Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26 */
27
28#include <linux/page_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
31#include <linux/pagewalk.h>
32#include <linux/sched/mm.h>
33#include <linux/shmem_fs.h>
34#include <linux/hugetlb.h>
35#include <linux/pagemap.h>
36#include <linux/vm_event_item.h>
37#include <linux/smp.h>
38#include <linux/page-flags.h>
39#include <linux/backing-dev.h>
40#include <linux/bit_spinlock.h>
41#include <linux/rcupdate.h>
42#include <linux/limits.h>
43#include <linux/export.h>
44#include <linux/mutex.h>
45#include <linux/rbtree.h>
46#include <linux/slab.h>
47#include <linux/swap.h>
48#include <linux/swapops.h>
49#include <linux/spinlock.h>
50#include <linux/eventfd.h>
51#include <linux/poll.h>
52#include <linux/sort.h>
53#include <linux/fs.h>
54#include <linux/seq_file.h>
55#include <linux/vmpressure.h>
56#include <linux/memremap.h>
57#include <linux/mm_inline.h>
58#include <linux/swap_cgroup.h>
59#include <linux/cpu.h>
60#include <linux/oom.h>
61#include <linux/lockdep.h>
62#include <linux/file.h>
63#include <linux/resume_user_mode.h>
64#include <linux/psi.h>
65#include <linux/seq_buf.h>
66#include <linux/sched/isolation.h>
67#include "internal.h"
68#include <net/sock.h>
69#include <net/ip.h>
70#include "slab.h"
71#include "swap.h"
72
73#include <linux/uaccess.h>
74
75#include <trace/events/vmscan.h>
76
77struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78EXPORT_SYMBOL(memory_cgrp_subsys);
79
80struct mem_cgroup *root_mem_cgroup __read_mostly;
81
82/* Active memory cgroup to use from an interrupt context */
83DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
84EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
85
86/* Socket memory accounting disabled? */
87static bool cgroup_memory_nosocket __ro_after_init;
88
89/* Kernel memory accounting disabled? */
90static bool cgroup_memory_nokmem __ro_after_init;
91
92/* BPF memory accounting disabled? */
93static bool cgroup_memory_nobpf __ro_after_init;
94
95#ifdef CONFIG_CGROUP_WRITEBACK
96static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
97#endif
98
99/* Whether legacy memory+swap accounting is active */
100static bool do_memsw_account(void)
101{
102 return !cgroup_subsys_on_dfl(memory_cgrp_subsys);
103}
104
105#define THRESHOLDS_EVENTS_TARGET 128
106#define SOFTLIMIT_EVENTS_TARGET 1024
107
108/*
109 * Cgroups above their limits are maintained in a RB-Tree, independent of
110 * their hierarchy representation
111 */
112
113struct mem_cgroup_tree_per_node {
114 struct rb_root rb_root;
115 struct rb_node *rb_rightmost;
116 spinlock_t lock;
117};
118
119struct mem_cgroup_tree {
120 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
121};
122
123static struct mem_cgroup_tree soft_limit_tree __read_mostly;
124
125/* for OOM */
126struct mem_cgroup_eventfd_list {
127 struct list_head list;
128 struct eventfd_ctx *eventfd;
129};
130
131/*
132 * cgroup_event represents events which userspace want to receive.
133 */
134struct mem_cgroup_event {
135 /*
136 * memcg which the event belongs to.
137 */
138 struct mem_cgroup *memcg;
139 /*
140 * eventfd to signal userspace about the event.
141 */
142 struct eventfd_ctx *eventfd;
143 /*
144 * Each of these stored in a list by the cgroup.
145 */
146 struct list_head list;
147 /*
148 * register_event() callback will be used to add new userspace
149 * waiter for changes related to this event. Use eventfd_signal()
150 * on eventfd to send notification to userspace.
151 */
152 int (*register_event)(struct mem_cgroup *memcg,
153 struct eventfd_ctx *eventfd, const char *args);
154 /*
155 * unregister_event() callback will be called when userspace closes
156 * the eventfd or on cgroup removing. This callback must be set,
157 * if you want provide notification functionality.
158 */
159 void (*unregister_event)(struct mem_cgroup *memcg,
160 struct eventfd_ctx *eventfd);
161 /*
162 * All fields below needed to unregister event when
163 * userspace closes eventfd.
164 */
165 poll_table pt;
166 wait_queue_head_t *wqh;
167 wait_queue_entry_t wait;
168 struct work_struct remove;
169};
170
171static void mem_cgroup_threshold(struct mem_cgroup *memcg);
172static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
173
174/* Stuffs for move charges at task migration. */
175/*
176 * Types of charges to be moved.
177 */
178#define MOVE_ANON 0x1U
179#define MOVE_FILE 0x2U
180#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
181
182/* "mc" and its members are protected by cgroup_mutex */
183static struct move_charge_struct {
184 spinlock_t lock; /* for from, to */
185 struct mm_struct *mm;
186 struct mem_cgroup *from;
187 struct mem_cgroup *to;
188 unsigned long flags;
189 unsigned long precharge;
190 unsigned long moved_charge;
191 unsigned long moved_swap;
192 struct task_struct *moving_task; /* a task moving charges */
193 wait_queue_head_t waitq; /* a waitq for other context */
194} mc = {
195 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
196 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
197};
198
199/*
200 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
201 * limit reclaim to prevent infinite loops, if they ever occur.
202 */
203#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
204#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
205
206/* for encoding cft->private value on file */
207enum res_type {
208 _MEM,
209 _MEMSWAP,
210 _KMEM,
211 _TCP,
212};
213
214#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
215#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
216#define MEMFILE_ATTR(val) ((val) & 0xffff)
217
218/*
219 * Iteration constructs for visiting all cgroups (under a tree). If
220 * loops are exited prematurely (break), mem_cgroup_iter_break() must
221 * be used for reference counting.
222 */
223#define for_each_mem_cgroup_tree(iter, root) \
224 for (iter = mem_cgroup_iter(root, NULL, NULL); \
225 iter != NULL; \
226 iter = mem_cgroup_iter(root, iter, NULL))
227
228#define for_each_mem_cgroup(iter) \
229 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
230 iter != NULL; \
231 iter = mem_cgroup_iter(NULL, iter, NULL))
232
233static inline bool task_is_dying(void)
234{
235 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
236 (current->flags & PF_EXITING);
237}
238
239/* Some nice accessors for the vmpressure. */
240struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
241{
242 if (!memcg)
243 memcg = root_mem_cgroup;
244 return &memcg->vmpressure;
245}
246
247struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
248{
249 return container_of(vmpr, struct mem_cgroup, vmpressure);
250}
251
252#ifdef CONFIG_MEMCG_KMEM
253static DEFINE_SPINLOCK(objcg_lock);
254
255bool mem_cgroup_kmem_disabled(void)
256{
257 return cgroup_memory_nokmem;
258}
259
260static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
261 unsigned int nr_pages);
262
263static void obj_cgroup_release(struct percpu_ref *ref)
264{
265 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
266 unsigned int nr_bytes;
267 unsigned int nr_pages;
268 unsigned long flags;
269
270 /*
271 * At this point all allocated objects are freed, and
272 * objcg->nr_charged_bytes can't have an arbitrary byte value.
273 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
274 *
275 * The following sequence can lead to it:
276 * 1) CPU0: objcg == stock->cached_objcg
277 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
278 * PAGE_SIZE bytes are charged
279 * 3) CPU1: a process from another memcg is allocating something,
280 * the stock if flushed,
281 * objcg->nr_charged_bytes = PAGE_SIZE - 92
282 * 5) CPU0: we do release this object,
283 * 92 bytes are added to stock->nr_bytes
284 * 6) CPU0: stock is flushed,
285 * 92 bytes are added to objcg->nr_charged_bytes
286 *
287 * In the result, nr_charged_bytes == PAGE_SIZE.
288 * This page will be uncharged in obj_cgroup_release().
289 */
290 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
291 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
292 nr_pages = nr_bytes >> PAGE_SHIFT;
293
294 if (nr_pages)
295 obj_cgroup_uncharge_pages(objcg, nr_pages);
296
297 spin_lock_irqsave(&objcg_lock, flags);
298 list_del(&objcg->list);
299 spin_unlock_irqrestore(&objcg_lock, flags);
300
301 percpu_ref_exit(ref);
302 kfree_rcu(objcg, rcu);
303}
304
305static struct obj_cgroup *obj_cgroup_alloc(void)
306{
307 struct obj_cgroup *objcg;
308 int ret;
309
310 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
311 if (!objcg)
312 return NULL;
313
314 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
315 GFP_KERNEL);
316 if (ret) {
317 kfree(objcg);
318 return NULL;
319 }
320 INIT_LIST_HEAD(&objcg->list);
321 return objcg;
322}
323
324static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
325 struct mem_cgroup *parent)
326{
327 struct obj_cgroup *objcg, *iter;
328
329 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
330
331 spin_lock_irq(&objcg_lock);
332
333 /* 1) Ready to reparent active objcg. */
334 list_add(&objcg->list, &memcg->objcg_list);
335 /* 2) Reparent active objcg and already reparented objcgs to parent. */
336 list_for_each_entry(iter, &memcg->objcg_list, list)
337 WRITE_ONCE(iter->memcg, parent);
338 /* 3) Move already reparented objcgs to the parent's list */
339 list_splice(&memcg->objcg_list, &parent->objcg_list);
340
341 spin_unlock_irq(&objcg_lock);
342
343 percpu_ref_kill(&objcg->refcnt);
344}
345
346/*
347 * A lot of the calls to the cache allocation functions are expected to be
348 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
349 * conditional to this static branch, we'll have to allow modules that does
350 * kmem_cache_alloc and the such to see this symbol as well
351 */
352DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key);
353EXPORT_SYMBOL(memcg_kmem_online_key);
354
355DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key);
356EXPORT_SYMBOL(memcg_bpf_enabled_key);
357#endif
358
359/**
360 * mem_cgroup_css_from_folio - css of the memcg associated with a folio
361 * @folio: folio of interest
362 *
363 * If memcg is bound to the default hierarchy, css of the memcg associated
364 * with @folio is returned. The returned css remains associated with @folio
365 * until it is released.
366 *
367 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
368 * is returned.
369 */
370struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio)
371{
372 struct mem_cgroup *memcg = folio_memcg(folio);
373
374 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
375 memcg = root_mem_cgroup;
376
377 return &memcg->css;
378}
379
380/**
381 * page_cgroup_ino - return inode number of the memcg a page is charged to
382 * @page: the page
383 *
384 * Look up the closest online ancestor of the memory cgroup @page is charged to
385 * and return its inode number or 0 if @page is not charged to any cgroup. It
386 * is safe to call this function without holding a reference to @page.
387 *
388 * Note, this function is inherently racy, because there is nothing to prevent
389 * the cgroup inode from getting torn down and potentially reallocated a moment
390 * after page_cgroup_ino() returns, so it only should be used by callers that
391 * do not care (such as procfs interfaces).
392 */
393ino_t page_cgroup_ino(struct page *page)
394{
395 struct mem_cgroup *memcg;
396 unsigned long ino = 0;
397
398 rcu_read_lock();
399 /* page_folio() is racy here, but the entire function is racy anyway */
400 memcg = folio_memcg_check(page_folio(page));
401
402 while (memcg && !(memcg->css.flags & CSS_ONLINE))
403 memcg = parent_mem_cgroup(memcg);
404 if (memcg)
405 ino = cgroup_ino(memcg->css.cgroup);
406 rcu_read_unlock();
407 return ino;
408}
409
410static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
411 struct mem_cgroup_tree_per_node *mctz,
412 unsigned long new_usage_in_excess)
413{
414 struct rb_node **p = &mctz->rb_root.rb_node;
415 struct rb_node *parent = NULL;
416 struct mem_cgroup_per_node *mz_node;
417 bool rightmost = true;
418
419 if (mz->on_tree)
420 return;
421
422 mz->usage_in_excess = new_usage_in_excess;
423 if (!mz->usage_in_excess)
424 return;
425 while (*p) {
426 parent = *p;
427 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
428 tree_node);
429 if (mz->usage_in_excess < mz_node->usage_in_excess) {
430 p = &(*p)->rb_left;
431 rightmost = false;
432 } else {
433 p = &(*p)->rb_right;
434 }
435 }
436
437 if (rightmost)
438 mctz->rb_rightmost = &mz->tree_node;
439
440 rb_link_node(&mz->tree_node, parent, p);
441 rb_insert_color(&mz->tree_node, &mctz->rb_root);
442 mz->on_tree = true;
443}
444
445static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
446 struct mem_cgroup_tree_per_node *mctz)
447{
448 if (!mz->on_tree)
449 return;
450
451 if (&mz->tree_node == mctz->rb_rightmost)
452 mctz->rb_rightmost = rb_prev(&mz->tree_node);
453
454 rb_erase(&mz->tree_node, &mctz->rb_root);
455 mz->on_tree = false;
456}
457
458static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
459 struct mem_cgroup_tree_per_node *mctz)
460{
461 unsigned long flags;
462
463 spin_lock_irqsave(&mctz->lock, flags);
464 __mem_cgroup_remove_exceeded(mz, mctz);
465 spin_unlock_irqrestore(&mctz->lock, flags);
466}
467
468static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
469{
470 unsigned long nr_pages = page_counter_read(&memcg->memory);
471 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
472 unsigned long excess = 0;
473
474 if (nr_pages > soft_limit)
475 excess = nr_pages - soft_limit;
476
477 return excess;
478}
479
480static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
481{
482 unsigned long excess;
483 struct mem_cgroup_per_node *mz;
484 struct mem_cgroup_tree_per_node *mctz;
485
486 if (lru_gen_enabled()) {
487 if (soft_limit_excess(memcg))
488 lru_gen_soft_reclaim(memcg, nid);
489 return;
490 }
491
492 mctz = soft_limit_tree.rb_tree_per_node[nid];
493 if (!mctz)
494 return;
495 /*
496 * Necessary to update all ancestors when hierarchy is used.
497 * because their event counter is not touched.
498 */
499 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
500 mz = memcg->nodeinfo[nid];
501 excess = soft_limit_excess(memcg);
502 /*
503 * We have to update the tree if mz is on RB-tree or
504 * mem is over its softlimit.
505 */
506 if (excess || mz->on_tree) {
507 unsigned long flags;
508
509 spin_lock_irqsave(&mctz->lock, flags);
510 /* if on-tree, remove it */
511 if (mz->on_tree)
512 __mem_cgroup_remove_exceeded(mz, mctz);
513 /*
514 * Insert again. mz->usage_in_excess will be updated.
515 * If excess is 0, no tree ops.
516 */
517 __mem_cgroup_insert_exceeded(mz, mctz, excess);
518 spin_unlock_irqrestore(&mctz->lock, flags);
519 }
520 }
521}
522
523static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
524{
525 struct mem_cgroup_tree_per_node *mctz;
526 struct mem_cgroup_per_node *mz;
527 int nid;
528
529 for_each_node(nid) {
530 mz = memcg->nodeinfo[nid];
531 mctz = soft_limit_tree.rb_tree_per_node[nid];
532 if (mctz)
533 mem_cgroup_remove_exceeded(mz, mctz);
534 }
535}
536
537static struct mem_cgroup_per_node *
538__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
539{
540 struct mem_cgroup_per_node *mz;
541
542retry:
543 mz = NULL;
544 if (!mctz->rb_rightmost)
545 goto done; /* Nothing to reclaim from */
546
547 mz = rb_entry(mctz->rb_rightmost,
548 struct mem_cgroup_per_node, tree_node);
549 /*
550 * Remove the node now but someone else can add it back,
551 * we will to add it back at the end of reclaim to its correct
552 * position in the tree.
553 */
554 __mem_cgroup_remove_exceeded(mz, mctz);
555 if (!soft_limit_excess(mz->memcg) ||
556 !css_tryget(&mz->memcg->css))
557 goto retry;
558done:
559 return mz;
560}
561
562static struct mem_cgroup_per_node *
563mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
564{
565 struct mem_cgroup_per_node *mz;
566
567 spin_lock_irq(&mctz->lock);
568 mz = __mem_cgroup_largest_soft_limit_node(mctz);
569 spin_unlock_irq(&mctz->lock);
570 return mz;
571}
572
573/*
574 * memcg and lruvec stats flushing
575 *
576 * Many codepaths leading to stats update or read are performance sensitive and
577 * adding stats flushing in such codepaths is not desirable. So, to optimize the
578 * flushing the kernel does:
579 *
580 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
581 * rstat update tree grow unbounded.
582 *
583 * 2) Flush the stats synchronously on reader side only when there are more than
584 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
585 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
586 * only for 2 seconds due to (1).
587 */
588static void flush_memcg_stats_dwork(struct work_struct *w);
589static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
590static DEFINE_PER_CPU(unsigned int, stats_updates);
591static atomic_t stats_flush_ongoing = ATOMIC_INIT(0);
592static atomic_t stats_flush_threshold = ATOMIC_INIT(0);
593static u64 flush_next_time;
594
595#define FLUSH_TIME (2UL*HZ)
596
597/*
598 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
599 * not rely on this as part of an acquired spinlock_t lock. These functions are
600 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
601 * is sufficient.
602 */
603static void memcg_stats_lock(void)
604{
605 preempt_disable_nested();
606 VM_WARN_ON_IRQS_ENABLED();
607}
608
609static void __memcg_stats_lock(void)
610{
611 preempt_disable_nested();
612}
613
614static void memcg_stats_unlock(void)
615{
616 preempt_enable_nested();
617}
618
619static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
620{
621 unsigned int x;
622
623 if (!val)
624 return;
625
626 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
627
628 x = __this_cpu_add_return(stats_updates, abs(val));
629 if (x > MEMCG_CHARGE_BATCH) {
630 /*
631 * If stats_flush_threshold exceeds the threshold
632 * (>num_online_cpus()), cgroup stats update will be triggered
633 * in __mem_cgroup_flush_stats(). Increasing this var further
634 * is redundant and simply adds overhead in atomic update.
635 */
636 if (atomic_read(&stats_flush_threshold) <= num_online_cpus())
637 atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold);
638 __this_cpu_write(stats_updates, 0);
639 }
640}
641
642static void do_flush_stats(void)
643{
644 /*
645 * We always flush the entire tree, so concurrent flushers can just
646 * skip. This avoids a thundering herd problem on the rstat global lock
647 * from memcg flushers (e.g. reclaim, refault, etc).
648 */
649 if (atomic_read(&stats_flush_ongoing) ||
650 atomic_xchg(&stats_flush_ongoing, 1))
651 return;
652
653 WRITE_ONCE(flush_next_time, jiffies_64 + 2*FLUSH_TIME);
654
655 cgroup_rstat_flush(root_mem_cgroup->css.cgroup);
656
657 atomic_set(&stats_flush_threshold, 0);
658 atomic_set(&stats_flush_ongoing, 0);
659}
660
661void mem_cgroup_flush_stats(void)
662{
663 if (atomic_read(&stats_flush_threshold) > num_online_cpus())
664 do_flush_stats();
665}
666
667void mem_cgroup_flush_stats_ratelimited(void)
668{
669 if (time_after64(jiffies_64, READ_ONCE(flush_next_time)))
670 mem_cgroup_flush_stats();
671}
672
673static void flush_memcg_stats_dwork(struct work_struct *w)
674{
675 /*
676 * Always flush here so that flushing in latency-sensitive paths is
677 * as cheap as possible.
678 */
679 do_flush_stats();
680 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
681}
682
683/* Subset of vm_event_item to report for memcg event stats */
684static const unsigned int memcg_vm_event_stat[] = {
685 PGPGIN,
686 PGPGOUT,
687 PGSCAN_KSWAPD,
688 PGSCAN_DIRECT,
689 PGSCAN_KHUGEPAGED,
690 PGSTEAL_KSWAPD,
691 PGSTEAL_DIRECT,
692 PGSTEAL_KHUGEPAGED,
693 PGFAULT,
694 PGMAJFAULT,
695 PGREFILL,
696 PGACTIVATE,
697 PGDEACTIVATE,
698 PGLAZYFREE,
699 PGLAZYFREED,
700#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
701 ZSWPIN,
702 ZSWPOUT,
703#endif
704#ifdef CONFIG_TRANSPARENT_HUGEPAGE
705 THP_FAULT_ALLOC,
706 THP_COLLAPSE_ALLOC,
707#endif
708};
709
710#define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
711static int mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
712
713static void init_memcg_events(void)
714{
715 int i;
716
717 for (i = 0; i < NR_MEMCG_EVENTS; ++i)
718 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i + 1;
719}
720
721static inline int memcg_events_index(enum vm_event_item idx)
722{
723 return mem_cgroup_events_index[idx] - 1;
724}
725
726struct memcg_vmstats_percpu {
727 /* Local (CPU and cgroup) page state & events */
728 long state[MEMCG_NR_STAT];
729 unsigned long events[NR_MEMCG_EVENTS];
730
731 /* Delta calculation for lockless upward propagation */
732 long state_prev[MEMCG_NR_STAT];
733 unsigned long events_prev[NR_MEMCG_EVENTS];
734
735 /* Cgroup1: threshold notifications & softlimit tree updates */
736 unsigned long nr_page_events;
737 unsigned long targets[MEM_CGROUP_NTARGETS];
738};
739
740struct memcg_vmstats {
741 /* Aggregated (CPU and subtree) page state & events */
742 long state[MEMCG_NR_STAT];
743 unsigned long events[NR_MEMCG_EVENTS];
744
745 /* Pending child counts during tree propagation */
746 long state_pending[MEMCG_NR_STAT];
747 unsigned long events_pending[NR_MEMCG_EVENTS];
748};
749
750unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
751{
752 long x = READ_ONCE(memcg->vmstats->state[idx]);
753#ifdef CONFIG_SMP
754 if (x < 0)
755 x = 0;
756#endif
757 return x;
758}
759
760/**
761 * __mod_memcg_state - update cgroup memory statistics
762 * @memcg: the memory cgroup
763 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
764 * @val: delta to add to the counter, can be negative
765 */
766void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
767{
768 if (mem_cgroup_disabled())
769 return;
770
771 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
772 memcg_rstat_updated(memcg, val);
773}
774
775/* idx can be of type enum memcg_stat_item or node_stat_item. */
776static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
777{
778 long x = 0;
779 int cpu;
780
781 for_each_possible_cpu(cpu)
782 x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
783#ifdef CONFIG_SMP
784 if (x < 0)
785 x = 0;
786#endif
787 return x;
788}
789
790void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
791 int val)
792{
793 struct mem_cgroup_per_node *pn;
794 struct mem_cgroup *memcg;
795
796 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
797 memcg = pn->memcg;
798
799 /*
800 * The caller from rmap relay on disabled preemption becase they never
801 * update their counter from in-interrupt context. For these two
802 * counters we check that the update is never performed from an
803 * interrupt context while other caller need to have disabled interrupt.
804 */
805 __memcg_stats_lock();
806 if (IS_ENABLED(CONFIG_DEBUG_VM)) {
807 switch (idx) {
808 case NR_ANON_MAPPED:
809 case NR_FILE_MAPPED:
810 case NR_ANON_THPS:
811 case NR_SHMEM_PMDMAPPED:
812 case NR_FILE_PMDMAPPED:
813 WARN_ON_ONCE(!in_task());
814 break;
815 default:
816 VM_WARN_ON_IRQS_ENABLED();
817 }
818 }
819
820 /* Update memcg */
821 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
822
823 /* Update lruvec */
824 __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
825
826 memcg_rstat_updated(memcg, val);
827 memcg_stats_unlock();
828}
829
830/**
831 * __mod_lruvec_state - update lruvec memory statistics
832 * @lruvec: the lruvec
833 * @idx: the stat item
834 * @val: delta to add to the counter, can be negative
835 *
836 * The lruvec is the intersection of the NUMA node and a cgroup. This
837 * function updates the all three counters that are affected by a
838 * change of state at this level: per-node, per-cgroup, per-lruvec.
839 */
840void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
841 int val)
842{
843 /* Update node */
844 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
845
846 /* Update memcg and lruvec */
847 if (!mem_cgroup_disabled())
848 __mod_memcg_lruvec_state(lruvec, idx, val);
849}
850
851void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
852 int val)
853{
854 struct page *head = compound_head(page); /* rmap on tail pages */
855 struct mem_cgroup *memcg;
856 pg_data_t *pgdat = page_pgdat(page);
857 struct lruvec *lruvec;
858
859 rcu_read_lock();
860 memcg = page_memcg(head);
861 /* Untracked pages have no memcg, no lruvec. Update only the node */
862 if (!memcg) {
863 rcu_read_unlock();
864 __mod_node_page_state(pgdat, idx, val);
865 return;
866 }
867
868 lruvec = mem_cgroup_lruvec(memcg, pgdat);
869 __mod_lruvec_state(lruvec, idx, val);
870 rcu_read_unlock();
871}
872EXPORT_SYMBOL(__mod_lruvec_page_state);
873
874void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
875{
876 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
877 struct mem_cgroup *memcg;
878 struct lruvec *lruvec;
879
880 rcu_read_lock();
881 memcg = mem_cgroup_from_slab_obj(p);
882
883 /*
884 * Untracked pages have no memcg, no lruvec. Update only the
885 * node. If we reparent the slab objects to the root memcg,
886 * when we free the slab object, we need to update the per-memcg
887 * vmstats to keep it correct for the root memcg.
888 */
889 if (!memcg) {
890 __mod_node_page_state(pgdat, idx, val);
891 } else {
892 lruvec = mem_cgroup_lruvec(memcg, pgdat);
893 __mod_lruvec_state(lruvec, idx, val);
894 }
895 rcu_read_unlock();
896}
897
898/**
899 * __count_memcg_events - account VM events in a cgroup
900 * @memcg: the memory cgroup
901 * @idx: the event item
902 * @count: the number of events that occurred
903 */
904void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
905 unsigned long count)
906{
907 int index = memcg_events_index(idx);
908
909 if (mem_cgroup_disabled() || index < 0)
910 return;
911
912 memcg_stats_lock();
913 __this_cpu_add(memcg->vmstats_percpu->events[index], count);
914 memcg_rstat_updated(memcg, count);
915 memcg_stats_unlock();
916}
917
918static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
919{
920 int index = memcg_events_index(event);
921
922 if (index < 0)
923 return 0;
924 return READ_ONCE(memcg->vmstats->events[index]);
925}
926
927static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
928{
929 long x = 0;
930 int cpu;
931 int index = memcg_events_index(event);
932
933 if (index < 0)
934 return 0;
935
936 for_each_possible_cpu(cpu)
937 x += per_cpu(memcg->vmstats_percpu->events[index], cpu);
938 return x;
939}
940
941static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
942 int nr_pages)
943{
944 /* pagein of a big page is an event. So, ignore page size */
945 if (nr_pages > 0)
946 __count_memcg_events(memcg, PGPGIN, 1);
947 else {
948 __count_memcg_events(memcg, PGPGOUT, 1);
949 nr_pages = -nr_pages; /* for event */
950 }
951
952 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
953}
954
955static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
956 enum mem_cgroup_events_target target)
957{
958 unsigned long val, next;
959
960 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
961 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
962 /* from time_after() in jiffies.h */
963 if ((long)(next - val) < 0) {
964 switch (target) {
965 case MEM_CGROUP_TARGET_THRESH:
966 next = val + THRESHOLDS_EVENTS_TARGET;
967 break;
968 case MEM_CGROUP_TARGET_SOFTLIMIT:
969 next = val + SOFTLIMIT_EVENTS_TARGET;
970 break;
971 default:
972 break;
973 }
974 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
975 return true;
976 }
977 return false;
978}
979
980/*
981 * Check events in order.
982 *
983 */
984static void memcg_check_events(struct mem_cgroup *memcg, int nid)
985{
986 if (IS_ENABLED(CONFIG_PREEMPT_RT))
987 return;
988
989 /* threshold event is triggered in finer grain than soft limit */
990 if (unlikely(mem_cgroup_event_ratelimit(memcg,
991 MEM_CGROUP_TARGET_THRESH))) {
992 bool do_softlimit;
993
994 do_softlimit = mem_cgroup_event_ratelimit(memcg,
995 MEM_CGROUP_TARGET_SOFTLIMIT);
996 mem_cgroup_threshold(memcg);
997 if (unlikely(do_softlimit))
998 mem_cgroup_update_tree(memcg, nid);
999 }
1000}
1001
1002struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1003{
1004 /*
1005 * mm_update_next_owner() may clear mm->owner to NULL
1006 * if it races with swapoff, page migration, etc.
1007 * So this can be called with p == NULL.
1008 */
1009 if (unlikely(!p))
1010 return NULL;
1011
1012 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1013}
1014EXPORT_SYMBOL(mem_cgroup_from_task);
1015
1016static __always_inline struct mem_cgroup *active_memcg(void)
1017{
1018 if (!in_task())
1019 return this_cpu_read(int_active_memcg);
1020 else
1021 return current->active_memcg;
1022}
1023
1024/**
1025 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1026 * @mm: mm from which memcg should be extracted. It can be NULL.
1027 *
1028 * Obtain a reference on mm->memcg and returns it if successful. If mm
1029 * is NULL, then the memcg is chosen as follows:
1030 * 1) The active memcg, if set.
1031 * 2) current->mm->memcg, if available
1032 * 3) root memcg
1033 * If mem_cgroup is disabled, NULL is returned.
1034 */
1035struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1036{
1037 struct mem_cgroup *memcg;
1038
1039 if (mem_cgroup_disabled())
1040 return NULL;
1041
1042 /*
1043 * Page cache insertions can happen without an
1044 * actual mm context, e.g. during disk probing
1045 * on boot, loopback IO, acct() writes etc.
1046 *
1047 * No need to css_get on root memcg as the reference
1048 * counting is disabled on the root level in the
1049 * cgroup core. See CSS_NO_REF.
1050 */
1051 if (unlikely(!mm)) {
1052 memcg = active_memcg();
1053 if (unlikely(memcg)) {
1054 /* remote memcg must hold a ref */
1055 css_get(&memcg->css);
1056 return memcg;
1057 }
1058 mm = current->mm;
1059 if (unlikely(!mm))
1060 return root_mem_cgroup;
1061 }
1062
1063 rcu_read_lock();
1064 do {
1065 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1066 if (unlikely(!memcg))
1067 memcg = root_mem_cgroup;
1068 } while (!css_tryget(&memcg->css));
1069 rcu_read_unlock();
1070 return memcg;
1071}
1072EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1073
1074static __always_inline bool memcg_kmem_bypass(void)
1075{
1076 /* Allow remote memcg charging from any context. */
1077 if (unlikely(active_memcg()))
1078 return false;
1079
1080 /* Memcg to charge can't be determined. */
1081 if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
1082 return true;
1083
1084 return false;
1085}
1086
1087/**
1088 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1089 * @root: hierarchy root
1090 * @prev: previously returned memcg, NULL on first invocation
1091 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1092 *
1093 * Returns references to children of the hierarchy below @root, or
1094 * @root itself, or %NULL after a full round-trip.
1095 *
1096 * Caller must pass the return value in @prev on subsequent
1097 * invocations for reference counting, or use mem_cgroup_iter_break()
1098 * to cancel a hierarchy walk before the round-trip is complete.
1099 *
1100 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1101 * in the hierarchy among all concurrent reclaimers operating on the
1102 * same node.
1103 */
1104struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1105 struct mem_cgroup *prev,
1106 struct mem_cgroup_reclaim_cookie *reclaim)
1107{
1108 struct mem_cgroup_reclaim_iter *iter;
1109 struct cgroup_subsys_state *css = NULL;
1110 struct mem_cgroup *memcg = NULL;
1111 struct mem_cgroup *pos = NULL;
1112
1113 if (mem_cgroup_disabled())
1114 return NULL;
1115
1116 if (!root)
1117 root = root_mem_cgroup;
1118
1119 rcu_read_lock();
1120
1121 if (reclaim) {
1122 struct mem_cgroup_per_node *mz;
1123
1124 mz = root->nodeinfo[reclaim->pgdat->node_id];
1125 iter = &mz->iter;
1126
1127 /*
1128 * On start, join the current reclaim iteration cycle.
1129 * Exit when a concurrent walker completes it.
1130 */
1131 if (!prev)
1132 reclaim->generation = iter->generation;
1133 else if (reclaim->generation != iter->generation)
1134 goto out_unlock;
1135
1136 while (1) {
1137 pos = READ_ONCE(iter->position);
1138 if (!pos || css_tryget(&pos->css))
1139 break;
1140 /*
1141 * css reference reached zero, so iter->position will
1142 * be cleared by ->css_released. However, we should not
1143 * rely on this happening soon, because ->css_released
1144 * is called from a work queue, and by busy-waiting we
1145 * might block it. So we clear iter->position right
1146 * away.
1147 */
1148 (void)cmpxchg(&iter->position, pos, NULL);
1149 }
1150 } else if (prev) {
1151 pos = prev;
1152 }
1153
1154 if (pos)
1155 css = &pos->css;
1156
1157 for (;;) {
1158 css = css_next_descendant_pre(css, &root->css);
1159 if (!css) {
1160 /*
1161 * Reclaimers share the hierarchy walk, and a
1162 * new one might jump in right at the end of
1163 * the hierarchy - make sure they see at least
1164 * one group and restart from the beginning.
1165 */
1166 if (!prev)
1167 continue;
1168 break;
1169 }
1170
1171 /*
1172 * Verify the css and acquire a reference. The root
1173 * is provided by the caller, so we know it's alive
1174 * and kicking, and don't take an extra reference.
1175 */
1176 if (css == &root->css || css_tryget(css)) {
1177 memcg = mem_cgroup_from_css(css);
1178 break;
1179 }
1180 }
1181
1182 if (reclaim) {
1183 /*
1184 * The position could have already been updated by a competing
1185 * thread, so check that the value hasn't changed since we read
1186 * it to avoid reclaiming from the same cgroup twice.
1187 */
1188 (void)cmpxchg(&iter->position, pos, memcg);
1189
1190 if (pos)
1191 css_put(&pos->css);
1192
1193 if (!memcg)
1194 iter->generation++;
1195 }
1196
1197out_unlock:
1198 rcu_read_unlock();
1199 if (prev && prev != root)
1200 css_put(&prev->css);
1201
1202 return memcg;
1203}
1204
1205/**
1206 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1207 * @root: hierarchy root
1208 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1209 */
1210void mem_cgroup_iter_break(struct mem_cgroup *root,
1211 struct mem_cgroup *prev)
1212{
1213 if (!root)
1214 root = root_mem_cgroup;
1215 if (prev && prev != root)
1216 css_put(&prev->css);
1217}
1218
1219static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1220 struct mem_cgroup *dead_memcg)
1221{
1222 struct mem_cgroup_reclaim_iter *iter;
1223 struct mem_cgroup_per_node *mz;
1224 int nid;
1225
1226 for_each_node(nid) {
1227 mz = from->nodeinfo[nid];
1228 iter = &mz->iter;
1229 cmpxchg(&iter->position, dead_memcg, NULL);
1230 }
1231}
1232
1233static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1234{
1235 struct mem_cgroup *memcg = dead_memcg;
1236 struct mem_cgroup *last;
1237
1238 do {
1239 __invalidate_reclaim_iterators(memcg, dead_memcg);
1240 last = memcg;
1241 } while ((memcg = parent_mem_cgroup(memcg)));
1242
1243 /*
1244 * When cgroup1 non-hierarchy mode is used,
1245 * parent_mem_cgroup() does not walk all the way up to the
1246 * cgroup root (root_mem_cgroup). So we have to handle
1247 * dead_memcg from cgroup root separately.
1248 */
1249 if (!mem_cgroup_is_root(last))
1250 __invalidate_reclaim_iterators(root_mem_cgroup,
1251 dead_memcg);
1252}
1253
1254/**
1255 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1256 * @memcg: hierarchy root
1257 * @fn: function to call for each task
1258 * @arg: argument passed to @fn
1259 *
1260 * This function iterates over tasks attached to @memcg or to any of its
1261 * descendants and calls @fn for each task. If @fn returns a non-zero
1262 * value, the function breaks the iteration loop. Otherwise, it will iterate
1263 * over all tasks and return 0.
1264 *
1265 * This function must not be called for the root memory cgroup.
1266 */
1267void mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1268 int (*fn)(struct task_struct *, void *), void *arg)
1269{
1270 struct mem_cgroup *iter;
1271 int ret = 0;
1272
1273 BUG_ON(mem_cgroup_is_root(memcg));
1274
1275 for_each_mem_cgroup_tree(iter, memcg) {
1276 struct css_task_iter it;
1277 struct task_struct *task;
1278
1279 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1280 while (!ret && (task = css_task_iter_next(&it)))
1281 ret = fn(task, arg);
1282 css_task_iter_end(&it);
1283 if (ret) {
1284 mem_cgroup_iter_break(memcg, iter);
1285 break;
1286 }
1287 }
1288}
1289
1290#ifdef CONFIG_DEBUG_VM
1291void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1292{
1293 struct mem_cgroup *memcg;
1294
1295 if (mem_cgroup_disabled())
1296 return;
1297
1298 memcg = folio_memcg(folio);
1299
1300 if (!memcg)
1301 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
1302 else
1303 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1304}
1305#endif
1306
1307/**
1308 * folio_lruvec_lock - Lock the lruvec for a folio.
1309 * @folio: Pointer to the folio.
1310 *
1311 * These functions are safe to use under any of the following conditions:
1312 * - folio locked
1313 * - folio_test_lru false
1314 * - folio_memcg_lock()
1315 * - folio frozen (refcount of 0)
1316 *
1317 * Return: The lruvec this folio is on with its lock held.
1318 */
1319struct lruvec *folio_lruvec_lock(struct folio *folio)
1320{
1321 struct lruvec *lruvec = folio_lruvec(folio);
1322
1323 spin_lock(&lruvec->lru_lock);
1324 lruvec_memcg_debug(lruvec, folio);
1325
1326 return lruvec;
1327}
1328
1329/**
1330 * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1331 * @folio: Pointer to the folio.
1332 *
1333 * These functions are safe to use under any of the following conditions:
1334 * - folio locked
1335 * - folio_test_lru false
1336 * - folio_memcg_lock()
1337 * - folio frozen (refcount of 0)
1338 *
1339 * Return: The lruvec this folio is on with its lock held and interrupts
1340 * disabled.
1341 */
1342struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1343{
1344 struct lruvec *lruvec = folio_lruvec(folio);
1345
1346 spin_lock_irq(&lruvec->lru_lock);
1347 lruvec_memcg_debug(lruvec, folio);
1348
1349 return lruvec;
1350}
1351
1352/**
1353 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1354 * @folio: Pointer to the folio.
1355 * @flags: Pointer to irqsave flags.
1356 *
1357 * These functions are safe to use under any of the following conditions:
1358 * - folio locked
1359 * - folio_test_lru false
1360 * - folio_memcg_lock()
1361 * - folio frozen (refcount of 0)
1362 *
1363 * Return: The lruvec this folio is on with its lock held and interrupts
1364 * disabled.
1365 */
1366struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1367 unsigned long *flags)
1368{
1369 struct lruvec *lruvec = folio_lruvec(folio);
1370
1371 spin_lock_irqsave(&lruvec->lru_lock, *flags);
1372 lruvec_memcg_debug(lruvec, folio);
1373
1374 return lruvec;
1375}
1376
1377/**
1378 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1379 * @lruvec: mem_cgroup per zone lru vector
1380 * @lru: index of lru list the page is sitting on
1381 * @zid: zone id of the accounted pages
1382 * @nr_pages: positive when adding or negative when removing
1383 *
1384 * This function must be called under lru_lock, just before a page is added
1385 * to or just after a page is removed from an lru list.
1386 */
1387void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1388 int zid, int nr_pages)
1389{
1390 struct mem_cgroup_per_node *mz;
1391 unsigned long *lru_size;
1392 long size;
1393
1394 if (mem_cgroup_disabled())
1395 return;
1396
1397 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1398 lru_size = &mz->lru_zone_size[zid][lru];
1399
1400 if (nr_pages < 0)
1401 *lru_size += nr_pages;
1402
1403 size = *lru_size;
1404 if (WARN_ONCE(size < 0,
1405 "%s(%p, %d, %d): lru_size %ld\n",
1406 __func__, lruvec, lru, nr_pages, size)) {
1407 VM_BUG_ON(1);
1408 *lru_size = 0;
1409 }
1410
1411 if (nr_pages > 0)
1412 *lru_size += nr_pages;
1413}
1414
1415/**
1416 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1417 * @memcg: the memory cgroup
1418 *
1419 * Returns the maximum amount of memory @mem can be charged with, in
1420 * pages.
1421 */
1422static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1423{
1424 unsigned long margin = 0;
1425 unsigned long count;
1426 unsigned long limit;
1427
1428 count = page_counter_read(&memcg->memory);
1429 limit = READ_ONCE(memcg->memory.max);
1430 if (count < limit)
1431 margin = limit - count;
1432
1433 if (do_memsw_account()) {
1434 count = page_counter_read(&memcg->memsw);
1435 limit = READ_ONCE(memcg->memsw.max);
1436 if (count < limit)
1437 margin = min(margin, limit - count);
1438 else
1439 margin = 0;
1440 }
1441
1442 return margin;
1443}
1444
1445/*
1446 * A routine for checking "mem" is under move_account() or not.
1447 *
1448 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1449 * moving cgroups. This is for waiting at high-memory pressure
1450 * caused by "move".
1451 */
1452static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1453{
1454 struct mem_cgroup *from;
1455 struct mem_cgroup *to;
1456 bool ret = false;
1457 /*
1458 * Unlike task_move routines, we access mc.to, mc.from not under
1459 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1460 */
1461 spin_lock(&mc.lock);
1462 from = mc.from;
1463 to = mc.to;
1464 if (!from)
1465 goto unlock;
1466
1467 ret = mem_cgroup_is_descendant(from, memcg) ||
1468 mem_cgroup_is_descendant(to, memcg);
1469unlock:
1470 spin_unlock(&mc.lock);
1471 return ret;
1472}
1473
1474static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1475{
1476 if (mc.moving_task && current != mc.moving_task) {
1477 if (mem_cgroup_under_move(memcg)) {
1478 DEFINE_WAIT(wait);
1479 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1480 /* moving charge context might have finished. */
1481 if (mc.moving_task)
1482 schedule();
1483 finish_wait(&mc.waitq, &wait);
1484 return true;
1485 }
1486 }
1487 return false;
1488}
1489
1490struct memory_stat {
1491 const char *name;
1492 unsigned int idx;
1493};
1494
1495static const struct memory_stat memory_stats[] = {
1496 { "anon", NR_ANON_MAPPED },
1497 { "file", NR_FILE_PAGES },
1498 { "kernel", MEMCG_KMEM },
1499 { "kernel_stack", NR_KERNEL_STACK_KB },
1500 { "pagetables", NR_PAGETABLE },
1501 { "sec_pagetables", NR_SECONDARY_PAGETABLE },
1502 { "percpu", MEMCG_PERCPU_B },
1503 { "sock", MEMCG_SOCK },
1504 { "vmalloc", MEMCG_VMALLOC },
1505 { "shmem", NR_SHMEM },
1506#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1507 { "zswap", MEMCG_ZSWAP_B },
1508 { "zswapped", MEMCG_ZSWAPPED },
1509#endif
1510 { "file_mapped", NR_FILE_MAPPED },
1511 { "file_dirty", NR_FILE_DIRTY },
1512 { "file_writeback", NR_WRITEBACK },
1513#ifdef CONFIG_SWAP
1514 { "swapcached", NR_SWAPCACHE },
1515#endif
1516#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1517 { "anon_thp", NR_ANON_THPS },
1518 { "file_thp", NR_FILE_THPS },
1519 { "shmem_thp", NR_SHMEM_THPS },
1520#endif
1521 { "inactive_anon", NR_INACTIVE_ANON },
1522 { "active_anon", NR_ACTIVE_ANON },
1523 { "inactive_file", NR_INACTIVE_FILE },
1524 { "active_file", NR_ACTIVE_FILE },
1525 { "unevictable", NR_UNEVICTABLE },
1526 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1527 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
1528
1529 /* The memory events */
1530 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1531 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1532 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1533 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1534 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1535 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1536 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
1537};
1538
1539/* Translate stat items to the correct unit for memory.stat output */
1540static int memcg_page_state_unit(int item)
1541{
1542 switch (item) {
1543 case MEMCG_PERCPU_B:
1544 case MEMCG_ZSWAP_B:
1545 case NR_SLAB_RECLAIMABLE_B:
1546 case NR_SLAB_UNRECLAIMABLE_B:
1547 case WORKINGSET_REFAULT_ANON:
1548 case WORKINGSET_REFAULT_FILE:
1549 case WORKINGSET_ACTIVATE_ANON:
1550 case WORKINGSET_ACTIVATE_FILE:
1551 case WORKINGSET_RESTORE_ANON:
1552 case WORKINGSET_RESTORE_FILE:
1553 case WORKINGSET_NODERECLAIM:
1554 return 1;
1555 case NR_KERNEL_STACK_KB:
1556 return SZ_1K;
1557 default:
1558 return PAGE_SIZE;
1559 }
1560}
1561
1562static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1563 int item)
1564{
1565 return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1566}
1567
1568static void memcg_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1569{
1570 int i;
1571
1572 /*
1573 * Provide statistics on the state of the memory subsystem as
1574 * well as cumulative event counters that show past behavior.
1575 *
1576 * This list is ordered following a combination of these gradients:
1577 * 1) generic big picture -> specifics and details
1578 * 2) reflecting userspace activity -> reflecting kernel heuristics
1579 *
1580 * Current memory state:
1581 */
1582 mem_cgroup_flush_stats();
1583
1584 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1585 u64 size;
1586
1587 size = memcg_page_state_output(memcg, memory_stats[i].idx);
1588 seq_buf_printf(s, "%s %llu\n", memory_stats[i].name, size);
1589
1590 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1591 size += memcg_page_state_output(memcg,
1592 NR_SLAB_RECLAIMABLE_B);
1593 seq_buf_printf(s, "slab %llu\n", size);
1594 }
1595 }
1596
1597 /* Accumulated memory events */
1598 seq_buf_printf(s, "pgscan %lu\n",
1599 memcg_events(memcg, PGSCAN_KSWAPD) +
1600 memcg_events(memcg, PGSCAN_DIRECT) +
1601 memcg_events(memcg, PGSCAN_KHUGEPAGED));
1602 seq_buf_printf(s, "pgsteal %lu\n",
1603 memcg_events(memcg, PGSTEAL_KSWAPD) +
1604 memcg_events(memcg, PGSTEAL_DIRECT) +
1605 memcg_events(memcg, PGSTEAL_KHUGEPAGED));
1606
1607 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1608 if (memcg_vm_event_stat[i] == PGPGIN ||
1609 memcg_vm_event_stat[i] == PGPGOUT)
1610 continue;
1611
1612 seq_buf_printf(s, "%s %lu\n",
1613 vm_event_name(memcg_vm_event_stat[i]),
1614 memcg_events(memcg, memcg_vm_event_stat[i]));
1615 }
1616
1617 /* The above should easily fit into one page */
1618 WARN_ON_ONCE(seq_buf_has_overflowed(s));
1619}
1620
1621static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s);
1622
1623static void memory_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
1624{
1625 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1626 memcg_stat_format(memcg, s);
1627 else
1628 memcg1_stat_format(memcg, s);
1629 WARN_ON_ONCE(seq_buf_has_overflowed(s));
1630}
1631
1632#define K(x) ((x) << (PAGE_SHIFT-10))
1633/**
1634 * mem_cgroup_print_oom_context: Print OOM information relevant to
1635 * memory controller.
1636 * @memcg: The memory cgroup that went over limit
1637 * @p: Task that is going to be killed
1638 *
1639 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1640 * enabled
1641 */
1642void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1643{
1644 rcu_read_lock();
1645
1646 if (memcg) {
1647 pr_cont(",oom_memcg=");
1648 pr_cont_cgroup_path(memcg->css.cgroup);
1649 } else
1650 pr_cont(",global_oom");
1651 if (p) {
1652 pr_cont(",task_memcg=");
1653 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1654 }
1655 rcu_read_unlock();
1656}
1657
1658/**
1659 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1660 * memory controller.
1661 * @memcg: The memory cgroup that went over limit
1662 */
1663void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1664{
1665 /* Use static buffer, for the caller is holding oom_lock. */
1666 static char buf[PAGE_SIZE];
1667 struct seq_buf s;
1668
1669 lockdep_assert_held(&oom_lock);
1670
1671 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1672 K((u64)page_counter_read(&memcg->memory)),
1673 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1674 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1675 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1676 K((u64)page_counter_read(&memcg->swap)),
1677 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1678 else {
1679 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1680 K((u64)page_counter_read(&memcg->memsw)),
1681 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1682 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1683 K((u64)page_counter_read(&memcg->kmem)),
1684 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1685 }
1686
1687 pr_info("Memory cgroup stats for ");
1688 pr_cont_cgroup_path(memcg->css.cgroup);
1689 pr_cont(":");
1690 seq_buf_init(&s, buf, sizeof(buf));
1691 memory_stat_format(memcg, &s);
1692 seq_buf_do_printk(&s, KERN_INFO);
1693}
1694
1695/*
1696 * Return the memory (and swap, if configured) limit for a memcg.
1697 */
1698unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1699{
1700 unsigned long max = READ_ONCE(memcg->memory.max);
1701
1702 if (do_memsw_account()) {
1703 if (mem_cgroup_swappiness(memcg)) {
1704 /* Calculate swap excess capacity from memsw limit */
1705 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1706
1707 max += min(swap, (unsigned long)total_swap_pages);
1708 }
1709 } else {
1710 if (mem_cgroup_swappiness(memcg))
1711 max += min(READ_ONCE(memcg->swap.max),
1712 (unsigned long)total_swap_pages);
1713 }
1714 return max;
1715}
1716
1717unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1718{
1719 return page_counter_read(&memcg->memory);
1720}
1721
1722static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1723 int order)
1724{
1725 struct oom_control oc = {
1726 .zonelist = NULL,
1727 .nodemask = NULL,
1728 .memcg = memcg,
1729 .gfp_mask = gfp_mask,
1730 .order = order,
1731 };
1732 bool ret = true;
1733
1734 if (mutex_lock_killable(&oom_lock))
1735 return true;
1736
1737 if (mem_cgroup_margin(memcg) >= (1 << order))
1738 goto unlock;
1739
1740 /*
1741 * A few threads which were not waiting at mutex_lock_killable() can
1742 * fail to bail out. Therefore, check again after holding oom_lock.
1743 */
1744 ret = task_is_dying() || out_of_memory(&oc);
1745
1746unlock:
1747 mutex_unlock(&oom_lock);
1748 return ret;
1749}
1750
1751static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1752 pg_data_t *pgdat,
1753 gfp_t gfp_mask,
1754 unsigned long *total_scanned)
1755{
1756 struct mem_cgroup *victim = NULL;
1757 int total = 0;
1758 int loop = 0;
1759 unsigned long excess;
1760 unsigned long nr_scanned;
1761 struct mem_cgroup_reclaim_cookie reclaim = {
1762 .pgdat = pgdat,
1763 };
1764
1765 excess = soft_limit_excess(root_memcg);
1766
1767 while (1) {
1768 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1769 if (!victim) {
1770 loop++;
1771 if (loop >= 2) {
1772 /*
1773 * If we have not been able to reclaim
1774 * anything, it might because there are
1775 * no reclaimable pages under this hierarchy
1776 */
1777 if (!total)
1778 break;
1779 /*
1780 * We want to do more targeted reclaim.
1781 * excess >> 2 is not to excessive so as to
1782 * reclaim too much, nor too less that we keep
1783 * coming back to reclaim from this cgroup
1784 */
1785 if (total >= (excess >> 2) ||
1786 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1787 break;
1788 }
1789 continue;
1790 }
1791 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1792 pgdat, &nr_scanned);
1793 *total_scanned += nr_scanned;
1794 if (!soft_limit_excess(root_memcg))
1795 break;
1796 }
1797 mem_cgroup_iter_break(root_memcg, victim);
1798 return total;
1799}
1800
1801#ifdef CONFIG_LOCKDEP
1802static struct lockdep_map memcg_oom_lock_dep_map = {
1803 .name = "memcg_oom_lock",
1804};
1805#endif
1806
1807static DEFINE_SPINLOCK(memcg_oom_lock);
1808
1809/*
1810 * Check OOM-Killer is already running under our hierarchy.
1811 * If someone is running, return false.
1812 */
1813static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1814{
1815 struct mem_cgroup *iter, *failed = NULL;
1816
1817 spin_lock(&memcg_oom_lock);
1818
1819 for_each_mem_cgroup_tree(iter, memcg) {
1820 if (iter->oom_lock) {
1821 /*
1822 * this subtree of our hierarchy is already locked
1823 * so we cannot give a lock.
1824 */
1825 failed = iter;
1826 mem_cgroup_iter_break(memcg, iter);
1827 break;
1828 } else
1829 iter->oom_lock = true;
1830 }
1831
1832 if (failed) {
1833 /*
1834 * OK, we failed to lock the whole subtree so we have
1835 * to clean up what we set up to the failing subtree
1836 */
1837 for_each_mem_cgroup_tree(iter, memcg) {
1838 if (iter == failed) {
1839 mem_cgroup_iter_break(memcg, iter);
1840 break;
1841 }
1842 iter->oom_lock = false;
1843 }
1844 } else
1845 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1846
1847 spin_unlock(&memcg_oom_lock);
1848
1849 return !failed;
1850}
1851
1852static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1853{
1854 struct mem_cgroup *iter;
1855
1856 spin_lock(&memcg_oom_lock);
1857 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1858 for_each_mem_cgroup_tree(iter, memcg)
1859 iter->oom_lock = false;
1860 spin_unlock(&memcg_oom_lock);
1861}
1862
1863static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1864{
1865 struct mem_cgroup *iter;
1866
1867 spin_lock(&memcg_oom_lock);
1868 for_each_mem_cgroup_tree(iter, memcg)
1869 iter->under_oom++;
1870 spin_unlock(&memcg_oom_lock);
1871}
1872
1873static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1874{
1875 struct mem_cgroup *iter;
1876
1877 /*
1878 * Be careful about under_oom underflows because a child memcg
1879 * could have been added after mem_cgroup_mark_under_oom.
1880 */
1881 spin_lock(&memcg_oom_lock);
1882 for_each_mem_cgroup_tree(iter, memcg)
1883 if (iter->under_oom > 0)
1884 iter->under_oom--;
1885 spin_unlock(&memcg_oom_lock);
1886}
1887
1888static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1889
1890struct oom_wait_info {
1891 struct mem_cgroup *memcg;
1892 wait_queue_entry_t wait;
1893};
1894
1895static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1896 unsigned mode, int sync, void *arg)
1897{
1898 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1899 struct mem_cgroup *oom_wait_memcg;
1900 struct oom_wait_info *oom_wait_info;
1901
1902 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1903 oom_wait_memcg = oom_wait_info->memcg;
1904
1905 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1906 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1907 return 0;
1908 return autoremove_wake_function(wait, mode, sync, arg);
1909}
1910
1911static void memcg_oom_recover(struct mem_cgroup *memcg)
1912{
1913 /*
1914 * For the following lockless ->under_oom test, the only required
1915 * guarantee is that it must see the state asserted by an OOM when
1916 * this function is called as a result of userland actions
1917 * triggered by the notification of the OOM. This is trivially
1918 * achieved by invoking mem_cgroup_mark_under_oom() before
1919 * triggering notification.
1920 */
1921 if (memcg && memcg->under_oom)
1922 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1923}
1924
1925/*
1926 * Returns true if successfully killed one or more processes. Though in some
1927 * corner cases it can return true even without killing any process.
1928 */
1929static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1930{
1931 bool locked, ret;
1932
1933 if (order > PAGE_ALLOC_COSTLY_ORDER)
1934 return false;
1935
1936 memcg_memory_event(memcg, MEMCG_OOM);
1937
1938 /*
1939 * We are in the middle of the charge context here, so we
1940 * don't want to block when potentially sitting on a callstack
1941 * that holds all kinds of filesystem and mm locks.
1942 *
1943 * cgroup1 allows disabling the OOM killer and waiting for outside
1944 * handling until the charge can succeed; remember the context and put
1945 * the task to sleep at the end of the page fault when all locks are
1946 * released.
1947 *
1948 * On the other hand, in-kernel OOM killer allows for an async victim
1949 * memory reclaim (oom_reaper) and that means that we are not solely
1950 * relying on the oom victim to make a forward progress and we can
1951 * invoke the oom killer here.
1952 *
1953 * Please note that mem_cgroup_out_of_memory might fail to find a
1954 * victim and then we have to bail out from the charge path.
1955 */
1956 if (READ_ONCE(memcg->oom_kill_disable)) {
1957 if (current->in_user_fault) {
1958 css_get(&memcg->css);
1959 current->memcg_in_oom = memcg;
1960 current->memcg_oom_gfp_mask = mask;
1961 current->memcg_oom_order = order;
1962 }
1963 return false;
1964 }
1965
1966 mem_cgroup_mark_under_oom(memcg);
1967
1968 locked = mem_cgroup_oom_trylock(memcg);
1969
1970 if (locked)
1971 mem_cgroup_oom_notify(memcg);
1972
1973 mem_cgroup_unmark_under_oom(memcg);
1974 ret = mem_cgroup_out_of_memory(memcg, mask, order);
1975
1976 if (locked)
1977 mem_cgroup_oom_unlock(memcg);
1978
1979 return ret;
1980}
1981
1982/**
1983 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1984 * @handle: actually kill/wait or just clean up the OOM state
1985 *
1986 * This has to be called at the end of a page fault if the memcg OOM
1987 * handler was enabled.
1988 *
1989 * Memcg supports userspace OOM handling where failed allocations must
1990 * sleep on a waitqueue until the userspace task resolves the
1991 * situation. Sleeping directly in the charge context with all kinds
1992 * of locks held is not a good idea, instead we remember an OOM state
1993 * in the task and mem_cgroup_oom_synchronize() has to be called at
1994 * the end of the page fault to complete the OOM handling.
1995 *
1996 * Returns %true if an ongoing memcg OOM situation was detected and
1997 * completed, %false otherwise.
1998 */
1999bool mem_cgroup_oom_synchronize(bool handle)
2000{
2001 struct mem_cgroup *memcg = current->memcg_in_oom;
2002 struct oom_wait_info owait;
2003 bool locked;
2004
2005 /* OOM is global, do not handle */
2006 if (!memcg)
2007 return false;
2008
2009 if (!handle)
2010 goto cleanup;
2011
2012 owait.memcg = memcg;
2013 owait.wait.flags = 0;
2014 owait.wait.func = memcg_oom_wake_function;
2015 owait.wait.private = current;
2016 INIT_LIST_HEAD(&owait.wait.entry);
2017
2018 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2019 mem_cgroup_mark_under_oom(memcg);
2020
2021 locked = mem_cgroup_oom_trylock(memcg);
2022
2023 if (locked)
2024 mem_cgroup_oom_notify(memcg);
2025
2026 schedule();
2027 mem_cgroup_unmark_under_oom(memcg);
2028 finish_wait(&memcg_oom_waitq, &owait.wait);
2029
2030 if (locked)
2031 mem_cgroup_oom_unlock(memcg);
2032cleanup:
2033 current->memcg_in_oom = NULL;
2034 css_put(&memcg->css);
2035 return true;
2036}
2037
2038/**
2039 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2040 * @victim: task to be killed by the OOM killer
2041 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2042 *
2043 * Returns a pointer to a memory cgroup, which has to be cleaned up
2044 * by killing all belonging OOM-killable tasks.
2045 *
2046 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2047 */
2048struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2049 struct mem_cgroup *oom_domain)
2050{
2051 struct mem_cgroup *oom_group = NULL;
2052 struct mem_cgroup *memcg;
2053
2054 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2055 return NULL;
2056
2057 if (!oom_domain)
2058 oom_domain = root_mem_cgroup;
2059
2060 rcu_read_lock();
2061
2062 memcg = mem_cgroup_from_task(victim);
2063 if (mem_cgroup_is_root(memcg))
2064 goto out;
2065
2066 /*
2067 * If the victim task has been asynchronously moved to a different
2068 * memory cgroup, we might end up killing tasks outside oom_domain.
2069 * In this case it's better to ignore memory.group.oom.
2070 */
2071 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2072 goto out;
2073
2074 /*
2075 * Traverse the memory cgroup hierarchy from the victim task's
2076 * cgroup up to the OOMing cgroup (or root) to find the
2077 * highest-level memory cgroup with oom.group set.
2078 */
2079 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2080 if (READ_ONCE(memcg->oom_group))
2081 oom_group = memcg;
2082
2083 if (memcg == oom_domain)
2084 break;
2085 }
2086
2087 if (oom_group)
2088 css_get(&oom_group->css);
2089out:
2090 rcu_read_unlock();
2091
2092 return oom_group;
2093}
2094
2095void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2096{
2097 pr_info("Tasks in ");
2098 pr_cont_cgroup_path(memcg->css.cgroup);
2099 pr_cont(" are going to be killed due to memory.oom.group set\n");
2100}
2101
2102/**
2103 * folio_memcg_lock - Bind a folio to its memcg.
2104 * @folio: The folio.
2105 *
2106 * This function prevents unlocked LRU folios from being moved to
2107 * another cgroup.
2108 *
2109 * It ensures lifetime of the bound memcg. The caller is responsible
2110 * for the lifetime of the folio.
2111 */
2112void folio_memcg_lock(struct folio *folio)
2113{
2114 struct mem_cgroup *memcg;
2115 unsigned long flags;
2116
2117 /*
2118 * The RCU lock is held throughout the transaction. The fast
2119 * path can get away without acquiring the memcg->move_lock
2120 * because page moving starts with an RCU grace period.
2121 */
2122 rcu_read_lock();
2123
2124 if (mem_cgroup_disabled())
2125 return;
2126again:
2127 memcg = folio_memcg(folio);
2128 if (unlikely(!memcg))
2129 return;
2130
2131#ifdef CONFIG_PROVE_LOCKING
2132 local_irq_save(flags);
2133 might_lock(&memcg->move_lock);
2134 local_irq_restore(flags);
2135#endif
2136
2137 if (atomic_read(&memcg->moving_account) <= 0)
2138 return;
2139
2140 spin_lock_irqsave(&memcg->move_lock, flags);
2141 if (memcg != folio_memcg(folio)) {
2142 spin_unlock_irqrestore(&memcg->move_lock, flags);
2143 goto again;
2144 }
2145
2146 /*
2147 * When charge migration first begins, we can have multiple
2148 * critical sections holding the fast-path RCU lock and one
2149 * holding the slowpath move_lock. Track the task who has the
2150 * move_lock for folio_memcg_unlock().
2151 */
2152 memcg->move_lock_task = current;
2153 memcg->move_lock_flags = flags;
2154}
2155
2156static void __folio_memcg_unlock(struct mem_cgroup *memcg)
2157{
2158 if (memcg && memcg->move_lock_task == current) {
2159 unsigned long flags = memcg->move_lock_flags;
2160
2161 memcg->move_lock_task = NULL;
2162 memcg->move_lock_flags = 0;
2163
2164 spin_unlock_irqrestore(&memcg->move_lock, flags);
2165 }
2166
2167 rcu_read_unlock();
2168}
2169
2170/**
2171 * folio_memcg_unlock - Release the binding between a folio and its memcg.
2172 * @folio: The folio.
2173 *
2174 * This releases the binding created by folio_memcg_lock(). This does
2175 * not change the accounting of this folio to its memcg, but it does
2176 * permit others to change it.
2177 */
2178void folio_memcg_unlock(struct folio *folio)
2179{
2180 __folio_memcg_unlock(folio_memcg(folio));
2181}
2182
2183struct memcg_stock_pcp {
2184 local_lock_t stock_lock;
2185 struct mem_cgroup *cached; /* this never be root cgroup */
2186 unsigned int nr_pages;
2187
2188#ifdef CONFIG_MEMCG_KMEM
2189 struct obj_cgroup *cached_objcg;
2190 struct pglist_data *cached_pgdat;
2191 unsigned int nr_bytes;
2192 int nr_slab_reclaimable_b;
2193 int nr_slab_unreclaimable_b;
2194#endif
2195
2196 struct work_struct work;
2197 unsigned long flags;
2198#define FLUSHING_CACHED_CHARGE 0
2199};
2200static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
2201 .stock_lock = INIT_LOCAL_LOCK(stock_lock),
2202};
2203static DEFINE_MUTEX(percpu_charge_mutex);
2204
2205#ifdef CONFIG_MEMCG_KMEM
2206static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
2207static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2208 struct mem_cgroup *root_memcg);
2209static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages);
2210
2211#else
2212static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
2213{
2214 return NULL;
2215}
2216static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2217 struct mem_cgroup *root_memcg)
2218{
2219 return false;
2220}
2221static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2222{
2223}
2224#endif
2225
2226/**
2227 * consume_stock: Try to consume stocked charge on this cpu.
2228 * @memcg: memcg to consume from.
2229 * @nr_pages: how many pages to charge.
2230 *
2231 * The charges will only happen if @memcg matches the current cpu's memcg
2232 * stock, and at least @nr_pages are available in that stock. Failure to
2233 * service an allocation will refill the stock.
2234 *
2235 * returns true if successful, false otherwise.
2236 */
2237static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2238{
2239 struct memcg_stock_pcp *stock;
2240 unsigned long flags;
2241 bool ret = false;
2242
2243 if (nr_pages > MEMCG_CHARGE_BATCH)
2244 return ret;
2245
2246 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2247
2248 stock = this_cpu_ptr(&memcg_stock);
2249 if (memcg == READ_ONCE(stock->cached) && stock->nr_pages >= nr_pages) {
2250 stock->nr_pages -= nr_pages;
2251 ret = true;
2252 }
2253
2254 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2255
2256 return ret;
2257}
2258
2259/*
2260 * Returns stocks cached in percpu and reset cached information.
2261 */
2262static void drain_stock(struct memcg_stock_pcp *stock)
2263{
2264 struct mem_cgroup *old = READ_ONCE(stock->cached);
2265
2266 if (!old)
2267 return;
2268
2269 if (stock->nr_pages) {
2270 page_counter_uncharge(&old->memory, stock->nr_pages);
2271 if (do_memsw_account())
2272 page_counter_uncharge(&old->memsw, stock->nr_pages);
2273 stock->nr_pages = 0;
2274 }
2275
2276 css_put(&old->css);
2277 WRITE_ONCE(stock->cached, NULL);
2278}
2279
2280static void drain_local_stock(struct work_struct *dummy)
2281{
2282 struct memcg_stock_pcp *stock;
2283 struct obj_cgroup *old = NULL;
2284 unsigned long flags;
2285
2286 /*
2287 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2288 * drain_stock races is that we always operate on local CPU stock
2289 * here with IRQ disabled
2290 */
2291 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2292
2293 stock = this_cpu_ptr(&memcg_stock);
2294 old = drain_obj_stock(stock);
2295 drain_stock(stock);
2296 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2297
2298 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2299 if (old)
2300 obj_cgroup_put(old);
2301}
2302
2303/*
2304 * Cache charges(val) to local per_cpu area.
2305 * This will be consumed by consume_stock() function, later.
2306 */
2307static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2308{
2309 struct memcg_stock_pcp *stock;
2310
2311 stock = this_cpu_ptr(&memcg_stock);
2312 if (READ_ONCE(stock->cached) != memcg) { /* reset if necessary */
2313 drain_stock(stock);
2314 css_get(&memcg->css);
2315 WRITE_ONCE(stock->cached, memcg);
2316 }
2317 stock->nr_pages += nr_pages;
2318
2319 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2320 drain_stock(stock);
2321}
2322
2323static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2324{
2325 unsigned long flags;
2326
2327 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2328 __refill_stock(memcg, nr_pages);
2329 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2330}
2331
2332/*
2333 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2334 * of the hierarchy under it.
2335 */
2336static void drain_all_stock(struct mem_cgroup *root_memcg)
2337{
2338 int cpu, curcpu;
2339
2340 /* If someone's already draining, avoid adding running more workers. */
2341 if (!mutex_trylock(&percpu_charge_mutex))
2342 return;
2343 /*
2344 * Notify other cpus that system-wide "drain" is running
2345 * We do not care about races with the cpu hotplug because cpu down
2346 * as well as workers from this path always operate on the local
2347 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2348 */
2349 migrate_disable();
2350 curcpu = smp_processor_id();
2351 for_each_online_cpu(cpu) {
2352 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2353 struct mem_cgroup *memcg;
2354 bool flush = false;
2355
2356 rcu_read_lock();
2357 memcg = READ_ONCE(stock->cached);
2358 if (memcg && stock->nr_pages &&
2359 mem_cgroup_is_descendant(memcg, root_memcg))
2360 flush = true;
2361 else if (obj_stock_flush_required(stock, root_memcg))
2362 flush = true;
2363 rcu_read_unlock();
2364
2365 if (flush &&
2366 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2367 if (cpu == curcpu)
2368 drain_local_stock(&stock->work);
2369 else if (!cpu_is_isolated(cpu))
2370 schedule_work_on(cpu, &stock->work);
2371 }
2372 }
2373 migrate_enable();
2374 mutex_unlock(&percpu_charge_mutex);
2375}
2376
2377static int memcg_hotplug_cpu_dead(unsigned int cpu)
2378{
2379 struct memcg_stock_pcp *stock;
2380
2381 stock = &per_cpu(memcg_stock, cpu);
2382 drain_stock(stock);
2383
2384 return 0;
2385}
2386
2387static unsigned long reclaim_high(struct mem_cgroup *memcg,
2388 unsigned int nr_pages,
2389 gfp_t gfp_mask)
2390{
2391 unsigned long nr_reclaimed = 0;
2392
2393 do {
2394 unsigned long pflags;
2395
2396 if (page_counter_read(&memcg->memory) <=
2397 READ_ONCE(memcg->memory.high))
2398 continue;
2399
2400 memcg_memory_event(memcg, MEMCG_HIGH);
2401
2402 psi_memstall_enter(&pflags);
2403 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2404 gfp_mask,
2405 MEMCG_RECLAIM_MAY_SWAP);
2406 psi_memstall_leave(&pflags);
2407 } while ((memcg = parent_mem_cgroup(memcg)) &&
2408 !mem_cgroup_is_root(memcg));
2409
2410 return nr_reclaimed;
2411}
2412
2413static void high_work_func(struct work_struct *work)
2414{
2415 struct mem_cgroup *memcg;
2416
2417 memcg = container_of(work, struct mem_cgroup, high_work);
2418 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2419}
2420
2421/*
2422 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2423 * enough to still cause a significant slowdown in most cases, while still
2424 * allowing diagnostics and tracing to proceed without becoming stuck.
2425 */
2426#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2427
2428/*
2429 * When calculating the delay, we use these either side of the exponentiation to
2430 * maintain precision and scale to a reasonable number of jiffies (see the table
2431 * below.
2432 *
2433 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2434 * overage ratio to a delay.
2435 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2436 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2437 * to produce a reasonable delay curve.
2438 *
2439 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2440 * reasonable delay curve compared to precision-adjusted overage, not
2441 * penalising heavily at first, but still making sure that growth beyond the
2442 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2443 * example, with a high of 100 megabytes:
2444 *
2445 * +-------+------------------------+
2446 * | usage | time to allocate in ms |
2447 * +-------+------------------------+
2448 * | 100M | 0 |
2449 * | 101M | 6 |
2450 * | 102M | 25 |
2451 * | 103M | 57 |
2452 * | 104M | 102 |
2453 * | 105M | 159 |
2454 * | 106M | 230 |
2455 * | 107M | 313 |
2456 * | 108M | 409 |
2457 * | 109M | 518 |
2458 * | 110M | 639 |
2459 * | 111M | 774 |
2460 * | 112M | 921 |
2461 * | 113M | 1081 |
2462 * | 114M | 1254 |
2463 * | 115M | 1439 |
2464 * | 116M | 1638 |
2465 * | 117M | 1849 |
2466 * | 118M | 2000 |
2467 * | 119M | 2000 |
2468 * | 120M | 2000 |
2469 * +-------+------------------------+
2470 */
2471 #define MEMCG_DELAY_PRECISION_SHIFT 20
2472 #define MEMCG_DELAY_SCALING_SHIFT 14
2473
2474static u64 calculate_overage(unsigned long usage, unsigned long high)
2475{
2476 u64 overage;
2477
2478 if (usage <= high)
2479 return 0;
2480
2481 /*
2482 * Prevent division by 0 in overage calculation by acting as if
2483 * it was a threshold of 1 page
2484 */
2485 high = max(high, 1UL);
2486
2487 overage = usage - high;
2488 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2489 return div64_u64(overage, high);
2490}
2491
2492static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2493{
2494 u64 overage, max_overage = 0;
2495
2496 do {
2497 overage = calculate_overage(page_counter_read(&memcg->memory),
2498 READ_ONCE(memcg->memory.high));
2499 max_overage = max(overage, max_overage);
2500 } while ((memcg = parent_mem_cgroup(memcg)) &&
2501 !mem_cgroup_is_root(memcg));
2502
2503 return max_overage;
2504}
2505
2506static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2507{
2508 u64 overage, max_overage = 0;
2509
2510 do {
2511 overage = calculate_overage(page_counter_read(&memcg->swap),
2512 READ_ONCE(memcg->swap.high));
2513 if (overage)
2514 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2515 max_overage = max(overage, max_overage);
2516 } while ((memcg = parent_mem_cgroup(memcg)) &&
2517 !mem_cgroup_is_root(memcg));
2518
2519 return max_overage;
2520}
2521
2522/*
2523 * Get the number of jiffies that we should penalise a mischievous cgroup which
2524 * is exceeding its memory.high by checking both it and its ancestors.
2525 */
2526static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2527 unsigned int nr_pages,
2528 u64 max_overage)
2529{
2530 unsigned long penalty_jiffies;
2531
2532 if (!max_overage)
2533 return 0;
2534
2535 /*
2536 * We use overage compared to memory.high to calculate the number of
2537 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2538 * fairly lenient on small overages, and increasingly harsh when the
2539 * memcg in question makes it clear that it has no intention of stopping
2540 * its crazy behaviour, so we exponentially increase the delay based on
2541 * overage amount.
2542 */
2543 penalty_jiffies = max_overage * max_overage * HZ;
2544 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2545 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2546
2547 /*
2548 * Factor in the task's own contribution to the overage, such that four
2549 * N-sized allocations are throttled approximately the same as one
2550 * 4N-sized allocation.
2551 *
2552 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2553 * larger the current charge patch is than that.
2554 */
2555 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2556}
2557
2558/*
2559 * Scheduled by try_charge() to be executed from the userland return path
2560 * and reclaims memory over the high limit.
2561 */
2562void mem_cgroup_handle_over_high(void)
2563{
2564 unsigned long penalty_jiffies;
2565 unsigned long pflags;
2566 unsigned long nr_reclaimed;
2567 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2568 int nr_retries = MAX_RECLAIM_RETRIES;
2569 struct mem_cgroup *memcg;
2570 bool in_retry = false;
2571
2572 if (likely(!nr_pages))
2573 return;
2574
2575 memcg = get_mem_cgroup_from_mm(current->mm);
2576 current->memcg_nr_pages_over_high = 0;
2577
2578retry_reclaim:
2579 /*
2580 * The allocating task should reclaim at least the batch size, but for
2581 * subsequent retries we only want to do what's necessary to prevent oom
2582 * or breaching resource isolation.
2583 *
2584 * This is distinct from memory.max or page allocator behaviour because
2585 * memory.high is currently batched, whereas memory.max and the page
2586 * allocator run every time an allocation is made.
2587 */
2588 nr_reclaimed = reclaim_high(memcg,
2589 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2590 GFP_KERNEL);
2591
2592 /*
2593 * memory.high is breached and reclaim is unable to keep up. Throttle
2594 * allocators proactively to slow down excessive growth.
2595 */
2596 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2597 mem_find_max_overage(memcg));
2598
2599 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2600 swap_find_max_overage(memcg));
2601
2602 /*
2603 * Clamp the max delay per usermode return so as to still keep the
2604 * application moving forwards and also permit diagnostics, albeit
2605 * extremely slowly.
2606 */
2607 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2608
2609 /*
2610 * Don't sleep if the amount of jiffies this memcg owes us is so low
2611 * that it's not even worth doing, in an attempt to be nice to those who
2612 * go only a small amount over their memory.high value and maybe haven't
2613 * been aggressively reclaimed enough yet.
2614 */
2615 if (penalty_jiffies <= HZ / 100)
2616 goto out;
2617
2618 /*
2619 * If reclaim is making forward progress but we're still over
2620 * memory.high, we want to encourage that rather than doing allocator
2621 * throttling.
2622 */
2623 if (nr_reclaimed || nr_retries--) {
2624 in_retry = true;
2625 goto retry_reclaim;
2626 }
2627
2628 /*
2629 * If we exit early, we're guaranteed to die (since
2630 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2631 * need to account for any ill-begotten jiffies to pay them off later.
2632 */
2633 psi_memstall_enter(&pflags);
2634 schedule_timeout_killable(penalty_jiffies);
2635 psi_memstall_leave(&pflags);
2636
2637out:
2638 css_put(&memcg->css);
2639}
2640
2641static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2642 unsigned int nr_pages)
2643{
2644 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2645 int nr_retries = MAX_RECLAIM_RETRIES;
2646 struct mem_cgroup *mem_over_limit;
2647 struct page_counter *counter;
2648 unsigned long nr_reclaimed;
2649 bool passed_oom = false;
2650 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
2651 bool drained = false;
2652 bool raised_max_event = false;
2653 unsigned long pflags;
2654
2655retry:
2656 if (consume_stock(memcg, nr_pages))
2657 return 0;
2658
2659 if (!do_memsw_account() ||
2660 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2661 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2662 goto done_restock;
2663 if (do_memsw_account())
2664 page_counter_uncharge(&memcg->memsw, batch);
2665 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2666 } else {
2667 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2668 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
2669 }
2670
2671 if (batch > nr_pages) {
2672 batch = nr_pages;
2673 goto retry;
2674 }
2675
2676 /*
2677 * Prevent unbounded recursion when reclaim operations need to
2678 * allocate memory. This might exceed the limits temporarily,
2679 * but we prefer facilitating memory reclaim and getting back
2680 * under the limit over triggering OOM kills in these cases.
2681 */
2682 if (unlikely(current->flags & PF_MEMALLOC))
2683 goto force;
2684
2685 if (unlikely(task_in_memcg_oom(current)))
2686 goto nomem;
2687
2688 if (!gfpflags_allow_blocking(gfp_mask))
2689 goto nomem;
2690
2691 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2692 raised_max_event = true;
2693
2694 psi_memstall_enter(&pflags);
2695 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2696 gfp_mask, reclaim_options);
2697 psi_memstall_leave(&pflags);
2698
2699 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2700 goto retry;
2701
2702 if (!drained) {
2703 drain_all_stock(mem_over_limit);
2704 drained = true;
2705 goto retry;
2706 }
2707
2708 if (gfp_mask & __GFP_NORETRY)
2709 goto nomem;
2710 /*
2711 * Even though the limit is exceeded at this point, reclaim
2712 * may have been able to free some pages. Retry the charge
2713 * before killing the task.
2714 *
2715 * Only for regular pages, though: huge pages are rather
2716 * unlikely to succeed so close to the limit, and we fall back
2717 * to regular pages anyway in case of failure.
2718 */
2719 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2720 goto retry;
2721 /*
2722 * At task move, charge accounts can be doubly counted. So, it's
2723 * better to wait until the end of task_move if something is going on.
2724 */
2725 if (mem_cgroup_wait_acct_move(mem_over_limit))
2726 goto retry;
2727
2728 if (nr_retries--)
2729 goto retry;
2730
2731 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2732 goto nomem;
2733
2734 /* Avoid endless loop for tasks bypassed by the oom killer */
2735 if (passed_oom && task_is_dying())
2736 goto nomem;
2737
2738 /*
2739 * keep retrying as long as the memcg oom killer is able to make
2740 * a forward progress or bypass the charge if the oom killer
2741 * couldn't make any progress.
2742 */
2743 if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2744 get_order(nr_pages * PAGE_SIZE))) {
2745 passed_oom = true;
2746 nr_retries = MAX_RECLAIM_RETRIES;
2747 goto retry;
2748 }
2749nomem:
2750 /*
2751 * Memcg doesn't have a dedicated reserve for atomic
2752 * allocations. But like the global atomic pool, we need to
2753 * put the burden of reclaim on regular allocation requests
2754 * and let these go through as privileged allocations.
2755 */
2756 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2757 return -ENOMEM;
2758force:
2759 /*
2760 * If the allocation has to be enforced, don't forget to raise
2761 * a MEMCG_MAX event.
2762 */
2763 if (!raised_max_event)
2764 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2765
2766 /*
2767 * The allocation either can't fail or will lead to more memory
2768 * being freed very soon. Allow memory usage go over the limit
2769 * temporarily by force charging it.
2770 */
2771 page_counter_charge(&memcg->memory, nr_pages);
2772 if (do_memsw_account())
2773 page_counter_charge(&memcg->memsw, nr_pages);
2774
2775 return 0;
2776
2777done_restock:
2778 if (batch > nr_pages)
2779 refill_stock(memcg, batch - nr_pages);
2780
2781 /*
2782 * If the hierarchy is above the normal consumption range, schedule
2783 * reclaim on returning to userland. We can perform reclaim here
2784 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2785 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2786 * not recorded as it most likely matches current's and won't
2787 * change in the meantime. As high limit is checked again before
2788 * reclaim, the cost of mismatch is negligible.
2789 */
2790 do {
2791 bool mem_high, swap_high;
2792
2793 mem_high = page_counter_read(&memcg->memory) >
2794 READ_ONCE(memcg->memory.high);
2795 swap_high = page_counter_read(&memcg->swap) >
2796 READ_ONCE(memcg->swap.high);
2797
2798 /* Don't bother a random interrupted task */
2799 if (!in_task()) {
2800 if (mem_high) {
2801 schedule_work(&memcg->high_work);
2802 break;
2803 }
2804 continue;
2805 }
2806
2807 if (mem_high || swap_high) {
2808 /*
2809 * The allocating tasks in this cgroup will need to do
2810 * reclaim or be throttled to prevent further growth
2811 * of the memory or swap footprints.
2812 *
2813 * Target some best-effort fairness between the tasks,
2814 * and distribute reclaim work and delay penalties
2815 * based on how much each task is actually allocating.
2816 */
2817 current->memcg_nr_pages_over_high += batch;
2818 set_notify_resume(current);
2819 break;
2820 }
2821 } while ((memcg = parent_mem_cgroup(memcg)));
2822
2823 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2824 !(current->flags & PF_MEMALLOC) &&
2825 gfpflags_allow_blocking(gfp_mask)) {
2826 mem_cgroup_handle_over_high();
2827 }
2828 return 0;
2829}
2830
2831static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2832 unsigned int nr_pages)
2833{
2834 if (mem_cgroup_is_root(memcg))
2835 return 0;
2836
2837 return try_charge_memcg(memcg, gfp_mask, nr_pages);
2838}
2839
2840static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2841{
2842 if (mem_cgroup_is_root(memcg))
2843 return;
2844
2845 page_counter_uncharge(&memcg->memory, nr_pages);
2846 if (do_memsw_account())
2847 page_counter_uncharge(&memcg->memsw, nr_pages);
2848}
2849
2850static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2851{
2852 VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
2853 /*
2854 * Any of the following ensures page's memcg stability:
2855 *
2856 * - the page lock
2857 * - LRU isolation
2858 * - folio_memcg_lock()
2859 * - exclusive reference
2860 * - mem_cgroup_trylock_pages()
2861 */
2862 folio->memcg_data = (unsigned long)memcg;
2863}
2864
2865#ifdef CONFIG_MEMCG_KMEM
2866/*
2867 * The allocated objcg pointers array is not accounted directly.
2868 * Moreover, it should not come from DMA buffer and is not readily
2869 * reclaimable. So those GFP bits should be masked off.
2870 */
2871#define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2872
2873/*
2874 * mod_objcg_mlstate() may be called with irq enabled, so
2875 * mod_memcg_lruvec_state() should be used.
2876 */
2877static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2878 struct pglist_data *pgdat,
2879 enum node_stat_item idx, int nr)
2880{
2881 struct mem_cgroup *memcg;
2882 struct lruvec *lruvec;
2883
2884 rcu_read_lock();
2885 memcg = obj_cgroup_memcg(objcg);
2886 lruvec = mem_cgroup_lruvec(memcg, pgdat);
2887 mod_memcg_lruvec_state(lruvec, idx, nr);
2888 rcu_read_unlock();
2889}
2890
2891int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
2892 gfp_t gfp, bool new_slab)
2893{
2894 unsigned int objects = objs_per_slab(s, slab);
2895 unsigned long memcg_data;
2896 void *vec;
2897
2898 gfp &= ~OBJCGS_CLEAR_MASK;
2899 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2900 slab_nid(slab));
2901 if (!vec)
2902 return -ENOMEM;
2903
2904 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2905 if (new_slab) {
2906 /*
2907 * If the slab is brand new and nobody can yet access its
2908 * memcg_data, no synchronization is required and memcg_data can
2909 * be simply assigned.
2910 */
2911 slab->memcg_data = memcg_data;
2912 } else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) {
2913 /*
2914 * If the slab is already in use, somebody can allocate and
2915 * assign obj_cgroups in parallel. In this case the existing
2916 * objcg vector should be reused.
2917 */
2918 kfree(vec);
2919 return 0;
2920 }
2921
2922 kmemleak_not_leak(vec);
2923 return 0;
2924}
2925
2926static __always_inline
2927struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
2928{
2929 /*
2930 * Slab objects are accounted individually, not per-page.
2931 * Memcg membership data for each individual object is saved in
2932 * slab->memcg_data.
2933 */
2934 if (folio_test_slab(folio)) {
2935 struct obj_cgroup **objcgs;
2936 struct slab *slab;
2937 unsigned int off;
2938
2939 slab = folio_slab(folio);
2940 objcgs = slab_objcgs(slab);
2941 if (!objcgs)
2942 return NULL;
2943
2944 off = obj_to_index(slab->slab_cache, slab, p);
2945 if (objcgs[off])
2946 return obj_cgroup_memcg(objcgs[off]);
2947
2948 return NULL;
2949 }
2950
2951 /*
2952 * folio_memcg_check() is used here, because in theory we can encounter
2953 * a folio where the slab flag has been cleared already, but
2954 * slab->memcg_data has not been freed yet
2955 * folio_memcg_check() will guarantee that a proper memory
2956 * cgroup pointer or NULL will be returned.
2957 */
2958 return folio_memcg_check(folio);
2959}
2960
2961/*
2962 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2963 *
2964 * A passed kernel object can be a slab object, vmalloc object or a generic
2965 * kernel page, so different mechanisms for getting the memory cgroup pointer
2966 * should be used.
2967 *
2968 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2969 * can not know for sure how the kernel object is implemented.
2970 * mem_cgroup_from_obj() can be safely used in such cases.
2971 *
2972 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2973 * cgroup_mutex, etc.
2974 */
2975struct mem_cgroup *mem_cgroup_from_obj(void *p)
2976{
2977 struct folio *folio;
2978
2979 if (mem_cgroup_disabled())
2980 return NULL;
2981
2982 if (unlikely(is_vmalloc_addr(p)))
2983 folio = page_folio(vmalloc_to_page(p));
2984 else
2985 folio = virt_to_folio(p);
2986
2987 return mem_cgroup_from_obj_folio(folio, p);
2988}
2989
2990/*
2991 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2992 * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects,
2993 * allocated using vmalloc().
2994 *
2995 * A passed kernel object must be a slab object or a generic kernel page.
2996 *
2997 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
2998 * cgroup_mutex, etc.
2999 */
3000struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
3001{
3002 if (mem_cgroup_disabled())
3003 return NULL;
3004
3005 return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
3006}
3007
3008static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
3009{
3010 struct obj_cgroup *objcg = NULL;
3011
3012 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
3013 objcg = rcu_dereference(memcg->objcg);
3014 if (objcg && obj_cgroup_tryget(objcg))
3015 break;
3016 objcg = NULL;
3017 }
3018 return objcg;
3019}
3020
3021__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
3022{
3023 struct obj_cgroup *objcg = NULL;
3024 struct mem_cgroup *memcg;
3025
3026 if (memcg_kmem_bypass())
3027 return NULL;
3028
3029 rcu_read_lock();
3030 if (unlikely(active_memcg()))
3031 memcg = active_memcg();
3032 else
3033 memcg = mem_cgroup_from_task(current);
3034 objcg = __get_obj_cgroup_from_memcg(memcg);
3035 rcu_read_unlock();
3036 return objcg;
3037}
3038
3039struct obj_cgroup *get_obj_cgroup_from_page(struct page *page)
3040{
3041 struct obj_cgroup *objcg;
3042
3043 if (!memcg_kmem_online())
3044 return NULL;
3045
3046 if (PageMemcgKmem(page)) {
3047 objcg = __folio_objcg(page_folio(page));
3048 obj_cgroup_get(objcg);
3049 } else {
3050 struct mem_cgroup *memcg;
3051
3052 rcu_read_lock();
3053 memcg = __folio_memcg(page_folio(page));
3054 if (memcg)
3055 objcg = __get_obj_cgroup_from_memcg(memcg);
3056 else
3057 objcg = NULL;
3058 rcu_read_unlock();
3059 }
3060 return objcg;
3061}
3062
3063static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
3064{
3065 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
3066 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
3067 if (nr_pages > 0)
3068 page_counter_charge(&memcg->kmem, nr_pages);
3069 else
3070 page_counter_uncharge(&memcg->kmem, -nr_pages);
3071 }
3072}
3073
3074
3075/*
3076 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
3077 * @objcg: object cgroup to uncharge
3078 * @nr_pages: number of pages to uncharge
3079 */
3080static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
3081 unsigned int nr_pages)
3082{
3083 struct mem_cgroup *memcg;
3084
3085 memcg = get_mem_cgroup_from_objcg(objcg);
3086
3087 memcg_account_kmem(memcg, -nr_pages);
3088 refill_stock(memcg, nr_pages);
3089
3090 css_put(&memcg->css);
3091}
3092
3093/*
3094 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3095 * @objcg: object cgroup to charge
3096 * @gfp: reclaim mode
3097 * @nr_pages: number of pages to charge
3098 *
3099 * Returns 0 on success, an error code on failure.
3100 */
3101static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3102 unsigned int nr_pages)
3103{
3104 struct mem_cgroup *memcg;
3105 int ret;
3106
3107 memcg = get_mem_cgroup_from_objcg(objcg);
3108
3109 ret = try_charge_memcg(memcg, gfp, nr_pages);
3110 if (ret)
3111 goto out;
3112
3113 memcg_account_kmem(memcg, nr_pages);
3114out:
3115 css_put(&memcg->css);
3116
3117 return ret;
3118}
3119
3120/**
3121 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3122 * @page: page to charge
3123 * @gfp: reclaim mode
3124 * @order: allocation order
3125 *
3126 * Returns 0 on success, an error code on failure.
3127 */
3128int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3129{
3130 struct obj_cgroup *objcg;
3131 int ret = 0;
3132
3133 objcg = get_obj_cgroup_from_current();
3134 if (objcg) {
3135 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3136 if (!ret) {
3137 page->memcg_data = (unsigned long)objcg |
3138 MEMCG_DATA_KMEM;
3139 return 0;
3140 }
3141 obj_cgroup_put(objcg);
3142 }
3143 return ret;
3144}
3145
3146/**
3147 * __memcg_kmem_uncharge_page: uncharge a kmem page
3148 * @page: page to uncharge
3149 * @order: allocation order
3150 */
3151void __memcg_kmem_uncharge_page(struct page *page, int order)
3152{
3153 struct folio *folio = page_folio(page);
3154 struct obj_cgroup *objcg;
3155 unsigned int nr_pages = 1 << order;
3156
3157 if (!folio_memcg_kmem(folio))
3158 return;
3159
3160 objcg = __folio_objcg(folio);
3161 obj_cgroup_uncharge_pages(objcg, nr_pages);
3162 folio->memcg_data = 0;
3163 obj_cgroup_put(objcg);
3164}
3165
3166void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3167 enum node_stat_item idx, int nr)
3168{
3169 struct memcg_stock_pcp *stock;
3170 struct obj_cgroup *old = NULL;
3171 unsigned long flags;
3172 int *bytes;
3173
3174 local_lock_irqsave(&memcg_stock.stock_lock, flags);
3175 stock = this_cpu_ptr(&memcg_stock);
3176
3177 /*
3178 * Save vmstat data in stock and skip vmstat array update unless
3179 * accumulating over a page of vmstat data or when pgdat or idx
3180 * changes.
3181 */
3182 if (READ_ONCE(stock->cached_objcg) != objcg) {
3183 old = drain_obj_stock(stock);
3184 obj_cgroup_get(objcg);
3185 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3186 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3187 WRITE_ONCE(stock->cached_objcg, objcg);
3188 stock->cached_pgdat = pgdat;
3189 } else if (stock->cached_pgdat != pgdat) {
3190 /* Flush the existing cached vmstat data */
3191 struct pglist_data *oldpg = stock->cached_pgdat;
3192
3193 if (stock->nr_slab_reclaimable_b) {
3194 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3195 stock->nr_slab_reclaimable_b);
3196 stock->nr_slab_reclaimable_b = 0;
3197 }
3198 if (stock->nr_slab_unreclaimable_b) {
3199 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3200 stock->nr_slab_unreclaimable_b);
3201 stock->nr_slab_unreclaimable_b = 0;
3202 }
3203 stock->cached_pgdat = pgdat;
3204 }
3205
3206 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3207 : &stock->nr_slab_unreclaimable_b;
3208 /*
3209 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3210 * cached locally at least once before pushing it out.
3211 */
3212 if (!*bytes) {
3213 *bytes = nr;
3214 nr = 0;
3215 } else {
3216 *bytes += nr;
3217 if (abs(*bytes) > PAGE_SIZE) {
3218 nr = *bytes;
3219 *bytes = 0;
3220 } else {
3221 nr = 0;
3222 }
3223 }
3224 if (nr)
3225 mod_objcg_mlstate(objcg, pgdat, idx, nr);
3226
3227 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3228 if (old)
3229 obj_cgroup_put(old);
3230}
3231
3232static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3233{
3234 struct memcg_stock_pcp *stock;
3235 unsigned long flags;
3236 bool ret = false;
3237
3238 local_lock_irqsave(&memcg_stock.stock_lock, flags);
3239
3240 stock = this_cpu_ptr(&memcg_stock);
3241 if (objcg == READ_ONCE(stock->cached_objcg) && stock->nr_bytes >= nr_bytes) {
3242 stock->nr_bytes -= nr_bytes;
3243 ret = true;
3244 }
3245
3246 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3247
3248 return ret;
3249}
3250
3251static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
3252{
3253 struct obj_cgroup *old = READ_ONCE(stock->cached_objcg);
3254
3255 if (!old)
3256 return NULL;
3257
3258 if (stock->nr_bytes) {
3259 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3260 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3261
3262 if (nr_pages) {
3263 struct mem_cgroup *memcg;
3264
3265 memcg = get_mem_cgroup_from_objcg(old);
3266
3267 memcg_account_kmem(memcg, -nr_pages);
3268 __refill_stock(memcg, nr_pages);
3269
3270 css_put(&memcg->css);
3271 }
3272
3273 /*
3274 * The leftover is flushed to the centralized per-memcg value.
3275 * On the next attempt to refill obj stock it will be moved
3276 * to a per-cpu stock (probably, on an other CPU), see
3277 * refill_obj_stock().
3278 *
3279 * How often it's flushed is a trade-off between the memory
3280 * limit enforcement accuracy and potential CPU contention,
3281 * so it might be changed in the future.
3282 */
3283 atomic_add(nr_bytes, &old->nr_charged_bytes);
3284 stock->nr_bytes = 0;
3285 }
3286
3287 /*
3288 * Flush the vmstat data in current stock
3289 */
3290 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3291 if (stock->nr_slab_reclaimable_b) {
3292 mod_objcg_mlstate(old, stock->cached_pgdat,
3293 NR_SLAB_RECLAIMABLE_B,
3294 stock->nr_slab_reclaimable_b);
3295 stock->nr_slab_reclaimable_b = 0;
3296 }
3297 if (stock->nr_slab_unreclaimable_b) {
3298 mod_objcg_mlstate(old, stock->cached_pgdat,
3299 NR_SLAB_UNRECLAIMABLE_B,
3300 stock->nr_slab_unreclaimable_b);
3301 stock->nr_slab_unreclaimable_b = 0;
3302 }
3303 stock->cached_pgdat = NULL;
3304 }
3305
3306 WRITE_ONCE(stock->cached_objcg, NULL);
3307 /*
3308 * The `old' objects needs to be released by the caller via
3309 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
3310 */
3311 return old;
3312}
3313
3314static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3315 struct mem_cgroup *root_memcg)
3316{
3317 struct obj_cgroup *objcg = READ_ONCE(stock->cached_objcg);
3318 struct mem_cgroup *memcg;
3319
3320 if (objcg) {
3321 memcg = obj_cgroup_memcg(objcg);
3322 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3323 return true;
3324 }
3325
3326 return false;
3327}
3328
3329static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3330 bool allow_uncharge)
3331{
3332 struct memcg_stock_pcp *stock;
3333 struct obj_cgroup *old = NULL;
3334 unsigned long flags;
3335 unsigned int nr_pages = 0;
3336
3337 local_lock_irqsave(&memcg_stock.stock_lock, flags);
3338
3339 stock = this_cpu_ptr(&memcg_stock);
3340 if (READ_ONCE(stock->cached_objcg) != objcg) { /* reset if necessary */
3341 old = drain_obj_stock(stock);
3342 obj_cgroup_get(objcg);
3343 WRITE_ONCE(stock->cached_objcg, objcg);
3344 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3345 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3346 allow_uncharge = true; /* Allow uncharge when objcg changes */
3347 }
3348 stock->nr_bytes += nr_bytes;
3349
3350 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3351 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3352 stock->nr_bytes &= (PAGE_SIZE - 1);
3353 }
3354
3355 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3356 if (old)
3357 obj_cgroup_put(old);
3358
3359 if (nr_pages)
3360 obj_cgroup_uncharge_pages(objcg, nr_pages);
3361}
3362
3363int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3364{
3365 unsigned int nr_pages, nr_bytes;
3366 int ret;
3367
3368 if (consume_obj_stock(objcg, size))
3369 return 0;
3370
3371 /*
3372 * In theory, objcg->nr_charged_bytes can have enough
3373 * pre-charged bytes to satisfy the allocation. However,
3374 * flushing objcg->nr_charged_bytes requires two atomic
3375 * operations, and objcg->nr_charged_bytes can't be big.
3376 * The shared objcg->nr_charged_bytes can also become a
3377 * performance bottleneck if all tasks of the same memcg are
3378 * trying to update it. So it's better to ignore it and try
3379 * grab some new pages. The stock's nr_bytes will be flushed to
3380 * objcg->nr_charged_bytes later on when objcg changes.
3381 *
3382 * The stock's nr_bytes may contain enough pre-charged bytes
3383 * to allow one less page from being charged, but we can't rely
3384 * on the pre-charged bytes not being changed outside of
3385 * consume_obj_stock() or refill_obj_stock(). So ignore those
3386 * pre-charged bytes as well when charging pages. To avoid a
3387 * page uncharge right after a page charge, we set the
3388 * allow_uncharge flag to false when calling refill_obj_stock()
3389 * to temporarily allow the pre-charged bytes to exceed the page
3390 * size limit. The maximum reachable value of the pre-charged
3391 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3392 * race.
3393 */
3394 nr_pages = size >> PAGE_SHIFT;
3395 nr_bytes = size & (PAGE_SIZE - 1);
3396
3397 if (nr_bytes)
3398 nr_pages += 1;
3399
3400 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3401 if (!ret && nr_bytes)
3402 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3403
3404 return ret;
3405}
3406
3407void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3408{
3409 refill_obj_stock(objcg, size, true);
3410}
3411
3412#endif /* CONFIG_MEMCG_KMEM */
3413
3414/*
3415 * Because page_memcg(head) is not set on tails, set it now.
3416 */
3417void split_page_memcg(struct page *head, unsigned int nr)
3418{
3419 struct folio *folio = page_folio(head);
3420 struct mem_cgroup *memcg = folio_memcg(folio);
3421 int i;
3422
3423 if (mem_cgroup_disabled() || !memcg)
3424 return;
3425
3426 for (i = 1; i < nr; i++)
3427 folio_page(folio, i)->memcg_data = folio->memcg_data;
3428
3429 if (folio_memcg_kmem(folio))
3430 obj_cgroup_get_many(__folio_objcg(folio), nr - 1);
3431 else
3432 css_get_many(&memcg->css, nr - 1);
3433}
3434
3435#ifdef CONFIG_SWAP
3436/**
3437 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3438 * @entry: swap entry to be moved
3439 * @from: mem_cgroup which the entry is moved from
3440 * @to: mem_cgroup which the entry is moved to
3441 *
3442 * It succeeds only when the swap_cgroup's record for this entry is the same
3443 * as the mem_cgroup's id of @from.
3444 *
3445 * Returns 0 on success, -EINVAL on failure.
3446 *
3447 * The caller must have charged to @to, IOW, called page_counter_charge() about
3448 * both res and memsw, and called css_get().
3449 */
3450static int mem_cgroup_move_swap_account(swp_entry_t entry,
3451 struct mem_cgroup *from, struct mem_cgroup *to)
3452{
3453 unsigned short old_id, new_id;
3454
3455 old_id = mem_cgroup_id(from);
3456 new_id = mem_cgroup_id(to);
3457
3458 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3459 mod_memcg_state(from, MEMCG_SWAP, -1);
3460 mod_memcg_state(to, MEMCG_SWAP, 1);
3461 return 0;
3462 }
3463 return -EINVAL;
3464}
3465#else
3466static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3467 struct mem_cgroup *from, struct mem_cgroup *to)
3468{
3469 return -EINVAL;
3470}
3471#endif
3472
3473static DEFINE_MUTEX(memcg_max_mutex);
3474
3475static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3476 unsigned long max, bool memsw)
3477{
3478 bool enlarge = false;
3479 bool drained = false;
3480 int ret;
3481 bool limits_invariant;
3482 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3483
3484 do {
3485 if (signal_pending(current)) {
3486 ret = -EINTR;
3487 break;
3488 }
3489
3490 mutex_lock(&memcg_max_mutex);
3491 /*
3492 * Make sure that the new limit (memsw or memory limit) doesn't
3493 * break our basic invariant rule memory.max <= memsw.max.
3494 */
3495 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3496 max <= memcg->memsw.max;
3497 if (!limits_invariant) {
3498 mutex_unlock(&memcg_max_mutex);
3499 ret = -EINVAL;
3500 break;
3501 }
3502 if (max > counter->max)
3503 enlarge = true;
3504 ret = page_counter_set_max(counter, max);
3505 mutex_unlock(&memcg_max_mutex);
3506
3507 if (!ret)
3508 break;
3509
3510 if (!drained) {
3511 drain_all_stock(memcg);
3512 drained = true;
3513 continue;
3514 }
3515
3516 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3517 memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP)) {
3518 ret = -EBUSY;
3519 break;
3520 }
3521 } while (true);
3522
3523 if (!ret && enlarge)
3524 memcg_oom_recover(memcg);
3525
3526 return ret;
3527}
3528
3529unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3530 gfp_t gfp_mask,
3531 unsigned long *total_scanned)
3532{
3533 unsigned long nr_reclaimed = 0;
3534 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3535 unsigned long reclaimed;
3536 int loop = 0;
3537 struct mem_cgroup_tree_per_node *mctz;
3538 unsigned long excess;
3539
3540 if (lru_gen_enabled())
3541 return 0;
3542
3543 if (order > 0)
3544 return 0;
3545
3546 mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
3547
3548 /*
3549 * Do not even bother to check the largest node if the root
3550 * is empty. Do it lockless to prevent lock bouncing. Races
3551 * are acceptable as soft limit is best effort anyway.
3552 */
3553 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3554 return 0;
3555
3556 /*
3557 * This loop can run a while, specially if mem_cgroup's continuously
3558 * keep exceeding their soft limit and putting the system under
3559 * pressure
3560 */
3561 do {
3562 if (next_mz)
3563 mz = next_mz;
3564 else
3565 mz = mem_cgroup_largest_soft_limit_node(mctz);
3566 if (!mz)
3567 break;
3568
3569 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3570 gfp_mask, total_scanned);
3571 nr_reclaimed += reclaimed;
3572 spin_lock_irq(&mctz->lock);
3573
3574 /*
3575 * If we failed to reclaim anything from this memory cgroup
3576 * it is time to move on to the next cgroup
3577 */
3578 next_mz = NULL;
3579 if (!reclaimed)
3580 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3581
3582 excess = soft_limit_excess(mz->memcg);
3583 /*
3584 * One school of thought says that we should not add
3585 * back the node to the tree if reclaim returns 0.
3586 * But our reclaim could return 0, simply because due
3587 * to priority we are exposing a smaller subset of
3588 * memory to reclaim from. Consider this as a longer
3589 * term TODO.
3590 */
3591 /* If excess == 0, no tree ops */
3592 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3593 spin_unlock_irq(&mctz->lock);
3594 css_put(&mz->memcg->css);
3595 loop++;
3596 /*
3597 * Could not reclaim anything and there are no more
3598 * mem cgroups to try or we seem to be looping without
3599 * reclaiming anything.
3600 */
3601 if (!nr_reclaimed &&
3602 (next_mz == NULL ||
3603 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3604 break;
3605 } while (!nr_reclaimed);
3606 if (next_mz)
3607 css_put(&next_mz->memcg->css);
3608 return nr_reclaimed;
3609}
3610
3611/*
3612 * Reclaims as many pages from the given memcg as possible.
3613 *
3614 * Caller is responsible for holding css reference for memcg.
3615 */
3616static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3617{
3618 int nr_retries = MAX_RECLAIM_RETRIES;
3619
3620 /* we call try-to-free pages for make this cgroup empty */
3621 lru_add_drain_all();
3622
3623 drain_all_stock(memcg);
3624
3625 /* try to free all pages in this cgroup */
3626 while (nr_retries && page_counter_read(&memcg->memory)) {
3627 if (signal_pending(current))
3628 return -EINTR;
3629
3630 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3631 MEMCG_RECLAIM_MAY_SWAP))
3632 nr_retries--;
3633 }
3634
3635 return 0;
3636}
3637
3638static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3639 char *buf, size_t nbytes,
3640 loff_t off)
3641{
3642 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3643
3644 if (mem_cgroup_is_root(memcg))
3645 return -EINVAL;
3646 return mem_cgroup_force_empty(memcg) ?: nbytes;
3647}
3648
3649static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3650 struct cftype *cft)
3651{
3652 return 1;
3653}
3654
3655static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3656 struct cftype *cft, u64 val)
3657{
3658 if (val == 1)
3659 return 0;
3660
3661 pr_warn_once("Non-hierarchical mode is deprecated. "
3662 "Please report your usecase to linux-mm@kvack.org if you "
3663 "depend on this functionality.\n");
3664
3665 return -EINVAL;
3666}
3667
3668static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3669{
3670 unsigned long val;
3671
3672 if (mem_cgroup_is_root(memcg)) {
3673 /*
3674 * Approximate root's usage from global state. This isn't
3675 * perfect, but the root usage was always an approximation.
3676 */
3677 val = global_node_page_state(NR_FILE_PAGES) +
3678 global_node_page_state(NR_ANON_MAPPED);
3679 if (swap)
3680 val += total_swap_pages - get_nr_swap_pages();
3681 } else {
3682 if (!swap)
3683 val = page_counter_read(&memcg->memory);
3684 else
3685 val = page_counter_read(&memcg->memsw);
3686 }
3687 return val;
3688}
3689
3690enum {
3691 RES_USAGE,
3692 RES_LIMIT,
3693 RES_MAX_USAGE,
3694 RES_FAILCNT,
3695 RES_SOFT_LIMIT,
3696};
3697
3698static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3699 struct cftype *cft)
3700{
3701 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3702 struct page_counter *counter;
3703
3704 switch (MEMFILE_TYPE(cft->private)) {
3705 case _MEM:
3706 counter = &memcg->memory;
3707 break;
3708 case _MEMSWAP:
3709 counter = &memcg->memsw;
3710 break;
3711 case _KMEM:
3712 counter = &memcg->kmem;
3713 break;
3714 case _TCP:
3715 counter = &memcg->tcpmem;
3716 break;
3717 default:
3718 BUG();
3719 }
3720
3721 switch (MEMFILE_ATTR(cft->private)) {
3722 case RES_USAGE:
3723 if (counter == &memcg->memory)
3724 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3725 if (counter == &memcg->memsw)
3726 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3727 return (u64)page_counter_read(counter) * PAGE_SIZE;
3728 case RES_LIMIT:
3729 return (u64)counter->max * PAGE_SIZE;
3730 case RES_MAX_USAGE:
3731 return (u64)counter->watermark * PAGE_SIZE;
3732 case RES_FAILCNT:
3733 return counter->failcnt;
3734 case RES_SOFT_LIMIT:
3735 return (u64)READ_ONCE(memcg->soft_limit) * PAGE_SIZE;
3736 default:
3737 BUG();
3738 }
3739}
3740
3741/*
3742 * This function doesn't do anything useful. Its only job is to provide a read
3743 * handler for a file so that cgroup_file_mode() will add read permissions.
3744 */
3745static int mem_cgroup_dummy_seq_show(__always_unused struct seq_file *m,
3746 __always_unused void *v)
3747{
3748 return -EINVAL;
3749}
3750
3751#ifdef CONFIG_MEMCG_KMEM
3752static int memcg_online_kmem(struct mem_cgroup *memcg)
3753{
3754 struct obj_cgroup *objcg;
3755
3756 if (mem_cgroup_kmem_disabled())
3757 return 0;
3758
3759 if (unlikely(mem_cgroup_is_root(memcg)))
3760 return 0;
3761
3762 objcg = obj_cgroup_alloc();
3763 if (!objcg)
3764 return -ENOMEM;
3765
3766 objcg->memcg = memcg;
3767 rcu_assign_pointer(memcg->objcg, objcg);
3768
3769 static_branch_enable(&memcg_kmem_online_key);
3770
3771 memcg->kmemcg_id = memcg->id.id;
3772
3773 return 0;
3774}
3775
3776static void memcg_offline_kmem(struct mem_cgroup *memcg)
3777{
3778 struct mem_cgroup *parent;
3779
3780 if (mem_cgroup_kmem_disabled())
3781 return;
3782
3783 if (unlikely(mem_cgroup_is_root(memcg)))
3784 return;
3785
3786 parent = parent_mem_cgroup(memcg);
3787 if (!parent)
3788 parent = root_mem_cgroup;
3789
3790 memcg_reparent_objcgs(memcg, parent);
3791
3792 /*
3793 * After we have finished memcg_reparent_objcgs(), all list_lrus
3794 * corresponding to this cgroup are guaranteed to remain empty.
3795 * The ordering is imposed by list_lru_node->lock taken by
3796 * memcg_reparent_list_lrus().
3797 */
3798 memcg_reparent_list_lrus(memcg, parent);
3799}
3800#else
3801static int memcg_online_kmem(struct mem_cgroup *memcg)
3802{
3803 return 0;
3804}
3805static void memcg_offline_kmem(struct mem_cgroup *memcg)
3806{
3807}
3808#endif /* CONFIG_MEMCG_KMEM */
3809
3810static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3811{
3812 int ret;
3813
3814 mutex_lock(&memcg_max_mutex);
3815
3816 ret = page_counter_set_max(&memcg->tcpmem, max);
3817 if (ret)
3818 goto out;
3819
3820 if (!memcg->tcpmem_active) {
3821 /*
3822 * The active flag needs to be written after the static_key
3823 * update. This is what guarantees that the socket activation
3824 * function is the last one to run. See mem_cgroup_sk_alloc()
3825 * for details, and note that we don't mark any socket as
3826 * belonging to this memcg until that flag is up.
3827 *
3828 * We need to do this, because static_keys will span multiple
3829 * sites, but we can't control their order. If we mark a socket
3830 * as accounted, but the accounting functions are not patched in
3831 * yet, we'll lose accounting.
3832 *
3833 * We never race with the readers in mem_cgroup_sk_alloc(),
3834 * because when this value change, the code to process it is not
3835 * patched in yet.
3836 */
3837 static_branch_inc(&memcg_sockets_enabled_key);
3838 memcg->tcpmem_active = true;
3839 }
3840out:
3841 mutex_unlock(&memcg_max_mutex);
3842 return ret;
3843}
3844
3845/*
3846 * The user of this function is...
3847 * RES_LIMIT.
3848 */
3849static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3850 char *buf, size_t nbytes, loff_t off)
3851{
3852 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3853 unsigned long nr_pages;
3854 int ret;
3855
3856 buf = strstrip(buf);
3857 ret = page_counter_memparse(buf, "-1", &nr_pages);
3858 if (ret)
3859 return ret;
3860
3861 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3862 case RES_LIMIT:
3863 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3864 ret = -EINVAL;
3865 break;
3866 }
3867 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3868 case _MEM:
3869 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3870 break;
3871 case _MEMSWAP:
3872 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3873 break;
3874 case _KMEM:
3875 /* kmem.limit_in_bytes is deprecated. */
3876 ret = -EOPNOTSUPP;
3877 break;
3878 case _TCP:
3879 ret = memcg_update_tcp_max(memcg, nr_pages);
3880 break;
3881 }
3882 break;
3883 case RES_SOFT_LIMIT:
3884 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
3885 ret = -EOPNOTSUPP;
3886 } else {
3887 WRITE_ONCE(memcg->soft_limit, nr_pages);
3888 ret = 0;
3889 }
3890 break;
3891 }
3892 return ret ?: nbytes;
3893}
3894
3895static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3896 size_t nbytes, loff_t off)
3897{
3898 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3899 struct page_counter *counter;
3900
3901 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3902 case _MEM:
3903 counter = &memcg->memory;
3904 break;
3905 case _MEMSWAP:
3906 counter = &memcg->memsw;
3907 break;
3908 case _KMEM:
3909 counter = &memcg->kmem;
3910 break;
3911 case _TCP:
3912 counter = &memcg->tcpmem;
3913 break;
3914 default:
3915 BUG();
3916 }
3917
3918 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3919 case RES_MAX_USAGE:
3920 page_counter_reset_watermark(counter);
3921 break;
3922 case RES_FAILCNT:
3923 counter->failcnt = 0;
3924 break;
3925 default:
3926 BUG();
3927 }
3928
3929 return nbytes;
3930}
3931
3932static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3933 struct cftype *cft)
3934{
3935 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3936}
3937
3938#ifdef CONFIG_MMU
3939static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3940 struct cftype *cft, u64 val)
3941{
3942 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3943
3944 pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. "
3945 "Please report your usecase to linux-mm@kvack.org if you "
3946 "depend on this functionality.\n");
3947
3948 if (val & ~MOVE_MASK)
3949 return -EINVAL;
3950
3951 /*
3952 * No kind of locking is needed in here, because ->can_attach() will
3953 * check this value once in the beginning of the process, and then carry
3954 * on with stale data. This means that changes to this value will only
3955 * affect task migrations starting after the change.
3956 */
3957 memcg->move_charge_at_immigrate = val;
3958 return 0;
3959}
3960#else
3961static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3962 struct cftype *cft, u64 val)
3963{
3964 return -ENOSYS;
3965}
3966#endif
3967
3968#ifdef CONFIG_NUMA
3969
3970#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
3971#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
3972#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
3973
3974static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
3975 int nid, unsigned int lru_mask, bool tree)
3976{
3977 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
3978 unsigned long nr = 0;
3979 enum lru_list lru;
3980
3981 VM_BUG_ON((unsigned)nid >= nr_node_ids);
3982
3983 for_each_lru(lru) {
3984 if (!(BIT(lru) & lru_mask))
3985 continue;
3986 if (tree)
3987 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
3988 else
3989 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
3990 }
3991 return nr;
3992}
3993
3994static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
3995 unsigned int lru_mask,
3996 bool tree)
3997{
3998 unsigned long nr = 0;
3999 enum lru_list lru;
4000
4001 for_each_lru(lru) {
4002 if (!(BIT(lru) & lru_mask))
4003 continue;
4004 if (tree)
4005 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
4006 else
4007 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
4008 }
4009 return nr;
4010}
4011
4012static int memcg_numa_stat_show(struct seq_file *m, void *v)
4013{
4014 struct numa_stat {
4015 const char *name;
4016 unsigned int lru_mask;
4017 };
4018
4019 static const struct numa_stat stats[] = {
4020 { "total", LRU_ALL },
4021 { "file", LRU_ALL_FILE },
4022 { "anon", LRU_ALL_ANON },
4023 { "unevictable", BIT(LRU_UNEVICTABLE) },
4024 };
4025 const struct numa_stat *stat;
4026 int nid;
4027 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4028
4029 mem_cgroup_flush_stats();
4030
4031 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4032 seq_printf(m, "%s=%lu", stat->name,
4033 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4034 false));
4035 for_each_node_state(nid, N_MEMORY)
4036 seq_printf(m, " N%d=%lu", nid,
4037 mem_cgroup_node_nr_lru_pages(memcg, nid,
4038 stat->lru_mask, false));
4039 seq_putc(m, '\n');
4040 }
4041
4042 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4043
4044 seq_printf(m, "hierarchical_%s=%lu", stat->name,
4045 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4046 true));
4047 for_each_node_state(nid, N_MEMORY)
4048 seq_printf(m, " N%d=%lu", nid,
4049 mem_cgroup_node_nr_lru_pages(memcg, nid,
4050 stat->lru_mask, true));
4051 seq_putc(m, '\n');
4052 }
4053
4054 return 0;
4055}
4056#endif /* CONFIG_NUMA */
4057
4058static const unsigned int memcg1_stats[] = {
4059 NR_FILE_PAGES,
4060 NR_ANON_MAPPED,
4061#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4062 NR_ANON_THPS,
4063#endif
4064 NR_SHMEM,
4065 NR_FILE_MAPPED,
4066 NR_FILE_DIRTY,
4067 NR_WRITEBACK,
4068 WORKINGSET_REFAULT_ANON,
4069 WORKINGSET_REFAULT_FILE,
4070 MEMCG_SWAP,
4071};
4072
4073static const char *const memcg1_stat_names[] = {
4074 "cache",
4075 "rss",
4076#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4077 "rss_huge",
4078#endif
4079 "shmem",
4080 "mapped_file",
4081 "dirty",
4082 "writeback",
4083 "workingset_refault_anon",
4084 "workingset_refault_file",
4085 "swap",
4086};
4087
4088/* Universal VM events cgroup1 shows, original sort order */
4089static const unsigned int memcg1_events[] = {
4090 PGPGIN,
4091 PGPGOUT,
4092 PGFAULT,
4093 PGMAJFAULT,
4094};
4095
4096static void memcg1_stat_format(struct mem_cgroup *memcg, struct seq_buf *s)
4097{
4098 unsigned long memory, memsw;
4099 struct mem_cgroup *mi;
4100 unsigned int i;
4101
4102 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4103
4104 mem_cgroup_flush_stats();
4105
4106 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4107 unsigned long nr;
4108
4109 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4110 continue;
4111 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4112 seq_buf_printf(s, "%s %lu\n", memcg1_stat_names[i],
4113 nr * memcg_page_state_unit(memcg1_stats[i]));
4114 }
4115
4116 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4117 seq_buf_printf(s, "%s %lu\n", vm_event_name(memcg1_events[i]),
4118 memcg_events_local(memcg, memcg1_events[i]));
4119
4120 for (i = 0; i < NR_LRU_LISTS; i++)
4121 seq_buf_printf(s, "%s %lu\n", lru_list_name(i),
4122 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4123 PAGE_SIZE);
4124
4125 /* Hierarchical information */
4126 memory = memsw = PAGE_COUNTER_MAX;
4127 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4128 memory = min(memory, READ_ONCE(mi->memory.max));
4129 memsw = min(memsw, READ_ONCE(mi->memsw.max));
4130 }
4131 seq_buf_printf(s, "hierarchical_memory_limit %llu\n",
4132 (u64)memory * PAGE_SIZE);
4133 if (do_memsw_account())
4134 seq_buf_printf(s, "hierarchical_memsw_limit %llu\n",
4135 (u64)memsw * PAGE_SIZE);
4136
4137 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4138 unsigned long nr;
4139
4140 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4141 continue;
4142 nr = memcg_page_state(memcg, memcg1_stats[i]);
4143 seq_buf_printf(s, "total_%s %llu\n", memcg1_stat_names[i],
4144 (u64)nr * memcg_page_state_unit(memcg1_stats[i]));
4145 }
4146
4147 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4148 seq_buf_printf(s, "total_%s %llu\n",
4149 vm_event_name(memcg1_events[i]),
4150 (u64)memcg_events(memcg, memcg1_events[i]));
4151
4152 for (i = 0; i < NR_LRU_LISTS; i++)
4153 seq_buf_printf(s, "total_%s %llu\n", lru_list_name(i),
4154 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4155 PAGE_SIZE);
4156
4157#ifdef CONFIG_DEBUG_VM
4158 {
4159 pg_data_t *pgdat;
4160 struct mem_cgroup_per_node *mz;
4161 unsigned long anon_cost = 0;
4162 unsigned long file_cost = 0;
4163
4164 for_each_online_pgdat(pgdat) {
4165 mz = memcg->nodeinfo[pgdat->node_id];
4166
4167 anon_cost += mz->lruvec.anon_cost;
4168 file_cost += mz->lruvec.file_cost;
4169 }
4170 seq_buf_printf(s, "anon_cost %lu\n", anon_cost);
4171 seq_buf_printf(s, "file_cost %lu\n", file_cost);
4172 }
4173#endif
4174}
4175
4176static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4177 struct cftype *cft)
4178{
4179 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4180
4181 return mem_cgroup_swappiness(memcg);
4182}
4183
4184static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4185 struct cftype *cft, u64 val)
4186{
4187 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4188
4189 if (val > 200)
4190 return -EINVAL;
4191
4192 if (!mem_cgroup_is_root(memcg))
4193 WRITE_ONCE(memcg->swappiness, val);
4194 else
4195 WRITE_ONCE(vm_swappiness, val);
4196
4197 return 0;
4198}
4199
4200static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4201{
4202 struct mem_cgroup_threshold_ary *t;
4203 unsigned long usage;
4204 int i;
4205
4206 rcu_read_lock();
4207 if (!swap)
4208 t = rcu_dereference(memcg->thresholds.primary);
4209 else
4210 t = rcu_dereference(memcg->memsw_thresholds.primary);
4211
4212 if (!t)
4213 goto unlock;
4214
4215 usage = mem_cgroup_usage(memcg, swap);
4216
4217 /*
4218 * current_threshold points to threshold just below or equal to usage.
4219 * If it's not true, a threshold was crossed after last
4220 * call of __mem_cgroup_threshold().
4221 */
4222 i = t->current_threshold;
4223
4224 /*
4225 * Iterate backward over array of thresholds starting from
4226 * current_threshold and check if a threshold is crossed.
4227 * If none of thresholds below usage is crossed, we read
4228 * only one element of the array here.
4229 */
4230 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4231 eventfd_signal(t->entries[i].eventfd, 1);
4232
4233 /* i = current_threshold + 1 */
4234 i++;
4235
4236 /*
4237 * Iterate forward over array of thresholds starting from
4238 * current_threshold+1 and check if a threshold is crossed.
4239 * If none of thresholds above usage is crossed, we read
4240 * only one element of the array here.
4241 */
4242 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4243 eventfd_signal(t->entries[i].eventfd, 1);
4244
4245 /* Update current_threshold */
4246 t->current_threshold = i - 1;
4247unlock:
4248 rcu_read_unlock();
4249}
4250
4251static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4252{
4253 while (memcg) {
4254 __mem_cgroup_threshold(memcg, false);
4255 if (do_memsw_account())
4256 __mem_cgroup_threshold(memcg, true);
4257
4258 memcg = parent_mem_cgroup(memcg);
4259 }
4260}
4261
4262static int compare_thresholds(const void *a, const void *b)
4263{
4264 const struct mem_cgroup_threshold *_a = a;
4265 const struct mem_cgroup_threshold *_b = b;
4266
4267 if (_a->threshold > _b->threshold)
4268 return 1;
4269
4270 if (_a->threshold < _b->threshold)
4271 return -1;
4272
4273 return 0;
4274}
4275
4276static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4277{
4278 struct mem_cgroup_eventfd_list *ev;
4279
4280 spin_lock(&memcg_oom_lock);
4281
4282 list_for_each_entry(ev, &memcg->oom_notify, list)
4283 eventfd_signal(ev->eventfd, 1);
4284
4285 spin_unlock(&memcg_oom_lock);
4286 return 0;
4287}
4288
4289static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4290{
4291 struct mem_cgroup *iter;
4292
4293 for_each_mem_cgroup_tree(iter, memcg)
4294 mem_cgroup_oom_notify_cb(iter);
4295}
4296
4297static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4298 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4299{
4300 struct mem_cgroup_thresholds *thresholds;
4301 struct mem_cgroup_threshold_ary *new;
4302 unsigned long threshold;
4303 unsigned long usage;
4304 int i, size, ret;
4305
4306 ret = page_counter_memparse(args, "-1", &threshold);
4307 if (ret)
4308 return ret;
4309
4310 mutex_lock(&memcg->thresholds_lock);
4311
4312 if (type == _MEM) {
4313 thresholds = &memcg->thresholds;
4314 usage = mem_cgroup_usage(memcg, false);
4315 } else if (type == _MEMSWAP) {
4316 thresholds = &memcg->memsw_thresholds;
4317 usage = mem_cgroup_usage(memcg, true);
4318 } else
4319 BUG();
4320
4321 /* Check if a threshold crossed before adding a new one */
4322 if (thresholds->primary)
4323 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4324
4325 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4326
4327 /* Allocate memory for new array of thresholds */
4328 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4329 if (!new) {
4330 ret = -ENOMEM;
4331 goto unlock;
4332 }
4333 new->size = size;
4334
4335 /* Copy thresholds (if any) to new array */
4336 if (thresholds->primary)
4337 memcpy(new->entries, thresholds->primary->entries,
4338 flex_array_size(new, entries, size - 1));
4339
4340 /* Add new threshold */
4341 new->entries[size - 1].eventfd = eventfd;
4342 new->entries[size - 1].threshold = threshold;
4343
4344 /* Sort thresholds. Registering of new threshold isn't time-critical */
4345 sort(new->entries, size, sizeof(*new->entries),
4346 compare_thresholds, NULL);
4347
4348 /* Find current threshold */
4349 new->current_threshold = -1;
4350 for (i = 0; i < size; i++) {
4351 if (new->entries[i].threshold <= usage) {
4352 /*
4353 * new->current_threshold will not be used until
4354 * rcu_assign_pointer(), so it's safe to increment
4355 * it here.
4356 */
4357 ++new->current_threshold;
4358 } else
4359 break;
4360 }
4361
4362 /* Free old spare buffer and save old primary buffer as spare */
4363 kfree(thresholds->spare);
4364 thresholds->spare = thresholds->primary;
4365
4366 rcu_assign_pointer(thresholds->primary, new);
4367
4368 /* To be sure that nobody uses thresholds */
4369 synchronize_rcu();
4370
4371unlock:
4372 mutex_unlock(&memcg->thresholds_lock);
4373
4374 return ret;
4375}
4376
4377static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4378 struct eventfd_ctx *eventfd, const char *args)
4379{
4380 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4381}
4382
4383static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4384 struct eventfd_ctx *eventfd, const char *args)
4385{
4386 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4387}
4388
4389static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4390 struct eventfd_ctx *eventfd, enum res_type type)
4391{
4392 struct mem_cgroup_thresholds *thresholds;
4393 struct mem_cgroup_threshold_ary *new;
4394 unsigned long usage;
4395 int i, j, size, entries;
4396
4397 mutex_lock(&memcg->thresholds_lock);
4398
4399 if (type == _MEM) {
4400 thresholds = &memcg->thresholds;
4401 usage = mem_cgroup_usage(memcg, false);
4402 } else if (type == _MEMSWAP) {
4403 thresholds = &memcg->memsw_thresholds;
4404 usage = mem_cgroup_usage(memcg, true);
4405 } else
4406 BUG();
4407
4408 if (!thresholds->primary)
4409 goto unlock;
4410
4411 /* Check if a threshold crossed before removing */
4412 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4413
4414 /* Calculate new number of threshold */
4415 size = entries = 0;
4416 for (i = 0; i < thresholds->primary->size; i++) {
4417 if (thresholds->primary->entries[i].eventfd != eventfd)
4418 size++;
4419 else
4420 entries++;
4421 }
4422
4423 new = thresholds->spare;
4424
4425 /* If no items related to eventfd have been cleared, nothing to do */
4426 if (!entries)
4427 goto unlock;
4428
4429 /* Set thresholds array to NULL if we don't have thresholds */
4430 if (!size) {
4431 kfree(new);
4432 new = NULL;
4433 goto swap_buffers;
4434 }
4435
4436 new->size = size;
4437
4438 /* Copy thresholds and find current threshold */
4439 new->current_threshold = -1;
4440 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4441 if (thresholds->primary->entries[i].eventfd == eventfd)
4442 continue;
4443
4444 new->entries[j] = thresholds->primary->entries[i];
4445 if (new->entries[j].threshold <= usage) {
4446 /*
4447 * new->current_threshold will not be used
4448 * until rcu_assign_pointer(), so it's safe to increment
4449 * it here.
4450 */
4451 ++new->current_threshold;
4452 }
4453 j++;
4454 }
4455
4456swap_buffers:
4457 /* Swap primary and spare array */
4458 thresholds->spare = thresholds->primary;
4459
4460 rcu_assign_pointer(thresholds->primary, new);
4461
4462 /* To be sure that nobody uses thresholds */
4463 synchronize_rcu();
4464
4465 /* If all events are unregistered, free the spare array */
4466 if (!new) {
4467 kfree(thresholds->spare);
4468 thresholds->spare = NULL;
4469 }
4470unlock:
4471 mutex_unlock(&memcg->thresholds_lock);
4472}
4473
4474static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4475 struct eventfd_ctx *eventfd)
4476{
4477 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4478}
4479
4480static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4481 struct eventfd_ctx *eventfd)
4482{
4483 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4484}
4485
4486static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4487 struct eventfd_ctx *eventfd, const char *args)
4488{
4489 struct mem_cgroup_eventfd_list *event;
4490
4491 event = kmalloc(sizeof(*event), GFP_KERNEL);
4492 if (!event)
4493 return -ENOMEM;
4494
4495 spin_lock(&memcg_oom_lock);
4496
4497 event->eventfd = eventfd;
4498 list_add(&event->list, &memcg->oom_notify);
4499
4500 /* already in OOM ? */
4501 if (memcg->under_oom)
4502 eventfd_signal(eventfd, 1);
4503 spin_unlock(&memcg_oom_lock);
4504
4505 return 0;
4506}
4507
4508static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4509 struct eventfd_ctx *eventfd)
4510{
4511 struct mem_cgroup_eventfd_list *ev, *tmp;
4512
4513 spin_lock(&memcg_oom_lock);
4514
4515 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4516 if (ev->eventfd == eventfd) {
4517 list_del(&ev->list);
4518 kfree(ev);
4519 }
4520 }
4521
4522 spin_unlock(&memcg_oom_lock);
4523}
4524
4525static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4526{
4527 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4528
4529 seq_printf(sf, "oom_kill_disable %d\n", READ_ONCE(memcg->oom_kill_disable));
4530 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4531 seq_printf(sf, "oom_kill %lu\n",
4532 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4533 return 0;
4534}
4535
4536static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4537 struct cftype *cft, u64 val)
4538{
4539 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4540
4541 /* cannot set to root cgroup and only 0 and 1 are allowed */
4542 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4543 return -EINVAL;
4544
4545 WRITE_ONCE(memcg->oom_kill_disable, val);
4546 if (!val)
4547 memcg_oom_recover(memcg);
4548
4549 return 0;
4550}
4551
4552#ifdef CONFIG_CGROUP_WRITEBACK
4553
4554#include <trace/events/writeback.h>
4555
4556static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4557{
4558 return wb_domain_init(&memcg->cgwb_domain, gfp);
4559}
4560
4561static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4562{
4563 wb_domain_exit(&memcg->cgwb_domain);
4564}
4565
4566static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4567{
4568 wb_domain_size_changed(&memcg->cgwb_domain);
4569}
4570
4571struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4572{
4573 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4574
4575 if (!memcg->css.parent)
4576 return NULL;
4577
4578 return &memcg->cgwb_domain;
4579}
4580
4581/**
4582 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4583 * @wb: bdi_writeback in question
4584 * @pfilepages: out parameter for number of file pages
4585 * @pheadroom: out parameter for number of allocatable pages according to memcg
4586 * @pdirty: out parameter for number of dirty pages
4587 * @pwriteback: out parameter for number of pages under writeback
4588 *
4589 * Determine the numbers of file, headroom, dirty, and writeback pages in
4590 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4591 * is a bit more involved.
4592 *
4593 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4594 * headroom is calculated as the lowest headroom of itself and the
4595 * ancestors. Note that this doesn't consider the actual amount of
4596 * available memory in the system. The caller should further cap
4597 * *@pheadroom accordingly.
4598 */
4599void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4600 unsigned long *pheadroom, unsigned long *pdirty,
4601 unsigned long *pwriteback)
4602{
4603 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4604 struct mem_cgroup *parent;
4605
4606 mem_cgroup_flush_stats();
4607
4608 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4609 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4610 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4611 memcg_page_state(memcg, NR_ACTIVE_FILE);
4612
4613 *pheadroom = PAGE_COUNTER_MAX;
4614 while ((parent = parent_mem_cgroup(memcg))) {
4615 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4616 READ_ONCE(memcg->memory.high));
4617 unsigned long used = page_counter_read(&memcg->memory);
4618
4619 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4620 memcg = parent;
4621 }
4622}
4623
4624/*
4625 * Foreign dirty flushing
4626 *
4627 * There's an inherent mismatch between memcg and writeback. The former
4628 * tracks ownership per-page while the latter per-inode. This was a
4629 * deliberate design decision because honoring per-page ownership in the
4630 * writeback path is complicated, may lead to higher CPU and IO overheads
4631 * and deemed unnecessary given that write-sharing an inode across
4632 * different cgroups isn't a common use-case.
4633 *
4634 * Combined with inode majority-writer ownership switching, this works well
4635 * enough in most cases but there are some pathological cases. For
4636 * example, let's say there are two cgroups A and B which keep writing to
4637 * different but confined parts of the same inode. B owns the inode and
4638 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4639 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4640 * triggering background writeback. A will be slowed down without a way to
4641 * make writeback of the dirty pages happen.
4642 *
4643 * Conditions like the above can lead to a cgroup getting repeatedly and
4644 * severely throttled after making some progress after each
4645 * dirty_expire_interval while the underlying IO device is almost
4646 * completely idle.
4647 *
4648 * Solving this problem completely requires matching the ownership tracking
4649 * granularities between memcg and writeback in either direction. However,
4650 * the more egregious behaviors can be avoided by simply remembering the
4651 * most recent foreign dirtying events and initiating remote flushes on
4652 * them when local writeback isn't enough to keep the memory clean enough.
4653 *
4654 * The following two functions implement such mechanism. When a foreign
4655 * page - a page whose memcg and writeback ownerships don't match - is
4656 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4657 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4658 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4659 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4660 * foreign bdi_writebacks which haven't expired. Both the numbers of
4661 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4662 * limited to MEMCG_CGWB_FRN_CNT.
4663 *
4664 * The mechanism only remembers IDs and doesn't hold any object references.
4665 * As being wrong occasionally doesn't matter, updates and accesses to the
4666 * records are lockless and racy.
4667 */
4668void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
4669 struct bdi_writeback *wb)
4670{
4671 struct mem_cgroup *memcg = folio_memcg(folio);
4672 struct memcg_cgwb_frn *frn;
4673 u64 now = get_jiffies_64();
4674 u64 oldest_at = now;
4675 int oldest = -1;
4676 int i;
4677
4678 trace_track_foreign_dirty(folio, wb);
4679
4680 /*
4681 * Pick the slot to use. If there is already a slot for @wb, keep
4682 * using it. If not replace the oldest one which isn't being
4683 * written out.
4684 */
4685 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4686 frn = &memcg->cgwb_frn[i];
4687 if (frn->bdi_id == wb->bdi->id &&
4688 frn->memcg_id == wb->memcg_css->id)
4689 break;
4690 if (time_before64(frn->at, oldest_at) &&
4691 atomic_read(&frn->done.cnt) == 1) {
4692 oldest = i;
4693 oldest_at = frn->at;
4694 }
4695 }
4696
4697 if (i < MEMCG_CGWB_FRN_CNT) {
4698 /*
4699 * Re-using an existing one. Update timestamp lazily to
4700 * avoid making the cacheline hot. We want them to be
4701 * reasonably up-to-date and significantly shorter than
4702 * dirty_expire_interval as that's what expires the record.
4703 * Use the shorter of 1s and dirty_expire_interval / 8.
4704 */
4705 unsigned long update_intv =
4706 min_t(unsigned long, HZ,
4707 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4708
4709 if (time_before64(frn->at, now - update_intv))
4710 frn->at = now;
4711 } else if (oldest >= 0) {
4712 /* replace the oldest free one */
4713 frn = &memcg->cgwb_frn[oldest];
4714 frn->bdi_id = wb->bdi->id;
4715 frn->memcg_id = wb->memcg_css->id;
4716 frn->at = now;
4717 }
4718}
4719
4720/* issue foreign writeback flushes for recorded foreign dirtying events */
4721void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4722{
4723 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4724 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4725 u64 now = jiffies_64;
4726 int i;
4727
4728 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4729 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4730
4731 /*
4732 * If the record is older than dirty_expire_interval,
4733 * writeback on it has already started. No need to kick it
4734 * off again. Also, don't start a new one if there's
4735 * already one in flight.
4736 */
4737 if (time_after64(frn->at, now - intv) &&
4738 atomic_read(&frn->done.cnt) == 1) {
4739 frn->at = 0;
4740 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4741 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
4742 WB_REASON_FOREIGN_FLUSH,
4743 &frn->done);
4744 }
4745 }
4746}
4747
4748#else /* CONFIG_CGROUP_WRITEBACK */
4749
4750static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4751{
4752 return 0;
4753}
4754
4755static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4756{
4757}
4758
4759static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4760{
4761}
4762
4763#endif /* CONFIG_CGROUP_WRITEBACK */
4764
4765/*
4766 * DO NOT USE IN NEW FILES.
4767 *
4768 * "cgroup.event_control" implementation.
4769 *
4770 * This is way over-engineered. It tries to support fully configurable
4771 * events for each user. Such level of flexibility is completely
4772 * unnecessary especially in the light of the planned unified hierarchy.
4773 *
4774 * Please deprecate this and replace with something simpler if at all
4775 * possible.
4776 */
4777
4778/*
4779 * Unregister event and free resources.
4780 *
4781 * Gets called from workqueue.
4782 */
4783static void memcg_event_remove(struct work_struct *work)
4784{
4785 struct mem_cgroup_event *event =
4786 container_of(work, struct mem_cgroup_event, remove);
4787 struct mem_cgroup *memcg = event->memcg;
4788
4789 remove_wait_queue(event->wqh, &event->wait);
4790
4791 event->unregister_event(memcg, event->eventfd);
4792
4793 /* Notify userspace the event is going away. */
4794 eventfd_signal(event->eventfd, 1);
4795
4796 eventfd_ctx_put(event->eventfd);
4797 kfree(event);
4798 css_put(&memcg->css);
4799}
4800
4801/*
4802 * Gets called on EPOLLHUP on eventfd when user closes it.
4803 *
4804 * Called with wqh->lock held and interrupts disabled.
4805 */
4806static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4807 int sync, void *key)
4808{
4809 struct mem_cgroup_event *event =
4810 container_of(wait, struct mem_cgroup_event, wait);
4811 struct mem_cgroup *memcg = event->memcg;
4812 __poll_t flags = key_to_poll(key);
4813
4814 if (flags & EPOLLHUP) {
4815 /*
4816 * If the event has been detached at cgroup removal, we
4817 * can simply return knowing the other side will cleanup
4818 * for us.
4819 *
4820 * We can't race against event freeing since the other
4821 * side will require wqh->lock via remove_wait_queue(),
4822 * which we hold.
4823 */
4824 spin_lock(&memcg->event_list_lock);
4825 if (!list_empty(&event->list)) {
4826 list_del_init(&event->list);
4827 /*
4828 * We are in atomic context, but cgroup_event_remove()
4829 * may sleep, so we have to call it in workqueue.
4830 */
4831 schedule_work(&event->remove);
4832 }
4833 spin_unlock(&memcg->event_list_lock);
4834 }
4835
4836 return 0;
4837}
4838
4839static void memcg_event_ptable_queue_proc(struct file *file,
4840 wait_queue_head_t *wqh, poll_table *pt)
4841{
4842 struct mem_cgroup_event *event =
4843 container_of(pt, struct mem_cgroup_event, pt);
4844
4845 event->wqh = wqh;
4846 add_wait_queue(wqh, &event->wait);
4847}
4848
4849/*
4850 * DO NOT USE IN NEW FILES.
4851 *
4852 * Parse input and register new cgroup event handler.
4853 *
4854 * Input must be in format '<event_fd> <control_fd> <args>'.
4855 * Interpretation of args is defined by control file implementation.
4856 */
4857static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4858 char *buf, size_t nbytes, loff_t off)
4859{
4860 struct cgroup_subsys_state *css = of_css(of);
4861 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4862 struct mem_cgroup_event *event;
4863 struct cgroup_subsys_state *cfile_css;
4864 unsigned int efd, cfd;
4865 struct fd efile;
4866 struct fd cfile;
4867 struct dentry *cdentry;
4868 const char *name;
4869 char *endp;
4870 int ret;
4871
4872 if (IS_ENABLED(CONFIG_PREEMPT_RT))
4873 return -EOPNOTSUPP;
4874
4875 buf = strstrip(buf);
4876
4877 efd = simple_strtoul(buf, &endp, 10);
4878 if (*endp != ' ')
4879 return -EINVAL;
4880 buf = endp + 1;
4881
4882 cfd = simple_strtoul(buf, &endp, 10);
4883 if ((*endp != ' ') && (*endp != '\0'))
4884 return -EINVAL;
4885 buf = endp + 1;
4886
4887 event = kzalloc(sizeof(*event), GFP_KERNEL);
4888 if (!event)
4889 return -ENOMEM;
4890
4891 event->memcg = memcg;
4892 INIT_LIST_HEAD(&event->list);
4893 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4894 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4895 INIT_WORK(&event->remove, memcg_event_remove);
4896
4897 efile = fdget(efd);
4898 if (!efile.file) {
4899 ret = -EBADF;
4900 goto out_kfree;
4901 }
4902
4903 event->eventfd = eventfd_ctx_fileget(efile.file);
4904 if (IS_ERR(event->eventfd)) {
4905 ret = PTR_ERR(event->eventfd);
4906 goto out_put_efile;
4907 }
4908
4909 cfile = fdget(cfd);
4910 if (!cfile.file) {
4911 ret = -EBADF;
4912 goto out_put_eventfd;
4913 }
4914
4915 /* the process need read permission on control file */
4916 /* AV: shouldn't we check that it's been opened for read instead? */
4917 ret = file_permission(cfile.file, MAY_READ);
4918 if (ret < 0)
4919 goto out_put_cfile;
4920
4921 /*
4922 * The control file must be a regular cgroup1 file. As a regular cgroup
4923 * file can't be renamed, it's safe to access its name afterwards.
4924 */
4925 cdentry = cfile.file->f_path.dentry;
4926 if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
4927 ret = -EINVAL;
4928 goto out_put_cfile;
4929 }
4930
4931 /*
4932 * Determine the event callbacks and set them in @event. This used
4933 * to be done via struct cftype but cgroup core no longer knows
4934 * about these events. The following is crude but the whole thing
4935 * is for compatibility anyway.
4936 *
4937 * DO NOT ADD NEW FILES.
4938 */
4939 name = cdentry->d_name.name;
4940
4941 if (!strcmp(name, "memory.usage_in_bytes")) {
4942 event->register_event = mem_cgroup_usage_register_event;
4943 event->unregister_event = mem_cgroup_usage_unregister_event;
4944 } else if (!strcmp(name, "memory.oom_control")) {
4945 event->register_event = mem_cgroup_oom_register_event;
4946 event->unregister_event = mem_cgroup_oom_unregister_event;
4947 } else if (!strcmp(name, "memory.pressure_level")) {
4948 event->register_event = vmpressure_register_event;
4949 event->unregister_event = vmpressure_unregister_event;
4950 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
4951 event->register_event = memsw_cgroup_usage_register_event;
4952 event->unregister_event = memsw_cgroup_usage_unregister_event;
4953 } else {
4954 ret = -EINVAL;
4955 goto out_put_cfile;
4956 }
4957
4958 /*
4959 * Verify @cfile should belong to @css. Also, remaining events are
4960 * automatically removed on cgroup destruction but the removal is
4961 * asynchronous, so take an extra ref on @css.
4962 */
4963 cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
4964 &memory_cgrp_subsys);
4965 ret = -EINVAL;
4966 if (IS_ERR(cfile_css))
4967 goto out_put_cfile;
4968 if (cfile_css != css) {
4969 css_put(cfile_css);
4970 goto out_put_cfile;
4971 }
4972
4973 ret = event->register_event(memcg, event->eventfd, buf);
4974 if (ret)
4975 goto out_put_css;
4976
4977 vfs_poll(efile.file, &event->pt);
4978
4979 spin_lock_irq(&memcg->event_list_lock);
4980 list_add(&event->list, &memcg->event_list);
4981 spin_unlock_irq(&memcg->event_list_lock);
4982
4983 fdput(cfile);
4984 fdput(efile);
4985
4986 return nbytes;
4987
4988out_put_css:
4989 css_put(css);
4990out_put_cfile:
4991 fdput(cfile);
4992out_put_eventfd:
4993 eventfd_ctx_put(event->eventfd);
4994out_put_efile:
4995 fdput(efile);
4996out_kfree:
4997 kfree(event);
4998
4999 return ret;
5000}
5001
5002#if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5003static int mem_cgroup_slab_show(struct seq_file *m, void *p)
5004{
5005 /*
5006 * Deprecated.
5007 * Please, take a look at tools/cgroup/memcg_slabinfo.py .
5008 */
5009 return 0;
5010}
5011#endif
5012
5013static int memory_stat_show(struct seq_file *m, void *v);
5014
5015static struct cftype mem_cgroup_legacy_files[] = {
5016 {
5017 .name = "usage_in_bytes",
5018 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5019 .read_u64 = mem_cgroup_read_u64,
5020 },
5021 {
5022 .name = "max_usage_in_bytes",
5023 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5024 .write = mem_cgroup_reset,
5025 .read_u64 = mem_cgroup_read_u64,
5026 },
5027 {
5028 .name = "limit_in_bytes",
5029 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5030 .write = mem_cgroup_write,
5031 .read_u64 = mem_cgroup_read_u64,
5032 },
5033 {
5034 .name = "soft_limit_in_bytes",
5035 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5036 .write = mem_cgroup_write,
5037 .read_u64 = mem_cgroup_read_u64,
5038 },
5039 {
5040 .name = "failcnt",
5041 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5042 .write = mem_cgroup_reset,
5043 .read_u64 = mem_cgroup_read_u64,
5044 },
5045 {
5046 .name = "stat",
5047 .seq_show = memory_stat_show,
5048 },
5049 {
5050 .name = "force_empty",
5051 .write = mem_cgroup_force_empty_write,
5052 },
5053 {
5054 .name = "use_hierarchy",
5055 .write_u64 = mem_cgroup_hierarchy_write,
5056 .read_u64 = mem_cgroup_hierarchy_read,
5057 },
5058 {
5059 .name = "cgroup.event_control", /* XXX: for compat */
5060 .write = memcg_write_event_control,
5061 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
5062 },
5063 {
5064 .name = "swappiness",
5065 .read_u64 = mem_cgroup_swappiness_read,
5066 .write_u64 = mem_cgroup_swappiness_write,
5067 },
5068 {
5069 .name = "move_charge_at_immigrate",
5070 .read_u64 = mem_cgroup_move_charge_read,
5071 .write_u64 = mem_cgroup_move_charge_write,
5072 },
5073 {
5074 .name = "oom_control",
5075 .seq_show = mem_cgroup_oom_control_read,
5076 .write_u64 = mem_cgroup_oom_control_write,
5077 },
5078 {
5079 .name = "pressure_level",
5080 .seq_show = mem_cgroup_dummy_seq_show,
5081 },
5082#ifdef CONFIG_NUMA
5083 {
5084 .name = "numa_stat",
5085 .seq_show = memcg_numa_stat_show,
5086 },
5087#endif
5088 {
5089 .name = "kmem.limit_in_bytes",
5090 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5091 .write = mem_cgroup_write,
5092 .read_u64 = mem_cgroup_read_u64,
5093 },
5094 {
5095 .name = "kmem.usage_in_bytes",
5096 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5097 .read_u64 = mem_cgroup_read_u64,
5098 },
5099 {
5100 .name = "kmem.failcnt",
5101 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5102 .write = mem_cgroup_reset,
5103 .read_u64 = mem_cgroup_read_u64,
5104 },
5105 {
5106 .name = "kmem.max_usage_in_bytes",
5107 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5108 .write = mem_cgroup_reset,
5109 .read_u64 = mem_cgroup_read_u64,
5110 },
5111#if defined(CONFIG_MEMCG_KMEM) && \
5112 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5113 {
5114 .name = "kmem.slabinfo",
5115 .seq_show = mem_cgroup_slab_show,
5116 },
5117#endif
5118 {
5119 .name = "kmem.tcp.limit_in_bytes",
5120 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5121 .write = mem_cgroup_write,
5122 .read_u64 = mem_cgroup_read_u64,
5123 },
5124 {
5125 .name = "kmem.tcp.usage_in_bytes",
5126 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5127 .read_u64 = mem_cgroup_read_u64,
5128 },
5129 {
5130 .name = "kmem.tcp.failcnt",
5131 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5132 .write = mem_cgroup_reset,
5133 .read_u64 = mem_cgroup_read_u64,
5134 },
5135 {
5136 .name = "kmem.tcp.max_usage_in_bytes",
5137 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5138 .write = mem_cgroup_reset,
5139 .read_u64 = mem_cgroup_read_u64,
5140 },
5141 { }, /* terminate */
5142};
5143
5144/*
5145 * Private memory cgroup IDR
5146 *
5147 * Swap-out records and page cache shadow entries need to store memcg
5148 * references in constrained space, so we maintain an ID space that is
5149 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5150 * memory-controlled cgroups to 64k.
5151 *
5152 * However, there usually are many references to the offline CSS after
5153 * the cgroup has been destroyed, such as page cache or reclaimable
5154 * slab objects, that don't need to hang on to the ID. We want to keep
5155 * those dead CSS from occupying IDs, or we might quickly exhaust the
5156 * relatively small ID space and prevent the creation of new cgroups
5157 * even when there are much fewer than 64k cgroups - possibly none.
5158 *
5159 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5160 * be freed and recycled when it's no longer needed, which is usually
5161 * when the CSS is offlined.
5162 *
5163 * The only exception to that are records of swapped out tmpfs/shmem
5164 * pages that need to be attributed to live ancestors on swapin. But
5165 * those references are manageable from userspace.
5166 */
5167
5168static DEFINE_IDR(mem_cgroup_idr);
5169
5170static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5171{
5172 if (memcg->id.id > 0) {
5173 idr_remove(&mem_cgroup_idr, memcg->id.id);
5174 memcg->id.id = 0;
5175 }
5176}
5177
5178static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5179 unsigned int n)
5180{
5181 refcount_add(n, &memcg->id.ref);
5182}
5183
5184static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5185{
5186 if (refcount_sub_and_test(n, &memcg->id.ref)) {
5187 mem_cgroup_id_remove(memcg);
5188
5189 /* Memcg ID pins CSS */
5190 css_put(&memcg->css);
5191 }
5192}
5193
5194static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5195{
5196 mem_cgroup_id_put_many(memcg, 1);
5197}
5198
5199/**
5200 * mem_cgroup_from_id - look up a memcg from a memcg id
5201 * @id: the memcg id to look up
5202 *
5203 * Caller must hold rcu_read_lock().
5204 */
5205struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5206{
5207 WARN_ON_ONCE(!rcu_read_lock_held());
5208 return idr_find(&mem_cgroup_idr, id);
5209}
5210
5211#ifdef CONFIG_SHRINKER_DEBUG
5212struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
5213{
5214 struct cgroup *cgrp;
5215 struct cgroup_subsys_state *css;
5216 struct mem_cgroup *memcg;
5217
5218 cgrp = cgroup_get_from_id(ino);
5219 if (IS_ERR(cgrp))
5220 return ERR_CAST(cgrp);
5221
5222 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
5223 if (css)
5224 memcg = container_of(css, struct mem_cgroup, css);
5225 else
5226 memcg = ERR_PTR(-ENOENT);
5227
5228 cgroup_put(cgrp);
5229
5230 return memcg;
5231}
5232#endif
5233
5234static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5235{
5236 struct mem_cgroup_per_node *pn;
5237
5238 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
5239 if (!pn)
5240 return 1;
5241
5242 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5243 GFP_KERNEL_ACCOUNT);
5244 if (!pn->lruvec_stats_percpu) {
5245 kfree(pn);
5246 return 1;
5247 }
5248
5249 lruvec_init(&pn->lruvec);
5250 pn->memcg = memcg;
5251
5252 memcg->nodeinfo[node] = pn;
5253 return 0;
5254}
5255
5256static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5257{
5258 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5259
5260 if (!pn)
5261 return;
5262
5263 free_percpu(pn->lruvec_stats_percpu);
5264 kfree(pn);
5265}
5266
5267static void __mem_cgroup_free(struct mem_cgroup *memcg)
5268{
5269 int node;
5270
5271 for_each_node(node)
5272 free_mem_cgroup_per_node_info(memcg, node);
5273 kfree(memcg->vmstats);
5274 free_percpu(memcg->vmstats_percpu);
5275 kfree(memcg);
5276}
5277
5278static void mem_cgroup_free(struct mem_cgroup *memcg)
5279{
5280 lru_gen_exit_memcg(memcg);
5281 memcg_wb_domain_exit(memcg);
5282 __mem_cgroup_free(memcg);
5283}
5284
5285static struct mem_cgroup *mem_cgroup_alloc(void)
5286{
5287 struct mem_cgroup *memcg;
5288 int node;
5289 int __maybe_unused i;
5290 long error = -ENOMEM;
5291
5292 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
5293 if (!memcg)
5294 return ERR_PTR(error);
5295
5296 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5297 1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL);
5298 if (memcg->id.id < 0) {
5299 error = memcg->id.id;
5300 goto fail;
5301 }
5302
5303 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), GFP_KERNEL);
5304 if (!memcg->vmstats)
5305 goto fail;
5306
5307 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5308 GFP_KERNEL_ACCOUNT);
5309 if (!memcg->vmstats_percpu)
5310 goto fail;
5311
5312 for_each_node(node)
5313 if (alloc_mem_cgroup_per_node_info(memcg, node))
5314 goto fail;
5315
5316 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5317 goto fail;
5318
5319 INIT_WORK(&memcg->high_work, high_work_func);
5320 INIT_LIST_HEAD(&memcg->oom_notify);
5321 mutex_init(&memcg->thresholds_lock);
5322 spin_lock_init(&memcg->move_lock);
5323 vmpressure_init(&memcg->vmpressure);
5324 INIT_LIST_HEAD(&memcg->event_list);
5325 spin_lock_init(&memcg->event_list_lock);
5326 memcg->socket_pressure = jiffies;
5327#ifdef CONFIG_MEMCG_KMEM
5328 memcg->kmemcg_id = -1;
5329 INIT_LIST_HEAD(&memcg->objcg_list);
5330#endif
5331#ifdef CONFIG_CGROUP_WRITEBACK
5332 INIT_LIST_HEAD(&memcg->cgwb_list);
5333 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5334 memcg->cgwb_frn[i].done =
5335 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5336#endif
5337#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5338 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5339 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5340 memcg->deferred_split_queue.split_queue_len = 0;
5341#endif
5342 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5343 lru_gen_init_memcg(memcg);
5344 return memcg;
5345fail:
5346 mem_cgroup_id_remove(memcg);
5347 __mem_cgroup_free(memcg);
5348 return ERR_PTR(error);
5349}
5350
5351static struct cgroup_subsys_state * __ref
5352mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5353{
5354 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5355 struct mem_cgroup *memcg, *old_memcg;
5356
5357 old_memcg = set_active_memcg(parent);
5358 memcg = mem_cgroup_alloc();
5359 set_active_memcg(old_memcg);
5360 if (IS_ERR(memcg))
5361 return ERR_CAST(memcg);
5362
5363 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5364 WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
5365#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
5366 memcg->zswap_max = PAGE_COUNTER_MAX;
5367#endif
5368 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5369 if (parent) {
5370 WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent));
5371 WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable));
5372
5373 page_counter_init(&memcg->memory, &parent->memory);
5374 page_counter_init(&memcg->swap, &parent->swap);
5375 page_counter_init(&memcg->kmem, &parent->kmem);
5376 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5377 } else {
5378 init_memcg_events();
5379 page_counter_init(&memcg->memory, NULL);
5380 page_counter_init(&memcg->swap, NULL);
5381 page_counter_init(&memcg->kmem, NULL);
5382 page_counter_init(&memcg->tcpmem, NULL);
5383
5384 root_mem_cgroup = memcg;
5385 return &memcg->css;
5386 }
5387
5388 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5389 static_branch_inc(&memcg_sockets_enabled_key);
5390
5391#if defined(CONFIG_MEMCG_KMEM)
5392 if (!cgroup_memory_nobpf)
5393 static_branch_inc(&memcg_bpf_enabled_key);
5394#endif
5395
5396 return &memcg->css;
5397}
5398
5399static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5400{
5401 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5402
5403 if (memcg_online_kmem(memcg))
5404 goto remove_id;
5405
5406 /*
5407 * A memcg must be visible for expand_shrinker_info()
5408 * by the time the maps are allocated. So, we allocate maps
5409 * here, when for_each_mem_cgroup() can't skip it.
5410 */
5411 if (alloc_shrinker_info(memcg))
5412 goto offline_kmem;
5413
5414 /* Online state pins memcg ID, memcg ID pins CSS */
5415 refcount_set(&memcg->id.ref, 1);
5416 css_get(css);
5417
5418 if (unlikely(mem_cgroup_is_root(memcg)))
5419 queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5420 FLUSH_TIME);
5421 lru_gen_online_memcg(memcg);
5422 return 0;
5423offline_kmem:
5424 memcg_offline_kmem(memcg);
5425remove_id:
5426 mem_cgroup_id_remove(memcg);
5427 return -ENOMEM;
5428}
5429
5430static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5431{
5432 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5433 struct mem_cgroup_event *event, *tmp;
5434
5435 /*
5436 * Unregister events and notify userspace.
5437 * Notify userspace about cgroup removing only after rmdir of cgroup
5438 * directory to avoid race between userspace and kernelspace.
5439 */
5440 spin_lock_irq(&memcg->event_list_lock);
5441 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5442 list_del_init(&event->list);
5443 schedule_work(&event->remove);
5444 }
5445 spin_unlock_irq(&memcg->event_list_lock);
5446
5447 page_counter_set_min(&memcg->memory, 0);
5448 page_counter_set_low(&memcg->memory, 0);
5449
5450 memcg_offline_kmem(memcg);
5451 reparent_shrinker_deferred(memcg);
5452 wb_memcg_offline(memcg);
5453 lru_gen_offline_memcg(memcg);
5454
5455 drain_all_stock(memcg);
5456
5457 mem_cgroup_id_put(memcg);
5458}
5459
5460static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5461{
5462 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5463
5464 invalidate_reclaim_iterators(memcg);
5465 lru_gen_release_memcg(memcg);
5466}
5467
5468static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5469{
5470 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5471 int __maybe_unused i;
5472
5473#ifdef CONFIG_CGROUP_WRITEBACK
5474 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5475 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5476#endif
5477 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5478 static_branch_dec(&memcg_sockets_enabled_key);
5479
5480 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5481 static_branch_dec(&memcg_sockets_enabled_key);
5482
5483#if defined(CONFIG_MEMCG_KMEM)
5484 if (!cgroup_memory_nobpf)
5485 static_branch_dec(&memcg_bpf_enabled_key);
5486#endif
5487
5488 vmpressure_cleanup(&memcg->vmpressure);
5489 cancel_work_sync(&memcg->high_work);
5490 mem_cgroup_remove_from_trees(memcg);
5491 free_shrinker_info(memcg);
5492 mem_cgroup_free(memcg);
5493}
5494
5495/**
5496 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5497 * @css: the target css
5498 *
5499 * Reset the states of the mem_cgroup associated with @css. This is
5500 * invoked when the userland requests disabling on the default hierarchy
5501 * but the memcg is pinned through dependency. The memcg should stop
5502 * applying policies and should revert to the vanilla state as it may be
5503 * made visible again.
5504 *
5505 * The current implementation only resets the essential configurations.
5506 * This needs to be expanded to cover all the visible parts.
5507 */
5508static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5509{
5510 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5511
5512 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5513 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5514 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5515 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5516 page_counter_set_min(&memcg->memory, 0);
5517 page_counter_set_low(&memcg->memory, 0);
5518 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5519 WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
5520 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5521 memcg_wb_domain_size_changed(memcg);
5522}
5523
5524static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5525{
5526 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5527 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5528 struct memcg_vmstats_percpu *statc;
5529 long delta, v;
5530 int i, nid;
5531
5532 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5533
5534 for (i = 0; i < MEMCG_NR_STAT; i++) {
5535 /*
5536 * Collect the aggregated propagation counts of groups
5537 * below us. We're in a per-cpu loop here and this is
5538 * a global counter, so the first cycle will get them.
5539 */
5540 delta = memcg->vmstats->state_pending[i];
5541 if (delta)
5542 memcg->vmstats->state_pending[i] = 0;
5543
5544 /* Add CPU changes on this level since the last flush */
5545 v = READ_ONCE(statc->state[i]);
5546 if (v != statc->state_prev[i]) {
5547 delta += v - statc->state_prev[i];
5548 statc->state_prev[i] = v;
5549 }
5550
5551 if (!delta)
5552 continue;
5553
5554 /* Aggregate counts on this level and propagate upwards */
5555 memcg->vmstats->state[i] += delta;
5556 if (parent)
5557 parent->vmstats->state_pending[i] += delta;
5558 }
5559
5560 for (i = 0; i < NR_MEMCG_EVENTS; i++) {
5561 delta = memcg->vmstats->events_pending[i];
5562 if (delta)
5563 memcg->vmstats->events_pending[i] = 0;
5564
5565 v = READ_ONCE(statc->events[i]);
5566 if (v != statc->events_prev[i]) {
5567 delta += v - statc->events_prev[i];
5568 statc->events_prev[i] = v;
5569 }
5570
5571 if (!delta)
5572 continue;
5573
5574 memcg->vmstats->events[i] += delta;
5575 if (parent)
5576 parent->vmstats->events_pending[i] += delta;
5577 }
5578
5579 for_each_node_state(nid, N_MEMORY) {
5580 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5581 struct mem_cgroup_per_node *ppn = NULL;
5582 struct lruvec_stats_percpu *lstatc;
5583
5584 if (parent)
5585 ppn = parent->nodeinfo[nid];
5586
5587 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5588
5589 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5590 delta = pn->lruvec_stats.state_pending[i];
5591 if (delta)
5592 pn->lruvec_stats.state_pending[i] = 0;
5593
5594 v = READ_ONCE(lstatc->state[i]);
5595 if (v != lstatc->state_prev[i]) {
5596 delta += v - lstatc->state_prev[i];
5597 lstatc->state_prev[i] = v;
5598 }
5599
5600 if (!delta)
5601 continue;
5602
5603 pn->lruvec_stats.state[i] += delta;
5604 if (ppn)
5605 ppn->lruvec_stats.state_pending[i] += delta;
5606 }
5607 }
5608}
5609
5610#ifdef CONFIG_MMU
5611/* Handlers for move charge at task migration. */
5612static int mem_cgroup_do_precharge(unsigned long count)
5613{
5614 int ret;
5615
5616 /* Try a single bulk charge without reclaim first, kswapd may wake */
5617 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5618 if (!ret) {
5619 mc.precharge += count;
5620 return ret;
5621 }
5622
5623 /* Try charges one by one with reclaim, but do not retry */
5624 while (count--) {
5625 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5626 if (ret)
5627 return ret;
5628 mc.precharge++;
5629 cond_resched();
5630 }
5631 return 0;
5632}
5633
5634union mc_target {
5635 struct page *page;
5636 swp_entry_t ent;
5637};
5638
5639enum mc_target_type {
5640 MC_TARGET_NONE = 0,
5641 MC_TARGET_PAGE,
5642 MC_TARGET_SWAP,
5643 MC_TARGET_DEVICE,
5644};
5645
5646static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5647 unsigned long addr, pte_t ptent)
5648{
5649 struct page *page = vm_normal_page(vma, addr, ptent);
5650
5651 if (!page || !page_mapped(page))
5652 return NULL;
5653 if (PageAnon(page)) {
5654 if (!(mc.flags & MOVE_ANON))
5655 return NULL;
5656 } else {
5657 if (!(mc.flags & MOVE_FILE))
5658 return NULL;
5659 }
5660 if (!get_page_unless_zero(page))
5661 return NULL;
5662
5663 return page;
5664}
5665
5666#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5667static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5668 pte_t ptent, swp_entry_t *entry)
5669{
5670 struct page *page = NULL;
5671 swp_entry_t ent = pte_to_swp_entry(ptent);
5672
5673 if (!(mc.flags & MOVE_ANON))
5674 return NULL;
5675
5676 /*
5677 * Handle device private pages that are not accessible by the CPU, but
5678 * stored as special swap entries in the page table.
5679 */
5680 if (is_device_private_entry(ent)) {
5681 page = pfn_swap_entry_to_page(ent);
5682 if (!get_page_unless_zero(page))
5683 return NULL;
5684 return page;
5685 }
5686
5687 if (non_swap_entry(ent))
5688 return NULL;
5689
5690 /*
5691 * Because swap_cache_get_folio() updates some statistics counter,
5692 * we call find_get_page() with swapper_space directly.
5693 */
5694 page = find_get_page(swap_address_space(ent), swp_offset(ent));
5695 entry->val = ent.val;
5696
5697 return page;
5698}
5699#else
5700static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5701 pte_t ptent, swp_entry_t *entry)
5702{
5703 return NULL;
5704}
5705#endif
5706
5707static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5708 unsigned long addr, pte_t ptent)
5709{
5710 unsigned long index;
5711 struct folio *folio;
5712
5713 if (!vma->vm_file) /* anonymous vma */
5714 return NULL;
5715 if (!(mc.flags & MOVE_FILE))
5716 return NULL;
5717
5718 /* folio is moved even if it's not RSS of this task(page-faulted). */
5719 /* shmem/tmpfs may report page out on swap: account for that too. */
5720 index = linear_page_index(vma, addr);
5721 folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index);
5722 if (IS_ERR(folio))
5723 return NULL;
5724 return folio_file_page(folio, index);
5725}
5726
5727/**
5728 * mem_cgroup_move_account - move account of the page
5729 * @page: the page
5730 * @compound: charge the page as compound or small page
5731 * @from: mem_cgroup which the page is moved from.
5732 * @to: mem_cgroup which the page is moved to. @from != @to.
5733 *
5734 * The page must be locked and not on the LRU.
5735 *
5736 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5737 * from old cgroup.
5738 */
5739static int mem_cgroup_move_account(struct page *page,
5740 bool compound,
5741 struct mem_cgroup *from,
5742 struct mem_cgroup *to)
5743{
5744 struct folio *folio = page_folio(page);
5745 struct lruvec *from_vec, *to_vec;
5746 struct pglist_data *pgdat;
5747 unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
5748 int nid, ret;
5749
5750 VM_BUG_ON(from == to);
5751 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
5752 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
5753 VM_BUG_ON(compound && !folio_test_large(folio));
5754
5755 ret = -EINVAL;
5756 if (folio_memcg(folio) != from)
5757 goto out;
5758
5759 pgdat = folio_pgdat(folio);
5760 from_vec = mem_cgroup_lruvec(from, pgdat);
5761 to_vec = mem_cgroup_lruvec(to, pgdat);
5762
5763 folio_memcg_lock(folio);
5764
5765 if (folio_test_anon(folio)) {
5766 if (folio_mapped(folio)) {
5767 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5768 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5769 if (folio_test_transhuge(folio)) {
5770 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5771 -nr_pages);
5772 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5773 nr_pages);
5774 }
5775 }
5776 } else {
5777 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5778 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5779
5780 if (folio_test_swapbacked(folio)) {
5781 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5782 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5783 }
5784
5785 if (folio_mapped(folio)) {
5786 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5787 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5788 }
5789
5790 if (folio_test_dirty(folio)) {
5791 struct address_space *mapping = folio_mapping(folio);
5792
5793 if (mapping_can_writeback(mapping)) {
5794 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5795 -nr_pages);
5796 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5797 nr_pages);
5798 }
5799 }
5800 }
5801
5802#ifdef CONFIG_SWAP
5803 if (folio_test_swapcache(folio)) {
5804 __mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages);
5805 __mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages);
5806 }
5807#endif
5808 if (folio_test_writeback(folio)) {
5809 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5810 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5811 }
5812
5813 /*
5814 * All state has been migrated, let's switch to the new memcg.
5815 *
5816 * It is safe to change page's memcg here because the page
5817 * is referenced, charged, isolated, and locked: we can't race
5818 * with (un)charging, migration, LRU putback, or anything else
5819 * that would rely on a stable page's memory cgroup.
5820 *
5821 * Note that folio_memcg_lock is a memcg lock, not a page lock,
5822 * to save space. As soon as we switch page's memory cgroup to a
5823 * new memcg that isn't locked, the above state can change
5824 * concurrently again. Make sure we're truly done with it.
5825 */
5826 smp_mb();
5827
5828 css_get(&to->css);
5829 css_put(&from->css);
5830
5831 folio->memcg_data = (unsigned long)to;
5832
5833 __folio_memcg_unlock(from);
5834
5835 ret = 0;
5836 nid = folio_nid(folio);
5837
5838 local_irq_disable();
5839 mem_cgroup_charge_statistics(to, nr_pages);
5840 memcg_check_events(to, nid);
5841 mem_cgroup_charge_statistics(from, -nr_pages);
5842 memcg_check_events(from, nid);
5843 local_irq_enable();
5844out:
5845 return ret;
5846}
5847
5848/**
5849 * get_mctgt_type - get target type of moving charge
5850 * @vma: the vma the pte to be checked belongs
5851 * @addr: the address corresponding to the pte to be checked
5852 * @ptent: the pte to be checked
5853 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5854 *
5855 * Returns
5856 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5857 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5858 * move charge. if @target is not NULL, the page is stored in target->page
5859 * with extra refcnt got(Callers should handle it).
5860 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5861 * target for charge migration. if @target is not NULL, the entry is stored
5862 * in target->ent.
5863 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is device memory and
5864 * thus not on the lru.
5865 * For now we such page is charge like a regular page would be as for all
5866 * intent and purposes it is just special memory taking the place of a
5867 * regular page.
5868 *
5869 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5870 *
5871 * Called with pte lock held.
5872 */
5873
5874static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5875 unsigned long addr, pte_t ptent, union mc_target *target)
5876{
5877 struct page *page = NULL;
5878 enum mc_target_type ret = MC_TARGET_NONE;
5879 swp_entry_t ent = { .val = 0 };
5880
5881 if (pte_present(ptent))
5882 page = mc_handle_present_pte(vma, addr, ptent);
5883 else if (pte_none_mostly(ptent))
5884 /*
5885 * PTE markers should be treated as a none pte here, separated
5886 * from other swap handling below.
5887 */
5888 page = mc_handle_file_pte(vma, addr, ptent);
5889 else if (is_swap_pte(ptent))
5890 page = mc_handle_swap_pte(vma, ptent, &ent);
5891
5892 if (target && page) {
5893 if (!trylock_page(page)) {
5894 put_page(page);
5895 return ret;
5896 }
5897 /*
5898 * page_mapped() must be stable during the move. This
5899 * pte is locked, so if it's present, the page cannot
5900 * become unmapped. If it isn't, we have only partial
5901 * control over the mapped state: the page lock will
5902 * prevent new faults against pagecache and swapcache,
5903 * so an unmapped page cannot become mapped. However,
5904 * if the page is already mapped elsewhere, it can
5905 * unmap, and there is nothing we can do about it.
5906 * Alas, skip moving the page in this case.
5907 */
5908 if (!pte_present(ptent) && page_mapped(page)) {
5909 unlock_page(page);
5910 put_page(page);
5911 return ret;
5912 }
5913 }
5914
5915 if (!page && !ent.val)
5916 return ret;
5917 if (page) {
5918 /*
5919 * Do only loose check w/o serialization.
5920 * mem_cgroup_move_account() checks the page is valid or
5921 * not under LRU exclusion.
5922 */
5923 if (page_memcg(page) == mc.from) {
5924 ret = MC_TARGET_PAGE;
5925 if (is_device_private_page(page) ||
5926 is_device_coherent_page(page))
5927 ret = MC_TARGET_DEVICE;
5928 if (target)
5929 target->page = page;
5930 }
5931 if (!ret || !target) {
5932 if (target)
5933 unlock_page(page);
5934 put_page(page);
5935 }
5936 }
5937 /*
5938 * There is a swap entry and a page doesn't exist or isn't charged.
5939 * But we cannot move a tail-page in a THP.
5940 */
5941 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5942 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5943 ret = MC_TARGET_SWAP;
5944 if (target)
5945 target->ent = ent;
5946 }
5947 return ret;
5948}
5949
5950#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5951/*
5952 * We don't consider PMD mapped swapping or file mapped pages because THP does
5953 * not support them for now.
5954 * Caller should make sure that pmd_trans_huge(pmd) is true.
5955 */
5956static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5957 unsigned long addr, pmd_t pmd, union mc_target *target)
5958{
5959 struct page *page = NULL;
5960 enum mc_target_type ret = MC_TARGET_NONE;
5961
5962 if (unlikely(is_swap_pmd(pmd))) {
5963 VM_BUG_ON(thp_migration_supported() &&
5964 !is_pmd_migration_entry(pmd));
5965 return ret;
5966 }
5967 page = pmd_page(pmd);
5968 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
5969 if (!(mc.flags & MOVE_ANON))
5970 return ret;
5971 if (page_memcg(page) == mc.from) {
5972 ret = MC_TARGET_PAGE;
5973 if (target) {
5974 get_page(page);
5975 if (!trylock_page(page)) {
5976 put_page(page);
5977 return MC_TARGET_NONE;
5978 }
5979 target->page = page;
5980 }
5981 }
5982 return ret;
5983}
5984#else
5985static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
5986 unsigned long addr, pmd_t pmd, union mc_target *target)
5987{
5988 return MC_TARGET_NONE;
5989}
5990#endif
5991
5992static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
5993 unsigned long addr, unsigned long end,
5994 struct mm_walk *walk)
5995{
5996 struct vm_area_struct *vma = walk->vma;
5997 pte_t *pte;
5998 spinlock_t *ptl;
5999
6000 ptl = pmd_trans_huge_lock(pmd, vma);
6001 if (ptl) {
6002 /*
6003 * Note their can not be MC_TARGET_DEVICE for now as we do not
6004 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
6005 * this might change.
6006 */
6007 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6008 mc.precharge += HPAGE_PMD_NR;
6009 spin_unlock(ptl);
6010 return 0;
6011 }
6012
6013 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6014 if (!pte)
6015 return 0;
6016 for (; addr != end; pte++, addr += PAGE_SIZE)
6017 if (get_mctgt_type(vma, addr, ptep_get(pte), NULL))
6018 mc.precharge++; /* increment precharge temporarily */
6019 pte_unmap_unlock(pte - 1, ptl);
6020 cond_resched();
6021
6022 return 0;
6023}
6024
6025static const struct mm_walk_ops precharge_walk_ops = {
6026 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6027};
6028
6029static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6030{
6031 unsigned long precharge;
6032
6033 mmap_read_lock(mm);
6034 walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL);
6035 mmap_read_unlock(mm);
6036
6037 precharge = mc.precharge;
6038 mc.precharge = 0;
6039
6040 return precharge;
6041}
6042
6043static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6044{
6045 unsigned long precharge = mem_cgroup_count_precharge(mm);
6046
6047 VM_BUG_ON(mc.moving_task);
6048 mc.moving_task = current;
6049 return mem_cgroup_do_precharge(precharge);
6050}
6051
6052/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6053static void __mem_cgroup_clear_mc(void)
6054{
6055 struct mem_cgroup *from = mc.from;
6056 struct mem_cgroup *to = mc.to;
6057
6058 /* we must uncharge all the leftover precharges from mc.to */
6059 if (mc.precharge) {
6060 cancel_charge(mc.to, mc.precharge);
6061 mc.precharge = 0;
6062 }
6063 /*
6064 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6065 * we must uncharge here.
6066 */
6067 if (mc.moved_charge) {
6068 cancel_charge(mc.from, mc.moved_charge);
6069 mc.moved_charge = 0;
6070 }
6071 /* we must fixup refcnts and charges */
6072 if (mc.moved_swap) {
6073 /* uncharge swap account from the old cgroup */
6074 if (!mem_cgroup_is_root(mc.from))
6075 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
6076
6077 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
6078
6079 /*
6080 * we charged both to->memory and to->memsw, so we
6081 * should uncharge to->memory.
6082 */
6083 if (!mem_cgroup_is_root(mc.to))
6084 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
6085
6086 mc.moved_swap = 0;
6087 }
6088 memcg_oom_recover(from);
6089 memcg_oom_recover(to);
6090 wake_up_all(&mc.waitq);
6091}
6092
6093static void mem_cgroup_clear_mc(void)
6094{
6095 struct mm_struct *mm = mc.mm;
6096
6097 /*
6098 * we must clear moving_task before waking up waiters at the end of
6099 * task migration.
6100 */
6101 mc.moving_task = NULL;
6102 __mem_cgroup_clear_mc();
6103 spin_lock(&mc.lock);
6104 mc.from = NULL;
6105 mc.to = NULL;
6106 mc.mm = NULL;
6107 spin_unlock(&mc.lock);
6108
6109 mmput(mm);
6110}
6111
6112static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6113{
6114 struct cgroup_subsys_state *css;
6115 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
6116 struct mem_cgroup *from;
6117 struct task_struct *leader, *p;
6118 struct mm_struct *mm;
6119 unsigned long move_flags;
6120 int ret = 0;
6121
6122 /* charge immigration isn't supported on the default hierarchy */
6123 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6124 return 0;
6125
6126 /*
6127 * Multi-process migrations only happen on the default hierarchy
6128 * where charge immigration is not used. Perform charge
6129 * immigration if @tset contains a leader and whine if there are
6130 * multiple.
6131 */
6132 p = NULL;
6133 cgroup_taskset_for_each_leader(leader, css, tset) {
6134 WARN_ON_ONCE(p);
6135 p = leader;
6136 memcg = mem_cgroup_from_css(css);
6137 }
6138 if (!p)
6139 return 0;
6140
6141 /*
6142 * We are now committed to this value whatever it is. Changes in this
6143 * tunable will only affect upcoming migrations, not the current one.
6144 * So we need to save it, and keep it going.
6145 */
6146 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
6147 if (!move_flags)
6148 return 0;
6149
6150 from = mem_cgroup_from_task(p);
6151
6152 VM_BUG_ON(from == memcg);
6153
6154 mm = get_task_mm(p);
6155 if (!mm)
6156 return 0;
6157 /* We move charges only when we move a owner of the mm */
6158 if (mm->owner == p) {
6159 VM_BUG_ON(mc.from);
6160 VM_BUG_ON(mc.to);
6161 VM_BUG_ON(mc.precharge);
6162 VM_BUG_ON(mc.moved_charge);
6163 VM_BUG_ON(mc.moved_swap);
6164
6165 spin_lock(&mc.lock);
6166 mc.mm = mm;
6167 mc.from = from;
6168 mc.to = memcg;
6169 mc.flags = move_flags;
6170 spin_unlock(&mc.lock);
6171 /* We set mc.moving_task later */
6172
6173 ret = mem_cgroup_precharge_mc(mm);
6174 if (ret)
6175 mem_cgroup_clear_mc();
6176 } else {
6177 mmput(mm);
6178 }
6179 return ret;
6180}
6181
6182static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6183{
6184 if (mc.to)
6185 mem_cgroup_clear_mc();
6186}
6187
6188static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6189 unsigned long addr, unsigned long end,
6190 struct mm_walk *walk)
6191{
6192 int ret = 0;
6193 struct vm_area_struct *vma = walk->vma;
6194 pte_t *pte;
6195 spinlock_t *ptl;
6196 enum mc_target_type target_type;
6197 union mc_target target;
6198 struct page *page;
6199
6200 ptl = pmd_trans_huge_lock(pmd, vma);
6201 if (ptl) {
6202 if (mc.precharge < HPAGE_PMD_NR) {
6203 spin_unlock(ptl);
6204 return 0;
6205 }
6206 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6207 if (target_type == MC_TARGET_PAGE) {
6208 page = target.page;
6209 if (isolate_lru_page(page)) {
6210 if (!mem_cgroup_move_account(page, true,
6211 mc.from, mc.to)) {
6212 mc.precharge -= HPAGE_PMD_NR;
6213 mc.moved_charge += HPAGE_PMD_NR;
6214 }
6215 putback_lru_page(page);
6216 }
6217 unlock_page(page);
6218 put_page(page);
6219 } else if (target_type == MC_TARGET_DEVICE) {
6220 page = target.page;
6221 if (!mem_cgroup_move_account(page, true,
6222 mc.from, mc.to)) {
6223 mc.precharge -= HPAGE_PMD_NR;
6224 mc.moved_charge += HPAGE_PMD_NR;
6225 }
6226 unlock_page(page);
6227 put_page(page);
6228 }
6229 spin_unlock(ptl);
6230 return 0;
6231 }
6232
6233retry:
6234 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6235 if (!pte)
6236 return 0;
6237 for (; addr != end; addr += PAGE_SIZE) {
6238 pte_t ptent = ptep_get(pte++);
6239 bool device = false;
6240 swp_entry_t ent;
6241
6242 if (!mc.precharge)
6243 break;
6244
6245 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6246 case MC_TARGET_DEVICE:
6247 device = true;
6248 fallthrough;
6249 case MC_TARGET_PAGE:
6250 page = target.page;
6251 /*
6252 * We can have a part of the split pmd here. Moving it
6253 * can be done but it would be too convoluted so simply
6254 * ignore such a partial THP and keep it in original
6255 * memcg. There should be somebody mapping the head.
6256 */
6257 if (PageTransCompound(page))
6258 goto put;
6259 if (!device && !isolate_lru_page(page))
6260 goto put;
6261 if (!mem_cgroup_move_account(page, false,
6262 mc.from, mc.to)) {
6263 mc.precharge--;
6264 /* we uncharge from mc.from later. */
6265 mc.moved_charge++;
6266 }
6267 if (!device)
6268 putback_lru_page(page);
6269put: /* get_mctgt_type() gets & locks the page */
6270 unlock_page(page);
6271 put_page(page);
6272 break;
6273 case MC_TARGET_SWAP:
6274 ent = target.ent;
6275 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6276 mc.precharge--;
6277 mem_cgroup_id_get_many(mc.to, 1);
6278 /* we fixup other refcnts and charges later. */
6279 mc.moved_swap++;
6280 }
6281 break;
6282 default:
6283 break;
6284 }
6285 }
6286 pte_unmap_unlock(pte - 1, ptl);
6287 cond_resched();
6288
6289 if (addr != end) {
6290 /*
6291 * We have consumed all precharges we got in can_attach().
6292 * We try charge one by one, but don't do any additional
6293 * charges to mc.to if we have failed in charge once in attach()
6294 * phase.
6295 */
6296 ret = mem_cgroup_do_precharge(1);
6297 if (!ret)
6298 goto retry;
6299 }
6300
6301 return ret;
6302}
6303
6304static const struct mm_walk_ops charge_walk_ops = {
6305 .pmd_entry = mem_cgroup_move_charge_pte_range,
6306};
6307
6308static void mem_cgroup_move_charge(void)
6309{
6310 lru_add_drain_all();
6311 /*
6312 * Signal folio_memcg_lock() to take the memcg's move_lock
6313 * while we're moving its pages to another memcg. Then wait
6314 * for already started RCU-only updates to finish.
6315 */
6316 atomic_inc(&mc.from->moving_account);
6317 synchronize_rcu();
6318retry:
6319 if (unlikely(!mmap_read_trylock(mc.mm))) {
6320 /*
6321 * Someone who are holding the mmap_lock might be waiting in
6322 * waitq. So we cancel all extra charges, wake up all waiters,
6323 * and retry. Because we cancel precharges, we might not be able
6324 * to move enough charges, but moving charge is a best-effort
6325 * feature anyway, so it wouldn't be a big problem.
6326 */
6327 __mem_cgroup_clear_mc();
6328 cond_resched();
6329 goto retry;
6330 }
6331 /*
6332 * When we have consumed all precharges and failed in doing
6333 * additional charge, the page walk just aborts.
6334 */
6335 walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL);
6336 mmap_read_unlock(mc.mm);
6337 atomic_dec(&mc.from->moving_account);
6338}
6339
6340static void mem_cgroup_move_task(void)
6341{
6342 if (mc.to) {
6343 mem_cgroup_move_charge();
6344 mem_cgroup_clear_mc();
6345 }
6346}
6347#else /* !CONFIG_MMU */
6348static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6349{
6350 return 0;
6351}
6352static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6353{
6354}
6355static void mem_cgroup_move_task(void)
6356{
6357}
6358#endif
6359
6360#ifdef CONFIG_LRU_GEN
6361static void mem_cgroup_attach(struct cgroup_taskset *tset)
6362{
6363 struct task_struct *task;
6364 struct cgroup_subsys_state *css;
6365
6366 /* find the first leader if there is any */
6367 cgroup_taskset_for_each_leader(task, css, tset)
6368 break;
6369
6370 if (!task)
6371 return;
6372
6373 task_lock(task);
6374 if (task->mm && READ_ONCE(task->mm->owner) == task)
6375 lru_gen_migrate_mm(task->mm);
6376 task_unlock(task);
6377}
6378#else
6379static void mem_cgroup_attach(struct cgroup_taskset *tset)
6380{
6381}
6382#endif /* CONFIG_LRU_GEN */
6383
6384static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6385{
6386 if (value == PAGE_COUNTER_MAX)
6387 seq_puts(m, "max\n");
6388 else
6389 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6390
6391 return 0;
6392}
6393
6394static u64 memory_current_read(struct cgroup_subsys_state *css,
6395 struct cftype *cft)
6396{
6397 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6398
6399 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6400}
6401
6402static u64 memory_peak_read(struct cgroup_subsys_state *css,
6403 struct cftype *cft)
6404{
6405 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6406
6407 return (u64)memcg->memory.watermark * PAGE_SIZE;
6408}
6409
6410static int memory_min_show(struct seq_file *m, void *v)
6411{
6412 return seq_puts_memcg_tunable(m,
6413 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6414}
6415
6416static ssize_t memory_min_write(struct kernfs_open_file *of,
6417 char *buf, size_t nbytes, loff_t off)
6418{
6419 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6420 unsigned long min;
6421 int err;
6422
6423 buf = strstrip(buf);
6424 err = page_counter_memparse(buf, "max", &min);
6425 if (err)
6426 return err;
6427
6428 page_counter_set_min(&memcg->memory, min);
6429
6430 return nbytes;
6431}
6432
6433static int memory_low_show(struct seq_file *m, void *v)
6434{
6435 return seq_puts_memcg_tunable(m,
6436 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6437}
6438
6439static ssize_t memory_low_write(struct kernfs_open_file *of,
6440 char *buf, size_t nbytes, loff_t off)
6441{
6442 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6443 unsigned long low;
6444 int err;
6445
6446 buf = strstrip(buf);
6447 err = page_counter_memparse(buf, "max", &low);
6448 if (err)
6449 return err;
6450
6451 page_counter_set_low(&memcg->memory, low);
6452
6453 return nbytes;
6454}
6455
6456static int memory_high_show(struct seq_file *m, void *v)
6457{
6458 return seq_puts_memcg_tunable(m,
6459 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6460}
6461
6462static ssize_t memory_high_write(struct kernfs_open_file *of,
6463 char *buf, size_t nbytes, loff_t off)
6464{
6465 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6466 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6467 bool drained = false;
6468 unsigned long high;
6469 int err;
6470
6471 buf = strstrip(buf);
6472 err = page_counter_memparse(buf, "max", &high);
6473 if (err)
6474 return err;
6475
6476 page_counter_set_high(&memcg->memory, high);
6477
6478 for (;;) {
6479 unsigned long nr_pages = page_counter_read(&memcg->memory);
6480 unsigned long reclaimed;
6481
6482 if (nr_pages <= high)
6483 break;
6484
6485 if (signal_pending(current))
6486 break;
6487
6488 if (!drained) {
6489 drain_all_stock(memcg);
6490 drained = true;
6491 continue;
6492 }
6493
6494 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6495 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP);
6496
6497 if (!reclaimed && !nr_retries--)
6498 break;
6499 }
6500
6501 memcg_wb_domain_size_changed(memcg);
6502 return nbytes;
6503}
6504
6505static int memory_max_show(struct seq_file *m, void *v)
6506{
6507 return seq_puts_memcg_tunable(m,
6508 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6509}
6510
6511static ssize_t memory_max_write(struct kernfs_open_file *of,
6512 char *buf, size_t nbytes, loff_t off)
6513{
6514 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6515 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6516 bool drained = false;
6517 unsigned long max;
6518 int err;
6519
6520 buf = strstrip(buf);
6521 err = page_counter_memparse(buf, "max", &max);
6522 if (err)
6523 return err;
6524
6525 xchg(&memcg->memory.max, max);
6526
6527 for (;;) {
6528 unsigned long nr_pages = page_counter_read(&memcg->memory);
6529
6530 if (nr_pages <= max)
6531 break;
6532
6533 if (signal_pending(current))
6534 break;
6535
6536 if (!drained) {
6537 drain_all_stock(memcg);
6538 drained = true;
6539 continue;
6540 }
6541
6542 if (nr_reclaims) {
6543 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6544 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP))
6545 nr_reclaims--;
6546 continue;
6547 }
6548
6549 memcg_memory_event(memcg, MEMCG_OOM);
6550 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6551 break;
6552 }
6553
6554 memcg_wb_domain_size_changed(memcg);
6555 return nbytes;
6556}
6557
6558static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6559{
6560 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6561 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6562 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6563 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6564 seq_printf(m, "oom_kill %lu\n",
6565 atomic_long_read(&events[MEMCG_OOM_KILL]));
6566 seq_printf(m, "oom_group_kill %lu\n",
6567 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
6568}
6569
6570static int memory_events_show(struct seq_file *m, void *v)
6571{
6572 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6573
6574 __memory_events_show(m, memcg->memory_events);
6575 return 0;
6576}
6577
6578static int memory_events_local_show(struct seq_file *m, void *v)
6579{
6580 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6581
6582 __memory_events_show(m, memcg->memory_events_local);
6583 return 0;
6584}
6585
6586static int memory_stat_show(struct seq_file *m, void *v)
6587{
6588 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6589 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
6590 struct seq_buf s;
6591
6592 if (!buf)
6593 return -ENOMEM;
6594 seq_buf_init(&s, buf, PAGE_SIZE);
6595 memory_stat_format(memcg, &s);
6596 seq_puts(m, buf);
6597 kfree(buf);
6598 return 0;
6599}
6600
6601#ifdef CONFIG_NUMA
6602static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6603 int item)
6604{
6605 return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6606}
6607
6608static int memory_numa_stat_show(struct seq_file *m, void *v)
6609{
6610 int i;
6611 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6612
6613 mem_cgroup_flush_stats();
6614
6615 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6616 int nid;
6617
6618 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6619 continue;
6620
6621 seq_printf(m, "%s", memory_stats[i].name);
6622 for_each_node_state(nid, N_MEMORY) {
6623 u64 size;
6624 struct lruvec *lruvec;
6625
6626 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6627 size = lruvec_page_state_output(lruvec,
6628 memory_stats[i].idx);
6629 seq_printf(m, " N%d=%llu", nid, size);
6630 }
6631 seq_putc(m, '\n');
6632 }
6633
6634 return 0;
6635}
6636#endif
6637
6638static int memory_oom_group_show(struct seq_file *m, void *v)
6639{
6640 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6641
6642 seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group));
6643
6644 return 0;
6645}
6646
6647static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6648 char *buf, size_t nbytes, loff_t off)
6649{
6650 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6651 int ret, oom_group;
6652
6653 buf = strstrip(buf);
6654 if (!buf)
6655 return -EINVAL;
6656
6657 ret = kstrtoint(buf, 0, &oom_group);
6658 if (ret)
6659 return ret;
6660
6661 if (oom_group != 0 && oom_group != 1)
6662 return -EINVAL;
6663
6664 WRITE_ONCE(memcg->oom_group, oom_group);
6665
6666 return nbytes;
6667}
6668
6669static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
6670 size_t nbytes, loff_t off)
6671{
6672 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6673 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6674 unsigned long nr_to_reclaim, nr_reclaimed = 0;
6675 unsigned int reclaim_options;
6676 int err;
6677
6678 buf = strstrip(buf);
6679 err = page_counter_memparse(buf, "", &nr_to_reclaim);
6680 if (err)
6681 return err;
6682
6683 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
6684 while (nr_reclaimed < nr_to_reclaim) {
6685 unsigned long reclaimed;
6686
6687 if (signal_pending(current))
6688 return -EINTR;
6689
6690 /*
6691 * This is the final attempt, drain percpu lru caches in the
6692 * hope of introducing more evictable pages for
6693 * try_to_free_mem_cgroup_pages().
6694 */
6695 if (!nr_retries)
6696 lru_add_drain_all();
6697
6698 reclaimed = try_to_free_mem_cgroup_pages(memcg,
6699 nr_to_reclaim - nr_reclaimed,
6700 GFP_KERNEL, reclaim_options);
6701
6702 if (!reclaimed && !nr_retries--)
6703 return -EAGAIN;
6704
6705 nr_reclaimed += reclaimed;
6706 }
6707
6708 return nbytes;
6709}
6710
6711static struct cftype memory_files[] = {
6712 {
6713 .name = "current",
6714 .flags = CFTYPE_NOT_ON_ROOT,
6715 .read_u64 = memory_current_read,
6716 },
6717 {
6718 .name = "peak",
6719 .flags = CFTYPE_NOT_ON_ROOT,
6720 .read_u64 = memory_peak_read,
6721 },
6722 {
6723 .name = "min",
6724 .flags = CFTYPE_NOT_ON_ROOT,
6725 .seq_show = memory_min_show,
6726 .write = memory_min_write,
6727 },
6728 {
6729 .name = "low",
6730 .flags = CFTYPE_NOT_ON_ROOT,
6731 .seq_show = memory_low_show,
6732 .write = memory_low_write,
6733 },
6734 {
6735 .name = "high",
6736 .flags = CFTYPE_NOT_ON_ROOT,
6737 .seq_show = memory_high_show,
6738 .write = memory_high_write,
6739 },
6740 {
6741 .name = "max",
6742 .flags = CFTYPE_NOT_ON_ROOT,
6743 .seq_show = memory_max_show,
6744 .write = memory_max_write,
6745 },
6746 {
6747 .name = "events",
6748 .flags = CFTYPE_NOT_ON_ROOT,
6749 .file_offset = offsetof(struct mem_cgroup, events_file),
6750 .seq_show = memory_events_show,
6751 },
6752 {
6753 .name = "events.local",
6754 .flags = CFTYPE_NOT_ON_ROOT,
6755 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6756 .seq_show = memory_events_local_show,
6757 },
6758 {
6759 .name = "stat",
6760 .seq_show = memory_stat_show,
6761 },
6762#ifdef CONFIG_NUMA
6763 {
6764 .name = "numa_stat",
6765 .seq_show = memory_numa_stat_show,
6766 },
6767#endif
6768 {
6769 .name = "oom.group",
6770 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6771 .seq_show = memory_oom_group_show,
6772 .write = memory_oom_group_write,
6773 },
6774 {
6775 .name = "reclaim",
6776 .flags = CFTYPE_NS_DELEGATABLE,
6777 .write = memory_reclaim,
6778 },
6779 { } /* terminate */
6780};
6781
6782struct cgroup_subsys memory_cgrp_subsys = {
6783 .css_alloc = mem_cgroup_css_alloc,
6784 .css_online = mem_cgroup_css_online,
6785 .css_offline = mem_cgroup_css_offline,
6786 .css_released = mem_cgroup_css_released,
6787 .css_free = mem_cgroup_css_free,
6788 .css_reset = mem_cgroup_css_reset,
6789 .css_rstat_flush = mem_cgroup_css_rstat_flush,
6790 .can_attach = mem_cgroup_can_attach,
6791 .attach = mem_cgroup_attach,
6792 .cancel_attach = mem_cgroup_cancel_attach,
6793 .post_attach = mem_cgroup_move_task,
6794 .dfl_cftypes = memory_files,
6795 .legacy_cftypes = mem_cgroup_legacy_files,
6796 .early_init = 0,
6797};
6798
6799/*
6800 * This function calculates an individual cgroup's effective
6801 * protection which is derived from its own memory.min/low, its
6802 * parent's and siblings' settings, as well as the actual memory
6803 * distribution in the tree.
6804 *
6805 * The following rules apply to the effective protection values:
6806 *
6807 * 1. At the first level of reclaim, effective protection is equal to
6808 * the declared protection in memory.min and memory.low.
6809 *
6810 * 2. To enable safe delegation of the protection configuration, at
6811 * subsequent levels the effective protection is capped to the
6812 * parent's effective protection.
6813 *
6814 * 3. To make complex and dynamic subtrees easier to configure, the
6815 * user is allowed to overcommit the declared protection at a given
6816 * level. If that is the case, the parent's effective protection is
6817 * distributed to the children in proportion to how much protection
6818 * they have declared and how much of it they are utilizing.
6819 *
6820 * This makes distribution proportional, but also work-conserving:
6821 * if one cgroup claims much more protection than it uses memory,
6822 * the unused remainder is available to its siblings.
6823 *
6824 * 4. Conversely, when the declared protection is undercommitted at a
6825 * given level, the distribution of the larger parental protection
6826 * budget is NOT proportional. A cgroup's protection from a sibling
6827 * is capped to its own memory.min/low setting.
6828 *
6829 * 5. However, to allow protecting recursive subtrees from each other
6830 * without having to declare each individual cgroup's fixed share
6831 * of the ancestor's claim to protection, any unutilized -
6832 * "floating" - protection from up the tree is distributed in
6833 * proportion to each cgroup's *usage*. This makes the protection
6834 * neutral wrt sibling cgroups and lets them compete freely over
6835 * the shared parental protection budget, but it protects the
6836 * subtree as a whole from neighboring subtrees.
6837 *
6838 * Note that 4. and 5. are not in conflict: 4. is about protecting
6839 * against immediate siblings whereas 5. is about protecting against
6840 * neighboring subtrees.
6841 */
6842static unsigned long effective_protection(unsigned long usage,
6843 unsigned long parent_usage,
6844 unsigned long setting,
6845 unsigned long parent_effective,
6846 unsigned long siblings_protected)
6847{
6848 unsigned long protected;
6849 unsigned long ep;
6850
6851 protected = min(usage, setting);
6852 /*
6853 * If all cgroups at this level combined claim and use more
6854 * protection than what the parent affords them, distribute
6855 * shares in proportion to utilization.
6856 *
6857 * We are using actual utilization rather than the statically
6858 * claimed protection in order to be work-conserving: claimed
6859 * but unused protection is available to siblings that would
6860 * otherwise get a smaller chunk than what they claimed.
6861 */
6862 if (siblings_protected > parent_effective)
6863 return protected * parent_effective / siblings_protected;
6864
6865 /*
6866 * Ok, utilized protection of all children is within what the
6867 * parent affords them, so we know whatever this child claims
6868 * and utilizes is effectively protected.
6869 *
6870 * If there is unprotected usage beyond this value, reclaim
6871 * will apply pressure in proportion to that amount.
6872 *
6873 * If there is unutilized protection, the cgroup will be fully
6874 * shielded from reclaim, but we do return a smaller value for
6875 * protection than what the group could enjoy in theory. This
6876 * is okay. With the overcommit distribution above, effective
6877 * protection is always dependent on how memory is actually
6878 * consumed among the siblings anyway.
6879 */
6880 ep = protected;
6881
6882 /*
6883 * If the children aren't claiming (all of) the protection
6884 * afforded to them by the parent, distribute the remainder in
6885 * proportion to the (unprotected) memory of each cgroup. That
6886 * way, cgroups that aren't explicitly prioritized wrt each
6887 * other compete freely over the allowance, but they are
6888 * collectively protected from neighboring trees.
6889 *
6890 * We're using unprotected memory for the weight so that if
6891 * some cgroups DO claim explicit protection, we don't protect
6892 * the same bytes twice.
6893 *
6894 * Check both usage and parent_usage against the respective
6895 * protected values. One should imply the other, but they
6896 * aren't read atomically - make sure the division is sane.
6897 */
6898 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6899 return ep;
6900 if (parent_effective > siblings_protected &&
6901 parent_usage > siblings_protected &&
6902 usage > protected) {
6903 unsigned long unclaimed;
6904
6905 unclaimed = parent_effective - siblings_protected;
6906 unclaimed *= usage - protected;
6907 unclaimed /= parent_usage - siblings_protected;
6908
6909 ep += unclaimed;
6910 }
6911
6912 return ep;
6913}
6914
6915/**
6916 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
6917 * @root: the top ancestor of the sub-tree being checked
6918 * @memcg: the memory cgroup to check
6919 *
6920 * WARNING: This function is not stateless! It can only be used as part
6921 * of a top-down tree iteration, not for isolated queries.
6922 */
6923void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6924 struct mem_cgroup *memcg)
6925{
6926 unsigned long usage, parent_usage;
6927 struct mem_cgroup *parent;
6928
6929 if (mem_cgroup_disabled())
6930 return;
6931
6932 if (!root)
6933 root = root_mem_cgroup;
6934
6935 /*
6936 * Effective values of the reclaim targets are ignored so they
6937 * can be stale. Have a look at mem_cgroup_protection for more
6938 * details.
6939 * TODO: calculation should be more robust so that we do not need
6940 * that special casing.
6941 */
6942 if (memcg == root)
6943 return;
6944
6945 usage = page_counter_read(&memcg->memory);
6946 if (!usage)
6947 return;
6948
6949 parent = parent_mem_cgroup(memcg);
6950
6951 if (parent == root) {
6952 memcg->memory.emin = READ_ONCE(memcg->memory.min);
6953 memcg->memory.elow = READ_ONCE(memcg->memory.low);
6954 return;
6955 }
6956
6957 parent_usage = page_counter_read(&parent->memory);
6958
6959 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
6960 READ_ONCE(memcg->memory.min),
6961 READ_ONCE(parent->memory.emin),
6962 atomic_long_read(&parent->memory.children_min_usage)));
6963
6964 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
6965 READ_ONCE(memcg->memory.low),
6966 READ_ONCE(parent->memory.elow),
6967 atomic_long_read(&parent->memory.children_low_usage)));
6968}
6969
6970static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
6971 gfp_t gfp)
6972{
6973 long nr_pages = folio_nr_pages(folio);
6974 int ret;
6975
6976 ret = try_charge(memcg, gfp, nr_pages);
6977 if (ret)
6978 goto out;
6979
6980 css_get(&memcg->css);
6981 commit_charge(folio, memcg);
6982
6983 local_irq_disable();
6984 mem_cgroup_charge_statistics(memcg, nr_pages);
6985 memcg_check_events(memcg, folio_nid(folio));
6986 local_irq_enable();
6987out:
6988 return ret;
6989}
6990
6991int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
6992{
6993 struct mem_cgroup *memcg;
6994 int ret;
6995
6996 memcg = get_mem_cgroup_from_mm(mm);
6997 ret = charge_memcg(folio, memcg, gfp);
6998 css_put(&memcg->css);
6999
7000 return ret;
7001}
7002
7003/**
7004 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
7005 * @folio: folio to charge.
7006 * @mm: mm context of the victim
7007 * @gfp: reclaim mode
7008 * @entry: swap entry for which the folio is allocated
7009 *
7010 * This function charges a folio allocated for swapin. Please call this before
7011 * adding the folio to the swapcache.
7012 *
7013 * Returns 0 on success. Otherwise, an error code is returned.
7014 */
7015int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
7016 gfp_t gfp, swp_entry_t entry)
7017{
7018 struct mem_cgroup *memcg;
7019 unsigned short id;
7020 int ret;
7021
7022 if (mem_cgroup_disabled())
7023 return 0;
7024
7025 id = lookup_swap_cgroup_id(entry);
7026 rcu_read_lock();
7027 memcg = mem_cgroup_from_id(id);
7028 if (!memcg || !css_tryget_online(&memcg->css))
7029 memcg = get_mem_cgroup_from_mm(mm);
7030 rcu_read_unlock();
7031
7032 ret = charge_memcg(folio, memcg, gfp);
7033
7034 css_put(&memcg->css);
7035 return ret;
7036}
7037
7038/*
7039 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
7040 * @entry: swap entry for which the page is charged
7041 *
7042 * Call this function after successfully adding the charged page to swapcache.
7043 *
7044 * Note: This function assumes the page for which swap slot is being uncharged
7045 * is order 0 page.
7046 */
7047void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
7048{
7049 /*
7050 * Cgroup1's unified memory+swap counter has been charged with the
7051 * new swapcache page, finish the transfer by uncharging the swap
7052 * slot. The swap slot would also get uncharged when it dies, but
7053 * it can stick around indefinitely and we'd count the page twice
7054 * the entire time.
7055 *
7056 * Cgroup2 has separate resource counters for memory and swap,
7057 * so this is a non-issue here. Memory and swap charge lifetimes
7058 * correspond 1:1 to page and swap slot lifetimes: we charge the
7059 * page to memory here, and uncharge swap when the slot is freed.
7060 */
7061 if (!mem_cgroup_disabled() && do_memsw_account()) {
7062 /*
7063 * The swap entry might not get freed for a long time,
7064 * let's not wait for it. The page already received a
7065 * memory+swap charge, drop the swap entry duplicate.
7066 */
7067 mem_cgroup_uncharge_swap(entry, 1);
7068 }
7069}
7070
7071struct uncharge_gather {
7072 struct mem_cgroup *memcg;
7073 unsigned long nr_memory;
7074 unsigned long pgpgout;
7075 unsigned long nr_kmem;
7076 int nid;
7077};
7078
7079static inline void uncharge_gather_clear(struct uncharge_gather *ug)
7080{
7081 memset(ug, 0, sizeof(*ug));
7082}
7083
7084static void uncharge_batch(const struct uncharge_gather *ug)
7085{
7086 unsigned long flags;
7087
7088 if (ug->nr_memory) {
7089 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
7090 if (do_memsw_account())
7091 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
7092 if (ug->nr_kmem)
7093 memcg_account_kmem(ug->memcg, -ug->nr_kmem);
7094 memcg_oom_recover(ug->memcg);
7095 }
7096
7097 local_irq_save(flags);
7098 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
7099 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
7100 memcg_check_events(ug->memcg, ug->nid);
7101 local_irq_restore(flags);
7102
7103 /* drop reference from uncharge_folio */
7104 css_put(&ug->memcg->css);
7105}
7106
7107static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
7108{
7109 long nr_pages;
7110 struct mem_cgroup *memcg;
7111 struct obj_cgroup *objcg;
7112
7113 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7114
7115 /*
7116 * Nobody should be changing or seriously looking at
7117 * folio memcg or objcg at this point, we have fully
7118 * exclusive access to the folio.
7119 */
7120 if (folio_memcg_kmem(folio)) {
7121 objcg = __folio_objcg(folio);
7122 /*
7123 * This get matches the put at the end of the function and
7124 * kmem pages do not hold memcg references anymore.
7125 */
7126 memcg = get_mem_cgroup_from_objcg(objcg);
7127 } else {
7128 memcg = __folio_memcg(folio);
7129 }
7130
7131 if (!memcg)
7132 return;
7133
7134 if (ug->memcg != memcg) {
7135 if (ug->memcg) {
7136 uncharge_batch(ug);
7137 uncharge_gather_clear(ug);
7138 }
7139 ug->memcg = memcg;
7140 ug->nid = folio_nid(folio);
7141
7142 /* pairs with css_put in uncharge_batch */
7143 css_get(&memcg->css);
7144 }
7145
7146 nr_pages = folio_nr_pages(folio);
7147
7148 if (folio_memcg_kmem(folio)) {
7149 ug->nr_memory += nr_pages;
7150 ug->nr_kmem += nr_pages;
7151
7152 folio->memcg_data = 0;
7153 obj_cgroup_put(objcg);
7154 } else {
7155 /* LRU pages aren't accounted at the root level */
7156 if (!mem_cgroup_is_root(memcg))
7157 ug->nr_memory += nr_pages;
7158 ug->pgpgout++;
7159
7160 folio->memcg_data = 0;
7161 }
7162
7163 css_put(&memcg->css);
7164}
7165
7166void __mem_cgroup_uncharge(struct folio *folio)
7167{
7168 struct uncharge_gather ug;
7169
7170 /* Don't touch folio->lru of any random page, pre-check: */
7171 if (!folio_memcg(folio))
7172 return;
7173
7174 uncharge_gather_clear(&ug);
7175 uncharge_folio(folio, &ug);
7176 uncharge_batch(&ug);
7177}
7178
7179/**
7180 * __mem_cgroup_uncharge_list - uncharge a list of page
7181 * @page_list: list of pages to uncharge
7182 *
7183 * Uncharge a list of pages previously charged with
7184 * __mem_cgroup_charge().
7185 */
7186void __mem_cgroup_uncharge_list(struct list_head *page_list)
7187{
7188 struct uncharge_gather ug;
7189 struct folio *folio;
7190
7191 uncharge_gather_clear(&ug);
7192 list_for_each_entry(folio, page_list, lru)
7193 uncharge_folio(folio, &ug);
7194 if (ug.memcg)
7195 uncharge_batch(&ug);
7196}
7197
7198/**
7199 * mem_cgroup_migrate - Charge a folio's replacement.
7200 * @old: Currently circulating folio.
7201 * @new: Replacement folio.
7202 *
7203 * Charge @new as a replacement folio for @old. @old will
7204 * be uncharged upon free.
7205 *
7206 * Both folios must be locked, @new->mapping must be set up.
7207 */
7208void mem_cgroup_migrate(struct folio *old, struct folio *new)
7209{
7210 struct mem_cgroup *memcg;
7211 long nr_pages = folio_nr_pages(new);
7212 unsigned long flags;
7213
7214 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7215 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7216 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7217 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
7218
7219 if (mem_cgroup_disabled())
7220 return;
7221
7222 /* Page cache replacement: new folio already charged? */
7223 if (folio_memcg(new))
7224 return;
7225
7226 memcg = folio_memcg(old);
7227 VM_WARN_ON_ONCE_FOLIO(!memcg, old);
7228 if (!memcg)
7229 return;
7230
7231 /* Force-charge the new page. The old one will be freed soon */
7232 if (!mem_cgroup_is_root(memcg)) {
7233 page_counter_charge(&memcg->memory, nr_pages);
7234 if (do_memsw_account())
7235 page_counter_charge(&memcg->memsw, nr_pages);
7236 }
7237
7238 css_get(&memcg->css);
7239 commit_charge(new, memcg);
7240
7241 local_irq_save(flags);
7242 mem_cgroup_charge_statistics(memcg, nr_pages);
7243 memcg_check_events(memcg, folio_nid(new));
7244 local_irq_restore(flags);
7245}
7246
7247DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7248EXPORT_SYMBOL(memcg_sockets_enabled_key);
7249
7250void mem_cgroup_sk_alloc(struct sock *sk)
7251{
7252 struct mem_cgroup *memcg;
7253
7254 if (!mem_cgroup_sockets_enabled)
7255 return;
7256
7257 /* Do not associate the sock with unrelated interrupted task's memcg. */
7258 if (!in_task())
7259 return;
7260
7261 rcu_read_lock();
7262 memcg = mem_cgroup_from_task(current);
7263 if (mem_cgroup_is_root(memcg))
7264 goto out;
7265 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7266 goto out;
7267 if (css_tryget(&memcg->css))
7268 sk->sk_memcg = memcg;
7269out:
7270 rcu_read_unlock();
7271}
7272
7273void mem_cgroup_sk_free(struct sock *sk)
7274{
7275 if (sk->sk_memcg)
7276 css_put(&sk->sk_memcg->css);
7277}
7278
7279/**
7280 * mem_cgroup_charge_skmem - charge socket memory
7281 * @memcg: memcg to charge
7282 * @nr_pages: number of pages to charge
7283 * @gfp_mask: reclaim mode
7284 *
7285 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7286 * @memcg's configured limit, %false if it doesn't.
7287 */
7288bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7289 gfp_t gfp_mask)
7290{
7291 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7292 struct page_counter *fail;
7293
7294 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7295 memcg->tcpmem_pressure = 0;
7296 return true;
7297 }
7298 memcg->tcpmem_pressure = 1;
7299 if (gfp_mask & __GFP_NOFAIL) {
7300 page_counter_charge(&memcg->tcpmem, nr_pages);
7301 return true;
7302 }
7303 return false;
7304 }
7305
7306 if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7307 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7308 return true;
7309 }
7310
7311 return false;
7312}
7313
7314/**
7315 * mem_cgroup_uncharge_skmem - uncharge socket memory
7316 * @memcg: memcg to uncharge
7317 * @nr_pages: number of pages to uncharge
7318 */
7319void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7320{
7321 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7322 page_counter_uncharge(&memcg->tcpmem, nr_pages);
7323 return;
7324 }
7325
7326 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7327
7328 refill_stock(memcg, nr_pages);
7329}
7330
7331static int __init cgroup_memory(char *s)
7332{
7333 char *token;
7334
7335 while ((token = strsep(&s, ",")) != NULL) {
7336 if (!*token)
7337 continue;
7338 if (!strcmp(token, "nosocket"))
7339 cgroup_memory_nosocket = true;
7340 if (!strcmp(token, "nokmem"))
7341 cgroup_memory_nokmem = true;
7342 if (!strcmp(token, "nobpf"))
7343 cgroup_memory_nobpf = true;
7344 }
7345 return 1;
7346}
7347__setup("cgroup.memory=", cgroup_memory);
7348
7349/*
7350 * subsys_initcall() for memory controller.
7351 *
7352 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7353 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7354 * basically everything that doesn't depend on a specific mem_cgroup structure
7355 * should be initialized from here.
7356 */
7357static int __init mem_cgroup_init(void)
7358{
7359 int cpu, node;
7360
7361 /*
7362 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7363 * used for per-memcg-per-cpu caching of per-node statistics. In order
7364 * to work fine, we should make sure that the overfill threshold can't
7365 * exceed S32_MAX / PAGE_SIZE.
7366 */
7367 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7368
7369 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7370 memcg_hotplug_cpu_dead);
7371
7372 for_each_possible_cpu(cpu)
7373 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7374 drain_local_stock);
7375
7376 for_each_node(node) {
7377 struct mem_cgroup_tree_per_node *rtpn;
7378
7379 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, node);
7380
7381 rtpn->rb_root = RB_ROOT;
7382 rtpn->rb_rightmost = NULL;
7383 spin_lock_init(&rtpn->lock);
7384 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7385 }
7386
7387 return 0;
7388}
7389subsys_initcall(mem_cgroup_init);
7390
7391#ifdef CONFIG_SWAP
7392static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7393{
7394 while (!refcount_inc_not_zero(&memcg->id.ref)) {
7395 /*
7396 * The root cgroup cannot be destroyed, so it's refcount must
7397 * always be >= 1.
7398 */
7399 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
7400 VM_BUG_ON(1);
7401 break;
7402 }
7403 memcg = parent_mem_cgroup(memcg);
7404 if (!memcg)
7405 memcg = root_mem_cgroup;
7406 }
7407 return memcg;
7408}
7409
7410/**
7411 * mem_cgroup_swapout - transfer a memsw charge to swap
7412 * @folio: folio whose memsw charge to transfer
7413 * @entry: swap entry to move the charge to
7414 *
7415 * Transfer the memsw charge of @folio to @entry.
7416 */
7417void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
7418{
7419 struct mem_cgroup *memcg, *swap_memcg;
7420 unsigned int nr_entries;
7421 unsigned short oldid;
7422
7423 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7424 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
7425
7426 if (mem_cgroup_disabled())
7427 return;
7428
7429 if (!do_memsw_account())
7430 return;
7431
7432 memcg = folio_memcg(folio);
7433
7434 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7435 if (!memcg)
7436 return;
7437
7438 /*
7439 * In case the memcg owning these pages has been offlined and doesn't
7440 * have an ID allocated to it anymore, charge the closest online
7441 * ancestor for the swap instead and transfer the memory+swap charge.
7442 */
7443 swap_memcg = mem_cgroup_id_get_online(memcg);
7444 nr_entries = folio_nr_pages(folio);
7445 /* Get references for the tail pages, too */
7446 if (nr_entries > 1)
7447 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7448 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7449 nr_entries);
7450 VM_BUG_ON_FOLIO(oldid, folio);
7451 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7452
7453 folio->memcg_data = 0;
7454
7455 if (!mem_cgroup_is_root(memcg))
7456 page_counter_uncharge(&memcg->memory, nr_entries);
7457
7458 if (memcg != swap_memcg) {
7459 if (!mem_cgroup_is_root(swap_memcg))
7460 page_counter_charge(&swap_memcg->memsw, nr_entries);
7461 page_counter_uncharge(&memcg->memsw, nr_entries);
7462 }
7463
7464 /*
7465 * Interrupts should be disabled here because the caller holds the
7466 * i_pages lock which is taken with interrupts-off. It is
7467 * important here to have the interrupts disabled because it is the
7468 * only synchronisation we have for updating the per-CPU variables.
7469 */
7470 memcg_stats_lock();
7471 mem_cgroup_charge_statistics(memcg, -nr_entries);
7472 memcg_stats_unlock();
7473 memcg_check_events(memcg, folio_nid(folio));
7474
7475 css_put(&memcg->css);
7476}
7477
7478/**
7479 * __mem_cgroup_try_charge_swap - try charging swap space for a folio
7480 * @folio: folio being added to swap
7481 * @entry: swap entry to charge
7482 *
7483 * Try to charge @folio's memcg for the swap space at @entry.
7484 *
7485 * Returns 0 on success, -ENOMEM on failure.
7486 */
7487int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
7488{
7489 unsigned int nr_pages = folio_nr_pages(folio);
7490 struct page_counter *counter;
7491 struct mem_cgroup *memcg;
7492 unsigned short oldid;
7493
7494 if (do_memsw_account())
7495 return 0;
7496
7497 memcg = folio_memcg(folio);
7498
7499 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7500 if (!memcg)
7501 return 0;
7502
7503 if (!entry.val) {
7504 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7505 return 0;
7506 }
7507
7508 memcg = mem_cgroup_id_get_online(memcg);
7509
7510 if (!mem_cgroup_is_root(memcg) &&
7511 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7512 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7513 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7514 mem_cgroup_id_put(memcg);
7515 return -ENOMEM;
7516 }
7517
7518 /* Get references for the tail pages, too */
7519 if (nr_pages > 1)
7520 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7521 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7522 VM_BUG_ON_FOLIO(oldid, folio);
7523 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7524
7525 return 0;
7526}
7527
7528/**
7529 * __mem_cgroup_uncharge_swap - uncharge swap space
7530 * @entry: swap entry to uncharge
7531 * @nr_pages: the amount of swap space to uncharge
7532 */
7533void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7534{
7535 struct mem_cgroup *memcg;
7536 unsigned short id;
7537
7538 if (mem_cgroup_disabled())
7539 return;
7540
7541 id = swap_cgroup_record(entry, 0, nr_pages);
7542 rcu_read_lock();
7543 memcg = mem_cgroup_from_id(id);
7544 if (memcg) {
7545 if (!mem_cgroup_is_root(memcg)) {
7546 if (do_memsw_account())
7547 page_counter_uncharge(&memcg->memsw, nr_pages);
7548 else
7549 page_counter_uncharge(&memcg->swap, nr_pages);
7550 }
7551 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7552 mem_cgroup_id_put_many(memcg, nr_pages);
7553 }
7554 rcu_read_unlock();
7555}
7556
7557long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7558{
7559 long nr_swap_pages = get_nr_swap_pages();
7560
7561 if (mem_cgroup_disabled() || do_memsw_account())
7562 return nr_swap_pages;
7563 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
7564 nr_swap_pages = min_t(long, nr_swap_pages,
7565 READ_ONCE(memcg->swap.max) -
7566 page_counter_read(&memcg->swap));
7567 return nr_swap_pages;
7568}
7569
7570bool mem_cgroup_swap_full(struct folio *folio)
7571{
7572 struct mem_cgroup *memcg;
7573
7574 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
7575
7576 if (vm_swap_full())
7577 return true;
7578 if (do_memsw_account())
7579 return false;
7580
7581 memcg = folio_memcg(folio);
7582 if (!memcg)
7583 return false;
7584
7585 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
7586 unsigned long usage = page_counter_read(&memcg->swap);
7587
7588 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7589 usage * 2 >= READ_ONCE(memcg->swap.max))
7590 return true;
7591 }
7592
7593 return false;
7594}
7595
7596static int __init setup_swap_account(char *s)
7597{
7598 pr_warn_once("The swapaccount= commandline option is deprecated. "
7599 "Please report your usecase to linux-mm@kvack.org if you "
7600 "depend on this functionality.\n");
7601 return 1;
7602}
7603__setup("swapaccount=", setup_swap_account);
7604
7605static u64 swap_current_read(struct cgroup_subsys_state *css,
7606 struct cftype *cft)
7607{
7608 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7609
7610 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7611}
7612
7613static u64 swap_peak_read(struct cgroup_subsys_state *css,
7614 struct cftype *cft)
7615{
7616 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7617
7618 return (u64)memcg->swap.watermark * PAGE_SIZE;
7619}
7620
7621static int swap_high_show(struct seq_file *m, void *v)
7622{
7623 return seq_puts_memcg_tunable(m,
7624 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7625}
7626
7627static ssize_t swap_high_write(struct kernfs_open_file *of,
7628 char *buf, size_t nbytes, loff_t off)
7629{
7630 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7631 unsigned long high;
7632 int err;
7633
7634 buf = strstrip(buf);
7635 err = page_counter_memparse(buf, "max", &high);
7636 if (err)
7637 return err;
7638
7639 page_counter_set_high(&memcg->swap, high);
7640
7641 return nbytes;
7642}
7643
7644static int swap_max_show(struct seq_file *m, void *v)
7645{
7646 return seq_puts_memcg_tunable(m,
7647 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7648}
7649
7650static ssize_t swap_max_write(struct kernfs_open_file *of,
7651 char *buf, size_t nbytes, loff_t off)
7652{
7653 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7654 unsigned long max;
7655 int err;
7656
7657 buf = strstrip(buf);
7658 err = page_counter_memparse(buf, "max", &max);
7659 if (err)
7660 return err;
7661
7662 xchg(&memcg->swap.max, max);
7663
7664 return nbytes;
7665}
7666
7667static int swap_events_show(struct seq_file *m, void *v)
7668{
7669 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7670
7671 seq_printf(m, "high %lu\n",
7672 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7673 seq_printf(m, "max %lu\n",
7674 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7675 seq_printf(m, "fail %lu\n",
7676 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7677
7678 return 0;
7679}
7680
7681static struct cftype swap_files[] = {
7682 {
7683 .name = "swap.current",
7684 .flags = CFTYPE_NOT_ON_ROOT,
7685 .read_u64 = swap_current_read,
7686 },
7687 {
7688 .name = "swap.high",
7689 .flags = CFTYPE_NOT_ON_ROOT,
7690 .seq_show = swap_high_show,
7691 .write = swap_high_write,
7692 },
7693 {
7694 .name = "swap.max",
7695 .flags = CFTYPE_NOT_ON_ROOT,
7696 .seq_show = swap_max_show,
7697 .write = swap_max_write,
7698 },
7699 {
7700 .name = "swap.peak",
7701 .flags = CFTYPE_NOT_ON_ROOT,
7702 .read_u64 = swap_peak_read,
7703 },
7704 {
7705 .name = "swap.events",
7706 .flags = CFTYPE_NOT_ON_ROOT,
7707 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7708 .seq_show = swap_events_show,
7709 },
7710 { } /* terminate */
7711};
7712
7713static struct cftype memsw_files[] = {
7714 {
7715 .name = "memsw.usage_in_bytes",
7716 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7717 .read_u64 = mem_cgroup_read_u64,
7718 },
7719 {
7720 .name = "memsw.max_usage_in_bytes",
7721 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7722 .write = mem_cgroup_reset,
7723 .read_u64 = mem_cgroup_read_u64,
7724 },
7725 {
7726 .name = "memsw.limit_in_bytes",
7727 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7728 .write = mem_cgroup_write,
7729 .read_u64 = mem_cgroup_read_u64,
7730 },
7731 {
7732 .name = "memsw.failcnt",
7733 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7734 .write = mem_cgroup_reset,
7735 .read_u64 = mem_cgroup_read_u64,
7736 },
7737 { }, /* terminate */
7738};
7739
7740#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7741/**
7742 * obj_cgroup_may_zswap - check if this cgroup can zswap
7743 * @objcg: the object cgroup
7744 *
7745 * Check if the hierarchical zswap limit has been reached.
7746 *
7747 * This doesn't check for specific headroom, and it is not atomic
7748 * either. But with zswap, the size of the allocation is only known
7749 * once compression has occured, and this optimistic pre-check avoids
7750 * spending cycles on compression when there is already no room left
7751 * or zswap is disabled altogether somewhere in the hierarchy.
7752 */
7753bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
7754{
7755 struct mem_cgroup *memcg, *original_memcg;
7756 bool ret = true;
7757
7758 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7759 return true;
7760
7761 original_memcg = get_mem_cgroup_from_objcg(objcg);
7762 for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
7763 memcg = parent_mem_cgroup(memcg)) {
7764 unsigned long max = READ_ONCE(memcg->zswap_max);
7765 unsigned long pages;
7766
7767 if (max == PAGE_COUNTER_MAX)
7768 continue;
7769 if (max == 0) {
7770 ret = false;
7771 break;
7772 }
7773
7774 cgroup_rstat_flush(memcg->css.cgroup);
7775 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
7776 if (pages < max)
7777 continue;
7778 ret = false;
7779 break;
7780 }
7781 mem_cgroup_put(original_memcg);
7782 return ret;
7783}
7784
7785/**
7786 * obj_cgroup_charge_zswap - charge compression backend memory
7787 * @objcg: the object cgroup
7788 * @size: size of compressed object
7789 *
7790 * This forces the charge after obj_cgroup_may_swap() allowed
7791 * compression and storage in zwap for this cgroup to go ahead.
7792 */
7793void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
7794{
7795 struct mem_cgroup *memcg;
7796
7797 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7798 return;
7799
7800 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
7801
7802 /* PF_MEMALLOC context, charging must succeed */
7803 if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
7804 VM_WARN_ON_ONCE(1);
7805
7806 rcu_read_lock();
7807 memcg = obj_cgroup_memcg(objcg);
7808 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
7809 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
7810 rcu_read_unlock();
7811}
7812
7813/**
7814 * obj_cgroup_uncharge_zswap - uncharge compression backend memory
7815 * @objcg: the object cgroup
7816 * @size: size of compressed object
7817 *
7818 * Uncharges zswap memory on page in.
7819 */
7820void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
7821{
7822 struct mem_cgroup *memcg;
7823
7824 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7825 return;
7826
7827 obj_cgroup_uncharge(objcg, size);
7828
7829 rcu_read_lock();
7830 memcg = obj_cgroup_memcg(objcg);
7831 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
7832 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
7833 rcu_read_unlock();
7834}
7835
7836static u64 zswap_current_read(struct cgroup_subsys_state *css,
7837 struct cftype *cft)
7838{
7839 cgroup_rstat_flush(css->cgroup);
7840 return memcg_page_state(mem_cgroup_from_css(css), MEMCG_ZSWAP_B);
7841}
7842
7843static int zswap_max_show(struct seq_file *m, void *v)
7844{
7845 return seq_puts_memcg_tunable(m,
7846 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
7847}
7848
7849static ssize_t zswap_max_write(struct kernfs_open_file *of,
7850 char *buf, size_t nbytes, loff_t off)
7851{
7852 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7853 unsigned long max;
7854 int err;
7855
7856 buf = strstrip(buf);
7857 err = page_counter_memparse(buf, "max", &max);
7858 if (err)
7859 return err;
7860
7861 xchg(&memcg->zswap_max, max);
7862
7863 return nbytes;
7864}
7865
7866static struct cftype zswap_files[] = {
7867 {
7868 .name = "zswap.current",
7869 .flags = CFTYPE_NOT_ON_ROOT,
7870 .read_u64 = zswap_current_read,
7871 },
7872 {
7873 .name = "zswap.max",
7874 .flags = CFTYPE_NOT_ON_ROOT,
7875 .seq_show = zswap_max_show,
7876 .write = zswap_max_write,
7877 },
7878 { } /* terminate */
7879};
7880#endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */
7881
7882static int __init mem_cgroup_swap_init(void)
7883{
7884 if (mem_cgroup_disabled())
7885 return 0;
7886
7887 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7888 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7889#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7890 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
7891#endif
7892 return 0;
7893}
7894subsys_initcall(mem_cgroup_swap_init);
7895
7896#endif /* CONFIG_SWAP */