inode = ERR_PTR(err);
3909 }
3910 return inode;
3911}
3912
3913/*
3914 * Mark start of chunk relocation that is cancellable. Check if the cancellation
3915 * has been requested meanwhile and don't start in that case.
3916 *
3917 * Return:
3918 * 0 success
3919 * -EINPROGRESS operation is already in progress, that's probably a bug
3920 * -ECANCELED cancellation request was set before the operation started
3921 */
3922static int reloc_chunk_start(struct btrfs_fs_info *fs_info)
3923{
3924 if (test_and_set_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) {
3925 /* This should not happen */
3926 btrfs_err(fs_info, "reloc already running, cannot start");
3927 return -EINPROGRESS;
3928 }
3929
3930 if (atomic_read(&fs_info->reloc_cancel_req) > 0) {
3931 btrfs_info(fs_info, "chunk relocation canceled on start");
3932 /*
3933 * On cancel, clear all requests but let the caller mark
3934 * the end after cleanup operations.
3935 */
3936 atomic_set(&fs_info->reloc_cancel_req, 0);
3937 return -ECANCELED;
3938 }
3939 return 0;
3940}
3941
3942/*
3943 * Mark end of chunk relocation that is cancellable and wake any waiters.
3944 */
3945static void reloc_chunk_end(struct btrfs_fs_info *fs_info)
3946{
3947 /* Requested after start, clear bit first so any waiters can continue */
3948 if (atomic_read(&fs_info->reloc_cancel_req) > 0)
3949 btrfs_info(fs_info, "chunk relocation canceled during operation");
3950 clear_and_wake_up_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags);
3951 atomic_set(&fs_info->reloc_cancel_req, 0);
3952}
3953
3954static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
3955{
3956 struct reloc_control *rc;
3957
3958 rc = kzalloc(sizeof(*rc), GFP_NOFS);
3959 if (!rc)
3960 return NULL;
3961
3962 INIT_LIST_HEAD(&rc->reloc_roots);
3963 INIT_LIST_HEAD(&rc->dirty_subvol_roots);
3964 btrfs_backref_init_cache(fs_info, &rc->backref_cache, 1);
3965 mapping_tree_init(&rc->reloc_root_tree);
3966 extent_io_tree_init(fs_info, &rc->processed_blocks, IO_TREE_RELOC_BLOCKS);
3967 return rc;
3968}
3969
3970static void free_reloc_control(struct reloc_control *rc)
3971{
3972 struct mapping_node *node, *tmp;
3973
3974 free_reloc_roots(&rc->reloc_roots);
3975 rbtree_postorder_for_each_entry_safe(node, tmp,
3976 &rc->reloc_root_tree.rb_root, rb_node)
3977 kfree(node);
3978
3979 kfree(rc);
3980}
3981
3982/*
3983 * Print the block group being relocated
3984 */
3985static void describe_relocation(struct btrfs_fs_info *fs_info,
3986 struct btrfs_block_group *block_group)
3987{
3988 char buf[128] = {'\0'};
3989
3990 btrfs_describe_block_groups(block_group->flags, buf, sizeof(buf));
3991
3992 btrfs_info(fs_info,
3993 "relocating block group %llu flags %s",
3994 block_group->start, buf);
3995}
3996
3997static const char *stage_to_string(int stage)
3998{
3999 if (stage == MOVE_DATA_EXTENTS)
4000 return "move data extents";
4001 if (stage == UPDATE_DATA_PTRS)
4002 return "update data pointers";
4003 return "unknown";
4004}
4005
4006/*
4007 * function to relocate all extents in a block group.
4008 */
4009int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start)
4010{
4011 struct btrfs_block_group *bg;
4012 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, group_start);
4013 struct reloc_control *rc;
4014 struct inode *inode;
4015 struct btrfs_path *path;
4016 int ret;
4017 int rw = 0;
4018 int err = 0;
4019
4020 /*
4021 * This only gets set if we had a half-deleted snapshot on mount. We
4022 * cannot allow relocation to start while we're still trying to clean up
4023 * these pending deletions.
4024 */
4025 ret = wait_on_bit(&fs_info->flags, BTRFS_FS_UNFINISHED_DROPS, TASK_INTERRUPTIBLE);
4026 if (ret)
4027 return ret;
4028
4029 /* We may have been woken up by close_ctree, so bail if we're closing. */
4030 if (btrfs_fs_closing(fs_info))
4031 return -EINTR;
4032
4033 bg = btrfs_lookup_block_group(fs_info, group_start);
4034 if (!bg)
4035 return -ENOENT;
4036
4037 /*
4038 * Relocation of a data block group creates ordered extents. Without
4039 * sb_start_write(), we can freeze the filesystem while unfinished
4040 * ordered extents are left. Such ordered extents can cause a deadlock
4041 * e.g. when syncfs() is waiting for their completion but they can't
4042 * finish because they block when joining a transaction, due to the
4043 * fact that the freeze locks are being held in write mode.
4044 */
4045 if (bg->flags & BTRFS_BLOCK_GROUP_DATA)
4046 ASSERT(sb_write_started(fs_info->sb));
4047
4048 if (btrfs_pinned_by_swapfile(fs_info, bg)) {
4049 btrfs_put_block_group(bg);
4050 return -ETXTBSY;
4051 }
4052
4053 rc = alloc_reloc_control(fs_info);
4054 if (!rc) {
4055 btrfs_put_block_group(bg);
4056 return -ENOMEM;
4057 }
4058
4059 ret = reloc_chunk_start(fs_info);
4060 if (ret < 0) {
4061 err = ret;
4062 goto out_put_bg;
4063 }
4064
4065 rc->extent_root = extent_root;
4066 rc->block_group = bg;
4067
4068 ret = btrfs_inc_block_group_ro(rc->block_group, true);
4069 if (ret) {
4070 err = ret;
4071 goto out;
4072 }
4073 rw = 1;
4074
4075 path = btrfs_alloc_path();
4076 if (!path) {
4077 err = -ENOMEM;
4078 goto out;
4079 }
4080
4081 inode = lookup_free_space_inode(rc->block_group, path);
4082 btrfs_free_path(path);
4083
4084 if (!IS_ERR(inode))
4085 ret = delete_block_group_cache(fs_info, rc->block_group, inode, 0);
4086 else
4087 ret = PTR_ERR(inode);
4088
4089 if (ret && ret != -ENOENT) {
4090 err = ret;
4091 goto out;
4092 }
4093
4094 rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4095 if (IS_ERR(rc->data_inode)) {
4096 err = PTR_ERR(rc->data_inode);
4097 rc->data_inode = NULL;
4098 goto out;
4099 }
4100
4101 describe_relocation(fs_info, rc->block_group);
4102
4103 btrfs_wait_block_group_reservations(rc->block_group);
4104 btrfs_wait_nocow_writers(rc->block_group);
4105 btrfs_wait_ordered_roots(fs_info, U64_MAX,
4106 rc->block_group->start,
4107 rc->block_group->length);
4108
4109 ret = btrfs_zone_finish(rc->block_group);
4110 WARN_ON(ret && ret != -EAGAIN);
4111
4112 while (1) {
4113 int finishes_stage;
4114
4115 mutex_lock(&fs_info->cleaner_mutex);
4116 ret = relocate_block_group(rc);
4117 mutex_unlock(&fs_info->cleaner_mutex);
4118 if (ret < 0)
4119 err = ret;
4120
4121 finishes_stage = rc->stage;
4122 /*
4123 * We may have gotten ENOSPC after we already dirtied some
4124 * extents. If writeout happens while we're relocating a
4125 * different block group we could end up hitting the
4126 * BUG_ON(rc->stage == UPDATE_DATA_PTRS) in
4127 * btrfs_reloc_cow_block. Make sure we write everything out
4128 * properly so we don't trip over this problem, and then break
4129 * out of the loop if we hit an error.
4130 */
4131 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4132 ret = btrfs_wait_ordered_range(rc->data_inode, 0,
4133 (u64)-1);
4134 if (ret)
4135 err = ret;
4136 invalidate_mapping_pages(rc->data_inode->i_mapping,
4137 0, -1);
4138 rc->stage = UPDATE_DATA_PTRS;
4139 }
4140
4141 if (err < 0)
4142 goto out;
4143
4144 if (rc->extents_found == 0)
4145 break;
4146
4147 btrfs_info(fs_info, "found %llu extents, stage: %s",
4148 rc->extents_found, stage_to_string(finishes_stage));
4149 }
4150
4151 WARN_ON(rc->block_group->pinned > 0);
4152 WARN_ON(rc->block_group->reserved > 0);
4153 WARN_ON(rc->block_group->used > 0);
4154out:
4155 if (err && rw)
4156 btrfs_dec_block_group_ro(rc->block_group);
4157 iput(rc->data_inode);
4158out_put_bg:
4159 btrfs_put_block_group(bg);
4160 reloc_chunk_end(fs_info);
4161 free_reloc_control(rc);
4162 return err;
4163}
4164
4165static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4166{
4167 struct btrfs_fs_info *fs_info = root->fs_info;
4168 struct btrfs_trans_handle *trans;
4169 int ret, err;
4170
4171 trans = btrfs_start_transaction(fs_info->tree_root, 0);
4172 if (IS_ERR(trans))
4173 return PTR_ERR(trans);
4174
4175 memset(&root->root_item.drop_progress, 0,
4176 sizeof(root->root_item.drop_progress));
4177 btrfs_set_root_drop_level(&root->root_item, 0);
4178 btrfs_set_root_refs(&root->root_item, 0);
4179 ret = btrfs_update_root(trans, fs_info->tree_root,
4180 &root->root_key, &root->root_item);
4181
4182 err = btrfs_end_transaction(trans);
4183 if (err)
4184 return err;
4185 return ret;
4186}
4187
4188/*
4189 * recover relocation interrupted by system crash.
4190 *
4191 * this function resumes merging reloc trees with corresponding fs trees.
4192 * this is important for keeping the sharing of tree blocks
4193 */
4194int btrfs_recover_relocation(struct btrfs_fs_info *fs_info)
4195{
4196 LIST_HEAD(reloc_roots);
4197 struct btrfs_key key;
4198 struct btrfs_root *fs_root;
4199 struct btrfs_root *reloc_root;
4200 struct btrfs_path *path;
4201 struct extent_buffer *leaf;
4202 struct reloc_control *rc = NULL;
4203 struct btrfs_trans_handle *trans;
4204 int ret;
4205 int err = 0;
4206
4207 path = btrfs_alloc_path();
4208 if (!path)
4209 return -ENOMEM;
4210 path->reada = READA_BACK;
4211
4212 key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4213 key.type = BTRFS_ROOT_ITEM_KEY;
4214 key.offset = (u64)-1;
4215
4216 while (1) {
4217 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key,
4218 path, 0, 0);
4219 if (ret < 0) {
4220 err = ret;
4221 goto out;
4222 }
4223 if (ret > 0) {
4224 if (path->slots[0] == 0)
4225 break;
4226 path->slots[0]--;
4227 }
4228 leaf = path->nodes[0];
4229 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4230 btrfs_release_path(path);
4231
4232 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4233 key.type != BTRFS_ROOT_ITEM_KEY)
4234 break;
4235
4236 reloc_root = btrfs_read_tree_root(fs_info->tree_root, &key);
4237 if (IS_ERR(reloc_root)) {
4238 err = PTR_ERR(reloc_root);
4239 goto out;
4240 }
4241
4242 set_bit(BTRFS_ROOT_SHAREABLE, &reloc_root->state);
4243 list_add(&reloc_root->root_list, &reloc_roots);
4244
4245 if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4246 fs_root = btrfs_get_fs_root(fs_info,
4247 reloc_root->root_key.offset, false);
4248 if (IS_ERR(fs_root)) {
4249 ret = PTR_ERR(fs_root);
4250 if (ret != -ENOENT) {
4251 err = ret;
4252 goto out;
4253 }
4254 ret = mark_garbage_root(reloc_root);
4255 if (ret < 0) {
4256 err = ret;
4257 goto out;
4258 }
4259 } else {
4260 btrfs_put_root(fs_root);
4261 }
4262 }
4263
4264 if (key.offset == 0)
4265 break;
4266
4267 key.offset--;
4268 }
4269 btrfs_release_path(path);
4270
4271 if (list_empty(&reloc_roots))
4272 goto out;
4273
4274 rc = alloc_reloc_control(fs_info);
4275 if (!rc) {
4276 err = -ENOMEM;
4277 goto out;
4278 }
4279
4280 ret = reloc_chunk_start(fs_info);
4281 if (ret < 0) {
4282 err = ret;
4283 goto out_end;
4284 }
4285
4286 rc->extent_root = btrfs_extent_root(fs_info, 0);
4287
4288 set_reloc_control(rc);
4289
4290 trans = btrfs_join_transaction(rc->extent_root);
4291 if (IS_ERR(trans)) {
4292 err = PTR_ERR(trans);
4293 goto out_unset;
4294 }
4295
4296 rc->merge_reloc_tree = 1;
4297
4298 while (!list_empty(&reloc_roots)) {
4299 reloc_root = list_entry(reloc_roots.next,
4300 struct btrfs_root, root_list);
4301 list_del(&reloc_root->root_list);
4302
4303 if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4304 list_add_tail(&reloc_root->root_list,
4305 &rc->reloc_roots);
4306 continue;
4307 }
4308
4309 fs_root = btrfs_get_fs_root(fs_info, reloc_root->root_key.offset,
4310 false);
4311 if (IS_ERR(fs_root)) {
4312 err = PTR_ERR(fs_root);
4313 list_add_tail(&reloc_root->root_list, &reloc_roots);
4314 btrfs_end_transaction(trans);
4315 goto out_unset;
4316 }
4317
4318 err = __add_reloc_root(reloc_root);
4319 ASSERT(err != -EEXIST);
4320 if (err) {
4321 list_add_tail(&reloc_root->root_list, &reloc_roots);
4322 btrfs_put_root(fs_root);
4323 btrfs_end_transaction(trans);
4324 goto out_unset;
4325 }
4326 fs_root->reloc_root = btrfs_grab_root(reloc_root);
4327 btrfs_put_root(fs_root);
4328 }
4329
4330 err = btrfs_commit_transaction(trans);
4331 if (err)
4332 goto out_unset;
4333
4334 merge_reloc_roots(rc);
4335
4336 unset_reloc_control(rc);
4337
4338 trans = btrfs_join_transaction(rc->extent_root);
4339 if (IS_ERR(trans)) {
4340 err = PTR_ERR(trans);
4341 goto out_clean;
4342 }
4343 err = btrfs_commit_transaction(trans);
4344out_clean:
4345 ret = clean_dirty_subvols(rc);
4346 if (ret < 0 && !err)
4347 err = ret;
4348out_unset:
4349 unset_reloc_control(rc);
4350out_end:
4351 reloc_chunk_end(fs_info);
4352 free_reloc_control(rc);
4353out:
4354 free_reloc_roots(&reloc_roots);
4355
4356 btrfs_free_path(path);
4357
4358 if (err == 0) {
4359 /* cleanup orphan inode in data relocation tree */
4360 fs_root = btrfs_grab_root(fs_info->data_reloc_root);
4361 ASSERT(fs_root);
4362 err = btrfs_orphan_cleanup(fs_root);
4363 btrfs_put_root(fs_root);
4364 }
4365 return err;
4366}
4367
4368/*
4369 * helper to add ordered checksum for data relocation.
4370 *
4371 * cloning checksum properly handles the nodatasum extents.
4372 * it also saves CPU time to re-calculate the checksum.
4373 */
4374int btrfs_reloc_clone_csums(struct btrfs_ordered_extent *ordered)
4375{
4376 struct btrfs_inode *inode = BTRFS_I(ordered->inode);
4377 struct btrfs_fs_info *fs_info = inode->root->fs_info;
4378 u64 disk_bytenr = ordered->file_offset + inode->index_cnt;
4379 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, disk_bytenr);
4380 LIST_HEAD(list);
4381 int ret;
4382
4383 ret = btrfs_lookup_csums_list(csum_root, disk_bytenr,
4384 disk_bytenr + ordered->num_bytes - 1,
4385 &list, 0, false);
4386 if (ret)
4387 return ret;
4388
4389 while (!list_empty(&list)) {
4390 struct btrfs_ordered_sum *sums =
4391 list_entry(list.next, struct btrfs_ordered_sum, list);
4392
4393 list_del_init(&sums->list);
4394
4395 /*
4396 * We need to offset the new_bytenr based on where the csum is.
4397 * We need to do this because we will read in entire prealloc
4398 * extents but we may have written to say the middle of the
4399 * prealloc extent, so we need to make sure the csum goes with
4400 * the right disk offset.
4401 *
4402 * We can do this because the data reloc inode refers strictly
4403 * to the on disk bytes, so we don't have to worry about
4404 * disk_len vs real len like with real inodes since it's all
4405 * disk length.
4406 */
4407 sums->logical = ordered->disk_bytenr + sums->logical - disk_bytenr;
4408 btrfs_add_ordered_sum(ordered, sums);
4409 }
4410
4411 return 0;
4412}
4413
4414int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4415 struct btrfs_root *root, struct extent_buffer *buf,
4416 struct extent_buffer *cow)
4417{
4418 struct btrfs_fs_info *fs_info = root->fs_info;
4419 struct reloc_control *rc;
4420 struct btrfs_backref_node *node;
4421 int first_cow = 0;
4422 int level;
4423 int ret = 0;
4424
4425 rc = fs_info->reloc_ctl;
4426 if (!rc)
4427 return 0;
4428
4429 BUG_ON(rc->stage == UPDATE_DATA_PTRS && btrfs_is_data_reloc_root(root));
4430
4431 level = btrfs_header_level(buf);
4432 if (btrfs_header_generation(buf) <=
4433 btrfs_root_last_snapshot(&root->root_item))
4434 first_cow = 1;
4435
4436 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4437 rc->create_reloc_tree) {
4438 WARN_ON(!first_cow && level == 0);
4439
4440 node = rc->backref_cache.path[level];
4441 BUG_ON(node->bytenr != buf->start &&
4442 node->new_bytenr != buf->start);
4443
4444 btrfs_backref_drop_node_buffer(node);
4445 atomic_inc(&cow->refs);
4446 node->eb = cow;
4447 node->new_bytenr = cow->start;
4448
4449 if (!node->pending) {
4450 list_move_tail(&node->list,
4451 &rc->backref_cache.pending[level]);
4452 node->pending = 1;
4453 }
4454
4455 if (first_cow)
4456 mark_block_processed(rc, node);
4457
4458 if (first_cow && level > 0)
4459 rc->nodes_relocated += buf->len;
4460 }
4461
4462 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS)
4463 ret = replace_file_extents(trans, rc, root, cow);
4464 return ret;
4465}
4466
4467/*
4468 * called before creating snapshot. it calculates metadata reservation
4469 * required for relocating tree blocks in the snapshot
4470 */
4471void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
4472 u64 *bytes_to_reserve)
4473{
4474 struct btrfs_root *root = pending->root;
4475 struct reloc_control *rc = root->fs_info->reloc_ctl;
4476
4477 if (!rc || !have_reloc_root(root))
4478 return;
4479
4480 if (!rc->merge_reloc_tree)
4481 return;
4482
4483 root = root->reloc_root;
4484 BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4485 /*
4486 * relocation is in the stage of merging trees. the space
4487 * used by merging a reloc tree is twice the size of
4488 * relocated tree nodes in the worst case. half for cowing
4489 * the reloc tree, half for cowing the fs tree. the space
4490 * used by cowing the reloc tree will be freed after the
4491 * tree is dropped. if we create snapshot, cowing the fs
4492 * tree may use more space than it frees. so we need
4493 * reserve extra space.
4494 */
4495 *bytes_to_reserve += rc->nodes_relocated;
4496}
4497
4498/*
4499 * called after snapshot is created. migrate block reservation
4500 * and create reloc root for the newly created snapshot
4501 *
4502 * This is similar to btrfs_init_reloc_root(), we come out of here with two
4503 * references held on the reloc_root, one for root->reloc_root and one for
4504 * rc->reloc_roots.
4505 */
4506int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4507 struct btrfs_pending_snapshot *pending)
4508{
4509 struct btrfs_root *root = pending->root;
4510 struct btrfs_root *reloc_root;
4511 struct btrfs_root *new_root;
4512 struct reloc_control *rc = root->fs_info->reloc_ctl;
4513 int ret;
4514
4515 if (!rc || !have_reloc_root(root))
4516 return 0;
4517
4518 rc = root->fs_info->reloc_ctl;
4519 rc->merging_rsv_size += rc->nodes_relocated;
4520
4521 if (rc->merge_reloc_tree) {
4522 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4523 rc->block_rsv,
4524 rc->nodes_relocated, true);
4525 if (ret)
4526 return ret;
4527 }
4528
4529 new_root = pending->snap;
4530 reloc_root = create_reloc_root(trans, root->reloc_root,
4531 new_root->root_key.objectid);
4532 if (IS_ERR(reloc_root))
4533 return PTR_ERR(reloc_root);
4534
4535 ret = __add_reloc_root(reloc_root);
4536 ASSERT(ret != -EEXIST);
4537 if (ret) {
4538 /* Pairs with create_reloc_root */
4539 btrfs_put_root(reloc_root);
4540 return ret;
4541 }
4542 new_root->reloc_root = btrfs_grab_root(reloc_root);
4543
4544 if (rc->create_reloc_tree)
4545 ret = clone_backref_node(trans, rc, root, reloc_root);
4546 return ret;
4547}
4548
4549/*
4550 * Get the current bytenr for the block group which is being relocated.
4551 *
4552 * Return U64_MAX if no running relocation.
4553 */
4554u64 btrfs_get_reloc_bg_bytenr(struct btrfs_fs_info *fs_info)
4555{
4556 u64 logical = U64_MAX;
4557
4558 lockdep_assert_held(&fs_info->reloc_mutex);
4559
4560 if (fs_info->reloc_ctl && fs_info->reloc_ctl->block_group)
4561 logical = fs_info->reloc_ctl->block_group->start;
4562 return logical;
4563}