Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_PGTABLE_H
3#define _LINUX_PGTABLE_H
4
5#include <linux/pfn.h>
6#include <asm/pgtable.h>
7
8#ifndef __ASSEMBLY__
9#ifdef CONFIG_MMU
10
11#include <linux/mm_types.h>
12#include <linux/bug.h>
13#include <linux/errno.h>
14#include <asm-generic/pgtable_uffd.h>
15#include <linux/page_table_check.h>
16
17#if 5 - defined(__PAGETABLE_P4D_FOLDED) - defined(__PAGETABLE_PUD_FOLDED) - \
18 defined(__PAGETABLE_PMD_FOLDED) != CONFIG_PGTABLE_LEVELS
19#error CONFIG_PGTABLE_LEVELS is not consistent with __PAGETABLE_{P4D,PUD,PMD}_FOLDED
20#endif
21
22/*
23 * On almost all architectures and configurations, 0 can be used as the
24 * upper ceiling to free_pgtables(): on many architectures it has the same
25 * effect as using TASK_SIZE. However, there is one configuration which
26 * must impose a more careful limit, to avoid freeing kernel pgtables.
27 */
28#ifndef USER_PGTABLES_CEILING
29#define USER_PGTABLES_CEILING 0UL
30#endif
31
32/*
33 * This defines the first usable user address. Platforms
34 * can override its value with custom FIRST_USER_ADDRESS
35 * defined in their respective <asm/pgtable.h>.
36 */
37#ifndef FIRST_USER_ADDRESS
38#define FIRST_USER_ADDRESS 0UL
39#endif
40
41/*
42 * This defines the generic helper for accessing PMD page
43 * table page. Although platforms can still override this
44 * via their respective <asm/pgtable.h>.
45 */
46#ifndef pmd_pgtable
47#define pmd_pgtable(pmd) pmd_page(pmd)
48#endif
49
50/*
51 * A page table page can be thought of an array like this: pXd_t[PTRS_PER_PxD]
52 *
53 * The pXx_index() functions return the index of the entry in the page
54 * table page which would control the given virtual address
55 *
56 * As these functions may be used by the same code for different levels of
57 * the page table folding, they are always available, regardless of
58 * CONFIG_PGTABLE_LEVELS value. For the folded levels they simply return 0
59 * because in such cases PTRS_PER_PxD equals 1.
60 */
61
62static inline unsigned long pte_index(unsigned long address)
63{
64 return (address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
65}
66#define pte_index pte_index
67
68#ifndef pmd_index
69static inline unsigned long pmd_index(unsigned long address)
70{
71 return (address >> PMD_SHIFT) & (PTRS_PER_PMD - 1);
72}
73#define pmd_index pmd_index
74#endif
75
76#ifndef pud_index
77static inline unsigned long pud_index(unsigned long address)
78{
79 return (address >> PUD_SHIFT) & (PTRS_PER_PUD - 1);
80}
81#define pud_index pud_index
82#endif
83
84#ifndef pgd_index
85/* Must be a compile-time constant, so implement it as a macro */
86#define pgd_index(a) (((a) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1))
87#endif
88
89#ifndef pte_offset_kernel
90static inline pte_t *pte_offset_kernel(pmd_t *pmd, unsigned long address)
91{
92 return (pte_t *)pmd_page_vaddr(*pmd) + pte_index(address);
93}
94#define pte_offset_kernel pte_offset_kernel
95#endif
96
97#ifdef CONFIG_HIGHPTE
98#define __pte_map(pmd, address) \
99 ((pte_t *)kmap_local_page(pmd_page(*(pmd))) + pte_index((address)))
100#define pte_unmap(pte) do { \
101 kunmap_local((pte)); \
102 /* rcu_read_unlock() to be added later */ \
103} while (0)
104#else
105static inline pte_t *__pte_map(pmd_t *pmd, unsigned long address)
106{
107 return pte_offset_kernel(pmd, address);
108}
109static inline void pte_unmap(pte_t *pte)
110{
111 /* rcu_read_unlock() to be added later */
112}
113#endif
114
115/* Find an entry in the second-level page table.. */
116#ifndef pmd_offset
117static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
118{
119 return pud_pgtable(*pud) + pmd_index(address);
120}
121#define pmd_offset pmd_offset
122#endif
123
124#ifndef pud_offset
125static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
126{
127 return p4d_pgtable(*p4d) + pud_index(address);
128}
129#define pud_offset pud_offset
130#endif
131
132static inline pgd_t *pgd_offset_pgd(pgd_t *pgd, unsigned long address)
133{
134 return (pgd + pgd_index(address));
135};
136
137/*
138 * a shortcut to get a pgd_t in a given mm
139 */
140#ifndef pgd_offset
141#define pgd_offset(mm, address) pgd_offset_pgd((mm)->pgd, (address))
142#endif
143
144/*
145 * a shortcut which implies the use of the kernel's pgd, instead
146 * of a process's
147 */
148#ifndef pgd_offset_k
149#define pgd_offset_k(address) pgd_offset(&init_mm, (address))
150#endif
151
152/*
153 * In many cases it is known that a virtual address is mapped at PMD or PTE
154 * level, so instead of traversing all the page table levels, we can get a
155 * pointer to the PMD entry in user or kernel page table or translate a virtual
156 * address to the pointer in the PTE in the kernel page tables with simple
157 * helpers.
158 */
159static inline pmd_t *pmd_off(struct mm_struct *mm, unsigned long va)
160{
161 return pmd_offset(pud_offset(p4d_offset(pgd_offset(mm, va), va), va), va);
162}
163
164static inline pmd_t *pmd_off_k(unsigned long va)
165{
166 return pmd_offset(pud_offset(p4d_offset(pgd_offset_k(va), va), va), va);
167}
168
169static inline pte_t *virt_to_kpte(unsigned long vaddr)
170{
171 pmd_t *pmd = pmd_off_k(vaddr);
172
173 return pmd_none(*pmd) ? NULL : pte_offset_kernel(pmd, vaddr);
174}
175
176#ifndef pmd_young
177static inline int pmd_young(pmd_t pmd)
178{
179 return 0;
180}
181#endif
182
183#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
184extern int ptep_set_access_flags(struct vm_area_struct *vma,
185 unsigned long address, pte_t *ptep,
186 pte_t entry, int dirty);
187#endif
188
189#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
190#ifdef CONFIG_TRANSPARENT_HUGEPAGE
191extern int pmdp_set_access_flags(struct vm_area_struct *vma,
192 unsigned long address, pmd_t *pmdp,
193 pmd_t entry, int dirty);
194extern int pudp_set_access_flags(struct vm_area_struct *vma,
195 unsigned long address, pud_t *pudp,
196 pud_t entry, int dirty);
197#else
198static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
199 unsigned long address, pmd_t *pmdp,
200 pmd_t entry, int dirty)
201{
202 BUILD_BUG();
203 return 0;
204}
205static inline int pudp_set_access_flags(struct vm_area_struct *vma,
206 unsigned long address, pud_t *pudp,
207 pud_t entry, int dirty)
208{
209 BUILD_BUG();
210 return 0;
211}
212#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
213#endif
214
215#ifndef ptep_get
216static inline pte_t ptep_get(pte_t *ptep)
217{
218 return READ_ONCE(*ptep);
219}
220#endif
221
222#ifndef pmdp_get
223static inline pmd_t pmdp_get(pmd_t *pmdp)
224{
225 return READ_ONCE(*pmdp);
226}
227#endif
228
229#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
230static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
231 unsigned long address,
232 pte_t *ptep)
233{
234 pte_t pte = ptep_get(ptep);
235 int r = 1;
236 if (!pte_young(pte))
237 r = 0;
238 else
239 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
240 return r;
241}
242#endif
243
244#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
245#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG)
246static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
247 unsigned long address,
248 pmd_t *pmdp)
249{
250 pmd_t pmd = *pmdp;
251 int r = 1;
252 if (!pmd_young(pmd))
253 r = 0;
254 else
255 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
256 return r;
257}
258#else
259static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
260 unsigned long address,
261 pmd_t *pmdp)
262{
263 BUILD_BUG();
264 return 0;
265}
266#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG */
267#endif
268
269#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
270int ptep_clear_flush_young(struct vm_area_struct *vma,
271 unsigned long address, pte_t *ptep);
272#endif
273
274#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
275#ifdef CONFIG_TRANSPARENT_HUGEPAGE
276extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
277 unsigned long address, pmd_t *pmdp);
278#else
279/*
280 * Despite relevant to THP only, this API is called from generic rmap code
281 * under PageTransHuge(), hence needs a dummy implementation for !THP
282 */
283static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
284 unsigned long address, pmd_t *pmdp)
285{
286 BUILD_BUG();
287 return 0;
288}
289#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
290#endif
291
292#ifndef arch_has_hw_nonleaf_pmd_young
293/*
294 * Return whether the accessed bit in non-leaf PMD entries is supported on the
295 * local CPU.
296 */
297static inline bool arch_has_hw_nonleaf_pmd_young(void)
298{
299 return IS_ENABLED(CONFIG_ARCH_HAS_NONLEAF_PMD_YOUNG);
300}
301#endif
302
303#ifndef arch_has_hw_pte_young
304/*
305 * Return whether the accessed bit is supported on the local CPU.
306 *
307 * This stub assumes accessing through an old PTE triggers a page fault.
308 * Architectures that automatically set the access bit should overwrite it.
309 */
310static inline bool arch_has_hw_pte_young(void)
311{
312 return false;
313}
314#endif
315
316#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
317static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
318 unsigned long address,
319 pte_t *ptep)
320{
321 pte_t pte = ptep_get(ptep);
322 pte_clear(mm, address, ptep);
323 page_table_check_pte_clear(mm, address, pte);
324 return pte;
325}
326#endif
327
328static inline void ptep_clear(struct mm_struct *mm, unsigned long addr,
329 pte_t *ptep)
330{
331 ptep_get_and_clear(mm, addr, ptep);
332}
333
334#ifdef CONFIG_GUP_GET_PXX_LOW_HIGH
335/*
336 * For walking the pagetables without holding any locks. Some architectures
337 * (eg x86-32 PAE) cannot load the entries atomically without using expensive
338 * instructions. We are guaranteed that a PTE will only either go from not
339 * present to present, or present to not present -- it will not switch to a
340 * completely different present page without a TLB flush inbetween; which we
341 * are blocking by holding interrupts off.
342 *
343 * Setting ptes from not present to present goes:
344 *
345 * ptep->pte_high = h;
346 * smp_wmb();
347 * ptep->pte_low = l;
348 *
349 * And present to not present goes:
350 *
351 * ptep->pte_low = 0;
352 * smp_wmb();
353 * ptep->pte_high = 0;
354 *
355 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
356 * We load pte_high *after* loading pte_low, which ensures we don't see an older
357 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't
358 * picked up a changed pte high. We might have gotten rubbish values from
359 * pte_low and pte_high, but we are guaranteed that pte_low will not have the
360 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
361 * operates on present ptes we're safe.
362 */
363static inline pte_t ptep_get_lockless(pte_t *ptep)
364{
365 pte_t pte;
366
367 do {
368 pte.pte_low = ptep->pte_low;
369 smp_rmb();
370 pte.pte_high = ptep->pte_high;
371 smp_rmb();
372 } while (unlikely(pte.pte_low != ptep->pte_low));
373
374 return pte;
375}
376#define ptep_get_lockless ptep_get_lockless
377
378#if CONFIG_PGTABLE_LEVELS > 2
379static inline pmd_t pmdp_get_lockless(pmd_t *pmdp)
380{
381 pmd_t pmd;
382
383 do {
384 pmd.pmd_low = pmdp->pmd_low;
385 smp_rmb();
386 pmd.pmd_high = pmdp->pmd_high;
387 smp_rmb();
388 } while (unlikely(pmd.pmd_low != pmdp->pmd_low));
389
390 return pmd;
391}
392#define pmdp_get_lockless pmdp_get_lockless
393#endif /* CONFIG_PGTABLE_LEVELS > 2 */
394#endif /* CONFIG_GUP_GET_PXX_LOW_HIGH */
395
396/*
397 * We require that the PTE can be read atomically.
398 */
399#ifndef ptep_get_lockless
400static inline pte_t ptep_get_lockless(pte_t *ptep)
401{
402 return ptep_get(ptep);
403}
404#endif
405
406#ifndef pmdp_get_lockless
407static inline pmd_t pmdp_get_lockless(pmd_t *pmdp)
408{
409 return pmdp_get(pmdp);
410}
411#endif
412
413#ifdef CONFIG_TRANSPARENT_HUGEPAGE
414#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
415static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
416 unsigned long address,
417 pmd_t *pmdp)
418{
419 pmd_t pmd = *pmdp;
420
421 pmd_clear(pmdp);
422 page_table_check_pmd_clear(mm, address, pmd);
423
424 return pmd;
425}
426#endif /* __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR */
427#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR
428static inline pud_t pudp_huge_get_and_clear(struct mm_struct *mm,
429 unsigned long address,
430 pud_t *pudp)
431{
432 pud_t pud = *pudp;
433
434 pud_clear(pudp);
435 page_table_check_pud_clear(mm, address, pud);
436
437 return pud;
438}
439#endif /* __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR */
440#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
441
442#ifdef CONFIG_TRANSPARENT_HUGEPAGE
443#ifndef __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
444static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
445 unsigned long address, pmd_t *pmdp,
446 int full)
447{
448 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
449}
450#endif
451
452#ifndef __HAVE_ARCH_PUDP_HUGE_GET_AND_CLEAR_FULL
453static inline pud_t pudp_huge_get_and_clear_full(struct mm_struct *mm,
454 unsigned long address, pud_t *pudp,
455 int full)
456{
457 return pudp_huge_get_and_clear(mm, address, pudp);
458}
459#endif
460#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
461
462#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
463static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
464 unsigned long address, pte_t *ptep,
465 int full)
466{
467 return ptep_get_and_clear(mm, address, ptep);
468}
469#endif
470
471
472/*
473 * If two threads concurrently fault at the same page, the thread that
474 * won the race updates the PTE and its local TLB/Cache. The other thread
475 * gives up, simply does nothing, and continues; on architectures where
476 * software can update TLB, local TLB can be updated here to avoid next page
477 * fault. This function updates TLB only, do nothing with cache or others.
478 * It is the difference with function update_mmu_cache.
479 */
480#ifndef __HAVE_ARCH_UPDATE_MMU_TLB
481static inline void update_mmu_tlb(struct vm_area_struct *vma,
482 unsigned long address, pte_t *ptep)
483{
484}
485#define __HAVE_ARCH_UPDATE_MMU_TLB
486#endif
487
488/*
489 * Some architectures may be able to avoid expensive synchronization
490 * primitives when modifications are made to PTE's which are already
491 * not present, or in the process of an address space destruction.
492 */
493#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
494static inline void pte_clear_not_present_full(struct mm_struct *mm,
495 unsigned long address,
496 pte_t *ptep,
497 int full)
498{
499 pte_clear(mm, address, ptep);
500}
501#endif
502
503#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
504extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
505 unsigned long address,
506 pte_t *ptep);
507#endif
508
509#ifndef __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
510extern pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
511 unsigned long address,
512 pmd_t *pmdp);
513extern pud_t pudp_huge_clear_flush(struct vm_area_struct *vma,
514 unsigned long address,
515 pud_t *pudp);
516#endif
517
518#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
519struct mm_struct;
520static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
521{
522 pte_t old_pte = ptep_get(ptep);
523 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
524}
525#endif
526
527/*
528 * On some architectures hardware does not set page access bit when accessing
529 * memory page, it is responsibility of software setting this bit. It brings
530 * out extra page fault penalty to track page access bit. For optimization page
531 * access bit can be set during all page fault flow on these arches.
532 * To be differentiate with macro pte_mkyoung, this macro is used on platforms
533 * where software maintains page access bit.
534 */
535#ifndef pte_sw_mkyoung
536static inline pte_t pte_sw_mkyoung(pte_t pte)
537{
538 return pte;
539}
540#define pte_sw_mkyoung pte_sw_mkyoung
541#endif
542
543#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
544#ifdef CONFIG_TRANSPARENT_HUGEPAGE
545static inline void pmdp_set_wrprotect(struct mm_struct *mm,
546 unsigned long address, pmd_t *pmdp)
547{
548 pmd_t old_pmd = *pmdp;
549 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
550}
551#else
552static inline void pmdp_set_wrprotect(struct mm_struct *mm,
553 unsigned long address, pmd_t *pmdp)
554{
555 BUILD_BUG();
556}
557#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
558#endif
559#ifndef __HAVE_ARCH_PUDP_SET_WRPROTECT
560#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
561static inline void pudp_set_wrprotect(struct mm_struct *mm,
562 unsigned long address, pud_t *pudp)
563{
564 pud_t old_pud = *pudp;
565
566 set_pud_at(mm, address, pudp, pud_wrprotect(old_pud));
567}
568#else
569static inline void pudp_set_wrprotect(struct mm_struct *mm,
570 unsigned long address, pud_t *pudp)
571{
572 BUILD_BUG();
573}
574#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
575#endif
576
577#ifndef pmdp_collapse_flush
578#ifdef CONFIG_TRANSPARENT_HUGEPAGE
579extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
580 unsigned long address, pmd_t *pmdp);
581#else
582static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
583 unsigned long address,
584 pmd_t *pmdp)
585{
586 BUILD_BUG();
587 return *pmdp;
588}
589#define pmdp_collapse_flush pmdp_collapse_flush
590#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
591#endif
592
593#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
594extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
595 pgtable_t pgtable);
596#endif
597
598#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
599extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
600#endif
601
602#ifndef arch_needs_pgtable_deposit
603#define arch_needs_pgtable_deposit() (false)
604#endif
605
606#ifdef CONFIG_TRANSPARENT_HUGEPAGE
607/*
608 * This is an implementation of pmdp_establish() that is only suitable for an
609 * architecture that doesn't have hardware dirty/accessed bits. In this case we
610 * can't race with CPU which sets these bits and non-atomic approach is fine.
611 */
612static inline pmd_t generic_pmdp_establish(struct vm_area_struct *vma,
613 unsigned long address, pmd_t *pmdp, pmd_t pmd)
614{
615 pmd_t old_pmd = *pmdp;
616 set_pmd_at(vma->vm_mm, address, pmdp, pmd);
617 return old_pmd;
618}
619#endif
620
621#ifndef __HAVE_ARCH_PMDP_INVALIDATE
622extern pmd_t pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
623 pmd_t *pmdp);
624#endif
625
626#ifndef __HAVE_ARCH_PMDP_INVALIDATE_AD
627
628/*
629 * pmdp_invalidate_ad() invalidates the PMD while changing a transparent
630 * hugepage mapping in the page tables. This function is similar to
631 * pmdp_invalidate(), but should only be used if the access and dirty bits would
632 * not be cleared by the software in the new PMD value. The function ensures
633 * that hardware changes of the access and dirty bits updates would not be lost.
634 *
635 * Doing so can allow in certain architectures to avoid a TLB flush in most
636 * cases. Yet, another TLB flush might be necessary later if the PMD update
637 * itself requires such flush (e.g., if protection was set to be stricter). Yet,
638 * even when a TLB flush is needed because of the update, the caller may be able
639 * to batch these TLB flushing operations, so fewer TLB flush operations are
640 * needed.
641 */
642extern pmd_t pmdp_invalidate_ad(struct vm_area_struct *vma,
643 unsigned long address, pmd_t *pmdp);
644#endif
645
646#ifndef __HAVE_ARCH_PTE_SAME
647static inline int pte_same(pte_t pte_a, pte_t pte_b)
648{
649 return pte_val(pte_a) == pte_val(pte_b);
650}
651#endif
652
653#ifndef __HAVE_ARCH_PTE_UNUSED
654/*
655 * Some architectures provide facilities to virtualization guests
656 * so that they can flag allocated pages as unused. This allows the
657 * host to transparently reclaim unused pages. This function returns
658 * whether the pte's page is unused.
659 */
660static inline int pte_unused(pte_t pte)
661{
662 return 0;
663}
664#endif
665
666#ifndef pte_access_permitted
667#define pte_access_permitted(pte, write) \
668 (pte_present(pte) && (!(write) || pte_write(pte)))
669#endif
670
671#ifndef pmd_access_permitted
672#define pmd_access_permitted(pmd, write) \
673 (pmd_present(pmd) && (!(write) || pmd_write(pmd)))
674#endif
675
676#ifndef pud_access_permitted
677#define pud_access_permitted(pud, write) \
678 (pud_present(pud) && (!(write) || pud_write(pud)))
679#endif
680
681#ifndef p4d_access_permitted
682#define p4d_access_permitted(p4d, write) \
683 (p4d_present(p4d) && (!(write) || p4d_write(p4d)))
684#endif
685
686#ifndef pgd_access_permitted
687#define pgd_access_permitted(pgd, write) \
688 (pgd_present(pgd) && (!(write) || pgd_write(pgd)))
689#endif
690
691#ifndef __HAVE_ARCH_PMD_SAME
692static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
693{
694 return pmd_val(pmd_a) == pmd_val(pmd_b);
695}
696
697static inline int pud_same(pud_t pud_a, pud_t pud_b)
698{
699 return pud_val(pud_a) == pud_val(pud_b);
700}
701#endif
702
703#ifndef __HAVE_ARCH_P4D_SAME
704static inline int p4d_same(p4d_t p4d_a, p4d_t p4d_b)
705{
706 return p4d_val(p4d_a) == p4d_val(p4d_b);
707}
708#endif
709
710#ifndef __HAVE_ARCH_PGD_SAME
711static inline int pgd_same(pgd_t pgd_a, pgd_t pgd_b)
712{
713 return pgd_val(pgd_a) == pgd_val(pgd_b);
714}
715#endif
716
717/*
718 * Use set_p*_safe(), and elide TLB flushing, when confident that *no*
719 * TLB flush will be required as a result of the "set". For example, use
720 * in scenarios where it is known ahead of time that the routine is
721 * setting non-present entries, or re-setting an existing entry to the
722 * same value. Otherwise, use the typical "set" helpers and flush the
723 * TLB.
724 */
725#define set_pte_safe(ptep, pte) \
726({ \
727 WARN_ON_ONCE(pte_present(*ptep) && !pte_same(*ptep, pte)); \
728 set_pte(ptep, pte); \
729})
730
731#define set_pmd_safe(pmdp, pmd) \
732({ \
733 WARN_ON_ONCE(pmd_present(*pmdp) && !pmd_same(*pmdp, pmd)); \
734 set_pmd(pmdp, pmd); \
735})
736
737#define set_pud_safe(pudp, pud) \
738({ \
739 WARN_ON_ONCE(pud_present(*pudp) && !pud_same(*pudp, pud)); \
740 set_pud(pudp, pud); \
741})
742
743#define set_p4d_safe(p4dp, p4d) \
744({ \
745 WARN_ON_ONCE(p4d_present(*p4dp) && !p4d_same(*p4dp, p4d)); \
746 set_p4d(p4dp, p4d); \
747})
748
749#define set_pgd_safe(pgdp, pgd) \
750({ \
751 WARN_ON_ONCE(pgd_present(*pgdp) && !pgd_same(*pgdp, pgd)); \
752 set_pgd(pgdp, pgd); \
753})
754
755#ifndef __HAVE_ARCH_DO_SWAP_PAGE
756/*
757 * Some architectures support metadata associated with a page. When a
758 * page is being swapped out, this metadata must be saved so it can be
759 * restored when the page is swapped back in. SPARC M7 and newer
760 * processors support an ADI (Application Data Integrity) tag for the
761 * page as metadata for the page. arch_do_swap_page() can restore this
762 * metadata when a page is swapped back in.
763 */
764static inline void arch_do_swap_page(struct mm_struct *mm,
765 struct vm_area_struct *vma,
766 unsigned long addr,
767 pte_t pte, pte_t oldpte)
768{
769
770}
771#endif
772
773#ifndef __HAVE_ARCH_UNMAP_ONE
774/*
775 * Some architectures support metadata associated with a page. When a
776 * page is being swapped out, this metadata must be saved so it can be
777 * restored when the page is swapped back in. SPARC M7 and newer
778 * processors support an ADI (Application Data Integrity) tag for the
779 * page as metadata for the page. arch_unmap_one() can save this
780 * metadata on a swap-out of a page.
781 */
782static inline int arch_unmap_one(struct mm_struct *mm,
783 struct vm_area_struct *vma,
784 unsigned long addr,
785 pte_t orig_pte)
786{
787 return 0;
788}
789#endif
790
791/*
792 * Allow architectures to preserve additional metadata associated with
793 * swapped-out pages. The corresponding __HAVE_ARCH_SWAP_* macros and function
794 * prototypes must be defined in the arch-specific asm/pgtable.h file.
795 */
796#ifndef __HAVE_ARCH_PREPARE_TO_SWAP
797static inline int arch_prepare_to_swap(struct page *page)
798{
799 return 0;
800}
801#endif
802
803#ifndef __HAVE_ARCH_SWAP_INVALIDATE
804static inline void arch_swap_invalidate_page(int type, pgoff_t offset)
805{
806}
807
808static inline void arch_swap_invalidate_area(int type)
809{
810}
811#endif
812
813#ifndef __HAVE_ARCH_SWAP_RESTORE
814static inline void arch_swap_restore(swp_entry_t entry, struct folio *folio)
815{
816}
817#endif
818
819#ifndef __HAVE_ARCH_PGD_OFFSET_GATE
820#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
821#endif
822
823#ifndef __HAVE_ARCH_MOVE_PTE
824#define move_pte(pte, prot, old_addr, new_addr) (pte)
825#endif
826
827#ifndef pte_accessible
828# define pte_accessible(mm, pte) ((void)(pte), 1)
829#endif
830
831#ifndef flush_tlb_fix_spurious_fault
832#define flush_tlb_fix_spurious_fault(vma, address, ptep) flush_tlb_page(vma, address)
833#endif
834
835/*
836 * When walking page tables, get the address of the next boundary,
837 * or the end address of the range if that comes earlier. Although no
838 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
839 */
840
841#define pgd_addr_end(addr, end) \
842({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
843 (__boundary - 1 < (end) - 1)? __boundary: (end); \
844})
845
846#ifndef p4d_addr_end
847#define p4d_addr_end(addr, end) \
848({ unsigned long __boundary = ((addr) + P4D_SIZE) & P4D_MASK; \
849 (__boundary - 1 < (end) - 1)? __boundary: (end); \
850})
851#endif
852
853#ifndef pud_addr_end
854#define pud_addr_end(addr, end) \
855({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
856 (__boundary - 1 < (end) - 1)? __boundary: (end); \
857})
858#endif
859
860#ifndef pmd_addr_end
861#define pmd_addr_end(addr, end) \
862({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
863 (__boundary - 1 < (end) - 1)? __boundary: (end); \
864})
865#endif
866
867/*
868 * When walking page tables, we usually want to skip any p?d_none entries;
869 * and any p?d_bad entries - reporting the error before resetting to none.
870 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
871 */
872void pgd_clear_bad(pgd_t *);
873
874#ifndef __PAGETABLE_P4D_FOLDED
875void p4d_clear_bad(p4d_t *);
876#else
877#define p4d_clear_bad(p4d) do { } while (0)
878#endif
879
880#ifndef __PAGETABLE_PUD_FOLDED
881void pud_clear_bad(pud_t *);
882#else
883#define pud_clear_bad(p4d) do { } while (0)
884#endif
885
886void pmd_clear_bad(pmd_t *);
887
888static inline int pgd_none_or_clear_bad(pgd_t *pgd)
889{
890 if (pgd_none(*pgd))
891 return 1;
892 if (unlikely(pgd_bad(*pgd))) {
893 pgd_clear_bad(pgd);
894 return 1;
895 }
896 return 0;
897}
898
899static inline int p4d_none_or_clear_bad(p4d_t *p4d)
900{
901 if (p4d_none(*p4d))
902 return 1;
903 if (unlikely(p4d_bad(*p4d))) {
904 p4d_clear_bad(p4d);
905 return 1;
906 }
907 return 0;
908}
909
910static inline int pud_none_or_clear_bad(pud_t *pud)
911{
912 if (pud_none(*pud))
913 return 1;
914 if (unlikely(pud_bad(*pud))) {
915 pud_clear_bad(pud);
916 return 1;
917 }
918 return 0;
919}
920
921static inline int pmd_none_or_clear_bad(pmd_t *pmd)
922{
923 if (pmd_none(*pmd))
924 return 1;
925 if (unlikely(pmd_bad(*pmd))) {
926 pmd_clear_bad(pmd);
927 return 1;
928 }
929 return 0;
930}
931
932static inline pte_t __ptep_modify_prot_start(struct vm_area_struct *vma,
933 unsigned long addr,
934 pte_t *ptep)
935{
936 /*
937 * Get the current pte state, but zero it out to make it
938 * non-present, preventing the hardware from asynchronously
939 * updating it.
940 */
941 return ptep_get_and_clear(vma->vm_mm, addr, ptep);
942}
943
944static inline void __ptep_modify_prot_commit(struct vm_area_struct *vma,
945 unsigned long addr,
946 pte_t *ptep, pte_t pte)
947{
948 /*
949 * The pte is non-present, so there's no hardware state to
950 * preserve.
951 */
952 set_pte_at(vma->vm_mm, addr, ptep, pte);
953}
954
955#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
956/*
957 * Start a pte protection read-modify-write transaction, which
958 * protects against asynchronous hardware modifications to the pte.
959 * The intention is not to prevent the hardware from making pte
960 * updates, but to prevent any updates it may make from being lost.
961 *
962 * This does not protect against other software modifications of the
963 * pte; the appropriate pte lock must be held over the transaction.
964 *
965 * Note that this interface is intended to be batchable, meaning that
966 * ptep_modify_prot_commit may not actually update the pte, but merely
967 * queue the update to be done at some later time. The update must be
968 * actually committed before the pte lock is released, however.
969 */
970static inline pte_t ptep_modify_prot_start(struct vm_area_struct *vma,
971 unsigned long addr,
972 pte_t *ptep)
973{
974 return __ptep_modify_prot_start(vma, addr, ptep);
975}
976
977/*
978 * Commit an update to a pte, leaving any hardware-controlled bits in
979 * the PTE unmodified.
980 */
981static inline void ptep_modify_prot_commit(struct vm_area_struct *vma,
982 unsigned long addr,
983 pte_t *ptep, pte_t old_pte, pte_t pte)
984{
985 __ptep_modify_prot_commit(vma, addr, ptep, pte);
986}
987#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
988#endif /* CONFIG_MMU */
989
990/*
991 * No-op macros that just return the current protection value. Defined here
992 * because these macros can be used even if CONFIG_MMU is not defined.
993 */
994
995#ifndef pgprot_nx
996#define pgprot_nx(prot) (prot)
997#endif
998
999#ifndef pgprot_noncached
1000#define pgprot_noncached(prot) (prot)
1001#endif
1002
1003#ifndef pgprot_writecombine
1004#define pgprot_writecombine pgprot_noncached
1005#endif
1006
1007#ifndef pgprot_writethrough
1008#define pgprot_writethrough pgprot_noncached
1009#endif
1010
1011#ifndef pgprot_device
1012#define pgprot_device pgprot_noncached
1013#endif
1014
1015#ifndef pgprot_mhp
1016#define pgprot_mhp(prot) (prot)
1017#endif
1018
1019#ifdef CONFIG_MMU
1020#ifndef pgprot_modify
1021#define pgprot_modify pgprot_modify
1022static inline pgprot_t pgprot_modify(pgprot_t oldprot, pgprot_t newprot)
1023{
1024 if (pgprot_val(oldprot) == pgprot_val(pgprot_noncached(oldprot)))
1025 newprot = pgprot_noncached(newprot);
1026 if (pgprot_val(oldprot) == pgprot_val(pgprot_writecombine(oldprot)))
1027 newprot = pgprot_writecombine(newprot);
1028 if (pgprot_val(oldprot) == pgprot_val(pgprot_device(oldprot)))
1029 newprot = pgprot_device(newprot);
1030 return newprot;
1031}
1032#endif
1033#endif /* CONFIG_MMU */
1034
1035#ifndef pgprot_encrypted
1036#define pgprot_encrypted(prot) (prot)
1037#endif
1038
1039#ifndef pgprot_decrypted
1040#define pgprot_decrypted(prot) (prot)
1041#endif
1042
1043/*
1044 * A facility to provide lazy MMU batching. This allows PTE updates and
1045 * page invalidations to be delayed until a call to leave lazy MMU mode
1046 * is issued. Some architectures may benefit from doing this, and it is
1047 * beneficial for both shadow and direct mode hypervisors, which may batch
1048 * the PTE updates which happen during this window. Note that using this
1049 * interface requires that read hazards be removed from the code. A read
1050 * hazard could result in the direct mode hypervisor case, since the actual
1051 * write to the page tables may not yet have taken place, so reads though
1052 * a raw PTE pointer after it has been modified are not guaranteed to be
1053 * up to date. This mode can only be entered and left under the protection of
1054 * the page table locks for all page tables which may be modified. In the UP
1055 * case, this is required so that preemption is disabled, and in the SMP case,
1056 * it must synchronize the delayed page table writes properly on other CPUs.
1057 */
1058#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
1059#define arch_enter_lazy_mmu_mode() do {} while (0)
1060#define arch_leave_lazy_mmu_mode() do {} while (0)
1061#define arch_flush_lazy_mmu_mode() do {} while (0)
1062#endif
1063
1064/*
1065 * A facility to provide batching of the reload of page tables and
1066 * other process state with the actual context switch code for
1067 * paravirtualized guests. By convention, only one of the batched
1068 * update (lazy) modes (CPU, MMU) should be active at any given time,
1069 * entry should never be nested, and entry and exits should always be
1070 * paired. This is for sanity of maintaining and reasoning about the
1071 * kernel code. In this case, the exit (end of the context switch) is
1072 * in architecture-specific code, and so doesn't need a generic
1073 * definition.
1074 */
1075#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
1076#define arch_start_context_switch(prev) do {} while (0)
1077#endif
1078
1079#ifdef CONFIG_HAVE_ARCH_SOFT_DIRTY
1080#ifndef CONFIG_ARCH_ENABLE_THP_MIGRATION
1081static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1082{
1083 return pmd;
1084}
1085
1086static inline int pmd_swp_soft_dirty(pmd_t pmd)
1087{
1088 return 0;
1089}
1090
1091static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1092{
1093 return pmd;
1094}
1095#endif
1096#else /* !CONFIG_HAVE_ARCH_SOFT_DIRTY */
1097static inline int pte_soft_dirty(pte_t pte)
1098{
1099 return 0;
1100}
1101
1102static inline int pmd_soft_dirty(pmd_t pmd)
1103{
1104 return 0;
1105}
1106
1107static inline pte_t pte_mksoft_dirty(pte_t pte)
1108{
1109 return pte;
1110}
1111
1112static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
1113{
1114 return pmd;
1115}
1116
1117static inline pte_t pte_clear_soft_dirty(pte_t pte)
1118{
1119 return pte;
1120}
1121
1122static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
1123{
1124 return pmd;
1125}
1126
1127static inline pte_t pte_swp_mksoft_dirty(pte_t pte)
1128{
1129 return pte;
1130}
1131
1132static inline int pte_swp_soft_dirty(pte_t pte)
1133{
1134 return 0;
1135}
1136
1137static inline pte_t pte_swp_clear_soft_dirty(pte_t pte)
1138{
1139 return pte;
1140}
1141
1142static inline pmd_t pmd_swp_mksoft_dirty(pmd_t pmd)
1143{
1144 return pmd;
1145}
1146
1147static inline int pmd_swp_soft_dirty(pmd_t pmd)
1148{
1149 return 0;
1150}
1151
1152static inline pmd_t pmd_swp_clear_soft_dirty(pmd_t pmd)
1153{
1154 return pmd;
1155}
1156#endif
1157
1158#ifndef __HAVE_PFNMAP_TRACKING
1159/*
1160 * Interfaces that can be used by architecture code to keep track of
1161 * memory type of pfn mappings specified by the remap_pfn_range,
1162 * vmf_insert_pfn.
1163 */
1164
1165/*
1166 * track_pfn_remap is called when a _new_ pfn mapping is being established
1167 * by remap_pfn_range() for physical range indicated by pfn and size.
1168 */
1169static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1170 unsigned long pfn, unsigned long addr,
1171 unsigned long size)
1172{
1173 return 0;
1174}
1175
1176/*
1177 * track_pfn_insert is called when a _new_ single pfn is established
1178 * by vmf_insert_pfn().
1179 */
1180static inline void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1181 pfn_t pfn)
1182{
1183}
1184
1185/*
1186 * track_pfn_copy is called when vma that is covering the pfnmap gets
1187 * copied through copy_page_range().
1188 */
1189static inline int track_pfn_copy(struct vm_area_struct *vma)
1190{
1191 return 0;
1192}
1193
1194/*
1195 * untrack_pfn is called while unmapping a pfnmap for a region.
1196 * untrack can be called for a specific region indicated by pfn and size or
1197 * can be for the entire vma (in which case pfn, size are zero).
1198 */
1199static inline void untrack_pfn(struct vm_area_struct *vma,
1200 unsigned long pfn, unsigned long size,
1201 bool mm_wr_locked)
1202{
1203}
1204
1205/*
1206 * untrack_pfn_clear is called while mremapping a pfnmap for a new region
1207 * or fails to copy pgtable during duplicate vm area.
1208 */
1209static inline void untrack_pfn_clear(struct vm_area_struct *vma)
1210{
1211}
1212#else
1213extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
1214 unsigned long pfn, unsigned long addr,
1215 unsigned long size);
1216extern void track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
1217 pfn_t pfn);
1218extern int track_pfn_copy(struct vm_area_struct *vma);
1219extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
1220 unsigned long size, bool mm_wr_locked);
1221extern void untrack_pfn_clear(struct vm_area_struct *vma);
1222#endif
1223
1224#ifdef CONFIG_MMU
1225#ifdef __HAVE_COLOR_ZERO_PAGE
1226static inline int is_zero_pfn(unsigned long pfn)
1227{
1228 extern unsigned long zero_pfn;
1229 unsigned long offset_from_zero_pfn = pfn - zero_pfn;
1230 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
1231}
1232
1233#define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr))
1234
1235#else
1236static inline int is_zero_pfn(unsigned long pfn)
1237{
1238 extern unsigned long zero_pfn;
1239 return pfn == zero_pfn;
1240}
1241
1242static inline unsigned long my_zero_pfn(unsigned long addr)
1243{
1244 extern unsigned long zero_pfn;
1245 return zero_pfn;
1246}
1247#endif
1248#else
1249static inline int is_zero_pfn(unsigned long pfn)
1250{
1251 return 0;
1252}
1253
1254static inline unsigned long my_zero_pfn(unsigned long addr)
1255{
1256 return 0;
1257}
1258#endif /* CONFIG_MMU */
1259
1260#ifdef CONFIG_MMU
1261
1262#ifndef CONFIG_TRANSPARENT_HUGEPAGE
1263static inline int pmd_trans_huge(pmd_t pmd)
1264{
1265 return 0;
1266}
1267#ifndef pmd_write
1268static inline int pmd_write(pmd_t pmd)
1269{
1270 BUG();
1271 return 0;
1272}
1273#endif /* pmd_write */
1274#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1275
1276#ifndef pud_write
1277static inline int pud_write(pud_t pud)
1278{
1279 BUG();
1280 return 0;
1281}
1282#endif /* pud_write */
1283
1284#if !defined(CONFIG_ARCH_HAS_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
1285static inline int pmd_devmap(pmd_t pmd)
1286{
1287 return 0;
1288}
1289static inline int pud_devmap(pud_t pud)
1290{
1291 return 0;
1292}
1293static inline int pgd_devmap(pgd_t pgd)
1294{
1295 return 0;
1296}
1297#endif
1298
1299#if !defined(CONFIG_TRANSPARENT_HUGEPAGE) || \
1300 !defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1301static inline int pud_trans_huge(pud_t pud)
1302{
1303 return 0;
1304}
1305#endif
1306
1307static inline int pud_trans_unstable(pud_t *pud)
1308{
1309#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && \
1310 defined(CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD)
1311 pud_t pudval = READ_ONCE(*pud);
1312
1313 if (pud_none(pudval) || pud_trans_huge(pudval) || pud_devmap(pudval))
1314 return 1;
1315 if (unlikely(pud_bad(pudval))) {
1316 pud_clear_bad(pud);
1317 return 1;
1318 }
1319#endif
1320 return 0;
1321}
1322
1323#ifndef CONFIG_NUMA_BALANCING
1324/*
1325 * Technically a PTE can be PROTNONE even when not doing NUMA balancing but
1326 * the only case the kernel cares is for NUMA balancing and is only ever set
1327 * when the VMA is accessible. For PROT_NONE VMAs, the PTEs are not marked
1328 * _PAGE_PROTNONE so by default, implement the helper as "always no". It
1329 * is the responsibility of the caller to distinguish between PROT_NONE
1330 * protections and NUMA hinting fault protections.
1331 */
1332static inline int pte_protnone(pte_t pte)
1333{
1334 return 0;
1335}
1336
1337static inline int pmd_protnone(pmd_t pmd)
1338{
1339 return 0;
1340}
1341#endif /* CONFIG_NUMA_BALANCING */
1342
1343#endif /* CONFIG_MMU */
1344
1345#ifdef CONFIG_HAVE_ARCH_HUGE_VMAP
1346
1347#ifndef __PAGETABLE_P4D_FOLDED
1348int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot);
1349void p4d_clear_huge(p4d_t *p4d);
1350#else
1351static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1352{
1353 return 0;
1354}
1355static inline void p4d_clear_huge(p4d_t *p4d) { }
1356#endif /* !__PAGETABLE_P4D_FOLDED */
1357
1358int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot);
1359int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot);
1360int pud_clear_huge(pud_t *pud);
1361int pmd_clear_huge(pmd_t *pmd);
1362int p4d_free_pud_page(p4d_t *p4d, unsigned long addr);
1363int pud_free_pmd_page(pud_t *pud, unsigned long addr);
1364int pmd_free_pte_page(pmd_t *pmd, unsigned long addr);
1365#else /* !CONFIG_HAVE_ARCH_HUGE_VMAP */
1366static inline int p4d_set_huge(p4d_t *p4d, phys_addr_t addr, pgprot_t prot)
1367{
1368 return 0;
1369}
1370static inline int pud_set_huge(pud_t *pud, phys_addr_t addr, pgprot_t prot)
1371{
1372 return 0;
1373}
1374static inline int pmd_set_huge(pmd_t *pmd, phys_addr_t addr, pgprot_t prot)
1375{
1376 return 0;
1377}
1378static inline void p4d_clear_huge(p4d_t *p4d) { }
1379static inline int pud_clear_huge(pud_t *pud)
1380{
1381 return 0;
1382}
1383static inline int pmd_clear_huge(pmd_t *pmd)
1384{
1385 return 0;
1386}
1387static inline int p4d_free_pud_page(p4d_t *p4d, unsigned long addr)
1388{
1389 return 0;
1390}
1391static inline int pud_free_pmd_page(pud_t *pud, unsigned long addr)
1392{
1393 return 0;
1394}
1395static inline int pmd_free_pte_page(pmd_t *pmd, unsigned long addr)
1396{
1397 return 0;
1398}
1399#endif /* CONFIG_HAVE_ARCH_HUGE_VMAP */
1400
1401#ifndef __HAVE_ARCH_FLUSH_PMD_TLB_RANGE
1402#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1403/*
1404 * ARCHes with special requirements for evicting THP backing TLB entries can
1405 * implement this. Otherwise also, it can help optimize normal TLB flush in
1406 * THP regime. Stock flush_tlb_range() typically has optimization to nuke the
1407 * entire TLB if flush span is greater than a threshold, which will
1408 * likely be true for a single huge page. Thus a single THP flush will
1409 * invalidate the entire TLB which is not desirable.
1410 * e.g. see arch/arc: flush_pmd_tlb_range
1411 */
1412#define flush_pmd_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1413#define flush_pud_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
1414#else
1415#define flush_pmd_tlb_range(vma, addr, end) BUILD_BUG()
1416#define flush_pud_tlb_range(vma, addr, end) BUILD_BUG()
1417#endif
1418#endif
1419
1420struct file;
1421int phys_mem_access_prot_allowed(struct file *file, unsigned long pfn,
1422 unsigned long size, pgprot_t *vma_prot);
1423
1424#ifndef CONFIG_X86_ESPFIX64
1425static inline void init_espfix_bsp(void) { }
1426#endif
1427
1428extern void __init pgtable_cache_init(void);
1429
1430#ifndef __HAVE_ARCH_PFN_MODIFY_ALLOWED
1431static inline bool pfn_modify_allowed(unsigned long pfn, pgprot_t prot)
1432{
1433 return true;
1434}
1435
1436static inline bool arch_has_pfn_modify_check(void)
1437{
1438 return false;
1439}
1440#endif /* !_HAVE_ARCH_PFN_MODIFY_ALLOWED */
1441
1442/*
1443 * Architecture PAGE_KERNEL_* fallbacks
1444 *
1445 * Some architectures don't define certain PAGE_KERNEL_* flags. This is either
1446 * because they really don't support them, or the port needs to be updated to
1447 * reflect the required functionality. Below are a set of relatively safe
1448 * fallbacks, as best effort, which we can count on in lieu of the architectures
1449 * not defining them on their own yet.
1450 */
1451
1452#ifndef PAGE_KERNEL_RO
1453# define PAGE_KERNEL_RO PAGE_KERNEL
1454#endif
1455
1456#ifndef PAGE_KERNEL_EXEC
1457# define PAGE_KERNEL_EXEC PAGE_KERNEL
1458#endif
1459
1460/*
1461 * Page Table Modification bits for pgtbl_mod_mask.
1462 *
1463 * These are used by the p?d_alloc_track*() set of functions an in the generic
1464 * vmalloc/ioremap code to track at which page-table levels entries have been
1465 * modified. Based on that the code can better decide when vmalloc and ioremap
1466 * mapping changes need to be synchronized to other page-tables in the system.
1467 */
1468#define __PGTBL_PGD_MODIFIED 0
1469#define __PGTBL_P4D_MODIFIED 1
1470#define __PGTBL_PUD_MODIFIED 2
1471#define __PGTBL_PMD_MODIFIED 3
1472#define __PGTBL_PTE_MODIFIED 4
1473
1474#define PGTBL_PGD_MODIFIED BIT(__PGTBL_PGD_MODIFIED)
1475#define PGTBL_P4D_MODIFIED BIT(__PGTBL_P4D_MODIFIED)
1476#define PGTBL_PUD_MODIFIED BIT(__PGTBL_PUD_MODIFIED)
1477#define PGTBL_PMD_MODIFIED BIT(__PGTBL_PMD_MODIFIED)
1478#define PGTBL_PTE_MODIFIED BIT(__PGTBL_PTE_MODIFIED)
1479
1480/* Page-Table Modification Mask */
1481typedef unsigned int pgtbl_mod_mask;
1482
1483#endif /* !__ASSEMBLY__ */
1484
1485#if !defined(MAX_POSSIBLE_PHYSMEM_BITS) && !defined(CONFIG_64BIT)
1486#ifdef CONFIG_PHYS_ADDR_T_64BIT
1487/*
1488 * ZSMALLOC needs to know the highest PFN on 32-bit architectures
1489 * with physical address space extension, but falls back to
1490 * BITS_PER_LONG otherwise.
1491 */
1492#error Missing MAX_POSSIBLE_PHYSMEM_BITS definition
1493#else
1494#define MAX_POSSIBLE_PHYSMEM_BITS 32
1495#endif
1496#endif
1497
1498#ifndef has_transparent_hugepage
1499#define has_transparent_hugepage() IS_BUILTIN(CONFIG_TRANSPARENT_HUGEPAGE)
1500#endif
1501
1502/*
1503 * On some architectures it depends on the mm if the p4d/pud or pmd
1504 * layer of the page table hierarchy is folded or not.
1505 */
1506#ifndef mm_p4d_folded
1507#define mm_p4d_folded(mm) __is_defined(__PAGETABLE_P4D_FOLDED)
1508#endif
1509
1510#ifndef mm_pud_folded
1511#define mm_pud_folded(mm) __is_defined(__PAGETABLE_PUD_FOLDED)
1512#endif
1513
1514#ifndef mm_pmd_folded
1515#define mm_pmd_folded(mm) __is_defined(__PAGETABLE_PMD_FOLDED)
1516#endif
1517
1518#ifndef p4d_offset_lockless
1519#define p4d_offset_lockless(pgdp, pgd, address) p4d_offset(&(pgd), address)
1520#endif
1521#ifndef pud_offset_lockless
1522#define pud_offset_lockless(p4dp, p4d, address) pud_offset(&(p4d), address)
1523#endif
1524#ifndef pmd_offset_lockless
1525#define pmd_offset_lockless(pudp, pud, address) pmd_offset(&(pud), address)
1526#endif
1527
1528/*
1529 * p?d_leaf() - true if this entry is a final mapping to a physical address.
1530 * This differs from p?d_huge() by the fact that they are always available (if
1531 * the architecture supports large pages at the appropriate level) even
1532 * if CONFIG_HUGETLB_PAGE is not defined.
1533 * Only meaningful when called on a valid entry.
1534 */
1535#ifndef pgd_leaf
1536#define pgd_leaf(x) 0
1537#endif
1538#ifndef p4d_leaf
1539#define p4d_leaf(x) 0
1540#endif
1541#ifndef pud_leaf
1542#define pud_leaf(x) 0
1543#endif
1544#ifndef pmd_leaf
1545#define pmd_leaf(x) 0
1546#endif
1547
1548#ifndef pgd_leaf_size
1549#define pgd_leaf_size(x) (1ULL << PGDIR_SHIFT)
1550#endif
1551#ifndef p4d_leaf_size
1552#define p4d_leaf_size(x) P4D_SIZE
1553#endif
1554#ifndef pud_leaf_size
1555#define pud_leaf_size(x) PUD_SIZE
1556#endif
1557#ifndef pmd_leaf_size
1558#define pmd_leaf_size(x) PMD_SIZE
1559#endif
1560#ifndef pte_leaf_size
1561#define pte_leaf_size(x) PAGE_SIZE
1562#endif
1563
1564/*
1565 * Some architectures have MMUs that are configurable or selectable at boot
1566 * time. These lead to variable PTRS_PER_x. For statically allocated arrays it
1567 * helps to have a static maximum value.
1568 */
1569
1570#ifndef MAX_PTRS_PER_PTE
1571#define MAX_PTRS_PER_PTE PTRS_PER_PTE
1572#endif
1573
1574#ifndef MAX_PTRS_PER_PMD
1575#define MAX_PTRS_PER_PMD PTRS_PER_PMD
1576#endif
1577
1578#ifndef MAX_PTRS_PER_PUD
1579#define MAX_PTRS_PER_PUD PTRS_PER_PUD
1580#endif
1581
1582#ifndef MAX_PTRS_PER_P4D
1583#define MAX_PTRS_PER_P4D PTRS_PER_P4D
1584#endif
1585
1586/* description of effects of mapping type and prot in current implementation.
1587 * this is due to the limited x86 page protection hardware. The expected
1588 * behavior is in parens:
1589 *
1590 * map_type prot
1591 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
1592 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
1593 * w: (no) no w: (no) no w: (yes) yes w: (no) no
1594 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
1595 *
1596 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
1597 * w: (no) no w: (no) no w: (copy) copy w: (no) no
1598 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
1599 *
1600 * On arm64, PROT_EXEC has the following behaviour for both MAP_SHARED and
1601 * MAP_PRIVATE (with Enhanced PAN supported):
1602 * r: (no) no
1603 * w: (no) no
1604 * x: (yes) yes
1605 */
1606#define DECLARE_VM_GET_PAGE_PROT \
1607pgprot_t vm_get_page_prot(unsigned long vm_flags) \
1608{ \
1609 return protection_map[vm_flags & \
1610 (VM_READ | VM_WRITE | VM_EXEC | VM_SHARED)]; \
1611} \
1612EXPORT_SYMBOL(vm_get_page_prot);
1613
1614#endif /* _LINUX_PGTABLE_H */