Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/vmstat.c
4 *
5 * Manages VM statistics
6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
7 *
8 * zoned VM statistics
9 * Copyright (C) 2006 Silicon Graphics, Inc.,
10 * Christoph Lameter <christoph@lameter.com>
11 * Copyright (C) 2008-2014 Christoph Lameter
12 */
13#include <linux/fs.h>
14#include <linux/mm.h>
15#include <linux/err.h>
16#include <linux/module.h>
17#include <linux/slab.h>
18#include <linux/cpu.h>
19#include <linux/cpumask.h>
20#include <linux/vmstat.h>
21#include <linux/proc_fs.h>
22#include <linux/seq_file.h>
23#include <linux/debugfs.h>
24#include <linux/sched.h>
25#include <linux/math64.h>
26#include <linux/writeback.h>
27#include <linux/compaction.h>
28#include <linux/mm_inline.h>
29#include <linux/page_ext.h>
30#include <linux/page_owner.h>
31#include <linux/sched/isolation.h>
32
33#include "internal.h"
34
35#ifdef CONFIG_NUMA
36int sysctl_vm_numa_stat = ENABLE_NUMA_STAT;
37
38/* zero numa counters within a zone */
39static void zero_zone_numa_counters(struct zone *zone)
40{
41 int item, cpu;
42
43 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++) {
44 atomic_long_set(&zone->vm_numa_event[item], 0);
45 for_each_online_cpu(cpu) {
46 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->vm_numa_event[item]
47 = 0;
48 }
49 }
50}
51
52/* zero numa counters of all the populated zones */
53static void zero_zones_numa_counters(void)
54{
55 struct zone *zone;
56
57 for_each_populated_zone(zone)
58 zero_zone_numa_counters(zone);
59}
60
61/* zero global numa counters */
62static void zero_global_numa_counters(void)
63{
64 int item;
65
66 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
67 atomic_long_set(&vm_numa_event[item], 0);
68}
69
70static void invalid_numa_statistics(void)
71{
72 zero_zones_numa_counters();
73 zero_global_numa_counters();
74}
75
76static DEFINE_MUTEX(vm_numa_stat_lock);
77
78int sysctl_vm_numa_stat_handler(struct ctl_table *table, int write,
79 void *buffer, size_t *length, loff_t *ppos)
80{
81 int ret, oldval;
82
83 mutex_lock(&vm_numa_stat_lock);
84 if (write)
85 oldval = sysctl_vm_numa_stat;
86 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
87 if (ret || !write)
88 goto out;
89
90 if (oldval == sysctl_vm_numa_stat)
91 goto out;
92 else if (sysctl_vm_numa_stat == ENABLE_NUMA_STAT) {
93 static_branch_enable(&vm_numa_stat_key);
94 pr_info("enable numa statistics\n");
95 } else {
96 static_branch_disable(&vm_numa_stat_key);
97 invalid_numa_statistics();
98 pr_info("disable numa statistics, and clear numa counters\n");
99 }
100
101out:
102 mutex_unlock(&vm_numa_stat_lock);
103 return ret;
104}
105#endif
106
107#ifdef CONFIG_VM_EVENT_COUNTERS
108DEFINE_PER_CPU(struct vm_event_state, vm_event_states) = {{0}};
109EXPORT_PER_CPU_SYMBOL(vm_event_states);
110
111static void sum_vm_events(unsigned long *ret)
112{
113 int cpu;
114 int i;
115
116 memset(ret, 0, NR_VM_EVENT_ITEMS * sizeof(unsigned long));
117
118 for_each_online_cpu(cpu) {
119 struct vm_event_state *this = &per_cpu(vm_event_states, cpu);
120
121 for (i = 0; i < NR_VM_EVENT_ITEMS; i++)
122 ret[i] += this->event[i];
123 }
124}
125
126/*
127 * Accumulate the vm event counters across all CPUs.
128 * The result is unavoidably approximate - it can change
129 * during and after execution of this function.
130*/
131void all_vm_events(unsigned long *ret)
132{
133 cpus_read_lock();
134 sum_vm_events(ret);
135 cpus_read_unlock();
136}
137EXPORT_SYMBOL_GPL(all_vm_events);
138
139/*
140 * Fold the foreign cpu events into our own.
141 *
142 * This is adding to the events on one processor
143 * but keeps the global counts constant.
144 */
145void vm_events_fold_cpu(int cpu)
146{
147 struct vm_event_state *fold_state = &per_cpu(vm_event_states, cpu);
148 int i;
149
150 for (i = 0; i < NR_VM_EVENT_ITEMS; i++) {
151 count_vm_events(i, fold_state->event[i]);
152 fold_state->event[i] = 0;
153 }
154}
155
156#endif /* CONFIG_VM_EVENT_COUNTERS */
157
158/*
159 * Manage combined zone based / global counters
160 *
161 * vm_stat contains the global counters
162 */
163atomic_long_t vm_zone_stat[NR_VM_ZONE_STAT_ITEMS] __cacheline_aligned_in_smp;
164atomic_long_t vm_node_stat[NR_VM_NODE_STAT_ITEMS] __cacheline_aligned_in_smp;
165atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS] __cacheline_aligned_in_smp;
166EXPORT_SYMBOL(vm_zone_stat);
167EXPORT_SYMBOL(vm_node_stat);
168
169#ifdef CONFIG_NUMA
170static void fold_vm_zone_numa_events(struct zone *zone)
171{
172 unsigned long zone_numa_events[NR_VM_NUMA_EVENT_ITEMS] = { 0, };
173 int cpu;
174 enum numa_stat_item item;
175
176 for_each_online_cpu(cpu) {
177 struct per_cpu_zonestat *pzstats;
178
179 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
180 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
181 zone_numa_events[item] += xchg(&pzstats->vm_numa_event[item], 0);
182 }
183
184 for (item = 0; item < NR_VM_NUMA_EVENT_ITEMS; item++)
185 zone_numa_event_add(zone_numa_events[item], zone, item);
186}
187
188void fold_vm_numa_events(void)
189{
190 struct zone *zone;
191
192 for_each_populated_zone(zone)
193 fold_vm_zone_numa_events(zone);
194}
195#endif
196
197#ifdef CONFIG_SMP
198
199int calculate_pressure_threshold(struct zone *zone)
200{
201 int threshold;
202 int watermark_distance;
203
204 /*
205 * As vmstats are not up to date, there is drift between the estimated
206 * and real values. For high thresholds and a high number of CPUs, it
207 * is possible for the min watermark to be breached while the estimated
208 * value looks fine. The pressure threshold is a reduced value such
209 * that even the maximum amount of drift will not accidentally breach
210 * the min watermark
211 */
212 watermark_distance = low_wmark_pages(zone) - min_wmark_pages(zone);
213 threshold = max(1, (int)(watermark_distance / num_online_cpus()));
214
215 /*
216 * Maximum threshold is 125
217 */
218 threshold = min(125, threshold);
219
220 return threshold;
221}
222
223int calculate_normal_threshold(struct zone *zone)
224{
225 int threshold;
226 int mem; /* memory in 128 MB units */
227
228 /*
229 * The threshold scales with the number of processors and the amount
230 * of memory per zone. More memory means that we can defer updates for
231 * longer, more processors could lead to more contention.
232 * fls() is used to have a cheap way of logarithmic scaling.
233 *
234 * Some sample thresholds:
235 *
236 * Threshold Processors (fls) Zonesize fls(mem)+1
237 * ------------------------------------------------------------------
238 * 8 1 1 0.9-1 GB 4
239 * 16 2 2 0.9-1 GB 4
240 * 20 2 2 1-2 GB 5
241 * 24 2 2 2-4 GB 6
242 * 28 2 2 4-8 GB 7
243 * 32 2 2 8-16 GB 8
244 * 4 2 2 <128M 1
245 * 30 4 3 2-4 GB 5
246 * 48 4 3 8-16 GB 8
247 * 32 8 4 1-2 GB 4
248 * 32 8 4 0.9-1GB 4
249 * 10 16 5 <128M 1
250 * 40 16 5 900M 4
251 * 70 64 7 2-4 GB 5
252 * 84 64 7 4-8 GB 6
253 * 108 512 9 4-8 GB 6
254 * 125 1024 10 8-16 GB 8
255 * 125 1024 10 16-32 GB 9
256 */
257
258 mem = zone_managed_pages(zone) >> (27 - PAGE_SHIFT);
259
260 threshold = 2 * fls(num_online_cpus()) * (1 + fls(mem));
261
262 /*
263 * Maximum threshold is 125
264 */
265 threshold = min(125, threshold);
266
267 return threshold;
268}
269
270/*
271 * Refresh the thresholds for each zone.
272 */
273void refresh_zone_stat_thresholds(void)
274{
275 struct pglist_data *pgdat;
276 struct zone *zone;
277 int cpu;
278 int threshold;
279
280 /* Zero current pgdat thresholds */
281 for_each_online_pgdat(pgdat) {
282 for_each_online_cpu(cpu) {
283 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold = 0;
284 }
285 }
286
287 for_each_populated_zone(zone) {
288 struct pglist_data *pgdat = zone->zone_pgdat;
289 unsigned long max_drift, tolerate_drift;
290
291 threshold = calculate_normal_threshold(zone);
292
293 for_each_online_cpu(cpu) {
294 int pgdat_threshold;
295
296 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
297 = threshold;
298
299 /* Base nodestat threshold on the largest populated zone. */
300 pgdat_threshold = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold;
301 per_cpu_ptr(pgdat->per_cpu_nodestats, cpu)->stat_threshold
302 = max(threshold, pgdat_threshold);
303 }
304
305 /*
306 * Only set percpu_drift_mark if there is a danger that
307 * NR_FREE_PAGES reports the low watermark is ok when in fact
308 * the min watermark could be breached by an allocation
309 */
310 tolerate_drift = low_wmark_pages(zone) - min_wmark_pages(zone);
311 max_drift = num_online_cpus() * threshold;
312 if (max_drift > tolerate_drift)
313 zone->percpu_drift_mark = high_wmark_pages(zone) +
314 max_drift;
315 }
316}
317
318void set_pgdat_percpu_threshold(pg_data_t *pgdat,
319 int (*calculate_pressure)(struct zone *))
320{
321 struct zone *zone;
322 int cpu;
323 int threshold;
324 int i;
325
326 for (i = 0; i < pgdat->nr_zones; i++) {
327 zone = &pgdat->node_zones[i];
328 if (!zone->percpu_drift_mark)
329 continue;
330
331 threshold = (*calculate_pressure)(zone);
332 for_each_online_cpu(cpu)
333 per_cpu_ptr(zone->per_cpu_zonestats, cpu)->stat_threshold
334 = threshold;
335 }
336}
337
338/*
339 * For use when we know that interrupts are disabled,
340 * or when we know that preemption is disabled and that
341 * particular counter cannot be updated from interrupt context.
342 */
343void __mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
344 long delta)
345{
346 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
347 s8 __percpu *p = pcp->vm_stat_diff + item;
348 long x;
349 long t;
350
351 /*
352 * Accurate vmstat updates require a RMW. On !PREEMPT_RT kernels,
353 * atomicity is provided by IRQs being disabled -- either explicitly
354 * or via local_lock_irq. On PREEMPT_RT, local_lock_irq only disables
355 * CPU migrations and preemption potentially corrupts a counter so
356 * disable preemption.
357 */
358 preempt_disable_nested();
359
360 x = delta + __this_cpu_read(*p);
361
362 t = __this_cpu_read(pcp->stat_threshold);
363
364 if (unlikely(abs(x) > t)) {
365 zone_page_state_add(x, zone, item);
366 x = 0;
367 }
368 __this_cpu_write(*p, x);
369
370 preempt_enable_nested();
371}
372EXPORT_SYMBOL(__mod_zone_page_state);
373
374void __mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
375 long delta)
376{
377 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
378 s8 __percpu *p = pcp->vm_node_stat_diff + item;
379 long x;
380 long t;
381
382 if (vmstat_item_in_bytes(item)) {
383 /*
384 * Only cgroups use subpage accounting right now; at
385 * the global level, these items still change in
386 * multiples of whole pages. Store them as pages
387 * internally to keep the per-cpu counters compact.
388 */
389 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
390 delta >>= PAGE_SHIFT;
391 }
392
393 /* See __mod_node_page_state */
394 preempt_disable_nested();
395
396 x = delta + __this_cpu_read(*p);
397
398 t = __this_cpu_read(pcp->stat_threshold);
399
400 if (unlikely(abs(x) > t)) {
401 node_page_state_add(x, pgdat, item);
402 x = 0;
403 }
404 __this_cpu_write(*p, x);
405
406 preempt_enable_nested();
407}
408EXPORT_SYMBOL(__mod_node_page_state);
409
410/*
411 * Optimized increment and decrement functions.
412 *
413 * These are only for a single page and therefore can take a struct page *
414 * argument instead of struct zone *. This allows the inclusion of the code
415 * generated for page_zone(page) into the optimized functions.
416 *
417 * No overflow check is necessary and therefore the differential can be
418 * incremented or decremented in place which may allow the compilers to
419 * generate better code.
420 * The increment or decrement is known and therefore one boundary check can
421 * be omitted.
422 *
423 * NOTE: These functions are very performance sensitive. Change only
424 * with care.
425 *
426 * Some processors have inc/dec instructions that are atomic vs an interrupt.
427 * However, the code must first determine the differential location in a zone
428 * based on the processor number and then inc/dec the counter. There is no
429 * guarantee without disabling preemption that the processor will not change
430 * in between and therefore the atomicity vs. interrupt cannot be exploited
431 * in a useful way here.
432 */
433void __inc_zone_state(struct zone *zone, enum zone_stat_item item)
434{
435 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
436 s8 __percpu *p = pcp->vm_stat_diff + item;
437 s8 v, t;
438
439 /* See __mod_node_page_state */
440 preempt_disable_nested();
441
442 v = __this_cpu_inc_return(*p);
443 t = __this_cpu_read(pcp->stat_threshold);
444 if (unlikely(v > t)) {
445 s8 overstep = t >> 1;
446
447 zone_page_state_add(v + overstep, zone, item);
448 __this_cpu_write(*p, -overstep);
449 }
450
451 preempt_enable_nested();
452}
453
454void __inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
455{
456 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
457 s8 __percpu *p = pcp->vm_node_stat_diff + item;
458 s8 v, t;
459
460 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
461
462 /* See __mod_node_page_state */
463 preempt_disable_nested();
464
465 v = __this_cpu_inc_return(*p);
466 t = __this_cpu_read(pcp->stat_threshold);
467 if (unlikely(v > t)) {
468 s8 overstep = t >> 1;
469
470 node_page_state_add(v + overstep, pgdat, item);
471 __this_cpu_write(*p, -overstep);
472 }
473
474 preempt_enable_nested();
475}
476
477void __inc_zone_page_state(struct page *page, enum zone_stat_item item)
478{
479 __inc_zone_state(page_zone(page), item);
480}
481EXPORT_SYMBOL(__inc_zone_page_state);
482
483void __inc_node_page_state(struct page *page, enum node_stat_item item)
484{
485 __inc_node_state(page_pgdat(page), item);
486}
487EXPORT_SYMBOL(__inc_node_page_state);
488
489void __dec_zone_state(struct zone *zone, enum zone_stat_item item)
490{
491 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
492 s8 __percpu *p = pcp->vm_stat_diff + item;
493 s8 v, t;
494
495 /* See __mod_node_page_state */
496 preempt_disable_nested();
497
498 v = __this_cpu_dec_return(*p);
499 t = __this_cpu_read(pcp->stat_threshold);
500 if (unlikely(v < - t)) {
501 s8 overstep = t >> 1;
502
503 zone_page_state_add(v - overstep, zone, item);
504 __this_cpu_write(*p, overstep);
505 }
506
507 preempt_enable_nested();
508}
509
510void __dec_node_state(struct pglist_data *pgdat, enum node_stat_item item)
511{
512 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
513 s8 __percpu *p = pcp->vm_node_stat_diff + item;
514 s8 v, t;
515
516 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
517
518 /* See __mod_node_page_state */
519 preempt_disable_nested();
520
521 v = __this_cpu_dec_return(*p);
522 t = __this_cpu_read(pcp->stat_threshold);
523 if (unlikely(v < - t)) {
524 s8 overstep = t >> 1;
525
526 node_page_state_add(v - overstep, pgdat, item);
527 __this_cpu_write(*p, overstep);
528 }
529
530 preempt_enable_nested();
531}
532
533void __dec_zone_page_state(struct page *page, enum zone_stat_item item)
534{
535 __dec_zone_state(page_zone(page), item);
536}
537EXPORT_SYMBOL(__dec_zone_page_state);
538
539void __dec_node_page_state(struct page *page, enum node_stat_item item)
540{
541 __dec_node_state(page_pgdat(page), item);
542}
543EXPORT_SYMBOL(__dec_node_page_state);
544
545#ifdef CONFIG_HAVE_CMPXCHG_LOCAL
546/*
547 * If we have cmpxchg_local support then we do not need to incur the overhead
548 * that comes with local_irq_save/restore if we use this_cpu_cmpxchg.
549 *
550 * mod_state() modifies the zone counter state through atomic per cpu
551 * operations.
552 *
553 * Overstep mode specifies how overstep should handled:
554 * 0 No overstepping
555 * 1 Overstepping half of threshold
556 * -1 Overstepping minus half of threshold
557*/
558static inline void mod_zone_state(struct zone *zone,
559 enum zone_stat_item item, long delta, int overstep_mode)
560{
561 struct per_cpu_zonestat __percpu *pcp = zone->per_cpu_zonestats;
562 s8 __percpu *p = pcp->vm_stat_diff + item;
563 long o, n, t, z;
564
565 do {
566 z = 0; /* overflow to zone counters */
567
568 /*
569 * The fetching of the stat_threshold is racy. We may apply
570 * a counter threshold to the wrong the cpu if we get
571 * rescheduled while executing here. However, the next
572 * counter update will apply the threshold again and
573 * therefore bring the counter under the threshold again.
574 *
575 * Most of the time the thresholds are the same anyways
576 * for all cpus in a zone.
577 */
578 t = this_cpu_read(pcp->stat_threshold);
579
580 o = this_cpu_read(*p);
581 n = delta + o;
582
583 if (abs(n) > t) {
584 int os = overstep_mode * (t >> 1) ;
585
586 /* Overflow must be added to zone counters */
587 z = n + os;
588 n = -os;
589 }
590 } while (this_cpu_cmpxchg(*p, o, n) != o);
591
592 if (z)
593 zone_page_state_add(z, zone, item);
594}
595
596void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
597 long delta)
598{
599 mod_zone_state(zone, item, delta, 0);
600}
601EXPORT_SYMBOL(mod_zone_page_state);
602
603void inc_zone_page_state(struct page *page, enum zone_stat_item item)
604{
605 mod_zone_state(page_zone(page), item, 1, 1);
606}
607EXPORT_SYMBOL(inc_zone_page_state);
608
609void dec_zone_page_state(struct page *page, enum zone_stat_item item)
610{
611 mod_zone_state(page_zone(page), item, -1, -1);
612}
613EXPORT_SYMBOL(dec_zone_page_state);
614
615static inline void mod_node_state(struct pglist_data *pgdat,
616 enum node_stat_item item, int delta, int overstep_mode)
617{
618 struct per_cpu_nodestat __percpu *pcp = pgdat->per_cpu_nodestats;
619 s8 __percpu *p = pcp->vm_node_stat_diff + item;
620 long o, n, t, z;
621
622 if (vmstat_item_in_bytes(item)) {
623 /*
624 * Only cgroups use subpage accounting right now; at
625 * the global level, these items still change in
626 * multiples of whole pages. Store them as pages
627 * internally to keep the per-cpu counters compact.
628 */
629 VM_WARN_ON_ONCE(delta & (PAGE_SIZE - 1));
630 delta >>= PAGE_SHIFT;
631 }
632
633 do {
634 z = 0; /* overflow to node counters */
635
636 /*
637 * The fetching of the stat_threshold is racy. We may apply
638 * a counter threshold to the wrong the cpu if we get
639 * rescheduled while executing here. However, the next
640 * counter update will apply the threshold again and
641 * therefore bring the counter under the threshold again.
642 *
643 * Most of the time the thresholds are the same anyways
644 * for all cpus in a node.
645 */
646 t = this_cpu_read(pcp->stat_threshold);
647
648 o = this_cpu_read(*p);
649 n = delta + o;
650
651 if (abs(n) > t) {
652 int os = overstep_mode * (t >> 1) ;
653
654 /* Overflow must be added to node counters */
655 z = n + os;
656 n = -os;
657 }
658 } while (this_cpu_cmpxchg(*p, o, n) != o);
659
660 if (z)
661 node_page_state_add(z, pgdat, item);
662}
663
664void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
665 long delta)
666{
667 mod_node_state(pgdat, item, delta, 0);
668}
669EXPORT_SYMBOL(mod_node_page_state);
670
671void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
672{
673 mod_node_state(pgdat, item, 1, 1);
674}
675
676void inc_node_page_state(struct page *page, enum node_stat_item item)
677{
678 mod_node_state(page_pgdat(page), item, 1, 1);
679}
680EXPORT_SYMBOL(inc_node_page_state);
681
682void dec_node_page_state(struct page *page, enum node_stat_item item)
683{
684 mod_node_state(page_pgdat(page), item, -1, -1);
685}
686EXPORT_SYMBOL(dec_node_page_state);
687#else
688/*
689 * Use interrupt disable to serialize counter updates
690 */
691void mod_zone_page_state(struct zone *zone, enum zone_stat_item item,
692 long delta)
693{
694 unsigned long flags;
695
696 local_irq_save(flags);
697 __mod_zone_page_state(zone, item, delta);
698 local_irq_restore(flags);
699}
700EXPORT_SYMBOL(mod_zone_page_state);
701
702void inc_zone_page_state(struct page *page, enum zone_stat_item item)
703{
704 unsigned long flags;
705 struct zone *zone;
706
707 zone = page_zone(page);
708 local_irq_save(flags);
709 __inc_zone_state(zone, item);
710 local_irq_restore(flags);
711}
712EXPORT_SYMBOL(inc_zone_page_state);
713
714void dec_zone_page_state(struct page *page, enum zone_stat_item item)
715{
716 unsigned long flags;
717
718 local_irq_save(flags);
719 __dec_zone_page_state(page, item);
720 local_irq_restore(flags);
721}
722EXPORT_SYMBOL(dec_zone_page_state);
723
724void inc_node_state(struct pglist_data *pgdat, enum node_stat_item item)
725{
726 unsigned long flags;
727
728 local_irq_save(flags);
729 __inc_node_state(pgdat, item);
730 local_irq_restore(flags);
731}
732EXPORT_SYMBOL(inc_node_state);
733
734void mod_node_page_state(struct pglist_data *pgdat, enum node_stat_item item,
735 long delta)
736{
737 unsigned long flags;
738
739 local_irq_save(flags);
740 __mod_node_page_state(pgdat, item, delta);
741 local_irq_restore(flags);
742}
743EXPORT_SYMBOL(mod_node_page_state);
744
745void inc_node_page_state(struct page *page, enum node_stat_item item)
746{
747 unsigned long flags;
748 struct pglist_data *pgdat;
749
750 pgdat = page_pgdat(page);
751 local_irq_save(flags);
752 __inc_node_state(pgdat, item);
753 local_irq_restore(flags);
754}
755EXPORT_SYMBOL(inc_node_page_state);
756
757void dec_node_page_state(struct page *page, enum node_stat_item item)
758{
759 unsigned long flags;
760
761 local_irq_save(flags);
762 __dec_node_page_state(page, item);
763 local_irq_restore(flags);
764}
765EXPORT_SYMBOL(dec_node_page_state);
766#endif
767
768/*
769 * Fold a differential into the global counters.
770 * Returns the number of counters updated.
771 */
772static int fold_diff(int *zone_diff, int *node_diff)
773{
774 int i;
775 int changes = 0;
776
777 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
778 if (zone_diff[i]) {
779 atomic_long_add(zone_diff[i], &vm_zone_stat[i]);
780 changes++;
781 }
782
783 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
784 if (node_diff[i]) {
785 atomic_long_add(node_diff[i], &vm_node_stat[i]);
786 changes++;
787 }
788 return changes;
789}
790
791/*
792 * Update the zone counters for the current cpu.
793 *
794 * Note that refresh_cpu_vm_stats strives to only access
795 * node local memory. The per cpu pagesets on remote zones are placed
796 * in the memory local to the processor using that pageset. So the
797 * loop over all zones will access a series of cachelines local to
798 * the processor.
799 *
800 * The call to zone_page_state_add updates the cachelines with the
801 * statistics in the remote zone struct as well as the global cachelines
802 * with the global counters. These could cause remote node cache line
803 * bouncing and will have to be only done when necessary.
804 *
805 * The function returns the number of global counters updated.
806 */
807static int refresh_cpu_vm_stats(bool do_pagesets)
808{
809 struct pglist_data *pgdat;
810 struct zone *zone;
811 int i;
812 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
813 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
814 int changes = 0;
815
816 for_each_populated_zone(zone) {
817 struct per_cpu_zonestat __percpu *pzstats = zone->per_cpu_zonestats;
818#ifdef CONFIG_NUMA
819 struct per_cpu_pages __percpu *pcp = zone->per_cpu_pageset;
820#endif
821
822 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
823 int v;
824
825 v = this_cpu_xchg(pzstats->vm_stat_diff[i], 0);
826 if (v) {
827
828 atomic_long_add(v, &zone->vm_stat[i]);
829 global_zone_diff[i] += v;
830#ifdef CONFIG_NUMA
831 /* 3 seconds idle till flush */
832 __this_cpu_write(pcp->expire, 3);
833#endif
834 }
835 }
836#ifdef CONFIG_NUMA
837
838 if (do_pagesets) {
839 cond_resched();
840 /*
841 * Deal with draining the remote pageset of this
842 * processor
843 *
844 * Check if there are pages remaining in this pageset
845 * if not then there is nothing to expire.
846 */
847 if (!__this_cpu_read(pcp->expire) ||
848 !__this_cpu_read(pcp->count))
849 continue;
850
851 /*
852 * We never drain zones local to this processor.
853 */
854 if (zone_to_nid(zone) == numa_node_id()) {
855 __this_cpu_write(pcp->expire, 0);
856 continue;
857 }
858
859 if (__this_cpu_dec_return(pcp->expire))
860 continue;
861
862 if (__this_cpu_read(pcp->count)) {
863 drain_zone_pages(zone, this_cpu_ptr(pcp));
864 changes++;
865 }
866 }
867#endif
868 }
869
870 for_each_online_pgdat(pgdat) {
871 struct per_cpu_nodestat __percpu *p = pgdat->per_cpu_nodestats;
872
873 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
874 int v;
875
876 v = this_cpu_xchg(p->vm_node_stat_diff[i], 0);
877 if (v) {
878 atomic_long_add(v, &pgdat->vm_stat[i]);
879 global_node_diff[i] += v;
880 }
881 }
882 }
883
884 changes += fold_diff(global_zone_diff, global_node_diff);
885 return changes;
886}
887
888/*
889 * Fold the data for an offline cpu into the global array.
890 * There cannot be any access by the offline cpu and therefore
891 * synchronization is simplified.
892 */
893void cpu_vm_stats_fold(int cpu)
894{
895 struct pglist_data *pgdat;
896 struct zone *zone;
897 int i;
898 int global_zone_diff[NR_VM_ZONE_STAT_ITEMS] = { 0, };
899 int global_node_diff[NR_VM_NODE_STAT_ITEMS] = { 0, };
900
901 for_each_populated_zone(zone) {
902 struct per_cpu_zonestat *pzstats;
903
904 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
905
906 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
907 if (pzstats->vm_stat_diff[i]) {
908 int v;
909
910 v = pzstats->vm_stat_diff[i];
911 pzstats->vm_stat_diff[i] = 0;
912 atomic_long_add(v, &zone->vm_stat[i]);
913 global_zone_diff[i] += v;
914 }
915 }
916#ifdef CONFIG_NUMA
917 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
918 if (pzstats->vm_numa_event[i]) {
919 unsigned long v;
920
921 v = pzstats->vm_numa_event[i];
922 pzstats->vm_numa_event[i] = 0;
923 zone_numa_event_add(v, zone, i);
924 }
925 }
926#endif
927 }
928
929 for_each_online_pgdat(pgdat) {
930 struct per_cpu_nodestat *p;
931
932 p = per_cpu_ptr(pgdat->per_cpu_nodestats, cpu);
933
934 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++)
935 if (p->vm_node_stat_diff[i]) {
936 int v;
937
938 v = p->vm_node_stat_diff[i];
939 p->vm_node_stat_diff[i] = 0;
940 atomic_long_add(v, &pgdat->vm_stat[i]);
941 global_node_diff[i] += v;
942 }
943 }
944
945 fold_diff(global_zone_diff, global_node_diff);
946}
947
948/*
949 * this is only called if !populated_zone(zone), which implies no other users of
950 * pset->vm_stat_diff[] exist.
951 */
952void drain_zonestat(struct zone *zone, struct per_cpu_zonestat *pzstats)
953{
954 unsigned long v;
955 int i;
956
957 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
958 if (pzstats->vm_stat_diff[i]) {
959 v = pzstats->vm_stat_diff[i];
960 pzstats->vm_stat_diff[i] = 0;
961 zone_page_state_add(v, zone, i);
962 }
963 }
964
965#ifdef CONFIG_NUMA
966 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++) {
967 if (pzstats->vm_numa_event[i]) {
968 v = pzstats->vm_numa_event[i];
969 pzstats->vm_numa_event[i] = 0;
970 zone_numa_event_add(v, zone, i);
971 }
972 }
973#endif
974}
975#endif
976
977#ifdef CONFIG_NUMA
978/*
979 * Determine the per node value of a stat item. This function
980 * is called frequently in a NUMA machine, so try to be as
981 * frugal as possible.
982 */
983unsigned long sum_zone_node_page_state(int node,
984 enum zone_stat_item item)
985{
986 struct zone *zones = NODE_DATA(node)->node_zones;
987 int i;
988 unsigned long count = 0;
989
990 for (i = 0; i < MAX_NR_ZONES; i++)
991 count += zone_page_state(zones + i, item);
992
993 return count;
994}
995
996/* Determine the per node value of a numa stat item. */
997unsigned long sum_zone_numa_event_state(int node,
998 enum numa_stat_item item)
999{
1000 struct zone *zones = NODE_DATA(node)->node_zones;
1001 unsigned long count = 0;
1002 int i;
1003
1004 for (i = 0; i < MAX_NR_ZONES; i++)
1005 count += zone_numa_event_state(zones + i, item);
1006
1007 return count;
1008}
1009
1010/*
1011 * Determine the per node value of a stat item.
1012 */
1013unsigned long node_page_state_pages(struct pglist_data *pgdat,
1014 enum node_stat_item item)
1015{
1016 long x = atomic_long_read(&pgdat->vm_stat[item]);
1017#ifdef CONFIG_SMP
1018 if (x < 0)
1019 x = 0;
1020#endif
1021 return x;
1022}
1023
1024unsigned long node_page_state(struct pglist_data *pgdat,
1025 enum node_stat_item item)
1026{
1027 VM_WARN_ON_ONCE(vmstat_item_in_bytes(item));
1028
1029 return node_page_state_pages(pgdat, item);
1030}
1031#endif
1032
1033#ifdef CONFIG_COMPACTION
1034
1035struct contig_page_info {
1036 unsigned long free_pages;
1037 unsigned long free_blocks_total;
1038 unsigned long free_blocks_suitable;
1039};
1040
1041/*
1042 * Calculate the number of free pages in a zone, how many contiguous
1043 * pages are free and how many are large enough to satisfy an allocation of
1044 * the target size. Note that this function makes no attempt to estimate
1045 * how many suitable free blocks there *might* be if MOVABLE pages were
1046 * migrated. Calculating that is possible, but expensive and can be
1047 * figured out from userspace
1048 */
1049static void fill_contig_page_info(struct zone *zone,
1050 unsigned int suitable_order,
1051 struct contig_page_info *info)
1052{
1053 unsigned int order;
1054
1055 info->free_pages = 0;
1056 info->free_blocks_total = 0;
1057 info->free_blocks_suitable = 0;
1058
1059 for (order = 0; order <= MAX_ORDER; order++) {
1060 unsigned long blocks;
1061
1062 /*
1063 * Count number of free blocks.
1064 *
1065 * Access to nr_free is lockless as nr_free is used only for
1066 * diagnostic purposes. Use data_race to avoid KCSAN warning.
1067 */
1068 blocks = data_race(zone->free_area[order].nr_free);
1069 info->free_blocks_total += blocks;
1070
1071 /* Count free base pages */
1072 info->free_pages += blocks << order;
1073
1074 /* Count the suitable free blocks */
1075 if (order >= suitable_order)
1076 info->free_blocks_suitable += blocks <<
1077 (order - suitable_order);
1078 }
1079}
1080
1081/*
1082 * A fragmentation index only makes sense if an allocation of a requested
1083 * size would fail. If that is true, the fragmentation index indicates
1084 * whether external fragmentation or a lack of memory was the problem.
1085 * The value can be used to determine if page reclaim or compaction
1086 * should be used
1087 */
1088static int __fragmentation_index(unsigned int order, struct contig_page_info *info)
1089{
1090 unsigned long requested = 1UL << order;
1091
1092 if (WARN_ON_ONCE(order > MAX_ORDER))
1093 return 0;
1094
1095 if (!info->free_blocks_total)
1096 return 0;
1097
1098 /* Fragmentation index only makes sense when a request would fail */
1099 if (info->free_blocks_suitable)
1100 return -1000;
1101
1102 /*
1103 * Index is between 0 and 1 so return within 3 decimal places
1104 *
1105 * 0 => allocation would fail due to lack of memory
1106 * 1 => allocation would fail due to fragmentation
1107 */
1108 return 1000 - div_u64( (1000+(div_u64(info->free_pages * 1000ULL, requested))), info->free_blocks_total);
1109}
1110
1111/*
1112 * Calculates external fragmentation within a zone wrt the given order.
1113 * It is defined as the percentage of pages found in blocks of size
1114 * less than 1 << order. It returns values in range [0, 100].
1115 */
1116unsigned int extfrag_for_order(struct zone *zone, unsigned int order)
1117{
1118 struct contig_page_info info;
1119
1120 fill_contig_page_info(zone, order, &info);
1121 if (info.free_pages == 0)
1122 return 0;
1123
1124 return div_u64((info.free_pages -
1125 (info.free_blocks_suitable << order)) * 100,
1126 info.free_pages);
1127}
1128
1129/* Same as __fragmentation index but allocs contig_page_info on stack */
1130int fragmentation_index(struct zone *zone, unsigned int order)
1131{
1132 struct contig_page_info info;
1133
1134 fill_contig_page_info(zone, order, &info);
1135 return __fragmentation_index(order, &info);
1136}
1137#endif
1138
1139#if defined(CONFIG_PROC_FS) || defined(CONFIG_SYSFS) || \
1140 defined(CONFIG_NUMA) || defined(CONFIG_MEMCG)
1141#ifdef CONFIG_ZONE_DMA
1142#define TEXT_FOR_DMA(xx) xx "_dma",
1143#else
1144#define TEXT_FOR_DMA(xx)
1145#endif
1146
1147#ifdef CONFIG_ZONE_DMA32
1148#define TEXT_FOR_DMA32(xx) xx "_dma32",
1149#else
1150#define TEXT_FOR_DMA32(xx)
1151#endif
1152
1153#ifdef CONFIG_HIGHMEM
1154#define TEXT_FOR_HIGHMEM(xx) xx "_high",
1155#else
1156#define TEXT_FOR_HIGHMEM(xx)
1157#endif
1158
1159#ifdef CONFIG_ZONE_DEVICE
1160#define TEXT_FOR_DEVICE(xx) xx "_device",
1161#else
1162#define TEXT_FOR_DEVICE(xx)
1163#endif
1164
1165#define TEXTS_FOR_ZONES(xx) TEXT_FOR_DMA(xx) TEXT_FOR_DMA32(xx) xx "_normal", \
1166 TEXT_FOR_HIGHMEM(xx) xx "_movable", \
1167 TEXT_FOR_DEVICE(xx)
1168
1169const char * const vmstat_text[] = {
1170 /* enum zone_stat_item counters */
1171 "nr_free_pages",
1172 "nr_zone_inactive_anon",
1173 "nr_zone_active_anon",
1174 "nr_zone_inactive_file",
1175 "nr_zone_active_file",
1176 "nr_zone_unevictable",
1177 "nr_zone_write_pending",
1178 "nr_mlock",
1179 "nr_bounce",
1180#if IS_ENABLED(CONFIG_ZSMALLOC)
1181 "nr_zspages",
1182#endif
1183 "nr_free_cma",
1184#ifdef CONFIG_UNACCEPTED_MEMORY
1185 "nr_unaccepted",
1186#endif
1187
1188 /* enum numa_stat_item counters */
1189#ifdef CONFIG_NUMA
1190 "numa_hit",
1191 "numa_miss",
1192 "numa_foreign",
1193 "numa_interleave",
1194 "numa_local",
1195 "numa_other",
1196#endif
1197
1198 /* enum node_stat_item counters */
1199 "nr_inactive_anon",
1200 "nr_active_anon",
1201 "nr_inactive_file",
1202 "nr_active_file",
1203 "nr_unevictable",
1204 "nr_slab_reclaimable",
1205 "nr_slab_unreclaimable",
1206 "nr_isolated_anon",
1207 "nr_isolated_file",
1208 "workingset_nodes",
1209 "workingset_refault_anon",
1210 "workingset_refault_file",
1211 "workingset_activate_anon",
1212 "workingset_activate_file",
1213 "workingset_restore_anon",
1214 "workingset_restore_file",
1215 "workingset_nodereclaim",
1216 "nr_anon_pages",
1217 "nr_mapped",
1218 "nr_file_pages",
1219 "nr_dirty",
1220 "nr_writeback",
1221 "nr_writeback_temp",
1222 "nr_shmem",
1223 "nr_shmem_hugepages",
1224 "nr_shmem_pmdmapped",
1225 "nr_file_hugepages",
1226 "nr_file_pmdmapped",
1227 "nr_anon_transparent_hugepages",
1228 "nr_vmscan_write",
1229 "nr_vmscan_immediate_reclaim",
1230 "nr_dirtied",
1231 "nr_written",
1232 "nr_throttled_written",
1233 "nr_kernel_misc_reclaimable",
1234 "nr_foll_pin_acquired",
1235 "nr_foll_pin_released",
1236 "nr_kernel_stack",
1237#if IS_ENABLED(CONFIG_SHADOW_CALL_STACK)
1238 "nr_shadow_call_stack",
1239#endif
1240 "nr_page_table_pages",
1241 "nr_sec_page_table_pages",
1242#ifdef CONFIG_SWAP
1243 "nr_swapcached",
1244#endif
1245#ifdef CONFIG_NUMA_BALANCING
1246 "pgpromote_success",
1247 "pgpromote_candidate",
1248#endif
1249
1250 /* enum writeback_stat_item counters */
1251 "nr_dirty_threshold",
1252 "nr_dirty_background_threshold",
1253
1254#if defined(CONFIG_VM_EVENT_COUNTERS) || defined(CONFIG_MEMCG)
1255 /* enum vm_event_item counters */
1256 "pgpgin",
1257 "pgpgout",
1258 "pswpin",
1259 "pswpout",
1260
1261 TEXTS_FOR_ZONES("pgalloc")
1262 TEXTS_FOR_ZONES("allocstall")
1263 TEXTS_FOR_ZONES("pgskip")
1264
1265 "pgfree",
1266 "pgactivate",
1267 "pgdeactivate",
1268 "pglazyfree",
1269
1270 "pgfault",
1271 "pgmajfault",
1272 "pglazyfreed",
1273
1274 "pgrefill",
1275 "pgreuse",
1276 "pgsteal_kswapd",
1277 "pgsteal_direct",
1278 "pgsteal_khugepaged",
1279 "pgdemote_kswapd",
1280 "pgdemote_direct",
1281 "pgdemote_khugepaged",
1282 "pgscan_kswapd",
1283 "pgscan_direct",
1284 "pgscan_khugepaged",
1285 "pgscan_direct_throttle",
1286 "pgscan_anon",
1287 "pgscan_file",
1288 "pgsteal_anon",
1289 "pgsteal_file",
1290
1291#ifdef CONFIG_NUMA
1292 "zone_reclaim_failed",
1293#endif
1294 "pginodesteal",
1295 "slabs_scanned",
1296 "kswapd_inodesteal",
1297 "kswapd_low_wmark_hit_quickly",
1298 "kswapd_high_wmark_hit_quickly",
1299 "pageoutrun",
1300
1301 "pgrotated",
1302
1303 "drop_pagecache",
1304 "drop_slab",
1305 "oom_kill",
1306
1307#ifdef CONFIG_NUMA_BALANCING
1308 "numa_pte_updates",
1309 "numa_huge_pte_updates",
1310 "numa_hint_faults",
1311 "numa_hint_faults_local",
1312 "numa_pages_migrated",
1313#endif
1314#ifdef CONFIG_MIGRATION
1315 "pgmigrate_success",
1316 "pgmigrate_fail",
1317 "thp_migration_success",
1318 "thp_migration_fail",
1319 "thp_migration_split",
1320#endif
1321#ifdef CONFIG_COMPACTION
1322 "compact_migrate_scanned",
1323 "compact_free_scanned",
1324 "compact_isolated",
1325 "compact_stall",
1326 "compact_fail",
1327 "compact_success",
1328 "compact_daemon_wake",
1329 "compact_daemon_migrate_scanned",
1330 "compact_daemon_free_scanned",
1331#endif
1332
1333#ifdef CONFIG_HUGETLB_PAGE
1334 "htlb_buddy_alloc_success",
1335 "htlb_buddy_alloc_fail",
1336#endif
1337#ifdef CONFIG_CMA
1338 "cma_alloc_success",
1339 "cma_alloc_fail",
1340#endif
1341 "unevictable_pgs_culled",
1342 "unevictable_pgs_scanned",
1343 "unevictable_pgs_rescued",
1344 "unevictable_pgs_mlocked",
1345 "unevictable_pgs_munlocked",
1346 "unevictable_pgs_cleared",
1347 "unevictable_pgs_stranded",
1348
1349#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1350 "thp_fault_alloc",
1351 "thp_fault_fallback",
1352 "thp_fault_fallback_charge",
1353 "thp_collapse_alloc",
1354 "thp_collapse_alloc_failed",
1355 "thp_file_alloc",
1356 "thp_file_fallback",
1357 "thp_file_fallback_charge",
1358 "thp_file_mapped",
1359 "thp_split_page",
1360 "thp_split_page_failed",
1361 "thp_deferred_split_page",
1362 "thp_split_pmd",
1363 "thp_scan_exceed_none_pte",
1364 "thp_scan_exceed_swap_pte",
1365 "thp_scan_exceed_share_pte",
1366#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1367 "thp_split_pud",
1368#endif
1369 "thp_zero_page_alloc",
1370 "thp_zero_page_alloc_failed",
1371 "thp_swpout",
1372 "thp_swpout_fallback",
1373#endif
1374#ifdef CONFIG_MEMORY_BALLOON
1375 "balloon_inflate",
1376 "balloon_deflate",
1377#ifdef CONFIG_BALLOON_COMPACTION
1378 "balloon_migrate",
1379#endif
1380#endif /* CONFIG_MEMORY_BALLOON */
1381#ifdef CONFIG_DEBUG_TLBFLUSH
1382 "nr_tlb_remote_flush",
1383 "nr_tlb_remote_flush_received",
1384 "nr_tlb_local_flush_all",
1385 "nr_tlb_local_flush_one",
1386#endif /* CONFIG_DEBUG_TLBFLUSH */
1387
1388#ifdef CONFIG_SWAP
1389 "swap_ra",
1390 "swap_ra_hit",
1391#ifdef CONFIG_KSM
1392 "ksm_swpin_copy",
1393#endif
1394#endif
1395#ifdef CONFIG_KSM
1396 "cow_ksm",
1397#endif
1398#ifdef CONFIG_ZSWAP
1399 "zswpin",
1400 "zswpout",
1401#endif
1402#ifdef CONFIG_X86
1403 "direct_map_level2_splits",
1404 "direct_map_level3_splits",
1405#endif
1406#ifdef CONFIG_PER_VMA_LOCK_STATS
1407 "vma_lock_success",
1408 "vma_lock_abort",
1409 "vma_lock_retry",
1410 "vma_lock_miss",
1411#endif
1412#endif /* CONFIG_VM_EVENT_COUNTERS || CONFIG_MEMCG */
1413};
1414#endif /* CONFIG_PROC_FS || CONFIG_SYSFS || CONFIG_NUMA || CONFIG_MEMCG */
1415
1416#if (defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)) || \
1417 defined(CONFIG_PROC_FS)
1418static void *frag_start(struct seq_file *m, loff_t *pos)
1419{
1420 pg_data_t *pgdat;
1421 loff_t node = *pos;
1422
1423 for (pgdat = first_online_pgdat();
1424 pgdat && node;
1425 pgdat = next_online_pgdat(pgdat))
1426 --node;
1427
1428 return pgdat;
1429}
1430
1431static void *frag_next(struct seq_file *m, void *arg, loff_t *pos)
1432{
1433 pg_data_t *pgdat = (pg_data_t *)arg;
1434
1435 (*pos)++;
1436 return next_online_pgdat(pgdat);
1437}
1438
1439static void frag_stop(struct seq_file *m, void *arg)
1440{
1441}
1442
1443/*
1444 * Walk zones in a node and print using a callback.
1445 * If @assert_populated is true, only use callback for zones that are populated.
1446 */
1447static void walk_zones_in_node(struct seq_file *m, pg_data_t *pgdat,
1448 bool assert_populated, bool nolock,
1449 void (*print)(struct seq_file *m, pg_data_t *, struct zone *))
1450{
1451 struct zone *zone;
1452 struct zone *node_zones = pgdat->node_zones;
1453 unsigned long flags;
1454
1455 for (zone = node_zones; zone - node_zones < MAX_NR_ZONES; ++zone) {
1456 if (assert_populated && !populated_zone(zone))
1457 continue;
1458
1459 if (!nolock)
1460 spin_lock_irqsave(&zone->lock, flags);
1461 print(m, pgdat, zone);
1462 if (!nolock)
1463 spin_unlock_irqrestore(&zone->lock, flags);
1464 }
1465}
1466#endif
1467
1468#ifdef CONFIG_PROC_FS
1469static void frag_show_print(struct seq_file *m, pg_data_t *pgdat,
1470 struct zone *zone)
1471{
1472 int order;
1473
1474 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1475 for (order = 0; order <= MAX_ORDER; ++order)
1476 /*
1477 * Access to nr_free is lockless as nr_free is used only for
1478 * printing purposes. Use data_race to avoid KCSAN warning.
1479 */
1480 seq_printf(m, "%6lu ", data_race(zone->free_area[order].nr_free));
1481 seq_putc(m, '\n');
1482}
1483
1484/*
1485 * This walks the free areas for each zone.
1486 */
1487static int frag_show(struct seq_file *m, void *arg)
1488{
1489 pg_data_t *pgdat = (pg_data_t *)arg;
1490 walk_zones_in_node(m, pgdat, true, false, frag_show_print);
1491 return 0;
1492}
1493
1494static void pagetypeinfo_showfree_print(struct seq_file *m,
1495 pg_data_t *pgdat, struct zone *zone)
1496{
1497 int order, mtype;
1498
1499 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++) {
1500 seq_printf(m, "Node %4d, zone %8s, type %12s ",
1501 pgdat->node_id,
1502 zone->name,
1503 migratetype_names[mtype]);
1504 for (order = 0; order <= MAX_ORDER; ++order) {
1505 unsigned long freecount = 0;
1506 struct free_area *area;
1507 struct list_head *curr;
1508 bool overflow = false;
1509
1510 area = &(zone->free_area[order]);
1511
1512 list_for_each(curr, &area->free_list[mtype]) {
1513 /*
1514 * Cap the free_list iteration because it might
1515 * be really large and we are under a spinlock
1516 * so a long time spent here could trigger a
1517 * hard lockup detector. Anyway this is a
1518 * debugging tool so knowing there is a handful
1519 * of pages of this order should be more than
1520 * sufficient.
1521 */
1522 if (++freecount >= 100000) {
1523 overflow = true;
1524 break;
1525 }
1526 }
1527 seq_printf(m, "%s%6lu ", overflow ? ">" : "", freecount);
1528 spin_unlock_irq(&zone->lock);
1529 cond_resched();
1530 spin_lock_irq(&zone->lock);
1531 }
1532 seq_putc(m, '\n');
1533 }
1534}
1535
1536/* Print out the free pages at each order for each migatetype */
1537static void pagetypeinfo_showfree(struct seq_file *m, void *arg)
1538{
1539 int order;
1540 pg_data_t *pgdat = (pg_data_t *)arg;
1541
1542 /* Print header */
1543 seq_printf(m, "%-43s ", "Free pages count per migrate type at order");
1544 for (order = 0; order <= MAX_ORDER; ++order)
1545 seq_printf(m, "%6d ", order);
1546 seq_putc(m, '\n');
1547
1548 walk_zones_in_node(m, pgdat, true, false, pagetypeinfo_showfree_print);
1549}
1550
1551static void pagetypeinfo_showblockcount_print(struct seq_file *m,
1552 pg_data_t *pgdat, struct zone *zone)
1553{
1554 int mtype;
1555 unsigned long pfn;
1556 unsigned long start_pfn = zone->zone_start_pfn;
1557 unsigned long end_pfn = zone_end_pfn(zone);
1558 unsigned long count[MIGRATE_TYPES] = { 0, };
1559
1560 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
1561 struct page *page;
1562
1563 page = pfn_to_online_page(pfn);
1564 if (!page)
1565 continue;
1566
1567 if (page_zone(page) != zone)
1568 continue;
1569
1570 mtype = get_pageblock_migratetype(page);
1571
1572 if (mtype < MIGRATE_TYPES)
1573 count[mtype]++;
1574 }
1575
1576 /* Print counts */
1577 seq_printf(m, "Node %d, zone %8s ", pgdat->node_id, zone->name);
1578 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1579 seq_printf(m, "%12lu ", count[mtype]);
1580 seq_putc(m, '\n');
1581}
1582
1583/* Print out the number of pageblocks for each migratetype */
1584static void pagetypeinfo_showblockcount(struct seq_file *m, void *arg)
1585{
1586 int mtype;
1587 pg_data_t *pgdat = (pg_data_t *)arg;
1588
1589 seq_printf(m, "\n%-23s", "Number of blocks type ");
1590 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1591 seq_printf(m, "%12s ", migratetype_names[mtype]);
1592 seq_putc(m, '\n');
1593 walk_zones_in_node(m, pgdat, true, false,
1594 pagetypeinfo_showblockcount_print);
1595}
1596
1597/*
1598 * Print out the number of pageblocks for each migratetype that contain pages
1599 * of other types. This gives an indication of how well fallbacks are being
1600 * contained by rmqueue_fallback(). It requires information from PAGE_OWNER
1601 * to determine what is going on
1602 */
1603static void pagetypeinfo_showmixedcount(struct seq_file *m, pg_data_t *pgdat)
1604{
1605#ifdef CONFIG_PAGE_OWNER
1606 int mtype;
1607
1608 if (!static_branch_unlikely(&page_owner_inited))
1609 return;
1610
1611 drain_all_pages(NULL);
1612
1613 seq_printf(m, "\n%-23s", "Number of mixed blocks ");
1614 for (mtype = 0; mtype < MIGRATE_TYPES; mtype++)
1615 seq_printf(m, "%12s ", migratetype_names[mtype]);
1616 seq_putc(m, '\n');
1617
1618 walk_zones_in_node(m, pgdat, true, true,
1619 pagetypeinfo_showmixedcount_print);
1620#endif /* CONFIG_PAGE_OWNER */
1621}
1622
1623/*
1624 * This prints out statistics in relation to grouping pages by mobility.
1625 * It is expensive to collect so do not constantly read the file.
1626 */
1627static int pagetypeinfo_show(struct seq_file *m, void *arg)
1628{
1629 pg_data_t *pgdat = (pg_data_t *)arg;
1630
1631 /* check memoryless node */
1632 if (!node_state(pgdat->node_id, N_MEMORY))
1633 return 0;
1634
1635 seq_printf(m, "Page block order: %d\n", pageblock_order);
1636 seq_printf(m, "Pages per block: %lu\n", pageblock_nr_pages);
1637 seq_putc(m, '\n');
1638 pagetypeinfo_showfree(m, pgdat);
1639 pagetypeinfo_showblockcount(m, pgdat);
1640 pagetypeinfo_showmixedcount(m, pgdat);
1641
1642 return 0;
1643}
1644
1645static const struct seq_operations fragmentation_op = {
1646 .start = frag_start,
1647 .next = frag_next,
1648 .stop = frag_stop,
1649 .show = frag_show,
1650};
1651
1652static const struct seq_operations pagetypeinfo_op = {
1653 .start = frag_start,
1654 .next = frag_next,
1655 .stop = frag_stop,
1656 .show = pagetypeinfo_show,
1657};
1658
1659static bool is_zone_first_populated(pg_data_t *pgdat, struct zone *zone)
1660{
1661 int zid;
1662
1663 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1664 struct zone *compare = &pgdat->node_zones[zid];
1665
1666 if (populated_zone(compare))
1667 return zone == compare;
1668 }
1669
1670 return false;
1671}
1672
1673static void zoneinfo_show_print(struct seq_file *m, pg_data_t *pgdat,
1674 struct zone *zone)
1675{
1676 int i;
1677 seq_printf(m, "Node %d, zone %8s", pgdat->node_id, zone->name);
1678 if (is_zone_first_populated(pgdat, zone)) {
1679 seq_printf(m, "\n per-node stats");
1680 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1681 unsigned long pages = node_page_state_pages(pgdat, i);
1682
1683 if (vmstat_item_print_in_thp(i))
1684 pages /= HPAGE_PMD_NR;
1685 seq_printf(m, "\n %-12s %lu", node_stat_name(i),
1686 pages);
1687 }
1688 }
1689 seq_printf(m,
1690 "\n pages free %lu"
1691 "\n boost %lu"
1692 "\n min %lu"
1693 "\n low %lu"
1694 "\n high %lu"
1695 "\n spanned %lu"
1696 "\n present %lu"
1697 "\n managed %lu"
1698 "\n cma %lu",
1699 zone_page_state(zone, NR_FREE_PAGES),
1700 zone->watermark_boost,
1701 min_wmark_pages(zone),
1702 low_wmark_pages(zone),
1703 high_wmark_pages(zone),
1704 zone->spanned_pages,
1705 zone->present_pages,
1706 zone_managed_pages(zone),
1707 zone_cma_pages(zone));
1708
1709 seq_printf(m,
1710 "\n protection: (%ld",
1711 zone->lowmem_reserve[0]);
1712 for (i = 1; i < ARRAY_SIZE(zone->lowmem_reserve); i++)
1713 seq_printf(m, ", %ld", zone->lowmem_reserve[i]);
1714 seq_putc(m, ')');
1715
1716 /* If unpopulated, no other information is useful */
1717 if (!populated_zone(zone)) {
1718 seq_putc(m, '\n');
1719 return;
1720 }
1721
1722 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1723 seq_printf(m, "\n %-12s %lu", zone_stat_name(i),
1724 zone_page_state(zone, i));
1725
1726#ifdef CONFIG_NUMA
1727 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1728 seq_printf(m, "\n %-12s %lu", numa_stat_name(i),
1729 zone_numa_event_state(zone, i));
1730#endif
1731
1732 seq_printf(m, "\n pagesets");
1733 for_each_online_cpu(i) {
1734 struct per_cpu_pages *pcp;
1735 struct per_cpu_zonestat __maybe_unused *pzstats;
1736
1737 pcp = per_cpu_ptr(zone->per_cpu_pageset, i);
1738 seq_printf(m,
1739 "\n cpu: %i"
1740 "\n count: %i"
1741 "\n high: %i"
1742 "\n batch: %i",
1743 i,
1744 pcp->count,
1745 pcp->high,
1746 pcp->batch);
1747#ifdef CONFIG_SMP
1748 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, i);
1749 seq_printf(m, "\n vm stats threshold: %d",
1750 pzstats->stat_threshold);
1751#endif
1752 }
1753 seq_printf(m,
1754 "\n node_unreclaimable: %u"
1755 "\n start_pfn: %lu",
1756 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES,
1757 zone->zone_start_pfn);
1758 seq_putc(m, '\n');
1759}
1760
1761/*
1762 * Output information about zones in @pgdat. All zones are printed regardless
1763 * of whether they are populated or not: lowmem_reserve_ratio operates on the
1764 * set of all zones and userspace would not be aware of such zones if they are
1765 * suppressed here (zoneinfo displays the effect of lowmem_reserve_ratio).
1766 */
1767static int zoneinfo_show(struct seq_file *m, void *arg)
1768{
1769 pg_data_t *pgdat = (pg_data_t *)arg;
1770 walk_zones_in_node(m, pgdat, false, false, zoneinfo_show_print);
1771 return 0;
1772}
1773
1774static const struct seq_operations zoneinfo_op = {
1775 .start = frag_start, /* iterate over all zones. The same as in
1776 * fragmentation. */
1777 .next = frag_next,
1778 .stop = frag_stop,
1779 .show = zoneinfo_show,
1780};
1781
1782#define NR_VMSTAT_ITEMS (NR_VM_ZONE_STAT_ITEMS + \
1783 NR_VM_NUMA_EVENT_ITEMS + \
1784 NR_VM_NODE_STAT_ITEMS + \
1785 NR_VM_WRITEBACK_STAT_ITEMS + \
1786 (IS_ENABLED(CONFIG_VM_EVENT_COUNTERS) ? \
1787 NR_VM_EVENT_ITEMS : 0))
1788
1789static void *vmstat_start(struct seq_file *m, loff_t *pos)
1790{
1791 unsigned long *v;
1792 int i;
1793
1794 if (*pos >= NR_VMSTAT_ITEMS)
1795 return NULL;
1796
1797 BUILD_BUG_ON(ARRAY_SIZE(vmstat_text) < NR_VMSTAT_ITEMS);
1798 fold_vm_numa_events();
1799 v = kmalloc_array(NR_VMSTAT_ITEMS, sizeof(unsigned long), GFP_KERNEL);
1800 m->private = v;
1801 if (!v)
1802 return ERR_PTR(-ENOMEM);
1803 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++)
1804 v[i] = global_zone_page_state(i);
1805 v += NR_VM_ZONE_STAT_ITEMS;
1806
1807#ifdef CONFIG_NUMA
1808 for (i = 0; i < NR_VM_NUMA_EVENT_ITEMS; i++)
1809 v[i] = global_numa_event_state(i);
1810 v += NR_VM_NUMA_EVENT_ITEMS;
1811#endif
1812
1813 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1814 v[i] = global_node_page_state_pages(i);
1815 if (vmstat_item_print_in_thp(i))
1816 v[i] /= HPAGE_PMD_NR;
1817 }
1818 v += NR_VM_NODE_STAT_ITEMS;
1819
1820 global_dirty_limits(v + NR_DIRTY_BG_THRESHOLD,
1821 v + NR_DIRTY_THRESHOLD);
1822 v += NR_VM_WRITEBACK_STAT_ITEMS;
1823
1824#ifdef CONFIG_VM_EVENT_COUNTERS
1825 all_vm_events(v);
1826 v[PGPGIN] /= 2; /* sectors -> kbytes */
1827 v[PGPGOUT] /= 2;
1828#endif
1829 return (unsigned long *)m->private + *pos;
1830}
1831
1832static void *vmstat_next(struct seq_file *m, void *arg, loff_t *pos)
1833{
1834 (*pos)++;
1835 if (*pos >= NR_VMSTAT_ITEMS)
1836 return NULL;
1837 return (unsigned long *)m->private + *pos;
1838}
1839
1840static int vmstat_show(struct seq_file *m, void *arg)
1841{
1842 unsigned long *l = arg;
1843 unsigned long off = l - (unsigned long *)m->private;
1844
1845 seq_puts(m, vmstat_text[off]);
1846 seq_put_decimal_ull(m, " ", *l);
1847 seq_putc(m, '\n');
1848
1849 if (off == NR_VMSTAT_ITEMS - 1) {
1850 /*
1851 * We've come to the end - add any deprecated counters to avoid
1852 * breaking userspace which might depend on them being present.
1853 */
1854 seq_puts(m, "nr_unstable 0\n");
1855 }
1856 return 0;
1857}
1858
1859static void vmstat_stop(struct seq_file *m, void *arg)
1860{
1861 kfree(m->private);
1862 m->private = NULL;
1863}
1864
1865static const struct seq_operations vmstat_op = {
1866 .start = vmstat_start,
1867 .next = vmstat_next,
1868 .stop = vmstat_stop,
1869 .show = vmstat_show,
1870};
1871#endif /* CONFIG_PROC_FS */
1872
1873#ifdef CONFIG_SMP
1874static DEFINE_PER_CPU(struct delayed_work, vmstat_work);
1875int sysctl_stat_interval __read_mostly = HZ;
1876
1877#ifdef CONFIG_PROC_FS
1878static void refresh_vm_stats(struct work_struct *work)
1879{
1880 refresh_cpu_vm_stats(true);
1881}
1882
1883int vmstat_refresh(struct ctl_table *table, int write,
1884 void *buffer, size_t *lenp, loff_t *ppos)
1885{
1886 long val;
1887 int err;
1888 int i;
1889
1890 /*
1891 * The regular update, every sysctl_stat_interval, may come later
1892 * than expected: leaving a significant amount in per_cpu buckets.
1893 * This is particularly misleading when checking a quantity of HUGE
1894 * pages, immediately after running a test. /proc/sys/vm/stat_refresh,
1895 * which can equally be echo'ed to or cat'ted from (by root),
1896 * can be used to update the stats just before reading them.
1897 *
1898 * Oh, and since global_zone_page_state() etc. are so careful to hide
1899 * transiently negative values, report an error here if any of
1900 * the stats is negative, so we know to go looking for imbalance.
1901 */
1902 err = schedule_on_each_cpu(refresh_vm_stats);
1903 if (err)
1904 return err;
1905 for (i = 0; i < NR_VM_ZONE_STAT_ITEMS; i++) {
1906 /*
1907 * Skip checking stats known to go negative occasionally.
1908 */
1909 switch (i) {
1910 case NR_ZONE_WRITE_PENDING:
1911 case NR_FREE_CMA_PAGES:
1912 continue;
1913 }
1914 val = atomic_long_read(&vm_zone_stat[i]);
1915 if (val < 0) {
1916 pr_warn("%s: %s %ld\n",
1917 __func__, zone_stat_name(i), val);
1918 }
1919 }
1920 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
1921 /*
1922 * Skip checking stats known to go negative occasionally.
1923 */
1924 switch (i) {
1925 case NR_WRITEBACK:
1926 continue;
1927 }
1928 val = atomic_long_read(&vm_node_stat[i]);
1929 if (val < 0) {
1930 pr_warn("%s: %s %ld\n",
1931 __func__, node_stat_name(i), val);
1932 }
1933 }
1934 if (write)
1935 *ppos += *lenp;
1936 else
1937 *lenp = 0;
1938 return 0;
1939}
1940#endif /* CONFIG_PROC_FS */
1941
1942static void vmstat_update(struct work_struct *w)
1943{
1944 if (refresh_cpu_vm_stats(true)) {
1945 /*
1946 * Counters were updated so we expect more updates
1947 * to occur in the future. Keep on running the
1948 * update worker thread.
1949 */
1950 queue_delayed_work_on(smp_processor_id(), mm_percpu_wq,
1951 this_cpu_ptr(&vmstat_work),
1952 round_jiffies_relative(sysctl_stat_interval));
1953 }
1954}
1955
1956/*
1957 * Check if the diffs for a certain cpu indicate that
1958 * an update is needed.
1959 */
1960static bool need_update(int cpu)
1961{
1962 pg_data_t *last_pgdat = NULL;
1963 struct zone *zone;
1964
1965 for_each_populated_zone(zone) {
1966 struct per_cpu_zonestat *pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
1967 struct per_cpu_nodestat *n;
1968
1969 /*
1970 * The fast way of checking if there are any vmstat diffs.
1971 */
1972 if (memchr_inv(pzstats->vm_stat_diff, 0, sizeof(pzstats->vm_stat_diff)))
1973 return true;
1974
1975 if (last_pgdat == zone->zone_pgdat)
1976 continue;
1977 last_pgdat = zone->zone_pgdat;
1978 n = per_cpu_ptr(zone->zone_pgdat->per_cpu_nodestats, cpu);
1979 if (memchr_inv(n->vm_node_stat_diff, 0, sizeof(n->vm_node_stat_diff)))
1980 return true;
1981 }
1982 return false;
1983}
1984
1985/*
1986 * Switch off vmstat processing and then fold all the remaining differentials
1987 * until the diffs stay at zero. The function is used by NOHZ and can only be
1988 * invoked when tick processing is not active.
1989 */
1990void quiet_vmstat(void)
1991{
1992 if (system_state != SYSTEM_RUNNING)
1993 return;
1994
1995 if (!delayed_work_pending(this_cpu_ptr(&vmstat_work)))
1996 return;
1997
1998 if (!need_update(smp_processor_id()))
1999 return;
2000
2001 /*
2002 * Just refresh counters and do not care about the pending delayed
2003 * vmstat_update. It doesn't fire that often to matter and canceling
2004 * it would be too expensive from this path.
2005 * vmstat_shepherd will take care about that for us.
2006 */
2007 refresh_cpu_vm_stats(false);
2008}
2009
2010/*
2011 * Shepherd worker thread that checks the
2012 * differentials of processors that have their worker
2013 * threads for vm statistics updates disabled because of
2014 * inactivity.
2015 */
2016static void vmstat_shepherd(struct work_struct *w);
2017
2018static DECLARE_DEFERRABLE_WORK(shepherd, vmstat_shepherd);
2019
2020static void vmstat_shepherd(struct work_struct *w)
2021{
2022 int cpu;
2023
2024 cpus_read_lock();
2025 /* Check processors whose vmstat worker threads have been disabled */
2026 for_each_online_cpu(cpu) {
2027 struct delayed_work *dw = &per_cpu(vmstat_work, cpu);
2028
2029 /*
2030 * In kernel users of vmstat counters either require the precise value and
2031 * they are using zone_page_state_snapshot interface or they can live with
2032 * an imprecision as the regular flushing can happen at arbitrary time and
2033 * cumulative error can grow (see calculate_normal_threshold).
2034 *
2035 * From that POV the regular flushing can be postponed for CPUs that have
2036 * been isolated from the kernel interference without critical
2037 * infrastructure ever noticing. Skip regular flushing from vmstat_shepherd
2038 * for all isolated CPUs to avoid interference with the isolated workload.
2039 */
2040 if (cpu_is_isolated(cpu))
2041 continue;
2042
2043 if (!delayed_work_pending(dw) && need_update(cpu))
2044 queue_delayed_work_on(cpu, mm_percpu_wq, dw, 0);
2045
2046 cond_resched();
2047 }
2048 cpus_read_unlock();
2049
2050 schedule_delayed_work(&shepherd,
2051 round_jiffies_relative(sysctl_stat_interval));
2052}
2053
2054static void __init start_shepherd_timer(void)
2055{
2056 int cpu;
2057
2058 for_each_possible_cpu(cpu)
2059 INIT_DEFERRABLE_WORK(per_cpu_ptr(&vmstat_work, cpu),
2060 vmstat_update);
2061
2062 schedule_delayed_work(&shepherd,
2063 round_jiffies_relative(sysctl_stat_interval));
2064}
2065
2066static void __init init_cpu_node_state(void)
2067{
2068 int node;
2069
2070 for_each_online_node(node) {
2071 if (!cpumask_empty(cpumask_of_node(node)))
2072 node_set_state(node, N_CPU);
2073 }
2074}
2075
2076static int vmstat_cpu_online(unsigned int cpu)
2077{
2078 refresh_zone_stat_thresholds();
2079
2080 if (!node_state(cpu_to_node(cpu), N_CPU)) {
2081 node_set_state(cpu_to_node(cpu), N_CPU);
2082 }
2083
2084 return 0;
2085}
2086
2087static int vmstat_cpu_down_prep(unsigned int cpu)
2088{
2089 cancel_delayed_work_sync(&per_cpu(vmstat_work, cpu));
2090 return 0;
2091}
2092
2093static int vmstat_cpu_dead(unsigned int cpu)
2094{
2095 const struct cpumask *node_cpus;
2096 int node;
2097
2098 node = cpu_to_node(cpu);
2099
2100 refresh_zone_stat_thresholds();
2101 node_cpus = cpumask_of_node(node);
2102 if (!cpumask_empty(node_cpus))
2103 return 0;
2104
2105 node_clear_state(node, N_CPU);
2106
2107 return 0;
2108}
2109
2110#endif
2111
2112struct workqueue_struct *mm_percpu_wq;
2113
2114void __init init_mm_internals(void)
2115{
2116 int ret __maybe_unused;
2117
2118 mm_percpu_wq = alloc_workqueue("mm_percpu_wq", WQ_MEM_RECLAIM, 0);
2119
2120#ifdef CONFIG_SMP
2121 ret = cpuhp_setup_state_nocalls(CPUHP_MM_VMSTAT_DEAD, "mm/vmstat:dead",
2122 NULL, vmstat_cpu_dead);
2123 if (ret < 0)
2124 pr_err("vmstat: failed to register 'dead' hotplug state\n");
2125
2126 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN, "mm/vmstat:online",
2127 vmstat_cpu_online,
2128 vmstat_cpu_down_prep);
2129 if (ret < 0)
2130 pr_err("vmstat: failed to register 'online' hotplug state\n");
2131
2132 cpus_read_lock();
2133 init_cpu_node_state();
2134 cpus_read_unlock();
2135
2136 start_shepherd_timer();
2137#endif
2138#ifdef CONFIG_PROC_FS
2139 proc_create_seq("buddyinfo", 0444, NULL, &fragmentation_op);
2140 proc_create_seq("pagetypeinfo", 0400, NULL, &pagetypeinfo_op);
2141 proc_create_seq("vmstat", 0444, NULL, &vmstat_op);
2142 proc_create_seq("zoneinfo", 0444, NULL, &zoneinfo_op);
2143#endif
2144}
2145
2146#if defined(CONFIG_DEBUG_FS) && defined(CONFIG_COMPACTION)
2147
2148/*
2149 * Return an index indicating how much of the available free memory is
2150 * unusable for an allocation of the requested size.
2151 */
2152static int unusable_free_index(unsigned int order,
2153 struct contig_page_info *info)
2154{
2155 /* No free memory is interpreted as all free memory is unusable */
2156 if (info->free_pages == 0)
2157 return 1000;
2158
2159 /*
2160 * Index should be a value between 0 and 1. Return a value to 3
2161 * decimal places.
2162 *
2163 * 0 => no fragmentation
2164 * 1 => high fragmentation
2165 */
2166 return div_u64((info->free_pages - (info->free_blocks_suitable << order)) * 1000ULL, info->free_pages);
2167
2168}
2169
2170static void unusable_show_print(struct seq_file *m,
2171 pg_data_t *pgdat, struct zone *zone)
2172{
2173 unsigned int order;
2174 int index;
2175 struct contig_page_info info;
2176
2177 seq_printf(m, "Node %d, zone %8s ",
2178 pgdat->node_id,
2179 zone->name);
2180 for (order = 0; order <= MAX_ORDER; ++order) {
2181 fill_contig_page_info(zone, order, &info);
2182 index = unusable_free_index(order, &info);
2183 seq_printf(m, "%d.%03d ", index / 1000, index % 1000);
2184 }
2185
2186 seq_putc(m, '\n');
2187}
2188
2189/*
2190 * Display unusable free space index
2191 *
2192 * The unusable free space index measures how much of the available free
2193 * memory cannot be used to satisfy an allocation of a given size and is a
2194 * value between 0 and 1. The higher the value, the more of free memory is
2195 * unusable and by implication, the worse the external fragmentation is. This
2196 * can be expressed as a percentage by multiplying by 100.
2197 */
2198static int unusable_show(struct seq_file *m, void *arg)
2199{
2200 pg_data_t *pgdat = (pg_data_t *)arg;
2201
2202 /* check memoryless node */
2203 if (!node_state(pgdat->node_id, N_MEMORY))
2204 return 0;
2205
2206 walk_zones_in_node(m, pgdat, true, false, unusable_show_print);
2207
2208 return 0;
2209}
2210
2211static const struct seq_operations unusable_sops = {
2212 .start = frag_start,
2213 .next = frag_next,
2214 .stop = frag_stop,
2215 .show = unusable_show,
2216};
2217
2218DEFINE_SEQ_ATTRIBUTE(unusable);
2219
2220static void extfrag_show_print(struct seq_file *m,
2221 pg_data_t *pgdat, struct zone *zone)
2222{
2223 unsigned int order;
2224 int index;
2225
2226 /* Alloc on stack as interrupts are disabled for zone walk */
2227 struct contig_page_info info;
2228
2229 seq_printf(m, "Node %d, zone %8s ",
2230 pgdat->node_id,
2231 zone->name);
2232 for (order = 0; order <= MAX_ORDER; ++order) {
2233 fill_contig_page_info(zone, order, &info);
2234 index = __fragmentation_index(order, &info);
2235 seq_printf(m, "%2d.%03d ", index / 1000, index % 1000);
2236 }
2237
2238 seq_putc(m, '\n');
2239}
2240
2241/*
2242 * Display fragmentation index for orders that allocations would fail for
2243 */
2244static int extfrag_show(struct seq_file *m, void *arg)
2245{
2246 pg_data_t *pgdat = (pg_data_t *)arg;
2247
2248 walk_zones_in_node(m, pgdat, true, false, extfrag_show_print);
2249
2250 return 0;
2251}
2252
2253static const struct seq_operations extfrag_sops = {
2254 .start = frag_start,
2255 .next = frag_next,
2256 .stop = frag_stop,
2257 .show = extfrag_show,
2258};
2259
2260DEFINE_SEQ_ATTRIBUTE(extfrag);
2261
2262static int __init extfrag_debug_init(void)
2263{
2264 struct dentry *extfrag_debug_root;
2265
2266 extfrag_debug_root = debugfs_create_dir("extfrag", NULL);
2267
2268 debugfs_create_file("unusable_index", 0444, extfrag_debug_root, NULL,
2269 &unusable_fops);
2270
2271 debugfs_create_file("extfrag_index", 0444, extfrag_debug_root, NULL,
2272 &extfrag_fops);
2273
2274 return 0;
2275}
2276
2277module_init(extfrag_debug_init);
2278#endif