Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2008, 2009 Intel Corporation
4 * Authors: Andi Kleen, Fengguang Wu
5 *
6 * High level machine check handler. Handles pages reported by the
7 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
8 * failure.
9 *
10 * In addition there is a "soft offline" entry point that allows stop using
11 * not-yet-corrupted-by-suspicious pages without killing anything.
12 *
13 * Handles page cache pages in various states. The tricky part
14 * here is that we can access any page asynchronously in respect to
15 * other VM users, because memory failures could happen anytime and
16 * anywhere. This could violate some of their assumptions. This is why
17 * this code has to be extremely careful. Generally it tries to use
18 * normal locking rules, as in get the standard locks, even if that means
19 * the error handling takes potentially a long time.
20 *
21 * It can be very tempting to add handling for obscure cases here.
22 * In general any code for handling new cases should only be added iff:
23 * - You know how to test it.
24 * - You have a test that can be added to mce-test
25 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
26 * - The case actually shows up as a frequent (top 10) page state in
27 * tools/mm/page-types when running a real workload.
28 *
29 * There are several operations here with exponential complexity because
30 * of unsuitable VM data structures. For example the operation to map back
31 * from RMAP chains to processes has to walk the complete process list and
32 * has non linear complexity with the number. But since memory corruptions
33 * are rare we hope to get away with this. This avoids impacting the core
34 * VM.
35 */
36
37#define pr_fmt(fmt) "Memory failure: " fmt
38
39#include <linux/kernel.h>
40#include <linux/mm.h>
41#include <linux/page-flags.h>
42#include <linux/kernel-page-flags.h>
43#include <linux/sched/signal.h>
44#include <linux/sched/task.h>
45#include <linux/dax.h>
46#include <linux/ksm.h>
47#include <linux/rmap.h>
48#include <linux/export.h>
49#include <linux/pagemap.h>
50#include <linux/swap.h>
51#include <linux/backing-dev.h>
52#include <linux/migrate.h>
53#include <linux/suspend.h>
54#include <linux/slab.h>
55#include <linux/swapops.h>
56#include <linux/hugetlb.h>
57#include <linux/memory_hotplug.h>
58#include <linux/mm_inline.h>
59#include <linux/memremap.h>
60#include <linux/kfifo.h>
61#include <linux/ratelimit.h>
62#include <linux/page-isolation.h>
63#include <linux/pagewalk.h>
64#include <linux/shmem_fs.h>
65#include <linux/sysctl.h>
66#include "swap.h"
67#include "internal.h"
68#include "ras/ras_event.h"
69
70static int sysctl_memory_failure_early_kill __read_mostly;
71
72static int sysctl_memory_failure_recovery __read_mostly = 1;
73
74atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
75
76static bool hw_memory_failure __read_mostly = false;
77
78inline void num_poisoned_pages_inc(unsigned long pfn)
79{
80 atomic_long_inc(&num_poisoned_pages);
81 memblk_nr_poison_inc(pfn);
82}
83
84inline void num_poisoned_pages_sub(unsigned long pfn, long i)
85{
86 atomic_long_sub(i, &num_poisoned_pages);
87 if (pfn != -1UL)
88 memblk_nr_poison_sub(pfn, i);
89}
90
91/**
92 * MF_ATTR_RO - Create sysfs entry for each memory failure statistics.
93 * @_name: name of the file in the per NUMA sysfs directory.
94 */
95#define MF_ATTR_RO(_name) \
96static ssize_t _name##_show(struct device *dev, \
97 struct device_attribute *attr, \
98 char *buf) \
99{ \
100 struct memory_failure_stats *mf_stats = \
101 &NODE_DATA(dev->id)->mf_stats; \
102 return sprintf(buf, "%lu\n", mf_stats->_name); \
103} \
104static DEVICE_ATTR_RO(_name)
105
106MF_ATTR_RO(total);
107MF_ATTR_RO(ignored);
108MF_ATTR_RO(failed);
109MF_ATTR_RO(delayed);
110MF_ATTR_RO(recovered);
111
112static struct attribute *memory_failure_attr[] = {
113 &dev_attr_total.attr,
114 &dev_attr_ignored.attr,
115 &dev_attr_failed.attr,
116 &dev_attr_delayed.attr,
117 &dev_attr_recovered.attr,
118 NULL,
119};
120
121const struct attribute_group memory_failure_attr_group = {
122 .name = "memory_failure",
123 .attrs = memory_failure_attr,
124};
125
126static struct ctl_table memory_failure_table[] = {
127 {
128 .procname = "memory_failure_early_kill",
129 .data = &sysctl_memory_failure_early_kill,
130 .maxlen = sizeof(sysctl_memory_failure_early_kill),
131 .mode = 0644,
132 .proc_handler = proc_dointvec_minmax,
133 .extra1 = SYSCTL_ZERO,
134 .extra2 = SYSCTL_ONE,
135 },
136 {
137 .procname = "memory_failure_recovery",
138 .data = &sysctl_memory_failure_recovery,
139 .maxlen = sizeof(sysctl_memory_failure_recovery),
140 .mode = 0644,
141 .proc_handler = proc_dointvec_minmax,
142 .extra1 = SYSCTL_ZERO,
143 .extra2 = SYSCTL_ONE,
144 },
145 { }
146};
147
148/*
149 * Return values:
150 * 1: the page is dissolved (if needed) and taken off from buddy,
151 * 0: the page is dissolved (if needed) and not taken off from buddy,
152 * < 0: failed to dissolve.
153 */
154static int __page_handle_poison(struct page *page)
155{
156 int ret;
157
158 zone_pcp_disable(page_zone(page));
159 ret = dissolve_free_huge_page(page);
160 if (!ret)
161 ret = take_page_off_buddy(page);
162 zone_pcp_enable(page_zone(page));
163
164 return ret;
165}
166
167static bool page_handle_poison(struct page *page, bool hugepage_or_freepage, bool release)
168{
169 if (hugepage_or_freepage) {
170 /*
171 * Doing this check for free pages is also fine since dissolve_free_huge_page
172 * returns 0 for non-hugetlb pages as well.
173 */
174 if (__page_handle_poison(page) <= 0)
175 /*
176 * We could fail to take off the target page from buddy
177 * for example due to racy page allocation, but that's
178 * acceptable because soft-offlined page is not broken
179 * and if someone really want to use it, they should
180 * take it.
181 */
182 return false;
183 }
184
185 SetPageHWPoison(page);
186 if (release)
187 put_page(page);
188 page_ref_inc(page);
189 num_poisoned_pages_inc(page_to_pfn(page));
190
191 return true;
192}
193
194#if IS_ENABLED(CONFIG_HWPOISON_INJECT)
195
196u32 hwpoison_filter_enable = 0;
197u32 hwpoison_filter_dev_major = ~0U;
198u32 hwpoison_filter_dev_minor = ~0U;
199u64 hwpoison_filter_flags_mask;
200u64 hwpoison_filter_flags_value;
201EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
202EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
203EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
204EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
205EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
206
207static int hwpoison_filter_dev(struct page *p)
208{
209 struct address_space *mapping;
210 dev_t dev;
211
212 if (hwpoison_filter_dev_major == ~0U &&
213 hwpoison_filter_dev_minor == ~0U)
214 return 0;
215
216 mapping = page_mapping(p);
217 if (mapping == NULL || mapping->host == NULL)
218 return -EINVAL;
219
220 dev = mapping->host->i_sb->s_dev;
221 if (hwpoison_filter_dev_major != ~0U &&
222 hwpoison_filter_dev_major != MAJOR(dev))
223 return -EINVAL;
224 if (hwpoison_filter_dev_minor != ~0U &&
225 hwpoison_filter_dev_minor != MINOR(dev))
226 return -EINVAL;
227
228 return 0;
229}
230
231static int hwpoison_filter_flags(struct page *p)
232{
233 if (!hwpoison_filter_flags_mask)
234 return 0;
235
236 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
237 hwpoison_filter_flags_value)
238 return 0;
239 else
240 return -EINVAL;
241}
242
243/*
244 * This allows stress tests to limit test scope to a collection of tasks
245 * by putting them under some memcg. This prevents killing unrelated/important
246 * processes such as /sbin/init. Note that the target task may share clean
247 * pages with init (eg. libc text), which is harmless. If the target task
248 * share _dirty_ pages with another task B, the test scheme must make sure B
249 * is also included in the memcg. At last, due to race conditions this filter
250 * can only guarantee that the page either belongs to the memcg tasks, or is
251 * a freed page.
252 */
253#ifdef CONFIG_MEMCG
254u64 hwpoison_filter_memcg;
255EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
256static int hwpoison_filter_task(struct page *p)
257{
258 if (!hwpoison_filter_memcg)
259 return 0;
260
261 if (page_cgroup_ino(p) != hwpoison_filter_memcg)
262 return -EINVAL;
263
264 return 0;
265}
266#else
267static int hwpoison_filter_task(struct page *p) { return 0; }
268#endif
269
270int hwpoison_filter(struct page *p)
271{
272 if (!hwpoison_filter_enable)
273 return 0;
274
275 if (hwpoison_filter_dev(p))
276 return -EINVAL;
277
278 if (hwpoison_filter_flags(p))
279 return -EINVAL;
280
281 if (hwpoison_filter_task(p))
282 return -EINVAL;
283
284 return 0;
285}
286#else
287int hwpoison_filter(struct page *p)
288{
289 return 0;
290}
291#endif
292
293EXPORT_SYMBOL_GPL(hwpoison_filter);
294
295/*
296 * Kill all processes that have a poisoned page mapped and then isolate
297 * the page.
298 *
299 * General strategy:
300 * Find all processes having the page mapped and kill them.
301 * But we keep a page reference around so that the page is not
302 * actually freed yet.
303 * Then stash the page away
304 *
305 * There's no convenient way to get back to mapped processes
306 * from the VMAs. So do a brute-force search over all
307 * running processes.
308 *
309 * Remember that machine checks are not common (or rather
310 * if they are common you have other problems), so this shouldn't
311 * be a performance issue.
312 *
313 * Also there are some races possible while we get from the
314 * error detection to actually handle it.
315 */
316
317struct to_kill {
318 struct list_head nd;
319 struct task_struct *tsk;
320 unsigned long addr;
321 short size_shift;
322};
323
324/*
325 * Send all the processes who have the page mapped a signal.
326 * ``action optional'' if they are not immediately affected by the error
327 * ``action required'' if error happened in current execution context
328 */
329static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
330{
331 struct task_struct *t = tk->tsk;
332 short addr_lsb = tk->size_shift;
333 int ret = 0;
334
335 pr_err("%#lx: Sending SIGBUS to %s:%d due to hardware memory corruption\n",
336 pfn, t->comm, t->pid);
337
338 if ((flags & MF_ACTION_REQUIRED) && (t == current))
339 ret = force_sig_mceerr(BUS_MCEERR_AR,
340 (void __user *)tk->addr, addr_lsb);
341 else
342 /*
343 * Signal other processes sharing the page if they have
344 * PF_MCE_EARLY set.
345 * Don't use force here, it's convenient if the signal
346 * can be temporarily blocked.
347 * This could cause a loop when the user sets SIGBUS
348 * to SIG_IGN, but hopefully no one will do that?
349 */
350 ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
351 addr_lsb, t);
352 if (ret < 0)
353 pr_info("Error sending signal to %s:%d: %d\n",
354 t->comm, t->pid, ret);
355 return ret;
356}
357
358/*
359 * Unknown page type encountered. Try to check whether it can turn PageLRU by
360 * lru_add_drain_all.
361 */
362void shake_page(struct page *p)
363{
364 if (PageHuge(p))
365 return;
366
367 if (!PageSlab(p)) {
368 lru_add_drain_all();
369 if (PageLRU(p) || is_free_buddy_page(p))
370 return;
371 }
372
373 /*
374 * TODO: Could shrink slab caches here if a lightweight range-based
375 * shrinker will be available.
376 */
377}
378EXPORT_SYMBOL_GPL(shake_page);
379
380static unsigned long dev_pagemap_mapping_shift(struct vm_area_struct *vma,
381 unsigned long address)
382{
383 unsigned long ret = 0;
384 pgd_t *pgd;
385 p4d_t *p4d;
386 pud_t *pud;
387 pmd_t *pmd;
388 pte_t *pte;
389 pte_t ptent;
390
391 VM_BUG_ON_VMA(address == -EFAULT, vma);
392 pgd = pgd_offset(vma->vm_mm, address);
393 if (!pgd_present(*pgd))
394 return 0;
395 p4d = p4d_offset(pgd, address);
396 if (!p4d_present(*p4d))
397 return 0;
398 pud = pud_offset(p4d, address);
399 if (!pud_present(*pud))
400 return 0;
401 if (pud_devmap(*pud))
402 return PUD_SHIFT;
403 pmd = pmd_offset(pud, address);
404 if (!pmd_present(*pmd))
405 return 0;
406 if (pmd_devmap(*pmd))
407 return PMD_SHIFT;
408 pte = pte_offset_map(pmd, address);
409 if (!pte)
410 return 0;
411 ptent = ptep_get(pte);
412 if (pte_present(ptent) && pte_devmap(ptent))
413 ret = PAGE_SHIFT;
414 pte_unmap(pte);
415 return ret;
416}
417
418/*
419 * Failure handling: if we can't find or can't kill a process there's
420 * not much we can do. We just print a message and ignore otherwise.
421 */
422
423#define FSDAX_INVALID_PGOFF ULONG_MAX
424
425/*
426 * Schedule a process for later kill.
427 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
428 *
429 * Note: @fsdax_pgoff is used only when @p is a fsdax page and a
430 * filesystem with a memory failure handler has claimed the
431 * memory_failure event. In all other cases, page->index and
432 * page->mapping are sufficient for mapping the page back to its
433 * corresponding user virtual address.
434 */
435static void __add_to_kill(struct task_struct *tsk, struct page *p,
436 struct vm_area_struct *vma, struct list_head *to_kill,
437 unsigned long ksm_addr, pgoff_t fsdax_pgoff)
438{
439 struct to_kill *tk;
440
441 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
442 if (!tk) {
443 pr_err("Out of memory while machine check handling\n");
444 return;
445 }
446
447 tk->addr = ksm_addr ? ksm_addr : page_address_in_vma(p, vma);
448 if (is_zone_device_page(p)) {
449 if (fsdax_pgoff != FSDAX_INVALID_PGOFF)
450 tk->addr = vma_pgoff_address(fsdax_pgoff, 1, vma);
451 tk->size_shift = dev_pagemap_mapping_shift(vma, tk->addr);
452 } else
453 tk->size_shift = page_shift(compound_head(p));
454
455 /*
456 * Send SIGKILL if "tk->addr == -EFAULT". Also, as
457 * "tk->size_shift" is always non-zero for !is_zone_device_page(),
458 * so "tk->size_shift == 0" effectively checks no mapping on
459 * ZONE_DEVICE. Indeed, when a devdax page is mmapped N times
460 * to a process' address space, it's possible not all N VMAs
461 * contain mappings for the page, but at least one VMA does.
462 * Only deliver SIGBUS with payload derived from the VMA that
463 * has a mapping for the page.
464 */
465 if (tk->addr == -EFAULT) {
466 pr_info("Unable to find user space address %lx in %s\n",
467 page_to_pfn(p), tsk->comm);
468 } else if (tk->size_shift == 0) {
469 kfree(tk);
470 return;
471 }
472
473 get_task_struct(tsk);
474 tk->tsk = tsk;
475 list_add_tail(&tk->nd, to_kill);
476}
477
478static void add_to_kill_anon_file(struct task_struct *tsk, struct page *p,
479 struct vm_area_struct *vma,
480 struct list_head *to_kill)
481{
482 __add_to_kill(tsk, p, vma, to_kill, 0, FSDAX_INVALID_PGOFF);
483}
484
485#ifdef CONFIG_KSM
486static bool task_in_to_kill_list(struct list_head *to_kill,
487 struct task_struct *tsk)
488{
489 struct to_kill *tk, *next;
490
491 list_for_each_entry_safe(tk, next, to_kill, nd) {
492 if (tk->tsk == tsk)
493 return true;
494 }
495
496 return false;
497}
498void add_to_kill_ksm(struct task_struct *tsk, struct page *p,
499 struct vm_area_struct *vma, struct list_head *to_kill,
500 unsigned long ksm_addr)
501{
502 if (!task_in_to_kill_list(to_kill, tsk))
503 __add_to_kill(tsk, p, vma, to_kill, ksm_addr, FSDAX_INVALID_PGOFF);
504}
505#endif
506/*
507 * Kill the processes that have been collected earlier.
508 *
509 * Only do anything when FORCEKILL is set, otherwise just free the
510 * list (this is used for clean pages which do not need killing)
511 * Also when FAIL is set do a force kill because something went
512 * wrong earlier.
513 */
514static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
515 unsigned long pfn, int flags)
516{
517 struct to_kill *tk, *next;
518
519 list_for_each_entry_safe(tk, next, to_kill, nd) {
520 if (forcekill) {
521 /*
522 * In case something went wrong with munmapping
523 * make sure the process doesn't catch the
524 * signal and then access the memory. Just kill it.
525 */
526 if (fail || tk->addr == -EFAULT) {
527 pr_err("%#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
528 pfn, tk->tsk->comm, tk->tsk->pid);
529 do_send_sig_info(SIGKILL, SEND_SIG_PRIV,
530 tk->tsk, PIDTYPE_PID);
531 }
532
533 /*
534 * In theory the process could have mapped
535 * something else on the address in-between. We could
536 * check for that, but we need to tell the
537 * process anyways.
538 */
539 else if (kill_proc(tk, pfn, flags) < 0)
540 pr_err("%#lx: Cannot send advisory machine check signal to %s:%d\n",
541 pfn, tk->tsk->comm, tk->tsk->pid);
542 }
543 list_del(&tk->nd);
544 put_task_struct(tk->tsk);
545 kfree(tk);
546 }
547}
548
549/*
550 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
551 * on behalf of the thread group. Return task_struct of the (first found)
552 * dedicated thread if found, and return NULL otherwise.
553 *
554 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
555 * have to call rcu_read_lock/unlock() in this function.
556 */
557static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
558{
559 struct task_struct *t;
560
561 for_each_thread(tsk, t) {
562 if (t->flags & PF_MCE_PROCESS) {
563 if (t->flags & PF_MCE_EARLY)
564 return t;
565 } else {
566 if (sysctl_memory_failure_early_kill)
567 return t;
568 }
569 }
570 return NULL;
571}
572
573/*
574 * Determine whether a given process is "early kill" process which expects
575 * to be signaled when some page under the process is hwpoisoned.
576 * Return task_struct of the dedicated thread (main thread unless explicitly
577 * specified) if the process is "early kill" and otherwise returns NULL.
578 *
579 * Note that the above is true for Action Optional case. For Action Required
580 * case, it's only meaningful to the current thread which need to be signaled
581 * with SIGBUS, this error is Action Optional for other non current
582 * processes sharing the same error page,if the process is "early kill", the
583 * task_struct of the dedicated thread will also be returned.
584 */
585struct task_struct *task_early_kill(struct task_struct *tsk, int force_early)
586{
587 if (!tsk->mm)
588 return NULL;
589 /*
590 * Comparing ->mm here because current task might represent
591 * a subthread, while tsk always points to the main thread.
592 */
593 if (force_early && tsk->mm == current->mm)
594 return current;
595
596 return find_early_kill_thread(tsk);
597}
598
599/*
600 * Collect processes when the error hit an anonymous page.
601 */
602static void collect_procs_anon(struct page *page, struct list_head *to_kill,
603 int force_early)
604{
605 struct folio *folio = page_folio(page);
606 struct vm_area_struct *vma;
607 struct task_struct *tsk;
608 struct anon_vma *av;
609 pgoff_t pgoff;
610
611 av = folio_lock_anon_vma_read(folio, NULL);
612 if (av == NULL) /* Not actually mapped anymore */
613 return;
614
615 pgoff = page_to_pgoff(page);
616 read_lock(&tasklist_lock);
617 for_each_process (tsk) {
618 struct anon_vma_chain *vmac;
619 struct task_struct *t = task_early_kill(tsk, force_early);
620
621 if (!t)
622 continue;
623 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
624 pgoff, pgoff) {
625 vma = vmac->vma;
626 if (vma->vm_mm != t->mm)
627 continue;
628 if (!page_mapped_in_vma(page, vma))
629 continue;
630 add_to_kill_anon_file(t, page, vma, to_kill);
631 }
632 }
633 read_unlock(&tasklist_lock);
634 anon_vma_unlock_read(av);
635}
636
637/*
638 * Collect processes when the error hit a file mapped page.
639 */
640static void collect_procs_file(struct page *page, struct list_head *to_kill,
641 int force_early)
642{
643 struct vm_area_struct *vma;
644 struct task_struct *tsk;
645 struct address_space *mapping = page->mapping;
646 pgoff_t pgoff;
647
648 i_mmap_lock_read(mapping);
649 read_lock(&tasklist_lock);
650 pgoff = page_to_pgoff(page);
651 for_each_process(tsk) {
652 struct task_struct *t = task_early_kill(tsk, force_early);
653
654 if (!t)
655 continue;
656 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
657 pgoff) {
658 /*
659 * Send early kill signal to tasks where a vma covers
660 * the page but the corrupted page is not necessarily
661 * mapped it in its pte.
662 * Assume applications who requested early kill want
663 * to be informed of all such data corruptions.
664 */
665 if (vma->vm_mm == t->mm)
666 add_to_kill_anon_file(t, page, vma, to_kill);
667 }
668 }
669 read_unlock(&tasklist_lock);
670 i_mmap_unlock_read(mapping);
671}
672
673#ifdef CONFIG_FS_DAX
674static void add_to_kill_fsdax(struct task_struct *tsk, struct page *p,
675 struct vm_area_struct *vma,
676 struct list_head *to_kill, pgoff_t pgoff)
677{
678 __add_to_kill(tsk, p, vma, to_kill, 0, pgoff);
679}
680
681/*
682 * Collect processes when the error hit a fsdax page.
683 */
684static void collect_procs_fsdax(struct page *page,
685 struct address_space *mapping, pgoff_t pgoff,
686 struct list_head *to_kill)
687{
688 struct vm_area_struct *vma;
689 struct task_struct *tsk;
690
691 i_mmap_lock_read(mapping);
692 read_lock(&tasklist_lock);
693 for_each_process(tsk) {
694 struct task_struct *t = task_early_kill(tsk, true);
695
696 if (!t)
697 continue;
698 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
699 if (vma->vm_mm == t->mm)
700 add_to_kill_fsdax(t, page, vma, to_kill, pgoff);
701 }
702 }
703 read_unlock(&tasklist_lock);
704 i_mmap_unlock_read(mapping);
705}
706#endif /* CONFIG_FS_DAX */
707
708/*
709 * Collect the processes who have the corrupted page mapped to kill.
710 */
711static void collect_procs(struct page *page, struct list_head *tokill,
712 int force_early)
713{
714 if (!page->mapping)
715 return;
716 if (unlikely(PageKsm(page)))
717 collect_procs_ksm(page, tokill, force_early);
718 else if (PageAnon(page))
719 collect_procs_anon(page, tokill, force_early);
720 else
721 collect_procs_file(page, tokill, force_early);
722}
723
724struct hwp_walk {
725 struct to_kill tk;
726 unsigned long pfn;
727 int flags;
728};
729
730static void set_to_kill(struct to_kill *tk, unsigned long addr, short shift)
731{
732 tk->addr = addr;
733 tk->size_shift = shift;
734}
735
736static int check_hwpoisoned_entry(pte_t pte, unsigned long addr, short shift,
737 unsigned long poisoned_pfn, struct to_kill *tk)
738{
739 unsigned long pfn = 0;
740
741 if (pte_present(pte)) {
742 pfn = pte_pfn(pte);
743 } else {
744 swp_entry_t swp = pte_to_swp_entry(pte);
745
746 if (is_hwpoison_entry(swp))
747 pfn = swp_offset_pfn(swp);
748 }
749
750 if (!pfn || pfn != poisoned_pfn)
751 return 0;
752
753 set_to_kill(tk, addr, shift);
754 return 1;
755}
756
757#ifdef CONFIG_TRANSPARENT_HUGEPAGE
758static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
759 struct hwp_walk *hwp)
760{
761 pmd_t pmd = *pmdp;
762 unsigned long pfn;
763 unsigned long hwpoison_vaddr;
764
765 if (!pmd_present(pmd))
766 return 0;
767 pfn = pmd_pfn(pmd);
768 if (pfn <= hwp->pfn && hwp->pfn < pfn + HPAGE_PMD_NR) {
769 hwpoison_vaddr = addr + ((hwp->pfn - pfn) << PAGE_SHIFT);
770 set_to_kill(&hwp->tk, hwpoison_vaddr, PAGE_SHIFT);
771 return 1;
772 }
773 return 0;
774}
775#else
776static int check_hwpoisoned_pmd_entry(pmd_t *pmdp, unsigned long addr,
777 struct hwp_walk *hwp)
778{
779 return 0;
780}
781#endif
782
783static int hwpoison_pte_range(pmd_t *pmdp, unsigned long addr,
784 unsigned long end, struct mm_walk *walk)
785{
786 struct hwp_walk *hwp = walk->private;
787 int ret = 0;
788 pte_t *ptep, *mapped_pte;
789 spinlock_t *ptl;
790
791 ptl = pmd_trans_huge_lock(pmdp, walk->vma);
792 if (ptl) {
793 ret = check_hwpoisoned_pmd_entry(pmdp, addr, hwp);
794 spin_unlock(ptl);
795 goto out;
796 }
797
798 mapped_pte = ptep = pte_offset_map_lock(walk->vma->vm_mm, pmdp,
799 addr, &ptl);
800 if (!ptep)
801 goto out;
802
803 for (; addr != end; ptep++, addr += PAGE_SIZE) {
804 ret = check_hwpoisoned_entry(ptep_get(ptep), addr, PAGE_SHIFT,
805 hwp->pfn, &hwp->tk);
806 if (ret == 1)
807 break;
808 }
809 pte_unmap_unlock(mapped_pte, ptl);
810out:
811 cond_resched();
812 return ret;
813}
814
815#ifdef CONFIG_HUGETLB_PAGE
816static int hwpoison_hugetlb_range(pte_t *ptep, unsigned long hmask,
817 unsigned long addr, unsigned long end,
818 struct mm_walk *walk)
819{
820 struct hwp_walk *hwp = walk->private;
821 pte_t pte = huge_ptep_get(ptep);
822 struct hstate *h = hstate_vma(walk->vma);
823
824 return check_hwpoisoned_entry(pte, addr, huge_page_shift(h),
825 hwp->pfn, &hwp->tk);
826}
827#else
828#define hwpoison_hugetlb_range NULL
829#endif
830
831static const struct mm_walk_ops hwp_walk_ops = {
832 .pmd_entry = hwpoison_pte_range,
833 .hugetlb_entry = hwpoison_hugetlb_range,
834};
835
836/*
837 * Sends SIGBUS to the current process with error info.
838 *
839 * This function is intended to handle "Action Required" MCEs on already
840 * hardware poisoned pages. They could happen, for example, when
841 * memory_failure() failed to unmap the error page at the first call, or
842 * when multiple local machine checks happened on different CPUs.
843 *
844 * MCE handler currently has no easy access to the error virtual address,
845 * so this function walks page table to find it. The returned virtual address
846 * is proper in most cases, but it could be wrong when the application
847 * process has multiple entries mapping the error page.
848 */
849static int kill_accessing_process(struct task_struct *p, unsigned long pfn,
850 int flags)
851{
852 int ret;
853 struct hwp_walk priv = {
854 .pfn = pfn,
855 };
856 priv.tk.tsk = p;
857
858 if (!p->mm)
859 return -EFAULT;
860
861 mmap_read_lock(p->mm);
862 ret = walk_page_range(p->mm, 0, TASK_SIZE, &hwp_walk_ops,
863 (void *)&priv);
864 if (ret == 1 && priv.tk.addr)
865 kill_proc(&priv.tk, pfn, flags);
866 else
867 ret = 0;
868 mmap_read_unlock(p->mm);
869 return ret > 0 ? -EHWPOISON : -EFAULT;
870}
871
872static const char *action_name[] = {
873 [MF_IGNORED] = "Ignored",
874 [MF_FAILED] = "Failed",
875 [MF_DELAYED] = "Delayed",
876 [MF_RECOVERED] = "Recovered",
877};
878
879static const char * const action_page_types[] = {
880 [MF_MSG_KERNEL] = "reserved kernel page",
881 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
882 [MF_MSG_SLAB] = "kernel slab page",
883 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
884 [MF_MSG_HUGE] = "huge page",
885 [MF_MSG_FREE_HUGE] = "free huge page",
886 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
887 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
888 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
889 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
890 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
891 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
892 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
893 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
894 [MF_MSG_CLEAN_LRU] = "clean LRU page",
895 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
896 [MF_MSG_BUDDY] = "free buddy page",
897 [MF_MSG_DAX] = "dax page",
898 [MF_MSG_UNSPLIT_THP] = "unsplit thp",
899 [MF_MSG_UNKNOWN] = "unknown page",
900};
901
902/*
903 * XXX: It is possible that a page is isolated from LRU cache,
904 * and then kept in swap cache or failed to remove from page cache.
905 * The page count will stop it from being freed by unpoison.
906 * Stress tests should be aware of this memory leak problem.
907 */
908static int delete_from_lru_cache(struct page *p)
909{
910 if (isolate_lru_page(p)) {
911 /*
912 * Clear sensible page flags, so that the buddy system won't
913 * complain when the page is unpoison-and-freed.
914 */
915 ClearPageActive(p);
916 ClearPageUnevictable(p);
917
918 /*
919 * Poisoned page might never drop its ref count to 0 so we have
920 * to uncharge it manually from its memcg.
921 */
922 mem_cgroup_uncharge(page_folio(p));
923
924 /*
925 * drop the page count elevated by isolate_lru_page()
926 */
927 put_page(p);
928 return 0;
929 }
930 return -EIO;
931}
932
933static int truncate_error_page(struct page *p, unsigned long pfn,
934 struct address_space *mapping)
935{
936 int ret = MF_FAILED;
937
938 if (mapping->a_ops->error_remove_page) {
939 struct folio *folio = page_folio(p);
940 int err = mapping->a_ops->error_remove_page(mapping, p);
941
942 if (err != 0) {
943 pr_info("%#lx: Failed to punch page: %d\n", pfn, err);
944 } else if (folio_has_private(folio) &&
945 !filemap_release_folio(folio, GFP_NOIO)) {
946 pr_info("%#lx: failed to release buffers\n", pfn);
947 } else {
948 ret = MF_RECOVERED;
949 }
950 } else {
951 /*
952 * If the file system doesn't support it just invalidate
953 * This fails on dirty or anything with private pages
954 */
955 if (invalidate_inode_page(p))
956 ret = MF_RECOVERED;
957 else
958 pr_info("%#lx: Failed to invalidate\n", pfn);
959 }
960
961 return ret;
962}
963
964struct page_state {
965 unsigned long mask;
966 unsigned long res;
967 enum mf_action_page_type type;
968
969 /* Callback ->action() has to unlock the relevant page inside it. */
970 int (*action)(struct page_state *ps, struct page *p);
971};
972
973/*
974 * Return true if page is still referenced by others, otherwise return
975 * false.
976 *
977 * The extra_pins is true when one extra refcount is expected.
978 */
979static bool has_extra_refcount(struct page_state *ps, struct page *p,
980 bool extra_pins)
981{
982 int count = page_count(p) - 1;
983
984 if (extra_pins)
985 count -= 1;
986
987 if (count > 0) {
988 pr_err("%#lx: %s still referenced by %d users\n",
989 page_to_pfn(p), action_page_types[ps->type], count);
990 return true;
991 }
992
993 return false;
994}
995
996/*
997 * Error hit kernel page.
998 * Do nothing, try to be lucky and not touch this instead. For a few cases we
999 * could be more sophisticated.
1000 */
1001static int me_kernel(struct page_state *ps, struct page *p)
1002{
1003 unlock_page(p);
1004 return MF_IGNORED;
1005}
1006
1007/*
1008 * Page in unknown state. Do nothing.
1009 */
1010static int me_unknown(struct page_state *ps, struct page *p)
1011{
1012 pr_err("%#lx: Unknown page state\n", page_to_pfn(p));
1013 unlock_page(p);
1014 return MF_FAILED;
1015}
1016
1017/*
1018 * Clean (or cleaned) page cache page.
1019 */
1020static int me_pagecache_clean(struct page_state *ps, struct page *p)
1021{
1022 int ret;
1023 struct address_space *mapping;
1024 bool extra_pins;
1025
1026 delete_from_lru_cache(p);
1027
1028 /*
1029 * For anonymous pages we're done the only reference left
1030 * should be the one m_f() holds.
1031 */
1032 if (PageAnon(p)) {
1033 ret = MF_RECOVERED;
1034 goto out;
1035 }
1036
1037 /*
1038 * Now truncate the page in the page cache. This is really
1039 * more like a "temporary hole punch"
1040 * Don't do this for block devices when someone else
1041 * has a reference, because it could be file system metadata
1042 * and that's not safe to truncate.
1043 */
1044 mapping = page_mapping(p);
1045 if (!mapping) {
1046 /*
1047 * Page has been teared down in the meanwhile
1048 */
1049 ret = MF_FAILED;
1050 goto out;
1051 }
1052
1053 /*
1054 * The shmem page is kept in page cache instead of truncating
1055 * so is expected to have an extra refcount after error-handling.
1056 */
1057 extra_pins = shmem_mapping(mapping);
1058
1059 /*
1060 * Truncation is a bit tricky. Enable it per file system for now.
1061 *
1062 * Open: to take i_rwsem or not for this? Right now we don't.
1063 */
1064 ret = truncate_error_page(p, page_to_pfn(p), mapping);
1065 if (has_extra_refcount(ps, p, extra_pins))
1066 ret = MF_FAILED;
1067
1068out:
1069 unlock_page(p);
1070
1071 return ret;
1072}
1073
1074/*
1075 * Dirty pagecache page
1076 * Issues: when the error hit a hole page the error is not properly
1077 * propagated.
1078 */
1079static int me_pagecache_dirty(struct page_state *ps, struct page *p)
1080{
1081 struct address_space *mapping = page_mapping(p);
1082
1083 SetPageError(p);
1084 /* TBD: print more information about the file. */
1085 if (mapping) {
1086 /*
1087 * IO error will be reported by write(), fsync(), etc.
1088 * who check the mapping.
1089 * This way the application knows that something went
1090 * wrong with its dirty file data.
1091 *
1092 * There's one open issue:
1093 *
1094 * The EIO will be only reported on the next IO
1095 * operation and then cleared through the IO map.
1096 * Normally Linux has two mechanisms to pass IO error
1097 * first through the AS_EIO flag in the address space
1098 * and then through the PageError flag in the page.
1099 * Since we drop pages on memory failure handling the
1100 * only mechanism open to use is through AS_AIO.
1101 *
1102 * This has the disadvantage that it gets cleared on
1103 * the first operation that returns an error, while
1104 * the PageError bit is more sticky and only cleared
1105 * when the page is reread or dropped. If an
1106 * application assumes it will always get error on
1107 * fsync, but does other operations on the fd before
1108 * and the page is dropped between then the error
1109 * will not be properly reported.
1110 *
1111 * This can already happen even without hwpoisoned
1112 * pages: first on metadata IO errors (which only
1113 * report through AS_EIO) or when the page is dropped
1114 * at the wrong time.
1115 *
1116 * So right now we assume that the application DTRT on
1117 * the first EIO, but we're not worse than other parts
1118 * of the kernel.
1119 */
1120 mapping_set_error(mapping, -EIO);
1121 }
1122
1123 return me_pagecache_clean(ps, p);
1124}
1125
1126/*
1127 * Clean and dirty swap cache.
1128 *
1129 * Dirty swap cache page is tricky to handle. The page could live both in page
1130 * cache and swap cache(ie. page is freshly swapped in). So it could be
1131 * referenced concurrently by 2 types of PTEs:
1132 * normal PTEs and swap PTEs. We try to handle them consistently by calling
1133 * try_to_unmap(!TTU_HWPOISON) to convert the normal PTEs to swap PTEs,
1134 * and then
1135 * - clear dirty bit to prevent IO
1136 * - remove from LRU
1137 * - but keep in the swap cache, so that when we return to it on
1138 * a later page fault, we know the application is accessing
1139 * corrupted data and shall be killed (we installed simple
1140 * interception code in do_swap_page to catch it).
1141 *
1142 * Clean swap cache pages can be directly isolated. A later page fault will
1143 * bring in the known good data from disk.
1144 */
1145static int me_swapcache_dirty(struct page_state *ps, struct page *p)
1146{
1147 int ret;
1148 bool extra_pins = false;
1149
1150 ClearPageDirty(p);
1151 /* Trigger EIO in shmem: */
1152 ClearPageUptodate(p);
1153
1154 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_DELAYED;
1155 unlock_page(p);
1156
1157 if (ret == MF_DELAYED)
1158 extra_pins = true;
1159
1160 if (has_extra_refcount(ps, p, extra_pins))
1161 ret = MF_FAILED;
1162
1163 return ret;
1164}
1165
1166static int me_swapcache_clean(struct page_state *ps, struct page *p)
1167{
1168 struct folio *folio = page_folio(p);
1169 int ret;
1170
1171 delete_from_swap_cache(folio);
1172
1173 ret = delete_from_lru_cache(p) ? MF_FAILED : MF_RECOVERED;
1174 folio_unlock(folio);
1175
1176 if (has_extra_refcount(ps, p, false))
1177 ret = MF_FAILED;
1178
1179 return ret;
1180}
1181
1182/*
1183 * Huge pages. Needs work.
1184 * Issues:
1185 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
1186 * To narrow down kill region to one page, we need to break up pmd.
1187 */
1188static int me_huge_page(struct page_state *ps, struct page *p)
1189{
1190 int res;
1191 struct page *hpage = compound_head(p);
1192 struct address_space *mapping;
1193 bool extra_pins = false;
1194
1195 if (!PageHuge(hpage))
1196 return MF_DELAYED;
1197
1198 mapping = page_mapping(hpage);
1199 if (mapping) {
1200 res = truncate_error_page(hpage, page_to_pfn(p), mapping);
1201 /* The page is kept in page cache. */
1202 extra_pins = true;
1203 unlock_page(hpage);
1204 } else {
1205 unlock_page(hpage);
1206 /*
1207 * migration entry prevents later access on error hugepage,
1208 * so we can free and dissolve it into buddy to save healthy
1209 * subpages.
1210 */
1211 put_page(hpage);
1212 if (__page_handle_poison(p) >= 0) {
1213 page_ref_inc(p);
1214 res = MF_RECOVERED;
1215 } else {
1216 res = MF_FAILED;
1217 }
1218 }
1219
1220 if (has_extra_refcount(ps, p, extra_pins))
1221 res = MF_FAILED;
1222
1223 return res;
1224}
1225
1226/*
1227 * Various page states we can handle.
1228 *
1229 * A page state is defined by its current page->flags bits.
1230 * The table matches them in order and calls the right handler.
1231 *
1232 * This is quite tricky because we can access page at any time
1233 * in its live cycle, so all accesses have to be extremely careful.
1234 *
1235 * This is not complete. More states could be added.
1236 * For any missing state don't attempt recovery.
1237 */
1238
1239#define dirty (1UL << PG_dirty)
1240#define sc ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
1241#define unevict (1UL << PG_unevictable)
1242#define mlock (1UL << PG_mlocked)
1243#define lru (1UL << PG_lru)
1244#define head (1UL << PG_head)
1245#define slab (1UL << PG_slab)
1246#define reserved (1UL << PG_reserved)
1247
1248static struct page_state error_states[] = {
1249 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
1250 /*
1251 * free pages are specially detected outside this table:
1252 * PG_buddy pages only make a small fraction of all free pages.
1253 */
1254
1255 /*
1256 * Could in theory check if slab page is free or if we can drop
1257 * currently unused objects without touching them. But just
1258 * treat it as standard kernel for now.
1259 */
1260 { slab, slab, MF_MSG_SLAB, me_kernel },
1261
1262 { head, head, MF_MSG_HUGE, me_huge_page },
1263
1264 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
1265 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
1266
1267 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
1268 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
1269
1270 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
1271 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
1272
1273 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
1274 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
1275
1276 /*
1277 * Catchall entry: must be at end.
1278 */
1279 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
1280};
1281
1282#undef dirty
1283#undef sc
1284#undef unevict
1285#undef mlock
1286#undef lru
1287#undef head
1288#undef slab
1289#undef reserved
1290
1291static void update_per_node_mf_stats(unsigned long pfn,
1292 enum mf_result result)
1293{
1294 int nid = MAX_NUMNODES;
1295 struct memory_failure_stats *mf_stats = NULL;
1296
1297 nid = pfn_to_nid(pfn);
1298 if (unlikely(nid < 0 || nid >= MAX_NUMNODES)) {
1299 WARN_ONCE(1, "Memory failure: pfn=%#lx, invalid nid=%d", pfn, nid);
1300 return;
1301 }
1302
1303 mf_stats = &NODE_DATA(nid)->mf_stats;
1304 switch (result) {
1305 case MF_IGNORED:
1306 ++mf_stats->ignored;
1307 break;
1308 case MF_FAILED:
1309 ++mf_stats->failed;
1310 break;
1311 case MF_DELAYED:
1312 ++mf_stats->delayed;
1313 break;
1314 case MF_RECOVERED:
1315 ++mf_stats->recovered;
1316 break;
1317 default:
1318 WARN_ONCE(1, "Memory failure: mf_result=%d is not properly handled", result);
1319 break;
1320 }
1321 ++mf_stats->total;
1322}
1323
1324/*
1325 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
1326 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
1327 */
1328static int action_result(unsigned long pfn, enum mf_action_page_type type,
1329 enum mf_result result)
1330{
1331 trace_memory_failure_event(pfn, type, result);
1332
1333 num_poisoned_pages_inc(pfn);
1334
1335 update_per_node_mf_stats(pfn, result);
1336
1337 pr_err("%#lx: recovery action for %s: %s\n",
1338 pfn, action_page_types[type], action_name[result]);
1339
1340 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
1341}
1342
1343static int page_action(struct page_state *ps, struct page *p,
1344 unsigned long pfn)
1345{
1346 int result;
1347
1348 /* page p should be unlocked after returning from ps->action(). */
1349 result = ps->action(ps, p);
1350
1351 /* Could do more checks here if page looks ok */
1352 /*
1353 * Could adjust zone counters here to correct for the missing page.
1354 */
1355
1356 return action_result(pfn, ps->type, result);
1357}
1358
1359static inline bool PageHWPoisonTakenOff(struct page *page)
1360{
1361 return PageHWPoison(page) && page_private(page) == MAGIC_HWPOISON;
1362}
1363
1364void SetPageHWPoisonTakenOff(struct page *page)
1365{
1366 set_page_private(page, MAGIC_HWPOISON);
1367}
1368
1369void ClearPageHWPoisonTakenOff(struct page *page)
1370{
1371 if (PageHWPoison(page))
1372 set_page_private(page, 0);
1373}
1374
1375/*
1376 * Return true if a page type of a given page is supported by hwpoison
1377 * mechanism (while handling could fail), otherwise false. This function
1378 * does not return true for hugetlb or device memory pages, so it's assumed
1379 * to be called only in the context where we never have such pages.
1380 */
1381static inline bool HWPoisonHandlable(struct page *page, unsigned long flags)
1382{
1383 /* Soft offline could migrate non-LRU movable pages */
1384 if ((flags & MF_SOFT_OFFLINE) && __PageMovable(page))
1385 return true;
1386
1387 return PageLRU(page) || is_free_buddy_page(page);
1388}
1389
1390static int __get_hwpoison_page(struct page *page, unsigned long flags)
1391{
1392 struct folio *folio = page_folio(page);
1393 int ret = 0;
1394 bool hugetlb = false;
1395
1396 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, false);
1397 if (hugetlb)
1398 return ret;
1399
1400 /*
1401 * This check prevents from calling folio_try_get() for any
1402 * unsupported type of folio in order to reduce the risk of unexpected
1403 * races caused by taking a folio refcount.
1404 */
1405 if (!HWPoisonHandlable(&folio->page, flags))
1406 return -EBUSY;
1407
1408 if (folio_try_get(folio)) {
1409 if (folio == page_folio(page))
1410 return 1;
1411
1412 pr_info("%#lx cannot catch tail\n", page_to_pfn(page));
1413 folio_put(folio);
1414 }
1415
1416 return 0;
1417}
1418
1419static int get_any_page(struct page *p, unsigned long flags)
1420{
1421 int ret = 0, pass = 0;
1422 bool count_increased = false;
1423
1424 if (flags & MF_COUNT_INCREASED)
1425 count_increased = true;
1426
1427try_again:
1428 if (!count_increased) {
1429 ret = __get_hwpoison_page(p, flags);
1430 if (!ret) {
1431 if (page_count(p)) {
1432 /* We raced with an allocation, retry. */
1433 if (pass++ < 3)
1434 goto try_again;
1435 ret = -EBUSY;
1436 } else if (!PageHuge(p) && !is_free_buddy_page(p)) {
1437 /* We raced with put_page, retry. */
1438 if (pass++ < 3)
1439 goto try_again;
1440 ret = -EIO;
1441 }
1442 goto out;
1443 } else if (ret == -EBUSY) {
1444 /*
1445 * We raced with (possibly temporary) unhandlable
1446 * page, retry.
1447 */
1448 if (pass++ < 3) {
1449 shake_page(p);
1450 goto try_again;
1451 }
1452 ret = -EIO;
1453 goto out;
1454 }
1455 }
1456
1457 if (PageHuge(p) || HWPoisonHandlable(p, flags)) {
1458 ret = 1;
1459 } else {
1460 /*
1461 * A page we cannot handle. Check whether we can turn
1462 * it into something we can handle.
1463 */
1464 if (pass++ < 3) {
1465 put_page(p);
1466 shake_page(p);
1467 count_increased = false;
1468 goto try_again;
1469 }
1470 put_page(p);
1471 ret = -EIO;
1472 }
1473out:
1474 if (ret == -EIO)
1475 pr_err("%#lx: unhandlable page.\n", page_to_pfn(p));
1476
1477 return ret;
1478}
1479
1480static int __get_unpoison_page(struct page *page)
1481{
1482 struct folio *folio = page_folio(page);
1483 int ret = 0;
1484 bool hugetlb = false;
1485
1486 ret = get_hwpoison_hugetlb_folio(folio, &hugetlb, true);
1487 if (hugetlb)
1488 return ret;
1489
1490 /*
1491 * PageHWPoisonTakenOff pages are not only marked as PG_hwpoison,
1492 * but also isolated from buddy freelist, so need to identify the
1493 * state and have to cancel both operations to unpoison.
1494 */
1495 if (PageHWPoisonTakenOff(page))
1496 return -EHWPOISON;
1497
1498 return get_page_unless_zero(page) ? 1 : 0;
1499}
1500
1501/**
1502 * get_hwpoison_page() - Get refcount for memory error handling
1503 * @p: Raw error page (hit by memory error)
1504 * @flags: Flags controlling behavior of error handling
1505 *
1506 * get_hwpoison_page() takes a page refcount of an error page to handle memory
1507 * error on it, after checking that the error page is in a well-defined state
1508 * (defined as a page-type we can successfully handle the memory error on it,
1509 * such as LRU page and hugetlb page).
1510 *
1511 * Memory error handling could be triggered at any time on any type of page,
1512 * so it's prone to race with typical memory management lifecycle (like
1513 * allocation and free). So to avoid such races, get_hwpoison_page() takes
1514 * extra care for the error page's state (as done in __get_hwpoison_page()),
1515 * and has some retry logic in get_any_page().
1516 *
1517 * When called from unpoison_memory(), the caller should already ensure that
1518 * the given page has PG_hwpoison. So it's never reused for other page
1519 * allocations, and __get_unpoison_page() never races with them.
1520 *
1521 * Return: 0 on failure,
1522 * 1 on success for in-use pages in a well-defined state,
1523 * -EIO for pages on which we can not handle memory errors,
1524 * -EBUSY when get_hwpoison_page() has raced with page lifecycle
1525 * operations like allocation and free,
1526 * -EHWPOISON when the page is hwpoisoned and taken off from buddy.
1527 */
1528static int get_hwpoison_page(struct page *p, unsigned long flags)
1529{
1530 int ret;
1531
1532 zone_pcp_disable(page_zone(p));
1533 if (flags & MF_UNPOISON)
1534 ret = __get_unpoison_page(p);
1535 else
1536 ret = get_any_page(p, flags);
1537 zone_pcp_enable(page_zone(p));
1538
1539 return ret;
1540}
1541
1542/*
1543 * Do all that is necessary to remove user space mappings. Unmap
1544 * the pages and send SIGBUS to the processes if the data was dirty.
1545 */
1546static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
1547 int flags, struct page *hpage)
1548{
1549 struct folio *folio = page_folio(hpage);
1550 enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_SYNC | TTU_HWPOISON;
1551 struct address_space *mapping;
1552 LIST_HEAD(tokill);
1553 bool unmap_success;
1554 int forcekill;
1555 bool mlocked = PageMlocked(hpage);
1556
1557 /*
1558 * Here we are interested only in user-mapped pages, so skip any
1559 * other types of pages.
1560 */
1561 if (PageReserved(p) || PageSlab(p) || PageTable(p))
1562 return true;
1563 if (!(PageLRU(hpage) || PageHuge(p)))
1564 return true;
1565
1566 /*
1567 * This check implies we don't kill processes if their pages
1568 * are in the swap cache early. Those are always late kills.
1569 */
1570 if (!page_mapped(hpage))
1571 return true;
1572
1573 if (PageSwapCache(p)) {
1574 pr_err("%#lx: keeping poisoned page in swap cache\n", pfn);
1575 ttu &= ~TTU_HWPOISON;
1576 }
1577
1578 /*
1579 * Propagate the dirty bit from PTEs to struct page first, because we
1580 * need this to decide if we should kill or just drop the page.
1581 * XXX: the dirty test could be racy: set_page_dirty() may not always
1582 * be called inside page lock (it's recommended but not enforced).
1583 */
1584 mapping = page_mapping(hpage);
1585 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1586 mapping_can_writeback(mapping)) {
1587 if (page_mkclean(hpage)) {
1588 SetPageDirty(hpage);
1589 } else {
1590 ttu &= ~TTU_HWPOISON;
1591 pr_info("%#lx: corrupted page was clean: dropped without side effects\n",
1592 pfn);
1593 }
1594 }
1595
1596 /*
1597 * First collect all the processes that have the page
1598 * mapped in dirty form. This has to be done before try_to_unmap,
1599 * because ttu takes the rmap data structures down.
1600 */
1601 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1602
1603 if (PageHuge(hpage) && !PageAnon(hpage)) {
1604 /*
1605 * For hugetlb pages in shared mappings, try_to_unmap
1606 * could potentially call huge_pmd_unshare. Because of
1607 * this, take semaphore in write mode here and set
1608 * TTU_RMAP_LOCKED to indicate we have taken the lock
1609 * at this higher level.
1610 */
1611 mapping = hugetlb_page_mapping_lock_write(hpage);
1612 if (mapping) {
1613 try_to_unmap(folio, ttu|TTU_RMAP_LOCKED);
1614 i_mmap_unlock_write(mapping);
1615 } else
1616 pr_info("%#lx: could not lock mapping for mapped huge page\n", pfn);
1617 } else {
1618 try_to_unmap(folio, ttu);
1619 }
1620
1621 unmap_success = !page_mapped(hpage);
1622 if (!unmap_success)
1623 pr_err("%#lx: failed to unmap page (mapcount=%d)\n",
1624 pfn, page_mapcount(hpage));
1625
1626 /*
1627 * try_to_unmap() might put mlocked page in lru cache, so call
1628 * shake_page() again to ensure that it's flushed.
1629 */
1630 if (mlocked)
1631 shake_page(hpage);
1632
1633 /*
1634 * Now that the dirty bit has been propagated to the
1635 * struct page and all unmaps done we can decide if
1636 * killing is needed or not. Only kill when the page
1637 * was dirty or the process is not restartable,
1638 * otherwise the tokill list is merely
1639 * freed. When there was a problem unmapping earlier
1640 * use a more force-full uncatchable kill to prevent
1641 * any accesses to the poisoned memory.
1642 */
1643 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL) ||
1644 !unmap_success;
1645 kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1646
1647 return unmap_success;
1648}
1649
1650static int identify_page_state(unsigned long pfn, struct page *p,
1651 unsigned long page_flags)
1652{
1653 struct page_state *ps;
1654
1655 /*
1656 * The first check uses the current page flags which may not have any
1657 * relevant information. The second check with the saved page flags is
1658 * carried out only if the first check can't determine the page status.
1659 */
1660 for (ps = error_states;; ps++)
1661 if ((p->flags & ps->mask) == ps->res)
1662 break;
1663
1664 page_flags |= (p->flags & (1UL << PG_dirty));
1665
1666 if (!ps->mask)
1667 for (ps = error_states;; ps++)
1668 if ((page_flags & ps->mask) == ps->res)
1669 break;
1670 return page_action(ps, p, pfn);
1671}
1672
1673static int try_to_split_thp_page(struct page *page)
1674{
1675 int ret;
1676
1677 lock_page(page);
1678 ret = split_huge_page(page);
1679 unlock_page(page);
1680
1681 if (unlikely(ret))
1682 put_page(page);
1683
1684 return ret;
1685}
1686
1687static void unmap_and_kill(struct list_head *to_kill, unsigned long pfn,
1688 struct address_space *mapping, pgoff_t index, int flags)
1689{
1690 struct to_kill *tk;
1691 unsigned long size = 0;
1692
1693 list_for_each_entry(tk, to_kill, nd)
1694 if (tk->size_shift)
1695 size = max(size, 1UL << tk->size_shift);
1696
1697 if (size) {
1698 /*
1699 * Unmap the largest mapping to avoid breaking up device-dax
1700 * mappings which are constant size. The actual size of the
1701 * mapping being torn down is communicated in siginfo, see
1702 * kill_proc()
1703 */
1704 loff_t start = (index << PAGE_SHIFT) & ~(size - 1);
1705
1706 unmap_mapping_range(mapping, start, size, 0);
1707 }
1708
1709 kill_procs(to_kill, flags & MF_MUST_KILL, false, pfn, flags);
1710}
1711
1712static int mf_generic_kill_procs(unsigned long long pfn, int flags,
1713 struct dev_pagemap *pgmap)
1714{
1715 struct page *page = pfn_to_page(pfn);
1716 LIST_HEAD(to_kill);
1717 dax_entry_t cookie;
1718 int rc = 0;
1719
1720 /*
1721 * Pages instantiated by device-dax (not filesystem-dax)
1722 * may be compound pages.
1723 */
1724 page = compound_head(page);
1725
1726 /*
1727 * Prevent the inode from being freed while we are interrogating
1728 * the address_space, typically this would be handled by
1729 * lock_page(), but dax pages do not use the page lock. This
1730 * also prevents changes to the mapping of this pfn until
1731 * poison signaling is complete.
1732 */
1733 cookie = dax_lock_page(page);
1734 if (!cookie)
1735 return -EBUSY;
1736
1737 if (hwpoison_filter(page)) {
1738 rc = -EOPNOTSUPP;
1739 goto unlock;
1740 }
1741
1742 switch (pgmap->type) {
1743 case MEMORY_DEVICE_PRIVATE:
1744 case MEMORY_DEVICE_COHERENT:
1745 /*
1746 * TODO: Handle device pages which may need coordination
1747 * with device-side memory.
1748 */
1749 rc = -ENXIO;
1750 goto unlock;
1751 default:
1752 break;
1753 }
1754
1755 /*
1756 * Use this flag as an indication that the dax page has been
1757 * remapped UC to prevent speculative consumption of poison.
1758 */
1759 SetPageHWPoison(page);
1760
1761 /*
1762 * Unlike System-RAM there is no possibility to swap in a
1763 * different physical page at a given virtual address, so all
1764 * userspace consumption of ZONE_DEVICE memory necessitates
1765 * SIGBUS (i.e. MF_MUST_KILL)
1766 */
1767 flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1768 collect_procs(page, &to_kill, true);
1769
1770 unmap_and_kill(&to_kill, pfn, page->mapping, page->index, flags);
1771unlock:
1772 dax_unlock_page(page, cookie);
1773 return rc;
1774}
1775
1776#ifdef CONFIG_FS_DAX
1777/**
1778 * mf_dax_kill_procs - Collect and kill processes who are using this file range
1779 * @mapping: address_space of the file in use
1780 * @index: start pgoff of the range within the file
1781 * @count: length of the range, in unit of PAGE_SIZE
1782 * @mf_flags: memory failure flags
1783 */
1784int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
1785 unsigned long count, int mf_flags)
1786{
1787 LIST_HEAD(to_kill);
1788 dax_entry_t cookie;
1789 struct page *page;
1790 size_t end = index + count;
1791
1792 mf_flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1793
1794 for (; index < end; index++) {
1795 page = NULL;
1796 cookie = dax_lock_mapping_entry(mapping, index, &page);
1797 if (!cookie)
1798 return -EBUSY;
1799 if (!page)
1800 goto unlock;
1801
1802 SetPageHWPoison(page);
1803
1804 collect_procs_fsdax(page, mapping, index, &to_kill);
1805 unmap_and_kill(&to_kill, page_to_pfn(page), mapping,
1806 index, mf_flags);
1807unlock:
1808 dax_unlock_mapping_entry(mapping, index, cookie);
1809 }
1810 return 0;
1811}
1812EXPORT_SYMBOL_GPL(mf_dax_kill_procs);
1813#endif /* CONFIG_FS_DAX */
1814
1815#ifdef CONFIG_HUGETLB_PAGE
1816/*
1817 * Struct raw_hwp_page represents information about "raw error page",
1818 * constructing singly linked list from ->_hugetlb_hwpoison field of folio.
1819 */
1820struct raw_hwp_page {
1821 struct llist_node node;
1822 struct page *page;
1823};
1824
1825static inline struct llist_head *raw_hwp_list_head(struct folio *folio)
1826{
1827 return (struct llist_head *)&folio->_hugetlb_hwpoison;
1828}
1829
1830static unsigned long __folio_free_raw_hwp(struct folio *folio, bool move_flag)
1831{
1832 struct llist_head *head;
1833 struct llist_node *t, *tnode;
1834 unsigned long count = 0;
1835
1836 head = raw_hwp_list_head(folio);
1837 llist_for_each_safe(tnode, t, head->first) {
1838 struct raw_hwp_page *p = container_of(tnode, struct raw_hwp_page, node);
1839
1840 if (move_flag)
1841 SetPageHWPoison(p->page);
1842 else
1843 num_poisoned_pages_sub(page_to_pfn(p->page), 1);
1844 kfree(p);
1845 count++;
1846 }
1847 llist_del_all(head);
1848 return count;
1849}
1850
1851static int folio_set_hugetlb_hwpoison(struct folio *folio, struct page *page)
1852{
1853 struct llist_head *head;
1854 struct raw_hwp_page *raw_hwp;
1855 struct llist_node *t, *tnode;
1856 int ret = folio_test_set_hwpoison(folio) ? -EHWPOISON : 0;
1857
1858 /*
1859 * Once the hwpoison hugepage has lost reliable raw error info,
1860 * there is little meaning to keep additional error info precisely,
1861 * so skip to add additional raw error info.
1862 */
1863 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1864 return -EHWPOISON;
1865 head = raw_hwp_list_head(folio);
1866 llist_for_each_safe(tnode, t, head->first) {
1867 struct raw_hwp_page *p = container_of(tnode, struct raw_hwp_page, node);
1868
1869 if (p->page == page)
1870 return -EHWPOISON;
1871 }
1872
1873 raw_hwp = kmalloc(sizeof(struct raw_hwp_page), GFP_ATOMIC);
1874 if (raw_hwp) {
1875 raw_hwp->page = page;
1876 llist_add(&raw_hwp->node, head);
1877 /* the first error event will be counted in action_result(). */
1878 if (ret)
1879 num_poisoned_pages_inc(page_to_pfn(page));
1880 } else {
1881 /*
1882 * Failed to save raw error info. We no longer trace all
1883 * hwpoisoned subpages, and we need refuse to free/dissolve
1884 * this hwpoisoned hugepage.
1885 */
1886 folio_set_hugetlb_raw_hwp_unreliable(folio);
1887 /*
1888 * Once hugetlb_raw_hwp_unreliable is set, raw_hwp_page is not
1889 * used any more, so free it.
1890 */
1891 __folio_free_raw_hwp(folio, false);
1892 }
1893 return ret;
1894}
1895
1896static unsigned long folio_free_raw_hwp(struct folio *folio, bool move_flag)
1897{
1898 /*
1899 * hugetlb_vmemmap_optimized hugepages can't be freed because struct
1900 * pages for tail pages are required but they don't exist.
1901 */
1902 if (move_flag && folio_test_hugetlb_vmemmap_optimized(folio))
1903 return 0;
1904
1905 /*
1906 * hugetlb_raw_hwp_unreliable hugepages shouldn't be unpoisoned by
1907 * definition.
1908 */
1909 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1910 return 0;
1911
1912 return __folio_free_raw_hwp(folio, move_flag);
1913}
1914
1915void folio_clear_hugetlb_hwpoison(struct folio *folio)
1916{
1917 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1918 return;
1919 folio_clear_hwpoison(folio);
1920 folio_free_raw_hwp(folio, true);
1921}
1922
1923/*
1924 * Called from hugetlb code with hugetlb_lock held.
1925 *
1926 * Return values:
1927 * 0 - free hugepage
1928 * 1 - in-use hugepage
1929 * 2 - not a hugepage
1930 * -EBUSY - the hugepage is busy (try to retry)
1931 * -EHWPOISON - the hugepage is already hwpoisoned
1932 */
1933int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
1934 bool *migratable_cleared)
1935{
1936 struct page *page = pfn_to_page(pfn);
1937 struct folio *folio = page_folio(page);
1938 int ret = 2; /* fallback to normal page handling */
1939 bool count_increased = false;
1940
1941 if (!folio_test_hugetlb(folio))
1942 goto out;
1943
1944 if (flags & MF_COUNT_INCREASED) {
1945 ret = 1;
1946 count_increased = true;
1947 } else if (folio_test_hugetlb_freed(folio)) {
1948 ret = 0;
1949 } else if (folio_test_hugetlb_migratable(folio)) {
1950 ret = folio_try_get(folio);
1951 if (ret)
1952 count_increased = true;
1953 } else {
1954 ret = -EBUSY;
1955 if (!(flags & MF_NO_RETRY))
1956 goto out;
1957 }
1958
1959 if (folio_set_hugetlb_hwpoison(folio, page)) {
1960 ret = -EHWPOISON;
1961 goto out;
1962 }
1963
1964 /*
1965 * Clearing hugetlb_migratable for hwpoisoned hugepages to prevent them
1966 * from being migrated by memory hotremove.
1967 */
1968 if (count_increased && folio_test_hugetlb_migratable(folio)) {
1969 folio_clear_hugetlb_migratable(folio);
1970 *migratable_cleared = true;
1971 }
1972
1973 return ret;
1974out:
1975 if (count_increased)
1976 folio_put(folio);
1977 return ret;
1978}
1979
1980/*
1981 * Taking refcount of hugetlb pages needs extra care about race conditions
1982 * with basic operations like hugepage allocation/free/demotion.
1983 * So some of prechecks for hwpoison (pinning, and testing/setting
1984 * PageHWPoison) should be done in single hugetlb_lock range.
1985 */
1986static int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
1987{
1988 int res;
1989 struct page *p = pfn_to_page(pfn);
1990 struct folio *folio;
1991 unsigned long page_flags;
1992 bool migratable_cleared = false;
1993
1994 *hugetlb = 1;
1995retry:
1996 res = get_huge_page_for_hwpoison(pfn, flags, &migratable_cleared);
1997 if (res == 2) { /* fallback to normal page handling */
1998 *hugetlb = 0;
1999 return 0;
2000 } else if (res == -EHWPOISON) {
2001 pr_err("%#lx: already hardware poisoned\n", pfn);
2002 if (flags & MF_ACTION_REQUIRED) {
2003 folio = page_folio(p);
2004 res = kill_accessing_process(current, folio_pfn(folio), flags);
2005 }
2006 return res;
2007 } else if (res == -EBUSY) {
2008 if (!(flags & MF_NO_RETRY)) {
2009 flags |= MF_NO_RETRY;
2010 goto retry;
2011 }
2012 return action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
2013 }
2014
2015 folio = page_folio(p);
2016 folio_lock(folio);
2017
2018 if (hwpoison_filter(p)) {
2019 folio_clear_hugetlb_hwpoison(folio);
2020 if (migratable_cleared)
2021 folio_set_hugetlb_migratable(folio);
2022 folio_unlock(folio);
2023 if (res == 1)
2024 folio_put(folio);
2025 return -EOPNOTSUPP;
2026 }
2027
2028 /*
2029 * Handling free hugepage. The possible race with hugepage allocation
2030 * or demotion can be prevented by PageHWPoison flag.
2031 */
2032 if (res == 0) {
2033 folio_unlock(folio);
2034 if (__page_handle_poison(p) >= 0) {
2035 page_ref_inc(p);
2036 res = MF_RECOVERED;
2037 } else {
2038 res = MF_FAILED;
2039 }
2040 return action_result(pfn, MF_MSG_FREE_HUGE, res);
2041 }
2042
2043 page_flags = folio->flags;
2044
2045 if (!hwpoison_user_mappings(p, pfn, flags, &folio->page)) {
2046 folio_unlock(folio);
2047 return action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
2048 }
2049
2050 return identify_page_state(pfn, p, page_flags);
2051}
2052
2053#else
2054static inline int try_memory_failure_hugetlb(unsigned long pfn, int flags, int *hugetlb)
2055{
2056 return 0;
2057}
2058
2059static inline unsigned long folio_free_raw_hwp(struct folio *folio, bool flag)
2060{
2061 return 0;
2062}
2063#endif /* CONFIG_HUGETLB_PAGE */
2064
2065/* Drop the extra refcount in case we come from madvise() */
2066static void put_ref_page(unsigned long pfn, int flags)
2067{
2068 struct page *page;
2069
2070 if (!(flags & MF_COUNT_INCREASED))
2071 return;
2072
2073 page = pfn_to_page(pfn);
2074 if (page)
2075 put_page(page);
2076}
2077
2078static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
2079 struct dev_pagemap *pgmap)
2080{
2081 int rc = -ENXIO;
2082
2083 put_ref_page(pfn, flags);
2084
2085 /* device metadata space is not recoverable */
2086 if (!pgmap_pfn_valid(pgmap, pfn))
2087 goto out;
2088
2089 /*
2090 * Call driver's implementation to handle the memory failure, otherwise
2091 * fall back to generic handler.
2092 */
2093 if (pgmap_has_memory_failure(pgmap)) {
2094 rc = pgmap->ops->memory_failure(pgmap, pfn, 1, flags);
2095 /*
2096 * Fall back to generic handler too if operation is not
2097 * supported inside the driver/device/filesystem.
2098 */
2099 if (rc != -EOPNOTSUPP)
2100 goto out;
2101 }
2102
2103 rc = mf_generic_kill_procs(pfn, flags, pgmap);
2104out:
2105 /* drop pgmap ref acquired in caller */
2106 put_dev_pagemap(pgmap);
2107 action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
2108 return rc;
2109}
2110
2111static DEFINE_MUTEX(mf_mutex);
2112
2113/**
2114 * memory_failure - Handle memory failure of a page.
2115 * @pfn: Page Number of the corrupted page
2116 * @flags: fine tune action taken
2117 *
2118 * This function is called by the low level machine check code
2119 * of an architecture when it detects hardware memory corruption
2120 * of a page. It tries its best to recover, which includes
2121 * dropping pages, killing processes etc.
2122 *
2123 * The function is primarily of use for corruptions that
2124 * happen outside the current execution context (e.g. when
2125 * detected by a background scrubber)
2126 *
2127 * Must run in process context (e.g. a work queue) with interrupts
2128 * enabled and no spinlocks hold.
2129 *
2130 * Return: 0 for successfully handled the memory error,
2131 * -EOPNOTSUPP for hwpoison_filter() filtered the error event,
2132 * < 0(except -EOPNOTSUPP) on failure.
2133 */
2134int memory_failure(unsigned long pfn, int flags)
2135{
2136 struct page *p;
2137 struct page *hpage;
2138 struct dev_pagemap *pgmap;
2139 int res = 0;
2140 unsigned long page_flags;
2141 bool retry = true;
2142 int hugetlb = 0;
2143
2144 if (!sysctl_memory_failure_recovery)
2145 panic("Memory failure on page %lx", pfn);
2146
2147 mutex_lock(&mf_mutex);
2148
2149 if (!(flags & MF_SW_SIMULATED))
2150 hw_memory_failure = true;
2151
2152 p = pfn_to_online_page(pfn);
2153 if (!p) {
2154 res = arch_memory_failure(pfn, flags);
2155 if (res == 0)
2156 goto unlock_mutex;
2157
2158 if (pfn_valid(pfn)) {
2159 pgmap = get_dev_pagemap(pfn, NULL);
2160 if (pgmap) {
2161 res = memory_failure_dev_pagemap(pfn, flags,
2162 pgmap);
2163 goto unlock_mutex;
2164 }
2165 }
2166 pr_err("%#lx: memory outside kernel control\n", pfn);
2167 res = -ENXIO;
2168 goto unlock_mutex;
2169 }
2170
2171try_again:
2172 res = try_memory_failure_hugetlb(pfn, flags, &hugetlb);
2173 if (hugetlb)
2174 goto unlock_mutex;
2175
2176 if (TestSetPageHWPoison(p)) {
2177 pr_err("%#lx: already hardware poisoned\n", pfn);
2178 res = -EHWPOISON;
2179 if (flags & MF_ACTION_REQUIRED)
2180 res = kill_accessing_process(current, pfn, flags);
2181 if (flags & MF_COUNT_INCREASED)
2182 put_page(p);
2183 goto unlock_mutex;
2184 }
2185
2186 hpage = compound_head(p);
2187
2188 /*
2189 * We need/can do nothing about count=0 pages.
2190 * 1) it's a free page, and therefore in safe hand:
2191 * check_new_page() will be the gate keeper.
2192 * 2) it's part of a non-compound high order page.
2193 * Implies some kernel user: cannot stop them from
2194 * R/W the page; let's pray that the page has been
2195 * used and will be freed some time later.
2196 * In fact it's dangerous to directly bump up page count from 0,
2197 * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
2198 */
2199 if (!(flags & MF_COUNT_INCREASED)) {
2200 res = get_hwpoison_page(p, flags);
2201 if (!res) {
2202 if (is_free_buddy_page(p)) {
2203 if (take_page_off_buddy(p)) {
2204 page_ref_inc(p);
2205 res = MF_RECOVERED;
2206 } else {
2207 /* We lost the race, try again */
2208 if (retry) {
2209 ClearPageHWPoison(p);
2210 retry = false;
2211 goto try_again;
2212 }
2213 res = MF_FAILED;
2214 }
2215 res = action_result(pfn, MF_MSG_BUDDY, res);
2216 } else {
2217 res = action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
2218 }
2219 goto unlock_mutex;
2220 } else if (res < 0) {
2221 res = action_result(pfn, MF_MSG_UNKNOWN, MF_IGNORED);
2222 goto unlock_mutex;
2223 }
2224 }
2225
2226 if (PageTransHuge(hpage)) {
2227 /*
2228 * The flag must be set after the refcount is bumped
2229 * otherwise it may race with THP split.
2230 * And the flag can't be set in get_hwpoison_page() since
2231 * it is called by soft offline too and it is just called
2232 * for !MF_COUNT_INCREASE. So here seems to be the best
2233 * place.
2234 *
2235 * Don't need care about the above error handling paths for
2236 * get_hwpoison_page() since they handle either free page
2237 * or unhandlable page. The refcount is bumped iff the
2238 * page is a valid handlable page.
2239 */
2240 SetPageHasHWPoisoned(hpage);
2241 if (try_to_split_thp_page(p) < 0) {
2242 res = action_result(pfn, MF_MSG_UNSPLIT_THP, MF_IGNORED);
2243 goto unlock_mutex;
2244 }
2245 VM_BUG_ON_PAGE(!page_count(p), p);
2246 }
2247
2248 /*
2249 * We ignore non-LRU pages for good reasons.
2250 * - PG_locked is only well defined for LRU pages and a few others
2251 * - to avoid races with __SetPageLocked()
2252 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
2253 * The check (unnecessarily) ignores LRU pages being isolated and
2254 * walked by the page reclaim code, however that's not a big loss.
2255 */
2256 shake_page(p);
2257
2258 lock_page(p);
2259
2260 /*
2261 * We're only intended to deal with the non-Compound page here.
2262 * However, the page could have changed compound pages due to
2263 * race window. If this happens, we could try again to hopefully
2264 * handle the page next round.
2265 */
2266 if (PageCompound(p)) {
2267 if (retry) {
2268 ClearPageHWPoison(p);
2269 unlock_page(p);
2270 put_page(p);
2271 flags &= ~MF_COUNT_INCREASED;
2272 retry = false;
2273 goto try_again;
2274 }
2275 res = action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
2276 goto unlock_page;
2277 }
2278
2279 /*
2280 * We use page flags to determine what action should be taken, but
2281 * the flags can be modified by the error containment action. One
2282 * example is an mlocked page, where PG_mlocked is cleared by
2283 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
2284 * correctly, we save a copy of the page flags at this time.
2285 */
2286 page_flags = p->flags;
2287
2288 if (hwpoison_filter(p)) {
2289 ClearPageHWPoison(p);
2290 unlock_page(p);
2291 put_page(p);
2292 res = -EOPNOTSUPP;
2293 goto unlock_mutex;
2294 }
2295
2296 /*
2297 * __munlock_folio() may clear a writeback page's LRU flag without
2298 * page_lock. We need wait writeback completion for this page or it
2299 * may trigger vfs BUG while evict inode.
2300 */
2301 if (!PageLRU(p) && !PageWriteback(p))
2302 goto identify_page_state;
2303
2304 /*
2305 * It's very difficult to mess with pages currently under IO
2306 * and in many cases impossible, so we just avoid it here.
2307 */
2308 wait_on_page_writeback(p);
2309
2310 /*
2311 * Now take care of user space mappings.
2312 * Abort on fail: __filemap_remove_folio() assumes unmapped page.
2313 */
2314 if (!hwpoison_user_mappings(p, pfn, flags, p)) {
2315 res = action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
2316 goto unlock_page;
2317 }
2318
2319 /*
2320 * Torn down by someone else?
2321 */
2322 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
2323 res = action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
2324 goto unlock_page;
2325 }
2326
2327identify_page_state:
2328 res = identify_page_state(pfn, p, page_flags);
2329 mutex_unlock(&mf_mutex);
2330 return res;
2331unlock_page:
2332 unlock_page(p);
2333unlock_mutex:
2334 mutex_unlock(&mf_mutex);
2335 return res;
2336}
2337EXPORT_SYMBOL_GPL(memory_failure);
2338
2339#define MEMORY_FAILURE_FIFO_ORDER 4
2340#define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
2341
2342struct memory_failure_entry {
2343 unsigned long pfn;
2344 int flags;
2345};
2346
2347struct memory_failure_cpu {
2348 DECLARE_KFIFO(fifo, struct memory_failure_entry,
2349 MEMORY_FAILURE_FIFO_SIZE);
2350 spinlock_t lock;
2351 struct work_struct work;
2352};
2353
2354static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
2355
2356/**
2357 * memory_failure_queue - Schedule handling memory failure of a page.
2358 * @pfn: Page Number of the corrupted page
2359 * @flags: Flags for memory failure handling
2360 *
2361 * This function is called by the low level hardware error handler
2362 * when it detects hardware memory corruption of a page. It schedules
2363 * the recovering of error page, including dropping pages, killing
2364 * processes etc.
2365 *
2366 * The function is primarily of use for corruptions that
2367 * happen outside the current execution context (e.g. when
2368 * detected by a background scrubber)
2369 *
2370 * Can run in IRQ context.
2371 */
2372void memory_failure_queue(unsigned long pfn, int flags)
2373{
2374 struct memory_failure_cpu *mf_cpu;
2375 unsigned long proc_flags;
2376 struct memory_failure_entry entry = {
2377 .pfn = pfn,
2378 .flags = flags,
2379 };
2380
2381 mf_cpu = &get_cpu_var(memory_failure_cpu);
2382 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2383 if (kfifo_put(&mf_cpu->fifo, entry))
2384 schedule_work_on(smp_processor_id(), &mf_cpu->work);
2385 else
2386 pr_err("buffer overflow when queuing memory failure at %#lx\n",
2387 pfn);
2388 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2389 put_cpu_var(memory_failure_cpu);
2390}
2391EXPORT_SYMBOL_GPL(memory_failure_queue);
2392
2393static void memory_failure_work_func(struct work_struct *work)
2394{
2395 struct memory_failure_cpu *mf_cpu;
2396 struct memory_failure_entry entry = { 0, };
2397 unsigned long proc_flags;
2398 int gotten;
2399
2400 mf_cpu = container_of(work, struct memory_failure_cpu, work);
2401 for (;;) {
2402 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
2403 gotten = kfifo_get(&mf_cpu->fifo, &entry);
2404 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
2405 if (!gotten)
2406 break;
2407 if (entry.flags & MF_SOFT_OFFLINE)
2408 soft_offline_page(entry.pfn, entry.flags);
2409 else
2410 memory_failure(entry.pfn, entry.flags);
2411 }
2412}
2413
2414/*
2415 * Process memory_failure work queued on the specified CPU.
2416 * Used to avoid return-to-userspace racing with the memory_failure workqueue.
2417 */
2418void memory_failure_queue_kick(int cpu)
2419{
2420 struct memory_failure_cpu *mf_cpu;
2421
2422 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2423 cancel_work_sync(&mf_cpu->work);
2424 memory_failure_work_func(&mf_cpu->work);
2425}
2426
2427static int __init memory_failure_init(void)
2428{
2429 struct memory_failure_cpu *mf_cpu;
2430 int cpu;
2431
2432 for_each_possible_cpu(cpu) {
2433 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
2434 spin_lock_init(&mf_cpu->lock);
2435 INIT_KFIFO(mf_cpu->fifo);
2436 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
2437 }
2438
2439 register_sysctl_init("vm", memory_failure_table);
2440
2441 return 0;
2442}
2443core_initcall(memory_failure_init);
2444
2445#undef pr_fmt
2446#define pr_fmt(fmt) "" fmt
2447#define unpoison_pr_info(fmt, pfn, rs) \
2448({ \
2449 if (__ratelimit(rs)) \
2450 pr_info(fmt, pfn); \
2451})
2452
2453/**
2454 * unpoison_memory - Unpoison a previously poisoned page
2455 * @pfn: Page number of the to be unpoisoned page
2456 *
2457 * Software-unpoison a page that has been poisoned by
2458 * memory_failure() earlier.
2459 *
2460 * This is only done on the software-level, so it only works
2461 * for linux injected failures, not real hardware failures
2462 *
2463 * Returns 0 for success, otherwise -errno.
2464 */
2465int unpoison_memory(unsigned long pfn)
2466{
2467 struct folio *folio;
2468 struct page *p;
2469 int ret = -EBUSY;
2470 unsigned long count = 1;
2471 bool huge = false;
2472 static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
2473 DEFAULT_RATELIMIT_BURST);
2474
2475 if (!pfn_valid(pfn))
2476 return -ENXIO;
2477
2478 p = pfn_to_page(pfn);
2479 folio = page_folio(p);
2480
2481 mutex_lock(&mf_mutex);
2482
2483 if (hw_memory_failure) {
2484 unpoison_pr_info("Unpoison: Disabled after HW memory failure %#lx\n",
2485 pfn, &unpoison_rs);
2486 ret = -EOPNOTSUPP;
2487 goto unlock_mutex;
2488 }
2489
2490 if (!folio_test_hwpoison(folio)) {
2491 unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
2492 pfn, &unpoison_rs);
2493 goto unlock_mutex;
2494 }
2495
2496 if (folio_ref_count(folio) > 1) {
2497 unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
2498 pfn, &unpoison_rs);
2499 goto unlock_mutex;
2500 }
2501
2502 if (folio_mapped(folio)) {
2503 unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
2504 pfn, &unpoison_rs);
2505 goto unlock_mutex;
2506 }
2507
2508 if (folio_mapping(folio)) {
2509 unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
2510 pfn, &unpoison_rs);
2511 goto unlock_mutex;
2512 }
2513
2514 if (folio_test_slab(folio) || PageTable(&folio->page) || folio_test_reserved(folio))
2515 goto unlock_mutex;
2516
2517 ret = get_hwpoison_page(p, MF_UNPOISON);
2518 if (!ret) {
2519 if (PageHuge(p)) {
2520 huge = true;
2521 count = folio_free_raw_hwp(folio, false);
2522 if (count == 0) {
2523 ret = -EBUSY;
2524 goto unlock_mutex;
2525 }
2526 }
2527 ret = folio_test_clear_hwpoison(folio) ? 0 : -EBUSY;
2528 } else if (ret < 0) {
2529 if (ret == -EHWPOISON) {
2530 ret = put_page_back_buddy(p) ? 0 : -EBUSY;
2531 } else
2532 unpoison_pr_info("Unpoison: failed to grab page %#lx\n",
2533 pfn, &unpoison_rs);
2534 } else {
2535 if (PageHuge(p)) {
2536 huge = true;
2537 count = folio_free_raw_hwp(folio, false);
2538 if (count == 0) {
2539 ret = -EBUSY;
2540 folio_put(folio);
2541 goto unlock_mutex;
2542 }
2543 }
2544
2545 folio_put(folio);
2546 if (TestClearPageHWPoison(p)) {
2547 folio_put(folio);
2548 ret = 0;
2549 }
2550 }
2551
2552unlock_mutex:
2553 mutex_unlock(&mf_mutex);
2554 if (!ret) {
2555 if (!huge)
2556 num_poisoned_pages_sub(pfn, 1);
2557 unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
2558 page_to_pfn(p), &unpoison_rs);
2559 }
2560 return ret;
2561}
2562EXPORT_SYMBOL(unpoison_memory);
2563
2564static bool isolate_page(struct page *page, struct list_head *pagelist)
2565{
2566 bool isolated = false;
2567
2568 if (PageHuge(page)) {
2569 isolated = isolate_hugetlb(page_folio(page), pagelist);
2570 } else {
2571 bool lru = !__PageMovable(page);
2572
2573 if (lru)
2574 isolated = isolate_lru_page(page);
2575 else
2576 isolated = isolate_movable_page(page,
2577 ISOLATE_UNEVICTABLE);
2578
2579 if (isolated) {
2580 list_add(&page->lru, pagelist);
2581 if (lru)
2582 inc_node_page_state(page, NR_ISOLATED_ANON +
2583 page_is_file_lru(page));
2584 }
2585 }
2586
2587 /*
2588 * If we succeed to isolate the page, we grabbed another refcount on
2589 * the page, so we can safely drop the one we got from get_any_pages().
2590 * If we failed to isolate the page, it means that we cannot go further
2591 * and we will return an error, so drop the reference we got from
2592 * get_any_pages() as well.
2593 */
2594 put_page(page);
2595 return isolated;
2596}
2597
2598/*
2599 * soft_offline_in_use_page handles hugetlb-pages and non-hugetlb pages.
2600 * If the page is a non-dirty unmapped page-cache page, it simply invalidates.
2601 * If the page is mapped, it migrates the contents over.
2602 */
2603static int soft_offline_in_use_page(struct page *page)
2604{
2605 long ret = 0;
2606 unsigned long pfn = page_to_pfn(page);
2607 struct page *hpage = compound_head(page);
2608 char const *msg_page[] = {"page", "hugepage"};
2609 bool huge = PageHuge(page);
2610 LIST_HEAD(pagelist);
2611 struct migration_target_control mtc = {
2612 .nid = NUMA_NO_NODE,
2613 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
2614 };
2615
2616 if (!huge && PageTransHuge(hpage)) {
2617 if (try_to_split_thp_page(page)) {
2618 pr_info("soft offline: %#lx: thp split failed\n", pfn);
2619 return -EBUSY;
2620 }
2621 hpage = page;
2622 }
2623
2624 lock_page(page);
2625 if (!PageHuge(page))
2626 wait_on_page_writeback(page);
2627 if (PageHWPoison(page)) {
2628 unlock_page(page);
2629 put_page(page);
2630 pr_info("soft offline: %#lx page already poisoned\n", pfn);
2631 return 0;
2632 }
2633
2634 if (!PageHuge(page) && PageLRU(page) && !PageSwapCache(page))
2635 /*
2636 * Try to invalidate first. This should work for
2637 * non dirty unmapped page cache pages.
2638 */
2639 ret = invalidate_inode_page(page);
2640 unlock_page(page);
2641
2642 if (ret) {
2643 pr_info("soft_offline: %#lx: invalidated\n", pfn);
2644 page_handle_poison(page, false, true);
2645 return 0;
2646 }
2647
2648 if (isolate_page(hpage, &pagelist)) {
2649 ret = migrate_pages(&pagelist, alloc_migration_target, NULL,
2650 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_FAILURE, NULL);
2651 if (!ret) {
2652 bool release = !huge;
2653
2654 if (!page_handle_poison(page, huge, release))
2655 ret = -EBUSY;
2656 } else {
2657 if (!list_empty(&pagelist))
2658 putback_movable_pages(&pagelist);
2659
2660 pr_info("soft offline: %#lx: %s migration failed %ld, type %pGp\n",
2661 pfn, msg_page[huge], ret, &page->flags);
2662 if (ret > 0)
2663 ret = -EBUSY;
2664 }
2665 } else {
2666 pr_info("soft offline: %#lx: %s isolation failed, page count %d, type %pGp\n",
2667 pfn, msg_page[huge], page_count(page), &page->flags);
2668 ret = -EBUSY;
2669 }
2670 return ret;
2671}
2672
2673/**
2674 * soft_offline_page - Soft offline a page.
2675 * @pfn: pfn to soft-offline
2676 * @flags: flags. Same as memory_failure().
2677 *
2678 * Returns 0 on success
2679 * -EOPNOTSUPP for hwpoison_filter() filtered the error event
2680 * < 0 otherwise negated errno.
2681 *
2682 * Soft offline a page, by migration or invalidation,
2683 * without killing anything. This is for the case when
2684 * a page is not corrupted yet (so it's still valid to access),
2685 * but has had a number of corrected errors and is better taken
2686 * out.
2687 *
2688 * The actual policy on when to do that is maintained by
2689 * user space.
2690 *
2691 * This should never impact any application or cause data loss,
2692 * however it might take some time.
2693 *
2694 * This is not a 100% solution for all memory, but tries to be
2695 * ``good enough'' for the majority of memory.
2696 */
2697int soft_offline_page(unsigned long pfn, int flags)
2698{
2699 int ret;
2700 bool try_again = true;
2701 struct page *page;
2702
2703 if (!pfn_valid(pfn)) {
2704 WARN_ON_ONCE(flags & MF_COUNT_INCREASED);
2705 return -ENXIO;
2706 }
2707
2708 /* Only online pages can be soft-offlined (esp., not ZONE_DEVICE). */
2709 page = pfn_to_online_page(pfn);
2710 if (!page) {
2711 put_ref_page(pfn, flags);
2712 return -EIO;
2713 }
2714
2715 mutex_lock(&mf_mutex);
2716
2717 if (PageHWPoison(page)) {
2718 pr_info("%s: %#lx page already poisoned\n", __func__, pfn);
2719 put_ref_page(pfn, flags);
2720 mutex_unlock(&mf_mutex);
2721 return 0;
2722 }
2723
2724retry:
2725 get_online_mems();
2726 ret = get_hwpoison_page(page, flags | MF_SOFT_OFFLINE);
2727 put_online_mems();
2728
2729 if (hwpoison_filter(page)) {
2730 if (ret > 0)
2731 put_page(page);
2732
2733 mutex_unlock(&mf_mutex);
2734 return -EOPNOTSUPP;
2735 }
2736
2737 if (ret > 0) {
2738 ret = soft_offline_in_use_page(page);
2739 } else if (ret == 0) {
2740 if (!page_handle_poison(page, true, false) && try_again) {
2741 try_again = false;
2742 flags &= ~MF_COUNT_INCREASED;
2743 goto retry;
2744 }
2745 }
2746
2747 mutex_unlock(&mf_mutex);
2748
2749 return ret;
2750}