Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Routines having to do with the 'struct sk_buff' memory handlers.
4 *
5 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
6 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 *
8 * Fixes:
9 * Alan Cox : Fixed the worst of the load
10 * balancer bugs.
11 * Dave Platt : Interrupt stacking fix.
12 * Richard Kooijman : Timestamp fixes.
13 * Alan Cox : Changed buffer format.
14 * Alan Cox : destructor hook for AF_UNIX etc.
15 * Linus Torvalds : Better skb_clone.
16 * Alan Cox : Added skb_copy.
17 * Alan Cox : Added all the changed routines Linus
18 * only put in the headers
19 * Ray VanTassle : Fixed --skb->lock in free
20 * Alan Cox : skb_copy copy arp field
21 * Andi Kleen : slabified it.
22 * Robert Olsson : Removed skb_head_pool
23 *
24 * NOTE:
25 * The __skb_ routines should be called with interrupts
26 * disabled, or you better be *real* sure that the operation is atomic
27 * with respect to whatever list is being frobbed (e.g. via lock_sock()
28 * or via disabling bottom half handlers, etc).
29 */
30
31/*
32 * The functions in this file will not compile correctly with gcc 2.4.x
33 */
34
35#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
36
37#include <linux/module.h>
38#include <linux/types.h>
39#include <linux/kernel.h>
40#include <linux/mm.h>
41#include <linux/interrupt.h>
42#include <linux/in.h>
43#include <linux/inet.h>
44#include <linux/slab.h>
45#include <linux/tcp.h>
46#include <linux/udp.h>
47#include <linux/sctp.h>
48#include <linux/netdevice.h>
49#ifdef CONFIG_NET_CLS_ACT
50#include <net/pkt_sched.h>
51#endif
52#include <linux/string.h>
53#include <linux/skbuff.h>
54#include <linux/splice.h>
55#include <linux/cache.h>
56#include <linux/rtnetlink.h>
57#include <linux/init.h>
58#include <linux/scatterlist.h>
59#include <linux/errqueue.h>
60#include <linux/prefetch.h>
61#include <linux/bitfield.h>
62#include <linux/if_vlan.h>
63#include <linux/mpls.h>
64#include <linux/kcov.h>
65
66#include <net/protocol.h>
67#include <net/dst.h>
68#include <net/sock.h>
69#include <net/checksum.h>
70#include <net/gso.h>
71#include <net/ip6_checksum.h>
72#include <net/xfrm.h>
73#include <net/mpls.h>
74#include <net/mptcp.h>
75#include <net/mctp.h>
76#include <net/page_pool.h>
77#include <net/dropreason.h>
78
79#include <linux/uaccess.h>
80#include <trace/events/skb.h>
81#include <linux/highmem.h>
82#include <linux/capability.h>
83#include <linux/user_namespace.h>
84#include <linux/indirect_call_wrapper.h>
85#include <linux/textsearch.h>
86
87#include "dev.h"
88#include "sock_destructor.h"
89
90struct kmem_cache *skbuff_cache __ro_after_init;
91static struct kmem_cache *skbuff_fclone_cache __ro_after_init;
92#ifdef CONFIG_SKB_EXTENSIONS
93static struct kmem_cache *skbuff_ext_cache __ro_after_init;
94#endif
95
96
97static struct kmem_cache *skb_small_head_cache __ro_after_init;
98
99#define SKB_SMALL_HEAD_SIZE SKB_HEAD_ALIGN(MAX_TCP_HEADER)
100
101/* We want SKB_SMALL_HEAD_CACHE_SIZE to not be a power of two.
102 * This should ensure that SKB_SMALL_HEAD_HEADROOM is a unique
103 * size, and we can differentiate heads from skb_small_head_cache
104 * vs system slabs by looking at their size (skb_end_offset()).
105 */
106#define SKB_SMALL_HEAD_CACHE_SIZE \
107 (is_power_of_2(SKB_SMALL_HEAD_SIZE) ? \
108 (SKB_SMALL_HEAD_SIZE + L1_CACHE_BYTES) : \
109 SKB_SMALL_HEAD_SIZE)
110
111#define SKB_SMALL_HEAD_HEADROOM \
112 SKB_WITH_OVERHEAD(SKB_SMALL_HEAD_CACHE_SIZE)
113
114int sysctl_max_skb_frags __read_mostly = MAX_SKB_FRAGS;
115EXPORT_SYMBOL(sysctl_max_skb_frags);
116
117#undef FN
118#define FN(reason) [SKB_DROP_REASON_##reason] = #reason,
119static const char * const drop_reasons[] = {
120 [SKB_CONSUMED] = "CONSUMED",
121 DEFINE_DROP_REASON(FN, FN)
122};
123
124static const struct drop_reason_list drop_reasons_core = {
125 .reasons = drop_reasons,
126 .n_reasons = ARRAY_SIZE(drop_reasons),
127};
128
129const struct drop_reason_list __rcu *
130drop_reasons_by_subsys[SKB_DROP_REASON_SUBSYS_NUM] = {
131 [SKB_DROP_REASON_SUBSYS_CORE] = RCU_INITIALIZER(&drop_reasons_core),
132};
133EXPORT_SYMBOL(drop_reasons_by_subsys);
134
135/**
136 * drop_reasons_register_subsys - register another drop reason subsystem
137 * @subsys: the subsystem to register, must not be the core
138 * @list: the list of drop reasons within the subsystem, must point to
139 * a statically initialized list
140 */
141void drop_reasons_register_subsys(enum skb_drop_reason_subsys subsys,
142 const struct drop_reason_list *list)
143{
144 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
145 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
146 "invalid subsystem %d\n", subsys))
147 return;
148
149 /* must point to statically allocated memory, so INIT is OK */
150 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], list);
151}
152EXPORT_SYMBOL_GPL(drop_reasons_register_subsys);
153
154/**
155 * drop_reasons_unregister_subsys - unregister a drop reason subsystem
156 * @subsys: the subsystem to remove, must not be the core
157 *
158 * Note: This will synchronize_rcu() to ensure no users when it returns.
159 */
160void drop_reasons_unregister_subsys(enum skb_drop_reason_subsys subsys)
161{
162 if (WARN(subsys <= SKB_DROP_REASON_SUBSYS_CORE ||
163 subsys >= ARRAY_SIZE(drop_reasons_by_subsys),
164 "invalid subsystem %d\n", subsys))
165 return;
166
167 RCU_INIT_POINTER(drop_reasons_by_subsys[subsys], NULL);
168
169 synchronize_rcu();
170}
171EXPORT_SYMBOL_GPL(drop_reasons_unregister_subsys);
172
173/**
174 * skb_panic - private function for out-of-line support
175 * @skb: buffer
176 * @sz: size
177 * @addr: address
178 * @msg: skb_over_panic or skb_under_panic
179 *
180 * Out-of-line support for skb_put() and skb_push().
181 * Called via the wrapper skb_over_panic() or skb_under_panic().
182 * Keep out of line to prevent kernel bloat.
183 * __builtin_return_address is not used because it is not always reliable.
184 */
185static void skb_panic(struct sk_buff *skb, unsigned int sz, void *addr,
186 const char msg[])
187{
188 pr_emerg("%s: text:%px len:%d put:%d head:%px data:%px tail:%#lx end:%#lx dev:%s\n",
189 msg, addr, skb->len, sz, skb->head, skb->data,
190 (unsigned long)skb->tail, (unsigned long)skb->end,
191 skb->dev ? skb->dev->name : "<NULL>");
192 BUG();
193}
194
195static void skb_over_panic(struct sk_buff *skb, unsigned int sz, void *addr)
196{
197 skb_panic(skb, sz, addr, __func__);
198}
199
200static void skb_under_panic(struct sk_buff *skb, unsigned int sz, void *addr)
201{
202 skb_panic(skb, sz, addr, __func__);
203}
204
205#define NAPI_SKB_CACHE_SIZE 64
206#define NAPI_SKB_CACHE_BULK 16
207#define NAPI_SKB_CACHE_HALF (NAPI_SKB_CACHE_SIZE / 2)
208
209#if PAGE_SIZE == SZ_4K
210
211#define NAPI_HAS_SMALL_PAGE_FRAG 1
212#define NAPI_SMALL_PAGE_PFMEMALLOC(nc) ((nc).pfmemalloc)
213
214/* specialized page frag allocator using a single order 0 page
215 * and slicing it into 1K sized fragment. Constrained to systems
216 * with a very limited amount of 1K fragments fitting a single
217 * page - to avoid excessive truesize underestimation
218 */
219
220struct page_frag_1k {
221 void *va;
222 u16 offset;
223 bool pfmemalloc;
224};
225
226static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp)
227{
228 struct page *page;
229 int offset;
230
231 offset = nc->offset - SZ_1K;
232 if (likely(offset >= 0))
233 goto use_frag;
234
235 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
236 if (!page)
237 return NULL;
238
239 nc->va = page_address(page);
240 nc->pfmemalloc = page_is_pfmemalloc(page);
241 offset = PAGE_SIZE - SZ_1K;
242 page_ref_add(page, offset / SZ_1K);
243
244use_frag:
245 nc->offset = offset;
246 return nc->va + offset;
247}
248#else
249
250/* the small page is actually unused in this build; add dummy helpers
251 * to please the compiler and avoid later preprocessor's conditionals
252 */
253#define NAPI_HAS_SMALL_PAGE_FRAG 0
254#define NAPI_SMALL_PAGE_PFMEMALLOC(nc) false
255
256struct page_frag_1k {
257};
258
259static void *page_frag_alloc_1k(struct page_frag_1k *nc, gfp_t gfp_mask)
260{
261 return NULL;
262}
263
264#endif
265
266struct napi_alloc_cache {
267 struct page_frag_cache page;
268 struct page_frag_1k page_small;
269 unsigned int skb_count;
270 void *skb_cache[NAPI_SKB_CACHE_SIZE];
271};
272
273static DEFINE_PER_CPU(struct page_frag_cache, netdev_alloc_cache);
274static DEFINE_PER_CPU(struct napi_alloc_cache, napi_alloc_cache);
275
276/* Double check that napi_get_frags() allocates skbs with
277 * skb->head being backed by slab, not a page fragment.
278 * This is to make sure bug fixed in 3226b158e67c
279 * ("net: avoid 32 x truesize under-estimation for tiny skbs")
280 * does not accidentally come back.
281 */
282void napi_get_frags_check(struct napi_struct *napi)
283{
284 struct sk_buff *skb;
285
286 local_bh_disable();
287 skb = napi_get_frags(napi);
288 WARN_ON_ONCE(!NAPI_HAS_SMALL_PAGE_FRAG && skb && skb->head_frag);
289 napi_free_frags(napi);
290 local_bh_enable();
291}
292
293void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
294{
295 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
296
297 fragsz = SKB_DATA_ALIGN(fragsz);
298
299 return page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
300}
301EXPORT_SYMBOL(__napi_alloc_frag_align);
302
303void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask)
304{
305 void *data;
306
307 fragsz = SKB_DATA_ALIGN(fragsz);
308 if (in_hardirq() || irqs_disabled()) {
309 struct page_frag_cache *nc = this_cpu_ptr(&netdev_alloc_cache);
310
311 data = page_frag_alloc_align(nc, fragsz, GFP_ATOMIC, align_mask);
312 } else {
313 struct napi_alloc_cache *nc;
314
315 local_bh_disable();
316 nc = this_cpu_ptr(&napi_alloc_cache);
317 data = page_frag_alloc_align(&nc->page, fragsz, GFP_ATOMIC, align_mask);
318 local_bh_enable();
319 }
320 return data;
321}
322EXPORT_SYMBOL(__netdev_alloc_frag_align);
323
324static struct sk_buff *napi_skb_cache_get(void)
325{
326 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
327 struct sk_buff *skb;
328
329 if (unlikely(!nc->skb_count)) {
330 nc->skb_count = kmem_cache_alloc_bulk(skbuff_cache,
331 GFP_ATOMIC,
332 NAPI_SKB_CACHE_BULK,
333 nc->skb_cache);
334 if (unlikely(!nc->skb_count))
335 return NULL;
336 }
337
338 skb = nc->skb_cache[--nc->skb_count];
339 kasan_unpoison_object_data(skbuff_cache, skb);
340
341 return skb;
342}
343
344static inline void __finalize_skb_around(struct sk_buff *skb, void *data,
345 unsigned int size)
346{
347 struct skb_shared_info *shinfo;
348
349 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
350
351 /* Assumes caller memset cleared SKB */
352 skb->truesize = SKB_TRUESIZE(size);
353 refcount_set(&skb->users, 1);
354 skb->head = data;
355 skb->data = data;
356 skb_reset_tail_pointer(skb);
357 skb_set_end_offset(skb, size);
358 skb->mac_header = (typeof(skb->mac_header))~0U;
359 skb->transport_header = (typeof(skb->transport_header))~0U;
360 skb->alloc_cpu = raw_smp_processor_id();
361 /* make sure we initialize shinfo sequentially */
362 shinfo = skb_shinfo(skb);
363 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
364 atomic_set(&shinfo->dataref, 1);
365
366 skb_set_kcov_handle(skb, kcov_common_handle());
367}
368
369static inline void *__slab_build_skb(struct sk_buff *skb, void *data,
370 unsigned int *size)
371{
372 void *resized;
373
374 /* Must find the allocation size (and grow it to match). */
375 *size = ksize(data);
376 /* krealloc() will immediately return "data" when
377 * "ksize(data)" is requested: it is the existing upper
378 * bounds. As a result, GFP_ATOMIC will be ignored. Note
379 * that this "new" pointer needs to be passed back to the
380 * caller for use so the __alloc_size hinting will be
381 * tracked correctly.
382 */
383 resized = krealloc(data, *size, GFP_ATOMIC);
384 WARN_ON_ONCE(resized != data);
385 return resized;
386}
387
388/* build_skb() variant which can operate on slab buffers.
389 * Note that this should be used sparingly as slab buffers
390 * cannot be combined efficiently by GRO!
391 */
392struct sk_buff *slab_build_skb(void *data)
393{
394 struct sk_buff *skb;
395 unsigned int size;
396
397 skb = kmem_cache_alloc(skbuff_cache, GFP_ATOMIC);
398 if (unlikely(!skb))
399 return NULL;
400
401 memset(skb, 0, offsetof(struct sk_buff, tail));
402 data = __slab_build_skb(skb, data, &size);
403 __finalize_skb_around(skb, data, size);
404
405 return skb;
406}
407EXPORT_SYMBOL(slab_build_skb);
408
409/* Caller must provide SKB that is memset cleared */
410static void __build_skb_around(struct sk_buff *skb, void *data,
411 unsigned int frag_size)
412{
413 unsigned int size = frag_size;
414
415 /* frag_size == 0 is considered deprecated now. Callers
416 * using slab buffer should use slab_build_skb() instead.
417 */
418 if (WARN_ONCE(size == 0, "Use slab_build_skb() instead"))
419 data = __slab_build_skb(skb, data, &size);
420
421 __finalize_skb_around(skb, data, size);
422}
423
424/**
425 * __build_skb - build a network buffer
426 * @data: data buffer provided by caller
427 * @frag_size: size of data (must not be 0)
428 *
429 * Allocate a new &sk_buff. Caller provides space holding head and
430 * skb_shared_info. @data must have been allocated from the page
431 * allocator or vmalloc(). (A @frag_size of 0 to indicate a kmalloc()
432 * allocation is deprecated, and callers should use slab_build_skb()
433 * instead.)
434 * The return is the new skb buffer.
435 * On a failure the return is %NULL, and @data is not freed.
436 * Notes :
437 * Before IO, driver allocates only data buffer where NIC put incoming frame
438 * Driver should add room at head (NET_SKB_PAD) and
439 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
440 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
441 * before giving packet to stack.
442 * RX rings only contains data buffers, not full skbs.
443 */
444struct sk_buff *__build_skb(void *data, unsigned int frag_size)
445{
446 struct sk_buff *skb;
447
448 skb = kmem_cache_alloc(skbuff_cache, GFP_ATOMIC);
449 if (unlikely(!skb))
450 return NULL;
451
452 memset(skb, 0, offsetof(struct sk_buff, tail));
453 __build_skb_around(skb, data, frag_size);
454
455 return skb;
456}
457
458/* build_skb() is wrapper over __build_skb(), that specifically
459 * takes care of skb->head and skb->pfmemalloc
460 */
461struct sk_buff *build_skb(void *data, unsigned int frag_size)
462{
463 struct sk_buff *skb = __build_skb(data, frag_size);
464
465 if (likely(skb && frag_size)) {
466 skb->head_frag = 1;
467 skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
468 }
469 return skb;
470}
471EXPORT_SYMBOL(build_skb);
472
473/**
474 * build_skb_around - build a network buffer around provided skb
475 * @skb: sk_buff provide by caller, must be memset cleared
476 * @data: data buffer provided by caller
477 * @frag_size: size of data
478 */
479struct sk_buff *build_skb_around(struct sk_buff *skb,
480 void *data, unsigned int frag_size)
481{
482 if (unlikely(!skb))
483 return NULL;
484
485 __build_skb_around(skb, data, frag_size);
486
487 if (frag_size) {
488 skb->head_frag = 1;
489 skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
490 }
491 return skb;
492}
493EXPORT_SYMBOL(build_skb_around);
494
495/**
496 * __napi_build_skb - build a network buffer
497 * @data: data buffer provided by caller
498 * @frag_size: size of data
499 *
500 * Version of __build_skb() that uses NAPI percpu caches to obtain
501 * skbuff_head instead of inplace allocation.
502 *
503 * Returns a new &sk_buff on success, %NULL on allocation failure.
504 */
505static struct sk_buff *__napi_build_skb(void *data, unsigned int frag_size)
506{
507 struct sk_buff *skb;
508
509 skb = napi_skb_cache_get();
510 if (unlikely(!skb))
511 return NULL;
512
513 memset(skb, 0, offsetof(struct sk_buff, tail));
514 __build_skb_around(skb, data, frag_size);
515
516 return skb;
517}
518
519/**
520 * napi_build_skb - build a network buffer
521 * @data: data buffer provided by caller
522 * @frag_size: size of data
523 *
524 * Version of __napi_build_skb() that takes care of skb->head_frag
525 * and skb->pfmemalloc when the data is a page or page fragment.
526 *
527 * Returns a new &sk_buff on success, %NULL on allocation failure.
528 */
529struct sk_buff *napi_build_skb(void *data, unsigned int frag_size)
530{
531 struct sk_buff *skb = __napi_build_skb(data, frag_size);
532
533 if (likely(skb) && frag_size) {
534 skb->head_frag = 1;
535 skb_propagate_pfmemalloc(virt_to_head_page(data), skb);
536 }
537
538 return skb;
539}
540EXPORT_SYMBOL(napi_build_skb);
541
542/*
543 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
544 * the caller if emergency pfmemalloc reserves are being used. If it is and
545 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
546 * may be used. Otherwise, the packet data may be discarded until enough
547 * memory is free
548 */
549static void *kmalloc_reserve(unsigned int *size, gfp_t flags, int node,
550 bool *pfmemalloc)
551{
552 bool ret_pfmemalloc = false;
553 unsigned int obj_size;
554 void *obj;
555
556 obj_size = SKB_HEAD_ALIGN(*size);
557 if (obj_size <= SKB_SMALL_HEAD_CACHE_SIZE &&
558 !(flags & KMALLOC_NOT_NORMAL_BITS)) {
559 obj = kmem_cache_alloc_node(skb_small_head_cache,
560 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
561 node);
562 *size = SKB_SMALL_HEAD_CACHE_SIZE;
563 if (obj || !(gfp_pfmemalloc_allowed(flags)))
564 goto out;
565 /* Try again but now we are using pfmemalloc reserves */
566 ret_pfmemalloc = true;
567 obj = kmem_cache_alloc_node(skb_small_head_cache, flags, node);
568 goto out;
569 }
570 *size = obj_size = kmalloc_size_roundup(obj_size);
571 /*
572 * Try a regular allocation, when that fails and we're not entitled
573 * to the reserves, fail.
574 */
575 obj = kmalloc_node_track_caller(obj_size,
576 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
577 node);
578 if (obj || !(gfp_pfmemalloc_allowed(flags)))
579 goto out;
580
581 /* Try again but now we are using pfmemalloc reserves */
582 ret_pfmemalloc = true;
583 obj = kmalloc_node_track_caller(obj_size, flags, node);
584
585out:
586 if (pfmemalloc)
587 *pfmemalloc = ret_pfmemalloc;
588
589 return obj;
590}
591
592/* Allocate a new skbuff. We do this ourselves so we can fill in a few
593 * 'private' fields and also do memory statistics to find all the
594 * [BEEP] leaks.
595 *
596 */
597
598/**
599 * __alloc_skb - allocate a network buffer
600 * @size: size to allocate
601 * @gfp_mask: allocation mask
602 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
603 * instead of head cache and allocate a cloned (child) skb.
604 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
605 * allocations in case the data is required for writeback
606 * @node: numa node to allocate memory on
607 *
608 * Allocate a new &sk_buff. The returned buffer has no headroom and a
609 * tail room of at least size bytes. The object has a reference count
610 * of one. The return is the buffer. On a failure the return is %NULL.
611 *
612 * Buffers may only be allocated from interrupts using a @gfp_mask of
613 * %GFP_ATOMIC.
614 */
615struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
616 int flags, int node)
617{
618 struct kmem_cache *cache;
619 struct sk_buff *skb;
620 bool pfmemalloc;
621 u8 *data;
622
623 cache = (flags & SKB_ALLOC_FCLONE)
624 ? skbuff_fclone_cache : skbuff_cache;
625
626 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
627 gfp_mask |= __GFP_MEMALLOC;
628
629 /* Get the HEAD */
630 if ((flags & (SKB_ALLOC_FCLONE | SKB_ALLOC_NAPI)) == SKB_ALLOC_NAPI &&
631 likely(node == NUMA_NO_NODE || node == numa_mem_id()))
632 skb = napi_skb_cache_get();
633 else
634 skb = kmem_cache_alloc_node(cache, gfp_mask & ~GFP_DMA, node);
635 if (unlikely(!skb))
636 return NULL;
637 prefetchw(skb);
638
639 /* We do our best to align skb_shared_info on a separate cache
640 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
641 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
642 * Both skb->head and skb_shared_info are cache line aligned.
643 */
644 data = kmalloc_reserve(&size, gfp_mask, node, &pfmemalloc);
645 if (unlikely(!data))
646 goto nodata;
647 /* kmalloc_size_roundup() might give us more room than requested.
648 * Put skb_shared_info exactly at the end of allocated zone,
649 * to allow max possible filling before reallocation.
650 */
651 prefetchw(data + SKB_WITH_OVERHEAD(size));
652
653 /*
654 * Only clear those fields we need to clear, not those that we will
655 * actually initialise below. Hence, don't put any more fields after
656 * the tail pointer in struct sk_buff!
657 */
658 memset(skb, 0, offsetof(struct sk_buff, tail));
659 __build_skb_around(skb, data, size);
660 skb->pfmemalloc = pfmemalloc;
661
662 if (flags & SKB_ALLOC_FCLONE) {
663 struct sk_buff_fclones *fclones;
664
665 fclones = container_of(skb, struct sk_buff_fclones, skb1);
666
667 skb->fclone = SKB_FCLONE_ORIG;
668 refcount_set(&fclones->fclone_ref, 1);
669 }
670
671 return skb;
672
673nodata:
674 kmem_cache_free(cache, skb);
675 return NULL;
676}
677EXPORT_SYMBOL(__alloc_skb);
678
679/**
680 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
681 * @dev: network device to receive on
682 * @len: length to allocate
683 * @gfp_mask: get_free_pages mask, passed to alloc_skb
684 *
685 * Allocate a new &sk_buff and assign it a usage count of one. The
686 * buffer has NET_SKB_PAD headroom built in. Users should allocate
687 * the headroom they think they need without accounting for the
688 * built in space. The built in space is used for optimisations.
689 *
690 * %NULL is returned if there is no free memory.
691 */
692struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int len,
693 gfp_t gfp_mask)
694{
695 struct page_frag_cache *nc;
696 struct sk_buff *skb;
697 bool pfmemalloc;
698 void *data;
699
700 len += NET_SKB_PAD;
701
702 /* If requested length is either too small or too big,
703 * we use kmalloc() for skb->head allocation.
704 */
705 if (len <= SKB_WITH_OVERHEAD(1024) ||
706 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
707 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
708 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX, NUMA_NO_NODE);
709 if (!skb)
710 goto skb_fail;
711 goto skb_success;
712 }
713
714 len = SKB_HEAD_ALIGN(len);
715
716 if (sk_memalloc_socks())
717 gfp_mask |= __GFP_MEMALLOC;
718
719 if (in_hardirq() || irqs_disabled()) {
720 nc = this_cpu_ptr(&netdev_alloc_cache);
721 data = page_frag_alloc(nc, len, gfp_mask);
722 pfmemalloc = nc->pfmemalloc;
723 } else {
724 local_bh_disable();
725 nc = this_cpu_ptr(&napi_alloc_cache.page);
726 data = page_frag_alloc(nc, len, gfp_mask);
727 pfmemalloc = nc->pfmemalloc;
728 local_bh_enable();
729 }
730
731 if (unlikely(!data))
732 return NULL;
733
734 skb = __build_skb(data, len);
735 if (unlikely(!skb)) {
736 skb_free_frag(data);
737 return NULL;
738 }
739
740 if (pfmemalloc)
741 skb->pfmemalloc = 1;
742 skb->head_frag = 1;
743
744skb_success:
745 skb_reserve(skb, NET_SKB_PAD);
746 skb->dev = dev;
747
748skb_fail:
749 return skb;
750}
751EXPORT_SYMBOL(__netdev_alloc_skb);
752
753/**
754 * __napi_alloc_skb - allocate skbuff for rx in a specific NAPI instance
755 * @napi: napi instance this buffer was allocated for
756 * @len: length to allocate
757 * @gfp_mask: get_free_pages mask, passed to alloc_skb and alloc_pages
758 *
759 * Allocate a new sk_buff for use in NAPI receive. This buffer will
760 * attempt to allocate the head from a special reserved region used
761 * only for NAPI Rx allocation. By doing this we can save several
762 * CPU cycles by avoiding having to disable and re-enable IRQs.
763 *
764 * %NULL is returned if there is no free memory.
765 */
766struct sk_buff *__napi_alloc_skb(struct napi_struct *napi, unsigned int len,
767 gfp_t gfp_mask)
768{
769 struct napi_alloc_cache *nc;
770 struct sk_buff *skb;
771 bool pfmemalloc;
772 void *data;
773
774 DEBUG_NET_WARN_ON_ONCE(!in_softirq());
775 len += NET_SKB_PAD + NET_IP_ALIGN;
776
777 /* If requested length is either too small or too big,
778 * we use kmalloc() for skb->head allocation.
779 * When the small frag allocator is available, prefer it over kmalloc
780 * for small fragments
781 */
782 if ((!NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) ||
783 len > SKB_WITH_OVERHEAD(PAGE_SIZE) ||
784 (gfp_mask & (__GFP_DIRECT_RECLAIM | GFP_DMA))) {
785 skb = __alloc_skb(len, gfp_mask, SKB_ALLOC_RX | SKB_ALLOC_NAPI,
786 NUMA_NO_NODE);
787 if (!skb)
788 goto skb_fail;
789 goto skb_success;
790 }
791
792 nc = this_cpu_ptr(&napi_alloc_cache);
793
794 if (sk_memalloc_socks())
795 gfp_mask |= __GFP_MEMALLOC;
796
797 if (NAPI_HAS_SMALL_PAGE_FRAG && len <= SKB_WITH_OVERHEAD(1024)) {
798 /* we are artificially inflating the allocation size, but
799 * that is not as bad as it may look like, as:
800 * - 'len' less than GRO_MAX_HEAD makes little sense
801 * - On most systems, larger 'len' values lead to fragment
802 * size above 512 bytes
803 * - kmalloc would use the kmalloc-1k slab for such values
804 * - Builds with smaller GRO_MAX_HEAD will very likely do
805 * little networking, as that implies no WiFi and no
806 * tunnels support, and 32 bits arches.
807 */
808 len = SZ_1K;
809
810 data = page_frag_alloc_1k(&nc->page_small, gfp_mask);
811 pfmemalloc = NAPI_SMALL_PAGE_PFMEMALLOC(nc->page_small);
812 } else {
813 len = SKB_HEAD_ALIGN(len);
814
815 data = page_frag_alloc(&nc->page, len, gfp_mask);
816 pfmemalloc = nc->page.pfmemalloc;
817 }
818
819 if (unlikely(!data))
820 return NULL;
821
822 skb = __napi_build_skb(data, len);
823 if (unlikely(!skb)) {
824 skb_free_frag(data);
825 return NULL;
826 }
827
828 if (pfmemalloc)
829 skb->pfmemalloc = 1;
830 skb->head_frag = 1;
831
832skb_success:
833 skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN);
834 skb->dev = napi->dev;
835
836skb_fail:
837 return skb;
838}
839EXPORT_SYMBOL(__napi_alloc_skb);
840
841void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
842 int size, unsigned int truesize)
843{
844 skb_fill_page_desc(skb, i, page, off, size);
845 skb->len += size;
846 skb->data_len += size;
847 skb->truesize += truesize;
848}
849EXPORT_SYMBOL(skb_add_rx_frag);
850
851void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
852 unsigned int truesize)
853{
854 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
855
856 skb_frag_size_add(frag, size);
857 skb->len += size;
858 skb->data_len += size;
859 skb->truesize += truesize;
860}
861EXPORT_SYMBOL(skb_coalesce_rx_frag);
862
863static void skb_drop_list(struct sk_buff **listp)
864{
865 kfree_skb_list(*listp);
866 *listp = NULL;
867}
868
869static inline void skb_drop_fraglist(struct sk_buff *skb)
870{
871 skb_drop_list(&skb_shinfo(skb)->frag_list);
872}
873
874static void skb_clone_fraglist(struct sk_buff *skb)
875{
876 struct sk_buff *list;
877
878 skb_walk_frags(skb, list)
879 skb_get(list);
880}
881
882static bool skb_pp_recycle(struct sk_buff *skb, void *data, bool napi_safe)
883{
884 if (!IS_ENABLED(CONFIG_PAGE_POOL) || !skb->pp_recycle)
885 return false;
886 return page_pool_return_skb_page(virt_to_page(data), napi_safe);
887}
888
889static void skb_kfree_head(void *head, unsigned int end_offset)
890{
891 if (end_offset == SKB_SMALL_HEAD_HEADROOM)
892 kmem_cache_free(skb_small_head_cache, head);
893 else
894 kfree(head);
895}
896
897static void skb_free_head(struct sk_buff *skb, bool napi_safe)
898{
899 unsigned char *head = skb->head;
900
901 if (skb->head_frag) {
902 if (skb_pp_recycle(skb, head, napi_safe))
903 return;
904 skb_free_frag(head);
905 } else {
906 skb_kfree_head(head, skb_end_offset(skb));
907 }
908}
909
910static void skb_release_data(struct sk_buff *skb, enum skb_drop_reason reason,
911 bool napi_safe)
912{
913 struct skb_shared_info *shinfo = skb_shinfo(skb);
914 int i;
915
916 if (skb->cloned &&
917 atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
918 &shinfo->dataref))
919 goto exit;
920
921 if (skb_zcopy(skb)) {
922 bool skip_unref = shinfo->flags & SKBFL_MANAGED_FRAG_REFS;
923
924 skb_zcopy_clear(skb, true);
925 if (skip_unref)
926 goto free_head;
927 }
928
929 for (i = 0; i < shinfo->nr_frags; i++)
930 napi_frag_unref(&shinfo->frags[i], skb->pp_recycle, napi_safe);
931
932free_head:
933 if (shinfo->frag_list)
934 kfree_skb_list_reason(shinfo->frag_list, reason);
935
936 skb_free_head(skb, napi_safe);
937exit:
938 /* When we clone an SKB we copy the reycling bit. The pp_recycle
939 * bit is only set on the head though, so in order to avoid races
940 * while trying to recycle fragments on __skb_frag_unref() we need
941 * to make one SKB responsible for triggering the recycle path.
942 * So disable the recycling bit if an SKB is cloned and we have
943 * additional references to the fragmented part of the SKB.
944 * Eventually the last SKB will have the recycling bit set and it's
945 * dataref set to 0, which will trigger the recycling
946 */
947 skb->pp_recycle = 0;
948}
949
950/*
951 * Free an skbuff by memory without cleaning the state.
952 */
953static void kfree_skbmem(struct sk_buff *skb)
954{
955 struct sk_buff_fclones *fclones;
956
957 switch (skb->fclone) {
958 case SKB_FCLONE_UNAVAILABLE:
959 kmem_cache_free(skbuff_cache, skb);
960 return;
961
962 case SKB_FCLONE_ORIG:
963 fclones = container_of(skb, struct sk_buff_fclones, skb1);
964
965 /* We usually free the clone (TX completion) before original skb
966 * This test would have no chance to be true for the clone,
967 * while here, branch prediction will be good.
968 */
969 if (refcount_read(&fclones->fclone_ref) == 1)
970 goto fastpath;
971 break;
972
973 default: /* SKB_FCLONE_CLONE */
974 fclones = container_of(skb, struct sk_buff_fclones, skb2);
975 break;
976 }
977 if (!refcount_dec_and_test(&fclones->fclone_ref))
978 return;
979fastpath:
980 kmem_cache_free(skbuff_fclone_cache, fclones);
981}
982
983void skb_release_head_state(struct sk_buff *skb)
984{
985 skb_dst_drop(skb);
986 if (skb->destructor) {
987 DEBUG_NET_WARN_ON_ONCE(in_hardirq());
988 skb->destructor(skb);
989 }
990#if IS_ENABLED(CONFIG_NF_CONNTRACK)
991 nf_conntrack_put(skb_nfct(skb));
992#endif
993 skb_ext_put(skb);
994}
995
996/* Free everything but the sk_buff shell. */
997static void skb_release_all(struct sk_buff *skb, enum skb_drop_reason reason,
998 bool napi_safe)
999{
1000 skb_release_head_state(skb);
1001 if (likely(skb->head))
1002 skb_release_data(skb, reason, napi_safe);
1003}
1004
1005/**
1006 * __kfree_skb - private function
1007 * @skb: buffer
1008 *
1009 * Free an sk_buff. Release anything attached to the buffer.
1010 * Clean the state. This is an internal helper function. Users should
1011 * always call kfree_skb
1012 */
1013
1014void __kfree_skb(struct sk_buff *skb)
1015{
1016 skb_release_all(skb, SKB_DROP_REASON_NOT_SPECIFIED, false);
1017 kfree_skbmem(skb);
1018}
1019EXPORT_SYMBOL(__kfree_skb);
1020
1021static __always_inline
1022bool __kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
1023{
1024 if (unlikely(!skb_unref(skb)))
1025 return false;
1026
1027 DEBUG_NET_WARN_ON_ONCE(reason == SKB_NOT_DROPPED_YET ||
1028 u32_get_bits(reason,
1029 SKB_DROP_REASON_SUBSYS_MASK) >=
1030 SKB_DROP_REASON_SUBSYS_NUM);
1031
1032 if (reason == SKB_CONSUMED)
1033 trace_consume_skb(skb, __builtin_return_address(0));
1034 else
1035 trace_kfree_skb(skb, __builtin_return_address(0), reason);
1036 return true;
1037}
1038
1039/**
1040 * kfree_skb_reason - free an sk_buff with special reason
1041 * @skb: buffer to free
1042 * @reason: reason why this skb is dropped
1043 *
1044 * Drop a reference to the buffer and free it if the usage count has
1045 * hit zero. Meanwhile, pass the drop reason to 'kfree_skb'
1046 * tracepoint.
1047 */
1048void __fix_address
1049kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason)
1050{
1051 if (__kfree_skb_reason(skb, reason))
1052 __kfree_skb(skb);
1053}
1054EXPORT_SYMBOL(kfree_skb_reason);
1055
1056#define KFREE_SKB_BULK_SIZE 16
1057
1058struct skb_free_array {
1059 unsigned int skb_count;
1060 void *skb_array[KFREE_SKB_BULK_SIZE];
1061};
1062
1063static void kfree_skb_add_bulk(struct sk_buff *skb,
1064 struct skb_free_array *sa,
1065 enum skb_drop_reason reason)
1066{
1067 /* if SKB is a clone, don't handle this case */
1068 if (unlikely(skb->fclone != SKB_FCLONE_UNAVAILABLE)) {
1069 __kfree_skb(skb);
1070 return;
1071 }
1072
1073 skb_release_all(skb, reason, false);
1074 sa->skb_array[sa->skb_count++] = skb;
1075
1076 if (unlikely(sa->skb_count == KFREE_SKB_BULK_SIZE)) {
1077 kmem_cache_free_bulk(skbuff_cache, KFREE_SKB_BULK_SIZE,
1078 sa->skb_array);
1079 sa->skb_count = 0;
1080 }
1081}
1082
1083void __fix_address
1084kfree_skb_list_reason(struct sk_buff *segs, enum skb_drop_reason reason)
1085{
1086 struct skb_free_array sa;
1087
1088 sa.skb_count = 0;
1089
1090 while (segs) {
1091 struct sk_buff *next = segs->next;
1092
1093 if (__kfree_skb_reason(segs, reason)) {
1094 skb_poison_list(segs);
1095 kfree_skb_add_bulk(segs, &sa, reason);
1096 }
1097
1098 segs = next;
1099 }
1100
1101 if (sa.skb_count)
1102 kmem_cache_free_bulk(skbuff_cache, sa.skb_count, sa.skb_array);
1103}
1104EXPORT_SYMBOL(kfree_skb_list_reason);
1105
1106/* Dump skb information and contents.
1107 *
1108 * Must only be called from net_ratelimit()-ed paths.
1109 *
1110 * Dumps whole packets if full_pkt, only headers otherwise.
1111 */
1112void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt)
1113{
1114 struct skb_shared_info *sh = skb_shinfo(skb);
1115 struct net_device *dev = skb->dev;
1116 struct sock *sk = skb->sk;
1117 struct sk_buff *list_skb;
1118 bool has_mac, has_trans;
1119 int headroom, tailroom;
1120 int i, len, seg_len;
1121
1122 if (full_pkt)
1123 len = skb->len;
1124 else
1125 len = min_t(int, skb->len, MAX_HEADER + 128);
1126
1127 headroom = skb_headroom(skb);
1128 tailroom = skb_tailroom(skb);
1129
1130 has_mac = skb_mac_header_was_set(skb);
1131 has_trans = skb_transport_header_was_set(skb);
1132
1133 printk("%sskb len=%u headroom=%u headlen=%u tailroom=%u\n"
1134 "mac=(%d,%d) net=(%d,%d) trans=%d\n"
1135 "shinfo(txflags=%u nr_frags=%u gso(size=%hu type=%u segs=%hu))\n"
1136 "csum(0x%x ip_summed=%u complete_sw=%u valid=%u level=%u)\n"
1137 "hash(0x%x sw=%u l4=%u) proto=0x%04x pkttype=%u iif=%d\n",
1138 level, skb->len, headroom, skb_headlen(skb), tailroom,
1139 has_mac ? skb->mac_header : -1,
1140 has_mac ? skb_mac_header_len(skb) : -1,
1141 skb->network_header,
1142 has_trans ? skb_network_header_len(skb) : -1,
1143 has_trans ? skb->transport_header : -1,
1144 sh->tx_flags, sh->nr_frags,
1145 sh->gso_size, sh->gso_type, sh->gso_segs,
1146 skb->csum, skb->ip_summed, skb->csum_complete_sw,
1147 skb->csum_valid, skb->csum_level,
1148 skb->hash, skb->sw_hash, skb->l4_hash,
1149 ntohs(skb->protocol), skb->pkt_type, skb->skb_iif);
1150
1151 if (dev)
1152 printk("%sdev name=%s feat=%pNF\n",
1153 level, dev->name, &dev->features);
1154 if (sk)
1155 printk("%ssk family=%hu type=%u proto=%u\n",
1156 level, sk->sk_family, sk->sk_type, sk->sk_protocol);
1157
1158 if (full_pkt && headroom)
1159 print_hex_dump(level, "skb headroom: ", DUMP_PREFIX_OFFSET,
1160 16, 1, skb->head, headroom, false);
1161
1162 seg_len = min_t(int, skb_headlen(skb), len);
1163 if (seg_len)
1164 print_hex_dump(level, "skb linear: ", DUMP_PREFIX_OFFSET,
1165 16, 1, skb->data, seg_len, false);
1166 len -= seg_len;
1167
1168 if (full_pkt && tailroom)
1169 print_hex_dump(level, "skb tailroom: ", DUMP_PREFIX_OFFSET,
1170 16, 1, skb_tail_pointer(skb), tailroom, false);
1171
1172 for (i = 0; len && i < skb_shinfo(skb)->nr_frags; i++) {
1173 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1174 u32 p_off, p_len, copied;
1175 struct page *p;
1176 u8 *vaddr;
1177
1178 skb_frag_foreach_page(frag, skb_frag_off(frag),
1179 skb_frag_size(frag), p, p_off, p_len,
1180 copied) {
1181 seg_len = min_t(int, p_len, len);
1182 vaddr = kmap_atomic(p);
1183 print_hex_dump(level, "skb frag: ",
1184 DUMP_PREFIX_OFFSET,
1185 16, 1, vaddr + p_off, seg_len, false);
1186 kunmap_atomic(vaddr);
1187 len -= seg_len;
1188 if (!len)
1189 break;
1190 }
1191 }
1192
1193 if (full_pkt && skb_has_frag_list(skb)) {
1194 printk("skb fraglist:\n");
1195 skb_walk_frags(skb, list_skb)
1196 skb_dump(level, list_skb, true);
1197 }
1198}
1199EXPORT_SYMBOL(skb_dump);
1200
1201/**
1202 * skb_tx_error - report an sk_buff xmit error
1203 * @skb: buffer that triggered an error
1204 *
1205 * Report xmit error if a device callback is tracking this skb.
1206 * skb must be freed afterwards.
1207 */
1208void skb_tx_error(struct sk_buff *skb)
1209{
1210 if (skb) {
1211 skb_zcopy_downgrade_managed(skb);
1212 skb_zcopy_clear(skb, true);
1213 }
1214}
1215EXPORT_SYMBOL(skb_tx_error);
1216
1217#ifdef CONFIG_TRACEPOINTS
1218/**
1219 * consume_skb - free an skbuff
1220 * @skb: buffer to free
1221 *
1222 * Drop a ref to the buffer and free it if the usage count has hit zero
1223 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
1224 * is being dropped after a failure and notes that
1225 */
1226void consume_skb(struct sk_buff *skb)
1227{
1228 if (!skb_unref(skb))
1229 return;
1230
1231 trace_consume_skb(skb, __builtin_return_address(0));
1232 __kfree_skb(skb);
1233}
1234EXPORT_SYMBOL(consume_skb);
1235#endif
1236
1237/**
1238 * __consume_stateless_skb - free an skbuff, assuming it is stateless
1239 * @skb: buffer to free
1240 *
1241 * Alike consume_skb(), but this variant assumes that this is the last
1242 * skb reference and all the head states have been already dropped
1243 */
1244void __consume_stateless_skb(struct sk_buff *skb)
1245{
1246 trace_consume_skb(skb, __builtin_return_address(0));
1247 skb_release_data(skb, SKB_CONSUMED, false);
1248 kfree_skbmem(skb);
1249}
1250
1251static void napi_skb_cache_put(struct sk_buff *skb)
1252{
1253 struct napi_alloc_cache *nc = this_cpu_ptr(&napi_alloc_cache);
1254 u32 i;
1255
1256 kasan_poison_object_data(skbuff_cache, skb);
1257 nc->skb_cache[nc->skb_count++] = skb;
1258
1259 if (unlikely(nc->skb_count == NAPI_SKB_CACHE_SIZE)) {
1260 for (i = NAPI_SKB_CACHE_HALF; i < NAPI_SKB_CACHE_SIZE; i++)
1261 kasan_unpoison_object_data(skbuff_cache,
1262 nc->skb_cache[i]);
1263
1264 kmem_cache_free_bulk(skbuff_cache, NAPI_SKB_CACHE_HALF,
1265 nc->skb_cache + NAPI_SKB_CACHE_HALF);
1266 nc->skb_count = NAPI_SKB_CACHE_HALF;
1267 }
1268}
1269
1270void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason)
1271{
1272 skb_release_all(skb, reason, true);
1273 napi_skb_cache_put(skb);
1274}
1275
1276void napi_skb_free_stolen_head(struct sk_buff *skb)
1277{
1278 if (unlikely(skb->slow_gro)) {
1279 nf_reset_ct(skb);
1280 skb_dst_drop(skb);
1281 skb_ext_put(skb);
1282 skb_orphan(skb);
1283 skb->slow_gro = 0;
1284 }
1285 napi_skb_cache_put(skb);
1286}
1287
1288void napi_consume_skb(struct sk_buff *skb, int budget)
1289{
1290 /* Zero budget indicate non-NAPI context called us, like netpoll */
1291 if (unlikely(!budget)) {
1292 dev_consume_skb_any(skb);
1293 return;
1294 }
1295
1296 DEBUG_NET_WARN_ON_ONCE(!in_softirq());
1297
1298 if (!skb_unref(skb))
1299 return;
1300
1301 /* if reaching here SKB is ready to free */
1302 trace_consume_skb(skb, __builtin_return_address(0));
1303
1304 /* if SKB is a clone, don't handle this case */
1305 if (skb->fclone != SKB_FCLONE_UNAVAILABLE) {
1306 __kfree_skb(skb);
1307 return;
1308 }
1309
1310 skb_release_all(skb, SKB_CONSUMED, !!budget);
1311 napi_skb_cache_put(skb);
1312}
1313EXPORT_SYMBOL(napi_consume_skb);
1314
1315/* Make sure a field is contained by headers group */
1316#define CHECK_SKB_FIELD(field) \
1317 BUILD_BUG_ON(offsetof(struct sk_buff, field) != \
1318 offsetof(struct sk_buff, headers.field)); \
1319
1320static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
1321{
1322 new->tstamp = old->tstamp;
1323 /* We do not copy old->sk */
1324 new->dev = old->dev;
1325 memcpy(new->cb, old->cb, sizeof(old->cb));
1326 skb_dst_copy(new, old);
1327 __skb_ext_copy(new, old);
1328 __nf_copy(new, old, false);
1329
1330 /* Note : this field could be in the headers group.
1331 * It is not yet because we do not want to have a 16 bit hole
1332 */
1333 new->queue_mapping = old->queue_mapping;
1334
1335 memcpy(&new->headers, &old->headers, sizeof(new->headers));
1336 CHECK_SKB_FIELD(protocol);
1337 CHECK_SKB_FIELD(csum);
1338 CHECK_SKB_FIELD(hash);
1339 CHECK_SKB_FIELD(priority);
1340 CHECK_SKB_FIELD(skb_iif);
1341 CHECK_SKB_FIELD(vlan_proto);
1342 CHECK_SKB_FIELD(vlan_tci);
1343 CHECK_SKB_FIELD(transport_header);
1344 CHECK_SKB_FIELD(network_header);
1345 CHECK_SKB_FIELD(mac_header);
1346 CHECK_SKB_FIELD(inner_protocol);
1347 CHECK_SKB_FIELD(inner_transport_header);
1348 CHECK_SKB_FIELD(inner_network_header);
1349 CHECK_SKB_FIELD(inner_mac_header);
1350 CHECK_SKB_FIELD(mark);
1351#ifdef CONFIG_NETWORK_SECMARK
1352 CHECK_SKB_FIELD(secmark);
1353#endif
1354#ifdef CONFIG_NET_RX_BUSY_POLL
1355 CHECK_SKB_FIELD(napi_id);
1356#endif
1357 CHECK_SKB_FIELD(alloc_cpu);
1358#ifdef CONFIG_XPS
1359 CHECK_SKB_FIELD(sender_cpu);
1360#endif
1361#ifdef CONFIG_NET_SCHED
1362 CHECK_SKB_FIELD(tc_index);
1363#endif
1364
1365}
1366
1367/*
1368 * You should not add any new code to this function. Add it to
1369 * __copy_skb_header above instead.
1370 */
1371static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
1372{
1373#define C(x) n->x = skb->x
1374
1375 n->next = n->prev = NULL;
1376 n->sk = NULL;
1377 __copy_skb_header(n, skb);
1378
1379 C(len);
1380 C(data_len);
1381 C(mac_len);
1382 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
1383 n->cloned = 1;
1384 n->nohdr = 0;
1385 n->peeked = 0;
1386 C(pfmemalloc);
1387 C(pp_recycle);
1388 n->destructor = NULL;
1389 C(tail);
1390 C(end);
1391 C(head);
1392 C(head_frag);
1393 C(data);
1394 C(truesize);
1395 refcount_set(&n->users, 1);
1396
1397 atomic_inc(&(skb_shinfo(skb)->dataref));
1398 skb->cloned = 1;
1399
1400 return n;
1401#undef C
1402}
1403
1404/**
1405 * alloc_skb_for_msg() - allocate sk_buff to wrap frag list forming a msg
1406 * @first: first sk_buff of the msg
1407 */
1408struct sk_buff *alloc_skb_for_msg(struct sk_buff *first)
1409{
1410 struct sk_buff *n;
1411
1412 n = alloc_skb(0, GFP_ATOMIC);
1413 if (!n)
1414 return NULL;
1415
1416 n->len = first->len;
1417 n->data_len = first->len;
1418 n->truesize = first->truesize;
1419
1420 skb_shinfo(n)->frag_list = first;
1421
1422 __copy_skb_header(n, first);
1423 n->destructor = NULL;
1424
1425 return n;
1426}
1427EXPORT_SYMBOL_GPL(alloc_skb_for_msg);
1428
1429/**
1430 * skb_morph - morph one skb into another
1431 * @dst: the skb to receive the contents
1432 * @src: the skb to supply the contents
1433 *
1434 * This is identical to skb_clone except that the target skb is
1435 * supplied by the user.
1436 *
1437 * The target skb is returned upon exit.
1438 */
1439struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
1440{
1441 skb_release_all(dst, SKB_CONSUMED, false);
1442 return __skb_clone(dst, src);
1443}
1444EXPORT_SYMBOL_GPL(skb_morph);
1445
1446int mm_account_pinned_pages(struct mmpin *mmp, size_t size)
1447{
1448 unsigned long max_pg, num_pg, new_pg, old_pg, rlim;
1449 struct user_struct *user;
1450
1451 if (capable(CAP_IPC_LOCK) || !size)
1452 return 0;
1453
1454 rlim = rlimit(RLIMIT_MEMLOCK);
1455 if (rlim == RLIM_INFINITY)
1456 return 0;
1457
1458 num_pg = (size >> PAGE_SHIFT) + 2; /* worst case */
1459 max_pg = rlim >> PAGE_SHIFT;
1460 user = mmp->user ? : current_user();
1461
1462 old_pg = atomic_long_read(&user->locked_vm);
1463 do {
1464 new_pg = old_pg + num_pg;
1465 if (new_pg > max_pg)
1466 return -ENOBUFS;
1467 } while (!atomic_long_try_cmpxchg(&user->locked_vm, &old_pg, new_pg));
1468
1469 if (!mmp->user) {
1470 mmp->user = get_uid(user);
1471 mmp->num_pg = num_pg;
1472 } else {
1473 mmp->num_pg += num_pg;
1474 }
1475
1476 return 0;
1477}
1478EXPORT_SYMBOL_GPL(mm_account_pinned_pages);
1479
1480void mm_unaccount_pinned_pages(struct mmpin *mmp)
1481{
1482 if (mmp->user) {
1483 atomic_long_sub(mmp->num_pg, &mmp->user->locked_vm);
1484 free_uid(mmp->user);
1485 }
1486}
1487EXPORT_SYMBOL_GPL(mm_unaccount_pinned_pages);
1488
1489static struct ubuf_info *msg_zerocopy_alloc(struct sock *sk, size_t size)
1490{
1491 struct ubuf_info_msgzc *uarg;
1492 struct sk_buff *skb;
1493
1494 WARN_ON_ONCE(!in_task());
1495
1496 skb = sock_omalloc(sk, 0, GFP_KERNEL);
1497 if (!skb)
1498 return NULL;
1499
1500 BUILD_BUG_ON(sizeof(*uarg) > sizeof(skb->cb));
1501 uarg = (void *)skb->cb;
1502 uarg->mmp.user = NULL;
1503
1504 if (mm_account_pinned_pages(&uarg->mmp, size)) {
1505 kfree_skb(skb);
1506 return NULL;
1507 }
1508
1509 uarg->ubuf.callback = msg_zerocopy_callback;
1510 uarg->id = ((u32)atomic_inc_return(&sk->sk_zckey)) - 1;
1511 uarg->len = 1;
1512 uarg->bytelen = size;
1513 uarg->zerocopy = 1;
1514 uarg->ubuf.flags = SKBFL_ZEROCOPY_FRAG | SKBFL_DONT_ORPHAN;
1515 refcount_set(&uarg->ubuf.refcnt, 1);
1516 sock_hold(sk);
1517
1518 return &uarg->ubuf;
1519}
1520
1521static inline struct sk_buff *skb_from_uarg(struct ubuf_info_msgzc *uarg)
1522{
1523 return container_of((void *)uarg, struct sk_buff, cb);
1524}
1525
1526struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1527 struct ubuf_info *uarg)
1528{
1529 if (uarg) {
1530 struct ubuf_info_msgzc *uarg_zc;
1531 const u32 byte_limit = 1 << 19; /* limit to a few TSO */
1532 u32 bytelen, next;
1533
1534 /* there might be non MSG_ZEROCOPY users */
1535 if (uarg->callback != msg_zerocopy_callback)
1536 return NULL;
1537
1538 /* realloc only when socket is locked (TCP, UDP cork),
1539 * so uarg->len and sk_zckey access is serialized
1540 */
1541 if (!sock_owned_by_user(sk)) {
1542 WARN_ON_ONCE(1);
1543 return NULL;
1544 }
1545
1546 uarg_zc = uarg_to_msgzc(uarg);
1547 bytelen = uarg_zc->bytelen + size;
1548 if (uarg_zc->len == USHRT_MAX - 1 || bytelen > byte_limit) {
1549 /* TCP can create new skb to attach new uarg */
1550 if (sk->sk_type == SOCK_STREAM)
1551 goto new_alloc;
1552 return NULL;
1553 }
1554
1555 next = (u32)atomic_read(&sk->sk_zckey);
1556 if ((u32)(uarg_zc->id + uarg_zc->len) == next) {
1557 if (mm_account_pinned_pages(&uarg_zc->mmp, size))
1558 return NULL;
1559 uarg_zc->len++;
1560 uarg_zc->bytelen = bytelen;
1561 atomic_set(&sk->sk_zckey, ++next);
1562
1563 /* no extra ref when appending to datagram (MSG_MORE) */
1564 if (sk->sk_type == SOCK_STREAM)
1565 net_zcopy_get(uarg);
1566
1567 return uarg;
1568 }
1569 }
1570
1571new_alloc:
1572 return msg_zerocopy_alloc(sk, size);
1573}
1574EXPORT_SYMBOL_GPL(msg_zerocopy_realloc);
1575
1576static bool skb_zerocopy_notify_extend(struct sk_buff *skb, u32 lo, u16 len)
1577{
1578 struct sock_exterr_skb *serr = SKB_EXT_ERR(skb);
1579 u32 old_lo, old_hi;
1580 u64 sum_len;
1581
1582 old_lo = serr->ee.ee_info;
1583 old_hi = serr->ee.ee_data;
1584 sum_len = old_hi - old_lo + 1ULL + len;
1585
1586 if (sum_len >= (1ULL << 32))
1587 return false;
1588
1589 if (lo != old_hi + 1)
1590 return false;
1591
1592 serr->ee.ee_data += len;
1593 return true;
1594}
1595
1596static void __msg_zerocopy_callback(struct ubuf_info_msgzc *uarg)
1597{
1598 struct sk_buff *tail, *skb = skb_from_uarg(uarg);
1599 struct sock_exterr_skb *serr;
1600 struct sock *sk = skb->sk;
1601 struct sk_buff_head *q;
1602 unsigned long flags;
1603 bool is_zerocopy;
1604 u32 lo, hi;
1605 u16 len;
1606
1607 mm_unaccount_pinned_pages(&uarg->mmp);
1608
1609 /* if !len, there was only 1 call, and it was aborted
1610 * so do not queue a completion notification
1611 */
1612 if (!uarg->len || sock_flag(sk, SOCK_DEAD))
1613 goto release;
1614
1615 len = uarg->len;
1616 lo = uarg->id;
1617 hi = uarg->id + len - 1;
1618 is_zerocopy = uarg->zerocopy;
1619
1620 serr = SKB_EXT_ERR(skb);
1621 memset(serr, 0, sizeof(*serr));
1622 serr->ee.ee_errno = 0;
1623 serr->ee.ee_origin = SO_EE_ORIGIN_ZEROCOPY;
1624 serr->ee.ee_data = hi;
1625 serr->ee.ee_info = lo;
1626 if (!is_zerocopy)
1627 serr->ee.ee_code |= SO_EE_CODE_ZEROCOPY_COPIED;
1628
1629 q = &sk->sk_error_queue;
1630 spin_lock_irqsave(&q->lock, flags);
1631 tail = skb_peek_tail(q);
1632 if (!tail || SKB_EXT_ERR(tail)->ee.ee_origin != SO_EE_ORIGIN_ZEROCOPY ||
1633 !skb_zerocopy_notify_extend(tail, lo, len)) {
1634 __skb_queue_tail(q, skb);
1635 skb = NULL;
1636 }
1637 spin_unlock_irqrestore(&q->lock, flags);
1638
1639 sk_error_report(sk);
1640
1641release:
1642 consume_skb(skb);
1643 sock_put(sk);
1644}
1645
1646void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1647 bool success)
1648{
1649 struct ubuf_info_msgzc *uarg_zc = uarg_to_msgzc(uarg);
1650
1651 uarg_zc->zerocopy = uarg_zc->zerocopy & success;
1652
1653 if (refcount_dec_and_test(&uarg->refcnt))
1654 __msg_zerocopy_callback(uarg_zc);
1655}
1656EXPORT_SYMBOL_GPL(msg_zerocopy_callback);
1657
1658void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1659{
1660 struct sock *sk = skb_from_uarg(uarg_to_msgzc(uarg))->sk;
1661
1662 atomic_dec(&sk->sk_zckey);
1663 uarg_to_msgzc(uarg)->len--;
1664
1665 if (have_uref)
1666 msg_zerocopy_callback(NULL, uarg, true);
1667}
1668EXPORT_SYMBOL_GPL(msg_zerocopy_put_abort);
1669
1670int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1671 struct msghdr *msg, int len,
1672 struct ubuf_info *uarg)
1673{
1674 struct ubuf_info *orig_uarg = skb_zcopy(skb);
1675 int err, orig_len = skb->len;
1676
1677 /* An skb can only point to one uarg. This edge case happens when
1678 * TCP appends to an skb, but zerocopy_realloc triggered a new alloc.
1679 */
1680 if (orig_uarg && uarg != orig_uarg)
1681 return -EEXIST;
1682
1683 err = __zerocopy_sg_from_iter(msg, sk, skb, &msg->msg_iter, len);
1684 if (err == -EFAULT || (err == -EMSGSIZE && skb->len == orig_len)) {
1685 struct sock *save_sk = skb->sk;
1686
1687 /* Streams do not free skb on error. Reset to prev state. */
1688 iov_iter_revert(&msg->msg_iter, skb->len - orig_len);
1689 skb->sk = sk;
1690 ___pskb_trim(skb, orig_len);
1691 skb->sk = save_sk;
1692 return err;
1693 }
1694
1695 skb_zcopy_set(skb, uarg, NULL);
1696 return skb->len - orig_len;
1697}
1698EXPORT_SYMBOL_GPL(skb_zerocopy_iter_stream);
1699
1700void __skb_zcopy_downgrade_managed(struct sk_buff *skb)
1701{
1702 int i;
1703
1704 skb_shinfo(skb)->flags &= ~SKBFL_MANAGED_FRAG_REFS;
1705 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1706 skb_frag_ref(skb, i);
1707}
1708EXPORT_SYMBOL_GPL(__skb_zcopy_downgrade_managed);
1709
1710static int skb_zerocopy_clone(struct sk_buff *nskb, struct sk_buff *orig,
1711 gfp_t gfp_mask)
1712{
1713 if (skb_zcopy(orig)) {
1714 if (skb_zcopy(nskb)) {
1715 /* !gfp_mask callers are verified to !skb_zcopy(nskb) */
1716 if (!gfp_mask) {
1717 WARN_ON_ONCE(1);
1718 return -ENOMEM;
1719 }
1720 if (skb_uarg(nskb) == skb_uarg(orig))
1721 return 0;
1722 if (skb_copy_ubufs(nskb, GFP_ATOMIC))
1723 return -EIO;
1724 }
1725 skb_zcopy_set(nskb, skb_uarg(orig), NULL);
1726 }
1727 return 0;
1728}
1729
1730/**
1731 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
1732 * @skb: the skb to modify
1733 * @gfp_mask: allocation priority
1734 *
1735 * This must be called on skb with SKBFL_ZEROCOPY_ENABLE.
1736 * It will copy all frags into kernel and drop the reference
1737 * to userspace pages.
1738 *
1739 * If this function is called from an interrupt gfp_mask() must be
1740 * %GFP_ATOMIC.
1741 *
1742 * Returns 0 on success or a negative error code on failure
1743 * to allocate kernel memory to copy to.
1744 */
1745int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
1746{
1747 int num_frags = skb_shinfo(skb)->nr_frags;
1748 struct page *page, *head = NULL;
1749 int i, order, psize, new_frags;
1750 u32 d_off;
1751
1752 if (skb_shared(skb) || skb_unclone(skb, gfp_mask))
1753 return -EINVAL;
1754
1755 if (!num_frags)
1756 goto release;
1757
1758 /* We might have to allocate high order pages, so compute what minimum
1759 * page order is needed.
1760 */
1761 order = 0;
1762 while ((PAGE_SIZE << order) * MAX_SKB_FRAGS < __skb_pagelen(skb))
1763 order++;
1764 psize = (PAGE_SIZE << order);
1765
1766 new_frags = (__skb_pagelen(skb) + psize - 1) >> (PAGE_SHIFT + order);
1767 for (i = 0; i < new_frags; i++) {
1768 page = alloc_pages(gfp_mask | __GFP_COMP, order);
1769 if (!page) {
1770 while (head) {
1771 struct page *next = (struct page *)page_private(head);
1772 put_page(head);
1773 head = next;
1774 }
1775 return -ENOMEM;
1776 }
1777 set_page_private(page, (unsigned long)head);
1778 head = page;
1779 }
1780
1781 page = head;
1782 d_off = 0;
1783 for (i = 0; i < num_frags; i++) {
1784 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1785 u32 p_off, p_len, copied;
1786 struct page *p;
1787 u8 *vaddr;
1788
1789 skb_frag_foreach_page(f, skb_frag_off(f), skb_frag_size(f),
1790 p, p_off, p_len, copied) {
1791 u32 copy, done = 0;
1792 vaddr = kmap_atomic(p);
1793
1794 while (done < p_len) {
1795 if (d_off == psize) {
1796 d_off = 0;
1797 page = (struct page *)page_private(page);
1798 }
1799 copy = min_t(u32, psize - d_off, p_len - done);
1800 memcpy(page_address(page) + d_off,
1801 vaddr + p_off + done, copy);
1802 done += copy;
1803 d_off += copy;
1804 }
1805 kunmap_atomic(vaddr);
1806 }
1807 }
1808
1809 /* skb frags release userspace buffers */
1810 for (i = 0; i < num_frags; i++)
1811 skb_frag_unref(skb, i);
1812
1813 /* skb frags point to kernel buffers */
1814 for (i = 0; i < new_frags - 1; i++) {
1815 __skb_fill_page_desc(skb, i, head, 0, psize);
1816 head = (struct page *)page_private(head);
1817 }
1818 __skb_fill_page_desc(skb, new_frags - 1, head, 0, d_off);
1819 skb_shinfo(skb)->nr_frags = new_frags;
1820
1821release:
1822 skb_zcopy_clear(skb, false);
1823 return 0;
1824}
1825EXPORT_SYMBOL_GPL(skb_copy_ubufs);
1826
1827/**
1828 * skb_clone - duplicate an sk_buff
1829 * @skb: buffer to clone
1830 * @gfp_mask: allocation priority
1831 *
1832 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
1833 * copies share the same packet data but not structure. The new
1834 * buffer has a reference count of 1. If the allocation fails the
1835 * function returns %NULL otherwise the new buffer is returned.
1836 *
1837 * If this function is called from an interrupt gfp_mask() must be
1838 * %GFP_ATOMIC.
1839 */
1840
1841struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
1842{
1843 struct sk_buff_fclones *fclones = container_of(skb,
1844 struct sk_buff_fclones,
1845 skb1);
1846 struct sk_buff *n;
1847
1848 if (skb_orphan_frags(skb, gfp_mask))
1849 return NULL;
1850
1851 if (skb->fclone == SKB_FCLONE_ORIG &&
1852 refcount_read(&fclones->fclone_ref) == 1) {
1853 n = &fclones->skb2;
1854 refcount_set(&fclones->fclone_ref, 2);
1855 n->fclone = SKB_FCLONE_CLONE;
1856 } else {
1857 if (skb_pfmemalloc(skb))
1858 gfp_mask |= __GFP_MEMALLOC;
1859
1860 n = kmem_cache_alloc(skbuff_cache, gfp_mask);
1861 if (!n)
1862 return NULL;
1863
1864 n->fclone = SKB_FCLONE_UNAVAILABLE;
1865 }
1866
1867 return __skb_clone(n, skb);
1868}
1869EXPORT_SYMBOL(skb_clone);
1870
1871void skb_headers_offset_update(struct sk_buff *skb, int off)
1872{
1873 /* Only adjust this if it actually is csum_start rather than csum */
1874 if (skb->ip_summed == CHECKSUM_PARTIAL)
1875 skb->csum_start += off;
1876 /* {transport,network,mac}_header and tail are relative to skb->head */
1877 skb->transport_header += off;
1878 skb->network_header += off;
1879 if (skb_mac_header_was_set(skb))
1880 skb->mac_header += off;
1881 skb->inner_transport_header += off;
1882 skb->inner_network_header += off;
1883 skb->inner_mac_header += off;
1884}
1885EXPORT_SYMBOL(skb_headers_offset_update);
1886
1887void skb_copy_header(struct sk_buff *new, const struct sk_buff *old)
1888{
1889 __copy_skb_header(new, old);
1890
1891 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
1892 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
1893 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
1894}
1895EXPORT_SYMBOL(skb_copy_header);
1896
1897static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
1898{
1899 if (skb_pfmemalloc(skb))
1900 return SKB_ALLOC_RX;
1901 return 0;
1902}
1903
1904/**
1905 * skb_copy - create private copy of an sk_buff
1906 * @skb: buffer to copy
1907 * @gfp_mask: allocation priority
1908 *
1909 * Make a copy of both an &sk_buff and its data. This is used when the
1910 * caller wishes to modify the data and needs a private copy of the
1911 * data to alter. Returns %NULL on failure or the pointer to the buffer
1912 * on success. The returned buffer has a reference count of 1.
1913 *
1914 * As by-product this function converts non-linear &sk_buff to linear
1915 * one, so that &sk_buff becomes completely private and caller is allowed
1916 * to modify all the data of returned buffer. This means that this
1917 * function is not recommended for use in circumstances when only
1918 * header is going to be modified. Use pskb_copy() instead.
1919 */
1920
1921struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
1922{
1923 int headerlen = skb_headroom(skb);
1924 unsigned int size = skb_end_offset(skb) + skb->data_len;
1925 struct sk_buff *n = __alloc_skb(size, gfp_mask,
1926 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
1927
1928 if (!n)
1929 return NULL;
1930
1931 /* Set the data pointer */
1932 skb_reserve(n, headerlen);
1933 /* Set the tail pointer and length */
1934 skb_put(n, skb->len);
1935
1936 BUG_ON(skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len));
1937
1938 skb_copy_header(n, skb);
1939 return n;
1940}
1941EXPORT_SYMBOL(skb_copy);
1942
1943/**
1944 * __pskb_copy_fclone - create copy of an sk_buff with private head.
1945 * @skb: buffer to copy
1946 * @headroom: headroom of new skb
1947 * @gfp_mask: allocation priority
1948 * @fclone: if true allocate the copy of the skb from the fclone
1949 * cache instead of the head cache; it is recommended to set this
1950 * to true for the cases where the copy will likely be cloned
1951 *
1952 * Make a copy of both an &sk_buff and part of its data, located
1953 * in header. Fragmented data remain shared. This is used when
1954 * the caller wishes to modify only header of &sk_buff and needs
1955 * private copy of the header to alter. Returns %NULL on failure
1956 * or the pointer to the buffer on success.
1957 * The returned buffer has a reference count of 1.
1958 */
1959
1960struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1961 gfp_t gfp_mask, bool fclone)
1962{
1963 unsigned int size = skb_headlen(skb) + headroom;
1964 int flags = skb_alloc_rx_flag(skb) | (fclone ? SKB_ALLOC_FCLONE : 0);
1965 struct sk_buff *n = __alloc_skb(size, gfp_mask, flags, NUMA_NO_NODE);
1966
1967 if (!n)
1968 goto out;
1969
1970 /* Set the data pointer */
1971 skb_reserve(n, headroom);
1972 /* Set the tail pointer and length */
1973 skb_put(n, skb_headlen(skb));
1974 /* Copy the bytes */
1975 skb_copy_from_linear_data(skb, n->data, n->len);
1976
1977 n->truesize += skb->data_len;
1978 n->data_len = skb->data_len;
1979 n->len = skb->len;
1980
1981 if (skb_shinfo(skb)->nr_frags) {
1982 int i;
1983
1984 if (skb_orphan_frags(skb, gfp_mask) ||
1985 skb_zerocopy_clone(n, skb, gfp_mask)) {
1986 kfree_skb(n);
1987 n = NULL;
1988 goto out;
1989 }
1990 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1991 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1992 skb_frag_ref(skb, i);
1993 }
1994 skb_shinfo(n)->nr_frags = i;
1995 }
1996
1997 if (skb_has_frag_list(skb)) {
1998 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1999 skb_clone_fraglist(n);
2000 }
2001
2002 skb_copy_header(n, skb);
2003out:
2004 return n;
2005}
2006EXPORT_SYMBOL(__pskb_copy_fclone);
2007
2008/**
2009 * pskb_expand_head - reallocate header of &sk_buff
2010 * @skb: buffer to reallocate
2011 * @nhead: room to add at head
2012 * @ntail: room to add at tail
2013 * @gfp_mask: allocation priority
2014 *
2015 * Expands (or creates identical copy, if @nhead and @ntail are zero)
2016 * header of @skb. &sk_buff itself is not changed. &sk_buff MUST have
2017 * reference count of 1. Returns zero in the case of success or error,
2018 * if expansion failed. In the last case, &sk_buff is not changed.
2019 *
2020 * All the pointers pointing into skb header may change and must be
2021 * reloaded after call to this function.
2022 */
2023
2024int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
2025 gfp_t gfp_mask)
2026{
2027 unsigned int osize = skb_end_offset(skb);
2028 unsigned int size = osize + nhead + ntail;
2029 long off;
2030 u8 *data;
2031 int i;
2032
2033 BUG_ON(nhead < 0);
2034
2035 BUG_ON(skb_shared(skb));
2036
2037 skb_zcopy_downgrade_managed(skb);
2038
2039 if (skb_pfmemalloc(skb))
2040 gfp_mask |= __GFP_MEMALLOC;
2041
2042 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
2043 if (!data)
2044 goto nodata;
2045 size = SKB_WITH_OVERHEAD(size);
2046
2047 /* Copy only real data... and, alas, header. This should be
2048 * optimized for the cases when header is void.
2049 */
2050 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
2051
2052 memcpy((struct skb_shared_info *)(data + size),
2053 skb_shinfo(skb),
2054 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
2055
2056 /*
2057 * if shinfo is shared we must drop the old head gracefully, but if it
2058 * is not we can just drop the old head and let the existing refcount
2059 * be since all we did is relocate the values
2060 */
2061 if (skb_cloned(skb)) {
2062 if (skb_orphan_frags(skb, gfp_mask))
2063 goto nofrags;
2064 if (skb_zcopy(skb))
2065 refcount_inc(&skb_uarg(skb)->refcnt);
2066 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2067 skb_frag_ref(skb, i);
2068
2069 if (skb_has_frag_list(skb))
2070 skb_clone_fraglist(skb);
2071
2072 skb_release_data(skb, SKB_CONSUMED, false);
2073 } else {
2074 skb_free_head(skb, false);
2075 }
2076 off = (data + nhead) - skb->head;
2077
2078 skb->head = data;
2079 skb->head_frag = 0;
2080 skb->data += off;
2081
2082 skb_set_end_offset(skb, size);
2083#ifdef NET_SKBUFF_DATA_USES_OFFSET
2084 off = nhead;
2085#endif
2086 skb->tail += off;
2087 skb_headers_offset_update(skb, nhead);
2088 skb->cloned = 0;
2089 skb->hdr_len = 0;
2090 skb->nohdr = 0;
2091 atomic_set(&skb_shinfo(skb)->dataref, 1);
2092
2093 skb_metadata_clear(skb);
2094
2095 /* It is not generally safe to change skb->truesize.
2096 * For the moment, we really care of rx path, or
2097 * when skb is orphaned (not attached to a socket).
2098 */
2099 if (!skb->sk || skb->destructor == sock_edemux)
2100 skb->truesize += size - osize;
2101
2102 return 0;
2103
2104nofrags:
2105 skb_kfree_head(data, size);
2106nodata:
2107 return -ENOMEM;
2108}
2109EXPORT_SYMBOL(pskb_expand_head);
2110
2111/* Make private copy of skb with writable head and some headroom */
2112
2113struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
2114{
2115 struct sk_buff *skb2;
2116 int delta = headroom - skb_headroom(skb);
2117
2118 if (delta <= 0)
2119 skb2 = pskb_copy(skb, GFP_ATOMIC);
2120 else {
2121 skb2 = skb_clone(skb, GFP_ATOMIC);
2122 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
2123 GFP_ATOMIC)) {
2124 kfree_skb(skb2);
2125 skb2 = NULL;
2126 }
2127 }
2128 return skb2;
2129}
2130EXPORT_SYMBOL(skb_realloc_headroom);
2131
2132/* Note: We plan to rework this in linux-6.4 */
2133int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
2134{
2135 unsigned int saved_end_offset, saved_truesize;
2136 struct skb_shared_info *shinfo;
2137 int res;
2138
2139 saved_end_offset = skb_end_offset(skb);
2140 saved_truesize = skb->truesize;
2141
2142 res = pskb_expand_head(skb, 0, 0, pri);
2143 if (res)
2144 return res;
2145
2146 skb->truesize = saved_truesize;
2147
2148 if (likely(skb_end_offset(skb) == saved_end_offset))
2149 return 0;
2150
2151 /* We can not change skb->end if the original or new value
2152 * is SKB_SMALL_HEAD_HEADROOM, as it might break skb_kfree_head().
2153 */
2154 if (saved_end_offset == SKB_SMALL_HEAD_HEADROOM ||
2155 skb_end_offset(skb) == SKB_SMALL_HEAD_HEADROOM) {
2156 /* We think this path should not be taken.
2157 * Add a temporary trace to warn us just in case.
2158 */
2159 pr_err_once("__skb_unclone_keeptruesize() skb_end_offset() %u -> %u\n",
2160 saved_end_offset, skb_end_offset(skb));
2161 WARN_ON_ONCE(1);
2162 return 0;
2163 }
2164
2165 shinfo = skb_shinfo(skb);
2166
2167 /* We are about to change back skb->end,
2168 * we need to move skb_shinfo() to its new location.
2169 */
2170 memmove(skb->head + saved_end_offset,
2171 shinfo,
2172 offsetof(struct skb_shared_info, frags[shinfo->nr_frags]));
2173
2174 skb_set_end_offset(skb, saved_end_offset);
2175
2176 return 0;
2177}
2178
2179/**
2180 * skb_expand_head - reallocate header of &sk_buff
2181 * @skb: buffer to reallocate
2182 * @headroom: needed headroom
2183 *
2184 * Unlike skb_realloc_headroom, this one does not allocate a new skb
2185 * if possible; copies skb->sk to new skb as needed
2186 * and frees original skb in case of failures.
2187 *
2188 * It expect increased headroom and generates warning otherwise.
2189 */
2190
2191struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom)
2192{
2193 int delta = headroom - skb_headroom(skb);
2194 int osize = skb_end_offset(skb);
2195 struct sock *sk = skb->sk;
2196
2197 if (WARN_ONCE(delta <= 0,
2198 "%s is expecting an increase in the headroom", __func__))
2199 return skb;
2200
2201 delta = SKB_DATA_ALIGN(delta);
2202 /* pskb_expand_head() might crash, if skb is shared. */
2203 if (skb_shared(skb) || !is_skb_wmem(skb)) {
2204 struct sk_buff *nskb = skb_clone(skb, GFP_ATOMIC);
2205
2206 if (unlikely(!nskb))
2207 goto fail;
2208
2209 if (sk)
2210 skb_set_owner_w(nskb, sk);
2211 consume_skb(skb);
2212 skb = nskb;
2213 }
2214 if (pskb_expand_head(skb, delta, 0, GFP_ATOMIC))
2215 goto fail;
2216
2217 if (sk && is_skb_wmem(skb)) {
2218 delta = skb_end_offset(skb) - osize;
2219 refcount_add(delta, &sk->sk_wmem_alloc);
2220 skb->truesize += delta;
2221 }
2222 return skb;
2223
2224fail:
2225 kfree_skb(skb);
2226 return NULL;
2227}
2228EXPORT_SYMBOL(skb_expand_head);
2229
2230/**
2231 * skb_copy_expand - copy and expand sk_buff
2232 * @skb: buffer to copy
2233 * @newheadroom: new free bytes at head
2234 * @newtailroom: new free bytes at tail
2235 * @gfp_mask: allocation priority
2236 *
2237 * Make a copy of both an &sk_buff and its data and while doing so
2238 * allocate additional space.
2239 *
2240 * This is used when the caller wishes to modify the data and needs a
2241 * private copy of the data to alter as well as more space for new fields.
2242 * Returns %NULL on failure or the pointer to the buffer
2243 * on success. The returned buffer has a reference count of 1.
2244 *
2245 * You must pass %GFP_ATOMIC as the allocation priority if this function
2246 * is called from an interrupt.
2247 */
2248struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
2249 int newheadroom, int newtailroom,
2250 gfp_t gfp_mask)
2251{
2252 /*
2253 * Allocate the copy buffer
2254 */
2255 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
2256 gfp_mask, skb_alloc_rx_flag(skb),
2257 NUMA_NO_NODE);
2258 int oldheadroom = skb_headroom(skb);
2259 int head_copy_len, head_copy_off;
2260
2261 if (!n)
2262 return NULL;
2263
2264 skb_reserve(n, newheadroom);
2265
2266 /* Set the tail pointer and length */
2267 skb_put(n, skb->len);
2268
2269 head_copy_len = oldheadroom;
2270 head_copy_off = 0;
2271 if (newheadroom <= head_copy_len)
2272 head_copy_len = newheadroom;
2273 else
2274 head_copy_off = newheadroom - head_copy_len;
2275
2276 /* Copy the linear header and data. */
2277 BUG_ON(skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
2278 skb->len + head_copy_len));
2279
2280 skb_copy_header(n, skb);
2281
2282 skb_headers_offset_update(n, newheadroom - oldheadroom);
2283
2284 return n;
2285}
2286EXPORT_SYMBOL(skb_copy_expand);
2287
2288/**
2289 * __skb_pad - zero pad the tail of an skb
2290 * @skb: buffer to pad
2291 * @pad: space to pad
2292 * @free_on_error: free buffer on error
2293 *
2294 * Ensure that a buffer is followed by a padding area that is zero
2295 * filled. Used by network drivers which may DMA or transfer data
2296 * beyond the buffer end onto the wire.
2297 *
2298 * May return error in out of memory cases. The skb is freed on error
2299 * if @free_on_error is true.
2300 */
2301
2302int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error)
2303{
2304 int err;
2305 int ntail;
2306
2307 /* If the skbuff is non linear tailroom is always zero.. */
2308 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
2309 memset(skb->data+skb->len, 0, pad);
2310 return 0;
2311 }
2312
2313 ntail = skb->data_len + pad - (skb->end - skb->tail);
2314 if (likely(skb_cloned(skb) || ntail > 0)) {
2315 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
2316 if (unlikely(err))
2317 goto free_skb;
2318 }
2319
2320 /* FIXME: The use of this function with non-linear skb's really needs
2321 * to be audited.
2322 */
2323 err = skb_linearize(skb);
2324 if (unlikely(err))
2325 goto free_skb;
2326
2327 memset(skb->data + skb->len, 0, pad);
2328 return 0;
2329
2330free_skb:
2331 if (free_on_error)
2332 kfree_skb(skb);
2333 return err;
2334}
2335EXPORT_SYMBOL(__skb_pad);
2336
2337/**
2338 * pskb_put - add data to the tail of a potentially fragmented buffer
2339 * @skb: start of the buffer to use
2340 * @tail: tail fragment of the buffer to use
2341 * @len: amount of data to add
2342 *
2343 * This function extends the used data area of the potentially
2344 * fragmented buffer. @tail must be the last fragment of @skb -- or
2345 * @skb itself. If this would exceed the total buffer size the kernel
2346 * will panic. A pointer to the first byte of the extra data is
2347 * returned.
2348 */
2349
2350void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len)
2351{
2352 if (tail != skb) {
2353 skb->data_len += len;
2354 skb->len += len;
2355 }
2356 return skb_put(tail, len);
2357}
2358EXPORT_SYMBOL_GPL(pskb_put);
2359
2360/**
2361 * skb_put - add data to a buffer
2362 * @skb: buffer to use
2363 * @len: amount of data to add
2364 *
2365 * This function extends the used data area of the buffer. If this would
2366 * exceed the total buffer size the kernel will panic. A pointer to the
2367 * first byte of the extra data is returned.
2368 */
2369void *skb_put(struct sk_buff *skb, unsigned int len)
2370{
2371 void *tmp = skb_tail_pointer(skb);
2372 SKB_LINEAR_ASSERT(skb);
2373 skb->tail += len;
2374 skb->len += len;
2375 if (unlikely(skb->tail > skb->end))
2376 skb_over_panic(skb, len, __builtin_return_address(0));
2377 return tmp;
2378}
2379EXPORT_SYMBOL(skb_put);
2380
2381/**
2382 * skb_push - add data to the start of a buffer
2383 * @skb: buffer to use
2384 * @len: amount of data to add
2385 *
2386 * This function extends the used data area of the buffer at the buffer
2387 * start. If this would exceed the total buffer headroom the kernel will
2388 * panic. A pointer to the first byte of the extra data is returned.
2389 */
2390void *skb_push(struct sk_buff *skb, unsigned int len)
2391{
2392 skb->data -= len;
2393 skb->len += len;
2394 if (unlikely(skb->data < skb->head))
2395 skb_under_panic(skb, len, __builtin_return_address(0));
2396 return skb->data;
2397}
2398EXPORT_SYMBOL(skb_push);
2399
2400/**
2401 * skb_pull - remove data from the start of a buffer
2402 * @skb: buffer to use
2403 * @len: amount of data to remove
2404 *
2405 * This function removes data from the start of a buffer, returning
2406 * the memory to the headroom. A pointer to the next data in the buffer
2407 * is returned. Once the data has been pulled future pushes will overwrite
2408 * the old data.
2409 */
2410void *skb_pull(struct sk_buff *skb, unsigned int len)
2411{
2412 return skb_pull_inline(skb, len);
2413}
2414EXPORT_SYMBOL(skb_pull);
2415
2416/**
2417 * skb_pull_data - remove data from the start of a buffer returning its
2418 * original position.
2419 * @skb: buffer to use
2420 * @len: amount of data to remove
2421 *
2422 * This function removes data from the start of a buffer, returning
2423 * the memory to the headroom. A pointer to the original data in the buffer
2424 * is returned after checking if there is enough data to pull. Once the
2425 * data has been pulled future pushes will overwrite the old data.
2426 */
2427void *skb_pull_data(struct sk_buff *skb, size_t len)
2428{
2429 void *data = skb->data;
2430
2431 if (skb->len < len)
2432 return NULL;
2433
2434 skb_pull(skb, len);
2435
2436 return data;
2437}
2438EXPORT_SYMBOL(skb_pull_data);
2439
2440/**
2441 * skb_trim - remove end from a buffer
2442 * @skb: buffer to alter
2443 * @len: new length
2444 *
2445 * Cut the length of a buffer down by removing data from the tail. If
2446 * the buffer is already under the length specified it is not modified.
2447 * The skb must be linear.
2448 */
2449void skb_trim(struct sk_buff *skb, unsigned int len)
2450{
2451 if (skb->len > len)
2452 __skb_trim(skb, len);
2453}
2454EXPORT_SYMBOL(skb_trim);
2455
2456/* Trims skb to length len. It can change skb pointers.
2457 */
2458
2459int ___pskb_trim(struct sk_buff *skb, unsigned int len)
2460{
2461 struct sk_buff **fragp;
2462 struct sk_buff *frag;
2463 int offset = skb_headlen(skb);
2464 int nfrags = skb_shinfo(skb)->nr_frags;
2465 int i;
2466 int err;
2467
2468 if (skb_cloned(skb) &&
2469 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
2470 return err;
2471
2472 i = 0;
2473 if (offset >= len)
2474 goto drop_pages;
2475
2476 for (; i < nfrags; i++) {
2477 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2478
2479 if (end < len) {
2480 offset = end;
2481 continue;
2482 }
2483
2484 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
2485
2486drop_pages:
2487 skb_shinfo(skb)->nr_frags = i;
2488
2489 for (; i < nfrags; i++)
2490 skb_frag_unref(skb, i);
2491
2492 if (skb_has_frag_list(skb))
2493 skb_drop_fraglist(skb);
2494 goto done;
2495 }
2496
2497 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
2498 fragp = &frag->next) {
2499 int end = offset + frag->len;
2500
2501 if (skb_shared(frag)) {
2502 struct sk_buff *nfrag;
2503
2504 nfrag = skb_clone(frag, GFP_ATOMIC);
2505 if (unlikely(!nfrag))
2506 return -ENOMEM;
2507
2508 nfrag->next = frag->next;
2509 consume_skb(frag);
2510 frag = nfrag;
2511 *fragp = frag;
2512 }
2513
2514 if (end < len) {
2515 offset = end;
2516 continue;
2517 }
2518
2519 if (end > len &&
2520 unlikely((err = pskb_trim(frag, len - offset))))
2521 return err;
2522
2523 if (frag->next)
2524 skb_drop_list(&frag->next);
2525 break;
2526 }
2527
2528done:
2529 if (len > skb_headlen(skb)) {
2530 skb->data_len -= skb->len - len;
2531 skb->len = len;
2532 } else {
2533 skb->len = len;
2534 skb->data_len = 0;
2535 skb_set_tail_pointer(skb, len);
2536 }
2537
2538 if (!skb->sk || skb->destructor == sock_edemux)
2539 skb_condense(skb);
2540 return 0;
2541}
2542EXPORT_SYMBOL(___pskb_trim);
2543
2544/* Note : use pskb_trim_rcsum() instead of calling this directly
2545 */
2546int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len)
2547{
2548 if (skb->ip_summed == CHECKSUM_COMPLETE) {
2549 int delta = skb->len - len;
2550
2551 skb->csum = csum_block_sub(skb->csum,
2552 skb_checksum(skb, len, delta, 0),
2553 len);
2554 } else if (skb->ip_summed == CHECKSUM_PARTIAL) {
2555 int hdlen = (len > skb_headlen(skb)) ? skb_headlen(skb) : len;
2556 int offset = skb_checksum_start_offset(skb) + skb->csum_offset;
2557
2558 if (offset + sizeof(__sum16) > hdlen)
2559 return -EINVAL;
2560 }
2561 return __pskb_trim(skb, len);
2562}
2563EXPORT_SYMBOL(pskb_trim_rcsum_slow);
2564
2565/**
2566 * __pskb_pull_tail - advance tail of skb header
2567 * @skb: buffer to reallocate
2568 * @delta: number of bytes to advance tail
2569 *
2570 * The function makes a sense only on a fragmented &sk_buff,
2571 * it expands header moving its tail forward and copying necessary
2572 * data from fragmented part.
2573 *
2574 * &sk_buff MUST have reference count of 1.
2575 *
2576 * Returns %NULL (and &sk_buff does not change) if pull failed
2577 * or value of new tail of skb in the case of success.
2578 *
2579 * All the pointers pointing into skb header may change and must be
2580 * reloaded after call to this function.
2581 */
2582
2583/* Moves tail of skb head forward, copying data from fragmented part,
2584 * when it is necessary.
2585 * 1. It may fail due to malloc failure.
2586 * 2. It may change skb pointers.
2587 *
2588 * It is pretty complicated. Luckily, it is called only in exceptional cases.
2589 */
2590void *__pskb_pull_tail(struct sk_buff *skb, int delta)
2591{
2592 /* If skb has not enough free space at tail, get new one
2593 * plus 128 bytes for future expansions. If we have enough
2594 * room at tail, reallocate without expansion only if skb is cloned.
2595 */
2596 int i, k, eat = (skb->tail + delta) - skb->end;
2597
2598 if (eat > 0 || skb_cloned(skb)) {
2599 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
2600 GFP_ATOMIC))
2601 return NULL;
2602 }
2603
2604 BUG_ON(skb_copy_bits(skb, skb_headlen(skb),
2605 skb_tail_pointer(skb), delta));
2606
2607 /* Optimization: no fragments, no reasons to preestimate
2608 * size of pulled pages. Superb.
2609 */
2610 if (!skb_has_frag_list(skb))
2611 goto pull_pages;
2612
2613 /* Estimate size of pulled pages. */
2614 eat = delta;
2615 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2616 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2617
2618 if (size >= eat)
2619 goto pull_pages;
2620 eat -= size;
2621 }
2622
2623 /* If we need update frag list, we are in troubles.
2624 * Certainly, it is possible to add an offset to skb data,
2625 * but taking into account that pulling is expected to
2626 * be very rare operation, it is worth to fight against
2627 * further bloating skb head and crucify ourselves here instead.
2628 * Pure masohism, indeed. 8)8)
2629 */
2630 if (eat) {
2631 struct sk_buff *list = skb_shinfo(skb)->frag_list;
2632 struct sk_buff *clone = NULL;
2633 struct sk_buff *insp = NULL;
2634
2635 do {
2636 if (list->len <= eat) {
2637 /* Eaten as whole. */
2638 eat -= list->len;
2639 list = list->next;
2640 insp = list;
2641 } else {
2642 /* Eaten partially. */
2643 if (skb_is_gso(skb) && !list->head_frag &&
2644 skb_headlen(list))
2645 skb_shinfo(skb)->gso_type |= SKB_GSO_DODGY;
2646
2647 if (skb_shared(list)) {
2648 /* Sucks! We need to fork list. :-( */
2649 clone = skb_clone(list, GFP_ATOMIC);
2650 if (!clone)
2651 return NULL;
2652 insp = list->next;
2653 list = clone;
2654 } else {
2655 /* This may be pulled without
2656 * problems. */
2657 insp = list;
2658 }
2659 if (!pskb_pull(list, eat)) {
2660 kfree_skb(clone);
2661 return NULL;
2662 }
2663 break;
2664 }
2665 } while (eat);
2666
2667 /* Free pulled out fragments. */
2668 while ((list = skb_shinfo(skb)->frag_list) != insp) {
2669 skb_shinfo(skb)->frag_list = list->next;
2670 consume_skb(list);
2671 }
2672 /* And insert new clone at head. */
2673 if (clone) {
2674 clone->next = list;
2675 skb_shinfo(skb)->frag_list = clone;
2676 }
2677 }
2678 /* Success! Now we may commit changes to skb data. */
2679
2680pull_pages:
2681 eat = delta;
2682 k = 0;
2683 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2684 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2685
2686 if (size <= eat) {
2687 skb_frag_unref(skb, i);
2688 eat -= size;
2689 } else {
2690 skb_frag_t *frag = &skb_shinfo(skb)->frags[k];
2691
2692 *frag = skb_shinfo(skb)->frags[i];
2693 if (eat) {
2694 skb_frag_off_add(frag, eat);
2695 skb_frag_size_sub(frag, eat);
2696 if (!i)
2697 goto end;
2698 eat = 0;
2699 }
2700 k++;
2701 }
2702 }
2703 skb_shinfo(skb)->nr_frags = k;
2704
2705end:
2706 skb->tail += delta;
2707 skb->data_len -= delta;
2708
2709 if (!skb->data_len)
2710 skb_zcopy_clear(skb, false);
2711
2712 return skb_tail_pointer(skb);
2713}
2714EXPORT_SYMBOL(__pskb_pull_tail);
2715
2716/**
2717 * skb_copy_bits - copy bits from skb to kernel buffer
2718 * @skb: source skb
2719 * @offset: offset in source
2720 * @to: destination buffer
2721 * @len: number of bytes to copy
2722 *
2723 * Copy the specified number of bytes from the source skb to the
2724 * destination buffer.
2725 *
2726 * CAUTION ! :
2727 * If its prototype is ever changed,
2728 * check arch/{*}/net/{*}.S files,
2729 * since it is called from BPF assembly code.
2730 */
2731int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
2732{
2733 int start = skb_headlen(skb);
2734 struct sk_buff *frag_iter;
2735 int i, copy;
2736
2737 if (offset > (int)skb->len - len)
2738 goto fault;
2739
2740 /* Copy header. */
2741 if ((copy = start - offset) > 0) {
2742 if (copy > len)
2743 copy = len;
2744 skb_copy_from_linear_data_offset(skb, offset, to, copy);
2745 if ((len -= copy) == 0)
2746 return 0;
2747 offset += copy;
2748 to += copy;
2749 }
2750
2751 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2752 int end;
2753 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
2754
2755 WARN_ON(start > offset + len);
2756
2757 end = start + skb_frag_size(f);
2758 if ((copy = end - offset) > 0) {
2759 u32 p_off, p_len, copied;
2760 struct page *p;
2761 u8 *vaddr;
2762
2763 if (copy > len)
2764 copy = len;
2765
2766 skb_frag_foreach_page(f,
2767 skb_frag_off(f) + offset - start,
2768 copy, p, p_off, p_len, copied) {
2769 vaddr = kmap_atomic(p);
2770 memcpy(to + copied, vaddr + p_off, p_len);
2771 kunmap_atomic(vaddr);
2772 }
2773
2774 if ((len -= copy) == 0)
2775 return 0;
2776 offset += copy;
2777 to += copy;
2778 }
2779 start = end;
2780 }
2781
2782 skb_walk_frags(skb, frag_iter) {
2783 int end;
2784
2785 WARN_ON(start > offset + len);
2786
2787 end = start + frag_iter->len;
2788 if ((copy = end - offset) > 0) {
2789 if (copy > len)
2790 copy = len;
2791 if (skb_copy_bits(frag_iter, offset - start, to, copy))
2792 goto fault;
2793 if ((len -= copy) == 0)
2794 return 0;
2795 offset += copy;
2796 to += copy;
2797 }
2798 start = end;
2799 }
2800
2801 if (!len)
2802 return 0;
2803
2804fault:
2805 return -EFAULT;
2806}
2807EXPORT_SYMBOL(skb_copy_bits);
2808
2809/*
2810 * Callback from splice_to_pipe(), if we need to release some pages
2811 * at the end of the spd in case we error'ed out in filling the pipe.
2812 */
2813static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
2814{
2815 put_page(spd->pages[i]);
2816}
2817
2818static struct page *linear_to_page(struct page *page, unsigned int *len,
2819 unsigned int *offset,
2820 struct sock *sk)
2821{
2822 struct page_frag *pfrag = sk_page_frag(sk);
2823
2824 if (!sk_page_frag_refill(sk, pfrag))
2825 return NULL;
2826
2827 *len = min_t(unsigned int, *len, pfrag->size - pfrag->offset);
2828
2829 memcpy(page_address(pfrag->page) + pfrag->offset,
2830 page_address(page) + *offset, *len);
2831 *offset = pfrag->offset;
2832 pfrag->offset += *len;
2833
2834 return pfrag->page;
2835}
2836
2837static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
2838 struct page *page,
2839 unsigned int offset)
2840{
2841 return spd->nr_pages &&
2842 spd->pages[spd->nr_pages - 1] == page &&
2843 (spd->partial[spd->nr_pages - 1].offset +
2844 spd->partial[spd->nr_pages - 1].len == offset);
2845}
2846
2847/*
2848 * Fill page/offset/length into spd, if it can hold more pages.
2849 */
2850static bool spd_fill_page(struct splice_pipe_desc *spd,
2851 struct pipe_inode_info *pipe, struct page *page,
2852 unsigned int *len, unsigned int offset,
2853 bool linear,
2854 struct sock *sk)
2855{
2856 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
2857 return true;
2858
2859 if (linear) {
2860 page = linear_to_page(page, len, &offset, sk);
2861 if (!page)
2862 return true;
2863 }
2864 if (spd_can_coalesce(spd, page, offset)) {
2865 spd->partial[spd->nr_pages - 1].len += *len;
2866 return false;
2867 }
2868 get_page(page);
2869 spd->pages[spd->nr_pages] = page;
2870 spd->partial[spd->nr_pages].len = *len;
2871 spd->partial[spd->nr_pages].offset = offset;
2872 spd->nr_pages++;
2873
2874 return false;
2875}
2876
2877static bool __splice_segment(struct page *page, unsigned int poff,
2878 unsigned int plen, unsigned int *off,
2879 unsigned int *len,
2880 struct splice_pipe_desc *spd, bool linear,
2881 struct sock *sk,
2882 struct pipe_inode_info *pipe)
2883{
2884 if (!*len)
2885 return true;
2886
2887 /* skip this segment if already processed */
2888 if (*off >= plen) {
2889 *off -= plen;
2890 return false;
2891 }
2892
2893 /* ignore any bits we already processed */
2894 poff += *off;
2895 plen -= *off;
2896 *off = 0;
2897
2898 do {
2899 unsigned int flen = min(*len, plen);
2900
2901 if (spd_fill_page(spd, pipe, page, &flen, poff,
2902 linear, sk))
2903 return true;
2904 poff += flen;
2905 plen -= flen;
2906 *len -= flen;
2907 } while (*len && plen);
2908
2909 return false;
2910}
2911
2912/*
2913 * Map linear and fragment data from the skb to spd. It reports true if the
2914 * pipe is full or if we already spliced the requested length.
2915 */
2916static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
2917 unsigned int *offset, unsigned int *len,
2918 struct splice_pipe_desc *spd, struct sock *sk)
2919{
2920 int seg;
2921 struct sk_buff *iter;
2922
2923 /* map the linear part :
2924 * If skb->head_frag is set, this 'linear' part is backed by a
2925 * fragment, and if the head is not shared with any clones then
2926 * we can avoid a copy since we own the head portion of this page.
2927 */
2928 if (__splice_segment(virt_to_page(skb->data),
2929 (unsigned long) skb->data & (PAGE_SIZE - 1),
2930 skb_headlen(skb),
2931 offset, len, spd,
2932 skb_head_is_locked(skb),
2933 sk, pipe))
2934 return true;
2935
2936 /*
2937 * then map the fragments
2938 */
2939 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
2940 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
2941
2942 if (__splice_segment(skb_frag_page(f),
2943 skb_frag_off(f), skb_frag_size(f),
2944 offset, len, spd, false, sk, pipe))
2945 return true;
2946 }
2947
2948 skb_walk_frags(skb, iter) {
2949 if (*offset >= iter->len) {
2950 *offset -= iter->len;
2951 continue;
2952 }
2953 /* __skb_splice_bits() only fails if the output has no room
2954 * left, so no point in going over the frag_list for the error
2955 * case.
2956 */
2957 if (__skb_splice_bits(iter, pipe, offset, len, spd, sk))
2958 return true;
2959 }
2960
2961 return false;
2962}
2963
2964/*
2965 * Map data from the skb to a pipe. Should handle both the linear part,
2966 * the fragments, and the frag list.
2967 */
2968int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
2969 struct pipe_inode_info *pipe, unsigned int tlen,
2970 unsigned int flags)
2971{
2972 struct partial_page partial[MAX_SKB_FRAGS];
2973 struct page *pages[MAX_SKB_FRAGS];
2974 struct splice_pipe_desc spd = {
2975 .pages = pages,
2976 .partial = partial,
2977 .nr_pages_max = MAX_SKB_FRAGS,
2978 .ops = &nosteal_pipe_buf_ops,
2979 .spd_release = sock_spd_release,
2980 };
2981 int ret = 0;
2982
2983 __skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk);
2984
2985 if (spd.nr_pages)
2986 ret = splice_to_pipe(pipe, &spd);
2987
2988 return ret;
2989}
2990EXPORT_SYMBOL_GPL(skb_splice_bits);
2991
2992static int sendmsg_locked(struct sock *sk, struct msghdr *msg)
2993{
2994 struct socket *sock = sk->sk_socket;
2995 size_t size = msg_data_left(msg);
2996
2997 if (!sock)
2998 return -EINVAL;
2999
3000 if (!sock->ops->sendmsg_locked)
3001 return sock_no_sendmsg_locked(sk, msg, size);
3002
3003 return sock->ops->sendmsg_locked(sk, msg, size);
3004}
3005
3006static int sendmsg_unlocked(struct sock *sk, struct msghdr *msg)
3007{
3008 struct socket *sock = sk->sk_socket;
3009
3010 if (!sock)
3011 return -EINVAL;
3012 return sock_sendmsg(sock, msg);
3013}
3014
3015typedef int (*sendmsg_func)(struct sock *sk, struct msghdr *msg);
3016static int __skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset,
3017 int len, sendmsg_func sendmsg)
3018{
3019 unsigned int orig_len = len;
3020 struct sk_buff *head = skb;
3021 unsigned short fragidx;
3022 int slen, ret;
3023
3024do_frag_list:
3025
3026 /* Deal with head data */
3027 while (offset < skb_headlen(skb) && len) {
3028 struct kvec kv;
3029 struct msghdr msg;
3030
3031 slen = min_t(int, len, skb_headlen(skb) - offset);
3032 kv.iov_base = skb->data + offset;
3033 kv.iov_len = slen;
3034 memset(&msg, 0, sizeof(msg));
3035 msg.msg_flags = MSG_DONTWAIT;
3036
3037 iov_iter_kvec(&msg.msg_iter, ITER_SOURCE, &kv, 1, slen);
3038 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3039 sendmsg_unlocked, sk, &msg);
3040 if (ret <= 0)
3041 goto error;
3042
3043 offset += ret;
3044 len -= ret;
3045 }
3046
3047 /* All the data was skb head? */
3048 if (!len)
3049 goto out;
3050
3051 /* Make offset relative to start of frags */
3052 offset -= skb_headlen(skb);
3053
3054 /* Find where we are in frag list */
3055 for (fragidx = 0; fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3056 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
3057
3058 if (offset < skb_frag_size(frag))
3059 break;
3060
3061 offset -= skb_frag_size(frag);
3062 }
3063
3064 for (; len && fragidx < skb_shinfo(skb)->nr_frags; fragidx++) {
3065 skb_frag_t *frag = &skb_shinfo(skb)->frags[fragidx];
3066
3067 slen = min_t(size_t, len, skb_frag_size(frag) - offset);
3068
3069 while (slen) {
3070 struct bio_vec bvec;
3071 struct msghdr msg = {
3072 .msg_flags = MSG_SPLICE_PAGES | MSG_DONTWAIT,
3073 };
3074
3075 bvec_set_page(&bvec, skb_frag_page(frag), slen,
3076 skb_frag_off(frag) + offset);
3077 iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1,
3078 slen);
3079
3080 ret = INDIRECT_CALL_2(sendmsg, sendmsg_locked,
3081 sendmsg_unlocked, sk, &msg);
3082 if (ret <= 0)
3083 goto error;
3084
3085 len -= ret;
3086 offset += ret;
3087 slen -= ret;
3088 }
3089
3090 offset = 0;
3091 }
3092
3093 if (len) {
3094 /* Process any frag lists */
3095
3096 if (skb == head) {
3097 if (skb_has_frag_list(skb)) {
3098 skb = skb_shinfo(skb)->frag_list;
3099 goto do_frag_list;
3100 }
3101 } else if (skb->next) {
3102 skb = skb->next;
3103 goto do_frag_list;
3104 }
3105 }
3106
3107out:
3108 return orig_len - len;
3109
3110error:
3111 return orig_len == len ? ret : orig_len - len;
3112}
3113
3114/* Send skb data on a socket. Socket must be locked. */
3115int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3116 int len)
3117{
3118 return __skb_send_sock(sk, skb, offset, len, sendmsg_locked);
3119}
3120EXPORT_SYMBOL_GPL(skb_send_sock_locked);
3121
3122/* Send skb data on a socket. Socket must be unlocked. */
3123int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len)
3124{
3125 return __skb_send_sock(sk, skb, offset, len, sendmsg_unlocked);
3126}
3127
3128/**
3129 * skb_store_bits - store bits from kernel buffer to skb
3130 * @skb: destination buffer
3131 * @offset: offset in destination
3132 * @from: source buffer
3133 * @len: number of bytes to copy
3134 *
3135 * Copy the specified number of bytes from the source buffer to the
3136 * destination skb. This function handles all the messy bits of
3137 * traversing fragment lists and such.
3138 */
3139
3140int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
3141{
3142 int start = skb_headlen(skb);
3143 struct sk_buff *frag_iter;
3144 int i, copy;
3145
3146 if (offset > (int)skb->len - len)
3147 goto fault;
3148
3149 if ((copy = start - offset) > 0) {
3150 if (copy > len)
3151 copy = len;
3152 skb_copy_to_linear_data_offset(skb, offset, from, copy);
3153 if ((len -= copy) == 0)
3154 return 0;
3155 offset += copy;
3156 from += copy;
3157 }
3158
3159 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3160 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3161 int end;
3162
3163 WARN_ON(start > offset + len);
3164
3165 end = start + skb_frag_size(frag);
3166 if ((copy = end - offset) > 0) {
3167 u32 p_off, p_len, copied;
3168 struct page *p;
3169 u8 *vaddr;
3170
3171 if (copy > len)
3172 copy = len;
3173
3174 skb_frag_foreach_page(frag,
3175 skb_frag_off(frag) + offset - start,
3176 copy, p, p_off, p_len, copied) {
3177 vaddr = kmap_atomic(p);
3178 memcpy(vaddr + p_off, from + copied, p_len);
3179 kunmap_atomic(vaddr);
3180 }
3181
3182 if ((len -= copy) == 0)
3183 return 0;
3184 offset += copy;
3185 from += copy;
3186 }
3187 start = end;
3188 }
3189
3190 skb_walk_frags(skb, frag_iter) {
3191 int end;
3192
3193 WARN_ON(start > offset + len);
3194
3195 end = start + frag_iter->len;
3196 if ((copy = end - offset) > 0) {
3197 if (copy > len)
3198 copy = len;
3199 if (skb_store_bits(frag_iter, offset - start,
3200 from, copy))
3201 goto fault;
3202 if ((len -= copy) == 0)
3203 return 0;
3204 offset += copy;
3205 from += copy;
3206 }
3207 start = end;
3208 }
3209 if (!len)
3210 return 0;
3211
3212fault:
3213 return -EFAULT;
3214}
3215EXPORT_SYMBOL(skb_store_bits);
3216
3217/* Checksum skb data. */
3218__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
3219 __wsum csum, const struct skb_checksum_ops *ops)
3220{
3221 int start = skb_headlen(skb);
3222 int i, copy = start - offset;
3223 struct sk_buff *frag_iter;
3224 int pos = 0;
3225
3226 /* Checksum header. */
3227 if (copy > 0) {
3228 if (copy > len)
3229 copy = len;
3230 csum = INDIRECT_CALL_1(ops->update, csum_partial_ext,
3231 skb->data + offset, copy, csum);
3232 if ((len -= copy) == 0)
3233 return csum;
3234 offset += copy;
3235 pos = copy;
3236 }
3237
3238 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3239 int end;
3240 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3241
3242 WARN_ON(start > offset + len);
3243
3244 end = start + skb_frag_size(frag);
3245 if ((copy = end - offset) > 0) {
3246 u32 p_off, p_len, copied;
3247 struct page *p;
3248 __wsum csum2;
3249 u8 *vaddr;
3250
3251 if (copy > len)
3252 copy = len;
3253
3254 skb_frag_foreach_page(frag,
3255 skb_frag_off(frag) + offset - start,
3256 copy, p, p_off, p_len, copied) {
3257 vaddr = kmap_atomic(p);
3258 csum2 = INDIRECT_CALL_1(ops->update,
3259 csum_partial_ext,
3260 vaddr + p_off, p_len, 0);
3261 kunmap_atomic(vaddr);
3262 csum = INDIRECT_CALL_1(ops->combine,
3263 csum_block_add_ext, csum,
3264 csum2, pos, p_len);
3265 pos += p_len;
3266 }
3267
3268 if (!(len -= copy))
3269 return csum;
3270 offset += copy;
3271 }
3272 start = end;
3273 }
3274
3275 skb_walk_frags(skb, frag_iter) {
3276 int end;
3277
3278 WARN_ON(start > offset + len);
3279
3280 end = start + frag_iter->len;
3281 if ((copy = end - offset) > 0) {
3282 __wsum csum2;
3283 if (copy > len)
3284 copy = len;
3285 csum2 = __skb_checksum(frag_iter, offset - start,
3286 copy, 0, ops);
3287 csum = INDIRECT_CALL_1(ops->combine, csum_block_add_ext,
3288 csum, csum2, pos, copy);
3289 if ((len -= copy) == 0)
3290 return csum;
3291 offset += copy;
3292 pos += copy;
3293 }
3294 start = end;
3295 }
3296 BUG_ON(len);
3297
3298 return csum;
3299}
3300EXPORT_SYMBOL(__skb_checksum);
3301
3302__wsum skb_checksum(const struct sk_buff *skb, int offset,
3303 int len, __wsum csum)
3304{
3305 const struct skb_checksum_ops ops = {
3306 .update = csum_partial_ext,
3307 .combine = csum_block_add_ext,
3308 };
3309
3310 return __skb_checksum(skb, offset, len, csum, &ops);
3311}
3312EXPORT_SYMBOL(skb_checksum);
3313
3314/* Both of above in one bottle. */
3315
3316__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
3317 u8 *to, int len)
3318{
3319 int start = skb_headlen(skb);
3320 int i, copy = start - offset;
3321 struct sk_buff *frag_iter;
3322 int pos = 0;
3323 __wsum csum = 0;
3324
3325 /* Copy header. */
3326 if (copy > 0) {
3327 if (copy > len)
3328 copy = len;
3329 csum = csum_partial_copy_nocheck(skb->data + offset, to,
3330 copy);
3331 if ((len -= copy) == 0)
3332 return csum;
3333 offset += copy;
3334 to += copy;
3335 pos = copy;
3336 }
3337
3338 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3339 int end;
3340
3341 WARN_ON(start > offset + len);
3342
3343 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3344 if ((copy = end - offset) > 0) {
3345 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3346 u32 p_off, p_len, copied;
3347 struct page *p;
3348 __wsum csum2;
3349 u8 *vaddr;
3350
3351 if (copy > len)
3352 copy = len;
3353
3354 skb_frag_foreach_page(frag,
3355 skb_frag_off(frag) + offset - start,
3356 copy, p, p_off, p_len, copied) {
3357 vaddr = kmap_atomic(p);
3358 csum2 = csum_partial_copy_nocheck(vaddr + p_off,
3359 to + copied,
3360 p_len);
3361 kunmap_atomic(vaddr);
3362 csum = csum_block_add(csum, csum2, pos);
3363 pos += p_len;
3364 }
3365
3366 if (!(len -= copy))
3367 return csum;
3368 offset += copy;
3369 to += copy;
3370 }
3371 start = end;
3372 }
3373
3374 skb_walk_frags(skb, frag_iter) {
3375 __wsum csum2;
3376 int end;
3377
3378 WARN_ON(start > offset + len);
3379
3380 end = start + frag_iter->len;
3381 if ((copy = end - offset) > 0) {
3382 if (copy > len)
3383 copy = len;
3384 csum2 = skb_copy_and_csum_bits(frag_iter,
3385 offset - start,
3386 to, copy);
3387 csum = csum_block_add(csum, csum2, pos);
3388 if ((len -= copy) == 0)
3389 return csum;
3390 offset += copy;
3391 to += copy;
3392 pos += copy;
3393 }
3394 start = end;
3395 }
3396 BUG_ON(len);
3397 return csum;
3398}
3399EXPORT_SYMBOL(skb_copy_and_csum_bits);
3400
3401__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len)
3402{
3403 __sum16 sum;
3404
3405 sum = csum_fold(skb_checksum(skb, 0, len, skb->csum));
3406 /* See comments in __skb_checksum_complete(). */
3407 if (likely(!sum)) {
3408 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3409 !skb->csum_complete_sw)
3410 netdev_rx_csum_fault(skb->dev, skb);
3411 }
3412 if (!skb_shared(skb))
3413 skb->csum_valid = !sum;
3414 return sum;
3415}
3416EXPORT_SYMBOL(__skb_checksum_complete_head);
3417
3418/* This function assumes skb->csum already holds pseudo header's checksum,
3419 * which has been changed from the hardware checksum, for example, by
3420 * __skb_checksum_validate_complete(). And, the original skb->csum must
3421 * have been validated unsuccessfully for CHECKSUM_COMPLETE case.
3422 *
3423 * It returns non-zero if the recomputed checksum is still invalid, otherwise
3424 * zero. The new checksum is stored back into skb->csum unless the skb is
3425 * shared.
3426 */
3427__sum16 __skb_checksum_complete(struct sk_buff *skb)
3428{
3429 __wsum csum;
3430 __sum16 sum;
3431
3432 csum = skb_checksum(skb, 0, skb->len, 0);
3433
3434 sum = csum_fold(csum_add(skb->csum, csum));
3435 /* This check is inverted, because we already knew the hardware
3436 * checksum is invalid before calling this function. So, if the
3437 * re-computed checksum is valid instead, then we have a mismatch
3438 * between the original skb->csum and skb_checksum(). This means either
3439 * the original hardware checksum is incorrect or we screw up skb->csum
3440 * when moving skb->data around.
3441 */
3442 if (likely(!sum)) {
3443 if (unlikely(skb->ip_summed == CHECKSUM_COMPLETE) &&
3444 !skb->csum_complete_sw)
3445 netdev_rx_csum_fault(skb->dev, skb);
3446 }
3447
3448 if (!skb_shared(skb)) {
3449 /* Save full packet checksum */
3450 skb->csum = csum;
3451 skb->ip_summed = CHECKSUM_COMPLETE;
3452 skb->csum_complete_sw = 1;
3453 skb->csum_valid = !sum;
3454 }
3455
3456 return sum;
3457}
3458EXPORT_SYMBOL(__skb_checksum_complete);
3459
3460static __wsum warn_crc32c_csum_update(const void *buff, int len, __wsum sum)
3461{
3462 net_warn_ratelimited(
3463 "%s: attempt to compute crc32c without libcrc32c.ko\n",
3464 __func__);
3465 return 0;
3466}
3467
3468static __wsum warn_crc32c_csum_combine(__wsum csum, __wsum csum2,
3469 int offset, int len)
3470{
3471 net_warn_ratelimited(
3472 "%s: attempt to compute crc32c without libcrc32c.ko\n",
3473 __func__);
3474 return 0;
3475}
3476
3477static const struct skb_checksum_ops default_crc32c_ops = {
3478 .update = warn_crc32c_csum_update,
3479 .combine = warn_crc32c_csum_combine,
3480};
3481
3482const struct skb_checksum_ops *crc32c_csum_stub __read_mostly =
3483 &default_crc32c_ops;
3484EXPORT_SYMBOL(crc32c_csum_stub);
3485
3486 /**
3487 * skb_zerocopy_headlen - Calculate headroom needed for skb_zerocopy()
3488 * @from: source buffer
3489 *
3490 * Calculates the amount of linear headroom needed in the 'to' skb passed
3491 * into skb_zerocopy().
3492 */
3493unsigned int
3494skb_zerocopy_headlen(const struct sk_buff *from)
3495{
3496 unsigned int hlen = 0;
3497
3498 if (!from->head_frag ||
3499 skb_headlen(from) < L1_CACHE_BYTES ||
3500 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS) {
3501 hlen = skb_headlen(from);
3502 if (!hlen)
3503 hlen = from->len;
3504 }
3505
3506 if (skb_has_frag_list(from))
3507 hlen = from->len;
3508
3509 return hlen;
3510}
3511EXPORT_SYMBOL_GPL(skb_zerocopy_headlen);
3512
3513/**
3514 * skb_zerocopy - Zero copy skb to skb
3515 * @to: destination buffer
3516 * @from: source buffer
3517 * @len: number of bytes to copy from source buffer
3518 * @hlen: size of linear headroom in destination buffer
3519 *
3520 * Copies up to `len` bytes from `from` to `to` by creating references
3521 * to the frags in the source buffer.
3522 *
3523 * The `hlen` as calculated by skb_zerocopy_headlen() specifies the
3524 * headroom in the `to` buffer.
3525 *
3526 * Return value:
3527 * 0: everything is OK
3528 * -ENOMEM: couldn't orphan frags of @from due to lack of memory
3529 * -EFAULT: skb_copy_bits() found some problem with skb geometry
3530 */
3531int
3532skb_zerocopy(struct sk_buff *to, struct sk_buff *from, int len, int hlen)
3533{
3534 int i, j = 0;
3535 int plen = 0; /* length of skb->head fragment */
3536 int ret;
3537 struct page *page;
3538 unsigned int offset;
3539
3540 BUG_ON(!from->head_frag && !hlen);
3541
3542 /* dont bother with small payloads */
3543 if (len <= skb_tailroom(to))
3544 return skb_copy_bits(from, 0, skb_put(to, len), len);
3545
3546 if (hlen) {
3547 ret = skb_copy_bits(from, 0, skb_put(to, hlen), hlen);
3548 if (unlikely(ret))
3549 return ret;
3550 len -= hlen;
3551 } else {
3552 plen = min_t(int, skb_headlen(from), len);
3553 if (plen) {
3554 page = virt_to_head_page(from->head);
3555 offset = from->data - (unsigned char *)page_address(page);
3556 __skb_fill_page_desc(to, 0, page, offset, plen);
3557 get_page(page);
3558 j = 1;
3559 len -= plen;
3560 }
3561 }
3562
3563 skb_len_add(to, len + plen);
3564
3565 if (unlikely(skb_orphan_frags(from, GFP_ATOMIC))) {
3566 skb_tx_error(from);
3567 return -ENOMEM;
3568 }
3569 skb_zerocopy_clone(to, from, GFP_ATOMIC);
3570
3571 for (i = 0; i < skb_shinfo(from)->nr_frags; i++) {
3572 int size;
3573
3574 if (!len)
3575 break;
3576 skb_shinfo(to)->frags[j] = skb_shinfo(from)->frags[i];
3577 size = min_t(int, skb_frag_size(&skb_shinfo(to)->frags[j]),
3578 len);
3579 skb_frag_size_set(&skb_shinfo(to)->frags[j], size);
3580 len -= size;
3581 skb_frag_ref(to, j);
3582 j++;
3583 }
3584 skb_shinfo(to)->nr_frags = j;
3585
3586 return 0;
3587}
3588EXPORT_SYMBOL_GPL(skb_zerocopy);
3589
3590void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
3591{
3592 __wsum csum;
3593 long csstart;
3594
3595 if (skb->ip_summed == CHECKSUM_PARTIAL)
3596 csstart = skb_checksum_start_offset(skb);
3597 else
3598 csstart = skb_headlen(skb);
3599
3600 BUG_ON(csstart > skb_headlen(skb));
3601
3602 skb_copy_from_linear_data(skb, to, csstart);
3603
3604 csum = 0;
3605 if (csstart != skb->len)
3606 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
3607 skb->len - csstart);
3608
3609 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3610 long csstuff = csstart + skb->csum_offset;
3611
3612 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
3613 }
3614}
3615EXPORT_SYMBOL(skb_copy_and_csum_dev);
3616
3617/**
3618 * skb_dequeue - remove from the head of the queue
3619 * @list: list to dequeue from
3620 *
3621 * Remove the head of the list. The list lock is taken so the function
3622 * may be used safely with other locking list functions. The head item is
3623 * returned or %NULL if the list is empty.
3624 */
3625
3626struct sk_buff *skb_dequeue(struct sk_buff_head *list)
3627{
3628 unsigned long flags;
3629 struct sk_buff *result;
3630
3631 spin_lock_irqsave(&list->lock, flags);
3632 result = __skb_dequeue(list);
3633 spin_unlock_irqrestore(&list->lock, flags);
3634 return result;
3635}
3636EXPORT_SYMBOL(skb_dequeue);
3637
3638/**
3639 * skb_dequeue_tail - remove from the tail of the queue
3640 * @list: list to dequeue from
3641 *
3642 * Remove the tail of the list. The list lock is taken so the function
3643 * may be used safely with other locking list functions. The tail item is
3644 * returned or %NULL if the list is empty.
3645 */
3646struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
3647{
3648 unsigned long flags;
3649 struct sk_buff *result;
3650
3651 spin_lock_irqsave(&list->lock, flags);
3652 result = __skb_dequeue_tail(list);
3653 spin_unlock_irqrestore(&list->lock, flags);
3654 return result;
3655}
3656EXPORT_SYMBOL(skb_dequeue_tail);
3657
3658/**
3659 * skb_queue_purge - empty a list
3660 * @list: list to empty
3661 *
3662 * Delete all buffers on an &sk_buff list. Each buffer is removed from
3663 * the list and one reference dropped. This function takes the list
3664 * lock and is atomic with respect to other list locking functions.
3665 */
3666void skb_queue_purge(struct sk_buff_head *list)
3667{
3668 struct sk_buff *skb;
3669 while ((skb = skb_dequeue(list)) != NULL)
3670 kfree_skb(skb);
3671}
3672EXPORT_SYMBOL(skb_queue_purge);
3673
3674/**
3675 * skb_rbtree_purge - empty a skb rbtree
3676 * @root: root of the rbtree to empty
3677 * Return value: the sum of truesizes of all purged skbs.
3678 *
3679 * Delete all buffers on an &sk_buff rbtree. Each buffer is removed from
3680 * the list and one reference dropped. This function does not take
3681 * any lock. Synchronization should be handled by the caller (e.g., TCP
3682 * out-of-order queue is protected by the socket lock).
3683 */
3684unsigned int skb_rbtree_purge(struct rb_root *root)
3685{
3686 struct rb_node *p = rb_first(root);
3687 unsigned int sum = 0;
3688
3689 while (p) {
3690 struct sk_buff *skb = rb_entry(p, struct sk_buff, rbnode);
3691
3692 p = rb_next(p);
3693 rb_erase(&skb->rbnode, root);
3694 sum += skb->truesize;
3695 kfree_skb(skb);
3696 }
3697 return sum;
3698}
3699
3700/**
3701 * skb_queue_head - queue a buffer at the list head
3702 * @list: list to use
3703 * @newsk: buffer to queue
3704 *
3705 * Queue a buffer at the start of the list. This function takes the
3706 * list lock and can be used safely with other locking &sk_buff functions
3707 * safely.
3708 *
3709 * A buffer cannot be placed on two lists at the same time.
3710 */
3711void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
3712{
3713 unsigned long flags;
3714
3715 spin_lock_irqsave(&list->lock, flags);
3716 __skb_queue_head(list, newsk);
3717 spin_unlock_irqrestore(&list->lock, flags);
3718}
3719EXPORT_SYMBOL(skb_queue_head);
3720
3721/**
3722 * skb_queue_tail - queue a buffer at the list tail
3723 * @list: list to use
3724 * @newsk: buffer to queue
3725 *
3726 * Queue a buffer at the tail of the list. This function takes the
3727 * list lock and can be used safely with other locking &sk_buff functions
3728 * safely.
3729 *
3730 * A buffer cannot be placed on two lists at the same time.
3731 */
3732void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
3733{
3734 unsigned long flags;
3735
3736 spin_lock_irqsave(&list->lock, flags);
3737 __skb_queue_tail(list, newsk);
3738 spin_unlock_irqrestore(&list->lock, flags);
3739}
3740EXPORT_SYMBOL(skb_queue_tail);
3741
3742/**
3743 * skb_unlink - remove a buffer from a list
3744 * @skb: buffer to remove
3745 * @list: list to use
3746 *
3747 * Remove a packet from a list. The list locks are taken and this
3748 * function is atomic with respect to other list locked calls
3749 *
3750 * You must know what list the SKB is on.
3751 */
3752void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
3753{
3754 unsigned long flags;
3755
3756 spin_lock_irqsave(&list->lock, flags);
3757 __skb_unlink(skb, list);
3758 spin_unlock_irqrestore(&list->lock, flags);
3759}
3760EXPORT_SYMBOL(skb_unlink);
3761
3762/**
3763 * skb_append - append a buffer
3764 * @old: buffer to insert after
3765 * @newsk: buffer to insert
3766 * @list: list to use
3767 *
3768 * Place a packet after a given packet in a list. The list locks are taken
3769 * and this function is atomic with respect to other list locked calls.
3770 * A buffer cannot be placed on two lists at the same time.
3771 */
3772void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
3773{
3774 unsigned long flags;
3775
3776 spin_lock_irqsave(&list->lock, flags);
3777 __skb_queue_after(list, old, newsk);
3778 spin_unlock_irqrestore(&list->lock, flags);
3779}
3780EXPORT_SYMBOL(skb_append);
3781
3782static inline void skb_split_inside_header(struct sk_buff *skb,
3783 struct sk_buff* skb1,
3784 const u32 len, const int pos)
3785{
3786 int i;
3787
3788 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
3789 pos - len);
3790 /* And move data appendix as is. */
3791 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
3792 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
3793
3794 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
3795 skb_shinfo(skb)->nr_frags = 0;
3796 skb1->data_len = skb->data_len;
3797 skb1->len += skb1->data_len;
3798 skb->data_len = 0;
3799 skb->len = len;
3800 skb_set_tail_pointer(skb, len);
3801}
3802
3803static inline void skb_split_no_header(struct sk_buff *skb,
3804 struct sk_buff* skb1,
3805 const u32 len, int pos)
3806{
3807 int i, k = 0;
3808 const int nfrags = skb_shinfo(skb)->nr_frags;
3809
3810 skb_shinfo(skb)->nr_frags = 0;
3811 skb1->len = skb1->data_len = skb->len - len;
3812 skb->len = len;
3813 skb->data_len = len - pos;
3814
3815 for (i = 0; i < nfrags; i++) {
3816 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
3817
3818 if (pos + size > len) {
3819 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
3820
3821 if (pos < len) {
3822 /* Split frag.
3823 * We have two variants in this case:
3824 * 1. Move all the frag to the second
3825 * part, if it is possible. F.e.
3826 * this approach is mandatory for TUX,
3827 * where splitting is expensive.
3828 * 2. Split is accurately. We make this.
3829 */
3830 skb_frag_ref(skb, i);
3831 skb_frag_off_add(&skb_shinfo(skb1)->frags[0], len - pos);
3832 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
3833 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
3834 skb_shinfo(skb)->nr_frags++;
3835 }
3836 k++;
3837 } else
3838 skb_shinfo(skb)->nr_frags++;
3839 pos += size;
3840 }
3841 skb_shinfo(skb1)->nr_frags = k;
3842}
3843
3844/**
3845 * skb_split - Split fragmented skb to two parts at length len.
3846 * @skb: the buffer to split
3847 * @skb1: the buffer to receive the second part
3848 * @len: new length for skb
3849 */
3850void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
3851{
3852 int pos = skb_headlen(skb);
3853 const int zc_flags = SKBFL_SHARED_FRAG | SKBFL_PURE_ZEROCOPY;
3854
3855 skb_zcopy_downgrade_managed(skb);
3856
3857 skb_shinfo(skb1)->flags |= skb_shinfo(skb)->flags & zc_flags;
3858 skb_zerocopy_clone(skb1, skb, 0);
3859 if (len < pos) /* Split line is inside header. */
3860 skb_split_inside_header(skb, skb1, len, pos);
3861 else /* Second chunk has no header, nothing to copy. */
3862 skb_split_no_header(skb, skb1, len, pos);
3863}
3864EXPORT_SYMBOL(skb_split);
3865
3866/* Shifting from/to a cloned skb is a no-go.
3867 *
3868 * Caller cannot keep skb_shinfo related pointers past calling here!
3869 */
3870static int skb_prepare_for_shift(struct sk_buff *skb)
3871{
3872 return skb_unclone_keeptruesize(skb, GFP_ATOMIC);
3873}
3874
3875/**
3876 * skb_shift - Shifts paged data partially from skb to another
3877 * @tgt: buffer into which tail data gets added
3878 * @skb: buffer from which the paged data comes from
3879 * @shiftlen: shift up to this many bytes
3880 *
3881 * Attempts to shift up to shiftlen worth of bytes, which may be less than
3882 * the length of the skb, from skb to tgt. Returns number bytes shifted.
3883 * It's up to caller to free skb if everything was shifted.
3884 *
3885 * If @tgt runs out of frags, the whole operation is aborted.
3886 *
3887 * Skb cannot include anything else but paged data while tgt is allowed
3888 * to have non-paged data as well.
3889 *
3890 * TODO: full sized shift could be optimized but that would need
3891 * specialized skb free'er to handle frags without up-to-date nr_frags.
3892 */
3893int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
3894{
3895 int from, to, merge, todo;
3896 skb_frag_t *fragfrom, *fragto;
3897
3898 BUG_ON(shiftlen > skb->len);
3899
3900 if (skb_headlen(skb))
3901 return 0;
3902 if (skb_zcopy(tgt) || skb_zcopy(skb))
3903 return 0;
3904
3905 todo = shiftlen;
3906 from = 0;
3907 to = skb_shinfo(tgt)->nr_frags;
3908 fragfrom = &skb_shinfo(skb)->frags[from];
3909
3910 /* Actual merge is delayed until the point when we know we can
3911 * commit all, so that we don't have to undo partial changes
3912 */
3913 if (!to ||
3914 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
3915 skb_frag_off(fragfrom))) {
3916 merge = -1;
3917 } else {
3918 merge = to - 1;
3919
3920 todo -= skb_frag_size(fragfrom);
3921 if (todo < 0) {
3922 if (skb_prepare_for_shift(skb) ||
3923 skb_prepare_for_shift(tgt))
3924 return 0;
3925
3926 /* All previous frag pointers might be stale! */
3927 fragfrom = &skb_shinfo(skb)->frags[from];
3928 fragto = &skb_shinfo(tgt)->frags[merge];
3929
3930 skb_frag_size_add(fragto, shiftlen);
3931 skb_frag_size_sub(fragfrom, shiftlen);
3932 skb_frag_off_add(fragfrom, shiftlen);
3933
3934 goto onlymerged;
3935 }
3936
3937 from++;
3938 }
3939
3940 /* Skip full, not-fitting skb to avoid expensive operations */
3941 if ((shiftlen == skb->len) &&
3942 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
3943 return 0;
3944
3945 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
3946 return 0;
3947
3948 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
3949 if (to == MAX_SKB_FRAGS)
3950 return 0;
3951
3952 fragfrom = &skb_shinfo(skb)->frags[from];
3953 fragto = &skb_shinfo(tgt)->frags[to];
3954
3955 if (todo >= skb_frag_size(fragfrom)) {
3956 *fragto = *fragfrom;
3957 todo -= skb_frag_size(fragfrom);
3958 from++;
3959 to++;
3960
3961 } else {
3962 __skb_frag_ref(fragfrom);
3963 skb_frag_page_copy(fragto, fragfrom);
3964 skb_frag_off_copy(fragto, fragfrom);
3965 skb_frag_size_set(fragto, todo);
3966
3967 skb_frag_off_add(fragfrom, todo);
3968 skb_frag_size_sub(fragfrom, todo);
3969 todo = 0;
3970
3971 to++;
3972 break;
3973 }
3974 }
3975
3976 /* Ready to "commit" this state change to tgt */
3977 skb_shinfo(tgt)->nr_frags = to;
3978
3979 if (merge >= 0) {
3980 fragfrom = &skb_shinfo(skb)->frags[0];
3981 fragto = &skb_shinfo(tgt)->frags[merge];
3982
3983 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
3984 __skb_frag_unref(fragfrom, skb->pp_recycle);
3985 }
3986
3987 /* Reposition in the original skb */
3988 to = 0;
3989 while (from < skb_shinfo(skb)->nr_frags)
3990 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
3991 skb_shinfo(skb)->nr_frags = to;
3992
3993 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
3994
3995onlymerged:
3996 /* Most likely the tgt won't ever need its checksum anymore, skb on
3997 * the other hand might need it if it needs to be resent
3998 */
3999 tgt->ip_summed = CHECKSUM_PARTIAL;
4000 skb->ip_summed = CHECKSUM_PARTIAL;
4001
4002 skb_len_add(skb, -shiftlen);
4003 skb_len_add(tgt, shiftlen);
4004
4005 return shiftlen;
4006}
4007
4008/**
4009 * skb_prepare_seq_read - Prepare a sequential read of skb data
4010 * @skb: the buffer to read
4011 * @from: lower offset of data to be read
4012 * @to: upper offset of data to be read
4013 * @st: state variable
4014 *
4015 * Initializes the specified state variable. Must be called before
4016 * invoking skb_seq_read() for the first time.
4017 */
4018void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
4019 unsigned int to, struct skb_seq_state *st)
4020{
4021 st->lower_offset = from;
4022 st->upper_offset = to;
4023 st->root_skb = st->cur_skb = skb;
4024 st->frag_idx = st->stepped_offset = 0;
4025 st->frag_data = NULL;
4026 st->frag_off = 0;
4027}
4028EXPORT_SYMBOL(skb_prepare_seq_read);
4029
4030/**
4031 * skb_seq_read - Sequentially read skb data
4032 * @consumed: number of bytes consumed by the caller so far
4033 * @data: destination pointer for data to be returned
4034 * @st: state variable
4035 *
4036 * Reads a block of skb data at @consumed relative to the
4037 * lower offset specified to skb_prepare_seq_read(). Assigns
4038 * the head of the data block to @data and returns the length
4039 * of the block or 0 if the end of the skb data or the upper
4040 * offset has been reached.
4041 *
4042 * The caller is not required to consume all of the data
4043 * returned, i.e. @consumed is typically set to the number
4044 * of bytes already consumed and the next call to
4045 * skb_seq_read() will return the remaining part of the block.
4046 *
4047 * Note 1: The size of each block of data returned can be arbitrary,
4048 * this limitation is the cost for zerocopy sequential
4049 * reads of potentially non linear data.
4050 *
4051 * Note 2: Fragment lists within fragments are not implemented
4052 * at the moment, state->root_skb could be replaced with
4053 * a stack for this purpose.
4054 */
4055unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
4056 struct skb_seq_state *st)
4057{
4058 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
4059 skb_frag_t *frag;
4060
4061 if (unlikely(abs_offset >= st->upper_offset)) {
4062 if (st->frag_data) {
4063 kunmap_atomic(st->frag_data);
4064 st->frag_data = NULL;
4065 }
4066 return 0;
4067 }
4068
4069next_skb:
4070 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
4071
4072 if (abs_offset < block_limit && !st->frag_data) {
4073 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
4074 return block_limit - abs_offset;
4075 }
4076
4077 if (st->frag_idx == 0 && !st->frag_data)
4078 st->stepped_offset += skb_headlen(st->cur_skb);
4079
4080 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
4081 unsigned int pg_idx, pg_off, pg_sz;
4082
4083 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
4084
4085 pg_idx = 0;
4086 pg_off = skb_frag_off(frag);
4087 pg_sz = skb_frag_size(frag);
4088
4089 if (skb_frag_must_loop(skb_frag_page(frag))) {
4090 pg_idx = (pg_off + st->frag_off) >> PAGE_SHIFT;
4091 pg_off = offset_in_page(pg_off + st->frag_off);
4092 pg_sz = min_t(unsigned int, pg_sz - st->frag_off,
4093 PAGE_SIZE - pg_off);
4094 }
4095
4096 block_limit = pg_sz + st->stepped_offset;
4097 if (abs_offset < block_limit) {
4098 if (!st->frag_data)
4099 st->frag_data = kmap_atomic(skb_frag_page(frag) + pg_idx);
4100
4101 *data = (u8 *)st->frag_data + pg_off +
4102 (abs_offset - st->stepped_offset);
4103
4104 return block_limit - abs_offset;
4105 }
4106
4107 if (st->frag_data) {
4108 kunmap_atomic(st->frag_data);
4109 st->frag_data = NULL;
4110 }
4111
4112 st->stepped_offset += pg_sz;
4113 st->frag_off += pg_sz;
4114 if (st->frag_off == skb_frag_size(frag)) {
4115 st->frag_off = 0;
4116 st->frag_idx++;
4117 }
4118 }
4119
4120 if (st->frag_data) {
4121 kunmap_atomic(st->frag_data);
4122 st->frag_data = NULL;
4123 }
4124
4125 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
4126 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
4127 st->frag_idx = 0;
4128 goto next_skb;
4129 } else if (st->cur_skb->next) {
4130 st->cur_skb = st->cur_skb->next;
4131 st->frag_idx = 0;
4132 goto next_skb;
4133 }
4134
4135 return 0;
4136}
4137EXPORT_SYMBOL(skb_seq_read);
4138
4139/**
4140 * skb_abort_seq_read - Abort a sequential read of skb data
4141 * @st: state variable
4142 *
4143 * Must be called if skb_seq_read() was not called until it
4144 * returned 0.
4145 */
4146void skb_abort_seq_read(struct skb_seq_state *st)
4147{
4148 if (st->frag_data)
4149 kunmap_atomic(st->frag_data);
4150}
4151EXPORT_SYMBOL(skb_abort_seq_read);
4152
4153#define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
4154
4155static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
4156 struct ts_config *conf,
4157 struct ts_state *state)
4158{
4159 return skb_seq_read(offset, text, TS_SKB_CB(state));
4160}
4161
4162static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
4163{
4164 skb_abort_seq_read(TS_SKB_CB(state));
4165}
4166
4167/**
4168 * skb_find_text - Find a text pattern in skb data
4169 * @skb: the buffer to look in
4170 * @from: search offset
4171 * @to: search limit
4172 * @config: textsearch configuration
4173 *
4174 * Finds a pattern in the skb data according to the specified
4175 * textsearch configuration. Use textsearch_next() to retrieve
4176 * subsequent occurrences of the pattern. Returns the offset
4177 * to the first occurrence or UINT_MAX if no match was found.
4178 */
4179unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
4180 unsigned int to, struct ts_config *config)
4181{
4182 struct ts_state state;
4183 unsigned int ret;
4184
4185 BUILD_BUG_ON(sizeof(struct skb_seq_state) > sizeof(state.cb));
4186
4187 config->get_next_block = skb_ts_get_next_block;
4188 config->finish = skb_ts_finish;
4189
4190 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(&state));
4191
4192 ret = textsearch_find(config, &state);
4193 return (ret <= to - from ? ret : UINT_MAX);
4194}
4195EXPORT_SYMBOL(skb_find_text);
4196
4197int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
4198 int offset, size_t size, size_t max_frags)
4199{
4200 int i = skb_shinfo(skb)->nr_frags;
4201
4202 if (skb_can_coalesce(skb, i, page, offset)) {
4203 skb_frag_size_add(&skb_shinfo(skb)->frags[i - 1], size);
4204 } else if (i < max_frags) {
4205 skb_zcopy_downgrade_managed(skb);
4206 get_page(page);
4207 skb_fill_page_desc_noacc(skb, i, page, offset, size);
4208 } else {
4209 return -EMSGSIZE;
4210 }
4211
4212 return 0;
4213}
4214EXPORT_SYMBOL_GPL(skb_append_pagefrags);
4215
4216/**
4217 * skb_pull_rcsum - pull skb and update receive checksum
4218 * @skb: buffer to update
4219 * @len: length of data pulled
4220 *
4221 * This function performs an skb_pull on the packet and updates
4222 * the CHECKSUM_COMPLETE checksum. It should be used on
4223 * receive path processing instead of skb_pull unless you know
4224 * that the checksum difference is zero (e.g., a valid IP header)
4225 * or you are setting ip_summed to CHECKSUM_NONE.
4226 */
4227void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
4228{
4229 unsigned char *data = skb->data;
4230
4231 BUG_ON(len > skb->len);
4232 __skb_pull(skb, len);
4233 skb_postpull_rcsum(skb, data, len);
4234 return skb->data;
4235}
4236EXPORT_SYMBOL_GPL(skb_pull_rcsum);
4237
4238static inline skb_frag_t skb_head_frag_to_page_desc(struct sk_buff *frag_skb)
4239{
4240 skb_frag_t head_frag;
4241 struct page *page;
4242
4243 page = virt_to_head_page(frag_skb->head);
4244 skb_frag_fill_page_desc(&head_frag, page, frag_skb->data -
4245 (unsigned char *)page_address(page),
4246 skb_headlen(frag_skb));
4247 return head_frag;
4248}
4249
4250struct sk_buff *skb_segment_list(struct sk_buff *skb,
4251 netdev_features_t features,
4252 unsigned int offset)
4253{
4254 struct sk_buff *list_skb = skb_shinfo(skb)->frag_list;
4255 unsigned int tnl_hlen = skb_tnl_header_len(skb);
4256 unsigned int delta_truesize = 0;
4257 unsigned int delta_len = 0;
4258 struct sk_buff *tail = NULL;
4259 struct sk_buff *nskb, *tmp;
4260 int len_diff, err;
4261
4262 skb_push(skb, -skb_network_offset(skb) + offset);
4263
4264 /* Ensure the head is writeable before touching the shared info */
4265 err = skb_unclone(skb, GFP_ATOMIC);
4266 if (err)
4267 goto err_linearize;
4268
4269 skb_shinfo(skb)->frag_list = NULL;
4270
4271 while (list_skb) {
4272 nskb = list_skb;
4273 list_skb = list_skb->next;
4274
4275 err = 0;
4276 delta_truesize += nskb->truesize;
4277 if (skb_shared(nskb)) {
4278 tmp = skb_clone(nskb, GFP_ATOMIC);
4279 if (tmp) {
4280 consume_skb(nskb);
4281 nskb = tmp;
4282 err = skb_unclone(nskb, GFP_ATOMIC);
4283 } else {
4284 err = -ENOMEM;
4285 }
4286 }
4287
4288 if (!tail)
4289 skb->next = nskb;
4290 else
4291 tail->next = nskb;
4292
4293 if (unlikely(err)) {
4294 nskb->next = list_skb;
4295 goto err_linearize;
4296 }
4297
4298 tail = nskb;
4299
4300 delta_len += nskb->len;
4301
4302 skb_push(nskb, -skb_network_offset(nskb) + offset);
4303
4304 skb_release_head_state(nskb);
4305 len_diff = skb_network_header_len(nskb) - skb_network_header_len(skb);
4306 __copy_skb_header(nskb, skb);
4307
4308 skb_headers_offset_update(nskb, skb_headroom(nskb) - skb_headroom(skb));
4309 nskb->transport_header += len_diff;
4310 skb_copy_from_linear_data_offset(skb, -tnl_hlen,
4311 nskb->data - tnl_hlen,
4312 offset + tnl_hlen);
4313
4314 if (skb_needs_linearize(nskb, features) &&
4315 __skb_linearize(nskb))
4316 goto err_linearize;
4317 }
4318
4319 skb->truesize = skb->truesize - delta_truesize;
4320 skb->data_len = skb->data_len - delta_len;
4321 skb->len = skb->len - delta_len;
4322
4323 skb_gso_reset(skb);
4324
4325 skb->prev = tail;
4326
4327 if (skb_needs_linearize(skb, features) &&
4328 __skb_linearize(skb))
4329 goto err_linearize;
4330
4331 skb_get(skb);
4332
4333 return skb;
4334
4335err_linearize:
4336 kfree_skb_list(skb->next);
4337 skb->next = NULL;
4338 return ERR_PTR(-ENOMEM);
4339}
4340EXPORT_SYMBOL_GPL(skb_segment_list);
4341
4342/**
4343 * skb_segment - Perform protocol segmentation on skb.
4344 * @head_skb: buffer to segment
4345 * @features: features for the output path (see dev->features)
4346 *
4347 * This function performs segmentation on the given skb. It returns
4348 * a pointer to the first in a list of new skbs for the segments.
4349 * In case of error it returns ERR_PTR(err).
4350 */
4351struct sk_buff *skb_segment(struct sk_buff *head_skb,
4352 netdev_features_t features)
4353{
4354 struct sk_buff *segs = NULL;
4355 struct sk_buff *tail = NULL;
4356 struct sk_buff *list_skb = skb_shinfo(head_skb)->frag_list;
4357 skb_frag_t *frag = skb_shinfo(head_skb)->frags;
4358 unsigned int mss = skb_shinfo(head_skb)->gso_size;
4359 unsigned int doffset = head_skb->data - skb_mac_header(head_skb);
4360 struct sk_buff *frag_skb = head_skb;
4361 unsigned int offset = doffset;
4362 unsigned int tnl_hlen = skb_tnl_header_len(head_skb);
4363 unsigned int partial_segs = 0;
4364 unsigned int headroom;
4365 unsigned int len = head_skb->len;
4366 __be16 proto;
4367 bool csum, sg;
4368 int nfrags = skb_shinfo(head_skb)->nr_frags;
4369 int err = -ENOMEM;
4370 int i = 0;
4371 int pos;
4372
4373 if ((skb_shinfo(head_skb)->gso_type & SKB_GSO_DODGY) &&
4374 mss != GSO_BY_FRAGS && mss != skb_headlen(head_skb)) {
4375 struct sk_buff *check_skb;
4376
4377 for (check_skb = list_skb; check_skb; check_skb = check_skb->next) {
4378 if (skb_headlen(check_skb) && !check_skb->head_frag) {
4379 /* gso_size is untrusted, and we have a frag_list with
4380 * a linear non head_frag item.
4381 *
4382 * If head_skb's headlen does not fit requested gso_size,
4383 * it means that the frag_list members do NOT terminate
4384 * on exact gso_size boundaries. Hence we cannot perform
4385 * skb_frag_t page sharing. Therefore we must fallback to
4386 * copying the frag_list skbs; we do so by disabling SG.
4387 */
4388 features &= ~NETIF_F_SG;
4389 break;
4390 }
4391 }
4392 }
4393
4394 __skb_push(head_skb, doffset);
4395 proto = skb_network_protocol(head_skb, NULL);
4396 if (unlikely(!proto))
4397 return ERR_PTR(-EINVAL);
4398
4399 sg = !!(features & NETIF_F_SG);
4400 csum = !!can_checksum_protocol(features, proto);
4401
4402 if (sg && csum && (mss != GSO_BY_FRAGS)) {
4403 if (!(features & NETIF_F_GSO_PARTIAL)) {
4404 struct sk_buff *iter;
4405 unsigned int frag_len;
4406
4407 if (!list_skb ||
4408 !net_gso_ok(features, skb_shinfo(head_skb)->gso_type))
4409 goto normal;
4410
4411 /* If we get here then all the required
4412 * GSO features except frag_list are supported.
4413 * Try to split the SKB to multiple GSO SKBs
4414 * with no frag_list.
4415 * Currently we can do that only when the buffers don't
4416 * have a linear part and all the buffers except
4417 * the last are of the same length.
4418 */
4419 frag_len = list_skb->len;
4420 skb_walk_frags(head_skb, iter) {
4421 if (frag_len != iter->len && iter->next)
4422 goto normal;
4423 if (skb_headlen(iter) && !iter->head_frag)
4424 goto normal;
4425
4426 len -= iter->len;
4427 }
4428
4429 if (len != frag_len)
4430 goto normal;
4431 }
4432
4433 /* GSO partial only requires that we trim off any excess that
4434 * doesn't fit into an MSS sized block, so take care of that
4435 * now.
4436 */
4437 partial_segs = len / mss;
4438 if (partial_segs > 1)
4439 mss *= partial_segs;
4440 else
4441 partial_segs = 0;
4442 }
4443
4444normal:
4445 headroom = skb_headroom(head_skb);
4446 pos = skb_headlen(head_skb);
4447
4448 do {
4449 struct sk_buff *nskb;
4450 skb_frag_t *nskb_frag;
4451 int hsize;
4452 int size;
4453
4454 if (unlikely(mss == GSO_BY_FRAGS)) {
4455 len = list_skb->len;
4456 } else {
4457 len = head_skb->len - offset;
4458 if (len > mss)
4459 len = mss;
4460 }
4461
4462 hsize = skb_headlen(head_skb) - offset;
4463
4464 if (hsize <= 0 && i >= nfrags && skb_headlen(list_skb) &&
4465 (skb_headlen(list_skb) == len || sg)) {
4466 BUG_ON(skb_headlen(list_skb) > len);
4467
4468 i = 0;
4469 nfrags = skb_shinfo(list_skb)->nr_frags;
4470 frag = skb_shinfo(list_skb)->frags;
4471 frag_skb = list_skb;
4472 pos += skb_headlen(list_skb);
4473
4474 while (pos < offset + len) {
4475 BUG_ON(i >= nfrags);
4476
4477 size = skb_frag_size(frag);
4478 if (pos + size > offset + len)
4479 break;
4480
4481 i++;
4482 pos += size;
4483 frag++;
4484 }
4485
4486 nskb = skb_clone(list_skb, GFP_ATOMIC);
4487 list_skb = list_skb->next;
4488
4489 if (unlikely(!nskb))
4490 goto err;
4491
4492 if (unlikely(pskb_trim(nskb, len))) {
4493 kfree_skb(nskb);
4494 goto err;
4495 }
4496
4497 hsize = skb_end_offset(nskb);
4498 if (skb_cow_head(nskb, doffset + headroom)) {
4499 kfree_skb(nskb);
4500 goto err;
4501 }
4502
4503 nskb->truesize += skb_end_offset(nskb) - hsize;
4504 skb_release_head_state(nskb);
4505 __skb_push(nskb, doffset);
4506 } else {
4507 if (hsize < 0)
4508 hsize = 0;
4509 if (hsize > len || !sg)
4510 hsize = len;
4511
4512 nskb = __alloc_skb(hsize + doffset + headroom,
4513 GFP_ATOMIC, skb_alloc_rx_flag(head_skb),
4514 NUMA_NO_NODE);
4515
4516 if (unlikely(!nskb))
4517 goto err;
4518
4519 skb_reserve(nskb, headroom);
4520 __skb_put(nskb, doffset);
4521 }
4522
4523 if (segs)
4524 tail->next = nskb;
4525 else
4526 segs = nskb;
4527 tail = nskb;
4528
4529 __copy_skb_header(nskb, head_skb);
4530
4531 skb_headers_offset_update(nskb, skb_headroom(nskb) - headroom);
4532 skb_reset_mac_len(nskb);
4533
4534 skb_copy_from_linear_data_offset(head_skb, -tnl_hlen,
4535 nskb->data - tnl_hlen,
4536 doffset + tnl_hlen);
4537
4538 if (nskb->len == len + doffset)
4539 goto perform_csum_check;
4540
4541 if (!sg) {
4542 if (!csum) {
4543 if (!nskb->remcsum_offload)
4544 nskb->ip_summed = CHECKSUM_NONE;
4545 SKB_GSO_CB(nskb)->csum =
4546 skb_copy_and_csum_bits(head_skb, offset,
4547 skb_put(nskb,
4548 len),
4549 len);
4550 SKB_GSO_CB(nskb)->csum_start =
4551 skb_headroom(nskb) + doffset;
4552 } else {
4553 if (skb_copy_bits(head_skb, offset, skb_put(nskb, len), len))
4554 goto err;
4555 }
4556 continue;
4557 }
4558
4559 nskb_frag = skb_shinfo(nskb)->frags;
4560
4561 skb_copy_from_linear_data_offset(head_skb, offset,
4562 skb_put(nskb, hsize), hsize);
4563
4564 skb_shinfo(nskb)->flags |= skb_shinfo(head_skb)->flags &
4565 SKBFL_SHARED_FRAG;
4566
4567 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4568 skb_zerocopy_clone(nskb, frag_skb, GFP_ATOMIC))
4569 goto err;
4570
4571 while (pos < offset + len) {
4572 if (i >= nfrags) {
4573 i = 0;
4574 nfrags = skb_shinfo(list_skb)->nr_frags;
4575 frag = skb_shinfo(list_skb)->frags;
4576 frag_skb = list_skb;
4577 if (!skb_headlen(list_skb)) {
4578 BUG_ON(!nfrags);
4579 } else {
4580 BUG_ON(!list_skb->head_frag);
4581
4582 /* to make room for head_frag. */
4583 i--;
4584 frag--;
4585 }
4586 if (skb_orphan_frags(frag_skb, GFP_ATOMIC) ||
4587 skb_zerocopy_clone(nskb, frag_skb,
4588 GFP_ATOMIC))
4589 goto err;
4590
4591 list_skb = list_skb->next;
4592 }
4593
4594 if (unlikely(skb_shinfo(nskb)->nr_frags >=
4595 MAX_SKB_FRAGS)) {
4596 net_warn_ratelimited(
4597 "skb_segment: too many frags: %u %u\n",
4598 pos, mss);
4599 err = -EINVAL;
4600 goto err;
4601 }
4602
4603 *nskb_frag = (i < 0) ? skb_head_frag_to_page_desc(frag_skb) : *frag;
4604 __skb_frag_ref(nskb_frag);
4605 size = skb_frag_size(nskb_frag);
4606
4607 if (pos < offset) {
4608 skb_frag_off_add(nskb_frag, offset - pos);
4609 skb_frag_size_sub(nskb_frag, offset - pos);
4610 }
4611
4612 skb_shinfo(nskb)->nr_frags++;
4613
4614 if (pos + size <= offset + len) {
4615 i++;
4616 frag++;
4617 pos += size;
4618 } else {
4619 skb_frag_size_sub(nskb_frag, pos + size - (offset + len));
4620 goto skip_fraglist;
4621 }
4622
4623 nskb_frag++;
4624 }
4625
4626skip_fraglist:
4627 nskb->data_len = len - hsize;
4628 nskb->len += nskb->data_len;
4629 nskb->truesize += nskb->data_len;
4630
4631perform_csum_check:
4632 if (!csum) {
4633 if (skb_has_shared_frag(nskb) &&
4634 __skb_linearize(nskb))
4635 goto err;
4636
4637 if (!nskb->remcsum_offload)
4638 nskb->ip_summed = CHECKSUM_NONE;
4639 SKB_GSO_CB(nskb)->csum =
4640 skb_checksum(nskb, doffset,
4641 nskb->len - doffset, 0);
4642 SKB_GSO_CB(nskb)->csum_start =
4643 skb_headroom(nskb) + doffset;
4644 }
4645 } while ((offset += len) < head_skb->len);
4646
4647 /* Some callers want to get the end of the list.
4648 * Put it in segs->prev to avoid walking the list.
4649 * (see validate_xmit_skb_list() for example)
4650 */
4651 segs->prev = tail;
4652
4653 if (partial_segs) {
4654 struct sk_buff *iter;
4655 int type = skb_shinfo(head_skb)->gso_type;
4656 unsigned short gso_size = skb_shinfo(head_skb)->gso_size;
4657
4658 /* Update type to add partial and then remove dodgy if set */
4659 type |= (features & NETIF_F_GSO_PARTIAL) / NETIF_F_GSO_PARTIAL * SKB_GSO_PARTIAL;
4660 type &= ~SKB_GSO_DODGY;
4661
4662 /* Update GSO info and prepare to start updating headers on
4663 * our way back down the stack of protocols.
4664 */
4665 for (iter = segs; iter; iter = iter->next) {
4666 skb_shinfo(iter)->gso_size = gso_size;
4667 skb_shinfo(iter)->gso_segs = partial_segs;
4668 skb_shinfo(iter)->gso_type = type;
4669 SKB_GSO_CB(iter)->data_offset = skb_headroom(iter) + doffset;
4670 }
4671
4672 if (tail->len - doffset <= gso_size)
4673 skb_shinfo(tail)->gso_size = 0;
4674 else if (tail != segs)
4675 skb_shinfo(tail)->gso_segs = DIV_ROUND_UP(tail->len - doffset, gso_size);
4676 }
4677
4678 /* Following permits correct backpressure, for protocols
4679 * using skb_set_owner_w().
4680 * Idea is to tranfert ownership from head_skb to last segment.
4681 */
4682 if (head_skb->destructor == sock_wfree) {
4683 swap(tail->truesize, head_skb->truesize);
4684 swap(tail->destructor, head_skb->destructor);
4685 swap(tail->sk, head_skb->sk);
4686 }
4687 return segs;
4688
4689err:
4690 kfree_skb_list(segs);
4691 return ERR_PTR(err);
4692}
4693EXPORT_SYMBOL_GPL(skb_segment);
4694
4695#ifdef CONFIG_SKB_EXTENSIONS
4696#define SKB_EXT_ALIGN_VALUE 8
4697#define SKB_EXT_CHUNKSIZEOF(x) (ALIGN((sizeof(x)), SKB_EXT_ALIGN_VALUE) / SKB_EXT_ALIGN_VALUE)
4698
4699static const u8 skb_ext_type_len[] = {
4700#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4701 [SKB_EXT_BRIDGE_NF] = SKB_EXT_CHUNKSIZEOF(struct nf_bridge_info),
4702#endif
4703#ifdef CONFIG_XFRM
4704 [SKB_EXT_SEC_PATH] = SKB_EXT_CHUNKSIZEOF(struct sec_path),
4705#endif
4706#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4707 [TC_SKB_EXT] = SKB_EXT_CHUNKSIZEOF(struct tc_skb_ext),
4708#endif
4709#if IS_ENABLED(CONFIG_MPTCP)
4710 [SKB_EXT_MPTCP] = SKB_EXT_CHUNKSIZEOF(struct mptcp_ext),
4711#endif
4712#if IS_ENABLED(CONFIG_MCTP_FLOWS)
4713 [SKB_EXT_MCTP] = SKB_EXT_CHUNKSIZEOF(struct mctp_flow),
4714#endif
4715};
4716
4717static __always_inline unsigned int skb_ext_total_length(void)
4718{
4719 return SKB_EXT_CHUNKSIZEOF(struct skb_ext) +
4720#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4721 skb_ext_type_len[SKB_EXT_BRIDGE_NF] +
4722#endif
4723#ifdef CONFIG_XFRM
4724 skb_ext_type_len[SKB_EXT_SEC_PATH] +
4725#endif
4726#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4727 skb_ext_type_len[TC_SKB_EXT] +
4728#endif
4729#if IS_ENABLED(CONFIG_MPTCP)
4730 skb_ext_type_len[SKB_EXT_MPTCP] +
4731#endif
4732#if IS_ENABLED(CONFIG_MCTP_FLOWS)
4733 skb_ext_type_len[SKB_EXT_MCTP] +
4734#endif
4735 0;
4736}
4737
4738static void skb_extensions_init(void)
4739{
4740 BUILD_BUG_ON(SKB_EXT_NUM >= 8);
4741 BUILD_BUG_ON(skb_ext_total_length() > 255);
4742
4743 skbuff_ext_cache = kmem_cache_create("skbuff_ext_cache",
4744 SKB_EXT_ALIGN_VALUE * skb_ext_total_length(),
4745 0,
4746 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4747 NULL);
4748}
4749#else
4750static void skb_extensions_init(void) {}
4751#endif
4752
4753void __init skb_init(void)
4754{
4755 skbuff_cache = kmem_cache_create_usercopy("skbuff_head_cache",
4756 sizeof(struct sk_buff),
4757 0,
4758 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4759 offsetof(struct sk_buff, cb),
4760 sizeof_field(struct sk_buff, cb),
4761 NULL);
4762 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
4763 sizeof(struct sk_buff_fclones),
4764 0,
4765 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
4766 NULL);
4767 /* usercopy should only access first SKB_SMALL_HEAD_HEADROOM bytes.
4768 * struct skb_shared_info is located at the end of skb->head,
4769 * and should not be copied to/from user.
4770 */
4771 skb_small_head_cache = kmem_cache_create_usercopy("skbuff_small_head",
4772 SKB_SMALL_HEAD_CACHE_SIZE,
4773 0,
4774 SLAB_HWCACHE_ALIGN | SLAB_PANIC,
4775 0,
4776 SKB_SMALL_HEAD_HEADROOM,
4777 NULL);
4778 skb_extensions_init();
4779}
4780
4781static int
4782__skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len,
4783 unsigned int recursion_level)
4784{
4785 int start = skb_headlen(skb);
4786 int i, copy = start - offset;
4787 struct sk_buff *frag_iter;
4788 int elt = 0;
4789
4790 if (unlikely(recursion_level >= 24))
4791 return -EMSGSIZE;
4792
4793 if (copy > 0) {
4794 if (copy > len)
4795 copy = len;
4796 sg_set_buf(sg, skb->data + offset, copy);
4797 elt++;
4798 if ((len -= copy) == 0)
4799 return elt;
4800 offset += copy;
4801 }
4802
4803 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4804 int end;
4805
4806 WARN_ON(start > offset + len);
4807
4808 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
4809 if ((copy = end - offset) > 0) {
4810 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4811 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4812 return -EMSGSIZE;
4813
4814 if (copy > len)
4815 copy = len;
4816 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
4817 skb_frag_off(frag) + offset - start);
4818 elt++;
4819 if (!(len -= copy))
4820 return elt;
4821 offset += copy;
4822 }
4823 start = end;
4824 }
4825
4826 skb_walk_frags(skb, frag_iter) {
4827 int end, ret;
4828
4829 WARN_ON(start > offset + len);
4830
4831 end = start + frag_iter->len;
4832 if ((copy = end - offset) > 0) {
4833 if (unlikely(elt && sg_is_last(&sg[elt - 1])))
4834 return -EMSGSIZE;
4835
4836 if (copy > len)
4837 copy = len;
4838 ret = __skb_to_sgvec(frag_iter, sg+elt, offset - start,
4839 copy, recursion_level + 1);
4840 if (unlikely(ret < 0))
4841 return ret;
4842 elt += ret;
4843 if ((len -= copy) == 0)
4844 return elt;
4845 offset += copy;
4846 }
4847 start = end;
4848 }
4849 BUG_ON(len);
4850 return elt;
4851}
4852
4853/**
4854 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
4855 * @skb: Socket buffer containing the buffers to be mapped
4856 * @sg: The scatter-gather list to map into
4857 * @offset: The offset into the buffer's contents to start mapping
4858 * @len: Length of buffer space to be mapped
4859 *
4860 * Fill the specified scatter-gather list with mappings/pointers into a
4861 * region of the buffer space attached to a socket buffer. Returns either
4862 * the number of scatterlist items used, or -EMSGSIZE if the contents
4863 * could not fit.
4864 */
4865int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
4866{
4867 int nsg = __skb_to_sgvec(skb, sg, offset, len, 0);
4868
4869 if (nsg <= 0)
4870 return nsg;
4871
4872 sg_mark_end(&sg[nsg - 1]);
4873
4874 return nsg;
4875}
4876EXPORT_SYMBOL_GPL(skb_to_sgvec);
4877
4878/* As compared with skb_to_sgvec, skb_to_sgvec_nomark only map skb to given
4879 * sglist without mark the sg which contain last skb data as the end.
4880 * So the caller can mannipulate sg list as will when padding new data after
4881 * the first call without calling sg_unmark_end to expend sg list.
4882 *
4883 * Scenario to use skb_to_sgvec_nomark:
4884 * 1. sg_init_table
4885 * 2. skb_to_sgvec_nomark(payload1)
4886 * 3. skb_to_sgvec_nomark(payload2)
4887 *
4888 * This is equivalent to:
4889 * 1. sg_init_table
4890 * 2. skb_to_sgvec(payload1)
4891 * 3. sg_unmark_end
4892 * 4. skb_to_sgvec(payload2)
4893 *
4894 * When mapping mutilple payload conditionally, skb_to_sgvec_nomark
4895 * is more preferable.
4896 */
4897int skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
4898 int offset, int len)
4899{
4900 return __skb_to_sgvec(skb, sg, offset, len, 0);
4901}
4902EXPORT_SYMBOL_GPL(skb_to_sgvec_nomark);
4903
4904
4905
4906/**
4907 * skb_cow_data - Check that a socket buffer's data buffers are writable
4908 * @skb: The socket buffer to check.
4909 * @tailbits: Amount of trailing space to be added
4910 * @trailer: Returned pointer to the skb where the @tailbits space begins
4911 *
4912 * Make sure that the data buffers attached to a socket buffer are
4913 * writable. If they are not, private copies are made of the data buffers
4914 * and the socket buffer is set to use these instead.
4915 *
4916 * If @tailbits is given, make sure that there is space to write @tailbits
4917 * bytes of data beyond current end of socket buffer. @trailer will be
4918 * set to point to the skb in which this space begins.
4919 *
4920 * The number of scatterlist elements required to completely map the
4921 * COW'd and extended socket buffer will be returned.
4922 */
4923int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
4924{
4925 int copyflag;
4926 int elt;
4927 struct sk_buff *skb1, **skb_p;
4928
4929 /* If skb is cloned or its head is paged, reallocate
4930 * head pulling out all the pages (pages are considered not writable
4931 * at the moment even if they are anonymous).
4932 */
4933 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
4934 !__pskb_pull_tail(skb, __skb_pagelen(skb)))
4935 return -ENOMEM;
4936
4937 /* Easy case. Most of packets will go this way. */
4938 if (!skb_has_frag_list(skb)) {
4939 /* A little of trouble, not enough of space for trailer.
4940 * This should not happen, when stack is tuned to generate
4941 * good frames. OK, on miss we reallocate and reserve even more
4942 * space, 128 bytes is fair. */
4943
4944 if (skb_tailroom(skb) < tailbits &&
4945 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
4946 return -ENOMEM;
4947
4948 /* Voila! */
4949 *trailer = skb;
4950 return 1;
4951 }
4952
4953 /* Misery. We are in troubles, going to mincer fragments... */
4954
4955 elt = 1;
4956 skb_p = &skb_shinfo(skb)->frag_list;
4957 copyflag = 0;
4958
4959 while ((skb1 = *skb_p) != NULL) {
4960 int ntail = 0;
4961
4962 /* The fragment is partially pulled by someone,
4963 * this can happen on input. Copy it and everything
4964 * after it. */
4965
4966 if (skb_shared(skb1))
4967 copyflag = 1;
4968
4969 /* If the skb is the last, worry about trailer. */
4970
4971 if (skb1->next == NULL && tailbits) {
4972 if (skb_shinfo(skb1)->nr_frags ||
4973 skb_has_frag_list(skb1) ||
4974 skb_tailroom(skb1) < tailbits)
4975 ntail = tailbits + 128;
4976 }
4977
4978 if (copyflag ||
4979 skb_cloned(skb1) ||
4980 ntail ||
4981 skb_shinfo(skb1)->nr_frags ||
4982 skb_has_frag_list(skb1)) {
4983 struct sk_buff *skb2;
4984
4985 /* Fuck, we are miserable poor guys... */
4986 if (ntail == 0)
4987 skb2 = skb_copy(skb1, GFP_ATOMIC);
4988 else
4989 skb2 = skb_copy_expand(skb1,
4990 skb_headroom(skb1),
4991 ntail,
4992 GFP_ATOMIC);
4993 if (unlikely(skb2 == NULL))
4994 return -ENOMEM;
4995
4996 if (skb1->sk)
4997 skb_set_owner_w(skb2, skb1->sk);
4998
4999 /* Looking around. Are we still alive?
5000 * OK, link new skb, drop old one */
5001
5002 skb2->next = skb1->next;
5003 *skb_p = skb2;
5004 kfree_skb(skb1);
5005 skb1 = skb2;
5006 }
5007 elt++;
5008 *trailer = skb1;
5009 skb_p = &skb1->next;
5010 }
5011
5012 return elt;
5013}
5014EXPORT_SYMBOL_GPL(skb_cow_data);
5015
5016static void sock_rmem_free(struct sk_buff *skb)
5017{
5018 struct sock *sk = skb->sk;
5019
5020 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
5021}
5022
5023static void skb_set_err_queue(struct sk_buff *skb)
5024{
5025 /* pkt_type of skbs received on local sockets is never PACKET_OUTGOING.
5026 * So, it is safe to (mis)use it to mark skbs on the error queue.
5027 */
5028 skb->pkt_type = PACKET_OUTGOING;
5029 BUILD_BUG_ON(PACKET_OUTGOING == 0);
5030}
5031
5032/*
5033 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
5034 */
5035int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
5036{
5037 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
5038 (unsigned int)READ_ONCE(sk->sk_rcvbuf))
5039 return -ENOMEM;
5040
5041 skb_orphan(skb);
5042 skb->sk = sk;
5043 skb->destructor = sock_rmem_free;
5044 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
5045 skb_set_err_queue(skb);
5046
5047 /* before exiting rcu section, make sure dst is refcounted */
5048 skb_dst_force(skb);
5049
5050 skb_queue_tail(&sk->sk_error_queue, skb);
5051 if (!sock_flag(sk, SOCK_DEAD))
5052 sk_error_report(sk);
5053 return 0;
5054}
5055EXPORT_SYMBOL(sock_queue_err_skb);
5056
5057static bool is_icmp_err_skb(const struct sk_buff *skb)
5058{
5059 return skb && (SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP ||
5060 SKB_EXT_ERR(skb)->ee.ee_origin == SO_EE_ORIGIN_ICMP6);
5061}
5062
5063struct sk_buff *sock_dequeue_err_skb(struct sock *sk)
5064{
5065 struct sk_buff_head *q = &sk->sk_error_queue;
5066 struct sk_buff *skb, *skb_next = NULL;
5067 bool icmp_next = false;
5068 unsigned long flags;
5069
5070 spin_lock_irqsave(&q->lock, flags);
5071 skb = __skb_dequeue(q);
5072 if (skb && (skb_next = skb_peek(q))) {
5073 icmp_next = is_icmp_err_skb(skb_next);
5074 if (icmp_next)
5075 sk->sk_err = SKB_EXT_ERR(skb_next)->ee.ee_errno;
5076 }
5077 spin_unlock_irqrestore(&q->lock, flags);
5078
5079 if (is_icmp_err_skb(skb) && !icmp_next)
5080 sk->sk_err = 0;
5081
5082 if (skb_next)
5083 sk_error_report(sk);
5084
5085 return skb;
5086}
5087EXPORT_SYMBOL(sock_dequeue_err_skb);
5088
5089/**
5090 * skb_clone_sk - create clone of skb, and take reference to socket
5091 * @skb: the skb to clone
5092 *
5093 * This function creates a clone of a buffer that holds a reference on
5094 * sk_refcnt. Buffers created via this function are meant to be
5095 * returned using sock_queue_err_skb, or free via kfree_skb.
5096 *
5097 * When passing buffers allocated with this function to sock_queue_err_skb
5098 * it is necessary to wrap the call with sock_hold/sock_put in order to
5099 * prevent the socket from being released prior to being enqueued on
5100 * the sk_error_queue.
5101 */
5102struct sk_buff *skb_clone_sk(struct sk_buff *skb)
5103{
5104 struct sock *sk = skb->sk;
5105 struct sk_buff *clone;
5106
5107 if (!sk || !refcount_inc_not_zero(&sk->sk_refcnt))
5108 return NULL;
5109
5110 clone = skb_clone(skb, GFP_ATOMIC);
5111 if (!clone) {
5112 sock_put(sk);
5113 return NULL;
5114 }
5115
5116 clone->sk = sk;
5117 clone->destructor = sock_efree;
5118
5119 return clone;
5120}
5121EXPORT_SYMBOL(skb_clone_sk);
5122
5123static void __skb_complete_tx_timestamp(struct sk_buff *skb,
5124 struct sock *sk,
5125 int tstype,
5126 bool opt_stats)
5127{
5128 struct sock_exterr_skb *serr;
5129 int err;
5130
5131 BUILD_BUG_ON(sizeof(struct sock_exterr_skb) > sizeof(skb->cb));
5132
5133 serr = SKB_EXT_ERR(skb);
5134 memset(serr, 0, sizeof(*serr));
5135 serr->ee.ee_errno = ENOMSG;
5136 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
5137 serr->ee.ee_info = tstype;
5138 serr->opt_stats = opt_stats;
5139 serr->header.h4.iif = skb->dev ? skb->dev->ifindex : 0;
5140 if (sk->sk_tsflags & SOF_TIMESTAMPING_OPT_ID) {
5141 serr->ee.ee_data = skb_shinfo(skb)->tskey;
5142 if (sk_is_tcp(sk))
5143 serr->ee.ee_data -= atomic_read(&sk->sk_tskey);
5144 }
5145
5146 err = sock_queue_err_skb(sk, skb);
5147
5148 if (err)
5149 kfree_skb(skb);
5150}
5151
5152static bool skb_may_tx_timestamp(struct sock *sk, bool tsonly)
5153{
5154 bool ret;
5155
5156 if (likely(READ_ONCE(sysctl_tstamp_allow_data) || tsonly))
5157 return true;
5158
5159 read_lock_bh(&sk->sk_callback_lock);
5160 ret = sk->sk_socket && sk->sk_socket->file &&
5161 file_ns_capable(sk->sk_socket->file, &init_user_ns, CAP_NET_RAW);
5162 read_unlock_bh(&sk->sk_callback_lock);
5163 return ret;
5164}
5165
5166void skb_complete_tx_timestamp(struct sk_buff *skb,
5167 struct skb_shared_hwtstamps *hwtstamps)
5168{
5169 struct sock *sk = skb->sk;
5170
5171 if (!skb_may_tx_timestamp(sk, false))
5172 goto err;
5173
5174 /* Take a reference to prevent skb_orphan() from freeing the socket,
5175 * but only if the socket refcount is not zero.
5176 */
5177 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5178 *skb_hwtstamps(skb) = *hwtstamps;
5179 __skb_complete_tx_timestamp(skb, sk, SCM_TSTAMP_SND, false);
5180 sock_put(sk);
5181 return;
5182 }
5183
5184err:
5185 kfree_skb(skb);
5186}
5187EXPORT_SYMBOL_GPL(skb_complete_tx_timestamp);
5188
5189void __skb_tstamp_tx(struct sk_buff *orig_skb,
5190 const struct sk_buff *ack_skb,
5191 struct skb_shared_hwtstamps *hwtstamps,
5192 struct sock *sk, int tstype)
5193{
5194 struct sk_buff *skb;
5195 bool tsonly, opt_stats = false;
5196
5197 if (!sk)
5198 return;
5199
5200 if (!hwtstamps && !(sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TX_SWHW) &&
5201 skb_shinfo(orig_skb)->tx_flags & SKBTX_IN_PROGRESS)
5202 return;
5203
5204 tsonly = sk->sk_tsflags & SOF_TIMESTAMPING_OPT_TSONLY;
5205 if (!skb_may_tx_timestamp(sk, tsonly))
5206 return;
5207
5208 if (tsonly) {
5209#ifdef CONFIG_INET
5210 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_STATS) &&
5211 sk_is_tcp(sk)) {
5212 skb = tcp_get_timestamping_opt_stats(sk, orig_skb,
5213 ack_skb);
5214 opt_stats = true;
5215 } else
5216#endif
5217 skb = alloc_skb(0, GFP_ATOMIC);
5218 } else {
5219 skb = skb_clone(orig_skb, GFP_ATOMIC);
5220
5221 if (skb_orphan_frags_rx(skb, GFP_ATOMIC)) {
5222 kfree_skb(skb);
5223 return;
5224 }
5225 }
5226 if (!skb)
5227 return;
5228
5229 if (tsonly) {
5230 skb_shinfo(skb)->tx_flags |= skb_shinfo(orig_skb)->tx_flags &
5231 SKBTX_ANY_TSTAMP;
5232 skb_shinfo(skb)->tskey = skb_shinfo(orig_skb)->tskey;
5233 }
5234
5235 if (hwtstamps)
5236 *skb_hwtstamps(skb) = *hwtstamps;
5237 else
5238 __net_timestamp(skb);
5239
5240 __skb_complete_tx_timestamp(skb, sk, tstype, opt_stats);
5241}
5242EXPORT_SYMBOL_GPL(__skb_tstamp_tx);
5243
5244void skb_tstamp_tx(struct sk_buff *orig_skb,
5245 struct skb_shared_hwtstamps *hwtstamps)
5246{
5247 return __skb_tstamp_tx(orig_skb, NULL, hwtstamps, orig_skb->sk,
5248 SCM_TSTAMP_SND);
5249}
5250EXPORT_SYMBOL_GPL(skb_tstamp_tx);
5251
5252#ifdef CONFIG_WIRELESS
5253void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
5254{
5255 struct sock *sk = skb->sk;
5256 struct sock_exterr_skb *serr;
5257 int err = 1;
5258
5259 skb->wifi_acked_valid = 1;
5260 skb->wifi_acked = acked;
5261
5262 serr = SKB_EXT_ERR(skb);
5263 memset(serr, 0, sizeof(*serr));
5264 serr->ee.ee_errno = ENOMSG;
5265 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
5266
5267 /* Take a reference to prevent skb_orphan() from freeing the socket,
5268 * but only if the socket refcount is not zero.
5269 */
5270 if (likely(refcount_inc_not_zero(&sk->sk_refcnt))) {
5271 err = sock_queue_err_skb(sk, skb);
5272 sock_put(sk);
5273 }
5274 if (err)
5275 kfree_skb(skb);
5276}
5277EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
5278#endif /* CONFIG_WIRELESS */
5279
5280/**
5281 * skb_partial_csum_set - set up and verify partial csum values for packet
5282 * @skb: the skb to set
5283 * @start: the number of bytes after skb->data to start checksumming.
5284 * @off: the offset from start to place the checksum.
5285 *
5286 * For untrusted partially-checksummed packets, we need to make sure the values
5287 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
5288 *
5289 * This function checks and sets those values and skb->ip_summed: if this
5290 * returns false you should drop the packet.
5291 */
5292bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
5293{
5294 u32 csum_end = (u32)start + (u32)off + sizeof(__sum16);
5295 u32 csum_start = skb_headroom(skb) + (u32)start;
5296
5297 if (unlikely(csum_start >= U16_MAX || csum_end > skb_headlen(skb))) {
5298 net_warn_ratelimited("bad partial csum: csum=%u/%u headroom=%u headlen=%u\n",
5299 start, off, skb_headroom(skb), skb_headlen(skb));
5300 return false;
5301 }
5302 skb->ip_summed = CHECKSUM_PARTIAL;
5303 skb->csum_start = csum_start;
5304 skb->csum_offset = off;
5305 skb->transport_header = csum_start;
5306 return true;
5307}
5308EXPORT_SYMBOL_GPL(skb_partial_csum_set);
5309
5310static int skb_maybe_pull_tail(struct sk_buff *skb, unsigned int len,
5311 unsigned int max)
5312{
5313 if (skb_headlen(skb) >= len)
5314 return 0;
5315
5316 /* If we need to pullup then pullup to the max, so we
5317 * won't need to do it again.
5318 */
5319 if (max > skb->len)
5320 max = skb->len;
5321
5322 if (__pskb_pull_tail(skb, max - skb_headlen(skb)) == NULL)
5323 return -ENOMEM;
5324
5325 if (skb_headlen(skb) < len)
5326 return -EPROTO;
5327
5328 return 0;
5329}
5330
5331#define MAX_TCP_HDR_LEN (15 * 4)
5332
5333static __sum16 *skb_checksum_setup_ip(struct sk_buff *skb,
5334 typeof(IPPROTO_IP) proto,
5335 unsigned int off)
5336{
5337 int err;
5338
5339 switch (proto) {
5340 case IPPROTO_TCP:
5341 err = skb_maybe_pull_tail(skb, off + sizeof(struct tcphdr),
5342 off + MAX_TCP_HDR_LEN);
5343 if (!err && !skb_partial_csum_set(skb, off,
5344 offsetof(struct tcphdr,
5345 check)))
5346 err = -EPROTO;
5347 return err ? ERR_PTR(err) : &tcp_hdr(skb)->check;
5348
5349 case IPPROTO_UDP:
5350 err = skb_maybe_pull_tail(skb, off + sizeof(struct udphdr),
5351 off + sizeof(struct udphdr));
5352 if (!err && !skb_partial_csum_set(skb, off,
5353 offsetof(struct udphdr,
5354 check)))
5355 err = -EPROTO;
5356 return err ? ERR_PTR(err) : &udp_hdr(skb)->check;
5357 }
5358
5359 return ERR_PTR(-EPROTO);
5360}
5361
5362/* This value should be large enough to cover a tagged ethernet header plus
5363 * maximally sized IP and TCP or UDP headers.
5364 */
5365#define MAX_IP_HDR_LEN 128
5366
5367static int skb_checksum_setup_ipv4(struct sk_buff *skb, bool recalculate)
5368{
5369 unsigned int off;
5370 bool fragment;
5371 __sum16 *csum;
5372 int err;
5373
5374 fragment = false;
5375
5376 err = skb_maybe_pull_tail(skb,
5377 sizeof(struct iphdr),
5378 MAX_IP_HDR_LEN);
5379 if (err < 0)
5380 goto out;
5381
5382 if (ip_is_fragment(ip_hdr(skb)))
5383 fragment = true;
5384
5385 off = ip_hdrlen(skb);
5386
5387 err = -EPROTO;
5388
5389 if (fragment)
5390 goto out;
5391
5392 csum = skb_checksum_setup_ip(skb, ip_hdr(skb)->protocol, off);
5393 if (IS_ERR(csum))
5394 return PTR_ERR(csum);
5395
5396 if (recalculate)
5397 *csum = ~csum_tcpudp_magic(ip_hdr(skb)->saddr,
5398 ip_hdr(skb)->daddr,
5399 skb->len - off,
5400 ip_hdr(skb)->protocol, 0);
5401 err = 0;
5402
5403out:
5404 return err;
5405}
5406
5407/* This value should be large enough to cover a tagged ethernet header plus
5408 * an IPv6 header, all options, and a maximal TCP or UDP header.
5409 */
5410#define MAX_IPV6_HDR_LEN 256
5411
5412#define OPT_HDR(type, skb, off) \
5413 (type *)(skb_network_header(skb) + (off))
5414
5415static int skb_checksum_setup_ipv6(struct sk_buff *skb, bool recalculate)
5416{
5417 int err;
5418 u8 nexthdr;
5419 unsigned int off;
5420 unsigned int len;
5421 bool fragment;
5422 bool done;
5423 __sum16 *csum;
5424
5425 fragment = false;
5426 done = false;
5427
5428 off = sizeof(struct ipv6hdr);
5429
5430 err = skb_maybe_pull_tail(skb, off, MAX_IPV6_HDR_LEN);
5431 if (err < 0)
5432 goto out;
5433
5434 nexthdr = ipv6_hdr(skb)->nexthdr;
5435
5436 len = sizeof(struct ipv6hdr) + ntohs(ipv6_hdr(skb)->payload_len);
5437 while (off <= len && !done) {
5438 switch (nexthdr) {
5439 case IPPROTO_DSTOPTS:
5440 case IPPROTO_HOPOPTS:
5441 case IPPROTO_ROUTING: {
5442 struct ipv6_opt_hdr *hp;
5443
5444 err = skb_maybe_pull_tail(skb,
5445 off +
5446 sizeof(struct ipv6_opt_hdr),
5447 MAX_IPV6_HDR_LEN);
5448 if (err < 0)
5449 goto out;
5450
5451 hp = OPT_HDR(struct ipv6_opt_hdr, skb, off);
5452 nexthdr = hp->nexthdr;
5453 off += ipv6_optlen(hp);
5454 break;
5455 }
5456 case IPPROTO_AH: {
5457 struct ip_auth_hdr *hp;
5458
5459 err = skb_maybe_pull_tail(skb,
5460 off +
5461 sizeof(struct ip_auth_hdr),
5462 MAX_IPV6_HDR_LEN);
5463 if (err < 0)
5464 goto out;
5465
5466 hp = OPT_HDR(struct ip_auth_hdr, skb, off);
5467 nexthdr = hp->nexthdr;
5468 off += ipv6_authlen(hp);
5469 break;
5470 }
5471 case IPPROTO_FRAGMENT: {
5472 struct frag_hdr *hp;
5473
5474 err = skb_maybe_pull_tail(skb,
5475 off +
5476 sizeof(struct frag_hdr),
5477 MAX_IPV6_HDR_LEN);
5478 if (err < 0)
5479 goto out;
5480
5481 hp = OPT_HDR(struct frag_hdr, skb, off);
5482
5483 if (hp->frag_off & htons(IP6_OFFSET | IP6_MF))
5484 fragment = true;
5485
5486 nexthdr = hp->nexthdr;
5487 off += sizeof(struct frag_hdr);
5488 break;
5489 }
5490 default:
5491 done = true;
5492 break;
5493 }
5494 }
5495
5496 err = -EPROTO;
5497
5498 if (!done || fragment)
5499 goto out;
5500
5501 csum = skb_checksum_setup_ip(skb, nexthdr, off);
5502 if (IS_ERR(csum))
5503 return PTR_ERR(csum);
5504
5505 if (recalculate)
5506 *csum = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
5507 &ipv6_hdr(skb)->daddr,
5508 skb->len - off, nexthdr, 0);
5509 err = 0;
5510
5511out:
5512 return err;
5513}
5514
5515/**
5516 * skb_checksum_setup - set up partial checksum offset
5517 * @skb: the skb to set up
5518 * @recalculate: if true the pseudo-header checksum will be recalculated
5519 */
5520int skb_checksum_setup(struct sk_buff *skb, bool recalculate)
5521{
5522 int err;
5523
5524 switch (skb->protocol) {
5525 case htons(ETH_P_IP):
5526 err = skb_checksum_setup_ipv4(skb, recalculate);
5527 break;
5528
5529 case htons(ETH_P_IPV6):
5530 err = skb_checksum_setup_ipv6(skb, recalculate);
5531 break;
5532
5533 default:
5534 err = -EPROTO;
5535 break;
5536 }
5537
5538 return err;
5539}
5540EXPORT_SYMBOL(skb_checksum_setup);
5541
5542/**
5543 * skb_checksum_maybe_trim - maybe trims the given skb
5544 * @skb: the skb to check
5545 * @transport_len: the data length beyond the network header
5546 *
5547 * Checks whether the given skb has data beyond the given transport length.
5548 * If so, returns a cloned skb trimmed to this transport length.
5549 * Otherwise returns the provided skb. Returns NULL in error cases
5550 * (e.g. transport_len exceeds skb length or out-of-memory).
5551 *
5552 * Caller needs to set the skb transport header and free any returned skb if it
5553 * differs from the provided skb.
5554 */
5555static struct sk_buff *skb_checksum_maybe_trim(struct sk_buff *skb,
5556 unsigned int transport_len)
5557{
5558 struct sk_buff *skb_chk;
5559 unsigned int len = skb_transport_offset(skb) + transport_len;
5560 int ret;
5561
5562 if (skb->len < len)
5563 return NULL;
5564 else if (skb->len == len)
5565 return skb;
5566
5567 skb_chk = skb_clone(skb, GFP_ATOMIC);
5568 if (!skb_chk)
5569 return NULL;
5570
5571 ret = pskb_trim_rcsum(skb_chk, len);
5572 if (ret) {
5573 kfree_skb(skb_chk);
5574 return NULL;
5575 }
5576
5577 return skb_chk;
5578}
5579
5580/**
5581 * skb_checksum_trimmed - validate checksum of an skb
5582 * @skb: the skb to check
5583 * @transport_len: the data length beyond the network header
5584 * @skb_chkf: checksum function to use
5585 *
5586 * Applies the given checksum function skb_chkf to the provided skb.
5587 * Returns a checked and maybe trimmed skb. Returns NULL on error.
5588 *
5589 * If the skb has data beyond the given transport length, then a
5590 * trimmed & cloned skb is checked and returned.
5591 *
5592 * Caller needs to set the skb transport header and free any returned skb if it
5593 * differs from the provided skb.
5594 */
5595struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5596 unsigned int transport_len,
5597 __sum16(*skb_chkf)(struct sk_buff *skb))
5598{
5599 struct sk_buff *skb_chk;
5600 unsigned int offset = skb_transport_offset(skb);
5601 __sum16 ret;
5602
5603 skb_chk = skb_checksum_maybe_trim(skb, transport_len);
5604 if (!skb_chk)
5605 goto err;
5606
5607 if (!pskb_may_pull(skb_chk, offset))
5608 goto err;
5609
5610 skb_pull_rcsum(skb_chk, offset);
5611 ret = skb_chkf(skb_chk);
5612 skb_push_rcsum(skb_chk, offset);
5613
5614 if (ret)
5615 goto err;
5616
5617 return skb_chk;
5618
5619err:
5620 if (skb_chk && skb_chk != skb)
5621 kfree_skb(skb_chk);
5622
5623 return NULL;
5624
5625}
5626EXPORT_SYMBOL(skb_checksum_trimmed);
5627
5628void __skb_warn_lro_forwarding(const struct sk_buff *skb)
5629{
5630 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
5631 skb->dev->name);
5632}
5633EXPORT_SYMBOL(__skb_warn_lro_forwarding);
5634
5635void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
5636{
5637 if (head_stolen) {
5638 skb_release_head_state(skb);
5639 kmem_cache_free(skbuff_cache, skb);
5640 } else {
5641 __kfree_skb(skb);
5642 }
5643}
5644EXPORT_SYMBOL(kfree_skb_partial);
5645
5646/**
5647 * skb_try_coalesce - try to merge skb to prior one
5648 * @to: prior buffer
5649 * @from: buffer to add
5650 * @fragstolen: pointer to boolean
5651 * @delta_truesize: how much more was allocated than was requested
5652 */
5653bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
5654 bool *fragstolen, int *delta_truesize)
5655{
5656 struct skb_shared_info *to_shinfo, *from_shinfo;
5657 int i, delta, len = from->len;
5658
5659 *fragstolen = false;
5660
5661 if (skb_cloned(to))
5662 return false;
5663
5664 /* In general, avoid mixing page_pool and non-page_pool allocated
5665 * pages within the same SKB. Additionally avoid dealing with clones
5666 * with page_pool pages, in case the SKB is using page_pool fragment
5667 * references (PP_FLAG_PAGE_FRAG). Since we only take full page
5668 * references for cloned SKBs at the moment that would result in
5669 * inconsistent reference counts.
5670 * In theory we could take full references if @from is cloned and
5671 * !@to->pp_recycle but its tricky (due to potential race with
5672 * the clone disappearing) and rare, so not worth dealing with.
5673 */
5674 if (to->pp_recycle != from->pp_recycle ||
5675 (from->pp_recycle && skb_cloned(from)))
5676 return false;
5677
5678 if (len <= skb_tailroom(to)) {
5679 if (len)
5680 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
5681 *delta_truesize = 0;
5682 return true;
5683 }
5684
5685 to_shinfo = skb_shinfo(to);
5686 from_shinfo = skb_shinfo(from);
5687 if (to_shinfo->frag_list || from_shinfo->frag_list)
5688 return false;
5689 if (skb_zcopy(to) || skb_zcopy(from))
5690 return false;
5691
5692 if (skb_headlen(from) != 0) {
5693 struct page *page;
5694 unsigned int offset;
5695
5696 if (to_shinfo->nr_frags +
5697 from_shinfo->nr_frags >= MAX_SKB_FRAGS)
5698 return false;
5699
5700 if (skb_head_is_locked(from))
5701 return false;
5702
5703 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
5704
5705 page = virt_to_head_page(from->head);
5706 offset = from->data - (unsigned char *)page_address(page);
5707
5708 skb_fill_page_desc(to, to_shinfo->nr_frags,
5709 page, offset, skb_headlen(from));
5710 *fragstolen = true;
5711 } else {
5712 if (to_shinfo->nr_frags +
5713 from_shinfo->nr_frags > MAX_SKB_FRAGS)
5714 return false;
5715
5716 delta = from->truesize - SKB_TRUESIZE(skb_end_offset(from));
5717 }
5718
5719 WARN_ON_ONCE(delta < len);
5720
5721 memcpy(to_shinfo->frags + to_shinfo->nr_frags,
5722 from_shinfo->frags,
5723 from_shinfo->nr_frags * sizeof(skb_frag_t));
5724 to_shinfo->nr_frags += from_shinfo->nr_frags;
5725
5726 if (!skb_cloned(from))
5727 from_shinfo->nr_frags = 0;
5728
5729 /* if the skb is not cloned this does nothing
5730 * since we set nr_frags to 0.
5731 */
5732 for (i = 0; i < from_shinfo->nr_frags; i++)
5733 __skb_frag_ref(&from_shinfo->frags[i]);
5734
5735 to->truesize += delta;
5736 to->len += len;
5737 to->data_len += len;
5738
5739 *delta_truesize = delta;
5740 return true;
5741}
5742EXPORT_SYMBOL(skb_try_coalesce);
5743
5744/**
5745 * skb_scrub_packet - scrub an skb
5746 *
5747 * @skb: buffer to clean
5748 * @xnet: packet is crossing netns
5749 *
5750 * skb_scrub_packet can be used after encapsulating or decapsulting a packet
5751 * into/from a tunnel. Some information have to be cleared during these
5752 * operations.
5753 * skb_scrub_packet can also be used to clean a skb before injecting it in
5754 * another namespace (@xnet == true). We have to clear all information in the
5755 * skb that could impact namespace isolation.
5756 */
5757void skb_scrub_packet(struct sk_buff *skb, bool xnet)
5758{
5759 skb->pkt_type = PACKET_HOST;
5760 skb->skb_iif = 0;
5761 skb->ignore_df = 0;
5762 skb_dst_drop(skb);
5763 skb_ext_reset(skb);
5764 nf_reset_ct(skb);
5765 nf_reset_trace(skb);
5766
5767#ifdef CONFIG_NET_SWITCHDEV
5768 skb->offload_fwd_mark = 0;
5769 skb->offload_l3_fwd_mark = 0;
5770#endif
5771
5772 if (!xnet)
5773 return;
5774
5775 ipvs_reset(skb);
5776 skb->mark = 0;
5777 skb_clear_tstamp(skb);
5778}
5779EXPORT_SYMBOL_GPL(skb_scrub_packet);
5780
5781static struct sk_buff *skb_reorder_vlan_header(struct sk_buff *skb)
5782{
5783 int mac_len, meta_len;
5784 void *meta;
5785
5786 if (skb_cow(skb, skb_headroom(skb)) < 0) {
5787 kfree_skb(skb);
5788 return NULL;
5789 }
5790
5791 mac_len = skb->data - skb_mac_header(skb);
5792 if (likely(mac_len > VLAN_HLEN + ETH_TLEN)) {
5793 memmove(skb_mac_header(skb) + VLAN_HLEN, skb_mac_header(skb),
5794 mac_len - VLAN_HLEN - ETH_TLEN);
5795 }
5796
5797 meta_len = skb_metadata_len(skb);
5798 if (meta_len) {
5799 meta = skb_metadata_end(skb) - meta_len;
5800 memmove(meta + VLAN_HLEN, meta, meta_len);
5801 }
5802
5803 skb->mac_header += VLAN_HLEN;
5804 return skb;
5805}
5806
5807struct sk_buff *skb_vlan_untag(struct sk_buff *skb)
5808{
5809 struct vlan_hdr *vhdr;
5810 u16 vlan_tci;
5811
5812 if (unlikely(skb_vlan_tag_present(skb))) {
5813 /* vlan_tci is already set-up so leave this for another time */
5814 return skb;
5815 }
5816
5817 skb = skb_share_check(skb, GFP_ATOMIC);
5818 if (unlikely(!skb))
5819 goto err_free;
5820 /* We may access the two bytes after vlan_hdr in vlan_set_encap_proto(). */
5821 if (unlikely(!pskb_may_pull(skb, VLAN_HLEN + sizeof(unsigned short))))
5822 goto err_free;
5823
5824 vhdr = (struct vlan_hdr *)skb->data;
5825 vlan_tci = ntohs(vhdr->h_vlan_TCI);
5826 __vlan_hwaccel_put_tag(skb, skb->protocol, vlan_tci);
5827
5828 skb_pull_rcsum(skb, VLAN_HLEN);
5829 vlan_set_encap_proto(skb, vhdr);
5830
5831 skb = skb_reorder_vlan_header(skb);
5832 if (unlikely(!skb))
5833 goto err_free;
5834
5835 skb_reset_network_header(skb);
5836 if (!skb_transport_header_was_set(skb))
5837 skb_reset_transport_header(skb);
5838 skb_reset_mac_len(skb);
5839
5840 return skb;
5841
5842err_free:
5843 kfree_skb(skb);
5844 return NULL;
5845}
5846EXPORT_SYMBOL(skb_vlan_untag);
5847
5848int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len)
5849{
5850 if (!pskb_may_pull(skb, write_len))
5851 return -ENOMEM;
5852
5853 if (!skb_cloned(skb) || skb_clone_writable(skb, write_len))
5854 return 0;
5855
5856 return pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
5857}
5858EXPORT_SYMBOL(skb_ensure_writable);
5859
5860/* remove VLAN header from packet and update csum accordingly.
5861 * expects a non skb_vlan_tag_present skb with a vlan tag payload
5862 */
5863int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci)
5864{
5865 int offset = skb->data - skb_mac_header(skb);
5866 int err;
5867
5868 if (WARN_ONCE(offset,
5869 "__skb_vlan_pop got skb with skb->data not at mac header (offset %d)\n",
5870 offset)) {
5871 return -EINVAL;
5872 }
5873
5874 err = skb_ensure_writable(skb, VLAN_ETH_HLEN);
5875 if (unlikely(err))
5876 return err;
5877
5878 skb_postpull_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5879
5880 vlan_remove_tag(skb, vlan_tci);
5881
5882 skb->mac_header += VLAN_HLEN;
5883
5884 if (skb_network_offset(skb) < ETH_HLEN)
5885 skb_set_network_header(skb, ETH_HLEN);
5886
5887 skb_reset_mac_len(skb);
5888
5889 return err;
5890}
5891EXPORT_SYMBOL(__skb_vlan_pop);
5892
5893/* Pop a vlan tag either from hwaccel or from payload.
5894 * Expects skb->data at mac header.
5895 */
5896int skb_vlan_pop(struct sk_buff *skb)
5897{
5898 u16 vlan_tci;
5899 __be16 vlan_proto;
5900 int err;
5901
5902 if (likely(skb_vlan_tag_present(skb))) {
5903 __vlan_hwaccel_clear_tag(skb);
5904 } else {
5905 if (unlikely(!eth_type_vlan(skb->protocol)))
5906 return 0;
5907
5908 err = __skb_vlan_pop(skb, &vlan_tci);
5909 if (err)
5910 return err;
5911 }
5912 /* move next vlan tag to hw accel tag */
5913 if (likely(!eth_type_vlan(skb->protocol)))
5914 return 0;
5915
5916 vlan_proto = skb->protocol;
5917 err = __skb_vlan_pop(skb, &vlan_tci);
5918 if (unlikely(err))
5919 return err;
5920
5921 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5922 return 0;
5923}
5924EXPORT_SYMBOL(skb_vlan_pop);
5925
5926/* Push a vlan tag either into hwaccel or into payload (if hwaccel tag present).
5927 * Expects skb->data at mac header.
5928 */
5929int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci)
5930{
5931 if (skb_vlan_tag_present(skb)) {
5932 int offset = skb->data - skb_mac_header(skb);
5933 int err;
5934
5935 if (WARN_ONCE(offset,
5936 "skb_vlan_push got skb with skb->data not at mac header (offset %d)\n",
5937 offset)) {
5938 return -EINVAL;
5939 }
5940
5941 err = __vlan_insert_tag(skb, skb->vlan_proto,
5942 skb_vlan_tag_get(skb));
5943 if (err)
5944 return err;
5945
5946 skb->protocol = skb->vlan_proto;
5947 skb->mac_len += VLAN_HLEN;
5948
5949 skb_postpush_rcsum(skb, skb->data + (2 * ETH_ALEN), VLAN_HLEN);
5950 }
5951 __vlan_hwaccel_put_tag(skb, vlan_proto, vlan_tci);
5952 return 0;
5953}
5954EXPORT_SYMBOL(skb_vlan_push);
5955
5956/**
5957 * skb_eth_pop() - Drop the Ethernet header at the head of a packet
5958 *
5959 * @skb: Socket buffer to modify
5960 *
5961 * Drop the Ethernet header of @skb.
5962 *
5963 * Expects that skb->data points to the mac header and that no VLAN tags are
5964 * present.
5965 *
5966 * Returns 0 on success, -errno otherwise.
5967 */
5968int skb_eth_pop(struct sk_buff *skb)
5969{
5970 if (!pskb_may_pull(skb, ETH_HLEN) || skb_vlan_tagged(skb) ||
5971 skb_network_offset(skb) < ETH_HLEN)
5972 return -EPROTO;
5973
5974 skb_pull_rcsum(skb, ETH_HLEN);
5975 skb_reset_mac_header(skb);
5976 skb_reset_mac_len(skb);
5977
5978 return 0;
5979}
5980EXPORT_SYMBOL(skb_eth_pop);
5981
5982/**
5983 * skb_eth_push() - Add a new Ethernet header at the head of a packet
5984 *
5985 * @skb: Socket buffer to modify
5986 * @dst: Destination MAC address of the new header
5987 * @src: Source MAC address of the new header
5988 *
5989 * Prepend @skb with a new Ethernet header.
5990 *
5991 * Expects that skb->data points to the mac header, which must be empty.
5992 *
5993 * Returns 0 on success, -errno otherwise.
5994 */
5995int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
5996 const unsigned char *src)
5997{
5998 struct ethhdr *eth;
5999 int err;
6000
6001 if (skb_network_offset(skb) || skb_vlan_tag_present(skb))
6002 return -EPROTO;
6003
6004 err = skb_cow_head(skb, sizeof(*eth));
6005 if (err < 0)
6006 return err;
6007
6008 skb_push(skb, sizeof(*eth));
6009 skb_reset_mac_header(skb);
6010 skb_reset_mac_len(skb);
6011
6012 eth = eth_hdr(skb);
6013 ether_addr_copy(eth->h_dest, dst);
6014 ether_addr_copy(eth->h_source, src);
6015 eth->h_proto = skb->protocol;
6016
6017 skb_postpush_rcsum(skb, eth, sizeof(*eth));
6018
6019 return 0;
6020}
6021EXPORT_SYMBOL(skb_eth_push);
6022
6023/* Update the ethertype of hdr and the skb csum value if required. */
6024static void skb_mod_eth_type(struct sk_buff *skb, struct ethhdr *hdr,
6025 __be16 ethertype)
6026{
6027 if (skb->ip_summed == CHECKSUM_COMPLETE) {
6028 __be16 diff[] = { ~hdr->h_proto, ethertype };
6029
6030 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6031 }
6032
6033 hdr->h_proto = ethertype;
6034}
6035
6036/**
6037 * skb_mpls_push() - push a new MPLS header after mac_len bytes from start of
6038 * the packet
6039 *
6040 * @skb: buffer
6041 * @mpls_lse: MPLS label stack entry to push
6042 * @mpls_proto: ethertype of the new MPLS header (expects 0x8847 or 0x8848)
6043 * @mac_len: length of the MAC header
6044 * @ethernet: flag to indicate if the resulting packet after skb_mpls_push is
6045 * ethernet
6046 *
6047 * Expects skb->data at mac header.
6048 *
6049 * Returns 0 on success, -errno otherwise.
6050 */
6051int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
6052 int mac_len, bool ethernet)
6053{
6054 struct mpls_shim_hdr *lse;
6055 int err;
6056
6057 if (unlikely(!eth_p_mpls(mpls_proto)))
6058 return -EINVAL;
6059
6060 /* Networking stack does not allow simultaneous Tunnel and MPLS GSO. */
6061 if (skb->encapsulation)
6062 return -EINVAL;
6063
6064 err = skb_cow_head(skb, MPLS_HLEN);
6065 if (unlikely(err))
6066 return err;
6067
6068 if (!skb->inner_protocol) {
6069 skb_set_inner_network_header(skb, skb_network_offset(skb));
6070 skb_set_inner_protocol(skb, skb->protocol);
6071 }
6072
6073 skb_push(skb, MPLS_HLEN);
6074 memmove(skb_mac_header(skb) - MPLS_HLEN, skb_mac_header(skb),
6075 mac_len);
6076 skb_reset_mac_header(skb);
6077 skb_set_network_header(skb, mac_len);
6078 skb_reset_mac_len(skb);
6079
6080 lse = mpls_hdr(skb);
6081 lse->label_stack_entry = mpls_lse;
6082 skb_postpush_rcsum(skb, lse, MPLS_HLEN);
6083
6084 if (ethernet && mac_len >= ETH_HLEN)
6085 skb_mod_eth_type(skb, eth_hdr(skb), mpls_proto);
6086 skb->protocol = mpls_proto;
6087
6088 return 0;
6089}
6090EXPORT_SYMBOL_GPL(skb_mpls_push);
6091
6092/**
6093 * skb_mpls_pop() - pop the outermost MPLS header
6094 *
6095 * @skb: buffer
6096 * @next_proto: ethertype of header after popped MPLS header
6097 * @mac_len: length of the MAC header
6098 * @ethernet: flag to indicate if the packet is ethernet
6099 *
6100 * Expects skb->data at mac header.
6101 *
6102 * Returns 0 on success, -errno otherwise.
6103 */
6104int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
6105 bool ethernet)
6106{
6107 int err;
6108
6109 if (unlikely(!eth_p_mpls(skb->protocol)))
6110 return 0;
6111
6112 err = skb_ensure_writable(skb, mac_len + MPLS_HLEN);
6113 if (unlikely(err))
6114 return err;
6115
6116 skb_postpull_rcsum(skb, mpls_hdr(skb), MPLS_HLEN);
6117 memmove(skb_mac_header(skb) + MPLS_HLEN, skb_mac_header(skb),
6118 mac_len);
6119
6120 __skb_pull(skb, MPLS_HLEN);
6121 skb_reset_mac_header(skb);
6122 skb_set_network_header(skb, mac_len);
6123
6124 if (ethernet && mac_len >= ETH_HLEN) {
6125 struct ethhdr *hdr;
6126
6127 /* use mpls_hdr() to get ethertype to account for VLANs. */
6128 hdr = (struct ethhdr *)((void *)mpls_hdr(skb) - ETH_HLEN);
6129 skb_mod_eth_type(skb, hdr, next_proto);
6130 }
6131 skb->protocol = next_proto;
6132
6133 return 0;
6134}
6135EXPORT_SYMBOL_GPL(skb_mpls_pop);
6136
6137/**
6138 * skb_mpls_update_lse() - modify outermost MPLS header and update csum
6139 *
6140 * @skb: buffer
6141 * @mpls_lse: new MPLS label stack entry to update to
6142 *
6143 * Expects skb->data at mac header.
6144 *
6145 * Returns 0 on success, -errno otherwise.
6146 */
6147int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse)
6148{
6149 int err;
6150
6151 if (unlikely(!eth_p_mpls(skb->protocol)))
6152 return -EINVAL;
6153
6154 err = skb_ensure_writable(skb, skb->mac_len + MPLS_HLEN);
6155 if (unlikely(err))
6156 return err;
6157
6158 if (skb->ip_summed == CHECKSUM_COMPLETE) {
6159 __be32 diff[] = { ~mpls_hdr(skb)->label_stack_entry, mpls_lse };
6160
6161 skb->csum = csum_partial((char *)diff, sizeof(diff), skb->csum);
6162 }
6163
6164 mpls_hdr(skb)->label_stack_entry = mpls_lse;
6165
6166 return 0;
6167}
6168EXPORT_SYMBOL_GPL(skb_mpls_update_lse);
6169
6170/**
6171 * skb_mpls_dec_ttl() - decrement the TTL of the outermost MPLS header
6172 *
6173 * @skb: buffer
6174 *
6175 * Expects skb->data at mac header.
6176 *
6177 * Returns 0 on success, -errno otherwise.
6178 */
6179int skb_mpls_dec_ttl(struct sk_buff *skb)
6180{
6181 u32 lse;
6182 u8 ttl;
6183
6184 if (unlikely(!eth_p_mpls(skb->protocol)))
6185 return -EINVAL;
6186
6187 if (!pskb_may_pull(skb, skb_network_offset(skb) + MPLS_HLEN))
6188 return -ENOMEM;
6189
6190 lse = be32_to_cpu(mpls_hdr(skb)->label_stack_entry);
6191 ttl = (lse & MPLS_LS_TTL_MASK) >> MPLS_LS_TTL_SHIFT;
6192 if (!--ttl)
6193 return -EINVAL;
6194
6195 lse &= ~MPLS_LS_TTL_MASK;
6196 lse |= ttl << MPLS_LS_TTL_SHIFT;
6197
6198 return skb_mpls_update_lse(skb, cpu_to_be32(lse));
6199}
6200EXPORT_SYMBOL_GPL(skb_mpls_dec_ttl);
6201
6202/**
6203 * alloc_skb_with_frags - allocate skb with page frags
6204 *
6205 * @header_len: size of linear part
6206 * @data_len: needed length in frags
6207 * @max_page_order: max page order desired.
6208 * @errcode: pointer to error code if any
6209 * @gfp_mask: allocation mask
6210 *
6211 * This can be used to allocate a paged skb, given a maximal order for frags.
6212 */
6213struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
6214 unsigned long data_len,
6215 int max_page_order,
6216 int *errcode,
6217 gfp_t gfp_mask)
6218{
6219 int npages = (data_len + (PAGE_SIZE - 1)) >> PAGE_SHIFT;
6220 unsigned long chunk;
6221 struct sk_buff *skb;
6222 struct page *page;
6223 int i;
6224
6225 *errcode = -EMSGSIZE;
6226 /* Note this test could be relaxed, if we succeed to allocate
6227 * high order pages...
6228 */
6229 if (npages > MAX_SKB_FRAGS)
6230 return NULL;
6231
6232 *errcode = -ENOBUFS;
6233 skb = alloc_skb(header_len, gfp_mask);
6234 if (!skb)
6235 return NULL;
6236
6237 skb->truesize += npages << PAGE_SHIFT;
6238
6239 for (i = 0; npages > 0; i++) {
6240 int order = max_page_order;
6241
6242 while (order) {
6243 if (npages >= 1 << order) {
6244 page = alloc_pages((gfp_mask & ~__GFP_DIRECT_RECLAIM) |
6245 __GFP_COMP |
6246 __GFP_NOWARN,
6247 order);
6248 if (page)
6249 goto fill_page;
6250 /* Do not retry other high order allocations */
6251 order = 1;
6252 max_page_order = 0;
6253 }
6254 order--;
6255 }
6256 page = alloc_page(gfp_mask);
6257 if (!page)
6258 goto failure;
6259fill_page:
6260 chunk = min_t(unsigned long, data_len,
6261 PAGE_SIZE << order);
6262 skb_fill_page_desc(skb, i, page, 0, chunk);
6263 data_len -= chunk;
6264 npages -= 1 << order;
6265 }
6266 return skb;
6267
6268failure:
6269 kfree_skb(skb);
6270 return NULL;
6271}
6272EXPORT_SYMBOL(alloc_skb_with_frags);
6273
6274/* carve out the first off bytes from skb when off < headlen */
6275static int pskb_carve_inside_header(struct sk_buff *skb, const u32 off,
6276 const int headlen, gfp_t gfp_mask)
6277{
6278 int i;
6279 unsigned int size = skb_end_offset(skb);
6280 int new_hlen = headlen - off;
6281 u8 *data;
6282
6283 if (skb_pfmemalloc(skb))
6284 gfp_mask |= __GFP_MEMALLOC;
6285
6286 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6287 if (!data)
6288 return -ENOMEM;
6289 size = SKB_WITH_OVERHEAD(size);
6290
6291 /* Copy real data, and all frags */
6292 skb_copy_from_linear_data_offset(skb, off, data, new_hlen);
6293 skb->len -= off;
6294
6295 memcpy((struct skb_shared_info *)(data + size),
6296 skb_shinfo(skb),
6297 offsetof(struct skb_shared_info,
6298 frags[skb_shinfo(skb)->nr_frags]));
6299 if (skb_cloned(skb)) {
6300 /* drop the old head gracefully */
6301 if (skb_orphan_frags(skb, gfp_mask)) {
6302 skb_kfree_head(data, size);
6303 return -ENOMEM;
6304 }
6305 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
6306 skb_frag_ref(skb, i);
6307 if (skb_has_frag_list(skb))
6308 skb_clone_fraglist(skb);
6309 skb_release_data(skb, SKB_CONSUMED, false);
6310 } else {
6311 /* we can reuse existing recount- all we did was
6312 * relocate values
6313 */
6314 skb_free_head(skb, false);
6315 }
6316
6317 skb->head = data;
6318 skb->data = data;
6319 skb->head_frag = 0;
6320 skb_set_end_offset(skb, size);
6321 skb_set_tail_pointer(skb, skb_headlen(skb));
6322 skb_headers_offset_update(skb, 0);
6323 skb->cloned = 0;
6324 skb->hdr_len = 0;
6325 skb->nohdr = 0;
6326 atomic_set(&skb_shinfo(skb)->dataref, 1);
6327
6328 return 0;
6329}
6330
6331static int pskb_carve(struct sk_buff *skb, const u32 off, gfp_t gfp);
6332
6333/* carve out the first eat bytes from skb's frag_list. May recurse into
6334 * pskb_carve()
6335 */
6336static int pskb_carve_frag_list(struct sk_buff *skb,
6337 struct skb_shared_info *shinfo, int eat,
6338 gfp_t gfp_mask)
6339{
6340 struct sk_buff *list = shinfo->frag_list;
6341 struct sk_buff *clone = NULL;
6342 struct sk_buff *insp = NULL;
6343
6344 do {
6345 if (!list) {
6346 pr_err("Not enough bytes to eat. Want %d\n", eat);
6347 return -EFAULT;
6348 }
6349 if (list->len <= eat) {
6350 /* Eaten as whole. */
6351 eat -= list->len;
6352 list = list->next;
6353 insp = list;
6354 } else {
6355 /* Eaten partially. */
6356 if (skb_shared(list)) {
6357 clone = skb_clone(list, gfp_mask);
6358 if (!clone)
6359 return -ENOMEM;
6360 insp = list->next;
6361 list = clone;
6362 } else {
6363 /* This may be pulled without problems. */
6364 insp = list;
6365 }
6366 if (pskb_carve(list, eat, gfp_mask) < 0) {
6367 kfree_skb(clone);
6368 return -ENOMEM;
6369 }
6370 break;
6371 }
6372 } while (eat);
6373
6374 /* Free pulled out fragments. */
6375 while ((list = shinfo->frag_list) != insp) {
6376 shinfo->frag_list = list->next;
6377 consume_skb(list);
6378 }
6379 /* And insert new clone at head. */
6380 if (clone) {
6381 clone->next = list;
6382 shinfo->frag_list = clone;
6383 }
6384 return 0;
6385}
6386
6387/* carve off first len bytes from skb. Split line (off) is in the
6388 * non-linear part of skb
6389 */
6390static int pskb_carve_inside_nonlinear(struct sk_buff *skb, const u32 off,
6391 int pos, gfp_t gfp_mask)
6392{
6393 int i, k = 0;
6394 unsigned int size = skb_end_offset(skb);
6395 u8 *data;
6396 const int nfrags = skb_shinfo(skb)->nr_frags;
6397 struct skb_shared_info *shinfo;
6398
6399 if (skb_pfmemalloc(skb))
6400 gfp_mask |= __GFP_MEMALLOC;
6401
6402 data = kmalloc_reserve(&size, gfp_mask, NUMA_NO_NODE, NULL);
6403 if (!data)
6404 return -ENOMEM;
6405 size = SKB_WITH_OVERHEAD(size);
6406
6407 memcpy((struct skb_shared_info *)(data + size),
6408 skb_shinfo(skb), offsetof(struct skb_shared_info, frags[0]));
6409 if (skb_orphan_frags(skb, gfp_mask)) {
6410 skb_kfree_head(data, size);
6411 return -ENOMEM;
6412 }
6413 shinfo = (struct skb_shared_info *)(data + size);
6414 for (i = 0; i < nfrags; i++) {
6415 int fsize = skb_frag_size(&skb_shinfo(skb)->frags[i]);
6416
6417 if (pos + fsize > off) {
6418 shinfo->frags[k] = skb_shinfo(skb)->frags[i];
6419
6420 if (pos < off) {
6421 /* Split frag.
6422 * We have two variants in this case:
6423 * 1. Move all the frag to the second
6424 * part, if it is possible. F.e.
6425 * this approach is mandatory for TUX,
6426 * where splitting is expensive.
6427 * 2. Split is accurately. We make this.
6428 */
6429 skb_frag_off_add(&shinfo->frags[0], off - pos);
6430 skb_frag_size_sub(&shinfo->frags[0], off - pos);
6431 }
6432 skb_frag_ref(skb, i);
6433 k++;
6434 }
6435 pos += fsize;
6436 }
6437 shinfo->nr_frags = k;
6438 if (skb_has_frag_list(skb))
6439 skb_clone_fraglist(skb);
6440
6441 /* split line is in frag list */
6442 if (k == 0 && pskb_carve_frag_list(skb, shinfo, off - pos, gfp_mask)) {
6443 /* skb_frag_unref() is not needed here as shinfo->nr_frags = 0. */
6444 if (skb_has_frag_list(skb))
6445 kfree_skb_list(skb_shinfo(skb)->frag_list);
6446 skb_kfree_head(data, size);
6447 return -ENOMEM;
6448 }
6449 skb_release_data(skb, SKB_CONSUMED, false);
6450
6451 skb->head = data;
6452 skb->head_frag = 0;
6453 skb->data = data;
6454 skb_set_end_offset(skb, size);
6455 skb_reset_tail_pointer(skb);
6456 skb_headers_offset_update(skb, 0);
6457 skb->cloned = 0;
6458 skb->hdr_len = 0;
6459 skb->nohdr = 0;
6460 skb->len -= off;
6461 skb->data_len = skb->len;
6462 atomic_set(&skb_shinfo(skb)->dataref, 1);
6463 return 0;
6464}
6465
6466/* remove len bytes from the beginning of the skb */
6467static int pskb_carve(struct sk_buff *skb, const u32 len, gfp_t gfp)
6468{
6469 int headlen = skb_headlen(skb);
6470
6471 if (len < headlen)
6472 return pskb_carve_inside_header(skb, len, headlen, gfp);
6473 else
6474 return pskb_carve_inside_nonlinear(skb, len, headlen, gfp);
6475}
6476
6477/* Extract to_copy bytes starting at off from skb, and return this in
6478 * a new skb
6479 */
6480struct sk_buff *pskb_extract(struct sk_buff *skb, int off,
6481 int to_copy, gfp_t gfp)
6482{
6483 struct sk_buff *clone = skb_clone(skb, gfp);
6484
6485 if (!clone)
6486 return NULL;
6487
6488 if (pskb_carve(clone, off, gfp) < 0 ||
6489 pskb_trim(clone, to_copy)) {
6490 kfree_skb(clone);
6491 return NULL;
6492 }
6493 return clone;
6494}
6495EXPORT_SYMBOL(pskb_extract);
6496
6497/**
6498 * skb_condense - try to get rid of fragments/frag_list if possible
6499 * @skb: buffer
6500 *
6501 * Can be used to save memory before skb is added to a busy queue.
6502 * If packet has bytes in frags and enough tail room in skb->head,
6503 * pull all of them, so that we can free the frags right now and adjust
6504 * truesize.
6505 * Notes:
6506 * We do not reallocate skb->head thus can not fail.
6507 * Caller must re-evaluate skb->truesize if needed.
6508 */
6509void skb_condense(struct sk_buff *skb)
6510{
6511 if (skb->data_len) {
6512 if (skb->data_len > skb->end - skb->tail ||
6513 skb_cloned(skb))
6514 return;
6515
6516 /* Nice, we can free page frag(s) right now */
6517 __pskb_pull_tail(skb, skb->data_len);
6518 }
6519 /* At this point, skb->truesize might be over estimated,
6520 * because skb had a fragment, and fragments do not tell
6521 * their truesize.
6522 * When we pulled its content into skb->head, fragment
6523 * was freed, but __pskb_pull_tail() could not possibly
6524 * adjust skb->truesize, not knowing the frag truesize.
6525 */
6526 skb->truesize = SKB_TRUESIZE(skb_end_offset(skb));
6527}
6528EXPORT_SYMBOL(skb_condense);
6529
6530#ifdef CONFIG_SKB_EXTENSIONS
6531static void *skb_ext_get_ptr(struct skb_ext *ext, enum skb_ext_id id)
6532{
6533 return (void *)ext + (ext->offset[id] * SKB_EXT_ALIGN_VALUE);
6534}
6535
6536/**
6537 * __skb_ext_alloc - allocate a new skb extensions storage
6538 *
6539 * @flags: See kmalloc().
6540 *
6541 * Returns the newly allocated pointer. The pointer can later attached to a
6542 * skb via __skb_ext_set().
6543 * Note: caller must handle the skb_ext as an opaque data.
6544 */
6545struct skb_ext *__skb_ext_alloc(gfp_t flags)
6546{
6547 struct skb_ext *new = kmem_cache_alloc(skbuff_ext_cache, flags);
6548
6549 if (new) {
6550 memset(new->offset, 0, sizeof(new->offset));
6551 refcount_set(&new->refcnt, 1);
6552 }
6553
6554 return new;
6555}
6556
6557static struct skb_ext *skb_ext_maybe_cow(struct skb_ext *old,
6558 unsigned int old_active)
6559{
6560 struct skb_ext *new;
6561
6562 if (refcount_read(&old->refcnt) == 1)
6563 return old;
6564
6565 new = kmem_cache_alloc(skbuff_ext_cache, GFP_ATOMIC);
6566 if (!new)
6567 return NULL;
6568
6569 memcpy(new, old, old->chunks * SKB_EXT_ALIGN_VALUE);
6570 refcount_set(&new->refcnt, 1);
6571
6572#ifdef CONFIG_XFRM
6573 if (old_active & (1 << SKB_EXT_SEC_PATH)) {
6574 struct sec_path *sp = skb_ext_get_ptr(old, SKB_EXT_SEC_PATH);
6575 unsigned int i;
6576
6577 for (i = 0; i < sp->len; i++)
6578 xfrm_state_hold(sp->xvec[i]);
6579 }
6580#endif
6581 __skb_ext_put(old);
6582 return new;
6583}
6584
6585/**
6586 * __skb_ext_set - attach the specified extension storage to this skb
6587 * @skb: buffer
6588 * @id: extension id
6589 * @ext: extension storage previously allocated via __skb_ext_alloc()
6590 *
6591 * Existing extensions, if any, are cleared.
6592 *
6593 * Returns the pointer to the extension.
6594 */
6595void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
6596 struct skb_ext *ext)
6597{
6598 unsigned int newlen, newoff = SKB_EXT_CHUNKSIZEOF(*ext);
6599
6600 skb_ext_put(skb);
6601 newlen = newoff + skb_ext_type_len[id];
6602 ext->chunks = newlen;
6603 ext->offset[id] = newoff;
6604 skb->extensions = ext;
6605 skb->active_extensions = 1 << id;
6606 return skb_ext_get_ptr(ext, id);
6607}
6608
6609/**
6610 * skb_ext_add - allocate space for given extension, COW if needed
6611 * @skb: buffer
6612 * @id: extension to allocate space for
6613 *
6614 * Allocates enough space for the given extension.
6615 * If the extension is already present, a pointer to that extension
6616 * is returned.
6617 *
6618 * If the skb was cloned, COW applies and the returned memory can be
6619 * modified without changing the extension space of clones buffers.
6620 *
6621 * Returns pointer to the extension or NULL on allocation failure.
6622 */
6623void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id)
6624{
6625 struct skb_ext *new, *old = NULL;
6626 unsigned int newlen, newoff;
6627
6628 if (skb->active_extensions) {
6629 old = skb->extensions;
6630
6631 new = skb_ext_maybe_cow(old, skb->active_extensions);
6632 if (!new)
6633 return NULL;
6634
6635 if (__skb_ext_exist(new, id))
6636 goto set_active;
6637
6638 newoff = new->chunks;
6639 } else {
6640 newoff = SKB_EXT_CHUNKSIZEOF(*new);
6641
6642 new = __skb_ext_alloc(GFP_ATOMIC);
6643 if (!new)
6644 return NULL;
6645 }
6646
6647 newlen = newoff + skb_ext_type_len[id];
6648 new->chunks = newlen;
6649 new->offset[id] = newoff;
6650set_active:
6651 skb->slow_gro = 1;
6652 skb->extensions = new;
6653 skb->active_extensions |= 1 << id;
6654 return skb_ext_get_ptr(new, id);
6655}
6656EXPORT_SYMBOL(skb_ext_add);
6657
6658#ifdef CONFIG_XFRM
6659static void skb_ext_put_sp(struct sec_path *sp)
6660{
6661 unsigned int i;
6662
6663 for (i = 0; i < sp->len; i++)
6664 xfrm_state_put(sp->xvec[i]);
6665}
6666#endif
6667
6668#ifdef CONFIG_MCTP_FLOWS
6669static void skb_ext_put_mctp(struct mctp_flow *flow)
6670{
6671 if (flow->key)
6672 mctp_key_unref(flow->key);
6673}
6674#endif
6675
6676void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
6677{
6678 struct skb_ext *ext = skb->extensions;
6679
6680 skb->active_extensions &= ~(1 << id);
6681 if (skb->active_extensions == 0) {
6682 skb->extensions = NULL;
6683 __skb_ext_put(ext);
6684#ifdef CONFIG_XFRM
6685 } else if (id == SKB_EXT_SEC_PATH &&
6686 refcount_read(&ext->refcnt) == 1) {
6687 struct sec_path *sp = skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH);
6688
6689 skb_ext_put_sp(sp);
6690 sp->len = 0;
6691#endif
6692 }
6693}
6694EXPORT_SYMBOL(__skb_ext_del);
6695
6696void __skb_ext_put(struct skb_ext *ext)
6697{
6698 /* If this is last clone, nothing can increment
6699 * it after check passes. Avoids one atomic op.
6700 */
6701 if (refcount_read(&ext->refcnt) == 1)
6702 goto free_now;
6703
6704 if (!refcount_dec_and_test(&ext->refcnt))
6705 return;
6706free_now:
6707#ifdef CONFIG_XFRM
6708 if (__skb_ext_exist(ext, SKB_EXT_SEC_PATH))
6709 skb_ext_put_sp(skb_ext_get_ptr(ext, SKB_EXT_SEC_PATH));
6710#endif
6711#ifdef CONFIG_MCTP_FLOWS
6712 if (__skb_ext_exist(ext, SKB_EXT_MCTP))
6713 skb_ext_put_mctp(skb_ext_get_ptr(ext, SKB_EXT_MCTP));
6714#endif
6715
6716 kmem_cache_free(skbuff_ext_cache, ext);
6717}
6718EXPORT_SYMBOL(__skb_ext_put);
6719#endif /* CONFIG_SKB_EXTENSIONS */
6720
6721/**
6722 * skb_attempt_defer_free - queue skb for remote freeing
6723 * @skb: buffer
6724 *
6725 * Put @skb in a per-cpu list, using the cpu which
6726 * allocated the skb/pages to reduce false sharing
6727 * and memory zone spinlock contention.
6728 */
6729void skb_attempt_defer_free(struct sk_buff *skb)
6730{
6731 int cpu = skb->alloc_cpu;
6732 struct softnet_data *sd;
6733 unsigned int defer_max;
6734 bool kick;
6735
6736 if (WARN_ON_ONCE(cpu >= nr_cpu_ids) ||
6737 !cpu_online(cpu) ||
6738 cpu == raw_smp_processor_id()) {
6739nodefer: __kfree_skb(skb);
6740 return;
6741 }
6742
6743 DEBUG_NET_WARN_ON_ONCE(skb_dst(skb));
6744 DEBUG_NET_WARN_ON_ONCE(skb->destructor);
6745
6746 sd = &per_cpu(softnet_data, cpu);
6747 defer_max = READ_ONCE(sysctl_skb_defer_max);
6748 if (READ_ONCE(sd->defer_count) >= defer_max)
6749 goto nodefer;
6750
6751 spin_lock_bh(&sd->defer_lock);
6752 /* Send an IPI every time queue reaches half capacity. */
6753 kick = sd->defer_count == (defer_max >> 1);
6754 /* Paired with the READ_ONCE() few lines above */
6755 WRITE_ONCE(sd->defer_count, sd->defer_count + 1);
6756
6757 skb->next = sd->defer_list;
6758 /* Paired with READ_ONCE() in skb_defer_free_flush() */
6759 WRITE_ONCE(sd->defer_list, skb);
6760 spin_unlock_bh(&sd->defer_lock);
6761
6762 /* Make sure to trigger NET_RX_SOFTIRQ on the remote CPU
6763 * if we are unlucky enough (this seems very unlikely).
6764 */
6765 if (unlikely(kick) && !cmpxchg(&sd->defer_ipi_scheduled, 0, 1))
6766 smp_call_function_single_async(cpu, &sd->defer_csd);
6767}
6768
6769static void skb_splice_csum_page(struct sk_buff *skb, struct page *page,
6770 size_t offset, size_t len)
6771{
6772 const char *kaddr;
6773 __wsum csum;
6774
6775 kaddr = kmap_local_page(page);
6776 csum = csum_partial(kaddr + offset, len, 0);
6777 kunmap_local(kaddr);
6778 skb->csum = csum_block_add(skb->csum, csum, skb->len);
6779}
6780
6781/**
6782 * skb_splice_from_iter - Splice (or copy) pages to skbuff
6783 * @skb: The buffer to add pages to
6784 * @iter: Iterator representing the pages to be added
6785 * @maxsize: Maximum amount of pages to be added
6786 * @gfp: Allocation flags
6787 *
6788 * This is a common helper function for supporting MSG_SPLICE_PAGES. It
6789 * extracts pages from an iterator and adds them to the socket buffer if
6790 * possible, copying them to fragments if not possible (such as if they're slab
6791 * pages).
6792 *
6793 * Returns the amount of data spliced/copied or -EMSGSIZE if there's
6794 * insufficient space in the buffer to transfer anything.
6795 */
6796ssize_t skb_splice_from_iter(struct sk_buff *skb, struct iov_iter *iter,
6797 ssize_t maxsize, gfp_t gfp)
6798{
6799 size_t frag_limit = READ_ONCE(sysctl_max_skb_frags);
6800 struct page *pages[8], **ppages = pages;
6801 ssize_t spliced = 0, ret = 0;
6802 unsigned int i;
6803
6804 while (iter->count > 0) {
6805 ssize_t space, nr, len;
6806 size_t off;
6807
6808 ret = -EMSGSIZE;
6809 space = frag_limit - skb_shinfo(skb)->nr_frags;
6810 if (space < 0)
6811 break;
6812
6813 /* We might be able to coalesce without increasing nr_frags */
6814 nr = clamp_t(size_t, space, 1, ARRAY_SIZE(pages));
6815
6816 len = iov_iter_extract_pages(iter, &ppages, maxsize, nr, 0, &off);
6817 if (len <= 0) {
6818 ret = len ?: -EIO;
6819 break;
6820 }
6821
6822 i = 0;
6823 do {
6824 struct page *page = pages[i++];
6825 size_t part = min_t(size_t, PAGE_SIZE - off, len);
6826
6827 ret = -EIO;
6828 if (WARN_ON_ONCE(!sendpage_ok(page)))
6829 goto out;
6830
6831 ret = skb_append_pagefrags(skb, page, off, part,
6832 frag_limit);
6833 if (ret < 0) {
6834 iov_iter_revert(iter, len);
6835 goto out;
6836 }
6837
6838 if (skb->ip_summed == CHECKSUM_NONE)
6839 skb_splice_csum_page(skb, page, off, part);
6840
6841 off = 0;
6842 spliced += part;
6843 maxsize -= part;
6844 len -= part;
6845 } while (len > 0);
6846
6847 if (maxsize <= 0)
6848 break;
6849 }
6850
6851out:
6852 skb_len_add(skb, spliced);
6853 return spliced ?: ret;
6854}
6855EXPORT_SYMBOL(skb_splice_from_iter);