Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/mm/filemap.c
4 *
5 * Copyright (C) 1994-1999 Linus Torvalds
6 */
7
8/*
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
12 */
13#include <linux/export.h>
14#include <linux/compiler.h>
15#include <linux/dax.h>
16#include <linux/fs.h>
17#include <linux/sched/signal.h>
18#include <linux/uaccess.h>
19#include <linux/capability.h>
20#include <linux/kernel_stat.h>
21#include <linux/gfp.h>
22#include <linux/mm.h>
23#include <linux/swap.h>
24#include <linux/swapops.h>
25#include <linux/syscalls.h>
26#include <linux/mman.h>
27#include <linux/pagemap.h>
28#include <linux/file.h>
29#include <linux/uio.h>
30#include <linux/error-injection.h>
31#include <linux/hash.h>
32#include <linux/writeback.h>
33#include <linux/backing-dev.h>
34#include <linux/pagevec.h>
35#include <linux/security.h>
36#include <linux/cpuset.h>
37#include <linux/hugetlb.h>
38#include <linux/memcontrol.h>
39#include <linux/shmem_fs.h>
40#include <linux/rmap.h>
41#include <linux/delayacct.h>
42#include <linux/psi.h>
43#include <linux/ramfs.h>
44#include <linux/page_idle.h>
45#include <linux/migrate.h>
46#include <linux/pipe_fs_i.h>
47#include <linux/splice.h>
48#include <asm/pgalloc.h>
49#include <asm/tlbflush.h>
50#include "internal.h"
51
52#define CREATE_TRACE_POINTS
53#include <trace/events/filemap.h>
54
55/*
56 * FIXME: remove all knowledge of the buffer layer from the core VM
57 */
58#include <linux/buffer_head.h> /* for try_to_free_buffers */
59
60#include <asm/mman.h>
61
62#include "swap.h"
63
64/*
65 * Shared mappings implemented 30.11.1994. It's not fully working yet,
66 * though.
67 *
68 * Shared mappings now work. 15.8.1995 Bruno.
69 *
70 * finished 'unifying' the page and buffer cache and SMP-threaded the
71 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
72 *
73 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
74 */
75
76/*
77 * Lock ordering:
78 *
79 * ->i_mmap_rwsem (truncate_pagecache)
80 * ->private_lock (__free_pte->block_dirty_folio)
81 * ->swap_lock (exclusive_swap_page, others)
82 * ->i_pages lock
83 *
84 * ->i_rwsem
85 * ->invalidate_lock (acquired by fs in truncate path)
86 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
87 *
88 * ->mmap_lock
89 * ->i_mmap_rwsem
90 * ->page_table_lock or pte_lock (various, mainly in memory.c)
91 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
92 *
93 * ->mmap_lock
94 * ->invalidate_lock (filemap_fault)
95 * ->lock_page (filemap_fault, access_process_vm)
96 *
97 * ->i_rwsem (generic_perform_write)
98 * ->mmap_lock (fault_in_readable->do_page_fault)
99 *
100 * bdi->wb.list_lock
101 * sb_lock (fs/fs-writeback.c)
102 * ->i_pages lock (__sync_single_inode)
103 *
104 * ->i_mmap_rwsem
105 * ->anon_vma.lock (vma_merge)
106 *
107 * ->anon_vma.lock
108 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
109 *
110 * ->page_table_lock or pte_lock
111 * ->swap_lock (try_to_unmap_one)
112 * ->private_lock (try_to_unmap_one)
113 * ->i_pages lock (try_to_unmap_one)
114 * ->lruvec->lru_lock (follow_page->mark_page_accessed)
115 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page)
116 * ->private_lock (page_remove_rmap->set_page_dirty)
117 * ->i_pages lock (page_remove_rmap->set_page_dirty)
118 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
119 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
120 * ->memcg->move_lock (page_remove_rmap->folio_memcg_lock)
121 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
122 * ->inode->i_lock (zap_pte_range->set_page_dirty)
123 * ->private_lock (zap_pte_range->block_dirty_folio)
124 *
125 * ->i_mmap_rwsem
126 * ->tasklist_lock (memory_failure, collect_procs_ao)
127 */
128
129static void page_cache_delete(struct address_space *mapping,
130 struct folio *folio, void *shadow)
131{
132 XA_STATE(xas, &mapping->i_pages, folio->index);
133 long nr = 1;
134
135 mapping_set_update(&xas, mapping);
136
137 /* hugetlb pages are represented by a single entry in the xarray */
138 if (!folio_test_hugetlb(folio)) {
139 xas_set_order(&xas, folio->index, folio_order(folio));
140 nr = folio_nr_pages(folio);
141 }
142
143 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
144
145 xas_store(&xas, shadow);
146 xas_init_marks(&xas);
147
148 folio->mapping = NULL;
149 /* Leave page->index set: truncation lookup relies upon it */
150 mapping->nrpages -= nr;
151}
152
153static void filemap_unaccount_folio(struct address_space *mapping,
154 struct folio *folio)
155{
156 long nr;
157
158 VM_BUG_ON_FOLIO(folio_mapped(folio), folio);
159 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(folio_mapped(folio))) {
160 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
161 current->comm, folio_pfn(folio));
162 dump_page(&folio->page, "still mapped when deleted");
163 dump_stack();
164 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
165
166 if (mapping_exiting(mapping) && !folio_test_large(folio)) {
167 int mapcount = page_mapcount(&folio->page);
168
169 if (folio_ref_count(folio) >= mapcount + 2) {
170 /*
171 * All vmas have already been torn down, so it's
172 * a good bet that actually the page is unmapped
173 * and we'd rather not leak it: if we're wrong,
174 * another bad page check should catch it later.
175 */
176 page_mapcount_reset(&folio->page);
177 folio_ref_sub(folio, mapcount);
178 }
179 }
180 }
181
182 /* hugetlb folios do not participate in page cache accounting. */
183 if (folio_test_hugetlb(folio))
184 return;
185
186 nr = folio_nr_pages(folio);
187
188 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
189 if (folio_test_swapbacked(folio)) {
190 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
191 if (folio_test_pmd_mappable(folio))
192 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, -nr);
193 } else if (folio_test_pmd_mappable(folio)) {
194 __lruvec_stat_mod_folio(folio, NR_FILE_THPS, -nr);
195 filemap_nr_thps_dec(mapping);
196 }
197
198 /*
199 * At this point folio must be either written or cleaned by
200 * truncate. Dirty folio here signals a bug and loss of
201 * unwritten data - on ordinary filesystems.
202 *
203 * But it's harmless on in-memory filesystems like tmpfs; and can
204 * occur when a driver which did get_user_pages() sets page dirty
205 * before putting it, while the inode is being finally evicted.
206 *
207 * Below fixes dirty accounting after removing the folio entirely
208 * but leaves the dirty flag set: it has no effect for truncated
209 * folio and anyway will be cleared before returning folio to
210 * buddy allocator.
211 */
212 if (WARN_ON_ONCE(folio_test_dirty(folio) &&
213 mapping_can_writeback(mapping)))
214 folio_account_cleaned(folio, inode_to_wb(mapping->host));
215}
216
217/*
218 * Delete a page from the page cache and free it. Caller has to make
219 * sure the page is locked and that nobody else uses it - or that usage
220 * is safe. The caller must hold the i_pages lock.
221 */
222void __filemap_remove_folio(struct folio *folio, void *shadow)
223{
224 struct address_space *mapping = folio->mapping;
225
226 trace_mm_filemap_delete_from_page_cache(folio);
227 filemap_unaccount_folio(mapping, folio);
228 page_cache_delete(mapping, folio, shadow);
229}
230
231void filemap_free_folio(struct address_space *mapping, struct folio *folio)
232{
233 void (*free_folio)(struct folio *);
234 int refs = 1;
235
236 free_folio = mapping->a_ops->free_folio;
237 if (free_folio)
238 free_folio(folio);
239
240 if (folio_test_large(folio) && !folio_test_hugetlb(folio))
241 refs = folio_nr_pages(folio);
242 folio_put_refs(folio, refs);
243}
244
245/**
246 * filemap_remove_folio - Remove folio from page cache.
247 * @folio: The folio.
248 *
249 * This must be called only on folios that are locked and have been
250 * verified to be in the page cache. It will never put the folio into
251 * the free list because the caller has a reference on the page.
252 */
253void filemap_remove_folio(struct folio *folio)
254{
255 struct address_space *mapping = folio->mapping;
256
257 BUG_ON(!folio_test_locked(folio));
258 spin_lock(&mapping->host->i_lock);
259 xa_lock_irq(&mapping->i_pages);
260 __filemap_remove_folio(folio, NULL);
261 xa_unlock_irq(&mapping->i_pages);
262 if (mapping_shrinkable(mapping))
263 inode_add_lru(mapping->host);
264 spin_unlock(&mapping->host->i_lock);
265
266 filemap_free_folio(mapping, folio);
267}
268
269/*
270 * page_cache_delete_batch - delete several folios from page cache
271 * @mapping: the mapping to which folios belong
272 * @fbatch: batch of folios to delete
273 *
274 * The function walks over mapping->i_pages and removes folios passed in
275 * @fbatch from the mapping. The function expects @fbatch to be sorted
276 * by page index and is optimised for it to be dense.
277 * It tolerates holes in @fbatch (mapping entries at those indices are not
278 * modified).
279 *
280 * The function expects the i_pages lock to be held.
281 */
282static void page_cache_delete_batch(struct address_space *mapping,
283 struct folio_batch *fbatch)
284{
285 XA_STATE(xas, &mapping->i_pages, fbatch->folios[0]->index);
286 long total_pages = 0;
287 int i = 0;
288 struct folio *folio;
289
290 mapping_set_update(&xas, mapping);
291 xas_for_each(&xas, folio, ULONG_MAX) {
292 if (i >= folio_batch_count(fbatch))
293 break;
294
295 /* A swap/dax/shadow entry got inserted? Skip it. */
296 if (xa_is_value(folio))
297 continue;
298 /*
299 * A page got inserted in our range? Skip it. We have our
300 * pages locked so they are protected from being removed.
301 * If we see a page whose index is higher than ours, it
302 * means our page has been removed, which shouldn't be
303 * possible because we're holding the PageLock.
304 */
305 if (folio != fbatch->folios[i]) {
306 VM_BUG_ON_FOLIO(folio->index >
307 fbatch->folios[i]->index, folio);
308 continue;
309 }
310
311 WARN_ON_ONCE(!folio_test_locked(folio));
312
313 folio->mapping = NULL;
314 /* Leave folio->index set: truncation lookup relies on it */
315
316 i++;
317 xas_store(&xas, NULL);
318 total_pages += folio_nr_pages(folio);
319 }
320 mapping->nrpages -= total_pages;
321}
322
323void delete_from_page_cache_batch(struct address_space *mapping,
324 struct folio_batch *fbatch)
325{
326 int i;
327
328 if (!folio_batch_count(fbatch))
329 return;
330
331 spin_lock(&mapping->host->i_lock);
332 xa_lock_irq(&mapping->i_pages);
333 for (i = 0; i < folio_batch_count(fbatch); i++) {
334 struct folio *folio = fbatch->folios[i];
335
336 trace_mm_filemap_delete_from_page_cache(folio);
337 filemap_unaccount_folio(mapping, folio);
338 }
339 page_cache_delete_batch(mapping, fbatch);
340 xa_unlock_irq(&mapping->i_pages);
341 if (mapping_shrinkable(mapping))
342 inode_add_lru(mapping->host);
343 spin_unlock(&mapping->host->i_lock);
344
345 for (i = 0; i < folio_batch_count(fbatch); i++)
346 filemap_free_folio(mapping, fbatch->folios[i]);
347}
348
349int filemap_check_errors(struct address_space *mapping)
350{
351 int ret = 0;
352 /* Check for outstanding write errors */
353 if (test_bit(AS_ENOSPC, &mapping->flags) &&
354 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
355 ret = -ENOSPC;
356 if (test_bit(AS_EIO, &mapping->flags) &&
357 test_and_clear_bit(AS_EIO, &mapping->flags))
358 ret = -EIO;
359 return ret;
360}
361EXPORT_SYMBOL(filemap_check_errors);
362
363static int filemap_check_and_keep_errors(struct address_space *mapping)
364{
365 /* Check for outstanding write errors */
366 if (test_bit(AS_EIO, &mapping->flags))
367 return -EIO;
368 if (test_bit(AS_ENOSPC, &mapping->flags))
369 return -ENOSPC;
370 return 0;
371}
372
373/**
374 * filemap_fdatawrite_wbc - start writeback on mapping dirty pages in range
375 * @mapping: address space structure to write
376 * @wbc: the writeback_control controlling the writeout
377 *
378 * Call writepages on the mapping using the provided wbc to control the
379 * writeout.
380 *
381 * Return: %0 on success, negative error code otherwise.
382 */
383int filemap_fdatawrite_wbc(struct address_space *mapping,
384 struct writeback_control *wbc)
385{
386 int ret;
387
388 if (!mapping_can_writeback(mapping) ||
389 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
390 return 0;
391
392 wbc_attach_fdatawrite_inode(wbc, mapping->host);
393 ret = do_writepages(mapping, wbc);
394 wbc_detach_inode(wbc);
395 return ret;
396}
397EXPORT_SYMBOL(filemap_fdatawrite_wbc);
398
399/**
400 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
401 * @mapping: address space structure to write
402 * @start: offset in bytes where the range starts
403 * @end: offset in bytes where the range ends (inclusive)
404 * @sync_mode: enable synchronous operation
405 *
406 * Start writeback against all of a mapping's dirty pages that lie
407 * within the byte offsets <start, end> inclusive.
408 *
409 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
410 * opposed to a regular memory cleansing writeback. The difference between
411 * these two operations is that if a dirty page/buffer is encountered, it must
412 * be waited upon, and not just skipped over.
413 *
414 * Return: %0 on success, negative error code otherwise.
415 */
416int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
417 loff_t end, int sync_mode)
418{
419 struct writeback_control wbc = {
420 .sync_mode = sync_mode,
421 .nr_to_write = LONG_MAX,
422 .range_start = start,
423 .range_end = end,
424 };
425
426 return filemap_fdatawrite_wbc(mapping, &wbc);
427}
428
429static inline int __filemap_fdatawrite(struct address_space *mapping,
430 int sync_mode)
431{
432 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
433}
434
435int filemap_fdatawrite(struct address_space *mapping)
436{
437 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
438}
439EXPORT_SYMBOL(filemap_fdatawrite);
440
441int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
442 loff_t end)
443{
444 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
445}
446EXPORT_SYMBOL(filemap_fdatawrite_range);
447
448/**
449 * filemap_flush - mostly a non-blocking flush
450 * @mapping: target address_space
451 *
452 * This is a mostly non-blocking flush. Not suitable for data-integrity
453 * purposes - I/O may not be started against all dirty pages.
454 *
455 * Return: %0 on success, negative error code otherwise.
456 */
457int filemap_flush(struct address_space *mapping)
458{
459 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
460}
461EXPORT_SYMBOL(filemap_flush);
462
463/**
464 * filemap_range_has_page - check if a page exists in range.
465 * @mapping: address space within which to check
466 * @start_byte: offset in bytes where the range starts
467 * @end_byte: offset in bytes where the range ends (inclusive)
468 *
469 * Find at least one page in the range supplied, usually used to check if
470 * direct writing in this range will trigger a writeback.
471 *
472 * Return: %true if at least one page exists in the specified range,
473 * %false otherwise.
474 */
475bool filemap_range_has_page(struct address_space *mapping,
476 loff_t start_byte, loff_t end_byte)
477{
478 struct folio *folio;
479 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
480 pgoff_t max = end_byte >> PAGE_SHIFT;
481
482 if (end_byte < start_byte)
483 return false;
484
485 rcu_read_lock();
486 for (;;) {
487 folio = xas_find(&xas, max);
488 if (xas_retry(&xas, folio))
489 continue;
490 /* Shadow entries don't count */
491 if (xa_is_value(folio))
492 continue;
493 /*
494 * We don't need to try to pin this page; we're about to
495 * release the RCU lock anyway. It is enough to know that
496 * there was a page here recently.
497 */
498 break;
499 }
500 rcu_read_unlock();
501
502 return folio != NULL;
503}
504EXPORT_SYMBOL(filemap_range_has_page);
505
506static void __filemap_fdatawait_range(struct address_space *mapping,
507 loff_t start_byte, loff_t end_byte)
508{
509 pgoff_t index = start_byte >> PAGE_SHIFT;
510 pgoff_t end = end_byte >> PAGE_SHIFT;
511 struct folio_batch fbatch;
512 unsigned nr_folios;
513
514 folio_batch_init(&fbatch);
515
516 while (index <= end) {
517 unsigned i;
518
519 nr_folios = filemap_get_folios_tag(mapping, &index, end,
520 PAGECACHE_TAG_WRITEBACK, &fbatch);
521
522 if (!nr_folios)
523 break;
524
525 for (i = 0; i < nr_folios; i++) {
526 struct folio *folio = fbatch.folios[i];
527
528 folio_wait_writeback(folio);
529 folio_clear_error(folio);
530 }
531 folio_batch_release(&fbatch);
532 cond_resched();
533 }
534}
535
536/**
537 * filemap_fdatawait_range - wait for writeback to complete
538 * @mapping: address space structure to wait for
539 * @start_byte: offset in bytes where the range starts
540 * @end_byte: offset in bytes where the range ends (inclusive)
541 *
542 * Walk the list of under-writeback pages of the given address space
543 * in the given range and wait for all of them. Check error status of
544 * the address space and return it.
545 *
546 * Since the error status of the address space is cleared by this function,
547 * callers are responsible for checking the return value and handling and/or
548 * reporting the error.
549 *
550 * Return: error status of the address space.
551 */
552int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
553 loff_t end_byte)
554{
555 __filemap_fdatawait_range(mapping, start_byte, end_byte);
556 return filemap_check_errors(mapping);
557}
558EXPORT_SYMBOL(filemap_fdatawait_range);
559
560/**
561 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
562 * @mapping: address space structure to wait for
563 * @start_byte: offset in bytes where the range starts
564 * @end_byte: offset in bytes where the range ends (inclusive)
565 *
566 * Walk the list of under-writeback pages of the given address space in the
567 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
568 * this function does not clear error status of the address space.
569 *
570 * Use this function if callers don't handle errors themselves. Expected
571 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
572 * fsfreeze(8)
573 */
574int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
575 loff_t start_byte, loff_t end_byte)
576{
577 __filemap_fdatawait_range(mapping, start_byte, end_byte);
578 return filemap_check_and_keep_errors(mapping);
579}
580EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
581
582/**
583 * file_fdatawait_range - wait for writeback to complete
584 * @file: file pointing to address space structure to wait for
585 * @start_byte: offset in bytes where the range starts
586 * @end_byte: offset in bytes where the range ends (inclusive)
587 *
588 * Walk the list of under-writeback pages of the address space that file
589 * refers to, in the given range and wait for all of them. Check error
590 * status of the address space vs. the file->f_wb_err cursor and return it.
591 *
592 * Since the error status of the file is advanced by this function,
593 * callers are responsible for checking the return value and handling and/or
594 * reporting the error.
595 *
596 * Return: error status of the address space vs. the file->f_wb_err cursor.
597 */
598int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
599{
600 struct address_space *mapping = file->f_mapping;
601
602 __filemap_fdatawait_range(mapping, start_byte, end_byte);
603 return file_check_and_advance_wb_err(file);
604}
605EXPORT_SYMBOL(file_fdatawait_range);
606
607/**
608 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
609 * @mapping: address space structure to wait for
610 *
611 * Walk the list of under-writeback pages of the given address space
612 * and wait for all of them. Unlike filemap_fdatawait(), this function
613 * does not clear error status of the address space.
614 *
615 * Use this function if callers don't handle errors themselves. Expected
616 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
617 * fsfreeze(8)
618 *
619 * Return: error status of the address space.
620 */
621int filemap_fdatawait_keep_errors(struct address_space *mapping)
622{
623 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
624 return filemap_check_and_keep_errors(mapping);
625}
626EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
627
628/* Returns true if writeback might be needed or already in progress. */
629static bool mapping_needs_writeback(struct address_space *mapping)
630{
631 return mapping->nrpages;
632}
633
634bool filemap_range_has_writeback(struct address_space *mapping,
635 loff_t start_byte, loff_t end_byte)
636{
637 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
638 pgoff_t max = end_byte >> PAGE_SHIFT;
639 struct folio *folio;
640
641 if (end_byte < start_byte)
642 return false;
643
644 rcu_read_lock();
645 xas_for_each(&xas, folio, max) {
646 if (xas_retry(&xas, folio))
647 continue;
648 if (xa_is_value(folio))
649 continue;
650 if (folio_test_dirty(folio) || folio_test_locked(folio) ||
651 folio_test_writeback(folio))
652 break;
653 }
654 rcu_read_unlock();
655 return folio != NULL;
656}
657EXPORT_SYMBOL_GPL(filemap_range_has_writeback);
658
659/**
660 * filemap_write_and_wait_range - write out & wait on a file range
661 * @mapping: the address_space for the pages
662 * @lstart: offset in bytes where the range starts
663 * @lend: offset in bytes where the range ends (inclusive)
664 *
665 * Write out and wait upon file offsets lstart->lend, inclusive.
666 *
667 * Note that @lend is inclusive (describes the last byte to be written) so
668 * that this function can be used to write to the very end-of-file (end = -1).
669 *
670 * Return: error status of the address space.
671 */
672int filemap_write_and_wait_range(struct address_space *mapping,
673 loff_t lstart, loff_t lend)
674{
675 int err = 0, err2;
676
677 if (lend < lstart)
678 return 0;
679
680 if (mapping_needs_writeback(mapping)) {
681 err = __filemap_fdatawrite_range(mapping, lstart, lend,
682 WB_SYNC_ALL);
683 /*
684 * Even if the above returned error, the pages may be
685 * written partially (e.g. -ENOSPC), so we wait for it.
686 * But the -EIO is special case, it may indicate the worst
687 * thing (e.g. bug) happened, so we avoid waiting for it.
688 */
689 if (err != -EIO)
690 __filemap_fdatawait_range(mapping, lstart, lend);
691 }
692 err2 = filemap_check_errors(mapping);
693 if (!err)
694 err = err2;
695 return err;
696}
697EXPORT_SYMBOL(filemap_write_and_wait_range);
698
699void __filemap_set_wb_err(struct address_space *mapping, int err)
700{
701 errseq_t eseq = errseq_set(&mapping->wb_err, err);
702
703 trace_filemap_set_wb_err(mapping, eseq);
704}
705EXPORT_SYMBOL(__filemap_set_wb_err);
706
707/**
708 * file_check_and_advance_wb_err - report wb error (if any) that was previously
709 * and advance wb_err to current one
710 * @file: struct file on which the error is being reported
711 *
712 * When userland calls fsync (or something like nfsd does the equivalent), we
713 * want to report any writeback errors that occurred since the last fsync (or
714 * since the file was opened if there haven't been any).
715 *
716 * Grab the wb_err from the mapping. If it matches what we have in the file,
717 * then just quickly return 0. The file is all caught up.
718 *
719 * If it doesn't match, then take the mapping value, set the "seen" flag in
720 * it and try to swap it into place. If it works, or another task beat us
721 * to it with the new value, then update the f_wb_err and return the error
722 * portion. The error at this point must be reported via proper channels
723 * (a'la fsync, or NFS COMMIT operation, etc.).
724 *
725 * While we handle mapping->wb_err with atomic operations, the f_wb_err
726 * value is protected by the f_lock since we must ensure that it reflects
727 * the latest value swapped in for this file descriptor.
728 *
729 * Return: %0 on success, negative error code otherwise.
730 */
731int file_check_and_advance_wb_err(struct file *file)
732{
733 int err = 0;
734 errseq_t old = READ_ONCE(file->f_wb_err);
735 struct address_space *mapping = file->f_mapping;
736
737 /* Locklessly handle the common case where nothing has changed */
738 if (errseq_check(&mapping->wb_err, old)) {
739 /* Something changed, must use slow path */
740 spin_lock(&file->f_lock);
741 old = file->f_wb_err;
742 err = errseq_check_and_advance(&mapping->wb_err,
743 &file->f_wb_err);
744 trace_file_check_and_advance_wb_err(file, old);
745 spin_unlock(&file->f_lock);
746 }
747
748 /*
749 * We're mostly using this function as a drop in replacement for
750 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
751 * that the legacy code would have had on these flags.
752 */
753 clear_bit(AS_EIO, &mapping->flags);
754 clear_bit(AS_ENOSPC, &mapping->flags);
755 return err;
756}
757EXPORT_SYMBOL(file_check_and_advance_wb_err);
758
759/**
760 * file_write_and_wait_range - write out & wait on a file range
761 * @file: file pointing to address_space with pages
762 * @lstart: offset in bytes where the range starts
763 * @lend: offset in bytes where the range ends (inclusive)
764 *
765 * Write out and wait upon file offsets lstart->lend, inclusive.
766 *
767 * Note that @lend is inclusive (describes the last byte to be written) so
768 * that this function can be used to write to the very end-of-file (end = -1).
769 *
770 * After writing out and waiting on the data, we check and advance the
771 * f_wb_err cursor to the latest value, and return any errors detected there.
772 *
773 * Return: %0 on success, negative error code otherwise.
774 */
775int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
776{
777 int err = 0, err2;
778 struct address_space *mapping = file->f_mapping;
779
780 if (lend < lstart)
781 return 0;
782
783 if (mapping_needs_writeback(mapping)) {
784 err = __filemap_fdatawrite_range(mapping, lstart, lend,
785 WB_SYNC_ALL);
786 /* See comment of filemap_write_and_wait() */
787 if (err != -EIO)
788 __filemap_fdatawait_range(mapping, lstart, lend);
789 }
790 err2 = file_check_and_advance_wb_err(file);
791 if (!err)
792 err = err2;
793 return err;
794}
795EXPORT_SYMBOL(file_write_and_wait_range);
796
797/**
798 * replace_page_cache_folio - replace a pagecache folio with a new one
799 * @old: folio to be replaced
800 * @new: folio to replace with
801 *
802 * This function replaces a folio in the pagecache with a new one. On
803 * success it acquires the pagecache reference for the new folio and
804 * drops it for the old folio. Both the old and new folios must be
805 * locked. This function does not add the new folio to the LRU, the
806 * caller must do that.
807 *
808 * The remove + add is atomic. This function cannot fail.
809 */
810void replace_page_cache_folio(struct folio *old, struct folio *new)
811{
812 struct address_space *mapping = old->mapping;
813 void (*free_folio)(struct folio *) = mapping->a_ops->free_folio;
814 pgoff_t offset = old->index;
815 XA_STATE(xas, &mapping->i_pages, offset);
816
817 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
818 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
819 VM_BUG_ON_FOLIO(new->mapping, new);
820
821 folio_get(new);
822 new->mapping = mapping;
823 new->index = offset;
824
825 mem_cgroup_migrate(old, new);
826
827 xas_lock_irq(&xas);
828 xas_store(&xas, new);
829
830 old->mapping = NULL;
831 /* hugetlb pages do not participate in page cache accounting. */
832 if (!folio_test_hugetlb(old))
833 __lruvec_stat_sub_folio(old, NR_FILE_PAGES);
834 if (!folio_test_hugetlb(new))
835 __lruvec_stat_add_folio(new, NR_FILE_PAGES);
836 if (folio_test_swapbacked(old))
837 __lruvec_stat_sub_folio(old, NR_SHMEM);
838 if (folio_test_swapbacked(new))
839 __lruvec_stat_add_folio(new, NR_SHMEM);
840 xas_unlock_irq(&xas);
841 if (free_folio)
842 free_folio(old);
843 folio_put(old);
844}
845EXPORT_SYMBOL_GPL(replace_page_cache_folio);
846
847noinline int __filemap_add_folio(struct address_space *mapping,
848 struct folio *folio, pgoff_t index, gfp_t gfp, void **shadowp)
849{
850 XA_STATE(xas, &mapping->i_pages, index);
851 int huge = folio_test_hugetlb(folio);
852 bool charged = false;
853 long nr = 1;
854
855 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
856 VM_BUG_ON_FOLIO(folio_test_swapbacked(folio), folio);
857 mapping_set_update(&xas, mapping);
858
859 if (!huge) {
860 int error = mem_cgroup_charge(folio, NULL, gfp);
861 VM_BUG_ON_FOLIO(index & (folio_nr_pages(folio) - 1), folio);
862 if (error)
863 return error;
864 charged = true;
865 xas_set_order(&xas, index, folio_order(folio));
866 nr = folio_nr_pages(folio);
867 }
868
869 gfp &= GFP_RECLAIM_MASK;
870 folio_ref_add(folio, nr);
871 folio->mapping = mapping;
872 folio->index = xas.xa_index;
873
874 do {
875 unsigned int order = xa_get_order(xas.xa, xas.xa_index);
876 void *entry, *old = NULL;
877
878 if (order > folio_order(folio))
879 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
880 order, gfp);
881 xas_lock_irq(&xas);
882 xas_for_each_conflict(&xas, entry) {
883 old = entry;
884 if (!xa_is_value(entry)) {
885 xas_set_err(&xas, -EEXIST);
886 goto unlock;
887 }
888 }
889
890 if (old) {
891 if (shadowp)
892 *shadowp = old;
893 /* entry may have been split before we acquired lock */
894 order = xa_get_order(xas.xa, xas.xa_index);
895 if (order > folio_order(folio)) {
896 /* How to handle large swap entries? */
897 BUG_ON(shmem_mapping(mapping));
898 xas_split(&xas, old, order);
899 xas_reset(&xas);
900 }
901 }
902
903 xas_store(&xas, folio);
904 if (xas_error(&xas))
905 goto unlock;
906
907 mapping->nrpages += nr;
908
909 /* hugetlb pages do not participate in page cache accounting */
910 if (!huge) {
911 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
912 if (folio_test_pmd_mappable(folio))
913 __lruvec_stat_mod_folio(folio,
914 NR_FILE_THPS, nr);
915 }
916unlock:
917 xas_unlock_irq(&xas);
918 } while (xas_nomem(&xas, gfp));
919
920 if (xas_error(&xas))
921 goto error;
922
923 trace_mm_filemap_add_to_page_cache(folio);
924 return 0;
925error:
926 if (charged)
927 mem_cgroup_uncharge(folio);
928 folio->mapping = NULL;
929 /* Leave page->index set: truncation relies upon it */
930 folio_put_refs(folio, nr);
931 return xas_error(&xas);
932}
933ALLOW_ERROR_INJECTION(__filemap_add_folio, ERRNO);
934
935int filemap_add_folio(struct address_space *mapping, struct folio *folio,
936 pgoff_t index, gfp_t gfp)
937{
938 void *shadow = NULL;
939 int ret;
940
941 __folio_set_locked(folio);
942 ret = __filemap_add_folio(mapping, folio, index, gfp, &shadow);
943 if (unlikely(ret))
944 __folio_clear_locked(folio);
945 else {
946 /*
947 * The folio might have been evicted from cache only
948 * recently, in which case it should be activated like
949 * any other repeatedly accessed folio.
950 * The exception is folios getting rewritten; evicting other
951 * data from the working set, only to cache data that will
952 * get overwritten with something else, is a waste of memory.
953 */
954 WARN_ON_ONCE(folio_test_active(folio));
955 if (!(gfp & __GFP_WRITE) && shadow)
956 workingset_refault(folio, shadow);
957 folio_add_lru(folio);
958 }
959 return ret;
960}
961EXPORT_SYMBOL_GPL(filemap_add_folio);
962
963#ifdef CONFIG_NUMA
964struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
965{
966 int n;
967 struct folio *folio;
968
969 if (cpuset_do_page_mem_spread()) {
970 unsigned int cpuset_mems_cookie;
971 do {
972 cpuset_mems_cookie = read_mems_allowed_begin();
973 n = cpuset_mem_spread_node();
974 folio = __folio_alloc_node(gfp, order, n);
975 } while (!folio && read_mems_allowed_retry(cpuset_mems_cookie));
976
977 return folio;
978 }
979 return folio_alloc(gfp, order);
980}
981EXPORT_SYMBOL(filemap_alloc_folio);
982#endif
983
984/*
985 * filemap_invalidate_lock_two - lock invalidate_lock for two mappings
986 *
987 * Lock exclusively invalidate_lock of any passed mapping that is not NULL.
988 *
989 * @mapping1: the first mapping to lock
990 * @mapping2: the second mapping to lock
991 */
992void filemap_invalidate_lock_two(struct address_space *mapping1,
993 struct address_space *mapping2)
994{
995 if (mapping1 > mapping2)
996 swap(mapping1, mapping2);
997 if (mapping1)
998 down_write(&mapping1->invalidate_lock);
999 if (mapping2 && mapping1 != mapping2)
1000 down_write_nested(&mapping2->invalidate_lock, 1);
1001}
1002EXPORT_SYMBOL(filemap_invalidate_lock_two);
1003
1004/*
1005 * filemap_invalidate_unlock_two - unlock invalidate_lock for two mappings
1006 *
1007 * Unlock exclusive invalidate_lock of any passed mapping that is not NULL.
1008 *
1009 * @mapping1: the first mapping to unlock
1010 * @mapping2: the second mapping to unlock
1011 */
1012void filemap_invalidate_unlock_two(struct address_space *mapping1,
1013 struct address_space *mapping2)
1014{
1015 if (mapping1)
1016 up_write(&mapping1->invalidate_lock);
1017 if (mapping2 && mapping1 != mapping2)
1018 up_write(&mapping2->invalidate_lock);
1019}
1020EXPORT_SYMBOL(filemap_invalidate_unlock_two);
1021
1022/*
1023 * In order to wait for pages to become available there must be
1024 * waitqueues associated with pages. By using a hash table of
1025 * waitqueues where the bucket discipline is to maintain all
1026 * waiters on the same queue and wake all when any of the pages
1027 * become available, and for the woken contexts to check to be
1028 * sure the appropriate page became available, this saves space
1029 * at a cost of "thundering herd" phenomena during rare hash
1030 * collisions.
1031 */
1032#define PAGE_WAIT_TABLE_BITS 8
1033#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
1034static wait_queue_head_t folio_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
1035
1036static wait_queue_head_t *folio_waitqueue(struct folio *folio)
1037{
1038 return &folio_wait_table[hash_ptr(folio, PAGE_WAIT_TABLE_BITS)];
1039}
1040
1041void __init pagecache_init(void)
1042{
1043 int i;
1044
1045 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1046 init_waitqueue_head(&folio_wait_table[i]);
1047
1048 page_writeback_init();
1049}
1050
1051/*
1052 * The page wait code treats the "wait->flags" somewhat unusually, because
1053 * we have multiple different kinds of waits, not just the usual "exclusive"
1054 * one.
1055 *
1056 * We have:
1057 *
1058 * (a) no special bits set:
1059 *
1060 * We're just waiting for the bit to be released, and when a waker
1061 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1062 * and remove it from the wait queue.
1063 *
1064 * Simple and straightforward.
1065 *
1066 * (b) WQ_FLAG_EXCLUSIVE:
1067 *
1068 * The waiter is waiting to get the lock, and only one waiter should
1069 * be woken up to avoid any thundering herd behavior. We'll set the
1070 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1071 *
1072 * This is the traditional exclusive wait.
1073 *
1074 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
1075 *
1076 * The waiter is waiting to get the bit, and additionally wants the
1077 * lock to be transferred to it for fair lock behavior. If the lock
1078 * cannot be taken, we stop walking the wait queue without waking
1079 * the waiter.
1080 *
1081 * This is the "fair lock handoff" case, and in addition to setting
1082 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1083 * that it now has the lock.
1084 */
1085static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
1086{
1087 unsigned int flags;
1088 struct wait_page_key *key = arg;
1089 struct wait_page_queue *wait_page
1090 = container_of(wait, struct wait_page_queue, wait);
1091
1092 if (!wake_page_match(wait_page, key))
1093 return 0;
1094
1095 /*
1096 * If it's a lock handoff wait, we get the bit for it, and
1097 * stop walking (and do not wake it up) if we can't.
1098 */
1099 flags = wait->flags;
1100 if (flags & WQ_FLAG_EXCLUSIVE) {
1101 if (test_bit(key->bit_nr, &key->folio->flags))
1102 return -1;
1103 if (flags & WQ_FLAG_CUSTOM) {
1104 if (test_and_set_bit(key->bit_nr, &key->folio->flags))
1105 return -1;
1106 flags |= WQ_FLAG_DONE;
1107 }
1108 }
1109
1110 /*
1111 * We are holding the wait-queue lock, but the waiter that
1112 * is waiting for this will be checking the flags without
1113 * any locking.
1114 *
1115 * So update the flags atomically, and wake up the waiter
1116 * afterwards to avoid any races. This store-release pairs
1117 * with the load-acquire in folio_wait_bit_common().
1118 */
1119 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
1120 wake_up_state(wait->private, mode);
1121
1122 /*
1123 * Ok, we have successfully done what we're waiting for,
1124 * and we can unconditionally remove the wait entry.
1125 *
1126 * Note that this pairs with the "finish_wait()" in the
1127 * waiter, and has to be the absolute last thing we do.
1128 * After this list_del_init(&wait->entry) the wait entry
1129 * might be de-allocated and the process might even have
1130 * exited.
1131 */
1132 list_del_init_careful(&wait->entry);
1133 return (flags & WQ_FLAG_EXCLUSIVE) != 0;
1134}
1135
1136static void folio_wake_bit(struct folio *folio, int bit_nr)
1137{
1138 wait_queue_head_t *q = folio_waitqueue(folio);
1139 struct wait_page_key key;
1140 unsigned long flags;
1141 wait_queue_entry_t bookmark;
1142
1143 key.folio = folio;
1144 key.bit_nr = bit_nr;
1145 key.page_match = 0;
1146
1147 bookmark.flags = 0;
1148 bookmark.private = NULL;
1149 bookmark.func = NULL;
1150 INIT_LIST_HEAD(&bookmark.entry);
1151
1152 spin_lock_irqsave(&q->lock, flags);
1153 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1154
1155 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1156 /*
1157 * Take a breather from holding the lock,
1158 * allow pages that finish wake up asynchronously
1159 * to acquire the lock and remove themselves
1160 * from wait queue
1161 */
1162 spin_unlock_irqrestore(&q->lock, flags);
1163 cpu_relax();
1164 spin_lock_irqsave(&q->lock, flags);
1165 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1166 }
1167
1168 /*
1169 * It's possible to miss clearing waiters here, when we woke our page
1170 * waiters, but the hashed waitqueue has waiters for other pages on it.
1171 * That's okay, it's a rare case. The next waker will clear it.
1172 *
1173 * Note that, depending on the page pool (buddy, hugetlb, ZONE_DEVICE,
1174 * other), the flag may be cleared in the course of freeing the page;
1175 * but that is not required for correctness.
1176 */
1177 if (!waitqueue_active(q) || !key.page_match)
1178 folio_clear_waiters(folio);
1179
1180 spin_unlock_irqrestore(&q->lock, flags);
1181}
1182
1183static void folio_wake(struct folio *folio, int bit)
1184{
1185 if (!folio_test_waiters(folio))
1186 return;
1187 folio_wake_bit(folio, bit);
1188}
1189
1190/*
1191 * A choice of three behaviors for folio_wait_bit_common():
1192 */
1193enum behavior {
1194 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
1195 * __folio_lock() waiting on then setting PG_locked.
1196 */
1197 SHARED, /* Hold ref to page and check the bit when woken, like
1198 * folio_wait_writeback() waiting on PG_writeback.
1199 */
1200 DROP, /* Drop ref to page before wait, no check when woken,
1201 * like folio_put_wait_locked() on PG_locked.
1202 */
1203};
1204
1205/*
1206 * Attempt to check (or get) the folio flag, and mark us done
1207 * if successful.
1208 */
1209static inline bool folio_trylock_flag(struct folio *folio, int bit_nr,
1210 struct wait_queue_entry *wait)
1211{
1212 if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1213 if (test_and_set_bit(bit_nr, &folio->flags))
1214 return false;
1215 } else if (test_bit(bit_nr, &folio->flags))
1216 return false;
1217
1218 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
1219 return true;
1220}
1221
1222/* How many times do we accept lock stealing from under a waiter? */
1223int sysctl_page_lock_unfairness = 5;
1224
1225static inline int folio_wait_bit_common(struct folio *folio, int bit_nr,
1226 int state, enum behavior behavior)
1227{
1228 wait_queue_head_t *q = folio_waitqueue(folio);
1229 int unfairness = sysctl_page_lock_unfairness;
1230 struct wait_page_queue wait_page;
1231 wait_queue_entry_t *wait = &wait_page.wait;
1232 bool thrashing = false;
1233 unsigned long pflags;
1234 bool in_thrashing;
1235
1236 if (bit_nr == PG_locked &&
1237 !folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1238 delayacct_thrashing_start(&in_thrashing);
1239 psi_memstall_enter(&pflags);
1240 thrashing = true;
1241 }
1242
1243 init_wait(wait);
1244 wait->func = wake_page_function;
1245 wait_page.folio = folio;
1246 wait_page.bit_nr = bit_nr;
1247
1248repeat:
1249 wait->flags = 0;
1250 if (behavior == EXCLUSIVE) {
1251 wait->flags = WQ_FLAG_EXCLUSIVE;
1252 if (--unfairness < 0)
1253 wait->flags |= WQ_FLAG_CUSTOM;
1254 }
1255
1256 /*
1257 * Do one last check whether we can get the
1258 * page bit synchronously.
1259 *
1260 * Do the folio_set_waiters() marking before that
1261 * to let any waker we _just_ missed know they
1262 * need to wake us up (otherwise they'll never
1263 * even go to the slow case that looks at the
1264 * page queue), and add ourselves to the wait
1265 * queue if we need to sleep.
1266 *
1267 * This part needs to be done under the queue
1268 * lock to avoid races.
1269 */
1270 spin_lock_irq(&q->lock);
1271 folio_set_waiters(folio);
1272 if (!folio_trylock_flag(folio, bit_nr, wait))
1273 __add_wait_queue_entry_tail(q, wait);
1274 spin_unlock_irq(&q->lock);
1275
1276 /*
1277 * From now on, all the logic will be based on
1278 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1279 * see whether the page bit testing has already
1280 * been done by the wake function.
1281 *
1282 * We can drop our reference to the folio.
1283 */
1284 if (behavior == DROP)
1285 folio_put(folio);
1286
1287 /*
1288 * Note that until the "finish_wait()", or until
1289 * we see the WQ_FLAG_WOKEN flag, we need to
1290 * be very careful with the 'wait->flags', because
1291 * we may race with a waker that sets them.
1292 */
1293 for (;;) {
1294 unsigned int flags;
1295
1296 set_current_state(state);
1297
1298 /* Loop until we've been woken or interrupted */
1299 flags = smp_load_acquire(&wait->flags);
1300 if (!(flags & WQ_FLAG_WOKEN)) {
1301 if (signal_pending_state(state, current))
1302 break;
1303
1304 io_schedule();
1305 continue;
1306 }
1307
1308 /* If we were non-exclusive, we're done */
1309 if (behavior != EXCLUSIVE)
1310 break;
1311
1312 /* If the waker got the lock for us, we're done */
1313 if (flags & WQ_FLAG_DONE)
1314 break;
1315
1316 /*
1317 * Otherwise, if we're getting the lock, we need to
1318 * try to get it ourselves.
1319 *
1320 * And if that fails, we'll have to retry this all.
1321 */
1322 if (unlikely(test_and_set_bit(bit_nr, folio_flags(folio, 0))))
1323 goto repeat;
1324
1325 wait->flags |= WQ_FLAG_DONE;
1326 break;
1327 }
1328
1329 /*
1330 * If a signal happened, this 'finish_wait()' may remove the last
1331 * waiter from the wait-queues, but the folio waiters bit will remain
1332 * set. That's ok. The next wakeup will take care of it, and trying
1333 * to do it here would be difficult and prone to races.
1334 */
1335 finish_wait(q, wait);
1336
1337 if (thrashing) {
1338 delayacct_thrashing_end(&in_thrashing);
1339 psi_memstall_leave(&pflags);
1340 }
1341
1342 /*
1343 * NOTE! The wait->flags weren't stable until we've done the
1344 * 'finish_wait()', and we could have exited the loop above due
1345 * to a signal, and had a wakeup event happen after the signal
1346 * test but before the 'finish_wait()'.
1347 *
1348 * So only after the finish_wait() can we reliably determine
1349 * if we got woken up or not, so we can now figure out the final
1350 * return value based on that state without races.
1351 *
1352 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1353 * waiter, but an exclusive one requires WQ_FLAG_DONE.
1354 */
1355 if (behavior == EXCLUSIVE)
1356 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
1357
1358 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1359}
1360
1361#ifdef CONFIG_MIGRATION
1362/**
1363 * migration_entry_wait_on_locked - Wait for a migration entry to be removed
1364 * @entry: migration swap entry.
1365 * @ptl: already locked ptl. This function will drop the lock.
1366 *
1367 * Wait for a migration entry referencing the given page to be removed. This is
1368 * equivalent to put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE) except
1369 * this can be called without taking a reference on the page. Instead this
1370 * should be called while holding the ptl for the migration entry referencing
1371 * the page.
1372 *
1373 * Returns after unlocking the ptl.
1374 *
1375 * This follows the same logic as folio_wait_bit_common() so see the comments
1376 * there.
1377 */
1378void migration_entry_wait_on_locked(swp_entry_t entry, spinlock_t *ptl)
1379 __releases(ptl)
1380{
1381 struct wait_page_queue wait_page;
1382 wait_queue_entry_t *wait = &wait_page.wait;
1383 bool thrashing = false;
1384 unsigned long pflags;
1385 bool in_thrashing;
1386 wait_queue_head_t *q;
1387 struct folio *folio = page_folio(pfn_swap_entry_to_page(entry));
1388
1389 q = folio_waitqueue(folio);
1390 if (!folio_test_uptodate(folio) && folio_test_workingset(folio)) {
1391 delayacct_thrashing_start(&in_thrashing);
1392 psi_memstall_enter(&pflags);
1393 thrashing = true;
1394 }
1395
1396 init_wait(wait);
1397 wait->func = wake_page_function;
1398 wait_page.folio = folio;
1399 wait_page.bit_nr = PG_locked;
1400 wait->flags = 0;
1401
1402 spin_lock_irq(&q->lock);
1403 folio_set_waiters(folio);
1404 if (!folio_trylock_flag(folio, PG_locked, wait))
1405 __add_wait_queue_entry_tail(q, wait);
1406 spin_unlock_irq(&q->lock);
1407
1408 /*
1409 * If a migration entry exists for the page the migration path must hold
1410 * a valid reference to the page, and it must take the ptl to remove the
1411 * migration entry. So the page is valid until the ptl is dropped.
1412 */
1413 spin_unlock(ptl);
1414
1415 for (;;) {
1416 unsigned int flags;
1417
1418 set_current_state(TASK_UNINTERRUPTIBLE);
1419
1420 /* Loop until we've been woken or interrupted */
1421 flags = smp_load_acquire(&wait->flags);
1422 if (!(flags & WQ_FLAG_WOKEN)) {
1423 if (signal_pending_state(TASK_UNINTERRUPTIBLE, current))
1424 break;
1425
1426 io_schedule();
1427 continue;
1428 }
1429 break;
1430 }
1431
1432 finish_wait(q, wait);
1433
1434 if (thrashing) {
1435 delayacct_thrashing_end(&in_thrashing);
1436 psi_memstall_leave(&pflags);
1437 }
1438}
1439#endif
1440
1441void folio_wait_bit(struct folio *folio, int bit_nr)
1442{
1443 folio_wait_bit_common(folio, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1444}
1445EXPORT_SYMBOL(folio_wait_bit);
1446
1447int folio_wait_bit_killable(struct folio *folio, int bit_nr)
1448{
1449 return folio_wait_bit_common(folio, bit_nr, TASK_KILLABLE, SHARED);
1450}
1451EXPORT_SYMBOL(folio_wait_bit_killable);
1452
1453/**
1454 * folio_put_wait_locked - Drop a reference and wait for it to be unlocked
1455 * @folio: The folio to wait for.
1456 * @state: The sleep state (TASK_KILLABLE, TASK_UNINTERRUPTIBLE, etc).
1457 *
1458 * The caller should hold a reference on @folio. They expect the page to
1459 * become unlocked relatively soon, but do not wish to hold up migration
1460 * (for example) by holding the reference while waiting for the folio to
1461 * come unlocked. After this function returns, the caller should not
1462 * dereference @folio.
1463 *
1464 * Return: 0 if the folio was unlocked or -EINTR if interrupted by a signal.
1465 */
1466static int folio_put_wait_locked(struct folio *folio, int state)
1467{
1468 return folio_wait_bit_common(folio, PG_locked, state, DROP);
1469}
1470
1471/**
1472 * folio_add_wait_queue - Add an arbitrary waiter to a folio's wait queue
1473 * @folio: Folio defining the wait queue of interest
1474 * @waiter: Waiter to add to the queue
1475 *
1476 * Add an arbitrary @waiter to the wait queue for the nominated @folio.
1477 */
1478void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter)
1479{
1480 wait_queue_head_t *q = folio_waitqueue(folio);
1481 unsigned long flags;
1482
1483 spin_lock_irqsave(&q->lock, flags);
1484 __add_wait_queue_entry_tail(q, waiter);
1485 folio_set_waiters(folio);
1486 spin_unlock_irqrestore(&q->lock, flags);
1487}
1488EXPORT_SYMBOL_GPL(folio_add_wait_queue);
1489
1490#ifndef clear_bit_unlock_is_negative_byte
1491
1492/*
1493 * PG_waiters is the high bit in the same byte as PG_lock.
1494 *
1495 * On x86 (and on many other architectures), we can clear PG_lock and
1496 * test the sign bit at the same time. But if the architecture does
1497 * not support that special operation, we just do this all by hand
1498 * instead.
1499 *
1500 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1501 * being cleared, but a memory barrier should be unnecessary since it is
1502 * in the same byte as PG_locked.
1503 */
1504static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1505{
1506 clear_bit_unlock(nr, mem);
1507 /* smp_mb__after_atomic(); */
1508 return test_bit(PG_waiters, mem);
1509}
1510
1511#endif
1512
1513/**
1514 * folio_unlock - Unlock a locked folio.
1515 * @folio: The folio.
1516 *
1517 * Unlocks the folio and wakes up any thread sleeping on the page lock.
1518 *
1519 * Context: May be called from interrupt or process context. May not be
1520 * called from NMI context.
1521 */
1522void folio_unlock(struct folio *folio)
1523{
1524 /* Bit 7 allows x86 to check the byte's sign bit */
1525 BUILD_BUG_ON(PG_waiters != 7);
1526 BUILD_BUG_ON(PG_locked > 7);
1527 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1528 if (clear_bit_unlock_is_negative_byte(PG_locked, folio_flags(folio, 0)))
1529 folio_wake_bit(folio, PG_locked);
1530}
1531EXPORT_SYMBOL(folio_unlock);
1532
1533/**
1534 * folio_end_private_2 - Clear PG_private_2 and wake any waiters.
1535 * @folio: The folio.
1536 *
1537 * Clear the PG_private_2 bit on a folio and wake up any sleepers waiting for
1538 * it. The folio reference held for PG_private_2 being set is released.
1539 *
1540 * This is, for example, used when a netfs folio is being written to a local
1541 * disk cache, thereby allowing writes to the cache for the same folio to be
1542 * serialised.
1543 */
1544void folio_end_private_2(struct folio *folio)
1545{
1546 VM_BUG_ON_FOLIO(!folio_test_private_2(folio), folio);
1547 clear_bit_unlock(PG_private_2, folio_flags(folio, 0));
1548 folio_wake_bit(folio, PG_private_2);
1549 folio_put(folio);
1550}
1551EXPORT_SYMBOL(folio_end_private_2);
1552
1553/**
1554 * folio_wait_private_2 - Wait for PG_private_2 to be cleared on a folio.
1555 * @folio: The folio to wait on.
1556 *
1557 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio.
1558 */
1559void folio_wait_private_2(struct folio *folio)
1560{
1561 while (folio_test_private_2(folio))
1562 folio_wait_bit(folio, PG_private_2);
1563}
1564EXPORT_SYMBOL(folio_wait_private_2);
1565
1566/**
1567 * folio_wait_private_2_killable - Wait for PG_private_2 to be cleared on a folio.
1568 * @folio: The folio to wait on.
1569 *
1570 * Wait for PG_private_2 (aka PG_fscache) to be cleared on a folio or until a
1571 * fatal signal is received by the calling task.
1572 *
1573 * Return:
1574 * - 0 if successful.
1575 * - -EINTR if a fatal signal was encountered.
1576 */
1577int folio_wait_private_2_killable(struct folio *folio)
1578{
1579 int ret = 0;
1580
1581 while (folio_test_private_2(folio)) {
1582 ret = folio_wait_bit_killable(folio, PG_private_2);
1583 if (ret < 0)
1584 break;
1585 }
1586
1587 return ret;
1588}
1589EXPORT_SYMBOL(folio_wait_private_2_killable);
1590
1591/**
1592 * folio_end_writeback - End writeback against a folio.
1593 * @folio: The folio.
1594 */
1595void folio_end_writeback(struct folio *folio)
1596{
1597 /*
1598 * folio_test_clear_reclaim() could be used here but it is an
1599 * atomic operation and overkill in this particular case. Failing
1600 * to shuffle a folio marked for immediate reclaim is too mild
1601 * a gain to justify taking an atomic operation penalty at the
1602 * end of every folio writeback.
1603 */
1604 if (folio_test_reclaim(folio)) {
1605 folio_clear_reclaim(folio);
1606 folio_rotate_reclaimable(folio);
1607 }
1608
1609 /*
1610 * Writeback does not hold a folio reference of its own, relying
1611 * on truncation to wait for the clearing of PG_writeback.
1612 * But here we must make sure that the folio is not freed and
1613 * reused before the folio_wake().
1614 */
1615 folio_get(folio);
1616 if (!__folio_end_writeback(folio))
1617 BUG();
1618
1619 smp_mb__after_atomic();
1620 folio_wake(folio, PG_writeback);
1621 acct_reclaim_writeback(folio);
1622 folio_put(folio);
1623}
1624EXPORT_SYMBOL(folio_end_writeback);
1625
1626/**
1627 * __folio_lock - Get a lock on the folio, assuming we need to sleep to get it.
1628 * @folio: The folio to lock
1629 */
1630void __folio_lock(struct folio *folio)
1631{
1632 folio_wait_bit_common(folio, PG_locked, TASK_UNINTERRUPTIBLE,
1633 EXCLUSIVE);
1634}
1635EXPORT_SYMBOL(__folio_lock);
1636
1637int __folio_lock_killable(struct folio *folio)
1638{
1639 return folio_wait_bit_common(folio, PG_locked, TASK_KILLABLE,
1640 EXCLUSIVE);
1641}
1642EXPORT_SYMBOL_GPL(__folio_lock_killable);
1643
1644static int __folio_lock_async(struct folio *folio, struct wait_page_queue *wait)
1645{
1646 struct wait_queue_head *q = folio_waitqueue(folio);
1647 int ret = 0;
1648
1649 wait->folio = folio;
1650 wait->bit_nr = PG_locked;
1651
1652 spin_lock_irq(&q->lock);
1653 __add_wait_queue_entry_tail(q, &wait->wait);
1654 folio_set_waiters(folio);
1655 ret = !folio_trylock(folio);
1656 /*
1657 * If we were successful now, we know we're still on the
1658 * waitqueue as we're still under the lock. This means it's
1659 * safe to remove and return success, we know the callback
1660 * isn't going to trigger.
1661 */
1662 if (!ret)
1663 __remove_wait_queue(q, &wait->wait);
1664 else
1665 ret = -EIOCBQUEUED;
1666 spin_unlock_irq(&q->lock);
1667 return ret;
1668}
1669
1670/*
1671 * Return values:
1672 * true - folio is locked; mmap_lock is still held.
1673 * false - folio is not locked.
1674 * mmap_lock has been released (mmap_read_unlock(), unless flags had both
1675 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1676 * which case mmap_lock is still held.
1677 *
1678 * If neither ALLOW_RETRY nor KILLABLE are set, will always return true
1679 * with the folio locked and the mmap_lock unperturbed.
1680 */
1681bool __folio_lock_or_retry(struct folio *folio, struct mm_struct *mm,
1682 unsigned int flags)
1683{
1684 if (fault_flag_allow_retry_first(flags)) {
1685 /*
1686 * CAUTION! In this case, mmap_lock is not released
1687 * even though return 0.
1688 */
1689 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1690 return false;
1691
1692 mmap_read_unlock(mm);
1693 if (flags & FAULT_FLAG_KILLABLE)
1694 folio_wait_locked_killable(folio);
1695 else
1696 folio_wait_locked(folio);
1697 return false;
1698 }
1699 if (flags & FAULT_FLAG_KILLABLE) {
1700 bool ret;
1701
1702 ret = __folio_lock_killable(folio);
1703 if (ret) {
1704 mmap_read_unlock(mm);
1705 return false;
1706 }
1707 } else {
1708 __folio_lock(folio);
1709 }
1710
1711 return true;
1712}
1713
1714/**
1715 * page_cache_next_miss() - Find the next gap in the page cache.
1716 * @mapping: Mapping.
1717 * @index: Index.
1718 * @max_scan: Maximum range to search.
1719 *
1720 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1721 * gap with the lowest index.
1722 *
1723 * This function may be called under the rcu_read_lock. However, this will
1724 * not atomically search a snapshot of the cache at a single point in time.
1725 * For example, if a gap is created at index 5, then subsequently a gap is
1726 * created at index 10, page_cache_next_miss covering both indices may
1727 * return 10 if called under the rcu_read_lock.
1728 *
1729 * Return: The index of the gap if found, otherwise an index outside the
1730 * range specified (in which case 'return - index >= max_scan' will be true).
1731 * In the rare case of index wrap-around, 0 will be returned.
1732 */
1733pgoff_t page_cache_next_miss(struct address_space *mapping,
1734 pgoff_t index, unsigned long max_scan)
1735{
1736 XA_STATE(xas, &mapping->i_pages, index);
1737
1738 while (max_scan--) {
1739 void *entry = xas_next(&xas);
1740 if (!entry || xa_is_value(entry))
1741 break;
1742 if (xas.xa_index == 0)
1743 break;
1744 }
1745
1746 return xas.xa_index;
1747}
1748EXPORT_SYMBOL(page_cache_next_miss);
1749
1750/**
1751 * page_cache_prev_miss() - Find the previous gap in the page cache.
1752 * @mapping: Mapping.
1753 * @index: Index.
1754 * @max_scan: Maximum range to search.
1755 *
1756 * Search the range [max(index - max_scan + 1, 0), index] for the
1757 * gap with the highest index.
1758 *
1759 * This function may be called under the rcu_read_lock. However, this will
1760 * not atomically search a snapshot of the cache at a single point in time.
1761 * For example, if a gap is created at index 10, then subsequently a gap is
1762 * created at index 5, page_cache_prev_miss() covering both indices may
1763 * return 5 if called under the rcu_read_lock.
1764 *
1765 * Return: The index of the gap if found, otherwise an index outside the
1766 * range specified (in which case 'index - return >= max_scan' will be true).
1767 * In the rare case of wrap-around, ULONG_MAX will be returned.
1768 */
1769pgoff_t page_cache_prev_miss(struct address_space *mapping,
1770 pgoff_t index, unsigned long max_scan)
1771{
1772 XA_STATE(xas, &mapping->i_pages, index);
1773
1774 while (max_scan--) {
1775 void *entry = xas_prev(&xas);
1776 if (!entry || xa_is_value(entry))
1777 break;
1778 if (xas.xa_index == ULONG_MAX)
1779 break;
1780 }
1781
1782 return xas.xa_index;
1783}
1784EXPORT_SYMBOL(page_cache_prev_miss);
1785
1786/*
1787 * Lockless page cache protocol:
1788 * On the lookup side:
1789 * 1. Load the folio from i_pages
1790 * 2. Increment the refcount if it's not zero
1791 * 3. If the folio is not found by xas_reload(), put the refcount and retry
1792 *
1793 * On the removal side:
1794 * A. Freeze the page (by zeroing the refcount if nobody else has a reference)
1795 * B. Remove the page from i_pages
1796 * C. Return the page to the page allocator
1797 *
1798 * This means that any page may have its reference count temporarily
1799 * increased by a speculative page cache (or fast GUP) lookup as it can
1800 * be allocated by another user before the RCU grace period expires.
1801 * Because the refcount temporarily acquired here may end up being the
1802 * last refcount on the page, any page allocation must be freeable by
1803 * folio_put().
1804 */
1805
1806/*
1807 * filemap_get_entry - Get a page cache entry.
1808 * @mapping: the address_space to search
1809 * @index: The page cache index.
1810 *
1811 * Looks up the page cache entry at @mapping & @index. If it is a folio,
1812 * it is returned with an increased refcount. If it is a shadow entry
1813 * of a previously evicted folio, or a swap entry from shmem/tmpfs,
1814 * it is returned without further action.
1815 *
1816 * Return: The folio, swap or shadow entry, %NULL if nothing is found.
1817 */
1818void *filemap_get_entry(struct address_space *mapping, pgoff_t index)
1819{
1820 XA_STATE(xas, &mapping->i_pages, index);
1821 struct folio *folio;
1822
1823 rcu_read_lock();
1824repeat:
1825 xas_reset(&xas);
1826 folio = xas_load(&xas);
1827 if (xas_retry(&xas, folio))
1828 goto repeat;
1829 /*
1830 * A shadow entry of a recently evicted page, or a swap entry from
1831 * shmem/tmpfs. Return it without attempting to raise page count.
1832 */
1833 if (!folio || xa_is_value(folio))
1834 goto out;
1835
1836 if (!folio_try_get_rcu(folio))
1837 goto repeat;
1838
1839 if (unlikely(folio != xas_reload(&xas))) {
1840 folio_put(folio);
1841 goto repeat;
1842 }
1843out:
1844 rcu_read_unlock();
1845
1846 return folio;
1847}
1848
1849/**
1850 * __filemap_get_folio - Find and get a reference to a folio.
1851 * @mapping: The address_space to search.
1852 * @index: The page index.
1853 * @fgp_flags: %FGP flags modify how the folio is returned.
1854 * @gfp: Memory allocation flags to use if %FGP_CREAT is specified.
1855 *
1856 * Looks up the page cache entry at @mapping & @index.
1857 *
1858 * @fgp_flags can be zero or more of these flags:
1859 *
1860 * * %FGP_ACCESSED - The folio will be marked accessed.
1861 * * %FGP_LOCK - The folio is returned locked.
1862 * * %FGP_CREAT - If no page is present then a new page is allocated using
1863 * @gfp and added to the page cache and the VM's LRU list.
1864 * The page is returned locked and with an increased refcount.
1865 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1866 * page is already in cache. If the page was allocated, unlock it before
1867 * returning so the caller can do the same dance.
1868 * * %FGP_WRITE - The page will be written to by the caller.
1869 * * %FGP_NOFS - __GFP_FS will get cleared in gfp.
1870 * * %FGP_NOWAIT - Don't get blocked by page lock.
1871 * * %FGP_STABLE - Wait for the folio to be stable (finished writeback)
1872 *
1873 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1874 * if the %GFP flags specified for %FGP_CREAT are atomic.
1875 *
1876 * If there is a page cache page, it is returned with an increased refcount.
1877 *
1878 * Return: The found folio or an ERR_PTR() otherwise.
1879 */
1880struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
1881 int fgp_flags, gfp_t gfp)
1882{
1883 struct folio *folio;
1884
1885repeat:
1886 folio = filemap_get_entry(mapping, index);
1887 if (xa_is_value(folio))
1888 folio = NULL;
1889 if (!folio)
1890 goto no_page;
1891
1892 if (fgp_flags & FGP_LOCK) {
1893 if (fgp_flags & FGP_NOWAIT) {
1894 if (!folio_trylock(folio)) {
1895 folio_put(folio);
1896 return ERR_PTR(-EAGAIN);
1897 }
1898 } else {
1899 folio_lock(folio);
1900 }
1901
1902 /* Has the page been truncated? */
1903 if (unlikely(folio->mapping != mapping)) {
1904 folio_unlock(folio);
1905 folio_put(folio);
1906 goto repeat;
1907 }
1908 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
1909 }
1910
1911 if (fgp_flags & FGP_ACCESSED)
1912 folio_mark_accessed(folio);
1913 else if (fgp_flags & FGP_WRITE) {
1914 /* Clear idle flag for buffer write */
1915 if (folio_test_idle(folio))
1916 folio_clear_idle(folio);
1917 }
1918
1919 if (fgp_flags & FGP_STABLE)
1920 folio_wait_stable(folio);
1921no_page:
1922 if (!folio && (fgp_flags & FGP_CREAT)) {
1923 int err;
1924 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
1925 gfp |= __GFP_WRITE;
1926 if (fgp_flags & FGP_NOFS)
1927 gfp &= ~__GFP_FS;
1928 if (fgp_flags & FGP_NOWAIT) {
1929 gfp &= ~GFP_KERNEL;
1930 gfp |= GFP_NOWAIT | __GFP_NOWARN;
1931 }
1932
1933 folio = filemap_alloc_folio(gfp, 0);
1934 if (!folio)
1935 return ERR_PTR(-ENOMEM);
1936
1937 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1938 fgp_flags |= FGP_LOCK;
1939
1940 /* Init accessed so avoid atomic mark_page_accessed later */
1941 if (fgp_flags & FGP_ACCESSED)
1942 __folio_set_referenced(folio);
1943
1944 err = filemap_add_folio(mapping, folio, index, gfp);
1945 if (unlikely(err)) {
1946 folio_put(folio);
1947 folio = NULL;
1948 if (err == -EEXIST)
1949 goto repeat;
1950 }
1951
1952 /*
1953 * filemap_add_folio locks the page, and for mmap
1954 * we expect an unlocked page.
1955 */
1956 if (folio && (fgp_flags & FGP_FOR_MMAP))
1957 folio_unlock(folio);
1958 }
1959
1960 if (!folio)
1961 return ERR_PTR(-ENOENT);
1962 return folio;
1963}
1964EXPORT_SYMBOL(__filemap_get_folio);
1965
1966static inline struct folio *find_get_entry(struct xa_state *xas, pgoff_t max,
1967 xa_mark_t mark)
1968{
1969 struct folio *folio;
1970
1971retry:
1972 if (mark == XA_PRESENT)
1973 folio = xas_find(xas, max);
1974 else
1975 folio = xas_find_marked(xas, max, mark);
1976
1977 if (xas_retry(xas, folio))
1978 goto retry;
1979 /*
1980 * A shadow entry of a recently evicted page, a swap
1981 * entry from shmem/tmpfs or a DAX entry. Return it
1982 * without attempting to raise page count.
1983 */
1984 if (!folio || xa_is_value(folio))
1985 return folio;
1986
1987 if (!folio_try_get_rcu(folio))
1988 goto reset;
1989
1990 if (unlikely(folio != xas_reload(xas))) {
1991 folio_put(folio);
1992 goto reset;
1993 }
1994
1995 return folio;
1996reset:
1997 xas_reset(xas);
1998 goto retry;
1999}
2000
2001/**
2002 * find_get_entries - gang pagecache lookup
2003 * @mapping: The address_space to search
2004 * @start: The starting page cache index
2005 * @end: The final page index (inclusive).
2006 * @fbatch: Where the resulting entries are placed.
2007 * @indices: The cache indices corresponding to the entries in @entries
2008 *
2009 * find_get_entries() will search for and return a batch of entries in
2010 * the mapping. The entries are placed in @fbatch. find_get_entries()
2011 * takes a reference on any actual folios it returns.
2012 *
2013 * The entries have ascending indexes. The indices may not be consecutive
2014 * due to not-present entries or large folios.
2015 *
2016 * Any shadow entries of evicted folios, or swap entries from
2017 * shmem/tmpfs, are included in the returned array.
2018 *
2019 * Return: The number of entries which were found.
2020 */
2021unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
2022 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2023{
2024 XA_STATE(xas, &mapping->i_pages, *start);
2025 struct folio *folio;
2026
2027 rcu_read_lock();
2028 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2029 indices[fbatch->nr] = xas.xa_index;
2030 if (!folio_batch_add(fbatch, folio))
2031 break;
2032 }
2033 rcu_read_unlock();
2034
2035 if (folio_batch_count(fbatch)) {
2036 unsigned long nr = 1;
2037 int idx = folio_batch_count(fbatch) - 1;
2038
2039 folio = fbatch->folios[idx];
2040 if (!xa_is_value(folio) && !folio_test_hugetlb(folio))
2041 nr = folio_nr_pages(folio);
2042 *start = indices[idx] + nr;
2043 }
2044 return folio_batch_count(fbatch);
2045}
2046
2047/**
2048 * find_lock_entries - Find a batch of pagecache entries.
2049 * @mapping: The address_space to search.
2050 * @start: The starting page cache index.
2051 * @end: The final page index (inclusive).
2052 * @fbatch: Where the resulting entries are placed.
2053 * @indices: The cache indices of the entries in @fbatch.
2054 *
2055 * find_lock_entries() will return a batch of entries from @mapping.
2056 * Swap, shadow and DAX entries are included. Folios are returned
2057 * locked and with an incremented refcount. Folios which are locked
2058 * by somebody else or under writeback are skipped. Folios which are
2059 * partially outside the range are not returned.
2060 *
2061 * The entries have ascending indexes. The indices may not be consecutive
2062 * due to not-present entries, large folios, folios which could not be
2063 * locked or folios under writeback.
2064 *
2065 * Return: The number of entries which were found.
2066 */
2067unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
2068 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices)
2069{
2070 XA_STATE(xas, &mapping->i_pages, *start);
2071 struct folio *folio;
2072
2073 rcu_read_lock();
2074 while ((folio = find_get_entry(&xas, end, XA_PRESENT))) {
2075 if (!xa_is_value(folio)) {
2076 if (folio->index < *start)
2077 goto put;
2078 if (folio->index + folio_nr_pages(folio) - 1 > end)
2079 goto put;
2080 if (!folio_trylock(folio))
2081 goto put;
2082 if (folio->mapping != mapping ||
2083 folio_test_writeback(folio))
2084 goto unlock;
2085 VM_BUG_ON_FOLIO(!folio_contains(folio, xas.xa_index),
2086 folio);
2087 }
2088 indices[fbatch->nr] = xas.xa_index;
2089 if (!folio_batch_add(fbatch, folio))
2090 break;
2091 continue;
2092unlock:
2093 folio_unlock(folio);
2094put:
2095 folio_put(folio);
2096 }
2097 rcu_read_unlock();
2098
2099 if (folio_batch_count(fbatch)) {
2100 unsigned long nr = 1;
2101 int idx = folio_batch_count(fbatch) - 1;
2102
2103 folio = fbatch->folios[idx];
2104 if (!xa_is_value(folio) && !folio_test_hugetlb(folio))
2105 nr = folio_nr_pages(folio);
2106 *start = indices[idx] + nr;
2107 }
2108 return folio_batch_count(fbatch);
2109}
2110
2111/**
2112 * filemap_get_folios - Get a batch of folios
2113 * @mapping: The address_space to search
2114 * @start: The starting page index
2115 * @end: The final page index (inclusive)
2116 * @fbatch: The batch to fill.
2117 *
2118 * Search for and return a batch of folios in the mapping starting at
2119 * index @start and up to index @end (inclusive). The folios are returned
2120 * in @fbatch with an elevated reference count.
2121 *
2122 * The first folio may start before @start; if it does, it will contain
2123 * @start. The final folio may extend beyond @end; if it does, it will
2124 * contain @end. The folios have ascending indices. There may be gaps
2125 * between the folios if there are indices which have no folio in the
2126 * page cache. If folios are added to or removed from the page cache
2127 * while this is running, they may or may not be found by this call.
2128 *
2129 * Return: The number of folios which were found.
2130 * We also update @start to index the next folio for the traversal.
2131 */
2132unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
2133 pgoff_t end, struct folio_batch *fbatch)
2134{
2135 XA_STATE(xas, &mapping->i_pages, *start);
2136 struct folio *folio;
2137
2138 rcu_read_lock();
2139 while ((folio = find_get_entry(&xas, end, XA_PRESENT)) != NULL) {
2140 /* Skip over shadow, swap and DAX entries */
2141 if (xa_is_value(folio))
2142 continue;
2143 if (!folio_batch_add(fbatch, folio)) {
2144 unsigned long nr = folio_nr_pages(folio);
2145
2146 if (folio_test_hugetlb(folio))
2147 nr = 1;
2148 *start = folio->index + nr;
2149 goto out;
2150 }
2151 }
2152
2153 /*
2154 * We come here when there is no page beyond @end. We take care to not
2155 * overflow the index @start as it confuses some of the callers. This
2156 * breaks the iteration when there is a page at index -1 but that is
2157 * already broken anyway.
2158 */
2159 if (end == (pgoff_t)-1)
2160 *start = (pgoff_t)-1;
2161 else
2162 *start = end + 1;
2163out:
2164 rcu_read_unlock();
2165
2166 return folio_batch_count(fbatch);
2167}
2168EXPORT_SYMBOL(filemap_get_folios);
2169
2170static inline
2171bool folio_more_pages(struct folio *folio, pgoff_t index, pgoff_t max)
2172{
2173 if (!folio_test_large(folio) || folio_test_hugetlb(folio))
2174 return false;
2175 if (index >= max)
2176 return false;
2177 return index < folio->index + folio_nr_pages(folio) - 1;
2178}
2179
2180/**
2181 * filemap_get_folios_contig - Get a batch of contiguous folios
2182 * @mapping: The address_space to search
2183 * @start: The starting page index
2184 * @end: The final page index (inclusive)
2185 * @fbatch: The batch to fill
2186 *
2187 * filemap_get_folios_contig() works exactly like filemap_get_folios(),
2188 * except the returned folios are guaranteed to be contiguous. This may
2189 * not return all contiguous folios if the batch gets filled up.
2190 *
2191 * Return: The number of folios found.
2192 * Also update @start to be positioned for traversal of the next folio.
2193 */
2194
2195unsigned filemap_get_folios_contig(struct address_space *mapping,
2196 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch)
2197{
2198 XA_STATE(xas, &mapping->i_pages, *start);
2199 unsigned long nr;
2200 struct folio *folio;
2201
2202 rcu_read_lock();
2203
2204 for (folio = xas_load(&xas); folio && xas.xa_index <= end;
2205 folio = xas_next(&xas)) {
2206 if (xas_retry(&xas, folio))
2207 continue;
2208 /*
2209 * If the entry has been swapped out, we can stop looking.
2210 * No current caller is looking for DAX entries.
2211 */
2212 if (xa_is_value(folio))
2213 goto update_start;
2214
2215 if (!folio_try_get_rcu(folio))
2216 goto retry;
2217
2218 if (unlikely(folio != xas_reload(&xas)))
2219 goto put_folio;
2220
2221 if (!folio_batch_add(fbatch, folio)) {
2222 nr = folio_nr_pages(folio);
2223
2224 if (folio_test_hugetlb(folio))
2225 nr = 1;
2226 *start = folio->index + nr;
2227 goto out;
2228 }
2229 continue;
2230put_folio:
2231 folio_put(folio);
2232
2233retry:
2234 xas_reset(&xas);
2235 }
2236
2237update_start:
2238 nr = folio_batch_count(fbatch);
2239
2240 if (nr) {
2241 folio = fbatch->folios[nr - 1];
2242 if (folio_test_hugetlb(folio))
2243 *start = folio->index + 1;
2244 else
2245 *start = folio->index + folio_nr_pages(folio);
2246 }
2247out:
2248 rcu_read_unlock();
2249 return folio_batch_count(fbatch);
2250}
2251EXPORT_SYMBOL(filemap_get_folios_contig);
2252
2253/**
2254 * filemap_get_folios_tag - Get a batch of folios matching @tag
2255 * @mapping: The address_space to search
2256 * @start: The starting page index
2257 * @end: The final page index (inclusive)
2258 * @tag: The tag index
2259 * @fbatch: The batch to fill
2260 *
2261 * Same as filemap_get_folios(), but only returning folios tagged with @tag.
2262 *
2263 * Return: The number of folios found.
2264 * Also update @start to index the next folio for traversal.
2265 */
2266unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
2267 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch)
2268{
2269 XA_STATE(xas, &mapping->i_pages, *start);
2270 struct folio *folio;
2271
2272 rcu_read_lock();
2273 while ((folio = find_get_entry(&xas, end, tag)) != NULL) {
2274 /*
2275 * Shadow entries should never be tagged, but this iteration
2276 * is lockless so there is a window for page reclaim to evict
2277 * a page we saw tagged. Skip over it.
2278 */
2279 if (xa_is_value(folio))
2280 continue;
2281 if (!folio_batch_add(fbatch, folio)) {
2282 unsigned long nr = folio_nr_pages(folio);
2283
2284 if (folio_test_hugetlb(folio))
2285 nr = 1;
2286 *start = folio->index + nr;
2287 goto out;
2288 }
2289 }
2290 /*
2291 * We come here when there is no page beyond @end. We take care to not
2292 * overflow the index @start as it confuses some of the callers. This
2293 * breaks the iteration when there is a page at index -1 but that is
2294 * already broke anyway.
2295 */
2296 if (end == (pgoff_t)-1)
2297 *start = (pgoff_t)-1;
2298 else
2299 *start = end + 1;
2300out:
2301 rcu_read_unlock();
2302
2303 return folio_batch_count(fbatch);
2304}
2305EXPORT_SYMBOL(filemap_get_folios_tag);
2306
2307/*
2308 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2309 * a _large_ part of the i/o request. Imagine the worst scenario:
2310 *
2311 * ---R__________________________________________B__________
2312 * ^ reading here ^ bad block(assume 4k)
2313 *
2314 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2315 * => failing the whole request => read(R) => read(R+1) =>
2316 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2317 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2318 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2319 *
2320 * It is going insane. Fix it by quickly scaling down the readahead size.
2321 */
2322static void shrink_readahead_size_eio(struct file_ra_state *ra)
2323{
2324 ra->ra_pages /= 4;
2325}
2326
2327/*
2328 * filemap_get_read_batch - Get a batch of folios for read
2329 *
2330 * Get a batch of folios which represent a contiguous range of bytes in
2331 * the file. No exceptional entries will be returned. If @index is in
2332 * the middle of a folio, the entire folio will be returned. The last
2333 * folio in the batch may have the readahead flag set or the uptodate flag
2334 * clear so that the caller can take the appropriate action.
2335 */
2336static void filemap_get_read_batch(struct address_space *mapping,
2337 pgoff_t index, pgoff_t max, struct folio_batch *fbatch)
2338{
2339 XA_STATE(xas, &mapping->i_pages, index);
2340 struct folio *folio;
2341
2342 rcu_read_lock();
2343 for (folio = xas_load(&xas); folio; folio = xas_next(&xas)) {
2344 if (xas_retry(&xas, folio))
2345 continue;
2346 if (xas.xa_index > max || xa_is_value(folio))
2347 break;
2348 if (xa_is_sibling(folio))
2349 break;
2350 if (!folio_try_get_rcu(folio))
2351 goto retry;
2352
2353 if (unlikely(folio != xas_reload(&xas)))
2354 goto put_folio;
2355
2356 if (!folio_batch_add(fbatch, folio))
2357 break;
2358 if (!folio_test_uptodate(folio))
2359 break;
2360 if (folio_test_readahead(folio))
2361 break;
2362 xas_advance(&xas, folio->index + folio_nr_pages(folio) - 1);
2363 continue;
2364put_folio:
2365 folio_put(folio);
2366retry:
2367 xas_reset(&xas);
2368 }
2369 rcu_read_unlock();
2370}
2371
2372static int filemap_read_folio(struct file *file, filler_t filler,
2373 struct folio *folio)
2374{
2375 bool workingset = folio_test_workingset(folio);
2376 unsigned long pflags;
2377 int error;
2378
2379 /*
2380 * A previous I/O error may have been due to temporary failures,
2381 * eg. multipath errors. PG_error will be set again if read_folio
2382 * fails.
2383 */
2384 folio_clear_error(folio);
2385
2386 /* Start the actual read. The read will unlock the page. */
2387 if (unlikely(workingset))
2388 psi_memstall_enter(&pflags);
2389 error = filler(file, folio);
2390 if (unlikely(workingset))
2391 psi_memstall_leave(&pflags);
2392 if (error)
2393 return error;
2394
2395 error = folio_wait_locked_killable(folio);
2396 if (error)
2397 return error;
2398 if (folio_test_uptodate(folio))
2399 return 0;
2400 if (file)
2401 shrink_readahead_size_eio(&file->f_ra);
2402 return -EIO;
2403}
2404
2405static bool filemap_range_uptodate(struct address_space *mapping,
2406 loff_t pos, size_t count, struct folio *folio,
2407 bool need_uptodate)
2408{
2409 if (folio_test_uptodate(folio))
2410 return true;
2411 /* pipes can't handle partially uptodate pages */
2412 if (need_uptodate)
2413 return false;
2414 if (!mapping->a_ops->is_partially_uptodate)
2415 return false;
2416 if (mapping->host->i_blkbits >= folio_shift(folio))
2417 return false;
2418
2419 if (folio_pos(folio) > pos) {
2420 count -= folio_pos(folio) - pos;
2421 pos = 0;
2422 } else {
2423 pos -= folio_pos(folio);
2424 }
2425
2426 return mapping->a_ops->is_partially_uptodate(folio, pos, count);
2427}
2428
2429static int filemap_update_page(struct kiocb *iocb,
2430 struct address_space *mapping, size_t count,
2431 struct folio *folio, bool need_uptodate)
2432{
2433 int error;
2434
2435 if (iocb->ki_flags & IOCB_NOWAIT) {
2436 if (!filemap_invalidate_trylock_shared(mapping))
2437 return -EAGAIN;
2438 } else {
2439 filemap_invalidate_lock_shared(mapping);
2440 }
2441
2442 if (!folio_trylock(folio)) {
2443 error = -EAGAIN;
2444 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_NOIO))
2445 goto unlock_mapping;
2446 if (!(iocb->ki_flags & IOCB_WAITQ)) {
2447 filemap_invalidate_unlock_shared(mapping);
2448 /*
2449 * This is where we usually end up waiting for a
2450 * previously submitted readahead to finish.
2451 */
2452 folio_put_wait_locked(folio, TASK_KILLABLE);
2453 return AOP_TRUNCATED_PAGE;
2454 }
2455 error = __folio_lock_async(folio, iocb->ki_waitq);
2456 if (error)
2457 goto unlock_mapping;
2458 }
2459
2460 error = AOP_TRUNCATED_PAGE;
2461 if (!folio->mapping)
2462 goto unlock;
2463
2464 error = 0;
2465 if (filemap_range_uptodate(mapping, iocb->ki_pos, count, folio,
2466 need_uptodate))
2467 goto unlock;
2468
2469 error = -EAGAIN;
2470 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT | IOCB_WAITQ))
2471 goto unlock;
2472
2473 error = filemap_read_folio(iocb->ki_filp, mapping->a_ops->read_folio,
2474 folio);
2475 goto unlock_mapping;
2476unlock:
2477 folio_unlock(folio);
2478unlock_mapping:
2479 filemap_invalidate_unlock_shared(mapping);
2480 if (error == AOP_TRUNCATED_PAGE)
2481 folio_put(folio);
2482 return error;
2483}
2484
2485static int filemap_create_folio(struct file *file,
2486 struct address_space *mapping, pgoff_t index,
2487 struct folio_batch *fbatch)
2488{
2489 struct folio *folio;
2490 int error;
2491
2492 folio = filemap_alloc_folio(mapping_gfp_mask(mapping), 0);
2493 if (!folio)
2494 return -ENOMEM;
2495
2496 /*
2497 * Protect against truncate / hole punch. Grabbing invalidate_lock
2498 * here assures we cannot instantiate and bring uptodate new
2499 * pagecache folios after evicting page cache during truncate
2500 * and before actually freeing blocks. Note that we could
2501 * release invalidate_lock after inserting the folio into
2502 * the page cache as the locked folio would then be enough to
2503 * synchronize with hole punching. But there are code paths
2504 * such as filemap_update_page() filling in partially uptodate
2505 * pages or ->readahead() that need to hold invalidate_lock
2506 * while mapping blocks for IO so let's hold the lock here as
2507 * well to keep locking rules simple.
2508 */
2509 filemap_invalidate_lock_shared(mapping);
2510 error = filemap_add_folio(mapping, folio, index,
2511 mapping_gfp_constraint(mapping, GFP_KERNEL));
2512 if (error == -EEXIST)
2513 error = AOP_TRUNCATED_PAGE;
2514 if (error)
2515 goto error;
2516
2517 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
2518 if (error)
2519 goto error;
2520
2521 filemap_invalidate_unlock_shared(mapping);
2522 folio_batch_add(fbatch, folio);
2523 return 0;
2524error:
2525 filemap_invalidate_unlock_shared(mapping);
2526 folio_put(folio);
2527 return error;
2528}
2529
2530static int filemap_readahead(struct kiocb *iocb, struct file *file,
2531 struct address_space *mapping, struct folio *folio,
2532 pgoff_t last_index)
2533{
2534 DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, folio->index);
2535
2536 if (iocb->ki_flags & IOCB_NOIO)
2537 return -EAGAIN;
2538 page_cache_async_ra(&ractl, folio, last_index - folio->index);
2539 return 0;
2540}
2541
2542static int filemap_get_pages(struct kiocb *iocb, size_t count,
2543 struct folio_batch *fbatch, bool need_uptodate)
2544{
2545 struct file *filp = iocb->ki_filp;
2546 struct address_space *mapping = filp->f_mapping;
2547 struct file_ra_state *ra = &filp->f_ra;
2548 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2549 pgoff_t last_index;
2550 struct folio *folio;
2551 int err = 0;
2552
2553 /* "last_index" is the index of the page beyond the end of the read */
2554 last_index = DIV_ROUND_UP(iocb->ki_pos + count, PAGE_SIZE);
2555retry:
2556 if (fatal_signal_pending(current))
2557 return -EINTR;
2558
2559 filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2560 if (!folio_batch_count(fbatch)) {
2561 if (iocb->ki_flags & IOCB_NOIO)
2562 return -EAGAIN;
2563 page_cache_sync_readahead(mapping, ra, filp, index,
2564 last_index - index);
2565 filemap_get_read_batch(mapping, index, last_index - 1, fbatch);
2566 }
2567 if (!folio_batch_count(fbatch)) {
2568 if (iocb->ki_flags & (IOCB_NOWAIT | IOCB_WAITQ))
2569 return -EAGAIN;
2570 err = filemap_create_folio(filp, mapping,
2571 iocb->ki_pos >> PAGE_SHIFT, fbatch);
2572 if (err == AOP_TRUNCATED_PAGE)
2573 goto retry;
2574 return err;
2575 }
2576
2577 folio = fbatch->folios[folio_batch_count(fbatch) - 1];
2578 if (folio_test_readahead(folio)) {
2579 err = filemap_readahead(iocb, filp, mapping, folio, last_index);
2580 if (err)
2581 goto err;
2582 }
2583 if (!folio_test_uptodate(folio)) {
2584 if ((iocb->ki_flags & IOCB_WAITQ) &&
2585 folio_batch_count(fbatch) > 1)
2586 iocb->ki_flags |= IOCB_NOWAIT;
2587 err = filemap_update_page(iocb, mapping, count, folio,
2588 need_uptodate);
2589 if (err)
2590 goto err;
2591 }
2592
2593 return 0;
2594err:
2595 if (err < 0)
2596 folio_put(folio);
2597 if (likely(--fbatch->nr))
2598 return 0;
2599 if (err == AOP_TRUNCATED_PAGE)
2600 goto retry;
2601 return err;
2602}
2603
2604static inline bool pos_same_folio(loff_t pos1, loff_t pos2, struct folio *folio)
2605{
2606 unsigned int shift = folio_shift(folio);
2607
2608 return (pos1 >> shift == pos2 >> shift);
2609}
2610
2611/**
2612 * filemap_read - Read data from the page cache.
2613 * @iocb: The iocb to read.
2614 * @iter: Destination for the data.
2615 * @already_read: Number of bytes already read by the caller.
2616 *
2617 * Copies data from the page cache. If the data is not currently present,
2618 * uses the readahead and read_folio address_space operations to fetch it.
2619 *
2620 * Return: Total number of bytes copied, including those already read by
2621 * the caller. If an error happens before any bytes are copied, returns
2622 * a negative error number.
2623 */
2624ssize_t filemap_read(struct kiocb *iocb, struct iov_iter *iter,
2625 ssize_t already_read)
2626{
2627 struct file *filp = iocb->ki_filp;
2628 struct file_ra_state *ra = &filp->f_ra;
2629 struct address_space *mapping = filp->f_mapping;
2630 struct inode *inode = mapping->host;
2631 struct folio_batch fbatch;
2632 int i, error = 0;
2633 bool writably_mapped;
2634 loff_t isize, end_offset;
2635
2636 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
2637 return 0;
2638 if (unlikely(!iov_iter_count(iter)))
2639 return 0;
2640
2641 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2642 folio_batch_init(&fbatch);
2643
2644 do {
2645 cond_resched();
2646
2647 /*
2648 * If we've already successfully copied some data, then we
2649 * can no longer safely return -EIOCBQUEUED. Hence mark
2650 * an async read NOWAIT at that point.
2651 */
2652 if ((iocb->ki_flags & IOCB_WAITQ) && already_read)
2653 iocb->ki_flags |= IOCB_NOWAIT;
2654
2655 if (unlikely(iocb->ki_pos >= i_size_read(inode)))
2656 break;
2657
2658 error = filemap_get_pages(iocb, iter->count, &fbatch, false);
2659 if (error < 0)
2660 break;
2661
2662 /*
2663 * i_size must be checked after we know the pages are Uptodate.
2664 *
2665 * Checking i_size after the check allows us to calculate
2666 * the correct value for "nr", which means the zero-filled
2667 * part of the page is not copied back to userspace (unless
2668 * another truncate extends the file - this is desired though).
2669 */
2670 isize = i_size_read(inode);
2671 if (unlikely(iocb->ki_pos >= isize))
2672 goto put_folios;
2673 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2674
2675 /*
2676 * Once we start copying data, we don't want to be touching any
2677 * cachelines that might be contended:
2678 */
2679 writably_mapped = mapping_writably_mapped(mapping);
2680
2681 /*
2682 * When a read accesses the same folio several times, only
2683 * mark it as accessed the first time.
2684 */
2685 if (!pos_same_folio(iocb->ki_pos, ra->prev_pos - 1,
2686 fbatch.folios[0]))
2687 folio_mark_accessed(fbatch.folios[0]);
2688
2689 for (i = 0; i < folio_batch_count(&fbatch); i++) {
2690 struct folio *folio = fbatch.folios[i];
2691 size_t fsize = folio_size(folio);
2692 size_t offset = iocb->ki_pos & (fsize - 1);
2693 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2694 fsize - offset);
2695 size_t copied;
2696
2697 if (end_offset < folio_pos(folio))
2698 break;
2699 if (i > 0)
2700 folio_mark_accessed(folio);
2701 /*
2702 * If users can be writing to this folio using arbitrary
2703 * virtual addresses, take care of potential aliasing
2704 * before reading the folio on the kernel side.
2705 */
2706 if (writably_mapped)
2707 flush_dcache_folio(folio);
2708
2709 copied = copy_folio_to_iter(folio, offset, bytes, iter);
2710
2711 already_read += copied;
2712 iocb->ki_pos += copied;
2713 ra->prev_pos = iocb->ki_pos;
2714
2715 if (copied < bytes) {
2716 error = -EFAULT;
2717 break;
2718 }
2719 }
2720put_folios:
2721 for (i = 0; i < folio_batch_count(&fbatch); i++)
2722 folio_put(fbatch.folios[i]);
2723 folio_batch_init(&fbatch);
2724 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
2725
2726 file_accessed(filp);
2727
2728 return already_read ? already_read : error;
2729}
2730EXPORT_SYMBOL_GPL(filemap_read);
2731
2732int kiocb_write_and_wait(struct kiocb *iocb, size_t count)
2733{
2734 struct address_space *mapping = iocb->ki_filp->f_mapping;
2735 loff_t pos = iocb->ki_pos;
2736 loff_t end = pos + count - 1;
2737
2738 if (iocb->ki_flags & IOCB_NOWAIT) {
2739 if (filemap_range_needs_writeback(mapping, pos, end))
2740 return -EAGAIN;
2741 return 0;
2742 }
2743
2744 return filemap_write_and_wait_range(mapping, pos, end);
2745}
2746
2747int kiocb_invalidate_pages(struct kiocb *iocb, size_t count)
2748{
2749 struct address_space *mapping = iocb->ki_filp->f_mapping;
2750 loff_t pos = iocb->ki_pos;
2751 loff_t end = pos + count - 1;
2752 int ret;
2753
2754 if (iocb->ki_flags & IOCB_NOWAIT) {
2755 /* we could block if there are any pages in the range */
2756 if (filemap_range_has_page(mapping, pos, end))
2757 return -EAGAIN;
2758 } else {
2759 ret = filemap_write_and_wait_range(mapping, pos, end);
2760 if (ret)
2761 return ret;
2762 }
2763
2764 /*
2765 * After a write we want buffered reads to be sure to go to disk to get
2766 * the new data. We invalidate clean cached page from the region we're
2767 * about to write. We do this *before* the write so that we can return
2768 * without clobbering -EIOCBQUEUED from ->direct_IO().
2769 */
2770 return invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT,
2771 end >> PAGE_SHIFT);
2772}
2773
2774/**
2775 * generic_file_read_iter - generic filesystem read routine
2776 * @iocb: kernel I/O control block
2777 * @iter: destination for the data read
2778 *
2779 * This is the "read_iter()" routine for all filesystems
2780 * that can use the page cache directly.
2781 *
2782 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2783 * be returned when no data can be read without waiting for I/O requests
2784 * to complete; it doesn't prevent readahead.
2785 *
2786 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2787 * requests shall be made for the read or for readahead. When no data
2788 * can be read, -EAGAIN shall be returned. When readahead would be
2789 * triggered, a partial, possibly empty read shall be returned.
2790 *
2791 * Return:
2792 * * number of bytes copied, even for partial reads
2793 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2794 */
2795ssize_t
2796generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2797{
2798 size_t count = iov_iter_count(iter);
2799 ssize_t retval = 0;
2800
2801 if (!count)
2802 return 0; /* skip atime */
2803
2804 if (iocb->ki_flags & IOCB_DIRECT) {
2805 struct file *file = iocb->ki_filp;
2806 struct address_space *mapping = file->f_mapping;
2807 struct inode *inode = mapping->host;
2808
2809 retval = kiocb_write_and_wait(iocb, count);
2810 if (retval < 0)
2811 return retval;
2812 file_accessed(file);
2813
2814 retval = mapping->a_ops->direct_IO(iocb, iter);
2815 if (retval >= 0) {
2816 iocb->ki_pos += retval;
2817 count -= retval;
2818 }
2819 if (retval != -EIOCBQUEUED)
2820 iov_iter_revert(iter, count - iov_iter_count(iter));
2821
2822 /*
2823 * Btrfs can have a short DIO read if we encounter
2824 * compressed extents, so if there was an error, or if
2825 * we've already read everything we wanted to, or if
2826 * there was a short read because we hit EOF, go ahead
2827 * and return. Otherwise fallthrough to buffered io for
2828 * the rest of the read. Buffered reads will not work for
2829 * DAX files, so don't bother trying.
2830 */
2831 if (retval < 0 || !count || IS_DAX(inode))
2832 return retval;
2833 if (iocb->ki_pos >= i_size_read(inode))
2834 return retval;
2835 }
2836
2837 return filemap_read(iocb, iter, retval);
2838}
2839EXPORT_SYMBOL(generic_file_read_iter);
2840
2841/*
2842 * Splice subpages from a folio into a pipe.
2843 */
2844size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
2845 struct folio *folio, loff_t fpos, size_t size)
2846{
2847 struct page *page;
2848 size_t spliced = 0, offset = offset_in_folio(folio, fpos);
2849
2850 page = folio_page(folio, offset / PAGE_SIZE);
2851 size = min(size, folio_size(folio) - offset);
2852 offset %= PAGE_SIZE;
2853
2854 while (spliced < size &&
2855 !pipe_full(pipe->head, pipe->tail, pipe->max_usage)) {
2856 struct pipe_buffer *buf = pipe_head_buf(pipe);
2857 size_t part = min_t(size_t, PAGE_SIZE - offset, size - spliced);
2858
2859 *buf = (struct pipe_buffer) {
2860 .ops = &page_cache_pipe_buf_ops,
2861 .page = page,
2862 .offset = offset,
2863 .len = part,
2864 };
2865 folio_get(folio);
2866 pipe->head++;
2867 page++;
2868 spliced += part;
2869 offset = 0;
2870 }
2871
2872 return spliced;
2873}
2874
2875/**
2876 * filemap_splice_read - Splice data from a file's pagecache into a pipe
2877 * @in: The file to read from
2878 * @ppos: Pointer to the file position to read from
2879 * @pipe: The pipe to splice into
2880 * @len: The amount to splice
2881 * @flags: The SPLICE_F_* flags
2882 *
2883 * This function gets folios from a file's pagecache and splices them into the
2884 * pipe. Readahead will be called as necessary to fill more folios. This may
2885 * be used for blockdevs also.
2886 *
2887 * Return: On success, the number of bytes read will be returned and *@ppos
2888 * will be updated if appropriate; 0 will be returned if there is no more data
2889 * to be read; -EAGAIN will be returned if the pipe had no space, and some
2890 * other negative error code will be returned on error. A short read may occur
2891 * if the pipe has insufficient space, we reach the end of the data or we hit a
2892 * hole.
2893 */
2894ssize_t filemap_splice_read(struct file *in, loff_t *ppos,
2895 struct pipe_inode_info *pipe,
2896 size_t len, unsigned int flags)
2897{
2898 struct folio_batch fbatch;
2899 struct kiocb iocb;
2900 size_t total_spliced = 0, used, npages;
2901 loff_t isize, end_offset;
2902 bool writably_mapped;
2903 int i, error = 0;
2904
2905 if (unlikely(*ppos >= in->f_mapping->host->i_sb->s_maxbytes))
2906 return 0;
2907
2908 init_sync_kiocb(&iocb, in);
2909 iocb.ki_pos = *ppos;
2910
2911 /* Work out how much data we can actually add into the pipe */
2912 used = pipe_occupancy(pipe->head, pipe->tail);
2913 npages = max_t(ssize_t, pipe->max_usage - used, 0);
2914 len = min_t(size_t, len, npages * PAGE_SIZE);
2915
2916 folio_batch_init(&fbatch);
2917
2918 do {
2919 cond_resched();
2920
2921 if (*ppos >= i_size_read(in->f_mapping->host))
2922 break;
2923
2924 iocb.ki_pos = *ppos;
2925 error = filemap_get_pages(&iocb, len, &fbatch, true);
2926 if (error < 0)
2927 break;
2928
2929 /*
2930 * i_size must be checked after we know the pages are Uptodate.
2931 *
2932 * Checking i_size after the check allows us to calculate
2933 * the correct value for "nr", which means the zero-filled
2934 * part of the page is not copied back to userspace (unless
2935 * another truncate extends the file - this is desired though).
2936 */
2937 isize = i_size_read(in->f_mapping->host);
2938 if (unlikely(*ppos >= isize))
2939 break;
2940 end_offset = min_t(loff_t, isize, *ppos + len);
2941
2942 /*
2943 * Once we start copying data, we don't want to be touching any
2944 * cachelines that might be contended:
2945 */
2946 writably_mapped = mapping_writably_mapped(in->f_mapping);
2947
2948 for (i = 0; i < folio_batch_count(&fbatch); i++) {
2949 struct folio *folio = fbatch.folios[i];
2950 size_t n;
2951
2952 if (folio_pos(folio) >= end_offset)
2953 goto out;
2954 folio_mark_accessed(folio);
2955
2956 /*
2957 * If users can be writing to this folio using arbitrary
2958 * virtual addresses, take care of potential aliasing
2959 * before reading the folio on the kernel side.
2960 */
2961 if (writably_mapped)
2962 flush_dcache_folio(folio);
2963
2964 n = min_t(loff_t, len, isize - *ppos);
2965 n = splice_folio_into_pipe(pipe, folio, *ppos, n);
2966 if (!n)
2967 goto out;
2968 len -= n;
2969 total_spliced += n;
2970 *ppos += n;
2971 in->f_ra.prev_pos = *ppos;
2972 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
2973 goto out;
2974 }
2975
2976 folio_batch_release(&fbatch);
2977 } while (len);
2978
2979out:
2980 folio_batch_release(&fbatch);
2981 file_accessed(in);
2982
2983 return total_spliced ? total_spliced : error;
2984}
2985EXPORT_SYMBOL(filemap_splice_read);
2986
2987static inline loff_t folio_seek_hole_data(struct xa_state *xas,
2988 struct address_space *mapping, struct folio *folio,
2989 loff_t start, loff_t end, bool seek_data)
2990{
2991 const struct address_space_operations *ops = mapping->a_ops;
2992 size_t offset, bsz = i_blocksize(mapping->host);
2993
2994 if (xa_is_value(folio) || folio_test_uptodate(folio))
2995 return seek_data ? start : end;
2996 if (!ops->is_partially_uptodate)
2997 return seek_data ? end : start;
2998
2999 xas_pause(xas);
3000 rcu_read_unlock();
3001 folio_lock(folio);
3002 if (unlikely(folio->mapping != mapping))
3003 goto unlock;
3004
3005 offset = offset_in_folio(folio, start) & ~(bsz - 1);
3006
3007 do {
3008 if (ops->is_partially_uptodate(folio, offset, bsz) ==
3009 seek_data)
3010 break;
3011 start = (start + bsz) & ~(bsz - 1);
3012 offset += bsz;
3013 } while (offset < folio_size(folio));
3014unlock:
3015 folio_unlock(folio);
3016 rcu_read_lock();
3017 return start;
3018}
3019
3020static inline size_t seek_folio_size(struct xa_state *xas, struct folio *folio)
3021{
3022 if (xa_is_value(folio))
3023 return PAGE_SIZE << xa_get_order(xas->xa, xas->xa_index);
3024 return folio_size(folio);
3025}
3026
3027/**
3028 * mapping_seek_hole_data - Seek for SEEK_DATA / SEEK_HOLE in the page cache.
3029 * @mapping: Address space to search.
3030 * @start: First byte to consider.
3031 * @end: Limit of search (exclusive).
3032 * @whence: Either SEEK_HOLE or SEEK_DATA.
3033 *
3034 * If the page cache knows which blocks contain holes and which blocks
3035 * contain data, your filesystem can use this function to implement
3036 * SEEK_HOLE and SEEK_DATA. This is useful for filesystems which are
3037 * entirely memory-based such as tmpfs, and filesystems which support
3038 * unwritten extents.
3039 *
3040 * Return: The requested offset on success, or -ENXIO if @whence specifies
3041 * SEEK_DATA and there is no data after @start. There is an implicit hole
3042 * after @end - 1, so SEEK_HOLE returns @end if all the bytes between @start
3043 * and @end contain data.
3044 */
3045loff_t mapping_seek_hole_data(struct address_space *mapping, loff_t start,
3046 loff_t end, int whence)
3047{
3048 XA_STATE(xas, &mapping->i_pages, start >> PAGE_SHIFT);
3049 pgoff_t max = (end - 1) >> PAGE_SHIFT;
3050 bool seek_data = (whence == SEEK_DATA);
3051 struct folio *folio;
3052
3053 if (end <= start)
3054 return -ENXIO;
3055
3056 rcu_read_lock();
3057 while ((folio = find_get_entry(&xas, max, XA_PRESENT))) {
3058 loff_t pos = (u64)xas.xa_index << PAGE_SHIFT;
3059 size_t seek_size;
3060
3061 if (start < pos) {
3062 if (!seek_data)
3063 goto unlock;
3064 start = pos;
3065 }
3066
3067 seek_size = seek_folio_size(&xas, folio);
3068 pos = round_up((u64)pos + 1, seek_size);
3069 start = folio_seek_hole_data(&xas, mapping, folio, start, pos,
3070 seek_data);
3071 if (start < pos)
3072 goto unlock;
3073 if (start >= end)
3074 break;
3075 if (seek_size > PAGE_SIZE)
3076 xas_set(&xas, pos >> PAGE_SHIFT);
3077 if (!xa_is_value(folio))
3078 folio_put(folio);
3079 }
3080 if (seek_data)
3081 start = -ENXIO;
3082unlock:
3083 rcu_read_unlock();
3084 if (folio && !xa_is_value(folio))
3085 folio_put(folio);
3086 if (start > end)
3087 return end;
3088 return start;
3089}
3090
3091#ifdef CONFIG_MMU
3092#define MMAP_LOTSAMISS (100)
3093/*
3094 * lock_folio_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
3095 * @vmf - the vm_fault for this fault.
3096 * @folio - the folio to lock.
3097 * @fpin - the pointer to the file we may pin (or is already pinned).
3098 *
3099 * This works similar to lock_folio_or_retry in that it can drop the
3100 * mmap_lock. It differs in that it actually returns the folio locked
3101 * if it returns 1 and 0 if it couldn't lock the folio. If we did have
3102 * to drop the mmap_lock then fpin will point to the pinned file and
3103 * needs to be fput()'ed at a later point.
3104 */
3105static int lock_folio_maybe_drop_mmap(struct vm_fault *vmf, struct folio *folio,
3106 struct file **fpin)
3107{
3108 if (folio_trylock(folio))
3109 return 1;
3110
3111 /*
3112 * NOTE! This will make us return with VM_FAULT_RETRY, but with
3113 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
3114 * is supposed to work. We have way too many special cases..
3115 */
3116 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
3117 return 0;
3118
3119 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
3120 if (vmf->flags & FAULT_FLAG_KILLABLE) {
3121 if (__folio_lock_killable(folio)) {
3122 /*
3123 * We didn't have the right flags to drop the mmap_lock,
3124 * but all fault_handlers only check for fatal signals
3125 * if we return VM_FAULT_RETRY, so we need to drop the
3126 * mmap_lock here and return 0 if we don't have a fpin.
3127 */
3128 if (*fpin == NULL)
3129 mmap_read_unlock(vmf->vma->vm_mm);
3130 return 0;
3131 }
3132 } else
3133 __folio_lock(folio);
3134
3135 return 1;
3136}
3137
3138/*
3139 * Synchronous readahead happens when we don't even find a page in the page
3140 * cache at all. We don't want to perform IO under the mmap sem, so if we have
3141 * to drop the mmap sem we return the file that was pinned in order for us to do
3142 * that. If we didn't pin a file then we return NULL. The file that is
3143 * returned needs to be fput()'ed when we're done with it.
3144 */
3145static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
3146{
3147 struct file *file = vmf->vma->vm_file;
3148 struct file_ra_state *ra = &file->f_ra;
3149 struct address_space *mapping = file->f_mapping;
3150 DEFINE_READAHEAD(ractl, file, ra, mapping, vmf->pgoff);
3151 struct file *fpin = NULL;
3152 unsigned long vm_flags = vmf->vma->vm_flags;
3153 unsigned int mmap_miss;
3154
3155#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3156 /* Use the readahead code, even if readahead is disabled */
3157 if (vm_flags & VM_HUGEPAGE) {
3158 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3159 ractl._index &= ~((unsigned long)HPAGE_PMD_NR - 1);
3160 ra->size = HPAGE_PMD_NR;
3161 /*
3162 * Fetch two PMD folios, so we get the chance to actually
3163 * readahead, unless we've been told not to.
3164 */
3165 if (!(vm_flags & VM_RAND_READ))
3166 ra->size *= 2;
3167 ra->async_size = HPAGE_PMD_NR;
3168 page_cache_ra_order(&ractl, ra, HPAGE_PMD_ORDER);
3169 return fpin;
3170 }
3171#endif
3172
3173 /* If we don't want any read-ahead, don't bother */
3174 if (vm_flags & VM_RAND_READ)
3175 return fpin;
3176 if (!ra->ra_pages)
3177 return fpin;
3178
3179 if (vm_flags & VM_SEQ_READ) {
3180 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3181 page_cache_sync_ra(&ractl, ra->ra_pages);
3182 return fpin;
3183 }
3184
3185 /* Avoid banging the cache line if not needed */
3186 mmap_miss = READ_ONCE(ra->mmap_miss);
3187 if (mmap_miss < MMAP_LOTSAMISS * 10)
3188 WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
3189
3190 /*
3191 * Do we miss much more than hit in this file? If so,
3192 * stop bothering with read-ahead. It will only hurt.
3193 */
3194 if (mmap_miss > MMAP_LOTSAMISS)
3195 return fpin;
3196
3197 /*
3198 * mmap read-around
3199 */
3200 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3201 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
3202 ra->size = ra->ra_pages;
3203 ra->async_size = ra->ra_pages / 4;
3204 ractl._index = ra->start;
3205 page_cache_ra_order(&ractl, ra, 0);
3206 return fpin;
3207}
3208
3209/*
3210 * Asynchronous readahead happens when we find the page and PG_readahead,
3211 * so we want to possibly extend the readahead further. We return the file that
3212 * was pinned if we have to drop the mmap_lock in order to do IO.
3213 */
3214static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
3215 struct folio *folio)
3216{
3217 struct file *file = vmf->vma->vm_file;
3218 struct file_ra_state *ra = &file->f_ra;
3219 DEFINE_READAHEAD(ractl, file, ra, file->f_mapping, vmf->pgoff);
3220 struct file *fpin = NULL;
3221 unsigned int mmap_miss;
3222
3223 /* If we don't want any read-ahead, don't bother */
3224 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
3225 return fpin;
3226
3227 mmap_miss = READ_ONCE(ra->mmap_miss);
3228 if (mmap_miss)
3229 WRITE_ONCE(ra->mmap_miss, --mmap_miss);
3230
3231 if (folio_test_readahead(folio)) {
3232 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3233 page_cache_async_ra(&ractl, folio, ra->ra_pages);
3234 }
3235 return fpin;
3236}
3237
3238/**
3239 * filemap_fault - read in file data for page fault handling
3240 * @vmf: struct vm_fault containing details of the fault
3241 *
3242 * filemap_fault() is invoked via the vma operations vector for a
3243 * mapped memory region to read in file data during a page fault.
3244 *
3245 * The goto's are kind of ugly, but this streamlines the normal case of having
3246 * it in the page cache, and handles the special cases reasonably without
3247 * having a lot of duplicated code.
3248 *
3249 * vma->vm_mm->mmap_lock must be held on entry.
3250 *
3251 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
3252 * may be dropped before doing I/O or by lock_folio_maybe_drop_mmap().
3253 *
3254 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
3255 * has not been released.
3256 *
3257 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
3258 *
3259 * Return: bitwise-OR of %VM_FAULT_ codes.
3260 */
3261vm_fault_t filemap_fault(struct vm_fault *vmf)
3262{
3263 int error;
3264 struct file *file = vmf->vma->vm_file;
3265 struct file *fpin = NULL;
3266 struct address_space *mapping = file->f_mapping;
3267 struct inode *inode = mapping->host;
3268 pgoff_t max_idx, index = vmf->pgoff;
3269 struct folio *folio;
3270 vm_fault_t ret = 0;
3271 bool mapping_locked = false;
3272
3273 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3274 if (unlikely(index >= max_idx))
3275 return VM_FAULT_SIGBUS;
3276
3277 /*
3278 * Do we have something in the page cache already?
3279 */
3280 folio = filemap_get_folio(mapping, index);
3281 if (likely(!IS_ERR(folio))) {
3282 /*
3283 * We found the page, so try async readahead before waiting for
3284 * the lock.
3285 */
3286 if (!(vmf->flags & FAULT_FLAG_TRIED))
3287 fpin = do_async_mmap_readahead(vmf, folio);
3288 if (unlikely(!folio_test_uptodate(folio))) {
3289 filemap_invalidate_lock_shared(mapping);
3290 mapping_locked = true;
3291 }
3292 } else {
3293 /* No page in the page cache at all */
3294 count_vm_event(PGMAJFAULT);
3295 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
3296 ret = VM_FAULT_MAJOR;
3297 fpin = do_sync_mmap_readahead(vmf);
3298retry_find:
3299 /*
3300 * See comment in filemap_create_folio() why we need
3301 * invalidate_lock
3302 */
3303 if (!mapping_locked) {
3304 filemap_invalidate_lock_shared(mapping);
3305 mapping_locked = true;
3306 }
3307 folio = __filemap_get_folio(mapping, index,
3308 FGP_CREAT|FGP_FOR_MMAP,
3309 vmf->gfp_mask);
3310 if (IS_ERR(folio)) {
3311 if (fpin)
3312 goto out_retry;
3313 filemap_invalidate_unlock_shared(mapping);
3314 return VM_FAULT_OOM;
3315 }
3316 }
3317
3318 if (!lock_folio_maybe_drop_mmap(vmf, folio, &fpin))
3319 goto out_retry;
3320
3321 /* Did it get truncated? */
3322 if (unlikely(folio->mapping != mapping)) {
3323 folio_unlock(folio);
3324 folio_put(folio);
3325 goto retry_find;
3326 }
3327 VM_BUG_ON_FOLIO(!folio_contains(folio, index), folio);
3328
3329 /*
3330 * We have a locked page in the page cache, now we need to check
3331 * that it's up-to-date. If not, it is going to be due to an error.
3332 */
3333 if (unlikely(!folio_test_uptodate(folio))) {
3334 /*
3335 * The page was in cache and uptodate and now it is not.
3336 * Strange but possible since we didn't hold the page lock all
3337 * the time. Let's drop everything get the invalidate lock and
3338 * try again.
3339 */
3340 if (!mapping_locked) {
3341 folio_unlock(folio);
3342 folio_put(folio);
3343 goto retry_find;
3344 }
3345 goto page_not_uptodate;
3346 }
3347
3348 /*
3349 * We've made it this far and we had to drop our mmap_lock, now is the
3350 * time to return to the upper layer and have it re-find the vma and
3351 * redo the fault.
3352 */
3353 if (fpin) {
3354 folio_unlock(folio);
3355 goto out_retry;
3356 }
3357 if (mapping_locked)
3358 filemap_invalidate_unlock_shared(mapping);
3359
3360 /*
3361 * Found the page and have a reference on it.
3362 * We must recheck i_size under page lock.
3363 */
3364 max_idx = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
3365 if (unlikely(index >= max_idx)) {
3366 folio_unlock(folio);
3367 folio_put(folio);
3368 return VM_FAULT_SIGBUS;
3369 }
3370
3371 vmf->page = folio_file_page(folio, index);
3372 return ret | VM_FAULT_LOCKED;
3373
3374page_not_uptodate:
3375 /*
3376 * Umm, take care of errors if the page isn't up-to-date.
3377 * Try to re-read it _once_. We do this synchronously,
3378 * because there really aren't any performance issues here
3379 * and we need to check for errors.
3380 */
3381 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
3382 error = filemap_read_folio(file, mapping->a_ops->read_folio, folio);
3383 if (fpin)
3384 goto out_retry;
3385 folio_put(folio);
3386
3387 if (!error || error == AOP_TRUNCATED_PAGE)
3388 goto retry_find;
3389 filemap_invalidate_unlock_shared(mapping);
3390
3391 return VM_FAULT_SIGBUS;
3392
3393out_retry:
3394 /*
3395 * We dropped the mmap_lock, we need to return to the fault handler to
3396 * re-find the vma and come back and find our hopefully still populated
3397 * page.
3398 */
3399 if (!IS_ERR(folio))
3400 folio_put(folio);
3401 if (mapping_locked)
3402 filemap_invalidate_unlock_shared(mapping);
3403 if (fpin)
3404 fput(fpin);
3405 return ret | VM_FAULT_RETRY;
3406}
3407EXPORT_SYMBOL(filemap_fault);
3408
3409static bool filemap_map_pmd(struct vm_fault *vmf, struct folio *folio,
3410 pgoff_t start)
3411{
3412 struct mm_struct *mm = vmf->vma->vm_mm;
3413
3414 /* Huge page is mapped? No need to proceed. */
3415 if (pmd_trans_huge(*vmf->pmd)) {
3416 folio_unlock(folio);
3417 folio_put(folio);
3418 return true;
3419 }
3420
3421 if (pmd_none(*vmf->pmd) && folio_test_pmd_mappable(folio)) {
3422 struct page *page = folio_file_page(folio, start);
3423 vm_fault_t ret = do_set_pmd(vmf, page);
3424 if (!ret) {
3425 /* The page is mapped successfully, reference consumed. */
3426 folio_unlock(folio);
3427 return true;
3428 }
3429 }
3430
3431 if (pmd_none(*vmf->pmd))
3432 pmd_install(mm, vmf->pmd, &vmf->prealloc_pte);
3433
3434 return false;
3435}
3436
3437static struct folio *next_uptodate_page(struct folio *folio,
3438 struct address_space *mapping,
3439 struct xa_state *xas, pgoff_t end_pgoff)
3440{
3441 unsigned long max_idx;
3442
3443 do {
3444 if (!folio)
3445 return NULL;
3446 if (xas_retry(xas, folio))
3447 continue;
3448 if (xa_is_value(folio))
3449 continue;
3450 if (folio_test_locked(folio))
3451 continue;
3452 if (!folio_try_get_rcu(folio))
3453 continue;
3454 /* Has the page moved or been split? */
3455 if (unlikely(folio != xas_reload(xas)))
3456 goto skip;
3457 if (!folio_test_uptodate(folio) || folio_test_readahead(folio))
3458 goto skip;
3459 if (!folio_trylock(folio))
3460 goto skip;
3461 if (folio->mapping != mapping)
3462 goto unlock;
3463 if (!folio_test_uptodate(folio))
3464 goto unlock;
3465 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3466 if (xas->xa_index >= max_idx)
3467 goto unlock;
3468 return folio;
3469unlock:
3470 folio_unlock(folio);
3471skip:
3472 folio_put(folio);
3473 } while ((folio = xas_next_entry(xas, end_pgoff)) != NULL);
3474
3475 return NULL;
3476}
3477
3478static inline struct folio *first_map_page(struct address_space *mapping,
3479 struct xa_state *xas,
3480 pgoff_t end_pgoff)
3481{
3482 return next_uptodate_page(xas_find(xas, end_pgoff),
3483 mapping, xas, end_pgoff);
3484}
3485
3486static inline struct folio *next_map_page(struct address_space *mapping,
3487 struct xa_state *xas,
3488 pgoff_t end_pgoff)
3489{
3490 return next_uptodate_page(xas_next_entry(xas, end_pgoff),
3491 mapping, xas, end_pgoff);
3492}
3493
3494vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3495 pgoff_t start_pgoff, pgoff_t end_pgoff)
3496{
3497 struct vm_area_struct *vma = vmf->vma;
3498 struct file *file = vma->vm_file;
3499 struct address_space *mapping = file->f_mapping;
3500 pgoff_t last_pgoff = start_pgoff;
3501 unsigned long addr;
3502 XA_STATE(xas, &mapping->i_pages, start_pgoff);
3503 struct folio *folio;
3504 struct page *page;
3505 unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
3506 vm_fault_t ret = 0;
3507
3508 rcu_read_lock();
3509 folio = first_map_page(mapping, &xas, end_pgoff);
3510 if (!folio)
3511 goto out;
3512
3513 if (filemap_map_pmd(vmf, folio, start_pgoff)) {
3514 ret = VM_FAULT_NOPAGE;
3515 goto out;
3516 }
3517
3518 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3519 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
3520 if (!vmf->pte) {
3521 folio_unlock(folio);
3522 folio_put(folio);
3523 goto out;
3524 }
3525 do {
3526again:
3527 page = folio_file_page(folio, xas.xa_index);
3528 if (PageHWPoison(page))
3529 goto unlock;
3530
3531 if (mmap_miss > 0)
3532 mmap_miss--;
3533
3534 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
3535 vmf->pte += xas.xa_index - last_pgoff;
3536 last_pgoff = xas.xa_index;
3537
3538 /*
3539 * NOTE: If there're PTE markers, we'll leave them to be
3540 * handled in the specific fault path, and it'll prohibit the
3541 * fault-around logic.
3542 */
3543 if (!pte_none(ptep_get(vmf->pte)))
3544 goto unlock;
3545
3546 /* We're about to handle the fault */
3547 if (vmf->address == addr)
3548 ret = VM_FAULT_NOPAGE;
3549
3550 do_set_pte(vmf, page, addr);
3551 /* no need to invalidate: a not-present page won't be cached */
3552 update_mmu_cache(vma, addr, vmf->pte);
3553 if (folio_more_pages(folio, xas.xa_index, end_pgoff)) {
3554 xas.xa_index++;
3555 folio_ref_inc(folio);
3556 goto again;
3557 }
3558 folio_unlock(folio);
3559 continue;
3560unlock:
3561 if (folio_more_pages(folio, xas.xa_index, end_pgoff)) {
3562 xas.xa_index++;
3563 goto again;
3564 }
3565 folio_unlock(folio);
3566 folio_put(folio);
3567 } while ((folio = next_map_page(mapping, &xas, end_pgoff)) != NULL);
3568 pte_unmap_unlock(vmf->pte, vmf->ptl);
3569out:
3570 rcu_read_unlock();
3571 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
3572 return ret;
3573}
3574EXPORT_SYMBOL(filemap_map_pages);
3575
3576vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3577{
3578 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
3579 struct folio *folio = page_folio(vmf->page);
3580 vm_fault_t ret = VM_FAULT_LOCKED;
3581
3582 sb_start_pagefault(mapping->host->i_sb);
3583 file_update_time(vmf->vma->vm_file);
3584 folio_lock(folio);
3585 if (folio->mapping != mapping) {
3586 folio_unlock(folio);
3587 ret = VM_FAULT_NOPAGE;
3588 goto out;
3589 }
3590 /*
3591 * We mark the folio dirty already here so that when freeze is in
3592 * progress, we are guaranteed that writeback during freezing will
3593 * see the dirty folio and writeprotect it again.
3594 */
3595 folio_mark_dirty(folio);
3596 folio_wait_stable(folio);
3597out:
3598 sb_end_pagefault(mapping->host->i_sb);
3599 return ret;
3600}
3601
3602const struct vm_operations_struct generic_file_vm_ops = {
3603 .fault = filemap_fault,
3604 .map_pages = filemap_map_pages,
3605 .page_mkwrite = filemap_page_mkwrite,
3606};
3607
3608/* This is used for a general mmap of a disk file */
3609
3610int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3611{
3612 struct address_space *mapping = file->f_mapping;
3613
3614 if (!mapping->a_ops->read_folio)
3615 return -ENOEXEC;
3616 file_accessed(file);
3617 vma->vm_ops = &generic_file_vm_ops;
3618 return 0;
3619}
3620
3621/*
3622 * This is for filesystems which do not implement ->writepage.
3623 */
3624int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3625{
3626 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3627 return -EINVAL;
3628 return generic_file_mmap(file, vma);
3629}
3630#else
3631vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
3632{
3633 return VM_FAULT_SIGBUS;
3634}
3635int generic_file_mmap(struct file *file, struct vm_area_struct *vma)
3636{
3637 return -ENOSYS;
3638}
3639int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3640{
3641 return -ENOSYS;
3642}
3643#endif /* CONFIG_MMU */
3644
3645EXPORT_SYMBOL(filemap_page_mkwrite);
3646EXPORT_SYMBOL(generic_file_mmap);
3647EXPORT_SYMBOL(generic_file_readonly_mmap);
3648
3649static struct folio *do_read_cache_folio(struct address_space *mapping,
3650 pgoff_t index, filler_t filler, struct file *file, gfp_t gfp)
3651{
3652 struct folio *folio;
3653 int err;
3654
3655 if (!filler)
3656 filler = mapping->a_ops->read_folio;
3657repeat:
3658 folio = filemap_get_folio(mapping, index);
3659 if (IS_ERR(folio)) {
3660 folio = filemap_alloc_folio(gfp, 0);
3661 if (!folio)
3662 return ERR_PTR(-ENOMEM);
3663 err = filemap_add_folio(mapping, folio, index, gfp);
3664 if (unlikely(err)) {
3665 folio_put(folio);
3666 if (err == -EEXIST)
3667 goto repeat;
3668 /* Presumably ENOMEM for xarray node */
3669 return ERR_PTR(err);
3670 }
3671
3672 goto filler;
3673 }
3674 if (folio_test_uptodate(folio))
3675 goto out;
3676
3677 if (!folio_trylock(folio)) {
3678 folio_put_wait_locked(folio, TASK_UNINTERRUPTIBLE);
3679 goto repeat;
3680 }
3681
3682 /* Folio was truncated from mapping */
3683 if (!folio->mapping) {
3684 folio_unlock(folio);
3685 folio_put(folio);
3686 goto repeat;
3687 }
3688
3689 /* Someone else locked and filled the page in a very small window */
3690 if (folio_test_uptodate(folio)) {
3691 folio_unlock(folio);
3692 goto out;
3693 }
3694
3695filler:
3696 err = filemap_read_folio(file, filler, folio);
3697 if (err) {
3698 folio_put(folio);
3699 if (err == AOP_TRUNCATED_PAGE)
3700 goto repeat;
3701 return ERR_PTR(err);
3702 }
3703
3704out:
3705 folio_mark_accessed(folio);
3706 return folio;
3707}
3708
3709/**
3710 * read_cache_folio - Read into page cache, fill it if needed.
3711 * @mapping: The address_space to read from.
3712 * @index: The index to read.
3713 * @filler: Function to perform the read, or NULL to use aops->read_folio().
3714 * @file: Passed to filler function, may be NULL if not required.
3715 *
3716 * Read one page into the page cache. If it succeeds, the folio returned
3717 * will contain @index, but it may not be the first page of the folio.
3718 *
3719 * If the filler function returns an error, it will be returned to the
3720 * caller.
3721 *
3722 * Context: May sleep. Expects mapping->invalidate_lock to be held.
3723 * Return: An uptodate folio on success, ERR_PTR() on failure.
3724 */
3725struct folio *read_cache_folio(struct address_space *mapping, pgoff_t index,
3726 filler_t filler, struct file *file)
3727{
3728 return do_read_cache_folio(mapping, index, filler, file,
3729 mapping_gfp_mask(mapping));
3730}
3731EXPORT_SYMBOL(read_cache_folio);
3732
3733/**
3734 * mapping_read_folio_gfp - Read into page cache, using specified allocation flags.
3735 * @mapping: The address_space for the folio.
3736 * @index: The index that the allocated folio will contain.
3737 * @gfp: The page allocator flags to use if allocating.
3738 *
3739 * This is the same as "read_cache_folio(mapping, index, NULL, NULL)", but with
3740 * any new memory allocations done using the specified allocation flags.
3741 *
3742 * The most likely error from this function is EIO, but ENOMEM is
3743 * possible and so is EINTR. If ->read_folio returns another error,
3744 * that will be returned to the caller.
3745 *
3746 * The function expects mapping->invalidate_lock to be already held.
3747 *
3748 * Return: Uptodate folio on success, ERR_PTR() on failure.
3749 */
3750struct folio *mapping_read_folio_gfp(struct address_space *mapping,
3751 pgoff_t index, gfp_t gfp)
3752{
3753 return do_read_cache_folio(mapping, index, NULL, NULL, gfp);
3754}
3755EXPORT_SYMBOL(mapping_read_folio_gfp);
3756
3757static struct page *do_read_cache_page(struct address_space *mapping,
3758 pgoff_t index, filler_t *filler, struct file *file, gfp_t gfp)
3759{
3760 struct folio *folio;
3761
3762 folio = do_read_cache_folio(mapping, index, filler, file, gfp);
3763 if (IS_ERR(folio))
3764 return &folio->page;
3765 return folio_file_page(folio, index);
3766}
3767
3768struct page *read_cache_page(struct address_space *mapping,
3769 pgoff_t index, filler_t *filler, struct file *file)
3770{
3771 return do_read_cache_page(mapping, index, filler, file,
3772 mapping_gfp_mask(mapping));
3773}
3774EXPORT_SYMBOL(read_cache_page);
3775
3776/**
3777 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3778 * @mapping: the page's address_space
3779 * @index: the page index
3780 * @gfp: the page allocator flags to use if allocating
3781 *
3782 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
3783 * any new page allocations done using the specified allocation flags.
3784 *
3785 * If the page does not get brought uptodate, return -EIO.
3786 *
3787 * The function expects mapping->invalidate_lock to be already held.
3788 *
3789 * Return: up to date page on success, ERR_PTR() on failure.
3790 */
3791struct page *read_cache_page_gfp(struct address_space *mapping,
3792 pgoff_t index,
3793 gfp_t gfp)
3794{
3795 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
3796}
3797EXPORT_SYMBOL(read_cache_page_gfp);
3798
3799/*
3800 * Warn about a page cache invalidation failure during a direct I/O write.
3801 */
3802static void dio_warn_stale_pagecache(struct file *filp)
3803{
3804 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3805 char pathname[128];
3806 char *path;
3807
3808 errseq_set(&filp->f_mapping->wb_err, -EIO);
3809 if (__ratelimit(&_rs)) {
3810 path = file_path(filp, pathname, sizeof(pathname));
3811 if (IS_ERR(path))
3812 path = "(unknown)";
3813 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
3814 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3815 current->comm);
3816 }
3817}
3818
3819void kiocb_invalidate_post_direct_write(struct kiocb *iocb, size_t count)
3820{
3821 struct address_space *mapping = iocb->ki_filp->f_mapping;
3822
3823 if (mapping->nrpages &&
3824 invalidate_inode_pages2_range(mapping,
3825 iocb->ki_pos >> PAGE_SHIFT,
3826 (iocb->ki_pos + count - 1) >> PAGE_SHIFT))
3827 dio_warn_stale_pagecache(iocb->ki_filp);
3828}
3829
3830ssize_t
3831generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3832{
3833 struct address_space *mapping = iocb->ki_filp->f_mapping;
3834 size_t write_len = iov_iter_count(from);
3835 ssize_t written;
3836
3837 /*
3838 * If a page can not be invalidated, return 0 to fall back
3839 * to buffered write.
3840 */
3841 written = kiocb_invalidate_pages(iocb, write_len);
3842 if (written) {
3843 if (written == -EBUSY)
3844 return 0;
3845 return written;
3846 }
3847
3848 written = mapping->a_ops->direct_IO(iocb, from);
3849
3850 /*
3851 * Finally, try again to invalidate clean pages which might have been
3852 * cached by non-direct readahead, or faulted in by get_user_pages()
3853 * if the source of the write was an mmap'ed region of the file
3854 * we're writing. Either one is a pretty crazy thing to do,
3855 * so we don't support it 100%. If this invalidation
3856 * fails, tough, the write still worked...
3857 *
3858 * Most of the time we do not need this since dio_complete() will do
3859 * the invalidation for us. However there are some file systems that
3860 * do not end up with dio_complete() being called, so let's not break
3861 * them by removing it completely.
3862 *
3863 * Noticeable example is a blkdev_direct_IO().
3864 *
3865 * Skip invalidation for async writes or if mapping has no pages.
3866 */
3867 if (written > 0) {
3868 struct inode *inode = mapping->host;
3869 loff_t pos = iocb->ki_pos;
3870
3871 kiocb_invalidate_post_direct_write(iocb, written);
3872 pos += written;
3873 write_len -= written;
3874 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3875 i_size_write(inode, pos);
3876 mark_inode_dirty(inode);
3877 }
3878 iocb->ki_pos = pos;
3879 }
3880 if (written != -EIOCBQUEUED)
3881 iov_iter_revert(from, write_len - iov_iter_count(from));
3882 return written;
3883}
3884EXPORT_SYMBOL(generic_file_direct_write);
3885
3886ssize_t generic_perform_write(struct kiocb *iocb, struct iov_iter *i)
3887{
3888 struct file *file = iocb->ki_filp;
3889 loff_t pos = iocb->ki_pos;
3890 struct address_space *mapping = file->f_mapping;
3891 const struct address_space_operations *a_ops = mapping->a_ops;
3892 long status = 0;
3893 ssize_t written = 0;
3894
3895 do {
3896 struct page *page;
3897 unsigned long offset; /* Offset into pagecache page */
3898 unsigned long bytes; /* Bytes to write to page */
3899 size_t copied; /* Bytes copied from user */
3900 void *fsdata = NULL;
3901
3902 offset = (pos & (PAGE_SIZE - 1));
3903 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3904 iov_iter_count(i));
3905
3906again:
3907 /*
3908 * Bring in the user page that we will copy from _first_.
3909 * Otherwise there's a nasty deadlock on copying from the
3910 * same page as we're writing to, without it being marked
3911 * up-to-date.
3912 */
3913 if (unlikely(fault_in_iov_iter_readable(i, bytes) == bytes)) {
3914 status = -EFAULT;
3915 break;
3916 }
3917
3918 if (fatal_signal_pending(current)) {
3919 status = -EINTR;
3920 break;
3921 }
3922
3923 status = a_ops->write_begin(file, mapping, pos, bytes,
3924 &page, &fsdata);
3925 if (unlikely(status < 0))
3926 break;
3927
3928 if (mapping_writably_mapped(mapping))
3929 flush_dcache_page(page);
3930
3931 copied = copy_page_from_iter_atomic(page, offset, bytes, i);
3932 flush_dcache_page(page);
3933
3934 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3935 page, fsdata);
3936 if (unlikely(status != copied)) {
3937 iov_iter_revert(i, copied - max(status, 0L));
3938 if (unlikely(status < 0))
3939 break;
3940 }
3941 cond_resched();
3942
3943 if (unlikely(status == 0)) {
3944 /*
3945 * A short copy made ->write_end() reject the
3946 * thing entirely. Might be memory poisoning
3947 * halfway through, might be a race with munmap,
3948 * might be severe memory pressure.
3949 */
3950 if (copied)
3951 bytes = copied;
3952 goto again;
3953 }
3954 pos += status;
3955 written += status;
3956
3957 balance_dirty_pages_ratelimited(mapping);
3958 } while (iov_iter_count(i));
3959
3960 if (!written)
3961 return status;
3962 iocb->ki_pos += written;
3963 return written;
3964}
3965EXPORT_SYMBOL(generic_perform_write);
3966
3967/**
3968 * __generic_file_write_iter - write data to a file
3969 * @iocb: IO state structure (file, offset, etc.)
3970 * @from: iov_iter with data to write
3971 *
3972 * This function does all the work needed for actually writing data to a
3973 * file. It does all basic checks, removes SUID from the file, updates
3974 * modification times and calls proper subroutines depending on whether we
3975 * do direct IO or a standard buffered write.
3976 *
3977 * It expects i_rwsem to be grabbed unless we work on a block device or similar
3978 * object which does not need locking at all.
3979 *
3980 * This function does *not* take care of syncing data in case of O_SYNC write.
3981 * A caller has to handle it. This is mainly due to the fact that we want to
3982 * avoid syncing under i_rwsem.
3983 *
3984 * Return:
3985 * * number of bytes written, even for truncated writes
3986 * * negative error code if no data has been written at all
3987 */
3988ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3989{
3990 struct file *file = iocb->ki_filp;
3991 struct address_space *mapping = file->f_mapping;
3992 struct inode *inode = mapping->host;
3993 ssize_t ret;
3994
3995 ret = file_remove_privs(file);
3996 if (ret)
3997 return ret;
3998
3999 ret = file_update_time(file);
4000 if (ret)
4001 return ret;
4002
4003 if (iocb->ki_flags & IOCB_DIRECT) {
4004 ret = generic_file_direct_write(iocb, from);
4005 /*
4006 * If the write stopped short of completing, fall back to
4007 * buffered writes. Some filesystems do this for writes to
4008 * holes, for example. For DAX files, a buffered write will
4009 * not succeed (even if it did, DAX does not handle dirty
4010 * page-cache pages correctly).
4011 */
4012 if (ret < 0 || !iov_iter_count(from) || IS_DAX(inode))
4013 return ret;
4014 return direct_write_fallback(iocb, from, ret,
4015 generic_perform_write(iocb, from));
4016 }
4017
4018 return generic_perform_write(iocb, from);
4019}
4020EXPORT_SYMBOL(__generic_file_write_iter);
4021
4022/**
4023 * generic_file_write_iter - write data to a file
4024 * @iocb: IO state structure
4025 * @from: iov_iter with data to write
4026 *
4027 * This is a wrapper around __generic_file_write_iter() to be used by most
4028 * filesystems. It takes care of syncing the file in case of O_SYNC file
4029 * and acquires i_rwsem as needed.
4030 * Return:
4031 * * negative error code if no data has been written at all of
4032 * vfs_fsync_range() failed for a synchronous write
4033 * * number of bytes written, even for truncated writes
4034 */
4035ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
4036{
4037 struct file *file = iocb->ki_filp;
4038 struct inode *inode = file->f_mapping->host;
4039 ssize_t ret;
4040
4041 inode_lock(inode);
4042 ret = generic_write_checks(iocb, from);
4043 if (ret > 0)
4044 ret = __generic_file_write_iter(iocb, from);
4045 inode_unlock(inode);
4046
4047 if (ret > 0)
4048 ret = generic_write_sync(iocb, ret);
4049 return ret;
4050}
4051EXPORT_SYMBOL(generic_file_write_iter);
4052
4053/**
4054 * filemap_release_folio() - Release fs-specific metadata on a folio.
4055 * @folio: The folio which the kernel is trying to free.
4056 * @gfp: Memory allocation flags (and I/O mode).
4057 *
4058 * The address_space is trying to release any data attached to a folio
4059 * (presumably at folio->private).
4060 *
4061 * This will also be called if the private_2 flag is set on a page,
4062 * indicating that the folio has other metadata associated with it.
4063 *
4064 * The @gfp argument specifies whether I/O may be performed to release
4065 * this page (__GFP_IO), and whether the call may block
4066 * (__GFP_RECLAIM & __GFP_FS).
4067 *
4068 * Return: %true if the release was successful, otherwise %false.
4069 */
4070bool filemap_release_folio(struct folio *folio, gfp_t gfp)
4071{
4072 struct address_space * const mapping = folio->mapping;
4073
4074 BUG_ON(!folio_test_locked(folio));
4075 if (folio_test_writeback(folio))
4076 return false;
4077
4078 if (mapping && mapping->a_ops->release_folio)
4079 return mapping->a_ops->release_folio(folio, gfp);
4080 return try_to_free_buffers(folio);
4081}
4082EXPORT_SYMBOL(filemap_release_folio);
4083
4084#ifdef CONFIG_CACHESTAT_SYSCALL
4085/**
4086 * filemap_cachestat() - compute the page cache statistics of a mapping
4087 * @mapping: The mapping to compute the statistics for.
4088 * @first_index: The starting page cache index.
4089 * @last_index: The final page index (inclusive).
4090 * @cs: the cachestat struct to write the result to.
4091 *
4092 * This will query the page cache statistics of a mapping in the
4093 * page range of [first_index, last_index] (inclusive). The statistics
4094 * queried include: number of dirty pages, number of pages marked for
4095 * writeback, and the number of (recently) evicted pages.
4096 */
4097static void filemap_cachestat(struct address_space *mapping,
4098 pgoff_t first_index, pgoff_t last_index, struct cachestat *cs)
4099{
4100 XA_STATE(xas, &mapping->i_pages, first_index);
4101 struct folio *folio;
4102
4103 rcu_read_lock();
4104 xas_for_each(&xas, folio, last_index) {
4105 unsigned long nr_pages;
4106 pgoff_t folio_first_index, folio_last_index;
4107
4108 if (xas_retry(&xas, folio))
4109 continue;
4110
4111 if (xa_is_value(folio)) {
4112 /* page is evicted */
4113 void *shadow = (void *)folio;
4114 bool workingset; /* not used */
4115 int order = xa_get_order(xas.xa, xas.xa_index);
4116
4117 nr_pages = 1 << order;
4118 folio_first_index = round_down(xas.xa_index, 1 << order);
4119 folio_last_index = folio_first_index + nr_pages - 1;
4120
4121 /* Folios might straddle the range boundaries, only count covered pages */
4122 if (folio_first_index < first_index)
4123 nr_pages -= first_index - folio_first_index;
4124
4125 if (folio_last_index > last_index)
4126 nr_pages -= folio_last_index - last_index;
4127
4128 cs->nr_evicted += nr_pages;
4129
4130#ifdef CONFIG_SWAP /* implies CONFIG_MMU */
4131 if (shmem_mapping(mapping)) {
4132 /* shmem file - in swap cache */
4133 swp_entry_t swp = radix_to_swp_entry(folio);
4134
4135 shadow = get_shadow_from_swap_cache(swp);
4136 }
4137#endif
4138 if (workingset_test_recent(shadow, true, &workingset))
4139 cs->nr_recently_evicted += nr_pages;
4140
4141 goto resched;
4142 }
4143
4144 nr_pages = folio_nr_pages(folio);
4145 folio_first_index = folio_pgoff(folio);
4146 folio_last_index = folio_first_index + nr_pages - 1;
4147
4148 /* Folios might straddle the range boundaries, only count covered pages */
4149 if (folio_first_index < first_index)
4150 nr_pages -= first_index - folio_first_index;
4151
4152 if (folio_last_index > last_index)
4153 nr_pages -= folio_last_index - last_index;
4154
4155 /* page is in cache */
4156 cs->nr_cache += nr_pages;
4157
4158 if (folio_test_dirty(folio))
4159 cs->nr_dirty += nr_pages;
4160
4161 if (folio_test_writeback(folio))
4162 cs->nr_writeback += nr_pages;
4163
4164resched:
4165 if (need_resched()) {
4166 xas_pause(&xas);
4167 cond_resched_rcu();
4168 }
4169 }
4170 rcu_read_unlock();
4171}
4172
4173/*
4174 * The cachestat(2) system call.
4175 *
4176 * cachestat() returns the page cache statistics of a file in the
4177 * bytes range specified by `off` and `len`: number of cached pages,
4178 * number of dirty pages, number of pages marked for writeback,
4179 * number of evicted pages, and number of recently evicted pages.
4180 *
4181 * An evicted page is a page that is previously in the page cache
4182 * but has been evicted since. A page is recently evicted if its last
4183 * eviction was recent enough that its reentry to the cache would
4184 * indicate that it is actively being used by the system, and that
4185 * there is memory pressure on the system.
4186 *
4187 * `off` and `len` must be non-negative integers. If `len` > 0,
4188 * the queried range is [`off`, `off` + `len`]. If `len` == 0,
4189 * we will query in the range from `off` to the end of the file.
4190 *
4191 * The `flags` argument is unused for now, but is included for future
4192 * extensibility. User should pass 0 (i.e no flag specified).
4193 *
4194 * Currently, hugetlbfs is not supported.
4195 *
4196 * Because the status of a page can change after cachestat() checks it
4197 * but before it returns to the application, the returned values may
4198 * contain stale information.
4199 *
4200 * return values:
4201 * zero - success
4202 * -EFAULT - cstat or cstat_range points to an illegal address
4203 * -EINVAL - invalid flags
4204 * -EBADF - invalid file descriptor
4205 * -EOPNOTSUPP - file descriptor is of a hugetlbfs file
4206 */
4207SYSCALL_DEFINE4(cachestat, unsigned int, fd,
4208 struct cachestat_range __user *, cstat_range,
4209 struct cachestat __user *, cstat, unsigned int, flags)
4210{
4211 struct fd f = fdget(fd);
4212 struct address_space *mapping;
4213 struct cachestat_range csr;
4214 struct cachestat cs;
4215 pgoff_t first_index, last_index;
4216
4217 if (!f.file)
4218 return -EBADF;
4219
4220 if (copy_from_user(&csr, cstat_range,
4221 sizeof(struct cachestat_range))) {
4222 fdput(f);
4223 return -EFAULT;
4224 }
4225
4226 /* hugetlbfs is not supported */
4227 if (is_file_hugepages(f.file)) {
4228 fdput(f);
4229 return -EOPNOTSUPP;
4230 }
4231
4232 if (flags != 0) {
4233 fdput(f);
4234 return -EINVAL;
4235 }
4236
4237 first_index = csr.off >> PAGE_SHIFT;
4238 last_index =
4239 csr.len == 0 ? ULONG_MAX : (csr.off + csr.len - 1) >> PAGE_SHIFT;
4240 memset(&cs, 0, sizeof(struct cachestat));
4241 mapping = f.file->f_mapping;
4242 filemap_cachestat(mapping, first_index, last_index, &cs);
4243 fdput(f);
4244
4245 if (copy_to_user(cstat, &cs, sizeof(struct cachestat)))
4246 return -EFAULT;
4247
4248 return 0;
4249}
4250#endif /* CONFIG_CACHESTAT_SYSCALL */