Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/memory.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 */
7
8/*
9 * demand-loading started 01.12.91 - seems it is high on the list of
10 * things wanted, and it should be easy to implement. - Linus
11 */
12
13/*
14 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
15 * pages started 02.12.91, seems to work. - Linus.
16 *
17 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
18 * would have taken more than the 6M I have free, but it worked well as
19 * far as I could see.
20 *
21 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
22 */
23
24/*
25 * Real VM (paging to/from disk) started 18.12.91. Much more work and
26 * thought has to go into this. Oh, well..
27 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
28 * Found it. Everything seems to work now.
29 * 20.12.91 - Ok, making the swap-device changeable like the root.
30 */
31
32/*
33 * 05.04.94 - Multi-page memory management added for v1.1.
34 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 *
36 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
37 * (Gerhard.Wichert@pdb.siemens.de)
38 *
39 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
40 */
41
42#include <linux/kernel_stat.h>
43#include <linux/mm.h>
44#include <linux/mm_inline.h>
45#include <linux/sched/mm.h>
46#include <linux/sched/coredump.h>
47#include <linux/sched/numa_balancing.h>
48#include <linux/sched/task.h>
49#include <linux/hugetlb.h>
50#include <linux/mman.h>
51#include <linux/swap.h>
52#include <linux/highmem.h>
53#include <linux/pagemap.h>
54#include <linux/memremap.h>
55#include <linux/kmsan.h>
56#include <linux/ksm.h>
57#include <linux/rmap.h>
58#include <linux/export.h>
59#include <linux/delayacct.h>
60#include <linux/init.h>
61#include <linux/pfn_t.h>
62#include <linux/writeback.h>
63#include <linux/memcontrol.h>
64#include <linux/mmu_notifier.h>
65#include <linux/swapops.h>
66#include <linux/elf.h>
67#include <linux/gfp.h>
68#include <linux/migrate.h>
69#include <linux/string.h>
70#include <linux/memory-tiers.h>
71#include <linux/debugfs.h>
72#include <linux/userfaultfd_k.h>
73#include <linux/dax.h>
74#include <linux/oom.h>
75#include <linux/numa.h>
76#include <linux/perf_event.h>
77#include <linux/ptrace.h>
78#include <linux/vmalloc.h>
79#include <linux/sched/sysctl.h>
80#include <linux/net_mm.h>
81
82#include <trace/events/kmem.h>
83
84#include <asm/io.h>
85#include <asm/mmu_context.h>
86#include <asm/pgalloc.h>
87#include <linux/uaccess.h>
88#include <asm/tlb.h>
89#include <asm/tlbflush.h>
90
91#include "pgalloc-track.h"
92#include "internal.h"
93#include "swap.h"
94
95#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
96#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
97#endif
98
99#ifndef CONFIG_NUMA
100unsigned long max_mapnr;
101EXPORT_SYMBOL(max_mapnr);
102
103struct page *mem_map;
104EXPORT_SYMBOL(mem_map);
105#endif
106
107static vm_fault_t do_fault(struct vm_fault *vmf);
108static vm_fault_t do_anonymous_page(struct vm_fault *vmf);
109static bool vmf_pte_changed(struct vm_fault *vmf);
110
111/*
112 * Return true if the original pte was a uffd-wp pte marker (so the pte was
113 * wr-protected).
114 */
115static bool vmf_orig_pte_uffd_wp(struct vm_fault *vmf)
116{
117 if (!(vmf->flags & FAULT_FLAG_ORIG_PTE_VALID))
118 return false;
119
120 return pte_marker_uffd_wp(vmf->orig_pte);
121}
122
123/*
124 * A number of key systems in x86 including ioremap() rely on the assumption
125 * that high_memory defines the upper bound on direct map memory, then end
126 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
127 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
128 * and ZONE_HIGHMEM.
129 */
130void *high_memory;
131EXPORT_SYMBOL(high_memory);
132
133/*
134 * Randomize the address space (stacks, mmaps, brk, etc.).
135 *
136 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
137 * as ancient (libc5 based) binaries can segfault. )
138 */
139int randomize_va_space __read_mostly =
140#ifdef CONFIG_COMPAT_BRK
141 1;
142#else
143 2;
144#endif
145
146#ifndef arch_wants_old_prefaulted_pte
147static inline bool arch_wants_old_prefaulted_pte(void)
148{
149 /*
150 * Transitioning a PTE from 'old' to 'young' can be expensive on
151 * some architectures, even if it's performed in hardware. By
152 * default, "false" means prefaulted entries will be 'young'.
153 */
154 return false;
155}
156#endif
157
158static int __init disable_randmaps(char *s)
159{
160 randomize_va_space = 0;
161 return 1;
162}
163__setup("norandmaps", disable_randmaps);
164
165unsigned long zero_pfn __read_mostly;
166EXPORT_SYMBOL(zero_pfn);
167
168unsigned long highest_memmap_pfn __read_mostly;
169
170/*
171 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
172 */
173static int __init init_zero_pfn(void)
174{
175 zero_pfn = page_to_pfn(ZERO_PAGE(0));
176 return 0;
177}
178early_initcall(init_zero_pfn);
179
180void mm_trace_rss_stat(struct mm_struct *mm, int member)
181{
182 trace_rss_stat(mm, member);
183}
184
185/*
186 * Note: this doesn't free the actual pages themselves. That
187 * has been handled earlier when unmapping all the memory regions.
188 */
189static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
190 unsigned long addr)
191{
192 pgtable_t token = pmd_pgtable(*pmd);
193 pmd_clear(pmd);
194 pte_free_tlb(tlb, token, addr);
195 mm_dec_nr_ptes(tlb->mm);
196}
197
198static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
199 unsigned long addr, unsigned long end,
200 unsigned long floor, unsigned long ceiling)
201{
202 pmd_t *pmd;
203 unsigned long next;
204 unsigned long start;
205
206 start = addr;
207 pmd = pmd_offset(pud, addr);
208 do {
209 next = pmd_addr_end(addr, end);
210 if (pmd_none_or_clear_bad(pmd))
211 continue;
212 free_pte_range(tlb, pmd, addr);
213 } while (pmd++, addr = next, addr != end);
214
215 start &= PUD_MASK;
216 if (start < floor)
217 return;
218 if (ceiling) {
219 ceiling &= PUD_MASK;
220 if (!ceiling)
221 return;
222 }
223 if (end - 1 > ceiling - 1)
224 return;
225
226 pmd = pmd_offset(pud, start);
227 pud_clear(pud);
228 pmd_free_tlb(tlb, pmd, start);
229 mm_dec_nr_pmds(tlb->mm);
230}
231
232static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
233 unsigned long addr, unsigned long end,
234 unsigned long floor, unsigned long ceiling)
235{
236 pud_t *pud;
237 unsigned long next;
238 unsigned long start;
239
240 start = addr;
241 pud = pud_offset(p4d, addr);
242 do {
243 next = pud_addr_end(addr, end);
244 if (pud_none_or_clear_bad(pud))
245 continue;
246 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
247 } while (pud++, addr = next, addr != end);
248
249 start &= P4D_MASK;
250 if (start < floor)
251 return;
252 if (ceiling) {
253 ceiling &= P4D_MASK;
254 if (!ceiling)
255 return;
256 }
257 if (end - 1 > ceiling - 1)
258 return;
259
260 pud = pud_offset(p4d, start);
261 p4d_clear(p4d);
262 pud_free_tlb(tlb, pud, start);
263 mm_dec_nr_puds(tlb->mm);
264}
265
266static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
267 unsigned long addr, unsigned long end,
268 unsigned long floor, unsigned long ceiling)
269{
270 p4d_t *p4d;
271 unsigned long next;
272 unsigned long start;
273
274 start = addr;
275 p4d = p4d_offset(pgd, addr);
276 do {
277 next = p4d_addr_end(addr, end);
278 if (p4d_none_or_clear_bad(p4d))
279 continue;
280 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
281 } while (p4d++, addr = next, addr != end);
282
283 start &= PGDIR_MASK;
284 if (start < floor)
285 return;
286 if (ceiling) {
287 ceiling &= PGDIR_MASK;
288 if (!ceiling)
289 return;
290 }
291 if (end - 1 > ceiling - 1)
292 return;
293
294 p4d = p4d_offset(pgd, start);
295 pgd_clear(pgd);
296 p4d_free_tlb(tlb, p4d, start);
297}
298
299/*
300 * This function frees user-level page tables of a process.
301 */
302void free_pgd_range(struct mmu_gather *tlb,
303 unsigned long addr, unsigned long end,
304 unsigned long floor, unsigned long ceiling)
305{
306 pgd_t *pgd;
307 unsigned long next;
308
309 /*
310 * The next few lines have given us lots of grief...
311 *
312 * Why are we testing PMD* at this top level? Because often
313 * there will be no work to do at all, and we'd prefer not to
314 * go all the way down to the bottom just to discover that.
315 *
316 * Why all these "- 1"s? Because 0 represents both the bottom
317 * of the address space and the top of it (using -1 for the
318 * top wouldn't help much: the masks would do the wrong thing).
319 * The rule is that addr 0 and floor 0 refer to the bottom of
320 * the address space, but end 0 and ceiling 0 refer to the top
321 * Comparisons need to use "end - 1" and "ceiling - 1" (though
322 * that end 0 case should be mythical).
323 *
324 * Wherever addr is brought up or ceiling brought down, we must
325 * be careful to reject "the opposite 0" before it confuses the
326 * subsequent tests. But what about where end is brought down
327 * by PMD_SIZE below? no, end can't go down to 0 there.
328 *
329 * Whereas we round start (addr) and ceiling down, by different
330 * masks at different levels, in order to test whether a table
331 * now has no other vmas using it, so can be freed, we don't
332 * bother to round floor or end up - the tests don't need that.
333 */
334
335 addr &= PMD_MASK;
336 if (addr < floor) {
337 addr += PMD_SIZE;
338 if (!addr)
339 return;
340 }
341 if (ceiling) {
342 ceiling &= PMD_MASK;
343 if (!ceiling)
344 return;
345 }
346 if (end - 1 > ceiling - 1)
347 end -= PMD_SIZE;
348 if (addr > end - 1)
349 return;
350 /*
351 * We add page table cache pages with PAGE_SIZE,
352 * (see pte_free_tlb()), flush the tlb if we need
353 */
354 tlb_change_page_size(tlb, PAGE_SIZE);
355 pgd = pgd_offset(tlb->mm, addr);
356 do {
357 next = pgd_addr_end(addr, end);
358 if (pgd_none_or_clear_bad(pgd))
359 continue;
360 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
361 } while (pgd++, addr = next, addr != end);
362}
363
364void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt,
365 struct vm_area_struct *vma, unsigned long floor,
366 unsigned long ceiling, bool mm_wr_locked)
367{
368 MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
369
370 do {
371 unsigned long addr = vma->vm_start;
372 struct vm_area_struct *next;
373
374 /*
375 * Note: USER_PGTABLES_CEILING may be passed as ceiling and may
376 * be 0. This will underflow and is okay.
377 */
378 next = mas_find(&mas, ceiling - 1);
379
380 /*
381 * Hide vma from rmap and truncate_pagecache before freeing
382 * pgtables
383 */
384 if (mm_wr_locked)
385 vma_start_write(vma);
386 unlink_anon_vmas(vma);
387 unlink_file_vma(vma);
388
389 if (is_vm_hugetlb_page(vma)) {
390 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
391 floor, next ? next->vm_start : ceiling);
392 } else {
393 /*
394 * Optimization: gather nearby vmas into one call down
395 */
396 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
397 && !is_vm_hugetlb_page(next)) {
398 vma = next;
399 next = mas_find(&mas, ceiling - 1);
400 if (mm_wr_locked)
401 vma_start_write(vma);
402 unlink_anon_vmas(vma);
403 unlink_file_vma(vma);
404 }
405 free_pgd_range(tlb, addr, vma->vm_end,
406 floor, next ? next->vm_start : ceiling);
407 }
408 vma = next;
409 } while (vma);
410}
411
412void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte)
413{
414 spinlock_t *ptl = pmd_lock(mm, pmd);
415
416 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
417 mm_inc_nr_ptes(mm);
418 /*
419 * Ensure all pte setup (eg. pte page lock and page clearing) are
420 * visible before the pte is made visible to other CPUs by being
421 * put into page tables.
422 *
423 * The other side of the story is the pointer chasing in the page
424 * table walking code (when walking the page table without locking;
425 * ie. most of the time). Fortunately, these data accesses consist
426 * of a chain of data-dependent loads, meaning most CPUs (alpha
427 * being the notable exception) will already guarantee loads are
428 * seen in-order. See the alpha page table accessors for the
429 * smp_rmb() barriers in page table walking code.
430 */
431 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
432 pmd_populate(mm, pmd, *pte);
433 *pte = NULL;
434 }
435 spin_unlock(ptl);
436}
437
438int __pte_alloc(struct mm_struct *mm, pmd_t *pmd)
439{
440 pgtable_t new = pte_alloc_one(mm);
441 if (!new)
442 return -ENOMEM;
443
444 pmd_install(mm, pmd, &new);
445 if (new)
446 pte_free(mm, new);
447 return 0;
448}
449
450int __pte_alloc_kernel(pmd_t *pmd)
451{
452 pte_t *new = pte_alloc_one_kernel(&init_mm);
453 if (!new)
454 return -ENOMEM;
455
456 spin_lock(&init_mm.page_table_lock);
457 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
458 smp_wmb(); /* See comment in pmd_install() */
459 pmd_populate_kernel(&init_mm, pmd, new);
460 new = NULL;
461 }
462 spin_unlock(&init_mm.page_table_lock);
463 if (new)
464 pte_free_kernel(&init_mm, new);
465 return 0;
466}
467
468static inline void init_rss_vec(int *rss)
469{
470 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
471}
472
473static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
474{
475 int i;
476
477 if (current->mm == mm)
478 sync_mm_rss(mm);
479 for (i = 0; i < NR_MM_COUNTERS; i++)
480 if (rss[i])
481 add_mm_counter(mm, i, rss[i]);
482}
483
484/*
485 * This function is called to print an error when a bad pte
486 * is found. For example, we might have a PFN-mapped pte in
487 * a region that doesn't allow it.
488 *
489 * The calling function must still handle the error.
490 */
491static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
492 pte_t pte, struct page *page)
493{
494 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
495 p4d_t *p4d = p4d_offset(pgd, addr);
496 pud_t *pud = pud_offset(p4d, addr);
497 pmd_t *pmd = pmd_offset(pud, addr);
498 struct address_space *mapping;
499 pgoff_t index;
500 static unsigned long resume;
501 static unsigned long nr_shown;
502 static unsigned long nr_unshown;
503
504 /*
505 * Allow a burst of 60 reports, then keep quiet for that minute;
506 * or allow a steady drip of one report per second.
507 */
508 if (nr_shown == 60) {
509 if (time_before(jiffies, resume)) {
510 nr_unshown++;
511 return;
512 }
513 if (nr_unshown) {
514 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
515 nr_unshown);
516 nr_unshown = 0;
517 }
518 nr_shown = 0;
519 }
520 if (nr_shown++ == 0)
521 resume = jiffies + 60 * HZ;
522
523 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
524 index = linear_page_index(vma, addr);
525
526 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
527 current->comm,
528 (long long)pte_val(pte), (long long)pmd_val(*pmd));
529 if (page)
530 dump_page(page, "bad pte");
531 pr_alert("addr:%px vm_flags:%08lx anon_vma:%px mapping:%px index:%lx\n",
532 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
533 pr_alert("file:%pD fault:%ps mmap:%ps read_folio:%ps\n",
534 vma->vm_file,
535 vma->vm_ops ? vma->vm_ops->fault : NULL,
536 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
537 mapping ? mapping->a_ops->read_folio : NULL);
538 dump_stack();
539 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
540}
541
542/*
543 * vm_normal_page -- This function gets the "struct page" associated with a pte.
544 *
545 * "Special" mappings do not wish to be associated with a "struct page" (either
546 * it doesn't exist, or it exists but they don't want to touch it). In this
547 * case, NULL is returned here. "Normal" mappings do have a struct page.
548 *
549 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
550 * pte bit, in which case this function is trivial. Secondly, an architecture
551 * may not have a spare pte bit, which requires a more complicated scheme,
552 * described below.
553 *
554 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
555 * special mapping (even if there are underlying and valid "struct pages").
556 * COWed pages of a VM_PFNMAP are always normal.
557 *
558 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
559 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
560 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
561 * mapping will always honor the rule
562 *
563 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
564 *
565 * And for normal mappings this is false.
566 *
567 * This restricts such mappings to be a linear translation from virtual address
568 * to pfn. To get around this restriction, we allow arbitrary mappings so long
569 * as the vma is not a COW mapping; in that case, we know that all ptes are
570 * special (because none can have been COWed).
571 *
572 *
573 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
574 *
575 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
576 * page" backing, however the difference is that _all_ pages with a struct
577 * page (that is, those where pfn_valid is true) are refcounted and considered
578 * normal pages by the VM. The disadvantage is that pages are refcounted
579 * (which can be slower and simply not an option for some PFNMAP users). The
580 * advantage is that we don't have to follow the strict linearity rule of
581 * PFNMAP mappings in order to support COWable mappings.
582 *
583 */
584struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
585 pte_t pte)
586{
587 unsigned long pfn = pte_pfn(pte);
588
589 if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
590 if (likely(!pte_special(pte)))
591 goto check_pfn;
592 if (vma->vm_ops && vma->vm_ops->find_special_page)
593 return vma->vm_ops->find_special_page(vma, addr);
594 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
595 return NULL;
596 if (is_zero_pfn(pfn))
597 return NULL;
598 if (pte_devmap(pte))
599 /*
600 * NOTE: New users of ZONE_DEVICE will not set pte_devmap()
601 * and will have refcounts incremented on their struct pages
602 * when they are inserted into PTEs, thus they are safe to
603 * return here. Legacy ZONE_DEVICE pages that set pte_devmap()
604 * do not have refcounts. Example of legacy ZONE_DEVICE is
605 * MEMORY_DEVICE_FS_DAX type in pmem or virtio_fs drivers.
606 */
607 return NULL;
608
609 print_bad_pte(vma, addr, pte, NULL);
610 return NULL;
611 }
612
613 /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
614
615 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
616 if (vma->vm_flags & VM_MIXEDMAP) {
617 if (!pfn_valid(pfn))
618 return NULL;
619 goto out;
620 } else {
621 unsigned long off;
622 off = (addr - vma->vm_start) >> PAGE_SHIFT;
623 if (pfn == vma->vm_pgoff + off)
624 return NULL;
625 if (!is_cow_mapping(vma->vm_flags))
626 return NULL;
627 }
628 }
629
630 if (is_zero_pfn(pfn))
631 return NULL;
632
633check_pfn:
634 if (unlikely(pfn > highest_memmap_pfn)) {
635 print_bad_pte(vma, addr, pte, NULL);
636 return NULL;
637 }
638
639 /*
640 * NOTE! We still have PageReserved() pages in the page tables.
641 * eg. VDSO mappings can cause them to exist.
642 */
643out:
644 return pfn_to_page(pfn);
645}
646
647struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
648 pte_t pte)
649{
650 struct page *page = vm_normal_page(vma, addr, pte);
651
652 if (page)
653 return page_folio(page);
654 return NULL;
655}
656
657#ifdef CONFIG_TRANSPARENT_HUGEPAGE
658struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
659 pmd_t pmd)
660{
661 unsigned long pfn = pmd_pfn(pmd);
662
663 /*
664 * There is no pmd_special() but there may be special pmds, e.g.
665 * in a direct-access (dax) mapping, so let's just replicate the
666 * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
667 */
668 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
669 if (vma->vm_flags & VM_MIXEDMAP) {
670 if (!pfn_valid(pfn))
671 return NULL;
672 goto out;
673 } else {
674 unsigned long off;
675 off = (addr - vma->vm_start) >> PAGE_SHIFT;
676 if (pfn == vma->vm_pgoff + off)
677 return NULL;
678 if (!is_cow_mapping(vma->vm_flags))
679 return NULL;
680 }
681 }
682
683 if (pmd_devmap(pmd))
684 return NULL;
685 if (is_huge_zero_pmd(pmd))
686 return NULL;
687 if (unlikely(pfn > highest_memmap_pfn))
688 return NULL;
689
690 /*
691 * NOTE! We still have PageReserved() pages in the page tables.
692 * eg. VDSO mappings can cause them to exist.
693 */
694out:
695 return pfn_to_page(pfn);
696}
697#endif
698
699static void restore_exclusive_pte(struct vm_area_struct *vma,
700 struct page *page, unsigned long address,
701 pte_t *ptep)
702{
703 pte_t orig_pte;
704 pte_t pte;
705 swp_entry_t entry;
706
707 orig_pte = ptep_get(ptep);
708 pte = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
709 if (pte_swp_soft_dirty(orig_pte))
710 pte = pte_mksoft_dirty(pte);
711
712 entry = pte_to_swp_entry(orig_pte);
713 if (pte_swp_uffd_wp(orig_pte))
714 pte = pte_mkuffd_wp(pte);
715 else if (is_writable_device_exclusive_entry(entry))
716 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
717
718 VM_BUG_ON(pte_write(pte) && !(PageAnon(page) && PageAnonExclusive(page)));
719
720 /*
721 * No need to take a page reference as one was already
722 * created when the swap entry was made.
723 */
724 if (PageAnon(page))
725 page_add_anon_rmap(page, vma, address, RMAP_NONE);
726 else
727 /*
728 * Currently device exclusive access only supports anonymous
729 * memory so the entry shouldn't point to a filebacked page.
730 */
731 WARN_ON_ONCE(1);
732
733 set_pte_at(vma->vm_mm, address, ptep, pte);
734
735 /*
736 * No need to invalidate - it was non-present before. However
737 * secondary CPUs may have mappings that need invalidating.
738 */
739 update_mmu_cache(vma, address, ptep);
740}
741
742/*
743 * Tries to restore an exclusive pte if the page lock can be acquired without
744 * sleeping.
745 */
746static int
747try_restore_exclusive_pte(pte_t *src_pte, struct vm_area_struct *vma,
748 unsigned long addr)
749{
750 swp_entry_t entry = pte_to_swp_entry(ptep_get(src_pte));
751 struct page *page = pfn_swap_entry_to_page(entry);
752
753 if (trylock_page(page)) {
754 restore_exclusive_pte(vma, page, addr, src_pte);
755 unlock_page(page);
756 return 0;
757 }
758
759 return -EBUSY;
760}
761
762/*
763 * copy one vm_area from one task to the other. Assumes the page tables
764 * already present in the new task to be cleared in the whole range
765 * covered by this vma.
766 */
767
768static unsigned long
769copy_nonpresent_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
770 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *dst_vma,
771 struct vm_area_struct *src_vma, unsigned long addr, int *rss)
772{
773 unsigned long vm_flags = dst_vma->vm_flags;
774 pte_t orig_pte = ptep_get(src_pte);
775 pte_t pte = orig_pte;
776 struct page *page;
777 swp_entry_t entry = pte_to_swp_entry(orig_pte);
778
779 if (likely(!non_swap_entry(entry))) {
780 if (swap_duplicate(entry) < 0)
781 return -EIO;
782
783 /* make sure dst_mm is on swapoff's mmlist. */
784 if (unlikely(list_empty(&dst_mm->mmlist))) {
785 spin_lock(&mmlist_lock);
786 if (list_empty(&dst_mm->mmlist))
787 list_add(&dst_mm->mmlist,
788 &src_mm->mmlist);
789 spin_unlock(&mmlist_lock);
790 }
791 /* Mark the swap entry as shared. */
792 if (pte_swp_exclusive(orig_pte)) {
793 pte = pte_swp_clear_exclusive(orig_pte);
794 set_pte_at(src_mm, addr, src_pte, pte);
795 }
796 rss[MM_SWAPENTS]++;
797 } else if (is_migration_entry(entry)) {
798 page = pfn_swap_entry_to_page(entry);
799
800 rss[mm_counter(page)]++;
801
802 if (!is_readable_migration_entry(entry) &&
803 is_cow_mapping(vm_flags)) {
804 /*
805 * COW mappings require pages in both parent and child
806 * to be set to read. A previously exclusive entry is
807 * now shared.
808 */
809 entry = make_readable_migration_entry(
810 swp_offset(entry));
811 pte = swp_entry_to_pte(entry);
812 if (pte_swp_soft_dirty(orig_pte))
813 pte = pte_swp_mksoft_dirty(pte);
814 if (pte_swp_uffd_wp(orig_pte))
815 pte = pte_swp_mkuffd_wp(pte);
816 set_pte_at(src_mm, addr, src_pte, pte);
817 }
818 } else if (is_device_private_entry(entry)) {
819 page = pfn_swap_entry_to_page(entry);
820
821 /*
822 * Update rss count even for unaddressable pages, as
823 * they should treated just like normal pages in this
824 * respect.
825 *
826 * We will likely want to have some new rss counters
827 * for unaddressable pages, at some point. But for now
828 * keep things as they are.
829 */
830 get_page(page);
831 rss[mm_counter(page)]++;
832 /* Cannot fail as these pages cannot get pinned. */
833 BUG_ON(page_try_dup_anon_rmap(page, false, src_vma));
834
835 /*
836 * We do not preserve soft-dirty information, because so
837 * far, checkpoint/restore is the only feature that
838 * requires that. And checkpoint/restore does not work
839 * when a device driver is involved (you cannot easily
840 * save and restore device driver state).
841 */
842 if (is_writable_device_private_entry(entry) &&
843 is_cow_mapping(vm_flags)) {
844 entry = make_readable_device_private_entry(
845 swp_offset(entry));
846 pte = swp_entry_to_pte(entry);
847 if (pte_swp_uffd_wp(orig_pte))
848 pte = pte_swp_mkuffd_wp(pte);
849 set_pte_at(src_mm, addr, src_pte, pte);
850 }
851 } else if (is_device_exclusive_entry(entry)) {
852 /*
853 * Make device exclusive entries present by restoring the
854 * original entry then copying as for a present pte. Device
855 * exclusive entries currently only support private writable
856 * (ie. COW) mappings.
857 */
858 VM_BUG_ON(!is_cow_mapping(src_vma->vm_flags));
859 if (try_restore_exclusive_pte(src_pte, src_vma, addr))
860 return -EBUSY;
861 return -ENOENT;
862 } else if (is_pte_marker_entry(entry)) {
863 if (is_swapin_error_entry(entry) || userfaultfd_wp(dst_vma))
864 set_pte_at(dst_mm, addr, dst_pte, pte);
865 return 0;
866 }
867 if (!userfaultfd_wp(dst_vma))
868 pte = pte_swp_clear_uffd_wp(pte);
869 set_pte_at(dst_mm, addr, dst_pte, pte);
870 return 0;
871}
872
873/*
874 * Copy a present and normal page.
875 *
876 * NOTE! The usual case is that this isn't required;
877 * instead, the caller can just increase the page refcount
878 * and re-use the pte the traditional way.
879 *
880 * And if we need a pre-allocated page but don't yet have
881 * one, return a negative error to let the preallocation
882 * code know so that it can do so outside the page table
883 * lock.
884 */
885static inline int
886copy_present_page(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
887 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
888 struct folio **prealloc, struct page *page)
889{
890 struct folio *new_folio;
891 pte_t pte;
892
893 new_folio = *prealloc;
894 if (!new_folio)
895 return -EAGAIN;
896
897 /*
898 * We have a prealloc page, all good! Take it
899 * over and copy the page & arm it.
900 */
901 *prealloc = NULL;
902 copy_user_highpage(&new_folio->page, page, addr, src_vma);
903 __folio_mark_uptodate(new_folio);
904 folio_add_new_anon_rmap(new_folio, dst_vma, addr);
905 folio_add_lru_vma(new_folio, dst_vma);
906 rss[MM_ANONPAGES]++;
907
908 /* All done, just insert the new page copy in the child */
909 pte = mk_pte(&new_folio->page, dst_vma->vm_page_prot);
910 pte = maybe_mkwrite(pte_mkdirty(pte), dst_vma);
911 if (userfaultfd_pte_wp(dst_vma, ptep_get(src_pte)))
912 /* Uffd-wp needs to be delivered to dest pte as well */
913 pte = pte_mkuffd_wp(pte);
914 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
915 return 0;
916}
917
918/*
919 * Copy one pte. Returns 0 if succeeded, or -EAGAIN if one preallocated page
920 * is required to copy this pte.
921 */
922static inline int
923copy_present_pte(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
924 pte_t *dst_pte, pte_t *src_pte, unsigned long addr, int *rss,
925 struct folio **prealloc)
926{
927 struct mm_struct *src_mm = src_vma->vm_mm;
928 unsigned long vm_flags = src_vma->vm_flags;
929 pte_t pte = ptep_get(src_pte);
930 struct page *page;
931 struct folio *folio;
932
933 page = vm_normal_page(src_vma, addr, pte);
934 if (page)
935 folio = page_folio(page);
936 if (page && folio_test_anon(folio)) {
937 /*
938 * If this page may have been pinned by the parent process,
939 * copy the page immediately for the child so that we'll always
940 * guarantee the pinned page won't be randomly replaced in the
941 * future.
942 */
943 folio_get(folio);
944 if (unlikely(page_try_dup_anon_rmap(page, false, src_vma))) {
945 /* Page may be pinned, we have to copy. */
946 folio_put(folio);
947 return copy_present_page(dst_vma, src_vma, dst_pte, src_pte,
948 addr, rss, prealloc, page);
949 }
950 rss[MM_ANONPAGES]++;
951 } else if (page) {
952 folio_get(folio);
953 page_dup_file_rmap(page, false);
954 rss[mm_counter_file(page)]++;
955 }
956
957 /*
958 * If it's a COW mapping, write protect it both
959 * in the parent and the child
960 */
961 if (is_cow_mapping(vm_flags) && pte_write(pte)) {
962 ptep_set_wrprotect(src_mm, addr, src_pte);
963 pte = pte_wrprotect(pte);
964 }
965 VM_BUG_ON(page && folio_test_anon(folio) && PageAnonExclusive(page));
966
967 /*
968 * If it's a shared mapping, mark it clean in
969 * the child
970 */
971 if (vm_flags & VM_SHARED)
972 pte = pte_mkclean(pte);
973 pte = pte_mkold(pte);
974
975 if (!userfaultfd_wp(dst_vma))
976 pte = pte_clear_uffd_wp(pte);
977
978 set_pte_at(dst_vma->vm_mm, addr, dst_pte, pte);
979 return 0;
980}
981
982static inline struct folio *page_copy_prealloc(struct mm_struct *src_mm,
983 struct vm_area_struct *vma, unsigned long addr)
984{
985 struct folio *new_folio;
986
987 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma, addr, false);
988 if (!new_folio)
989 return NULL;
990
991 if (mem_cgroup_charge(new_folio, src_mm, GFP_KERNEL)) {
992 folio_put(new_folio);
993 return NULL;
994 }
995 folio_throttle_swaprate(new_folio, GFP_KERNEL);
996
997 return new_folio;
998}
999
1000static int
1001copy_pte_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1002 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1003 unsigned long end)
1004{
1005 struct mm_struct *dst_mm = dst_vma->vm_mm;
1006 struct mm_struct *src_mm = src_vma->vm_mm;
1007 pte_t *orig_src_pte, *orig_dst_pte;
1008 pte_t *src_pte, *dst_pte;
1009 pte_t ptent;
1010 spinlock_t *src_ptl, *dst_ptl;
1011 int progress, ret = 0;
1012 int rss[NR_MM_COUNTERS];
1013 swp_entry_t entry = (swp_entry_t){0};
1014 struct folio *prealloc = NULL;
1015
1016again:
1017 progress = 0;
1018 init_rss_vec(rss);
1019
1020 /*
1021 * copy_pmd_range()'s prior pmd_none_or_clear_bad(src_pmd), and the
1022 * error handling here, assume that exclusive mmap_lock on dst and src
1023 * protects anon from unexpected THP transitions; with shmem and file
1024 * protected by mmap_lock-less collapse skipping areas with anon_vma
1025 * (whereas vma_needs_copy() skips areas without anon_vma). A rework
1026 * can remove such assumptions later, but this is good enough for now.
1027 */
1028 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1029 if (!dst_pte) {
1030 ret = -ENOMEM;
1031 goto out;
1032 }
1033 src_pte = pte_offset_map_nolock(src_mm, src_pmd, addr, &src_ptl);
1034 if (!src_pte) {
1035 pte_unmap_unlock(dst_pte, dst_ptl);
1036 /* ret == 0 */
1037 goto out;
1038 }
1039 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1040 orig_src_pte = src_pte;
1041 orig_dst_pte = dst_pte;
1042 arch_enter_lazy_mmu_mode();
1043
1044 do {
1045 /*
1046 * We are holding two locks at this point - either of them
1047 * could generate latencies in another task on another CPU.
1048 */
1049 if (progress >= 32) {
1050 progress = 0;
1051 if (need_resched() ||
1052 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1053 break;
1054 }
1055 ptent = ptep_get(src_pte);
1056 if (pte_none(ptent)) {
1057 progress++;
1058 continue;
1059 }
1060 if (unlikely(!pte_present(ptent))) {
1061 ret = copy_nonpresent_pte(dst_mm, src_mm,
1062 dst_pte, src_pte,
1063 dst_vma, src_vma,
1064 addr, rss);
1065 if (ret == -EIO) {
1066 entry = pte_to_swp_entry(ptep_get(src_pte));
1067 break;
1068 } else if (ret == -EBUSY) {
1069 break;
1070 } else if (!ret) {
1071 progress += 8;
1072 continue;
1073 }
1074
1075 /*
1076 * Device exclusive entry restored, continue by copying
1077 * the now present pte.
1078 */
1079 WARN_ON_ONCE(ret != -ENOENT);
1080 }
1081 /* copy_present_pte() will clear `*prealloc' if consumed */
1082 ret = copy_present_pte(dst_vma, src_vma, dst_pte, src_pte,
1083 addr, rss, &prealloc);
1084 /*
1085 * If we need a pre-allocated page for this pte, drop the
1086 * locks, allocate, and try again.
1087 */
1088 if (unlikely(ret == -EAGAIN))
1089 break;
1090 if (unlikely(prealloc)) {
1091 /*
1092 * pre-alloc page cannot be reused by next time so as
1093 * to strictly follow mempolicy (e.g., alloc_page_vma()
1094 * will allocate page according to address). This
1095 * could only happen if one pinned pte changed.
1096 */
1097 folio_put(prealloc);
1098 prealloc = NULL;
1099 }
1100 progress += 8;
1101 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1102
1103 arch_leave_lazy_mmu_mode();
1104 pte_unmap_unlock(orig_src_pte, src_ptl);
1105 add_mm_rss_vec(dst_mm, rss);
1106 pte_unmap_unlock(orig_dst_pte, dst_ptl);
1107 cond_resched();
1108
1109 if (ret == -EIO) {
1110 VM_WARN_ON_ONCE(!entry.val);
1111 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0) {
1112 ret = -ENOMEM;
1113 goto out;
1114 }
1115 entry.val = 0;
1116 } else if (ret == -EBUSY) {
1117 goto out;
1118 } else if (ret == -EAGAIN) {
1119 prealloc = page_copy_prealloc(src_mm, src_vma, addr);
1120 if (!prealloc)
1121 return -ENOMEM;
1122 } else if (ret) {
1123 VM_WARN_ON_ONCE(1);
1124 }
1125
1126 /* We've captured and resolved the error. Reset, try again. */
1127 ret = 0;
1128
1129 if (addr != end)
1130 goto again;
1131out:
1132 if (unlikely(prealloc))
1133 folio_put(prealloc);
1134 return ret;
1135}
1136
1137static inline int
1138copy_pmd_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1139 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1140 unsigned long end)
1141{
1142 struct mm_struct *dst_mm = dst_vma->vm_mm;
1143 struct mm_struct *src_mm = src_vma->vm_mm;
1144 pmd_t *src_pmd, *dst_pmd;
1145 unsigned long next;
1146
1147 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1148 if (!dst_pmd)
1149 return -ENOMEM;
1150 src_pmd = pmd_offset(src_pud, addr);
1151 do {
1152 next = pmd_addr_end(addr, end);
1153 if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1154 || pmd_devmap(*src_pmd)) {
1155 int err;
1156 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, src_vma);
1157 err = copy_huge_pmd(dst_mm, src_mm, dst_pmd, src_pmd,
1158 addr, dst_vma, src_vma);
1159 if (err == -ENOMEM)
1160 return -ENOMEM;
1161 if (!err)
1162 continue;
1163 /* fall through */
1164 }
1165 if (pmd_none_or_clear_bad(src_pmd))
1166 continue;
1167 if (copy_pte_range(dst_vma, src_vma, dst_pmd, src_pmd,
1168 addr, next))
1169 return -ENOMEM;
1170 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1171 return 0;
1172}
1173
1174static inline int
1175copy_pud_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1176 p4d_t *dst_p4d, p4d_t *src_p4d, unsigned long addr,
1177 unsigned long end)
1178{
1179 struct mm_struct *dst_mm = dst_vma->vm_mm;
1180 struct mm_struct *src_mm = src_vma->vm_mm;
1181 pud_t *src_pud, *dst_pud;
1182 unsigned long next;
1183
1184 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1185 if (!dst_pud)
1186 return -ENOMEM;
1187 src_pud = pud_offset(src_p4d, addr);
1188 do {
1189 next = pud_addr_end(addr, end);
1190 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1191 int err;
1192
1193 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, src_vma);
1194 err = copy_huge_pud(dst_mm, src_mm,
1195 dst_pud, src_pud, addr, src_vma);
1196 if (err == -ENOMEM)
1197 return -ENOMEM;
1198 if (!err)
1199 continue;
1200 /* fall through */
1201 }
1202 if (pud_none_or_clear_bad(src_pud))
1203 continue;
1204 if (copy_pmd_range(dst_vma, src_vma, dst_pud, src_pud,
1205 addr, next))
1206 return -ENOMEM;
1207 } while (dst_pud++, src_pud++, addr = next, addr != end);
1208 return 0;
1209}
1210
1211static inline int
1212copy_p4d_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma,
1213 pgd_t *dst_pgd, pgd_t *src_pgd, unsigned long addr,
1214 unsigned long end)
1215{
1216 struct mm_struct *dst_mm = dst_vma->vm_mm;
1217 p4d_t *src_p4d, *dst_p4d;
1218 unsigned long next;
1219
1220 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1221 if (!dst_p4d)
1222 return -ENOMEM;
1223 src_p4d = p4d_offset(src_pgd, addr);
1224 do {
1225 next = p4d_addr_end(addr, end);
1226 if (p4d_none_or_clear_bad(src_p4d))
1227 continue;
1228 if (copy_pud_range(dst_vma, src_vma, dst_p4d, src_p4d,
1229 addr, next))
1230 return -ENOMEM;
1231 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1232 return 0;
1233}
1234
1235/*
1236 * Return true if the vma needs to copy the pgtable during this fork(). Return
1237 * false when we can speed up fork() by allowing lazy page faults later until
1238 * when the child accesses the memory range.
1239 */
1240static bool
1241vma_needs_copy(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1242{
1243 /*
1244 * Always copy pgtables when dst_vma has uffd-wp enabled even if it's
1245 * file-backed (e.g. shmem). Because when uffd-wp is enabled, pgtable
1246 * contains uffd-wp protection information, that's something we can't
1247 * retrieve from page cache, and skip copying will lose those info.
1248 */
1249 if (userfaultfd_wp(dst_vma))
1250 return true;
1251
1252 if (src_vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
1253 return true;
1254
1255 if (src_vma->anon_vma)
1256 return true;
1257
1258 /*
1259 * Don't copy ptes where a page fault will fill them correctly. Fork
1260 * becomes much lighter when there are big shared or private readonly
1261 * mappings. The tradeoff is that copy_page_range is more efficient
1262 * than faulting.
1263 */
1264 return false;
1265}
1266
1267int
1268copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma)
1269{
1270 pgd_t *src_pgd, *dst_pgd;
1271 unsigned long next;
1272 unsigned long addr = src_vma->vm_start;
1273 unsigned long end = src_vma->vm_end;
1274 struct mm_struct *dst_mm = dst_vma->vm_mm;
1275 struct mm_struct *src_mm = src_vma->vm_mm;
1276 struct mmu_notifier_range range;
1277 bool is_cow;
1278 int ret;
1279
1280 if (!vma_needs_copy(dst_vma, src_vma))
1281 return 0;
1282
1283 if (is_vm_hugetlb_page(src_vma))
1284 return copy_hugetlb_page_range(dst_mm, src_mm, dst_vma, src_vma);
1285
1286 if (unlikely(src_vma->vm_flags & VM_PFNMAP)) {
1287 /*
1288 * We do not free on error cases below as remove_vma
1289 * gets called on error from higher level routine
1290 */
1291 ret = track_pfn_copy(src_vma);
1292 if (ret)
1293 return ret;
1294 }
1295
1296 /*
1297 * We need to invalidate the secondary MMU mappings only when
1298 * there could be a permission downgrade on the ptes of the
1299 * parent mm. And a permission downgrade will only happen if
1300 * is_cow_mapping() returns true.
1301 */
1302 is_cow = is_cow_mapping(src_vma->vm_flags);
1303
1304 if (is_cow) {
1305 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_PAGE,
1306 0, src_mm, addr, end);
1307 mmu_notifier_invalidate_range_start(&range);
1308 /*
1309 * Disabling preemption is not needed for the write side, as
1310 * the read side doesn't spin, but goes to the mmap_lock.
1311 *
1312 * Use the raw variant of the seqcount_t write API to avoid
1313 * lockdep complaining about preemptibility.
1314 */
1315 mmap_assert_write_locked(src_mm);
1316 raw_write_seqcount_begin(&src_mm->write_protect_seq);
1317 }
1318
1319 ret = 0;
1320 dst_pgd = pgd_offset(dst_mm, addr);
1321 src_pgd = pgd_offset(src_mm, addr);
1322 do {
1323 next = pgd_addr_end(addr, end);
1324 if (pgd_none_or_clear_bad(src_pgd))
1325 continue;
1326 if (unlikely(copy_p4d_range(dst_vma, src_vma, dst_pgd, src_pgd,
1327 addr, next))) {
1328 untrack_pfn_clear(dst_vma);
1329 ret = -ENOMEM;
1330 break;
1331 }
1332 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1333
1334 if (is_cow) {
1335 raw_write_seqcount_end(&src_mm->write_protect_seq);
1336 mmu_notifier_invalidate_range_end(&range);
1337 }
1338 return ret;
1339}
1340
1341/* Whether we should zap all COWed (private) pages too */
1342static inline bool should_zap_cows(struct zap_details *details)
1343{
1344 /* By default, zap all pages */
1345 if (!details)
1346 return true;
1347
1348 /* Or, we zap COWed pages only if the caller wants to */
1349 return details->even_cows;
1350}
1351
1352/* Decides whether we should zap this page with the page pointer specified */
1353static inline bool should_zap_page(struct zap_details *details, struct page *page)
1354{
1355 /* If we can make a decision without *page.. */
1356 if (should_zap_cows(details))
1357 return true;
1358
1359 /* E.g. the caller passes NULL for the case of a zero page */
1360 if (!page)
1361 return true;
1362
1363 /* Otherwise we should only zap non-anon pages */
1364 return !PageAnon(page);
1365}
1366
1367static inline bool zap_drop_file_uffd_wp(struct zap_details *details)
1368{
1369 if (!details)
1370 return false;
1371
1372 return details->zap_flags & ZAP_FLAG_DROP_MARKER;
1373}
1374
1375/*
1376 * This function makes sure that we'll replace the none pte with an uffd-wp
1377 * swap special pte marker when necessary. Must be with the pgtable lock held.
1378 */
1379static inline void
1380zap_install_uffd_wp_if_needed(struct vm_area_struct *vma,
1381 unsigned long addr, pte_t *pte,
1382 struct zap_details *details, pte_t pteval)
1383{
1384 /* Zap on anonymous always means dropping everything */
1385 if (vma_is_anonymous(vma))
1386 return;
1387
1388 if (zap_drop_file_uffd_wp(details))
1389 return;
1390
1391 pte_install_uffd_wp_if_needed(vma, addr, pte, pteval);
1392}
1393
1394static unsigned long zap_pte_range(struct mmu_gather *tlb,
1395 struct vm_area_struct *vma, pmd_t *pmd,
1396 unsigned long addr, unsigned long end,
1397 struct zap_details *details)
1398{
1399 struct mm_struct *mm = tlb->mm;
1400 int force_flush = 0;
1401 int rss[NR_MM_COUNTERS];
1402 spinlock_t *ptl;
1403 pte_t *start_pte;
1404 pte_t *pte;
1405 swp_entry_t entry;
1406
1407 tlb_change_page_size(tlb, PAGE_SIZE);
1408 init_rss_vec(rss);
1409 start_pte = pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1410 if (!pte)
1411 return addr;
1412
1413 flush_tlb_batched_pending(mm);
1414 arch_enter_lazy_mmu_mode();
1415 do {
1416 pte_t ptent = ptep_get(pte);
1417 struct page *page;
1418
1419 if (pte_none(ptent))
1420 continue;
1421
1422 if (need_resched())
1423 break;
1424
1425 if (pte_present(ptent)) {
1426 unsigned int delay_rmap;
1427
1428 page = vm_normal_page(vma, addr, ptent);
1429 if (unlikely(!should_zap_page(details, page)))
1430 continue;
1431 ptent = ptep_get_and_clear_full(mm, addr, pte,
1432 tlb->fullmm);
1433 tlb_remove_tlb_entry(tlb, pte, addr);
1434 zap_install_uffd_wp_if_needed(vma, addr, pte, details,
1435 ptent);
1436 if (unlikely(!page))
1437 continue;
1438
1439 delay_rmap = 0;
1440 if (!PageAnon(page)) {
1441 if (pte_dirty(ptent)) {
1442 set_page_dirty(page);
1443 if (tlb_delay_rmap(tlb)) {
1444 delay_rmap = 1;
1445 force_flush = 1;
1446 }
1447 }
1448 if (pte_young(ptent) && likely(vma_has_recency(vma)))
1449 mark_page_accessed(page);
1450 }
1451 rss[mm_counter(page)]--;
1452 if (!delay_rmap) {
1453 page_remove_rmap(page, vma, false);
1454 if (unlikely(page_mapcount(page) < 0))
1455 print_bad_pte(vma, addr, ptent, page);
1456 }
1457 if (unlikely(__tlb_remove_page(tlb, page, delay_rmap))) {
1458 force_flush = 1;
1459 addr += PAGE_SIZE;
1460 break;
1461 }
1462 continue;
1463 }
1464
1465 entry = pte_to_swp_entry(ptent);
1466 if (is_device_private_entry(entry) ||
1467 is_device_exclusive_entry(entry)) {
1468 page = pfn_swap_entry_to_page(entry);
1469 if (unlikely(!should_zap_page(details, page)))
1470 continue;
1471 /*
1472 * Both device private/exclusive mappings should only
1473 * work with anonymous page so far, so we don't need to
1474 * consider uffd-wp bit when zap. For more information,
1475 * see zap_install_uffd_wp_if_needed().
1476 */
1477 WARN_ON_ONCE(!vma_is_anonymous(vma));
1478 rss[mm_counter(page)]--;
1479 if (is_device_private_entry(entry))
1480 page_remove_rmap(page, vma, false);
1481 put_page(page);
1482 } else if (!non_swap_entry(entry)) {
1483 /* Genuine swap entry, hence a private anon page */
1484 if (!should_zap_cows(details))
1485 continue;
1486 rss[MM_SWAPENTS]--;
1487 if (unlikely(!free_swap_and_cache(entry)))
1488 print_bad_pte(vma, addr, ptent, NULL);
1489 } else if (is_migration_entry(entry)) {
1490 page = pfn_swap_entry_to_page(entry);
1491 if (!should_zap_page(details, page))
1492 continue;
1493 rss[mm_counter(page)]--;
1494 } else if (pte_marker_entry_uffd_wp(entry)) {
1495 /*
1496 * For anon: always drop the marker; for file: only
1497 * drop the marker if explicitly requested.
1498 */
1499 if (!vma_is_anonymous(vma) &&
1500 !zap_drop_file_uffd_wp(details))
1501 continue;
1502 } else if (is_hwpoison_entry(entry) ||
1503 is_swapin_error_entry(entry)) {
1504 if (!should_zap_cows(details))
1505 continue;
1506 } else {
1507 /* We should have covered all the swap entry types */
1508 WARN_ON_ONCE(1);
1509 }
1510 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1511 zap_install_uffd_wp_if_needed(vma, addr, pte, details, ptent);
1512 } while (pte++, addr += PAGE_SIZE, addr != end);
1513
1514 add_mm_rss_vec(mm, rss);
1515 arch_leave_lazy_mmu_mode();
1516
1517 /* Do the actual TLB flush before dropping ptl */
1518 if (force_flush) {
1519 tlb_flush_mmu_tlbonly(tlb);
1520 tlb_flush_rmaps(tlb, vma);
1521 }
1522 pte_unmap_unlock(start_pte, ptl);
1523
1524 /*
1525 * If we forced a TLB flush (either due to running out of
1526 * batch buffers or because we needed to flush dirty TLB
1527 * entries before releasing the ptl), free the batched
1528 * memory too. Come back again if we didn't do everything.
1529 */
1530 if (force_flush)
1531 tlb_flush_mmu(tlb);
1532
1533 return addr;
1534}
1535
1536static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1537 struct vm_area_struct *vma, pud_t *pud,
1538 unsigned long addr, unsigned long end,
1539 struct zap_details *details)
1540{
1541 pmd_t *pmd;
1542 unsigned long next;
1543
1544 pmd = pmd_offset(pud, addr);
1545 do {
1546 next = pmd_addr_end(addr, end);
1547 if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1548 if (next - addr != HPAGE_PMD_SIZE)
1549 __split_huge_pmd(vma, pmd, addr, false, NULL);
1550 else if (zap_huge_pmd(tlb, vma, pmd, addr)) {
1551 addr = next;
1552 continue;
1553 }
1554 /* fall through */
1555 } else if (details && details->single_folio &&
1556 folio_test_pmd_mappable(details->single_folio) &&
1557 next - addr == HPAGE_PMD_SIZE && pmd_none(*pmd)) {
1558 spinlock_t *ptl = pmd_lock(tlb->mm, pmd);
1559 /*
1560 * Take and drop THP pmd lock so that we cannot return
1561 * prematurely, while zap_huge_pmd() has cleared *pmd,
1562 * but not yet decremented compound_mapcount().
1563 */
1564 spin_unlock(ptl);
1565 }
1566 if (pmd_none(*pmd)) {
1567 addr = next;
1568 continue;
1569 }
1570 addr = zap_pte_range(tlb, vma, pmd, addr, next, details);
1571 if (addr != next)
1572 pmd--;
1573 } while (pmd++, cond_resched(), addr != end);
1574
1575 return addr;
1576}
1577
1578static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1579 struct vm_area_struct *vma, p4d_t *p4d,
1580 unsigned long addr, unsigned long end,
1581 struct zap_details *details)
1582{
1583 pud_t *pud;
1584 unsigned long next;
1585
1586 pud = pud_offset(p4d, addr);
1587 do {
1588 next = pud_addr_end(addr, end);
1589 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1590 if (next - addr != HPAGE_PUD_SIZE) {
1591 mmap_assert_locked(tlb->mm);
1592 split_huge_pud(vma, pud, addr);
1593 } else if (zap_huge_pud(tlb, vma, pud, addr))
1594 goto next;
1595 /* fall through */
1596 }
1597 if (pud_none_or_clear_bad(pud))
1598 continue;
1599 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1600next:
1601 cond_resched();
1602 } while (pud++, addr = next, addr != end);
1603
1604 return addr;
1605}
1606
1607static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1608 struct vm_area_struct *vma, pgd_t *pgd,
1609 unsigned long addr, unsigned long end,
1610 struct zap_details *details)
1611{
1612 p4d_t *p4d;
1613 unsigned long next;
1614
1615 p4d = p4d_offset(pgd, addr);
1616 do {
1617 next = p4d_addr_end(addr, end);
1618 if (p4d_none_or_clear_bad(p4d))
1619 continue;
1620 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1621 } while (p4d++, addr = next, addr != end);
1622
1623 return addr;
1624}
1625
1626void unmap_page_range(struct mmu_gather *tlb,
1627 struct vm_area_struct *vma,
1628 unsigned long addr, unsigned long end,
1629 struct zap_details *details)
1630{
1631 pgd_t *pgd;
1632 unsigned long next;
1633
1634 BUG_ON(addr >= end);
1635 tlb_start_vma(tlb, vma);
1636 pgd = pgd_offset(vma->vm_mm, addr);
1637 do {
1638 next = pgd_addr_end(addr, end);
1639 if (pgd_none_or_clear_bad(pgd))
1640 continue;
1641 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1642 } while (pgd++, addr = next, addr != end);
1643 tlb_end_vma(tlb, vma);
1644}
1645
1646
1647static void unmap_single_vma(struct mmu_gather *tlb,
1648 struct vm_area_struct *vma, unsigned long start_addr,
1649 unsigned long end_addr,
1650 struct zap_details *details, bool mm_wr_locked)
1651{
1652 unsigned long start = max(vma->vm_start, start_addr);
1653 unsigned long end;
1654
1655 if (start >= vma->vm_end)
1656 return;
1657 end = min(vma->vm_end, end_addr);
1658 if (end <= vma->vm_start)
1659 return;
1660
1661 if (vma->vm_file)
1662 uprobe_munmap(vma, start, end);
1663
1664 if (unlikely(vma->vm_flags & VM_PFNMAP))
1665 untrack_pfn(vma, 0, 0, mm_wr_locked);
1666
1667 if (start != end) {
1668 if (unlikely(is_vm_hugetlb_page(vma))) {
1669 /*
1670 * It is undesirable to test vma->vm_file as it
1671 * should be non-null for valid hugetlb area.
1672 * However, vm_file will be NULL in the error
1673 * cleanup path of mmap_region. When
1674 * hugetlbfs ->mmap method fails,
1675 * mmap_region() nullifies vma->vm_file
1676 * before calling this function to clean up.
1677 * Since no pte has actually been setup, it is
1678 * safe to do nothing in this case.
1679 */
1680 if (vma->vm_file) {
1681 zap_flags_t zap_flags = details ?
1682 details->zap_flags : 0;
1683 __unmap_hugepage_range_final(tlb, vma, start, end,
1684 NULL, zap_flags);
1685 }
1686 } else
1687 unmap_page_range(tlb, vma, start, end, details);
1688 }
1689}
1690
1691/**
1692 * unmap_vmas - unmap a range of memory covered by a list of vma's
1693 * @tlb: address of the caller's struct mmu_gather
1694 * @mt: the maple tree
1695 * @vma: the starting vma
1696 * @start_addr: virtual address at which to start unmapping
1697 * @end_addr: virtual address at which to end unmapping
1698 *
1699 * Unmap all pages in the vma list.
1700 *
1701 * Only addresses between `start' and `end' will be unmapped.
1702 *
1703 * The VMA list must be sorted in ascending virtual address order.
1704 *
1705 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1706 * range after unmap_vmas() returns. So the only responsibility here is to
1707 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1708 * drops the lock and schedules.
1709 */
1710void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
1711 struct vm_area_struct *vma, unsigned long start_addr,
1712 unsigned long end_addr, bool mm_wr_locked)
1713{
1714 struct mmu_notifier_range range;
1715 struct zap_details details = {
1716 .zap_flags = ZAP_FLAG_DROP_MARKER | ZAP_FLAG_UNMAP,
1717 /* Careful - we need to zap private pages too! */
1718 .even_cows = true,
1719 };
1720 MA_STATE(mas, mt, vma->vm_end, vma->vm_end);
1721
1722 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma->vm_mm,
1723 start_addr, end_addr);
1724 mmu_notifier_invalidate_range_start(&range);
1725 do {
1726 unmap_single_vma(tlb, vma, start_addr, end_addr, &details,
1727 mm_wr_locked);
1728 } while ((vma = mas_find(&mas, end_addr - 1)) != NULL);
1729 mmu_notifier_invalidate_range_end(&range);
1730}
1731
1732/**
1733 * zap_page_range_single - remove user pages in a given range
1734 * @vma: vm_area_struct holding the applicable pages
1735 * @address: starting address of pages to zap
1736 * @size: number of bytes to zap
1737 * @details: details of shared cache invalidation
1738 *
1739 * The range must fit into one VMA.
1740 */
1741void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1742 unsigned long size, struct zap_details *details)
1743{
1744 const unsigned long end = address + size;
1745 struct mmu_notifier_range range;
1746 struct mmu_gather tlb;
1747
1748 lru_add_drain();
1749 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
1750 address, end);
1751 if (is_vm_hugetlb_page(vma))
1752 adjust_range_if_pmd_sharing_possible(vma, &range.start,
1753 &range.end);
1754 tlb_gather_mmu(&tlb, vma->vm_mm);
1755 update_hiwater_rss(vma->vm_mm);
1756 mmu_notifier_invalidate_range_start(&range);
1757 /*
1758 * unmap 'address-end' not 'range.start-range.end' as range
1759 * could have been expanded for hugetlb pmd sharing.
1760 */
1761 unmap_single_vma(&tlb, vma, address, end, details, false);
1762 mmu_notifier_invalidate_range_end(&range);
1763 tlb_finish_mmu(&tlb);
1764}
1765
1766/**
1767 * zap_vma_ptes - remove ptes mapping the vma
1768 * @vma: vm_area_struct holding ptes to be zapped
1769 * @address: starting address of pages to zap
1770 * @size: number of bytes to zap
1771 *
1772 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1773 *
1774 * The entire address range must be fully contained within the vma.
1775 *
1776 */
1777void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1778 unsigned long size)
1779{
1780 if (!range_in_vma(vma, address, address + size) ||
1781 !(vma->vm_flags & VM_PFNMAP))
1782 return;
1783
1784 zap_page_range_single(vma, address, size, NULL);
1785}
1786EXPORT_SYMBOL_GPL(zap_vma_ptes);
1787
1788static pmd_t *walk_to_pmd(struct mm_struct *mm, unsigned long addr)
1789{
1790 pgd_t *pgd;
1791 p4d_t *p4d;
1792 pud_t *pud;
1793 pmd_t *pmd;
1794
1795 pgd = pgd_offset(mm, addr);
1796 p4d = p4d_alloc(mm, pgd, addr);
1797 if (!p4d)
1798 return NULL;
1799 pud = pud_alloc(mm, p4d, addr);
1800 if (!pud)
1801 return NULL;
1802 pmd = pmd_alloc(mm, pud, addr);
1803 if (!pmd)
1804 return NULL;
1805
1806 VM_BUG_ON(pmd_trans_huge(*pmd));
1807 return pmd;
1808}
1809
1810pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1811 spinlock_t **ptl)
1812{
1813 pmd_t *pmd = walk_to_pmd(mm, addr);
1814
1815 if (!pmd)
1816 return NULL;
1817 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1818}
1819
1820static int validate_page_before_insert(struct page *page)
1821{
1822 if (PageAnon(page) || PageSlab(page) || page_has_type(page))
1823 return -EINVAL;
1824 flush_dcache_page(page);
1825 return 0;
1826}
1827
1828static int insert_page_into_pte_locked(struct vm_area_struct *vma, pte_t *pte,
1829 unsigned long addr, struct page *page, pgprot_t prot)
1830{
1831 if (!pte_none(ptep_get(pte)))
1832 return -EBUSY;
1833 /* Ok, finally just insert the thing.. */
1834 get_page(page);
1835 inc_mm_counter(vma->vm_mm, mm_counter_file(page));
1836 page_add_file_rmap(page, vma, false);
1837 set_pte_at(vma->vm_mm, addr, pte, mk_pte(page, prot));
1838 return 0;
1839}
1840
1841/*
1842 * This is the old fallback for page remapping.
1843 *
1844 * For historical reasons, it only allows reserved pages. Only
1845 * old drivers should use this, and they needed to mark their
1846 * pages reserved for the old functions anyway.
1847 */
1848static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1849 struct page *page, pgprot_t prot)
1850{
1851 int retval;
1852 pte_t *pte;
1853 spinlock_t *ptl;
1854
1855 retval = validate_page_before_insert(page);
1856 if (retval)
1857 goto out;
1858 retval = -ENOMEM;
1859 pte = get_locked_pte(vma->vm_mm, addr, &ptl);
1860 if (!pte)
1861 goto out;
1862 retval = insert_page_into_pte_locked(vma, pte, addr, page, prot);
1863 pte_unmap_unlock(pte, ptl);
1864out:
1865 return retval;
1866}
1867
1868#ifdef pte_index
1869static int insert_page_in_batch_locked(struct vm_area_struct *vma, pte_t *pte,
1870 unsigned long addr, struct page *page, pgprot_t prot)
1871{
1872 int err;
1873
1874 if (!page_count(page))
1875 return -EINVAL;
1876 err = validate_page_before_insert(page);
1877 if (err)
1878 return err;
1879 return insert_page_into_pte_locked(vma, pte, addr, page, prot);
1880}
1881
1882/* insert_pages() amortizes the cost of spinlock operations
1883 * when inserting pages in a loop. Arch *must* define pte_index.
1884 */
1885static int insert_pages(struct vm_area_struct *vma, unsigned long addr,
1886 struct page **pages, unsigned long *num, pgprot_t prot)
1887{
1888 pmd_t *pmd = NULL;
1889 pte_t *start_pte, *pte;
1890 spinlock_t *pte_lock;
1891 struct mm_struct *const mm = vma->vm_mm;
1892 unsigned long curr_page_idx = 0;
1893 unsigned long remaining_pages_total = *num;
1894 unsigned long pages_to_write_in_pmd;
1895 int ret;
1896more:
1897 ret = -EFAULT;
1898 pmd = walk_to_pmd(mm, addr);
1899 if (!pmd)
1900 goto out;
1901
1902 pages_to_write_in_pmd = min_t(unsigned long,
1903 remaining_pages_total, PTRS_PER_PTE - pte_index(addr));
1904
1905 /* Allocate the PTE if necessary; takes PMD lock once only. */
1906 ret = -ENOMEM;
1907 if (pte_alloc(mm, pmd))
1908 goto out;
1909
1910 while (pages_to_write_in_pmd) {
1911 int pte_idx = 0;
1912 const int batch_size = min_t(int, pages_to_write_in_pmd, 8);
1913
1914 start_pte = pte_offset_map_lock(mm, pmd, addr, &pte_lock);
1915 if (!start_pte) {
1916 ret = -EFAULT;
1917 goto out;
1918 }
1919 for (pte = start_pte; pte_idx < batch_size; ++pte, ++pte_idx) {
1920 int err = insert_page_in_batch_locked(vma, pte,
1921 addr, pages[curr_page_idx], prot);
1922 if (unlikely(err)) {
1923 pte_unmap_unlock(start_pte, pte_lock);
1924 ret = err;
1925 remaining_pages_total -= pte_idx;
1926 goto out;
1927 }
1928 addr += PAGE_SIZE;
1929 ++curr_page_idx;
1930 }
1931 pte_unmap_unlock(start_pte, pte_lock);
1932 pages_to_write_in_pmd -= batch_size;
1933 remaining_pages_total -= batch_size;
1934 }
1935 if (remaining_pages_total)
1936 goto more;
1937 ret = 0;
1938out:
1939 *num = remaining_pages_total;
1940 return ret;
1941}
1942#endif /* ifdef pte_index */
1943
1944/**
1945 * vm_insert_pages - insert multiple pages into user vma, batching the pmd lock.
1946 * @vma: user vma to map to
1947 * @addr: target start user address of these pages
1948 * @pages: source kernel pages
1949 * @num: in: number of pages to map. out: number of pages that were *not*
1950 * mapped. (0 means all pages were successfully mapped).
1951 *
1952 * Preferred over vm_insert_page() when inserting multiple pages.
1953 *
1954 * In case of error, we may have mapped a subset of the provided
1955 * pages. It is the caller's responsibility to account for this case.
1956 *
1957 * The same restrictions apply as in vm_insert_page().
1958 */
1959int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
1960 struct page **pages, unsigned long *num)
1961{
1962#ifdef pte_index
1963 const unsigned long end_addr = addr + (*num * PAGE_SIZE) - 1;
1964
1965 if (addr < vma->vm_start || end_addr >= vma->vm_end)
1966 return -EFAULT;
1967 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1968 BUG_ON(mmap_read_trylock(vma->vm_mm));
1969 BUG_ON(vma->vm_flags & VM_PFNMAP);
1970 vm_flags_set(vma, VM_MIXEDMAP);
1971 }
1972 /* Defer page refcount checking till we're about to map that page. */
1973 return insert_pages(vma, addr, pages, num, vma->vm_page_prot);
1974#else
1975 unsigned long idx = 0, pgcount = *num;
1976 int err = -EINVAL;
1977
1978 for (; idx < pgcount; ++idx) {
1979 err = vm_insert_page(vma, addr + (PAGE_SIZE * idx), pages[idx]);
1980 if (err)
1981 break;
1982 }
1983 *num = pgcount - idx;
1984 return err;
1985#endif /* ifdef pte_index */
1986}
1987EXPORT_SYMBOL(vm_insert_pages);
1988
1989/**
1990 * vm_insert_page - insert single page into user vma
1991 * @vma: user vma to map to
1992 * @addr: target user address of this page
1993 * @page: source kernel page
1994 *
1995 * This allows drivers to insert individual pages they've allocated
1996 * into a user vma.
1997 *
1998 * The page has to be a nice clean _individual_ kernel allocation.
1999 * If you allocate a compound page, you need to have marked it as
2000 * such (__GFP_COMP), or manually just split the page up yourself
2001 * (see split_page()).
2002 *
2003 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2004 * took an arbitrary page protection parameter. This doesn't allow
2005 * that. Your vma protection will have to be set up correctly, which
2006 * means that if you want a shared writable mapping, you'd better
2007 * ask for a shared writable mapping!
2008 *
2009 * The page does not need to be reserved.
2010 *
2011 * Usually this function is called from f_op->mmap() handler
2012 * under mm->mmap_lock write-lock, so it can change vma->vm_flags.
2013 * Caller must set VM_MIXEDMAP on vma if it wants to call this
2014 * function from other places, for example from page-fault handler.
2015 *
2016 * Return: %0 on success, negative error code otherwise.
2017 */
2018int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
2019 struct page *page)
2020{
2021 if (addr < vma->vm_start || addr >= vma->vm_end)
2022 return -EFAULT;
2023 if (!page_count(page))
2024 return -EINVAL;
2025 if (!(vma->vm_flags & VM_MIXEDMAP)) {
2026 BUG_ON(mmap_read_trylock(vma->vm_mm));
2027 BUG_ON(vma->vm_flags & VM_PFNMAP);
2028 vm_flags_set(vma, VM_MIXEDMAP);
2029 }
2030 return insert_page(vma, addr, page, vma->vm_page_prot);
2031}
2032EXPORT_SYMBOL(vm_insert_page);
2033
2034/*
2035 * __vm_map_pages - maps range of kernel pages into user vma
2036 * @vma: user vma to map to
2037 * @pages: pointer to array of source kernel pages
2038 * @num: number of pages in page array
2039 * @offset: user's requested vm_pgoff
2040 *
2041 * This allows drivers to map range of kernel pages into a user vma.
2042 *
2043 * Return: 0 on success and error code otherwise.
2044 */
2045static int __vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2046 unsigned long num, unsigned long offset)
2047{
2048 unsigned long count = vma_pages(vma);
2049 unsigned long uaddr = vma->vm_start;
2050 int ret, i;
2051
2052 /* Fail if the user requested offset is beyond the end of the object */
2053 if (offset >= num)
2054 return -ENXIO;
2055
2056 /* Fail if the user requested size exceeds available object size */
2057 if (count > num - offset)
2058 return -ENXIO;
2059
2060 for (i = 0; i < count; i++) {
2061 ret = vm_insert_page(vma, uaddr, pages[offset + i]);
2062 if (ret < 0)
2063 return ret;
2064 uaddr += PAGE_SIZE;
2065 }
2066
2067 return 0;
2068}
2069
2070/**
2071 * vm_map_pages - maps range of kernel pages starts with non zero offset
2072 * @vma: user vma to map to
2073 * @pages: pointer to array of source kernel pages
2074 * @num: number of pages in page array
2075 *
2076 * Maps an object consisting of @num pages, catering for the user's
2077 * requested vm_pgoff
2078 *
2079 * If we fail to insert any page into the vma, the function will return
2080 * immediately leaving any previously inserted pages present. Callers
2081 * from the mmap handler may immediately return the error as their caller
2082 * will destroy the vma, removing any successfully inserted pages. Other
2083 * callers should make their own arrangements for calling unmap_region().
2084 *
2085 * Context: Process context. Called by mmap handlers.
2086 * Return: 0 on success and error code otherwise.
2087 */
2088int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
2089 unsigned long num)
2090{
2091 return __vm_map_pages(vma, pages, num, vma->vm_pgoff);
2092}
2093EXPORT_SYMBOL(vm_map_pages);
2094
2095/**
2096 * vm_map_pages_zero - map range of kernel pages starts with zero offset
2097 * @vma: user vma to map to
2098 * @pages: pointer to array of source kernel pages
2099 * @num: number of pages in page array
2100 *
2101 * Similar to vm_map_pages(), except that it explicitly sets the offset
2102 * to 0. This function is intended for the drivers that did not consider
2103 * vm_pgoff.
2104 *
2105 * Context: Process context. Called by mmap handlers.
2106 * Return: 0 on success and error code otherwise.
2107 */
2108int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
2109 unsigned long num)
2110{
2111 return __vm_map_pages(vma, pages, num, 0);
2112}
2113EXPORT_SYMBOL(vm_map_pages_zero);
2114
2115static vm_fault_t insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2116 pfn_t pfn, pgprot_t prot, bool mkwrite)
2117{
2118 struct mm_struct *mm = vma->vm_mm;
2119 pte_t *pte, entry;
2120 spinlock_t *ptl;
2121
2122 pte = get_locked_pte(mm, addr, &ptl);
2123 if (!pte)
2124 return VM_FAULT_OOM;
2125 entry = ptep_get(pte);
2126 if (!pte_none(entry)) {
2127 if (mkwrite) {
2128 /*
2129 * For read faults on private mappings the PFN passed
2130 * in may not match the PFN we have mapped if the
2131 * mapped PFN is a writeable COW page. In the mkwrite
2132 * case we are creating a writable PTE for a shared
2133 * mapping and we expect the PFNs to match. If they
2134 * don't match, we are likely racing with block
2135 * allocation and mapping invalidation so just skip the
2136 * update.
2137 */
2138 if (pte_pfn(entry) != pfn_t_to_pfn(pfn)) {
2139 WARN_ON_ONCE(!is_zero_pfn(pte_pfn(entry)));
2140 goto out_unlock;
2141 }
2142 entry = pte_mkyoung(entry);
2143 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2144 if (ptep_set_access_flags(vma, addr, pte, entry, 1))
2145 update_mmu_cache(vma, addr, pte);
2146 }
2147 goto out_unlock;
2148 }
2149
2150 /* Ok, finally just insert the thing.. */
2151 if (pfn_t_devmap(pfn))
2152 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
2153 else
2154 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
2155
2156 if (mkwrite) {
2157 entry = pte_mkyoung(entry);
2158 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2159 }
2160
2161 set_pte_at(mm, addr, pte, entry);
2162 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
2163
2164out_unlock:
2165 pte_unmap_unlock(pte, ptl);
2166 return VM_FAULT_NOPAGE;
2167}
2168
2169/**
2170 * vmf_insert_pfn_prot - insert single pfn into user vma with specified pgprot
2171 * @vma: user vma to map to
2172 * @addr: target user address of this page
2173 * @pfn: source kernel pfn
2174 * @pgprot: pgprot flags for the inserted page
2175 *
2176 * This is exactly like vmf_insert_pfn(), except that it allows drivers
2177 * to override pgprot on a per-page basis.
2178 *
2179 * This only makes sense for IO mappings, and it makes no sense for
2180 * COW mappings. In general, using multiple vmas is preferable;
2181 * vmf_insert_pfn_prot should only be used if using multiple VMAs is
2182 * impractical.
2183 *
2184 * pgprot typically only differs from @vma->vm_page_prot when drivers set
2185 * caching- and encryption bits different than those of @vma->vm_page_prot,
2186 * because the caching- or encryption mode may not be known at mmap() time.
2187 *
2188 * This is ok as long as @vma->vm_page_prot is not used by the core vm
2189 * to set caching and encryption bits for those vmas (except for COW pages).
2190 * This is ensured by core vm only modifying these page table entries using
2191 * functions that don't touch caching- or encryption bits, using pte_modify()
2192 * if needed. (See for example mprotect()).
2193 *
2194 * Also when new page-table entries are created, this is only done using the
2195 * fault() callback, and never using the value of vma->vm_page_prot,
2196 * except for page-table entries that point to anonymous pages as the result
2197 * of COW.
2198 *
2199 * Context: Process context. May allocate using %GFP_KERNEL.
2200 * Return: vm_fault_t value.
2201 */
2202vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2203 unsigned long pfn, pgprot_t pgprot)
2204{
2205 /*
2206 * Technically, architectures with pte_special can avoid all these
2207 * restrictions (same for remap_pfn_range). However we would like
2208 * consistency in testing and feature parity among all, so we should
2209 * try to keep these invariants in place for everybody.
2210 */
2211 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
2212 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
2213 (VM_PFNMAP|VM_MIXEDMAP));
2214 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
2215 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
2216
2217 if (addr < vma->vm_start || addr >= vma->vm_end)
2218 return VM_FAULT_SIGBUS;
2219
2220 if (!pfn_modify_allowed(pfn, pgprot))
2221 return VM_FAULT_SIGBUS;
2222
2223 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2224
2225 return insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
2226 false);
2227}
2228EXPORT_SYMBOL(vmf_insert_pfn_prot);
2229
2230/**
2231 * vmf_insert_pfn - insert single pfn into user vma
2232 * @vma: user vma to map to
2233 * @addr: target user address of this page
2234 * @pfn: source kernel pfn
2235 *
2236 * Similar to vm_insert_page, this allows drivers to insert individual pages
2237 * they've allocated into a user vma. Same comments apply.
2238 *
2239 * This function should only be called from a vm_ops->fault handler, and
2240 * in that case the handler should return the result of this function.
2241 *
2242 * vma cannot be a COW mapping.
2243 *
2244 * As this is called only for pages that do not currently exist, we
2245 * do not need to flush old virtual caches or the TLB.
2246 *
2247 * Context: Process context. May allocate using %GFP_KERNEL.
2248 * Return: vm_fault_t value.
2249 */
2250vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2251 unsigned long pfn)
2252{
2253 return vmf_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
2254}
2255EXPORT_SYMBOL(vmf_insert_pfn);
2256
2257static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
2258{
2259 /* these checks mirror the abort conditions in vm_normal_page */
2260 if (vma->vm_flags & VM_MIXEDMAP)
2261 return true;
2262 if (pfn_t_devmap(pfn))
2263 return true;
2264 if (pfn_t_special(pfn))
2265 return true;
2266 if (is_zero_pfn(pfn_t_to_pfn(pfn)))
2267 return true;
2268 return false;
2269}
2270
2271static vm_fault_t __vm_insert_mixed(struct vm_area_struct *vma,
2272 unsigned long addr, pfn_t pfn, bool mkwrite)
2273{
2274 pgprot_t pgprot = vma->vm_page_prot;
2275 int err;
2276
2277 BUG_ON(!vm_mixed_ok(vma, pfn));
2278
2279 if (addr < vma->vm_start || addr >= vma->vm_end)
2280 return VM_FAULT_SIGBUS;
2281
2282 track_pfn_insert(vma, &pgprot, pfn);
2283
2284 if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
2285 return VM_FAULT_SIGBUS;
2286
2287 /*
2288 * If we don't have pte special, then we have to use the pfn_valid()
2289 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2290 * refcount the page if pfn_valid is true (hence insert_page rather
2291 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2292 * without pte special, it would there be refcounted as a normal page.
2293 */
2294 if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
2295 !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
2296 struct page *page;
2297
2298 /*
2299 * At this point we are committed to insert_page()
2300 * regardless of whether the caller specified flags that
2301 * result in pfn_t_has_page() == false.
2302 */
2303 page = pfn_to_page(pfn_t_to_pfn(pfn));
2304 err = insert_page(vma, addr, page, pgprot);
2305 } else {
2306 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
2307 }
2308
2309 if (err == -ENOMEM)
2310 return VM_FAULT_OOM;
2311 if (err < 0 && err != -EBUSY)
2312 return VM_FAULT_SIGBUS;
2313
2314 return VM_FAULT_NOPAGE;
2315}
2316
2317vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
2318 pfn_t pfn)
2319{
2320 return __vm_insert_mixed(vma, addr, pfn, false);
2321}
2322EXPORT_SYMBOL(vmf_insert_mixed);
2323
2324/*
2325 * If the insertion of PTE failed because someone else already added a
2326 * different entry in the mean time, we treat that as success as we assume
2327 * the same entry was actually inserted.
2328 */
2329vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
2330 unsigned long addr, pfn_t pfn)
2331{
2332 return __vm_insert_mixed(vma, addr, pfn, true);
2333}
2334EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
2335
2336/*
2337 * maps a range of physical memory into the requested pages. the old
2338 * mappings are removed. any references to nonexistent pages results
2339 * in null mappings (currently treated as "copy-on-access")
2340 */
2341static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
2342 unsigned long addr, unsigned long end,
2343 unsigned long pfn, pgprot_t prot)
2344{
2345 pte_t *pte, *mapped_pte;
2346 spinlock_t *ptl;
2347 int err = 0;
2348
2349 mapped_pte = pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
2350 if (!pte)
2351 return -ENOMEM;
2352 arch_enter_lazy_mmu_mode();
2353 do {
2354 BUG_ON(!pte_none(ptep_get(pte)));
2355 if (!pfn_modify_allowed(pfn, prot)) {
2356 err = -EACCES;
2357 break;
2358 }
2359 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
2360 pfn++;
2361 } while (pte++, addr += PAGE_SIZE, addr != end);
2362 arch_leave_lazy_mmu_mode();
2363 pte_unmap_unlock(mapped_pte, ptl);
2364 return err;
2365}
2366
2367static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2368 unsigned long addr, unsigned long end,
2369 unsigned long pfn, pgprot_t prot)
2370{
2371 pmd_t *pmd;
2372 unsigned long next;
2373 int err;
2374
2375 pfn -= addr >> PAGE_SHIFT;
2376 pmd = pmd_alloc(mm, pud, addr);
2377 if (!pmd)
2378 return -ENOMEM;
2379 VM_BUG_ON(pmd_trans_huge(*pmd));
2380 do {
2381 next = pmd_addr_end(addr, end);
2382 err = remap_pte_range(mm, pmd, addr, next,
2383 pfn + (addr >> PAGE_SHIFT), prot);
2384 if (err)
2385 return err;
2386 } while (pmd++, addr = next, addr != end);
2387 return 0;
2388}
2389
2390static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2391 unsigned long addr, unsigned long end,
2392 unsigned long pfn, pgprot_t prot)
2393{
2394 pud_t *pud;
2395 unsigned long next;
2396 int err;
2397
2398 pfn -= addr >> PAGE_SHIFT;
2399 pud = pud_alloc(mm, p4d, addr);
2400 if (!pud)
2401 return -ENOMEM;
2402 do {
2403 next = pud_addr_end(addr, end);
2404 err = remap_pmd_range(mm, pud, addr, next,
2405 pfn + (addr >> PAGE_SHIFT), prot);
2406 if (err)
2407 return err;
2408 } while (pud++, addr = next, addr != end);
2409 return 0;
2410}
2411
2412static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2413 unsigned long addr, unsigned long end,
2414 unsigned long pfn, pgprot_t prot)
2415{
2416 p4d_t *p4d;
2417 unsigned long next;
2418 int err;
2419
2420 pfn -= addr >> PAGE_SHIFT;
2421 p4d = p4d_alloc(mm, pgd, addr);
2422 if (!p4d)
2423 return -ENOMEM;
2424 do {
2425 next = p4d_addr_end(addr, end);
2426 err = remap_pud_range(mm, p4d, addr, next,
2427 pfn + (addr >> PAGE_SHIFT), prot);
2428 if (err)
2429 return err;
2430 } while (p4d++, addr = next, addr != end);
2431 return 0;
2432}
2433
2434/*
2435 * Variant of remap_pfn_range that does not call track_pfn_remap. The caller
2436 * must have pre-validated the caching bits of the pgprot_t.
2437 */
2438int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
2439 unsigned long pfn, unsigned long size, pgprot_t prot)
2440{
2441 pgd_t *pgd;
2442 unsigned long next;
2443 unsigned long end = addr + PAGE_ALIGN(size);
2444 struct mm_struct *mm = vma->vm_mm;
2445 int err;
2446
2447 if (WARN_ON_ONCE(!PAGE_ALIGNED(addr)))
2448 return -EINVAL;
2449
2450 /*
2451 * Physically remapped pages are special. Tell the
2452 * rest of the world about it:
2453 * VM_IO tells people not to look at these pages
2454 * (accesses can have side effects).
2455 * VM_PFNMAP tells the core MM that the base pages are just
2456 * raw PFN mappings, and do not have a "struct page" associated
2457 * with them.
2458 * VM_DONTEXPAND
2459 * Disable vma merging and expanding with mremap().
2460 * VM_DONTDUMP
2461 * Omit vma from core dump, even when VM_IO turned off.
2462 *
2463 * There's a horrible special case to handle copy-on-write
2464 * behaviour that some programs depend on. We mark the "original"
2465 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2466 * See vm_normal_page() for details.
2467 */
2468 if (is_cow_mapping(vma->vm_flags)) {
2469 if (addr != vma->vm_start || end != vma->vm_end)
2470 return -EINVAL;
2471 vma->vm_pgoff = pfn;
2472 }
2473
2474 vm_flags_set(vma, VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP);
2475
2476 BUG_ON(addr >= end);
2477 pfn -= addr >> PAGE_SHIFT;
2478 pgd = pgd_offset(mm, addr);
2479 flush_cache_range(vma, addr, end);
2480 do {
2481 next = pgd_addr_end(addr, end);
2482 err = remap_p4d_range(mm, pgd, addr, next,
2483 pfn + (addr >> PAGE_SHIFT), prot);
2484 if (err)
2485 return err;
2486 } while (pgd++, addr = next, addr != end);
2487
2488 return 0;
2489}
2490
2491/**
2492 * remap_pfn_range - remap kernel memory to userspace
2493 * @vma: user vma to map to
2494 * @addr: target page aligned user address to start at
2495 * @pfn: page frame number of kernel physical memory address
2496 * @size: size of mapping area
2497 * @prot: page protection flags for this mapping
2498 *
2499 * Note: this is only safe if the mm semaphore is held when called.
2500 *
2501 * Return: %0 on success, negative error code otherwise.
2502 */
2503int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2504 unsigned long pfn, unsigned long size, pgprot_t prot)
2505{
2506 int err;
2507
2508 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
2509 if (err)
2510 return -EINVAL;
2511
2512 err = remap_pfn_range_notrack(vma, addr, pfn, size, prot);
2513 if (err)
2514 untrack_pfn(vma, pfn, PAGE_ALIGN(size), true);
2515 return err;
2516}
2517EXPORT_SYMBOL(remap_pfn_range);
2518
2519/**
2520 * vm_iomap_memory - remap memory to userspace
2521 * @vma: user vma to map to
2522 * @start: start of the physical memory to be mapped
2523 * @len: size of area
2524 *
2525 * This is a simplified io_remap_pfn_range() for common driver use. The
2526 * driver just needs to give us the physical memory range to be mapped,
2527 * we'll figure out the rest from the vma information.
2528 *
2529 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2530 * whatever write-combining details or similar.
2531 *
2532 * Return: %0 on success, negative error code otherwise.
2533 */
2534int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2535{
2536 unsigned long vm_len, pfn, pages;
2537
2538 /* Check that the physical memory area passed in looks valid */
2539 if (start + len < start)
2540 return -EINVAL;
2541 /*
2542 * You *really* shouldn't map things that aren't page-aligned,
2543 * but we've historically allowed it because IO memory might
2544 * just have smaller alignment.
2545 */
2546 len += start & ~PAGE_MASK;
2547 pfn = start >> PAGE_SHIFT;
2548 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2549 if (pfn + pages < pfn)
2550 return -EINVAL;
2551
2552 /* We start the mapping 'vm_pgoff' pages into the area */
2553 if (vma->vm_pgoff > pages)
2554 return -EINVAL;
2555 pfn += vma->vm_pgoff;
2556 pages -= vma->vm_pgoff;
2557
2558 /* Can we fit all of the mapping? */
2559 vm_len = vma->vm_end - vma->vm_start;
2560 if (vm_len >> PAGE_SHIFT > pages)
2561 return -EINVAL;
2562
2563 /* Ok, let it rip */
2564 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2565}
2566EXPORT_SYMBOL(vm_iomap_memory);
2567
2568static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2569 unsigned long addr, unsigned long end,
2570 pte_fn_t fn, void *data, bool create,
2571 pgtbl_mod_mask *mask)
2572{
2573 pte_t *pte, *mapped_pte;
2574 int err = 0;
2575 spinlock_t *ptl;
2576
2577 if (create) {
2578 mapped_pte = pte = (mm == &init_mm) ?
2579 pte_alloc_kernel_track(pmd, addr, mask) :
2580 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2581 if (!pte)
2582 return -ENOMEM;
2583 } else {
2584 mapped_pte = pte = (mm == &init_mm) ?
2585 pte_offset_kernel(pmd, addr) :
2586 pte_offset_map_lock(mm, pmd, addr, &ptl);
2587 if (!pte)
2588 return -EINVAL;
2589 }
2590
2591 arch_enter_lazy_mmu_mode();
2592
2593 if (fn) {
2594 do {
2595 if (create || !pte_none(ptep_get(pte))) {
2596 err = fn(pte++, addr, data);
2597 if (err)
2598 break;
2599 }
2600 } while (addr += PAGE_SIZE, addr != end);
2601 }
2602 *mask |= PGTBL_PTE_MODIFIED;
2603
2604 arch_leave_lazy_mmu_mode();
2605
2606 if (mm != &init_mm)
2607 pte_unmap_unlock(mapped_pte, ptl);
2608 return err;
2609}
2610
2611static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2612 unsigned long addr, unsigned long end,
2613 pte_fn_t fn, void *data, bool create,
2614 pgtbl_mod_mask *mask)
2615{
2616 pmd_t *pmd;
2617 unsigned long next;
2618 int err = 0;
2619
2620 BUG_ON(pud_huge(*pud));
2621
2622 if (create) {
2623 pmd = pmd_alloc_track(mm, pud, addr, mask);
2624 if (!pmd)
2625 return -ENOMEM;
2626 } else {
2627 pmd = pmd_offset(pud, addr);
2628 }
2629 do {
2630 next = pmd_addr_end(addr, end);
2631 if (pmd_none(*pmd) && !create)
2632 continue;
2633 if (WARN_ON_ONCE(pmd_leaf(*pmd)))
2634 return -EINVAL;
2635 if (!pmd_none(*pmd) && WARN_ON_ONCE(pmd_bad(*pmd))) {
2636 if (!create)
2637 continue;
2638 pmd_clear_bad(pmd);
2639 }
2640 err = apply_to_pte_range(mm, pmd, addr, next,
2641 fn, data, create, mask);
2642 if (err)
2643 break;
2644 } while (pmd++, addr = next, addr != end);
2645
2646 return err;
2647}
2648
2649static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2650 unsigned long addr, unsigned long end,
2651 pte_fn_t fn, void *data, bool create,
2652 pgtbl_mod_mask *mask)
2653{
2654 pud_t *pud;
2655 unsigned long next;
2656 int err = 0;
2657
2658 if (create) {
2659 pud = pud_alloc_track(mm, p4d, addr, mask);
2660 if (!pud)
2661 return -ENOMEM;
2662 } else {
2663 pud = pud_offset(p4d, addr);
2664 }
2665 do {
2666 next = pud_addr_end(addr, end);
2667 if (pud_none(*pud) && !create)
2668 continue;
2669 if (WARN_ON_ONCE(pud_leaf(*pud)))
2670 return -EINVAL;
2671 if (!pud_none(*pud) && WARN_ON_ONCE(pud_bad(*pud))) {
2672 if (!create)
2673 continue;
2674 pud_clear_bad(pud);
2675 }
2676 err = apply_to_pmd_range(mm, pud, addr, next,
2677 fn, data, create, mask);
2678 if (err)
2679 break;
2680 } while (pud++, addr = next, addr != end);
2681
2682 return err;
2683}
2684
2685static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2686 unsigned long addr, unsigned long end,
2687 pte_fn_t fn, void *data, bool create,
2688 pgtbl_mod_mask *mask)
2689{
2690 p4d_t *p4d;
2691 unsigned long next;
2692 int err = 0;
2693
2694 if (create) {
2695 p4d = p4d_alloc_track(mm, pgd, addr, mask);
2696 if (!p4d)
2697 return -ENOMEM;
2698 } else {
2699 p4d = p4d_offset(pgd, addr);
2700 }
2701 do {
2702 next = p4d_addr_end(addr, end);
2703 if (p4d_none(*p4d) && !create)
2704 continue;
2705 if (WARN_ON_ONCE(p4d_leaf(*p4d)))
2706 return -EINVAL;
2707 if (!p4d_none(*p4d) && WARN_ON_ONCE(p4d_bad(*p4d))) {
2708 if (!create)
2709 continue;
2710 p4d_clear_bad(p4d);
2711 }
2712 err = apply_to_pud_range(mm, p4d, addr, next,
2713 fn, data, create, mask);
2714 if (err)
2715 break;
2716 } while (p4d++, addr = next, addr != end);
2717
2718 return err;
2719}
2720
2721static int __apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2722 unsigned long size, pte_fn_t fn,
2723 void *data, bool create)
2724{
2725 pgd_t *pgd;
2726 unsigned long start = addr, next;
2727 unsigned long end = addr + size;
2728 pgtbl_mod_mask mask = 0;
2729 int err = 0;
2730
2731 if (WARN_ON(addr >= end))
2732 return -EINVAL;
2733
2734 pgd = pgd_offset(mm, addr);
2735 do {
2736 next = pgd_addr_end(addr, end);
2737 if (pgd_none(*pgd) && !create)
2738 continue;
2739 if (WARN_ON_ONCE(pgd_leaf(*pgd)))
2740 return -EINVAL;
2741 if (!pgd_none(*pgd) && WARN_ON_ONCE(pgd_bad(*pgd))) {
2742 if (!create)
2743 continue;
2744 pgd_clear_bad(pgd);
2745 }
2746 err = apply_to_p4d_range(mm, pgd, addr, next,
2747 fn, data, create, &mask);
2748 if (err)
2749 break;
2750 } while (pgd++, addr = next, addr != end);
2751
2752 if (mask & ARCH_PAGE_TABLE_SYNC_MASK)
2753 arch_sync_kernel_mappings(start, start + size);
2754
2755 return err;
2756}
2757
2758/*
2759 * Scan a region of virtual memory, filling in page tables as necessary
2760 * and calling a provided function on each leaf page table.
2761 */
2762int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2763 unsigned long size, pte_fn_t fn, void *data)
2764{
2765 return __apply_to_page_range(mm, addr, size, fn, data, true);
2766}
2767EXPORT_SYMBOL_GPL(apply_to_page_range);
2768
2769/*
2770 * Scan a region of virtual memory, calling a provided function on
2771 * each leaf page table where it exists.
2772 *
2773 * Unlike apply_to_page_range, this does _not_ fill in page tables
2774 * where they are absent.
2775 */
2776int apply_to_existing_page_range(struct mm_struct *mm, unsigned long addr,
2777 unsigned long size, pte_fn_t fn, void *data)
2778{
2779 return __apply_to_page_range(mm, addr, size, fn, data, false);
2780}
2781EXPORT_SYMBOL_GPL(apply_to_existing_page_range);
2782
2783/*
2784 * handle_pte_fault chooses page fault handler according to an entry which was
2785 * read non-atomically. Before making any commitment, on those architectures
2786 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2787 * parts, do_swap_page must check under lock before unmapping the pte and
2788 * proceeding (but do_wp_page is only called after already making such a check;
2789 * and do_anonymous_page can safely check later on).
2790 */
2791static inline int pte_unmap_same(struct vm_fault *vmf)
2792{
2793 int same = 1;
2794#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPTION)
2795 if (sizeof(pte_t) > sizeof(unsigned long)) {
2796 spin_lock(vmf->ptl);
2797 same = pte_same(ptep_get(vmf->pte), vmf->orig_pte);
2798 spin_unlock(vmf->ptl);
2799 }
2800#endif
2801 pte_unmap(vmf->pte);
2802 vmf->pte = NULL;
2803 return same;
2804}
2805
2806/*
2807 * Return:
2808 * 0: copied succeeded
2809 * -EHWPOISON: copy failed due to hwpoison in source page
2810 * -EAGAIN: copied failed (some other reason)
2811 */
2812static inline int __wp_page_copy_user(struct page *dst, struct page *src,
2813 struct vm_fault *vmf)
2814{
2815 int ret;
2816 void *kaddr;
2817 void __user *uaddr;
2818 struct vm_area_struct *vma = vmf->vma;
2819 struct mm_struct *mm = vma->vm_mm;
2820 unsigned long addr = vmf->address;
2821
2822 if (likely(src)) {
2823 if (copy_mc_user_highpage(dst, src, addr, vma)) {
2824 memory_failure_queue(page_to_pfn(src), 0);
2825 return -EHWPOISON;
2826 }
2827 return 0;
2828 }
2829
2830 /*
2831 * If the source page was a PFN mapping, we don't have
2832 * a "struct page" for it. We do a best-effort copy by
2833 * just copying from the original user address. If that
2834 * fails, we just zero-fill it. Live with it.
2835 */
2836 kaddr = kmap_atomic(dst);
2837 uaddr = (void __user *)(addr & PAGE_MASK);
2838
2839 /*
2840 * On architectures with software "accessed" bits, we would
2841 * take a double page fault, so mark it accessed here.
2842 */
2843 vmf->pte = NULL;
2844 if (!arch_has_hw_pte_young() && !pte_young(vmf->orig_pte)) {
2845 pte_t entry;
2846
2847 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2848 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
2849 /*
2850 * Other thread has already handled the fault
2851 * and update local tlb only
2852 */
2853 if (vmf->pte)
2854 update_mmu_tlb(vma, addr, vmf->pte);
2855 ret = -EAGAIN;
2856 goto pte_unlock;
2857 }
2858
2859 entry = pte_mkyoung(vmf->orig_pte);
2860 if (ptep_set_access_flags(vma, addr, vmf->pte, entry, 0))
2861 update_mmu_cache(vma, addr, vmf->pte);
2862 }
2863
2864 /*
2865 * This really shouldn't fail, because the page is there
2866 * in the page tables. But it might just be unreadable,
2867 * in which case we just give up and fill the result with
2868 * zeroes.
2869 */
2870 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2871 if (vmf->pte)
2872 goto warn;
2873
2874 /* Re-validate under PTL if the page is still mapped */
2875 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, addr, &vmf->ptl);
2876 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
2877 /* The PTE changed under us, update local tlb */
2878 if (vmf->pte)
2879 update_mmu_tlb(vma, addr, vmf->pte);
2880 ret = -EAGAIN;
2881 goto pte_unlock;
2882 }
2883
2884 /*
2885 * The same page can be mapped back since last copy attempt.
2886 * Try to copy again under PTL.
2887 */
2888 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE)) {
2889 /*
2890 * Give a warn in case there can be some obscure
2891 * use-case
2892 */
2893warn:
2894 WARN_ON_ONCE(1);
2895 clear_page(kaddr);
2896 }
2897 }
2898
2899 ret = 0;
2900
2901pte_unlock:
2902 if (vmf->pte)
2903 pte_unmap_unlock(vmf->pte, vmf->ptl);
2904 kunmap_atomic(kaddr);
2905 flush_dcache_page(dst);
2906
2907 return ret;
2908}
2909
2910static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2911{
2912 struct file *vm_file = vma->vm_file;
2913
2914 if (vm_file)
2915 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2916
2917 /*
2918 * Special mappings (e.g. VDSO) do not have any file so fake
2919 * a default GFP_KERNEL for them.
2920 */
2921 return GFP_KERNEL;
2922}
2923
2924/*
2925 * Notify the address space that the page is about to become writable so that
2926 * it can prohibit this or wait for the page to get into an appropriate state.
2927 *
2928 * We do this without the lock held, so that it can sleep if it needs to.
2929 */
2930static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2931{
2932 vm_fault_t ret;
2933 struct page *page = vmf->page;
2934 unsigned int old_flags = vmf->flags;
2935
2936 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2937
2938 if (vmf->vma->vm_file &&
2939 IS_SWAPFILE(vmf->vma->vm_file->f_mapping->host))
2940 return VM_FAULT_SIGBUS;
2941
2942 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2943 /* Restore original flags so that caller is not surprised */
2944 vmf->flags = old_flags;
2945 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2946 return ret;
2947 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2948 lock_page(page);
2949 if (!page->mapping) {
2950 unlock_page(page);
2951 return 0; /* retry */
2952 }
2953 ret |= VM_FAULT_LOCKED;
2954 } else
2955 VM_BUG_ON_PAGE(!PageLocked(page), page);
2956 return ret;
2957}
2958
2959/*
2960 * Handle dirtying of a page in shared file mapping on a write fault.
2961 *
2962 * The function expects the page to be locked and unlocks it.
2963 */
2964static vm_fault_t fault_dirty_shared_page(struct vm_fault *vmf)
2965{
2966 struct vm_area_struct *vma = vmf->vma;
2967 struct address_space *mapping;
2968 struct page *page = vmf->page;
2969 bool dirtied;
2970 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2971
2972 dirtied = set_page_dirty(page);
2973 VM_BUG_ON_PAGE(PageAnon(page), page);
2974 /*
2975 * Take a local copy of the address_space - page.mapping may be zeroed
2976 * by truncate after unlock_page(). The address_space itself remains
2977 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2978 * release semantics to prevent the compiler from undoing this copying.
2979 */
2980 mapping = page_rmapping(page);
2981 unlock_page(page);
2982
2983 if (!page_mkwrite)
2984 file_update_time(vma->vm_file);
2985
2986 /*
2987 * Throttle page dirtying rate down to writeback speed.
2988 *
2989 * mapping may be NULL here because some device drivers do not
2990 * set page.mapping but still dirty their pages
2991 *
2992 * Drop the mmap_lock before waiting on IO, if we can. The file
2993 * is pinning the mapping, as per above.
2994 */
2995 if ((dirtied || page_mkwrite) && mapping) {
2996 struct file *fpin;
2997
2998 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2999 balance_dirty_pages_ratelimited(mapping);
3000 if (fpin) {
3001 fput(fpin);
3002 return VM_FAULT_COMPLETED;
3003 }
3004 }
3005
3006 return 0;
3007}
3008
3009/*
3010 * Handle write page faults for pages that can be reused in the current vma
3011 *
3012 * This can happen either due to the mapping being with the VM_SHARED flag,
3013 * or due to us being the last reference standing to the page. In either
3014 * case, all we need to do here is to mark the page as writable and update
3015 * any related book-keeping.
3016 */
3017static inline void wp_page_reuse(struct vm_fault *vmf)
3018 __releases(vmf->ptl)
3019{
3020 struct vm_area_struct *vma = vmf->vma;
3021 struct page *page = vmf->page;
3022 pte_t entry;
3023
3024 VM_BUG_ON(!(vmf->flags & FAULT_FLAG_WRITE));
3025 VM_BUG_ON(page && PageAnon(page) && !PageAnonExclusive(page));
3026
3027 /*
3028 * Clear the pages cpupid information as the existing
3029 * information potentially belongs to a now completely
3030 * unrelated process.
3031 */
3032 if (page)
3033 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
3034
3035 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3036 entry = pte_mkyoung(vmf->orig_pte);
3037 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3038 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
3039 update_mmu_cache(vma, vmf->address, vmf->pte);
3040 pte_unmap_unlock(vmf->pte, vmf->ptl);
3041 count_vm_event(PGREUSE);
3042}
3043
3044/*
3045 * Handle the case of a page which we actually need to copy to a new page,
3046 * either due to COW or unsharing.
3047 *
3048 * Called with mmap_lock locked and the old page referenced, but
3049 * without the ptl held.
3050 *
3051 * High level logic flow:
3052 *
3053 * - Allocate a page, copy the content of the old page to the new one.
3054 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
3055 * - Take the PTL. If the pte changed, bail out and release the allocated page
3056 * - If the pte is still the way we remember it, update the page table and all
3057 * relevant references. This includes dropping the reference the page-table
3058 * held to the old page, as well as updating the rmap.
3059 * - In any case, unlock the PTL and drop the reference we took to the old page.
3060 */
3061static vm_fault_t wp_page_copy(struct vm_fault *vmf)
3062{
3063 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3064 struct vm_area_struct *vma = vmf->vma;
3065 struct mm_struct *mm = vma->vm_mm;
3066 struct folio *old_folio = NULL;
3067 struct folio *new_folio = NULL;
3068 pte_t entry;
3069 int page_copied = 0;
3070 struct mmu_notifier_range range;
3071 int ret;
3072
3073 delayacct_wpcopy_start();
3074
3075 if (vmf->page)
3076 old_folio = page_folio(vmf->page);
3077 if (unlikely(anon_vma_prepare(vma)))
3078 goto oom;
3079
3080 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
3081 new_folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
3082 if (!new_folio)
3083 goto oom;
3084 } else {
3085 new_folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0, vma,
3086 vmf->address, false);
3087 if (!new_folio)
3088 goto oom;
3089
3090 ret = __wp_page_copy_user(&new_folio->page, vmf->page, vmf);
3091 if (ret) {
3092 /*
3093 * COW failed, if the fault was solved by other,
3094 * it's fine. If not, userspace would re-fault on
3095 * the same address and we will handle the fault
3096 * from the second attempt.
3097 * The -EHWPOISON case will not be retried.
3098 */
3099 folio_put(new_folio);
3100 if (old_folio)
3101 folio_put(old_folio);
3102
3103 delayacct_wpcopy_end();
3104 return ret == -EHWPOISON ? VM_FAULT_HWPOISON : 0;
3105 }
3106 kmsan_copy_page_meta(&new_folio->page, vmf->page);
3107 }
3108
3109 if (mem_cgroup_charge(new_folio, mm, GFP_KERNEL))
3110 goto oom_free_new;
3111 folio_throttle_swaprate(new_folio, GFP_KERNEL);
3112
3113 __folio_mark_uptodate(new_folio);
3114
3115 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
3116 vmf->address & PAGE_MASK,
3117 (vmf->address & PAGE_MASK) + PAGE_SIZE);
3118 mmu_notifier_invalidate_range_start(&range);
3119
3120 /*
3121 * Re-check the pte - we dropped the lock
3122 */
3123 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
3124 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
3125 if (old_folio) {
3126 if (!folio_test_anon(old_folio)) {
3127 dec_mm_counter(mm, mm_counter_file(&old_folio->page));
3128 inc_mm_counter(mm, MM_ANONPAGES);
3129 }
3130 } else {
3131 inc_mm_counter(mm, MM_ANONPAGES);
3132 }
3133 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
3134 entry = mk_pte(&new_folio->page, vma->vm_page_prot);
3135 entry = pte_sw_mkyoung(entry);
3136 if (unlikely(unshare)) {
3137 if (pte_soft_dirty(vmf->orig_pte))
3138 entry = pte_mksoft_dirty(entry);
3139 if (pte_uffd_wp(vmf->orig_pte))
3140 entry = pte_mkuffd_wp(entry);
3141 } else {
3142 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3143 }
3144
3145 /*
3146 * Clear the pte entry and flush it first, before updating the
3147 * pte with the new entry, to keep TLBs on different CPUs in
3148 * sync. This code used to set the new PTE then flush TLBs, but
3149 * that left a window where the new PTE could be loaded into
3150 * some TLBs while the old PTE remains in others.
3151 */
3152 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
3153 folio_add_new_anon_rmap(new_folio, vma, vmf->address);
3154 folio_add_lru_vma(new_folio, vma);
3155 /*
3156 * We call the notify macro here because, when using secondary
3157 * mmu page tables (such as kvm shadow page tables), we want the
3158 * new page to be mapped directly into the secondary page table.
3159 */
3160 BUG_ON(unshare && pte_write(entry));
3161 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
3162 update_mmu_cache(vma, vmf->address, vmf->pte);
3163 if (old_folio) {
3164 /*
3165 * Only after switching the pte to the new page may
3166 * we remove the mapcount here. Otherwise another
3167 * process may come and find the rmap count decremented
3168 * before the pte is switched to the new page, and
3169 * "reuse" the old page writing into it while our pte
3170 * here still points into it and can be read by other
3171 * threads.
3172 *
3173 * The critical issue is to order this
3174 * page_remove_rmap with the ptp_clear_flush above.
3175 * Those stores are ordered by (if nothing else,)
3176 * the barrier present in the atomic_add_negative
3177 * in page_remove_rmap.
3178 *
3179 * Then the TLB flush in ptep_clear_flush ensures that
3180 * no process can access the old page before the
3181 * decremented mapcount is visible. And the old page
3182 * cannot be reused until after the decremented
3183 * mapcount is visible. So transitively, TLBs to
3184 * old page will be flushed before it can be reused.
3185 */
3186 page_remove_rmap(vmf->page, vma, false);
3187 }
3188
3189 /* Free the old page.. */
3190 new_folio = old_folio;
3191 page_copied = 1;
3192 pte_unmap_unlock(vmf->pte, vmf->ptl);
3193 } else if (vmf->pte) {
3194 update_mmu_tlb(vma, vmf->address, vmf->pte);
3195 pte_unmap_unlock(vmf->pte, vmf->ptl);
3196 }
3197
3198 /*
3199 * No need to double call mmu_notifier->invalidate_range() callback as
3200 * the above ptep_clear_flush_notify() did already call it.
3201 */
3202 mmu_notifier_invalidate_range_only_end(&range);
3203
3204 if (new_folio)
3205 folio_put(new_folio);
3206 if (old_folio) {
3207 if (page_copied)
3208 free_swap_cache(&old_folio->page);
3209 folio_put(old_folio);
3210 }
3211
3212 delayacct_wpcopy_end();
3213 return 0;
3214oom_free_new:
3215 folio_put(new_folio);
3216oom:
3217 if (old_folio)
3218 folio_put(old_folio);
3219
3220 delayacct_wpcopy_end();
3221 return VM_FAULT_OOM;
3222}
3223
3224/**
3225 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
3226 * writeable once the page is prepared
3227 *
3228 * @vmf: structure describing the fault
3229 *
3230 * This function handles all that is needed to finish a write page fault in a
3231 * shared mapping due to PTE being read-only once the mapped page is prepared.
3232 * It handles locking of PTE and modifying it.
3233 *
3234 * The function expects the page to be locked or other protection against
3235 * concurrent faults / writeback (such as DAX radix tree locks).
3236 *
3237 * Return: %0 on success, %VM_FAULT_NOPAGE when PTE got changed before
3238 * we acquired PTE lock.
3239 */
3240vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
3241{
3242 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
3243 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
3244 &vmf->ptl);
3245 if (!vmf->pte)
3246 return VM_FAULT_NOPAGE;
3247 /*
3248 * We might have raced with another page fault while we released the
3249 * pte_offset_map_lock.
3250 */
3251 if (!pte_same(ptep_get(vmf->pte), vmf->orig_pte)) {
3252 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
3253 pte_unmap_unlock(vmf->pte, vmf->ptl);
3254 return VM_FAULT_NOPAGE;
3255 }
3256 wp_page_reuse(vmf);
3257 return 0;
3258}
3259
3260/*
3261 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
3262 * mapping
3263 */
3264static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
3265{
3266 struct vm_area_struct *vma = vmf->vma;
3267
3268 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
3269 vm_fault_t ret;
3270
3271 pte_unmap_unlock(vmf->pte, vmf->ptl);
3272 vmf->flags |= FAULT_FLAG_MKWRITE;
3273 ret = vma->vm_ops->pfn_mkwrite(vmf);
3274 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
3275 return ret;
3276 return finish_mkwrite_fault(vmf);
3277 }
3278 wp_page_reuse(vmf);
3279 return 0;
3280}
3281
3282static vm_fault_t wp_page_shared(struct vm_fault *vmf)
3283 __releases(vmf->ptl)
3284{
3285 struct vm_area_struct *vma = vmf->vma;
3286 vm_fault_t ret = 0;
3287
3288 get_page(vmf->page);
3289
3290 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
3291 vm_fault_t tmp;
3292
3293 pte_unmap_unlock(vmf->pte, vmf->ptl);
3294 tmp = do_page_mkwrite(vmf);
3295 if (unlikely(!tmp || (tmp &
3296 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3297 put_page(vmf->page);
3298 return tmp;
3299 }
3300 tmp = finish_mkwrite_fault(vmf);
3301 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
3302 unlock_page(vmf->page);
3303 put_page(vmf->page);
3304 return tmp;
3305 }
3306 } else {
3307 wp_page_reuse(vmf);
3308 lock_page(vmf->page);
3309 }
3310 ret |= fault_dirty_shared_page(vmf);
3311 put_page(vmf->page);
3312
3313 return ret;
3314}
3315
3316/*
3317 * This routine handles present pages, when
3318 * * users try to write to a shared page (FAULT_FLAG_WRITE)
3319 * * GUP wants to take a R/O pin on a possibly shared anonymous page
3320 * (FAULT_FLAG_UNSHARE)
3321 *
3322 * It is done by copying the page to a new address and decrementing the
3323 * shared-page counter for the old page.
3324 *
3325 * Note that this routine assumes that the protection checks have been
3326 * done by the caller (the low-level page fault routine in most cases).
3327 * Thus, with FAULT_FLAG_WRITE, we can safely just mark it writable once we've
3328 * done any necessary COW.
3329 *
3330 * In case of FAULT_FLAG_WRITE, we also mark the page dirty at this point even
3331 * though the page will change only once the write actually happens. This
3332 * avoids a few races, and potentially makes it more efficient.
3333 *
3334 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3335 * but allow concurrent faults), with pte both mapped and locked.
3336 * We return with mmap_lock still held, but pte unmapped and unlocked.
3337 */
3338static vm_fault_t do_wp_page(struct vm_fault *vmf)
3339 __releases(vmf->ptl)
3340{
3341 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
3342 struct vm_area_struct *vma = vmf->vma;
3343 struct folio *folio = NULL;
3344
3345 if (likely(!unshare)) {
3346 if (userfaultfd_pte_wp(vma, ptep_get(vmf->pte))) {
3347 pte_unmap_unlock(vmf->pte, vmf->ptl);
3348 return handle_userfault(vmf, VM_UFFD_WP);
3349 }
3350
3351 /*
3352 * Userfaultfd write-protect can defer flushes. Ensure the TLB
3353 * is flushed in this case before copying.
3354 */
3355 if (unlikely(userfaultfd_wp(vmf->vma) &&
3356 mm_tlb_flush_pending(vmf->vma->vm_mm)))
3357 flush_tlb_page(vmf->vma, vmf->address);
3358 }
3359
3360 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
3361
3362 /*
3363 * Shared mapping: we are guaranteed to have VM_WRITE and
3364 * FAULT_FLAG_WRITE set at this point.
3365 */
3366 if (vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
3367 /*
3368 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
3369 * VM_PFNMAP VMA.
3370 *
3371 * We should not cow pages in a shared writeable mapping.
3372 * Just mark the pages writable and/or call ops->pfn_mkwrite.
3373 */
3374 if (!vmf->page)
3375 return wp_pfn_shared(vmf);
3376 return wp_page_shared(vmf);
3377 }
3378
3379 if (vmf->page)
3380 folio = page_folio(vmf->page);
3381
3382 /*
3383 * Private mapping: create an exclusive anonymous page copy if reuse
3384 * is impossible. We might miss VM_WRITE for FOLL_FORCE handling.
3385 */
3386 if (folio && folio_test_anon(folio)) {
3387 /*
3388 * If the page is exclusive to this process we must reuse the
3389 * page without further checks.
3390 */
3391 if (PageAnonExclusive(vmf->page))
3392 goto reuse;
3393
3394 /*
3395 * We have to verify under folio lock: these early checks are
3396 * just an optimization to avoid locking the folio and freeing
3397 * the swapcache if there is little hope that we can reuse.
3398 *
3399 * KSM doesn't necessarily raise the folio refcount.
3400 */
3401 if (folio_test_ksm(folio) || folio_ref_count(folio) > 3)
3402 goto copy;
3403 if (!folio_test_lru(folio))
3404 /*
3405 * We cannot easily detect+handle references from
3406 * remote LRU caches or references to LRU folios.
3407 */
3408 lru_add_drain();
3409 if (folio_ref_count(folio) > 1 + folio_test_swapcache(folio))
3410 goto copy;
3411 if (!folio_trylock(folio))
3412 goto copy;
3413 if (folio_test_swapcache(folio))
3414 folio_free_swap(folio);
3415 if (folio_test_ksm(folio) || folio_ref_count(folio) != 1) {
3416 folio_unlock(folio);
3417 goto copy;
3418 }
3419 /*
3420 * Ok, we've got the only folio reference from our mapping
3421 * and the folio is locked, it's dark out, and we're wearing
3422 * sunglasses. Hit it.
3423 */
3424 page_move_anon_rmap(vmf->page, vma);
3425 folio_unlock(folio);
3426reuse:
3427 if (unlikely(unshare)) {
3428 pte_unmap_unlock(vmf->pte, vmf->ptl);
3429 return 0;
3430 }
3431 wp_page_reuse(vmf);
3432 return 0;
3433 }
3434copy:
3435 /*
3436 * Ok, we need to copy. Oh, well..
3437 */
3438 if (folio)
3439 folio_get(folio);
3440
3441 pte_unmap_unlock(vmf->pte, vmf->ptl);
3442#ifdef CONFIG_KSM
3443 if (folio && folio_test_ksm(folio))
3444 count_vm_event(COW_KSM);
3445#endif
3446 return wp_page_copy(vmf);
3447}
3448
3449static void unmap_mapping_range_vma(struct vm_area_struct *vma,
3450 unsigned long start_addr, unsigned long end_addr,
3451 struct zap_details *details)
3452{
3453 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
3454}
3455
3456static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
3457 pgoff_t first_index,
3458 pgoff_t last_index,
3459 struct zap_details *details)
3460{
3461 struct vm_area_struct *vma;
3462 pgoff_t vba, vea, zba, zea;
3463
3464 vma_interval_tree_foreach(vma, root, first_index, last_index) {
3465 vba = vma->vm_pgoff;
3466 vea = vba + vma_pages(vma) - 1;
3467 zba = max(first_index, vba);
3468 zea = min(last_index, vea);
3469
3470 unmap_mapping_range_vma(vma,
3471 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
3472 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
3473 details);
3474 }
3475}
3476
3477/**
3478 * unmap_mapping_folio() - Unmap single folio from processes.
3479 * @folio: The locked folio to be unmapped.
3480 *
3481 * Unmap this folio from any userspace process which still has it mmaped.
3482 * Typically, for efficiency, the range of nearby pages has already been
3483 * unmapped by unmap_mapping_pages() or unmap_mapping_range(). But once
3484 * truncation or invalidation holds the lock on a folio, it may find that
3485 * the page has been remapped again: and then uses unmap_mapping_folio()
3486 * to unmap it finally.
3487 */
3488void unmap_mapping_folio(struct folio *folio)
3489{
3490 struct address_space *mapping = folio->mapping;
3491 struct zap_details details = { };
3492 pgoff_t first_index;
3493 pgoff_t last_index;
3494
3495 VM_BUG_ON(!folio_test_locked(folio));
3496
3497 first_index = folio->index;
3498 last_index = folio->index + folio_nr_pages(folio) - 1;
3499
3500 details.even_cows = false;
3501 details.single_folio = folio;
3502 details.zap_flags = ZAP_FLAG_DROP_MARKER;
3503
3504 i_mmap_lock_read(mapping);
3505 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3506 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3507 last_index, &details);
3508 i_mmap_unlock_read(mapping);
3509}
3510
3511/**
3512 * unmap_mapping_pages() - Unmap pages from processes.
3513 * @mapping: The address space containing pages to be unmapped.
3514 * @start: Index of first page to be unmapped.
3515 * @nr: Number of pages to be unmapped. 0 to unmap to end of file.
3516 * @even_cows: Whether to unmap even private COWed pages.
3517 *
3518 * Unmap the pages in this address space from any userspace process which
3519 * has them mmaped. Generally, you want to remove COWed pages as well when
3520 * a file is being truncated, but not when invalidating pages from the page
3521 * cache.
3522 */
3523void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
3524 pgoff_t nr, bool even_cows)
3525{
3526 struct zap_details details = { };
3527 pgoff_t first_index = start;
3528 pgoff_t last_index = start + nr - 1;
3529
3530 details.even_cows = even_cows;
3531 if (last_index < first_index)
3532 last_index = ULONG_MAX;
3533
3534 i_mmap_lock_read(mapping);
3535 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
3536 unmap_mapping_range_tree(&mapping->i_mmap, first_index,
3537 last_index, &details);
3538 i_mmap_unlock_read(mapping);
3539}
3540EXPORT_SYMBOL_GPL(unmap_mapping_pages);
3541
3542/**
3543 * unmap_mapping_range - unmap the portion of all mmaps in the specified
3544 * address_space corresponding to the specified byte range in the underlying
3545 * file.
3546 *
3547 * @mapping: the address space containing mmaps to be unmapped.
3548 * @holebegin: byte in first page to unmap, relative to the start of
3549 * the underlying file. This will be rounded down to a PAGE_SIZE
3550 * boundary. Note that this is different from truncate_pagecache(), which
3551 * must keep the partial page. In contrast, we must get rid of
3552 * partial pages.
3553 * @holelen: size of prospective hole in bytes. This will be rounded
3554 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
3555 * end of the file.
3556 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
3557 * but 0 when invalidating pagecache, don't throw away private data.
3558 */
3559void unmap_mapping_range(struct address_space *mapping,
3560 loff_t const holebegin, loff_t const holelen, int even_cows)
3561{
3562 pgoff_t hba = holebegin >> PAGE_SHIFT;
3563 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3564
3565 /* Check for overflow. */
3566 if (sizeof(holelen) > sizeof(hlen)) {
3567 long long holeend =
3568 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
3569 if (holeend & ~(long long)ULONG_MAX)
3570 hlen = ULONG_MAX - hba + 1;
3571 }
3572
3573 unmap_mapping_pages(mapping, hba, hlen, even_cows);
3574}
3575EXPORT_SYMBOL(unmap_mapping_range);
3576
3577/*
3578 * Restore a potential device exclusive pte to a working pte entry
3579 */
3580static vm_fault_t remove_device_exclusive_entry(struct vm_fault *vmf)
3581{
3582 struct folio *folio = page_folio(vmf->page);
3583 struct vm_area_struct *vma = vmf->vma;
3584 struct mmu_notifier_range range;
3585
3586 /*
3587 * We need a reference to lock the folio because we don't hold
3588 * the PTL so a racing thread can remove the device-exclusive
3589 * entry and unmap it. If the folio is free the entry must
3590 * have been removed already. If it happens to have already
3591 * been re-allocated after being freed all we do is lock and
3592 * unlock it.
3593 */
3594 if (!folio_try_get(folio))
3595 return 0;
3596
3597 if (!folio_lock_or_retry(folio, vma->vm_mm, vmf->flags)) {
3598 folio_put(folio);
3599 return VM_FAULT_RETRY;
3600 }
3601 mmu_notifier_range_init_owner(&range, MMU_NOTIFY_EXCLUSIVE, 0,
3602 vma->vm_mm, vmf->address & PAGE_MASK,
3603 (vmf->address & PAGE_MASK) + PAGE_SIZE, NULL);
3604 mmu_notifier_invalidate_range_start(&range);
3605
3606 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3607 &vmf->ptl);
3608 if (likely(vmf->pte && pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3609 restore_exclusive_pte(vma, vmf->page, vmf->address, vmf->pte);
3610
3611 if (vmf->pte)
3612 pte_unmap_unlock(vmf->pte, vmf->ptl);
3613 folio_unlock(folio);
3614 folio_put(folio);
3615
3616 mmu_notifier_invalidate_range_end(&range);
3617 return 0;
3618}
3619
3620static inline bool should_try_to_free_swap(struct folio *folio,
3621 struct vm_area_struct *vma,
3622 unsigned int fault_flags)
3623{
3624 if (!folio_test_swapcache(folio))
3625 return false;
3626 if (mem_cgroup_swap_full(folio) || (vma->vm_flags & VM_LOCKED) ||
3627 folio_test_mlocked(folio))
3628 return true;
3629 /*
3630 * If we want to map a page that's in the swapcache writable, we
3631 * have to detect via the refcount if we're really the exclusive
3632 * user. Try freeing the swapcache to get rid of the swapcache
3633 * reference only in case it's likely that we'll be the exlusive user.
3634 */
3635 return (fault_flags & FAULT_FLAG_WRITE) && !folio_test_ksm(folio) &&
3636 folio_ref_count(folio) == 2;
3637}
3638
3639static vm_fault_t pte_marker_clear(struct vm_fault *vmf)
3640{
3641 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
3642 vmf->address, &vmf->ptl);
3643 if (!vmf->pte)
3644 return 0;
3645 /*
3646 * Be careful so that we will only recover a special uffd-wp pte into a
3647 * none pte. Otherwise it means the pte could have changed, so retry.
3648 *
3649 * This should also cover the case where e.g. the pte changed
3650 * quickly from a PTE_MARKER_UFFD_WP into PTE_MARKER_SWAPIN_ERROR.
3651 * So is_pte_marker() check is not enough to safely drop the pte.
3652 */
3653 if (pte_same(vmf->orig_pte, ptep_get(vmf->pte)))
3654 pte_clear(vmf->vma->vm_mm, vmf->address, vmf->pte);
3655 pte_unmap_unlock(vmf->pte, vmf->ptl);
3656 return 0;
3657}
3658
3659static vm_fault_t do_pte_missing(struct vm_fault *vmf)
3660{
3661 if (vma_is_anonymous(vmf->vma))
3662 return do_anonymous_page(vmf);
3663 else
3664 return do_fault(vmf);
3665}
3666
3667/*
3668 * This is actually a page-missing access, but with uffd-wp special pte
3669 * installed. It means this pte was wr-protected before being unmapped.
3670 */
3671static vm_fault_t pte_marker_handle_uffd_wp(struct vm_fault *vmf)
3672{
3673 /*
3674 * Just in case there're leftover special ptes even after the region
3675 * got unregistered - we can simply clear them.
3676 */
3677 if (unlikely(!userfaultfd_wp(vmf->vma)))
3678 return pte_marker_clear(vmf);
3679
3680 return do_pte_missing(vmf);
3681}
3682
3683static vm_fault_t handle_pte_marker(struct vm_fault *vmf)
3684{
3685 swp_entry_t entry = pte_to_swp_entry(vmf->orig_pte);
3686 unsigned long marker = pte_marker_get(entry);
3687
3688 /*
3689 * PTE markers should never be empty. If anything weird happened,
3690 * the best thing to do is to kill the process along with its mm.
3691 */
3692 if (WARN_ON_ONCE(!marker))
3693 return VM_FAULT_SIGBUS;
3694
3695 /* Higher priority than uffd-wp when data corrupted */
3696 if (marker & PTE_MARKER_SWAPIN_ERROR)
3697 return VM_FAULT_SIGBUS;
3698
3699 if (pte_marker_entry_uffd_wp(entry))
3700 return pte_marker_handle_uffd_wp(vmf);
3701
3702 /* This is an unknown pte marker */
3703 return VM_FAULT_SIGBUS;
3704}
3705
3706/*
3707 * We enter with non-exclusive mmap_lock (to exclude vma changes,
3708 * but allow concurrent faults), and pte mapped but not yet locked.
3709 * We return with pte unmapped and unlocked.
3710 *
3711 * We return with the mmap_lock locked or unlocked in the same cases
3712 * as does filemap_fault().
3713 */
3714vm_fault_t do_swap_page(struct vm_fault *vmf)
3715{
3716 struct vm_area_struct *vma = vmf->vma;
3717 struct folio *swapcache, *folio = NULL;
3718 struct page *page;
3719 struct swap_info_struct *si = NULL;
3720 rmap_t rmap_flags = RMAP_NONE;
3721 bool exclusive = false;
3722 swp_entry_t entry;
3723 pte_t pte;
3724 int locked;
3725 vm_fault_t ret = 0;
3726 void *shadow = NULL;
3727
3728 if (!pte_unmap_same(vmf))
3729 goto out;
3730
3731 if (vmf->flags & FAULT_FLAG_VMA_LOCK) {
3732 ret = VM_FAULT_RETRY;
3733 goto out;
3734 }
3735
3736 entry = pte_to_swp_entry(vmf->orig_pte);
3737 if (unlikely(non_swap_entry(entry))) {
3738 if (is_migration_entry(entry)) {
3739 migration_entry_wait(vma->vm_mm, vmf->pmd,
3740 vmf->address);
3741 } else if (is_device_exclusive_entry(entry)) {
3742 vmf->page = pfn_swap_entry_to_page(entry);
3743 ret = remove_device_exclusive_entry(vmf);
3744 } else if (is_device_private_entry(entry)) {
3745 vmf->page = pfn_swap_entry_to_page(entry);
3746 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3747 vmf->address, &vmf->ptl);
3748 if (unlikely(!vmf->pte ||
3749 !pte_same(ptep_get(vmf->pte),
3750 vmf->orig_pte)))
3751 goto unlock;
3752
3753 /*
3754 * Get a page reference while we know the page can't be
3755 * freed.
3756 */
3757 get_page(vmf->page);
3758 pte_unmap_unlock(vmf->pte, vmf->ptl);
3759 ret = vmf->page->pgmap->ops->migrate_to_ram(vmf);
3760 put_page(vmf->page);
3761 } else if (is_hwpoison_entry(entry)) {
3762 ret = VM_FAULT_HWPOISON;
3763 } else if (is_pte_marker_entry(entry)) {
3764 ret = handle_pte_marker(vmf);
3765 } else {
3766 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
3767 ret = VM_FAULT_SIGBUS;
3768 }
3769 goto out;
3770 }
3771
3772 /* Prevent swapoff from happening to us. */
3773 si = get_swap_device(entry);
3774 if (unlikely(!si))
3775 goto out;
3776
3777 folio = swap_cache_get_folio(entry, vma, vmf->address);
3778 if (folio)
3779 page = folio_file_page(folio, swp_offset(entry));
3780 swapcache = folio;
3781
3782 if (!folio) {
3783 if (data_race(si->flags & SWP_SYNCHRONOUS_IO) &&
3784 __swap_count(entry) == 1) {
3785 /* skip swapcache */
3786 folio = vma_alloc_folio(GFP_HIGHUSER_MOVABLE, 0,
3787 vma, vmf->address, false);
3788 page = &folio->page;
3789 if (folio) {
3790 __folio_set_locked(folio);
3791 __folio_set_swapbacked(folio);
3792
3793 if (mem_cgroup_swapin_charge_folio(folio,
3794 vma->vm_mm, GFP_KERNEL,
3795 entry)) {
3796 ret = VM_FAULT_OOM;
3797 goto out_page;
3798 }
3799 mem_cgroup_swapin_uncharge_swap(entry);
3800
3801 shadow = get_shadow_from_swap_cache(entry);
3802 if (shadow)
3803 workingset_refault(folio, shadow);
3804
3805 folio_add_lru(folio);
3806
3807 /* To provide entry to swap_readpage() */
3808 folio_set_swap_entry(folio, entry);
3809 swap_readpage(page, true, NULL);
3810 folio->private = NULL;
3811 }
3812 } else {
3813 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
3814 vmf);
3815 if (page)
3816 folio = page_folio(page);
3817 swapcache = folio;
3818 }
3819
3820 if (!folio) {
3821 /*
3822 * Back out if somebody else faulted in this pte
3823 * while we released the pte lock.
3824 */
3825 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3826 vmf->address, &vmf->ptl);
3827 if (likely(vmf->pte &&
3828 pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3829 ret = VM_FAULT_OOM;
3830 goto unlock;
3831 }
3832
3833 /* Had to read the page from swap area: Major fault */
3834 ret = VM_FAULT_MAJOR;
3835 count_vm_event(PGMAJFAULT);
3836 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
3837 } else if (PageHWPoison(page)) {
3838 /*
3839 * hwpoisoned dirty swapcache pages are kept for killing
3840 * owner processes (which may be unknown at hwpoison time)
3841 */
3842 ret = VM_FAULT_HWPOISON;
3843 goto out_release;
3844 }
3845
3846 locked = folio_lock_or_retry(folio, vma->vm_mm, vmf->flags);
3847
3848 if (!locked) {
3849 ret |= VM_FAULT_RETRY;
3850 goto out_release;
3851 }
3852
3853 if (swapcache) {
3854 /*
3855 * Make sure folio_free_swap() or swapoff did not release the
3856 * swapcache from under us. The page pin, and pte_same test
3857 * below, are not enough to exclude that. Even if it is still
3858 * swapcache, we need to check that the page's swap has not
3859 * changed.
3860 */
3861 if (unlikely(!folio_test_swapcache(folio) ||
3862 page_private(page) != entry.val))
3863 goto out_page;
3864
3865 /*
3866 * KSM sometimes has to copy on read faults, for example, if
3867 * page->index of !PageKSM() pages would be nonlinear inside the
3868 * anon VMA -- PageKSM() is lost on actual swapout.
3869 */
3870 page = ksm_might_need_to_copy(page, vma, vmf->address);
3871 if (unlikely(!page)) {
3872 ret = VM_FAULT_OOM;
3873 goto out_page;
3874 } else if (unlikely(PTR_ERR(page) == -EHWPOISON)) {
3875 ret = VM_FAULT_HWPOISON;
3876 goto out_page;
3877 }
3878 folio = page_folio(page);
3879
3880 /*
3881 * If we want to map a page that's in the swapcache writable, we
3882 * have to detect via the refcount if we're really the exclusive
3883 * owner. Try removing the extra reference from the local LRU
3884 * caches if required.
3885 */
3886 if ((vmf->flags & FAULT_FLAG_WRITE) && folio == swapcache &&
3887 !folio_test_ksm(folio) && !folio_test_lru(folio))
3888 lru_add_drain();
3889 }
3890
3891 folio_throttle_swaprate(folio, GFP_KERNEL);
3892
3893 /*
3894 * Back out if somebody else already faulted in this pte.
3895 */
3896 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3897 &vmf->ptl);
3898 if (unlikely(!vmf->pte || !pte_same(ptep_get(vmf->pte), vmf->orig_pte)))
3899 goto out_nomap;
3900
3901 if (unlikely(!folio_test_uptodate(folio))) {
3902 ret = VM_FAULT_SIGBUS;
3903 goto out_nomap;
3904 }
3905
3906 /*
3907 * PG_anon_exclusive reuses PG_mappedtodisk for anon pages. A swap pte
3908 * must never point at an anonymous page in the swapcache that is
3909 * PG_anon_exclusive. Sanity check that this holds and especially, that
3910 * no filesystem set PG_mappedtodisk on a page in the swapcache. Sanity
3911 * check after taking the PT lock and making sure that nobody
3912 * concurrently faulted in this page and set PG_anon_exclusive.
3913 */
3914 BUG_ON(!folio_test_anon(folio) && folio_test_mappedtodisk(folio));
3915 BUG_ON(folio_test_anon(folio) && PageAnonExclusive(page));
3916
3917 /*
3918 * Check under PT lock (to protect against concurrent fork() sharing
3919 * the swap entry concurrently) for certainly exclusive pages.
3920 */
3921 if (!folio_test_ksm(folio)) {
3922 exclusive = pte_swp_exclusive(vmf->orig_pte);
3923 if (folio != swapcache) {
3924 /*
3925 * We have a fresh page that is not exposed to the
3926 * swapcache -> certainly exclusive.
3927 */
3928 exclusive = true;
3929 } else if (exclusive && folio_test_writeback(folio) &&
3930 data_race(si->flags & SWP_STABLE_WRITES)) {
3931 /*
3932 * This is tricky: not all swap backends support
3933 * concurrent page modifications while under writeback.
3934 *
3935 * So if we stumble over such a page in the swapcache
3936 * we must not set the page exclusive, otherwise we can
3937 * map it writable without further checks and modify it
3938 * while still under writeback.
3939 *
3940 * For these problematic swap backends, simply drop the
3941 * exclusive marker: this is perfectly fine as we start
3942 * writeback only if we fully unmapped the page and
3943 * there are no unexpected references on the page after
3944 * unmapping succeeded. After fully unmapped, no
3945 * further GUP references (FOLL_GET and FOLL_PIN) can
3946 * appear, so dropping the exclusive marker and mapping
3947 * it only R/O is fine.
3948 */
3949 exclusive = false;
3950 }
3951 }
3952
3953 /*
3954 * Some architectures may have to restore extra metadata to the page
3955 * when reading from swap. This metadata may be indexed by swap entry
3956 * so this must be called before swap_free().
3957 */
3958 arch_swap_restore(entry, folio);
3959
3960 /*
3961 * Remove the swap entry and conditionally try to free up the swapcache.
3962 * We're already holding a reference on the page but haven't mapped it
3963 * yet.
3964 */
3965 swap_free(entry);
3966 if (should_try_to_free_swap(folio, vma, vmf->flags))
3967 folio_free_swap(folio);
3968
3969 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
3970 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
3971 pte = mk_pte(page, vma->vm_page_prot);
3972
3973 /*
3974 * Same logic as in do_wp_page(); however, optimize for pages that are
3975 * certainly not shared either because we just allocated them without
3976 * exposing them to the swapcache or because the swap entry indicates
3977 * exclusivity.
3978 */
3979 if (!folio_test_ksm(folio) &&
3980 (exclusive || folio_ref_count(folio) == 1)) {
3981 if (vmf->flags & FAULT_FLAG_WRITE) {
3982 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3983 vmf->flags &= ~FAULT_FLAG_WRITE;
3984 }
3985 rmap_flags |= RMAP_EXCLUSIVE;
3986 }
3987 flush_icache_page(vma, page);
3988 if (pte_swp_soft_dirty(vmf->orig_pte))
3989 pte = pte_mksoft_dirty(pte);
3990 if (pte_swp_uffd_wp(vmf->orig_pte))
3991 pte = pte_mkuffd_wp(pte);
3992 vmf->orig_pte = pte;
3993
3994 /* ksm created a completely new copy */
3995 if (unlikely(folio != swapcache && swapcache)) {
3996 page_add_new_anon_rmap(page, vma, vmf->address);
3997 folio_add_lru_vma(folio, vma);
3998 } else {
3999 page_add_anon_rmap(page, vma, vmf->address, rmap_flags);
4000 }
4001
4002 VM_BUG_ON(!folio_test_anon(folio) ||
4003 (pte_write(pte) && !PageAnonExclusive(page)));
4004 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
4005 arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
4006
4007 folio_unlock(folio);
4008 if (folio != swapcache && swapcache) {
4009 /*
4010 * Hold the lock to avoid the swap entry to be reused
4011 * until we take the PT lock for the pte_same() check
4012 * (to avoid false positives from pte_same). For
4013 * further safety release the lock after the swap_free
4014 * so that the swap count won't change under a
4015 * parallel locked swapcache.
4016 */
4017 folio_unlock(swapcache);
4018 folio_put(swapcache);
4019 }
4020
4021 if (vmf->flags & FAULT_FLAG_WRITE) {
4022 ret |= do_wp_page(vmf);
4023 if (ret & VM_FAULT_ERROR)
4024 ret &= VM_FAULT_ERROR;
4025 goto out;
4026 }
4027
4028 /* No need to invalidate - it was non-present before */
4029 update_mmu_cache(vma, vmf->address, vmf->pte);
4030unlock:
4031 if (vmf->pte)
4032 pte_unmap_unlock(vmf->pte, vmf->ptl);
4033out:
4034 if (si)
4035 put_swap_device(si);
4036 return ret;
4037out_nomap:
4038 if (vmf->pte)
4039 pte_unmap_unlock(vmf->pte, vmf->ptl);
4040out_page:
4041 folio_unlock(folio);
4042out_release:
4043 folio_put(folio);
4044 if (folio != swapcache && swapcache) {
4045 folio_unlock(swapcache);
4046 folio_put(swapcache);
4047 }
4048 if (si)
4049 put_swap_device(si);
4050 return ret;
4051}
4052
4053/*
4054 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4055 * but allow concurrent faults), and pte mapped but not yet locked.
4056 * We return with mmap_lock still held, but pte unmapped and unlocked.
4057 */
4058static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
4059{
4060 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4061 struct vm_area_struct *vma = vmf->vma;
4062 struct folio *folio;
4063 vm_fault_t ret = 0;
4064 pte_t entry;
4065
4066 /* File mapping without ->vm_ops ? */
4067 if (vma->vm_flags & VM_SHARED)
4068 return VM_FAULT_SIGBUS;
4069
4070 /*
4071 * Use pte_alloc() instead of pte_alloc_map(), so that OOM can
4072 * be distinguished from a transient failure of pte_offset_map().
4073 */
4074 if (pte_alloc(vma->vm_mm, vmf->pmd))
4075 return VM_FAULT_OOM;
4076
4077 /* Use the zero-page for reads */
4078 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
4079 !mm_forbids_zeropage(vma->vm_mm)) {
4080 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
4081 vma->vm_page_prot));
4082 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4083 vmf->address, &vmf->ptl);
4084 if (!vmf->pte)
4085 goto unlock;
4086 if (vmf_pte_changed(vmf)) {
4087 update_mmu_tlb(vma, vmf->address, vmf->pte);
4088 goto unlock;
4089 }
4090 ret = check_stable_address_space(vma->vm_mm);
4091 if (ret)
4092 goto unlock;
4093 /* Deliver the page fault to userland, check inside PT lock */
4094 if (userfaultfd_missing(vma)) {
4095 pte_unmap_unlock(vmf->pte, vmf->ptl);
4096 return handle_userfault(vmf, VM_UFFD_MISSING);
4097 }
4098 goto setpte;
4099 }
4100
4101 /* Allocate our own private page. */
4102 if (unlikely(anon_vma_prepare(vma)))
4103 goto oom;
4104 folio = vma_alloc_zeroed_movable_folio(vma, vmf->address);
4105 if (!folio)
4106 goto oom;
4107
4108 if (mem_cgroup_charge(folio, vma->vm_mm, GFP_KERNEL))
4109 goto oom_free_page;
4110 folio_throttle_swaprate(folio, GFP_KERNEL);
4111
4112 /*
4113 * The memory barrier inside __folio_mark_uptodate makes sure that
4114 * preceding stores to the page contents become visible before
4115 * the set_pte_at() write.
4116 */
4117 __folio_mark_uptodate(folio);
4118
4119 entry = mk_pte(&folio->page, vma->vm_page_prot);
4120 entry = pte_sw_mkyoung(entry);
4121 if (vma->vm_flags & VM_WRITE)
4122 entry = pte_mkwrite(pte_mkdirty(entry));
4123
4124 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
4125 &vmf->ptl);
4126 if (!vmf->pte)
4127 goto release;
4128 if (vmf_pte_changed(vmf)) {
4129 update_mmu_tlb(vma, vmf->address, vmf->pte);
4130 goto release;
4131 }
4132
4133 ret = check_stable_address_space(vma->vm_mm);
4134 if (ret)
4135 goto release;
4136
4137 /* Deliver the page fault to userland, check inside PT lock */
4138 if (userfaultfd_missing(vma)) {
4139 pte_unmap_unlock(vmf->pte, vmf->ptl);
4140 folio_put(folio);
4141 return handle_userfault(vmf, VM_UFFD_MISSING);
4142 }
4143
4144 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4145 folio_add_new_anon_rmap(folio, vma, vmf->address);
4146 folio_add_lru_vma(folio, vma);
4147setpte:
4148 if (uffd_wp)
4149 entry = pte_mkuffd_wp(entry);
4150 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
4151
4152 /* No need to invalidate - it was non-present before */
4153 update_mmu_cache(vma, vmf->address, vmf->pte);
4154unlock:
4155 if (vmf->pte)
4156 pte_unmap_unlock(vmf->pte, vmf->ptl);
4157 return ret;
4158release:
4159 folio_put(folio);
4160 goto unlock;
4161oom_free_page:
4162 folio_put(folio);
4163oom:
4164 return VM_FAULT_OOM;
4165}
4166
4167/*
4168 * The mmap_lock must have been held on entry, and may have been
4169 * released depending on flags and vma->vm_ops->fault() return value.
4170 * See filemap_fault() and __lock_page_retry().
4171 */
4172static vm_fault_t __do_fault(struct vm_fault *vmf)
4173{
4174 struct vm_area_struct *vma = vmf->vma;
4175 vm_fault_t ret;
4176
4177 /*
4178 * Preallocate pte before we take page_lock because this might lead to
4179 * deadlocks for memcg reclaim which waits for pages under writeback:
4180 * lock_page(A)
4181 * SetPageWriteback(A)
4182 * unlock_page(A)
4183 * lock_page(B)
4184 * lock_page(B)
4185 * pte_alloc_one
4186 * shrink_page_list
4187 * wait_on_page_writeback(A)
4188 * SetPageWriteback(B)
4189 * unlock_page(B)
4190 * # flush A, B to clear the writeback
4191 */
4192 if (pmd_none(*vmf->pmd) && !vmf->prealloc_pte) {
4193 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4194 if (!vmf->prealloc_pte)
4195 return VM_FAULT_OOM;
4196 }
4197
4198 ret = vma->vm_ops->fault(vmf);
4199 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
4200 VM_FAULT_DONE_COW)))
4201 return ret;
4202
4203 if (unlikely(PageHWPoison(vmf->page))) {
4204 struct page *page = vmf->page;
4205 vm_fault_t poisonret = VM_FAULT_HWPOISON;
4206 if (ret & VM_FAULT_LOCKED) {
4207 if (page_mapped(page))
4208 unmap_mapping_pages(page_mapping(page),
4209 page->index, 1, false);
4210 /* Retry if a clean page was removed from the cache. */
4211 if (invalidate_inode_page(page))
4212 poisonret = VM_FAULT_NOPAGE;
4213 unlock_page(page);
4214 }
4215 put_page(page);
4216 vmf->page = NULL;
4217 return poisonret;
4218 }
4219
4220 if (unlikely(!(ret & VM_FAULT_LOCKED)))
4221 lock_page(vmf->page);
4222 else
4223 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
4224
4225 return ret;
4226}
4227
4228#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4229static void deposit_prealloc_pte(struct vm_fault *vmf)
4230{
4231 struct vm_area_struct *vma = vmf->vma;
4232
4233 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
4234 /*
4235 * We are going to consume the prealloc table,
4236 * count that as nr_ptes.
4237 */
4238 mm_inc_nr_ptes(vma->vm_mm);
4239 vmf->prealloc_pte = NULL;
4240}
4241
4242vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4243{
4244 struct vm_area_struct *vma = vmf->vma;
4245 bool write = vmf->flags & FAULT_FLAG_WRITE;
4246 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
4247 pmd_t entry;
4248 int i;
4249 vm_fault_t ret = VM_FAULT_FALLBACK;
4250
4251 if (!transhuge_vma_suitable(vma, haddr))
4252 return ret;
4253
4254 page = compound_head(page);
4255 if (compound_order(page) != HPAGE_PMD_ORDER)
4256 return ret;
4257
4258 /*
4259 * Just backoff if any subpage of a THP is corrupted otherwise
4260 * the corrupted page may mapped by PMD silently to escape the
4261 * check. This kind of THP just can be PTE mapped. Access to
4262 * the corrupted subpage should trigger SIGBUS as expected.
4263 */
4264 if (unlikely(PageHasHWPoisoned(page)))
4265 return ret;
4266
4267 /*
4268 * Archs like ppc64 need additional space to store information
4269 * related to pte entry. Use the preallocated table for that.
4270 */
4271 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
4272 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm);
4273 if (!vmf->prealloc_pte)
4274 return VM_FAULT_OOM;
4275 }
4276
4277 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
4278 if (unlikely(!pmd_none(*vmf->pmd)))
4279 goto out;
4280
4281 for (i = 0; i < HPAGE_PMD_NR; i++)
4282 flush_icache_page(vma, page + i);
4283
4284 entry = mk_huge_pmd(page, vma->vm_page_prot);
4285 if (write)
4286 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
4287
4288 add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
4289 page_add_file_rmap(page, vma, true);
4290
4291 /*
4292 * deposit and withdraw with pmd lock held
4293 */
4294 if (arch_needs_pgtable_deposit())
4295 deposit_prealloc_pte(vmf);
4296
4297 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
4298
4299 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
4300
4301 /* fault is handled */
4302 ret = 0;
4303 count_vm_event(THP_FILE_MAPPED);
4304out:
4305 spin_unlock(vmf->ptl);
4306 return ret;
4307}
4308#else
4309vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
4310{
4311 return VM_FAULT_FALLBACK;
4312}
4313#endif
4314
4315void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr)
4316{
4317 struct vm_area_struct *vma = vmf->vma;
4318 bool uffd_wp = vmf_orig_pte_uffd_wp(vmf);
4319 bool write = vmf->flags & FAULT_FLAG_WRITE;
4320 bool prefault = vmf->address != addr;
4321 pte_t entry;
4322
4323 flush_icache_page(vma, page);
4324 entry = mk_pte(page, vma->vm_page_prot);
4325
4326 if (prefault && arch_wants_old_prefaulted_pte())
4327 entry = pte_mkold(entry);
4328 else
4329 entry = pte_sw_mkyoung(entry);
4330
4331 if (write)
4332 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4333 if (unlikely(uffd_wp))
4334 entry = pte_mkuffd_wp(entry);
4335 /* copy-on-write page */
4336 if (write && !(vma->vm_flags & VM_SHARED)) {
4337 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
4338 page_add_new_anon_rmap(page, vma, addr);
4339 lru_cache_add_inactive_or_unevictable(page, vma);
4340 } else {
4341 inc_mm_counter(vma->vm_mm, mm_counter_file(page));
4342 page_add_file_rmap(page, vma, false);
4343 }
4344 set_pte_at(vma->vm_mm, addr, vmf->pte, entry);
4345}
4346
4347static bool vmf_pte_changed(struct vm_fault *vmf)
4348{
4349 if (vmf->flags & FAULT_FLAG_ORIG_PTE_VALID)
4350 return !pte_same(ptep_get(vmf->pte), vmf->orig_pte);
4351
4352 return !pte_none(ptep_get(vmf->pte));
4353}
4354
4355/**
4356 * finish_fault - finish page fault once we have prepared the page to fault
4357 *
4358 * @vmf: structure describing the fault
4359 *
4360 * This function handles all that is needed to finish a page fault once the
4361 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
4362 * given page, adds reverse page mapping, handles memcg charges and LRU
4363 * addition.
4364 *
4365 * The function expects the page to be locked and on success it consumes a
4366 * reference of a page being mapped (for the PTE which maps it).
4367 *
4368 * Return: %0 on success, %VM_FAULT_ code in case of error.
4369 */
4370vm_fault_t finish_fault(struct vm_fault *vmf)
4371{
4372 struct vm_area_struct *vma = vmf->vma;
4373 struct page *page;
4374 vm_fault_t ret;
4375
4376 /* Did we COW the page? */
4377 if ((vmf->flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
4378 page = vmf->cow_page;
4379 else
4380 page = vmf->page;
4381
4382 /*
4383 * check even for read faults because we might have lost our CoWed
4384 * page
4385 */
4386 if (!(vma->vm_flags & VM_SHARED)) {
4387 ret = check_stable_address_space(vma->vm_mm);
4388 if (ret)
4389 return ret;
4390 }
4391
4392 if (pmd_none(*vmf->pmd)) {
4393 if (PageTransCompound(page)) {
4394 ret = do_set_pmd(vmf, page);
4395 if (ret != VM_FAULT_FALLBACK)
4396 return ret;
4397 }
4398
4399 if (vmf->prealloc_pte)
4400 pmd_install(vma->vm_mm, vmf->pmd, &vmf->prealloc_pte);
4401 else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd)))
4402 return VM_FAULT_OOM;
4403 }
4404
4405 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4406 vmf->address, &vmf->ptl);
4407 if (!vmf->pte)
4408 return VM_FAULT_NOPAGE;
4409
4410 /* Re-check under ptl */
4411 if (likely(!vmf_pte_changed(vmf))) {
4412 do_set_pte(vmf, page, vmf->address);
4413
4414 /* no need to invalidate: a not-present page won't be cached */
4415 update_mmu_cache(vma, vmf->address, vmf->pte);
4416
4417 ret = 0;
4418 } else {
4419 update_mmu_tlb(vma, vmf->address, vmf->pte);
4420 ret = VM_FAULT_NOPAGE;
4421 }
4422
4423 pte_unmap_unlock(vmf->pte, vmf->ptl);
4424 return ret;
4425}
4426
4427static unsigned long fault_around_pages __read_mostly =
4428 65536 >> PAGE_SHIFT;
4429
4430#ifdef CONFIG_DEBUG_FS
4431static int fault_around_bytes_get(void *data, u64 *val)
4432{
4433 *val = fault_around_pages << PAGE_SHIFT;
4434 return 0;
4435}
4436
4437/*
4438 * fault_around_bytes must be rounded down to the nearest page order as it's
4439 * what do_fault_around() expects to see.
4440 */
4441static int fault_around_bytes_set(void *data, u64 val)
4442{
4443 if (val / PAGE_SIZE > PTRS_PER_PTE)
4444 return -EINVAL;
4445
4446 /*
4447 * The minimum value is 1 page, however this results in no fault-around
4448 * at all. See should_fault_around().
4449 */
4450 fault_around_pages = max(rounddown_pow_of_two(val) >> PAGE_SHIFT, 1UL);
4451
4452 return 0;
4453}
4454DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
4455 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
4456
4457static int __init fault_around_debugfs(void)
4458{
4459 debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
4460 &fault_around_bytes_fops);
4461 return 0;
4462}
4463late_initcall(fault_around_debugfs);
4464#endif
4465
4466/*
4467 * do_fault_around() tries to map few pages around the fault address. The hope
4468 * is that the pages will be needed soon and this will lower the number of
4469 * faults to handle.
4470 *
4471 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
4472 * not ready to be mapped: not up-to-date, locked, etc.
4473 *
4474 * This function doesn't cross VMA or page table boundaries, in order to call
4475 * map_pages() and acquire a PTE lock only once.
4476 *
4477 * fault_around_pages defines how many pages we'll try to map.
4478 * do_fault_around() expects it to be set to a power of two less than or equal
4479 * to PTRS_PER_PTE.
4480 *
4481 * The virtual address of the area that we map is naturally aligned to
4482 * fault_around_pages * PAGE_SIZE rounded down to the machine page size
4483 * (and therefore to page order). This way it's easier to guarantee
4484 * that we don't cross page table boundaries.
4485 */
4486static vm_fault_t do_fault_around(struct vm_fault *vmf)
4487{
4488 pgoff_t nr_pages = READ_ONCE(fault_around_pages);
4489 pgoff_t pte_off = pte_index(vmf->address);
4490 /* The page offset of vmf->address within the VMA. */
4491 pgoff_t vma_off = vmf->pgoff - vmf->vma->vm_pgoff;
4492 pgoff_t from_pte, to_pte;
4493 vm_fault_t ret;
4494
4495 /* The PTE offset of the start address, clamped to the VMA. */
4496 from_pte = max(ALIGN_DOWN(pte_off, nr_pages),
4497 pte_off - min(pte_off, vma_off));
4498
4499 /* The PTE offset of the end address, clamped to the VMA and PTE. */
4500 to_pte = min3(from_pte + nr_pages, (pgoff_t)PTRS_PER_PTE,
4501 pte_off + vma_pages(vmf->vma) - vma_off) - 1;
4502
4503 if (pmd_none(*vmf->pmd)) {
4504 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm);
4505 if (!vmf->prealloc_pte)
4506 return VM_FAULT_OOM;
4507 }
4508
4509 rcu_read_lock();
4510 ret = vmf->vma->vm_ops->map_pages(vmf,
4511 vmf->pgoff + from_pte - pte_off,
4512 vmf->pgoff + to_pte - pte_off);
4513 rcu_read_unlock();
4514
4515 return ret;
4516}
4517
4518/* Return true if we should do read fault-around, false otherwise */
4519static inline bool should_fault_around(struct vm_fault *vmf)
4520{
4521 /* No ->map_pages? No way to fault around... */
4522 if (!vmf->vma->vm_ops->map_pages)
4523 return false;
4524
4525 if (uffd_disable_fault_around(vmf->vma))
4526 return false;
4527
4528 /* A single page implies no faulting 'around' at all. */
4529 return fault_around_pages > 1;
4530}
4531
4532static vm_fault_t do_read_fault(struct vm_fault *vmf)
4533{
4534 vm_fault_t ret = 0;
4535
4536 /*
4537 * Let's call ->map_pages() first and use ->fault() as fallback
4538 * if page by the offset is not ready to be mapped (cold cache or
4539 * something).
4540 */
4541 if (should_fault_around(vmf)) {
4542 ret = do_fault_around(vmf);
4543 if (ret)
4544 return ret;
4545 }
4546
4547 ret = __do_fault(vmf);
4548 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4549 return ret;
4550
4551 ret |= finish_fault(vmf);
4552 unlock_page(vmf->page);
4553 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4554 put_page(vmf->page);
4555 return ret;
4556}
4557
4558static vm_fault_t do_cow_fault(struct vm_fault *vmf)
4559{
4560 struct vm_area_struct *vma = vmf->vma;
4561 vm_fault_t ret;
4562
4563 if (unlikely(anon_vma_prepare(vma)))
4564 return VM_FAULT_OOM;
4565
4566 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
4567 if (!vmf->cow_page)
4568 return VM_FAULT_OOM;
4569
4570 if (mem_cgroup_charge(page_folio(vmf->cow_page), vma->vm_mm,
4571 GFP_KERNEL)) {
4572 put_page(vmf->cow_page);
4573 return VM_FAULT_OOM;
4574 }
4575 folio_throttle_swaprate(page_folio(vmf->cow_page), GFP_KERNEL);
4576
4577 ret = __do_fault(vmf);
4578 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4579 goto uncharge_out;
4580 if (ret & VM_FAULT_DONE_COW)
4581 return ret;
4582
4583 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
4584 __SetPageUptodate(vmf->cow_page);
4585
4586 ret |= finish_fault(vmf);
4587 unlock_page(vmf->page);
4588 put_page(vmf->page);
4589 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4590 goto uncharge_out;
4591 return ret;
4592uncharge_out:
4593 put_page(vmf->cow_page);
4594 return ret;
4595}
4596
4597static vm_fault_t do_shared_fault(struct vm_fault *vmf)
4598{
4599 struct vm_area_struct *vma = vmf->vma;
4600 vm_fault_t ret, tmp;
4601
4602 ret = __do_fault(vmf);
4603 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
4604 return ret;
4605
4606 /*
4607 * Check if the backing address space wants to know that the page is
4608 * about to become writable
4609 */
4610 if (vma->vm_ops->page_mkwrite) {
4611 unlock_page(vmf->page);
4612 tmp = do_page_mkwrite(vmf);
4613 if (unlikely(!tmp ||
4614 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
4615 put_page(vmf->page);
4616 return tmp;
4617 }
4618 }
4619
4620 ret |= finish_fault(vmf);
4621 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
4622 VM_FAULT_RETRY))) {
4623 unlock_page(vmf->page);
4624 put_page(vmf->page);
4625 return ret;
4626 }
4627
4628 ret |= fault_dirty_shared_page(vmf);
4629 return ret;
4630}
4631
4632/*
4633 * We enter with non-exclusive mmap_lock (to exclude vma changes,
4634 * but allow concurrent faults).
4635 * The mmap_lock may have been released depending on flags and our
4636 * return value. See filemap_fault() and __folio_lock_or_retry().
4637 * If mmap_lock is released, vma may become invalid (for example
4638 * by other thread calling munmap()).
4639 */
4640static vm_fault_t do_fault(struct vm_fault *vmf)
4641{
4642 struct vm_area_struct *vma = vmf->vma;
4643 struct mm_struct *vm_mm = vma->vm_mm;
4644 vm_fault_t ret;
4645
4646 /*
4647 * The VMA was not fully populated on mmap() or missing VM_DONTEXPAND
4648 */
4649 if (!vma->vm_ops->fault) {
4650 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd,
4651 vmf->address, &vmf->ptl);
4652 if (unlikely(!vmf->pte))
4653 ret = VM_FAULT_SIGBUS;
4654 else {
4655 /*
4656 * Make sure this is not a temporary clearing of pte
4657 * by holding ptl and checking again. A R/M/W update
4658 * of pte involves: take ptl, clearing the pte so that
4659 * we don't have concurrent modification by hardware
4660 * followed by an update.
4661 */
4662 if (unlikely(pte_none(ptep_get(vmf->pte))))
4663 ret = VM_FAULT_SIGBUS;
4664 else
4665 ret = VM_FAULT_NOPAGE;
4666
4667 pte_unmap_unlock(vmf->pte, vmf->ptl);
4668 }
4669 } else if (!(vmf->flags & FAULT_FLAG_WRITE))
4670 ret = do_read_fault(vmf);
4671 else if (!(vma->vm_flags & VM_SHARED))
4672 ret = do_cow_fault(vmf);
4673 else
4674 ret = do_shared_fault(vmf);
4675
4676 /* preallocated pagetable is unused: free it */
4677 if (vmf->prealloc_pte) {
4678 pte_free(vm_mm, vmf->prealloc_pte);
4679 vmf->prealloc_pte = NULL;
4680 }
4681 return ret;
4682}
4683
4684int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
4685 unsigned long addr, int page_nid, int *flags)
4686{
4687 get_page(page);
4688
4689 /* Record the current PID acceesing VMA */
4690 vma_set_access_pid_bit(vma);
4691
4692 count_vm_numa_event(NUMA_HINT_FAULTS);
4693 if (page_nid == numa_node_id()) {
4694 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4695 *flags |= TNF_FAULT_LOCAL;
4696 }
4697
4698 return mpol_misplaced(page, vma, addr);
4699}
4700
4701static vm_fault_t do_numa_page(struct vm_fault *vmf)
4702{
4703 struct vm_area_struct *vma = vmf->vma;
4704 struct page *page = NULL;
4705 int page_nid = NUMA_NO_NODE;
4706 bool writable = false;
4707 int last_cpupid;
4708 int target_nid;
4709 pte_t pte, old_pte;
4710 int flags = 0;
4711
4712 /*
4713 * The "pte" at this point cannot be used safely without
4714 * validation through pte_unmap_same(). It's of NUMA type but
4715 * the pfn may be screwed if the read is non atomic.
4716 */
4717 spin_lock(vmf->ptl);
4718 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
4719 pte_unmap_unlock(vmf->pte, vmf->ptl);
4720 goto out;
4721 }
4722
4723 /* Get the normal PTE */
4724 old_pte = ptep_get(vmf->pte);
4725 pte = pte_modify(old_pte, vma->vm_page_prot);
4726
4727 /*
4728 * Detect now whether the PTE could be writable; this information
4729 * is only valid while holding the PT lock.
4730 */
4731 writable = pte_write(pte);
4732 if (!writable && vma_wants_manual_pte_write_upgrade(vma) &&
4733 can_change_pte_writable(vma, vmf->address, pte))
4734 writable = true;
4735
4736 page = vm_normal_page(vma, vmf->address, pte);
4737 if (!page || is_zone_device_page(page))
4738 goto out_map;
4739
4740 /* TODO: handle PTE-mapped THP */
4741 if (PageCompound(page))
4742 goto out_map;
4743
4744 /*
4745 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
4746 * much anyway since they can be in shared cache state. This misses
4747 * the case where a mapping is writable but the process never writes
4748 * to it but pte_write gets cleared during protection updates and
4749 * pte_dirty has unpredictable behaviour between PTE scan updates,
4750 * background writeback, dirty balancing and application behaviour.
4751 */
4752 if (!writable)
4753 flags |= TNF_NO_GROUP;
4754
4755 /*
4756 * Flag if the page is shared between multiple address spaces. This
4757 * is later used when determining whether to group tasks together
4758 */
4759 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
4760 flags |= TNF_SHARED;
4761
4762 page_nid = page_to_nid(page);
4763 /*
4764 * For memory tiering mode, cpupid of slow memory page is used
4765 * to record page access time. So use default value.
4766 */
4767 if ((sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) &&
4768 !node_is_toptier(page_nid))
4769 last_cpupid = (-1 & LAST_CPUPID_MASK);
4770 else
4771 last_cpupid = page_cpupid_last(page);
4772 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
4773 &flags);
4774 if (target_nid == NUMA_NO_NODE) {
4775 put_page(page);
4776 goto out_map;
4777 }
4778 pte_unmap_unlock(vmf->pte, vmf->ptl);
4779 writable = false;
4780
4781 /* Migrate to the requested node */
4782 if (migrate_misplaced_page(page, vma, target_nid)) {
4783 page_nid = target_nid;
4784 flags |= TNF_MIGRATED;
4785 } else {
4786 flags |= TNF_MIGRATE_FAIL;
4787 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
4788 vmf->address, &vmf->ptl);
4789 if (unlikely(!vmf->pte))
4790 goto out;
4791 if (unlikely(!pte_same(ptep_get(vmf->pte), vmf->orig_pte))) {
4792 pte_unmap_unlock(vmf->pte, vmf->ptl);
4793 goto out;
4794 }
4795 goto out_map;
4796 }
4797
4798out:
4799 if (page_nid != NUMA_NO_NODE)
4800 task_numa_fault(last_cpupid, page_nid, 1, flags);
4801 return 0;
4802out_map:
4803 /*
4804 * Make it present again, depending on how arch implements
4805 * non-accessible ptes, some can allow access by kernel mode.
4806 */
4807 old_pte = ptep_modify_prot_start(vma, vmf->address, vmf->pte);
4808 pte = pte_modify(old_pte, vma->vm_page_prot);
4809 pte = pte_mkyoung(pte);
4810 if (writable)
4811 pte = pte_mkwrite(pte);
4812 ptep_modify_prot_commit(vma, vmf->address, vmf->pte, old_pte, pte);
4813 update_mmu_cache(vma, vmf->address, vmf->pte);
4814 pte_unmap_unlock(vmf->pte, vmf->ptl);
4815 goto out;
4816}
4817
4818static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
4819{
4820 if (vma_is_anonymous(vmf->vma))
4821 return do_huge_pmd_anonymous_page(vmf);
4822 if (vmf->vma->vm_ops->huge_fault)
4823 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4824 return VM_FAULT_FALLBACK;
4825}
4826
4827/* `inline' is required to avoid gcc 4.1.2 build error */
4828static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf)
4829{
4830 const bool unshare = vmf->flags & FAULT_FLAG_UNSHARE;
4831 vm_fault_t ret;
4832
4833 if (vma_is_anonymous(vmf->vma)) {
4834 if (likely(!unshare) &&
4835 userfaultfd_huge_pmd_wp(vmf->vma, vmf->orig_pmd))
4836 return handle_userfault(vmf, VM_UFFD_WP);
4837 return do_huge_pmd_wp_page(vmf);
4838 }
4839
4840 if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4841 if (vmf->vma->vm_ops->huge_fault) {
4842 ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
4843 if (!(ret & VM_FAULT_FALLBACK))
4844 return ret;
4845 }
4846 }
4847
4848 /* COW or write-notify handled on pte level: split pmd. */
4849 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
4850
4851 return VM_FAULT_FALLBACK;
4852}
4853
4854static vm_fault_t create_huge_pud(struct vm_fault *vmf)
4855{
4856#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4857 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4858 /* No support for anonymous transparent PUD pages yet */
4859 if (vma_is_anonymous(vmf->vma))
4860 return VM_FAULT_FALLBACK;
4861 if (vmf->vma->vm_ops->huge_fault)
4862 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4863#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
4864 return VM_FAULT_FALLBACK;
4865}
4866
4867static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
4868{
4869#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
4870 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
4871 vm_fault_t ret;
4872
4873 /* No support for anonymous transparent PUD pages yet */
4874 if (vma_is_anonymous(vmf->vma))
4875 goto split;
4876 if (vmf->vma->vm_flags & (VM_SHARED | VM_MAYSHARE)) {
4877 if (vmf->vma->vm_ops->huge_fault) {
4878 ret = vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
4879 if (!(ret & VM_FAULT_FALLBACK))
4880 return ret;
4881 }
4882 }
4883split:
4884 /* COW or write-notify not handled on PUD level: split pud.*/
4885 __split_huge_pud(vmf->vma, vmf->pud, vmf->address);
4886#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
4887 return VM_FAULT_FALLBACK;
4888}
4889
4890/*
4891 * These routines also need to handle stuff like marking pages dirty
4892 * and/or accessed for architectures that don't do it in hardware (most
4893 * RISC architectures). The early dirtying is also good on the i386.
4894 *
4895 * There is also a hook called "update_mmu_cache()" that architectures
4896 * with external mmu caches can use to update those (ie the Sparc or
4897 * PowerPC hashed page tables that act as extended TLBs).
4898 *
4899 * We enter with non-exclusive mmap_lock (to exclude vma changes, but allow
4900 * concurrent faults).
4901 *
4902 * The mmap_lock may have been released depending on flags and our return value.
4903 * See filemap_fault() and __folio_lock_or_retry().
4904 */
4905static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
4906{
4907 pte_t entry;
4908
4909 if (unlikely(pmd_none(*vmf->pmd))) {
4910 /*
4911 * Leave __pte_alloc() until later: because vm_ops->fault may
4912 * want to allocate huge page, and if we expose page table
4913 * for an instant, it will be difficult to retract from
4914 * concurrent faults and from rmap lookups.
4915 */
4916 vmf->pte = NULL;
4917 vmf->flags &= ~FAULT_FLAG_ORIG_PTE_VALID;
4918 } else {
4919 /*
4920 * A regular pmd is established and it can't morph into a huge
4921 * pmd by anon khugepaged, since that takes mmap_lock in write
4922 * mode; but shmem or file collapse to THP could still morph
4923 * it into a huge pmd: just retry later if so.
4924 */
4925 vmf->pte = pte_offset_map_nolock(vmf->vma->vm_mm, vmf->pmd,
4926 vmf->address, &vmf->ptl);
4927 if (unlikely(!vmf->pte))
4928 return 0;
4929 vmf->orig_pte = ptep_get_lockless(vmf->pte);
4930 vmf->flags |= FAULT_FLAG_ORIG_PTE_VALID;
4931
4932 if (pte_none(vmf->orig_pte)) {
4933 pte_unmap(vmf->pte);
4934 vmf->pte = NULL;
4935 }
4936 }
4937
4938 if (!vmf->pte)
4939 return do_pte_missing(vmf);
4940
4941 if (!pte_present(vmf->orig_pte))
4942 return do_swap_page(vmf);
4943
4944 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
4945 return do_numa_page(vmf);
4946
4947 spin_lock(vmf->ptl);
4948 entry = vmf->orig_pte;
4949 if (unlikely(!pte_same(ptep_get(vmf->pte), entry))) {
4950 update_mmu_tlb(vmf->vma, vmf->address, vmf->pte);
4951 goto unlock;
4952 }
4953 if (vmf->flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
4954 if (!pte_write(entry))
4955 return do_wp_page(vmf);
4956 else if (likely(vmf->flags & FAULT_FLAG_WRITE))
4957 entry = pte_mkdirty(entry);
4958 }
4959 entry = pte_mkyoung(entry);
4960 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4961 vmf->flags & FAULT_FLAG_WRITE)) {
4962 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4963 } else {
4964 /* Skip spurious TLB flush for retried page fault */
4965 if (vmf->flags & FAULT_FLAG_TRIED)
4966 goto unlock;
4967 /*
4968 * This is needed only for protection faults but the arch code
4969 * is not yet telling us if this is a protection fault or not.
4970 * This still avoids useless tlb flushes for .text page faults
4971 * with threads.
4972 */
4973 if (vmf->flags & FAULT_FLAG_WRITE)
4974 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address,
4975 vmf->pte);
4976 }
4977unlock:
4978 pte_unmap_unlock(vmf->pte, vmf->ptl);
4979 return 0;
4980}
4981
4982/*
4983 * By the time we get here, we already hold the mm semaphore
4984 *
4985 * The mmap_lock may have been released depending on flags and our
4986 * return value. See filemap_fault() and __folio_lock_or_retry().
4987 */
4988static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4989 unsigned long address, unsigned int flags)
4990{
4991 struct vm_fault vmf = {
4992 .vma = vma,
4993 .address = address & PAGE_MASK,
4994 .real_address = address,
4995 .flags = flags,
4996 .pgoff = linear_page_index(vma, address),
4997 .gfp_mask = __get_fault_gfp_mask(vma),
4998 };
4999 struct mm_struct *mm = vma->vm_mm;
5000 unsigned long vm_flags = vma->vm_flags;
5001 pgd_t *pgd;
5002 p4d_t *p4d;
5003 vm_fault_t ret;
5004
5005 pgd = pgd_offset(mm, address);
5006 p4d = p4d_alloc(mm, pgd, address);
5007 if (!p4d)
5008 return VM_FAULT_OOM;
5009
5010 vmf.pud = pud_alloc(mm, p4d, address);
5011 if (!vmf.pud)
5012 return VM_FAULT_OOM;
5013retry_pud:
5014 if (pud_none(*vmf.pud) &&
5015 hugepage_vma_check(vma, vm_flags, false, true, true)) {
5016 ret = create_huge_pud(&vmf);
5017 if (!(ret & VM_FAULT_FALLBACK))
5018 return ret;
5019 } else {
5020 pud_t orig_pud = *vmf.pud;
5021
5022 barrier();
5023 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
5024
5025 /*
5026 * TODO once we support anonymous PUDs: NUMA case and
5027 * FAULT_FLAG_UNSHARE handling.
5028 */
5029 if ((flags & FAULT_FLAG_WRITE) && !pud_write(orig_pud)) {
5030 ret = wp_huge_pud(&vmf, orig_pud);
5031 if (!(ret & VM_FAULT_FALLBACK))
5032 return ret;
5033 } else {
5034 huge_pud_set_accessed(&vmf, orig_pud);
5035 return 0;
5036 }
5037 }
5038 }
5039
5040 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
5041 if (!vmf.pmd)
5042 return VM_FAULT_OOM;
5043
5044 /* Huge pud page fault raced with pmd_alloc? */
5045 if (pud_trans_unstable(vmf.pud))
5046 goto retry_pud;
5047
5048 if (pmd_none(*vmf.pmd) &&
5049 hugepage_vma_check(vma, vm_flags, false, true, true)) {
5050 ret = create_huge_pmd(&vmf);
5051 if (!(ret & VM_FAULT_FALLBACK))
5052 return ret;
5053 } else {
5054 vmf.orig_pmd = pmdp_get_lockless(vmf.pmd);
5055
5056 if (unlikely(is_swap_pmd(vmf.orig_pmd))) {
5057 VM_BUG_ON(thp_migration_supported() &&
5058 !is_pmd_migration_entry(vmf.orig_pmd));
5059 if (is_pmd_migration_entry(vmf.orig_pmd))
5060 pmd_migration_entry_wait(mm, vmf.pmd);
5061 return 0;
5062 }
5063 if (pmd_trans_huge(vmf.orig_pmd) || pmd_devmap(vmf.orig_pmd)) {
5064 if (pmd_protnone(vmf.orig_pmd) && vma_is_accessible(vma))
5065 return do_huge_pmd_numa_page(&vmf);
5066
5067 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5068 !pmd_write(vmf.orig_pmd)) {
5069 ret = wp_huge_pmd(&vmf);
5070 if (!(ret & VM_FAULT_FALLBACK))
5071 return ret;
5072 } else {
5073 huge_pmd_set_accessed(&vmf);
5074 return 0;
5075 }
5076 }
5077 }
5078
5079 return handle_pte_fault(&vmf);
5080}
5081
5082/**
5083 * mm_account_fault - Do page fault accounting
5084 *
5085 * @regs: the pt_regs struct pointer. When set to NULL, will skip accounting
5086 * of perf event counters, but we'll still do the per-task accounting to
5087 * the task who triggered this page fault.
5088 * @address: the faulted address.
5089 * @flags: the fault flags.
5090 * @ret: the fault retcode.
5091 *
5092 * This will take care of most of the page fault accounting. Meanwhile, it
5093 * will also include the PERF_COUNT_SW_PAGE_FAULTS_[MAJ|MIN] perf counter
5094 * updates. However, note that the handling of PERF_COUNT_SW_PAGE_FAULTS should
5095 * still be in per-arch page fault handlers at the entry of page fault.
5096 */
5097static inline void mm_account_fault(struct mm_struct *mm, struct pt_regs *regs,
5098 unsigned long address, unsigned int flags,
5099 vm_fault_t ret)
5100{
5101 bool major;
5102
5103 /* Incomplete faults will be accounted upon completion. */
5104 if (ret & VM_FAULT_RETRY)
5105 return;
5106
5107 /*
5108 * To preserve the behavior of older kernels, PGFAULT counters record
5109 * both successful and failed faults, as opposed to perf counters,
5110 * which ignore failed cases.
5111 */
5112 count_vm_event(PGFAULT);
5113 count_memcg_event_mm(mm, PGFAULT);
5114
5115 /*
5116 * Do not account for unsuccessful faults (e.g. when the address wasn't
5117 * valid). That includes arch_vma_access_permitted() failing before
5118 * reaching here. So this is not a "this many hardware page faults"
5119 * counter. We should use the hw profiling for that.
5120 */
5121 if (ret & VM_FAULT_ERROR)
5122 return;
5123
5124 /*
5125 * We define the fault as a major fault when the final successful fault
5126 * is VM_FAULT_MAJOR, or if it retried (which implies that we couldn't
5127 * handle it immediately previously).
5128 */
5129 major = (ret & VM_FAULT_MAJOR) || (flags & FAULT_FLAG_TRIED);
5130
5131 if (major)
5132 current->maj_flt++;
5133 else
5134 current->min_flt++;
5135
5136 /*
5137 * If the fault is done for GUP, regs will be NULL. We only do the
5138 * accounting for the per thread fault counters who triggered the
5139 * fault, and we skip the perf event updates.
5140 */
5141 if (!regs)
5142 return;
5143
5144 if (major)
5145 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
5146 else
5147 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
5148}
5149
5150#ifdef CONFIG_LRU_GEN
5151static void lru_gen_enter_fault(struct vm_area_struct *vma)
5152{
5153 /* the LRU algorithm only applies to accesses with recency */
5154 current->in_lru_fault = vma_has_recency(vma);
5155}
5156
5157static void lru_gen_exit_fault(void)
5158{
5159 current->in_lru_fault = false;
5160}
5161#else
5162static void lru_gen_enter_fault(struct vm_area_struct *vma)
5163{
5164}
5165
5166static void lru_gen_exit_fault(void)
5167{
5168}
5169#endif /* CONFIG_LRU_GEN */
5170
5171static vm_fault_t sanitize_fault_flags(struct vm_area_struct *vma,
5172 unsigned int *flags)
5173{
5174 if (unlikely(*flags & FAULT_FLAG_UNSHARE)) {
5175 if (WARN_ON_ONCE(*flags & FAULT_FLAG_WRITE))
5176 return VM_FAULT_SIGSEGV;
5177 /*
5178 * FAULT_FLAG_UNSHARE only applies to COW mappings. Let's
5179 * just treat it like an ordinary read-fault otherwise.
5180 */
5181 if (!is_cow_mapping(vma->vm_flags))
5182 *flags &= ~FAULT_FLAG_UNSHARE;
5183 } else if (*flags & FAULT_FLAG_WRITE) {
5184 /* Write faults on read-only mappings are impossible ... */
5185 if (WARN_ON_ONCE(!(vma->vm_flags & VM_MAYWRITE)))
5186 return VM_FAULT_SIGSEGV;
5187 /* ... and FOLL_FORCE only applies to COW mappings. */
5188 if (WARN_ON_ONCE(!(vma->vm_flags & VM_WRITE) &&
5189 !is_cow_mapping(vma->vm_flags)))
5190 return VM_FAULT_SIGSEGV;
5191 }
5192 return 0;
5193}
5194
5195/*
5196 * By the time we get here, we already hold the mm semaphore
5197 *
5198 * The mmap_lock may have been released depending on flags and our
5199 * return value. See filemap_fault() and __folio_lock_or_retry().
5200 */
5201vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
5202 unsigned int flags, struct pt_regs *regs)
5203{
5204 /* If the fault handler drops the mmap_lock, vma may be freed */
5205 struct mm_struct *mm = vma->vm_mm;
5206 vm_fault_t ret;
5207
5208 __set_current_state(TASK_RUNNING);
5209
5210 ret = sanitize_fault_flags(vma, &flags);
5211 if (ret)
5212 goto out;
5213
5214 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
5215 flags & FAULT_FLAG_INSTRUCTION,
5216 flags & FAULT_FLAG_REMOTE)) {
5217 ret = VM_FAULT_SIGSEGV;
5218 goto out;
5219 }
5220
5221 /*
5222 * Enable the memcg OOM handling for faults triggered in user
5223 * space. Kernel faults are handled more gracefully.
5224 */
5225 if (flags & FAULT_FLAG_USER)
5226 mem_cgroup_enter_user_fault();
5227
5228 lru_gen_enter_fault(vma);
5229
5230 if (unlikely(is_vm_hugetlb_page(vma)))
5231 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
5232 else
5233 ret = __handle_mm_fault(vma, address, flags);
5234
5235 lru_gen_exit_fault();
5236
5237 if (flags & FAULT_FLAG_USER) {
5238 mem_cgroup_exit_user_fault();
5239 /*
5240 * The task may have entered a memcg OOM situation but
5241 * if the allocation error was handled gracefully (no
5242 * VM_FAULT_OOM), there is no need to kill anything.
5243 * Just clean up the OOM state peacefully.
5244 */
5245 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
5246 mem_cgroup_oom_synchronize(false);
5247 }
5248out:
5249 mm_account_fault(mm, regs, address, flags, ret);
5250
5251 return ret;
5252}
5253EXPORT_SYMBOL_GPL(handle_mm_fault);
5254
5255#ifdef CONFIG_LOCK_MM_AND_FIND_VMA
5256#include <linux/extable.h>
5257
5258static inline bool get_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5259{
5260 /* Even if this succeeds, make it clear we *might* have slept */
5261 if (likely(mmap_read_trylock(mm))) {
5262 might_sleep();
5263 return true;
5264 }
5265
5266 if (regs && !user_mode(regs)) {
5267 unsigned long ip = instruction_pointer(regs);
5268 if (!search_exception_tables(ip))
5269 return false;
5270 }
5271
5272 return !mmap_read_lock_killable(mm);
5273}
5274
5275static inline bool mmap_upgrade_trylock(struct mm_struct *mm)
5276{
5277 /*
5278 * We don't have this operation yet.
5279 *
5280 * It should be easy enough to do: it's basically a
5281 * atomic_long_try_cmpxchg_acquire()
5282 * from RWSEM_READER_BIAS -> RWSEM_WRITER_LOCKED, but
5283 * it also needs the proper lockdep magic etc.
5284 */
5285 return false;
5286}
5287
5288static inline bool upgrade_mmap_lock_carefully(struct mm_struct *mm, struct pt_regs *regs)
5289{
5290 mmap_read_unlock(mm);
5291 if (regs && !user_mode(regs)) {
5292 unsigned long ip = instruction_pointer(regs);
5293 if (!search_exception_tables(ip))
5294 return false;
5295 }
5296 return !mmap_write_lock_killable(mm);
5297}
5298
5299/*
5300 * Helper for page fault handling.
5301 *
5302 * This is kind of equivalend to "mmap_read_lock()" followed
5303 * by "find_extend_vma()", except it's a lot more careful about
5304 * the locking (and will drop the lock on failure).
5305 *
5306 * For example, if we have a kernel bug that causes a page
5307 * fault, we don't want to just use mmap_read_lock() to get
5308 * the mm lock, because that would deadlock if the bug were
5309 * to happen while we're holding the mm lock for writing.
5310 *
5311 * So this checks the exception tables on kernel faults in
5312 * order to only do this all for instructions that are actually
5313 * expected to fault.
5314 *
5315 * We can also actually take the mm lock for writing if we
5316 * need to extend the vma, which helps the VM layer a lot.
5317 */
5318struct vm_area_struct *lock_mm_and_find_vma(struct mm_struct *mm,
5319 unsigned long addr, struct pt_regs *regs)
5320{
5321 struct vm_area_struct *vma;
5322
5323 if (!get_mmap_lock_carefully(mm, regs))
5324 return NULL;
5325
5326 vma = find_vma(mm, addr);
5327 if (likely(vma && (vma->vm_start <= addr)))
5328 return vma;
5329
5330 /*
5331 * Well, dang. We might still be successful, but only
5332 * if we can extend a vma to do so.
5333 */
5334 if (!vma || !(vma->vm_flags & VM_GROWSDOWN)) {
5335 mmap_read_unlock(mm);
5336 return NULL;
5337 }
5338
5339 /*
5340 * We can try to upgrade the mmap lock atomically,
5341 * in which case we can continue to use the vma
5342 * we already looked up.
5343 *
5344 * Otherwise we'll have to drop the mmap lock and
5345 * re-take it, and also look up the vma again,
5346 * re-checking it.
5347 */
5348 if (!mmap_upgrade_trylock(mm)) {
5349 if (!upgrade_mmap_lock_carefully(mm, regs))
5350 return NULL;
5351
5352 vma = find_vma(mm, addr);
5353 if (!vma)
5354 goto fail;
5355 if (vma->vm_start <= addr)
5356 goto success;
5357 if (!(vma->vm_flags & VM_GROWSDOWN))
5358 goto fail;
5359 }
5360
5361 if (expand_stack_locked(vma, addr))
5362 goto fail;
5363
5364success:
5365 mmap_write_downgrade(mm);
5366 return vma;
5367
5368fail:
5369 mmap_write_unlock(mm);
5370 return NULL;
5371}
5372#endif
5373
5374#ifdef CONFIG_PER_VMA_LOCK
5375/*
5376 * Lookup and lock a VMA under RCU protection. Returned VMA is guaranteed to be
5377 * stable and not isolated. If the VMA is not found or is being modified the
5378 * function returns NULL.
5379 */
5380struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
5381 unsigned long address)
5382{
5383 MA_STATE(mas, &mm->mm_mt, address, address);
5384 struct vm_area_struct *vma;
5385
5386 rcu_read_lock();
5387retry:
5388 vma = mas_walk(&mas);
5389 if (!vma)
5390 goto inval;
5391
5392 /* Only anonymous and tcp vmas are supported for now */
5393 if (!vma_is_anonymous(vma) && !vma_is_tcp(vma))
5394 goto inval;
5395
5396 /* find_mergeable_anon_vma uses adjacent vmas which are not locked */
5397 if (!vma->anon_vma && !vma_is_tcp(vma))
5398 goto inval;
5399
5400 if (!vma_start_read(vma))
5401 goto inval;
5402
5403 /*
5404 * Due to the possibility of userfault handler dropping mmap_lock, avoid
5405 * it for now and fall back to page fault handling under mmap_lock.
5406 */
5407 if (userfaultfd_armed(vma)) {
5408 vma_end_read(vma);
5409 goto inval;
5410 }
5411
5412 /* Check since vm_start/vm_end might change before we lock the VMA */
5413 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
5414 vma_end_read(vma);
5415 goto inval;
5416 }
5417
5418 /* Check if the VMA got isolated after we found it */
5419 if (vma->detached) {
5420 vma_end_read(vma);
5421 count_vm_vma_lock_event(VMA_LOCK_MISS);
5422 /* The area was replaced with another one */
5423 goto retry;
5424 }
5425
5426 rcu_read_unlock();
5427 return vma;
5428inval:
5429 rcu_read_unlock();
5430 count_vm_vma_lock_event(VMA_LOCK_ABORT);
5431 return NULL;
5432}
5433#endif /* CONFIG_PER_VMA_LOCK */
5434
5435#ifndef __PAGETABLE_P4D_FOLDED
5436/*
5437 * Allocate p4d page table.
5438 * We've already handled the fast-path in-line.
5439 */
5440int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
5441{
5442 p4d_t *new = p4d_alloc_one(mm, address);
5443 if (!new)
5444 return -ENOMEM;
5445
5446 spin_lock(&mm->page_table_lock);
5447 if (pgd_present(*pgd)) { /* Another has populated it */
5448 p4d_free(mm, new);
5449 } else {
5450 smp_wmb(); /* See comment in pmd_install() */
5451 pgd_populate(mm, pgd, new);
5452 }
5453 spin_unlock(&mm->page_table_lock);
5454 return 0;
5455}
5456#endif /* __PAGETABLE_P4D_FOLDED */
5457
5458#ifndef __PAGETABLE_PUD_FOLDED
5459/*
5460 * Allocate page upper directory.
5461 * We've already handled the fast-path in-line.
5462 */
5463int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
5464{
5465 pud_t *new = pud_alloc_one(mm, address);
5466 if (!new)
5467 return -ENOMEM;
5468
5469 spin_lock(&mm->page_table_lock);
5470 if (!p4d_present(*p4d)) {
5471 mm_inc_nr_puds(mm);
5472 smp_wmb(); /* See comment in pmd_install() */
5473 p4d_populate(mm, p4d, new);
5474 } else /* Another has populated it */
5475 pud_free(mm, new);
5476 spin_unlock(&mm->page_table_lock);
5477 return 0;
5478}
5479#endif /* __PAGETABLE_PUD_FOLDED */
5480
5481#ifndef __PAGETABLE_PMD_FOLDED
5482/*
5483 * Allocate page middle directory.
5484 * We've already handled the fast-path in-line.
5485 */
5486int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
5487{
5488 spinlock_t *ptl;
5489 pmd_t *new = pmd_alloc_one(mm, address);
5490 if (!new)
5491 return -ENOMEM;
5492
5493 ptl = pud_lock(mm, pud);
5494 if (!pud_present(*pud)) {
5495 mm_inc_nr_pmds(mm);
5496 smp_wmb(); /* See comment in pmd_install() */
5497 pud_populate(mm, pud, new);
5498 } else { /* Another has populated it */
5499 pmd_free(mm, new);
5500 }
5501 spin_unlock(ptl);
5502 return 0;
5503}
5504#endif /* __PAGETABLE_PMD_FOLDED */
5505
5506/**
5507 * follow_pte - look up PTE at a user virtual address
5508 * @mm: the mm_struct of the target address space
5509 * @address: user virtual address
5510 * @ptepp: location to store found PTE
5511 * @ptlp: location to store the lock for the PTE
5512 *
5513 * On a successful return, the pointer to the PTE is stored in @ptepp;
5514 * the corresponding lock is taken and its location is stored in @ptlp.
5515 * The contents of the PTE are only stable until @ptlp is released;
5516 * any further use, if any, must be protected against invalidation
5517 * with MMU notifiers.
5518 *
5519 * Only IO mappings and raw PFN mappings are allowed. The mmap semaphore
5520 * should be taken for read.
5521 *
5522 * KVM uses this function. While it is arguably less bad than ``follow_pfn``,
5523 * it is not a good general-purpose API.
5524 *
5525 * Return: zero on success, -ve otherwise.
5526 */
5527int follow_pte(struct mm_struct *mm, unsigned long address,
5528 pte_t **ptepp, spinlock_t **ptlp)
5529{
5530 pgd_t *pgd;
5531 p4d_t *p4d;
5532 pud_t *pud;
5533 pmd_t *pmd;
5534 pte_t *ptep;
5535
5536 pgd = pgd_offset(mm, address);
5537 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
5538 goto out;
5539
5540 p4d = p4d_offset(pgd, address);
5541 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
5542 goto out;
5543
5544 pud = pud_offset(p4d, address);
5545 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
5546 goto out;
5547
5548 pmd = pmd_offset(pud, address);
5549 VM_BUG_ON(pmd_trans_huge(*pmd));
5550
5551 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
5552 if (!ptep)
5553 goto out;
5554 if (!pte_present(ptep_get(ptep)))
5555 goto unlock;
5556 *ptepp = ptep;
5557 return 0;
5558unlock:
5559 pte_unmap_unlock(ptep, *ptlp);
5560out:
5561 return -EINVAL;
5562}
5563EXPORT_SYMBOL_GPL(follow_pte);
5564
5565/**
5566 * follow_pfn - look up PFN at a user virtual address
5567 * @vma: memory mapping
5568 * @address: user virtual address
5569 * @pfn: location to store found PFN
5570 *
5571 * Only IO mappings and raw PFN mappings are allowed.
5572 *
5573 * This function does not allow the caller to read the permissions
5574 * of the PTE. Do not use it.
5575 *
5576 * Return: zero and the pfn at @pfn on success, -ve otherwise.
5577 */
5578int follow_pfn(struct vm_area_struct *vma, unsigned long address,
5579 unsigned long *pfn)
5580{
5581 int ret = -EINVAL;
5582 spinlock_t *ptl;
5583 pte_t *ptep;
5584
5585 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5586 return ret;
5587
5588 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
5589 if (ret)
5590 return ret;
5591 *pfn = pte_pfn(ptep_get(ptep));
5592 pte_unmap_unlock(ptep, ptl);
5593 return 0;
5594}
5595EXPORT_SYMBOL(follow_pfn);
5596
5597#ifdef CONFIG_HAVE_IOREMAP_PROT
5598int follow_phys(struct vm_area_struct *vma,
5599 unsigned long address, unsigned int flags,
5600 unsigned long *prot, resource_size_t *phys)
5601{
5602 int ret = -EINVAL;
5603 pte_t *ptep, pte;
5604 spinlock_t *ptl;
5605
5606 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5607 goto out;
5608
5609 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
5610 goto out;
5611 pte = ptep_get(ptep);
5612
5613 if ((flags & FOLL_WRITE) && !pte_write(pte))
5614 goto unlock;
5615
5616 *prot = pgprot_val(pte_pgprot(pte));
5617 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5618
5619 ret = 0;
5620unlock:
5621 pte_unmap_unlock(ptep, ptl);
5622out:
5623 return ret;
5624}
5625
5626/**
5627 * generic_access_phys - generic implementation for iomem mmap access
5628 * @vma: the vma to access
5629 * @addr: userspace address, not relative offset within @vma
5630 * @buf: buffer to read/write
5631 * @len: length of transfer
5632 * @write: set to FOLL_WRITE when writing, otherwise reading
5633 *
5634 * This is a generic implementation for &vm_operations_struct.access for an
5635 * iomem mapping. This callback is used by access_process_vm() when the @vma is
5636 * not page based.
5637 */
5638int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
5639 void *buf, int len, int write)
5640{
5641 resource_size_t phys_addr;
5642 unsigned long prot = 0;
5643 void __iomem *maddr;
5644 pte_t *ptep, pte;
5645 spinlock_t *ptl;
5646 int offset = offset_in_page(addr);
5647 int ret = -EINVAL;
5648
5649 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
5650 return -EINVAL;
5651
5652retry:
5653 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5654 return -EINVAL;
5655 pte = ptep_get(ptep);
5656 pte_unmap_unlock(ptep, ptl);
5657
5658 prot = pgprot_val(pte_pgprot(pte));
5659 phys_addr = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
5660
5661 if ((write & FOLL_WRITE) && !pte_write(pte))
5662 return -EINVAL;
5663
5664 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
5665 if (!maddr)
5666 return -ENOMEM;
5667
5668 if (follow_pte(vma->vm_mm, addr, &ptep, &ptl))
5669 goto out_unmap;
5670
5671 if (!pte_same(pte, ptep_get(ptep))) {
5672 pte_unmap_unlock(ptep, ptl);
5673 iounmap(maddr);
5674
5675 goto retry;
5676 }
5677
5678 if (write)
5679 memcpy_toio(maddr + offset, buf, len);
5680 else
5681 memcpy_fromio(buf, maddr + offset, len);
5682 ret = len;
5683 pte_unmap_unlock(ptep, ptl);
5684out_unmap:
5685 iounmap(maddr);
5686
5687 return ret;
5688}
5689EXPORT_SYMBOL_GPL(generic_access_phys);
5690#endif
5691
5692/*
5693 * Access another process' address space as given in mm.
5694 */
5695int __access_remote_vm(struct mm_struct *mm, unsigned long addr, void *buf,
5696 int len, unsigned int gup_flags)
5697{
5698 void *old_buf = buf;
5699 int write = gup_flags & FOLL_WRITE;
5700
5701 if (mmap_read_lock_killable(mm))
5702 return 0;
5703
5704 /* Avoid triggering the temporary warning in __get_user_pages */
5705 if (!vma_lookup(mm, addr) && !expand_stack(mm, addr))
5706 return 0;
5707
5708 /* ignore errors, just check how much was successfully transferred */
5709 while (len) {
5710 int bytes, offset;
5711 void *maddr;
5712 struct vm_area_struct *vma = NULL;
5713 struct page *page = get_user_page_vma_remote(mm, addr,
5714 gup_flags, &vma);
5715
5716 if (IS_ERR_OR_NULL(page)) {
5717 /* We might need to expand the stack to access it */
5718 vma = vma_lookup(mm, addr);
5719 if (!vma) {
5720 vma = expand_stack(mm, addr);
5721
5722 /* mmap_lock was dropped on failure */
5723 if (!vma)
5724 return buf - old_buf;
5725
5726 /* Try again if stack expansion worked */
5727 continue;
5728 }
5729
5730
5731 /*
5732 * Check if this is a VM_IO | VM_PFNMAP VMA, which
5733 * we can access using slightly different code.
5734 */
5735 bytes = 0;
5736#ifdef CONFIG_HAVE_IOREMAP_PROT
5737 if (vma->vm_ops && vma->vm_ops->access)
5738 bytes = vma->vm_ops->access(vma, addr, buf,
5739 len, write);
5740#endif
5741 if (bytes <= 0)
5742 break;
5743 } else {
5744 bytes = len;
5745 offset = addr & (PAGE_SIZE-1);
5746 if (bytes > PAGE_SIZE-offset)
5747 bytes = PAGE_SIZE-offset;
5748
5749 maddr = kmap(page);
5750 if (write) {
5751 copy_to_user_page(vma, page, addr,
5752 maddr + offset, buf, bytes);
5753 set_page_dirty_lock(page);
5754 } else {
5755 copy_from_user_page(vma, page, addr,
5756 buf, maddr + offset, bytes);
5757 }
5758 kunmap(page);
5759 put_page(page);
5760 }
5761 len -= bytes;
5762 buf += bytes;
5763 addr += bytes;
5764 }
5765 mmap_read_unlock(mm);
5766
5767 return buf - old_buf;
5768}
5769
5770/**
5771 * access_remote_vm - access another process' address space
5772 * @mm: the mm_struct of the target address space
5773 * @addr: start address to access
5774 * @buf: source or destination buffer
5775 * @len: number of bytes to transfer
5776 * @gup_flags: flags modifying lookup behaviour
5777 *
5778 * The caller must hold a reference on @mm.
5779 *
5780 * Return: number of bytes copied from source to destination.
5781 */
5782int access_remote_vm(struct mm_struct *mm, unsigned long addr,
5783 void *buf, int len, unsigned int gup_flags)
5784{
5785 return __access_remote_vm(mm, addr, buf, len, gup_flags);
5786}
5787
5788/*
5789 * Access another process' address space.
5790 * Source/target buffer must be kernel space,
5791 * Do not walk the page table directly, use get_user_pages
5792 */
5793int access_process_vm(struct task_struct *tsk, unsigned long addr,
5794 void *buf, int len, unsigned int gup_flags)
5795{
5796 struct mm_struct *mm;
5797 int ret;
5798
5799 mm = get_task_mm(tsk);
5800 if (!mm)
5801 return 0;
5802
5803 ret = __access_remote_vm(mm, addr, buf, len, gup_flags);
5804
5805 mmput(mm);
5806
5807 return ret;
5808}
5809EXPORT_SYMBOL_GPL(access_process_vm);
5810
5811/*
5812 * Print the name of a VMA.
5813 */
5814void print_vma_addr(char *prefix, unsigned long ip)
5815{
5816 struct mm_struct *mm = current->mm;
5817 struct vm_area_struct *vma;
5818
5819 /*
5820 * we might be running from an atomic context so we cannot sleep
5821 */
5822 if (!mmap_read_trylock(mm))
5823 return;
5824
5825 vma = find_vma(mm, ip);
5826 if (vma && vma->vm_file) {
5827 struct file *f = vma->vm_file;
5828 char *buf = (char *)__get_free_page(GFP_NOWAIT);
5829 if (buf) {
5830 char *p;
5831
5832 p = file_path(f, buf, PAGE_SIZE);
5833 if (IS_ERR(p))
5834 p = "?";
5835 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
5836 vma->vm_start,
5837 vma->vm_end - vma->vm_start);
5838 free_page((unsigned long)buf);
5839 }
5840 }
5841 mmap_read_unlock(mm);
5842}
5843
5844#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5845void __might_fault(const char *file, int line)
5846{
5847 if (pagefault_disabled())
5848 return;
5849 __might_sleep(file, line);
5850#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
5851 if (current->mm)
5852 might_lock_read(¤t->mm->mmap_lock);
5853#endif
5854}
5855EXPORT_SYMBOL(__might_fault);
5856#endif
5857
5858#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
5859/*
5860 * Process all subpages of the specified huge page with the specified
5861 * operation. The target subpage will be processed last to keep its
5862 * cache lines hot.
5863 */
5864static inline int process_huge_page(
5865 unsigned long addr_hint, unsigned int pages_per_huge_page,
5866 int (*process_subpage)(unsigned long addr, int idx, void *arg),
5867 void *arg)
5868{
5869 int i, n, base, l, ret;
5870 unsigned long addr = addr_hint &
5871 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5872
5873 /* Process target subpage last to keep its cache lines hot */
5874 might_sleep();
5875 n = (addr_hint - addr) / PAGE_SIZE;
5876 if (2 * n <= pages_per_huge_page) {
5877 /* If target subpage in first half of huge page */
5878 base = 0;
5879 l = n;
5880 /* Process subpages at the end of huge page */
5881 for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
5882 cond_resched();
5883 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
5884 if (ret)
5885 return ret;
5886 }
5887 } else {
5888 /* If target subpage in second half of huge page */
5889 base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
5890 l = pages_per_huge_page - n;
5891 /* Process subpages at the begin of huge page */
5892 for (i = 0; i < base; i++) {
5893 cond_resched();
5894 ret = process_subpage(addr + i * PAGE_SIZE, i, arg);
5895 if (ret)
5896 return ret;
5897 }
5898 }
5899 /*
5900 * Process remaining subpages in left-right-left-right pattern
5901 * towards the target subpage
5902 */
5903 for (i = 0; i < l; i++) {
5904 int left_idx = base + i;
5905 int right_idx = base + 2 * l - 1 - i;
5906
5907 cond_resched();
5908 ret = process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
5909 if (ret)
5910 return ret;
5911 cond_resched();
5912 ret = process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
5913 if (ret)
5914 return ret;
5915 }
5916 return 0;
5917}
5918
5919static void clear_gigantic_page(struct page *page,
5920 unsigned long addr,
5921 unsigned int pages_per_huge_page)
5922{
5923 int i;
5924 struct page *p;
5925
5926 might_sleep();
5927 for (i = 0; i < pages_per_huge_page; i++) {
5928 p = nth_page(page, i);
5929 cond_resched();
5930 clear_user_highpage(p, addr + i * PAGE_SIZE);
5931 }
5932}
5933
5934static int clear_subpage(unsigned long addr, int idx, void *arg)
5935{
5936 struct page *page = arg;
5937
5938 clear_user_highpage(page + idx, addr);
5939 return 0;
5940}
5941
5942void clear_huge_page(struct page *page,
5943 unsigned long addr_hint, unsigned int pages_per_huge_page)
5944{
5945 unsigned long addr = addr_hint &
5946 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
5947
5948 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
5949 clear_gigantic_page(page, addr, pages_per_huge_page);
5950 return;
5951 }
5952
5953 process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
5954}
5955
5956static int copy_user_gigantic_page(struct folio *dst, struct folio *src,
5957 unsigned long addr,
5958 struct vm_area_struct *vma,
5959 unsigned int pages_per_huge_page)
5960{
5961 int i;
5962 struct page *dst_page;
5963 struct page *src_page;
5964
5965 for (i = 0; i < pages_per_huge_page; i++) {
5966 dst_page = folio_page(dst, i);
5967 src_page = folio_page(src, i);
5968
5969 cond_resched();
5970 if (copy_mc_user_highpage(dst_page, src_page,
5971 addr + i*PAGE_SIZE, vma)) {
5972 memory_failure_queue(page_to_pfn(src_page), 0);
5973 return -EHWPOISON;
5974 }
5975 }
5976 return 0;
5977}
5978
5979struct copy_subpage_arg {
5980 struct page *dst;
5981 struct page *src;
5982 struct vm_area_struct *vma;
5983};
5984
5985static int copy_subpage(unsigned long addr, int idx, void *arg)
5986{
5987 struct copy_subpage_arg *copy_arg = arg;
5988
5989 if (copy_mc_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
5990 addr, copy_arg->vma)) {
5991 memory_failure_queue(page_to_pfn(copy_arg->src + idx), 0);
5992 return -EHWPOISON;
5993 }
5994 return 0;
5995}
5996
5997int copy_user_large_folio(struct folio *dst, struct folio *src,
5998 unsigned long addr_hint, struct vm_area_struct *vma)
5999{
6000 unsigned int pages_per_huge_page = folio_nr_pages(dst);
6001 unsigned long addr = addr_hint &
6002 ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
6003 struct copy_subpage_arg arg = {
6004 .dst = &dst->page,
6005 .src = &src->page,
6006 .vma = vma,
6007 };
6008
6009 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES))
6010 return copy_user_gigantic_page(dst, src, addr, vma,
6011 pages_per_huge_page);
6012
6013 return process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
6014}
6015
6016long copy_folio_from_user(struct folio *dst_folio,
6017 const void __user *usr_src,
6018 bool allow_pagefault)
6019{
6020 void *kaddr;
6021 unsigned long i, rc = 0;
6022 unsigned int nr_pages = folio_nr_pages(dst_folio);
6023 unsigned long ret_val = nr_pages * PAGE_SIZE;
6024 struct page *subpage;
6025
6026 for (i = 0; i < nr_pages; i++) {
6027 subpage = folio_page(dst_folio, i);
6028 kaddr = kmap_local_page(subpage);
6029 if (!allow_pagefault)
6030 pagefault_disable();
6031 rc = copy_from_user(kaddr, usr_src + i * PAGE_SIZE, PAGE_SIZE);
6032 if (!allow_pagefault)
6033 pagefault_enable();
6034 kunmap_local(kaddr);
6035
6036 ret_val -= (PAGE_SIZE - rc);
6037 if (rc)
6038 break;
6039
6040 flush_dcache_page(subpage);
6041
6042 cond_resched();
6043 }
6044 return ret_val;
6045}
6046#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
6047
6048#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
6049
6050static struct kmem_cache *page_ptl_cachep;
6051
6052void __init ptlock_cache_init(void)
6053{
6054 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
6055 SLAB_PANIC, NULL);
6056}
6057
6058bool ptlock_alloc(struct page *page)
6059{
6060 spinlock_t *ptl;
6061
6062 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
6063 if (!ptl)
6064 return false;
6065 page->ptl = ptl;
6066 return true;
6067}
6068
6069void ptlock_free(struct page *page)
6070{
6071 kmem_cache_free(page_ptl_cachep, page->ptl);
6072}
6073#endif