Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Core driver for the pin control subsystem
4 *
5 * Copyright (C) 2011-2012 ST-Ericsson SA
6 * Written on behalf of Linaro for ST-Ericsson
7 * Based on bits of regulator core, gpio core and clk core
8 *
9 * Author: Linus Walleij <linus.walleij@linaro.org>
10 *
11 * Copyright (C) 2012 NVIDIA CORPORATION. All rights reserved.
12 */
13#define pr_fmt(fmt) "pinctrl core: " fmt
14
15#include <linux/debugfs.h>
16#include <linux/device.h>
17#include <linux/err.h>
18#include <linux/export.h>
19#include <linux/init.h>
20#include <linux/kernel.h>
21#include <linux/kref.h>
22#include <linux/list.h>
23#include <linux/seq_file.h>
24#include <linux/slab.h>
25
26#include <linux/pinctrl/consumer.h>
27#include <linux/pinctrl/devinfo.h>
28#include <linux/pinctrl/machine.h>
29#include <linux/pinctrl/pinctrl.h>
30
31#ifdef CONFIG_GPIOLIB
32#include "../gpio/gpiolib.h"
33#endif
34
35#include "core.h"
36#include "devicetree.h"
37#include "pinconf.h"
38#include "pinmux.h"
39
40static bool pinctrl_dummy_state;
41
42/* Mutex taken to protect pinctrl_list */
43static DEFINE_MUTEX(pinctrl_list_mutex);
44
45/* Mutex taken to protect pinctrl_maps */
46DEFINE_MUTEX(pinctrl_maps_mutex);
47
48/* Mutex taken to protect pinctrldev_list */
49static DEFINE_MUTEX(pinctrldev_list_mutex);
50
51/* Global list of pin control devices (struct pinctrl_dev) */
52static LIST_HEAD(pinctrldev_list);
53
54/* List of pin controller handles (struct pinctrl) */
55static LIST_HEAD(pinctrl_list);
56
57/* List of pinctrl maps (struct pinctrl_maps) */
58LIST_HEAD(pinctrl_maps);
59
60
61/**
62 * pinctrl_provide_dummies() - indicate if pinctrl provides dummy state support
63 *
64 * Usually this function is called by platforms without pinctrl driver support
65 * but run with some shared drivers using pinctrl APIs.
66 * After calling this function, the pinctrl core will return successfully
67 * with creating a dummy state for the driver to keep going smoothly.
68 */
69void pinctrl_provide_dummies(void)
70{
71 pinctrl_dummy_state = true;
72}
73
74const char *pinctrl_dev_get_name(struct pinctrl_dev *pctldev)
75{
76 /* We're not allowed to register devices without name */
77 return pctldev->desc->name;
78}
79EXPORT_SYMBOL_GPL(pinctrl_dev_get_name);
80
81const char *pinctrl_dev_get_devname(struct pinctrl_dev *pctldev)
82{
83 return dev_name(pctldev->dev);
84}
85EXPORT_SYMBOL_GPL(pinctrl_dev_get_devname);
86
87void *pinctrl_dev_get_drvdata(struct pinctrl_dev *pctldev)
88{
89 return pctldev->driver_data;
90}
91EXPORT_SYMBOL_GPL(pinctrl_dev_get_drvdata);
92
93/**
94 * get_pinctrl_dev_from_devname() - look up pin controller device
95 * @devname: the name of a device instance, as returned by dev_name()
96 *
97 * Looks up a pin control device matching a certain device name or pure device
98 * pointer, the pure device pointer will take precedence.
99 */
100struct pinctrl_dev *get_pinctrl_dev_from_devname(const char *devname)
101{
102 struct pinctrl_dev *pctldev;
103
104 if (!devname)
105 return NULL;
106
107 mutex_lock(&pinctrldev_list_mutex);
108
109 list_for_each_entry(pctldev, &pinctrldev_list, node) {
110 if (!strcmp(dev_name(pctldev->dev), devname)) {
111 /* Matched on device name */
112 mutex_unlock(&pinctrldev_list_mutex);
113 return pctldev;
114 }
115 }
116
117 mutex_unlock(&pinctrldev_list_mutex);
118
119 return NULL;
120}
121
122struct pinctrl_dev *get_pinctrl_dev_from_of_node(struct device_node *np)
123{
124 struct pinctrl_dev *pctldev;
125
126 mutex_lock(&pinctrldev_list_mutex);
127
128 list_for_each_entry(pctldev, &pinctrldev_list, node)
129 if (device_match_of_node(pctldev->dev, np)) {
130 mutex_unlock(&pinctrldev_list_mutex);
131 return pctldev;
132 }
133
134 mutex_unlock(&pinctrldev_list_mutex);
135
136 return NULL;
137}
138
139/**
140 * pin_get_from_name() - look up a pin number from a name
141 * @pctldev: the pin control device to lookup the pin on
142 * @name: the name of the pin to look up
143 */
144int pin_get_from_name(struct pinctrl_dev *pctldev, const char *name)
145{
146 unsigned i, pin;
147
148 /* The pin number can be retrived from the pin controller descriptor */
149 for (i = 0; i < pctldev->desc->npins; i++) {
150 struct pin_desc *desc;
151
152 pin = pctldev->desc->pins[i].number;
153 desc = pin_desc_get(pctldev, pin);
154 /* Pin space may be sparse */
155 if (desc && !strcmp(name, desc->name))
156 return pin;
157 }
158
159 return -EINVAL;
160}
161
162/**
163 * pin_get_name() - look up a pin name from a pin id
164 * @pctldev: the pin control device to lookup the pin on
165 * @pin: pin number/id to look up
166 */
167const char *pin_get_name(struct pinctrl_dev *pctldev, const unsigned pin)
168{
169 const struct pin_desc *desc;
170
171 desc = pin_desc_get(pctldev, pin);
172 if (!desc) {
173 dev_err(pctldev->dev, "failed to get pin(%d) name\n",
174 pin);
175 return NULL;
176 }
177
178 return desc->name;
179}
180EXPORT_SYMBOL_GPL(pin_get_name);
181
182/* Deletes a range of pin descriptors */
183static void pinctrl_free_pindescs(struct pinctrl_dev *pctldev,
184 const struct pinctrl_pin_desc *pins,
185 unsigned num_pins)
186{
187 int i;
188
189 for (i = 0; i < num_pins; i++) {
190 struct pin_desc *pindesc;
191
192 pindesc = radix_tree_lookup(&pctldev->pin_desc_tree,
193 pins[i].number);
194 if (pindesc) {
195 radix_tree_delete(&pctldev->pin_desc_tree,
196 pins[i].number);
197 if (pindesc->dynamic_name)
198 kfree(pindesc->name);
199 }
200 kfree(pindesc);
201 }
202}
203
204static int pinctrl_register_one_pin(struct pinctrl_dev *pctldev,
205 const struct pinctrl_pin_desc *pin)
206{
207 struct pin_desc *pindesc;
208
209 pindesc = pin_desc_get(pctldev, pin->number);
210 if (pindesc) {
211 dev_err(pctldev->dev, "pin %d already registered\n",
212 pin->number);
213 return -EINVAL;
214 }
215
216 pindesc = kzalloc(sizeof(*pindesc), GFP_KERNEL);
217 if (!pindesc)
218 return -ENOMEM;
219
220 /* Set owner */
221 pindesc->pctldev = pctldev;
222
223 /* Copy basic pin info */
224 if (pin->name) {
225 pindesc->name = pin->name;
226 } else {
227 pindesc->name = kasprintf(GFP_KERNEL, "PIN%u", pin->number);
228 if (!pindesc->name) {
229 kfree(pindesc);
230 return -ENOMEM;
231 }
232 pindesc->dynamic_name = true;
233 }
234
235 pindesc->drv_data = pin->drv_data;
236
237 radix_tree_insert(&pctldev->pin_desc_tree, pin->number, pindesc);
238 pr_debug("registered pin %d (%s) on %s\n",
239 pin->number, pindesc->name, pctldev->desc->name);
240 return 0;
241}
242
243static int pinctrl_register_pins(struct pinctrl_dev *pctldev,
244 const struct pinctrl_pin_desc *pins,
245 unsigned num_descs)
246{
247 unsigned i;
248 int ret = 0;
249
250 for (i = 0; i < num_descs; i++) {
251 ret = pinctrl_register_one_pin(pctldev, &pins[i]);
252 if (ret)
253 return ret;
254 }
255
256 return 0;
257}
258
259/**
260 * gpio_to_pin() - GPIO range GPIO number to pin number translation
261 * @range: GPIO range used for the translation
262 * @gpio: gpio pin to translate to a pin number
263 *
264 * Finds the pin number for a given GPIO using the specified GPIO range
265 * as a base for translation. The distinction between linear GPIO ranges
266 * and pin list based GPIO ranges is managed correctly by this function.
267 *
268 * This function assumes the gpio is part of the specified GPIO range, use
269 * only after making sure this is the case (e.g. by calling it on the
270 * result of successful pinctrl_get_device_gpio_range calls)!
271 */
272static inline int gpio_to_pin(struct pinctrl_gpio_range *range,
273 unsigned int gpio)
274{
275 unsigned int offset = gpio - range->base;
276 if (range->pins)
277 return range->pins[offset];
278 else
279 return range->pin_base + offset;
280}
281
282/**
283 * pinctrl_match_gpio_range() - check if a certain GPIO pin is in range
284 * @pctldev: pin controller device to check
285 * @gpio: gpio pin to check taken from the global GPIO pin space
286 *
287 * Tries to match a GPIO pin number to the ranges handled by a certain pin
288 * controller, return the range or NULL
289 */
290static struct pinctrl_gpio_range *
291pinctrl_match_gpio_range(struct pinctrl_dev *pctldev, unsigned gpio)
292{
293 struct pinctrl_gpio_range *range;
294
295 mutex_lock(&pctldev->mutex);
296 /* Loop over the ranges */
297 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
298 /* Check if we're in the valid range */
299 if (gpio >= range->base &&
300 gpio < range->base + range->npins) {
301 mutex_unlock(&pctldev->mutex);
302 return range;
303 }
304 }
305 mutex_unlock(&pctldev->mutex);
306 return NULL;
307}
308
309/**
310 * pinctrl_ready_for_gpio_range() - check if other GPIO pins of
311 * the same GPIO chip are in range
312 * @gpio: gpio pin to check taken from the global GPIO pin space
313 *
314 * This function is complement of pinctrl_match_gpio_range(). If the return
315 * value of pinctrl_match_gpio_range() is NULL, this function could be used
316 * to check whether pinctrl device is ready or not. Maybe some GPIO pins
317 * of the same GPIO chip don't have back-end pinctrl interface.
318 * If the return value is true, it means that pinctrl device is ready & the
319 * certain GPIO pin doesn't have back-end pinctrl device. If the return value
320 * is false, it means that pinctrl device may not be ready.
321 */
322#ifdef CONFIG_GPIOLIB
323static bool pinctrl_ready_for_gpio_range(unsigned gpio)
324{
325 struct pinctrl_dev *pctldev;
326 struct pinctrl_gpio_range *range = NULL;
327 /*
328 * FIXME: "gpio" here is a number in the global GPIO numberspace.
329 * get rid of this from the ranges eventually and get the GPIO
330 * descriptor from the gpio_chip.
331 */
332 struct gpio_chip *chip = gpiod_to_chip(gpio_to_desc(gpio));
333
334 if (WARN(!chip, "no gpio_chip for gpio%i?", gpio))
335 return false;
336
337 mutex_lock(&pinctrldev_list_mutex);
338
339 /* Loop over the pin controllers */
340 list_for_each_entry(pctldev, &pinctrldev_list, node) {
341 /* Loop over the ranges */
342 mutex_lock(&pctldev->mutex);
343 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
344 /* Check if any gpio range overlapped with gpio chip */
345 if (range->base + range->npins - 1 < chip->base ||
346 range->base > chip->base + chip->ngpio - 1)
347 continue;
348 mutex_unlock(&pctldev->mutex);
349 mutex_unlock(&pinctrldev_list_mutex);
350 return true;
351 }
352 mutex_unlock(&pctldev->mutex);
353 }
354
355 mutex_unlock(&pinctrldev_list_mutex);
356
357 return false;
358}
359#else
360static bool pinctrl_ready_for_gpio_range(unsigned gpio) { return true; }
361#endif
362
363/**
364 * pinctrl_get_device_gpio_range() - find device for GPIO range
365 * @gpio: the pin to locate the pin controller for
366 * @outdev: the pin control device if found
367 * @outrange: the GPIO range if found
368 *
369 * Find the pin controller handling a certain GPIO pin from the pinspace of
370 * the GPIO subsystem, return the device and the matching GPIO range. Returns
371 * -EPROBE_DEFER if the GPIO range could not be found in any device since it
372 * may still have not been registered.
373 */
374static int pinctrl_get_device_gpio_range(unsigned gpio,
375 struct pinctrl_dev **outdev,
376 struct pinctrl_gpio_range **outrange)
377{
378 struct pinctrl_dev *pctldev;
379
380 mutex_lock(&pinctrldev_list_mutex);
381
382 /* Loop over the pin controllers */
383 list_for_each_entry(pctldev, &pinctrldev_list, node) {
384 struct pinctrl_gpio_range *range;
385
386 range = pinctrl_match_gpio_range(pctldev, gpio);
387 if (range) {
388 *outdev = pctldev;
389 *outrange = range;
390 mutex_unlock(&pinctrldev_list_mutex);
391 return 0;
392 }
393 }
394
395 mutex_unlock(&pinctrldev_list_mutex);
396
397 return -EPROBE_DEFER;
398}
399
400/**
401 * pinctrl_add_gpio_range() - register a GPIO range for a controller
402 * @pctldev: pin controller device to add the range to
403 * @range: the GPIO range to add
404 *
405 * This adds a range of GPIOs to be handled by a certain pin controller. Call
406 * this to register handled ranges after registering your pin controller.
407 */
408void pinctrl_add_gpio_range(struct pinctrl_dev *pctldev,
409 struct pinctrl_gpio_range *range)
410{
411 mutex_lock(&pctldev->mutex);
412 list_add_tail(&range->node, &pctldev->gpio_ranges);
413 mutex_unlock(&pctldev->mutex);
414}
415EXPORT_SYMBOL_GPL(pinctrl_add_gpio_range);
416
417void pinctrl_add_gpio_ranges(struct pinctrl_dev *pctldev,
418 struct pinctrl_gpio_range *ranges,
419 unsigned nranges)
420{
421 int i;
422
423 for (i = 0; i < nranges; i++)
424 pinctrl_add_gpio_range(pctldev, &ranges[i]);
425}
426EXPORT_SYMBOL_GPL(pinctrl_add_gpio_ranges);
427
428struct pinctrl_dev *pinctrl_find_and_add_gpio_range(const char *devname,
429 struct pinctrl_gpio_range *range)
430{
431 struct pinctrl_dev *pctldev;
432
433 pctldev = get_pinctrl_dev_from_devname(devname);
434
435 /*
436 * If we can't find this device, let's assume that is because
437 * it has not probed yet, so the driver trying to register this
438 * range need to defer probing.
439 */
440 if (!pctldev) {
441 return ERR_PTR(-EPROBE_DEFER);
442 }
443 pinctrl_add_gpio_range(pctldev, range);
444
445 return pctldev;
446}
447EXPORT_SYMBOL_GPL(pinctrl_find_and_add_gpio_range);
448
449int pinctrl_get_group_pins(struct pinctrl_dev *pctldev, const char *pin_group,
450 const unsigned **pins, unsigned *num_pins)
451{
452 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
453 int gs;
454
455 if (!pctlops->get_group_pins)
456 return -EINVAL;
457
458 gs = pinctrl_get_group_selector(pctldev, pin_group);
459 if (gs < 0)
460 return gs;
461
462 return pctlops->get_group_pins(pctldev, gs, pins, num_pins);
463}
464EXPORT_SYMBOL_GPL(pinctrl_get_group_pins);
465
466struct pinctrl_gpio_range *
467pinctrl_find_gpio_range_from_pin_nolock(struct pinctrl_dev *pctldev,
468 unsigned int pin)
469{
470 struct pinctrl_gpio_range *range;
471
472 /* Loop over the ranges */
473 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
474 /* Check if we're in the valid range */
475 if (range->pins) {
476 int a;
477 for (a = 0; a < range->npins; a++) {
478 if (range->pins[a] == pin)
479 return range;
480 }
481 } else if (pin >= range->pin_base &&
482 pin < range->pin_base + range->npins)
483 return range;
484 }
485
486 return NULL;
487}
488EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin_nolock);
489
490/**
491 * pinctrl_find_gpio_range_from_pin() - locate the GPIO range for a pin
492 * @pctldev: the pin controller device to look in
493 * @pin: a controller-local number to find the range for
494 */
495struct pinctrl_gpio_range *
496pinctrl_find_gpio_range_from_pin(struct pinctrl_dev *pctldev,
497 unsigned int pin)
498{
499 struct pinctrl_gpio_range *range;
500
501 mutex_lock(&pctldev->mutex);
502 range = pinctrl_find_gpio_range_from_pin_nolock(pctldev, pin);
503 mutex_unlock(&pctldev->mutex);
504
505 return range;
506}
507EXPORT_SYMBOL_GPL(pinctrl_find_gpio_range_from_pin);
508
509/**
510 * pinctrl_remove_gpio_range() - remove a range of GPIOs from a pin controller
511 * @pctldev: pin controller device to remove the range from
512 * @range: the GPIO range to remove
513 */
514void pinctrl_remove_gpio_range(struct pinctrl_dev *pctldev,
515 struct pinctrl_gpio_range *range)
516{
517 mutex_lock(&pctldev->mutex);
518 list_del(&range->node);
519 mutex_unlock(&pctldev->mutex);
520}
521EXPORT_SYMBOL_GPL(pinctrl_remove_gpio_range);
522
523#ifdef CONFIG_GENERIC_PINCTRL_GROUPS
524
525/**
526 * pinctrl_generic_get_group_count() - returns the number of pin groups
527 * @pctldev: pin controller device
528 */
529int pinctrl_generic_get_group_count(struct pinctrl_dev *pctldev)
530{
531 return pctldev->num_groups;
532}
533EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_count);
534
535/**
536 * pinctrl_generic_get_group_name() - returns the name of a pin group
537 * @pctldev: pin controller device
538 * @selector: group number
539 */
540const char *pinctrl_generic_get_group_name(struct pinctrl_dev *pctldev,
541 unsigned int selector)
542{
543 struct group_desc *group;
544
545 group = radix_tree_lookup(&pctldev->pin_group_tree,
546 selector);
547 if (!group)
548 return NULL;
549
550 return group->name;
551}
552EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_name);
553
554/**
555 * pinctrl_generic_get_group_pins() - gets the pin group pins
556 * @pctldev: pin controller device
557 * @selector: group number
558 * @pins: pins in the group
559 * @num_pins: number of pins in the group
560 */
561int pinctrl_generic_get_group_pins(struct pinctrl_dev *pctldev,
562 unsigned int selector,
563 const unsigned int **pins,
564 unsigned int *num_pins)
565{
566 struct group_desc *group;
567
568 group = radix_tree_lookup(&pctldev->pin_group_tree,
569 selector);
570 if (!group) {
571 dev_err(pctldev->dev, "%s could not find pingroup%i\n",
572 __func__, selector);
573 return -EINVAL;
574 }
575
576 *pins = group->pins;
577 *num_pins = group->num_pins;
578
579 return 0;
580}
581EXPORT_SYMBOL_GPL(pinctrl_generic_get_group_pins);
582
583/**
584 * pinctrl_generic_get_group() - returns a pin group based on the number
585 * @pctldev: pin controller device
586 * @selector: group number
587 */
588struct group_desc *pinctrl_generic_get_group(struct pinctrl_dev *pctldev,
589 unsigned int selector)
590{
591 struct group_desc *group;
592
593 group = radix_tree_lookup(&pctldev->pin_group_tree,
594 selector);
595 if (!group)
596 return NULL;
597
598 return group;
599}
600EXPORT_SYMBOL_GPL(pinctrl_generic_get_group);
601
602static int pinctrl_generic_group_name_to_selector(struct pinctrl_dev *pctldev,
603 const char *function)
604{
605 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
606 int ngroups = ops->get_groups_count(pctldev);
607 int selector = 0;
608
609 /* See if this pctldev has this group */
610 while (selector < ngroups) {
611 const char *gname = ops->get_group_name(pctldev, selector);
612
613 if (gname && !strcmp(function, gname))
614 return selector;
615
616 selector++;
617 }
618
619 return -EINVAL;
620}
621
622/**
623 * pinctrl_generic_add_group() - adds a new pin group
624 * @pctldev: pin controller device
625 * @name: name of the pin group
626 * @pins: pins in the pin group
627 * @num_pins: number of pins in the pin group
628 * @data: pin controller driver specific data
629 *
630 * Note that the caller must take care of locking.
631 */
632int pinctrl_generic_add_group(struct pinctrl_dev *pctldev, const char *name,
633 int *pins, int num_pins, void *data)
634{
635 struct group_desc *group;
636 int selector;
637
638 if (!name)
639 return -EINVAL;
640
641 selector = pinctrl_generic_group_name_to_selector(pctldev, name);
642 if (selector >= 0)
643 return selector;
644
645 selector = pctldev->num_groups;
646
647 group = devm_kzalloc(pctldev->dev, sizeof(*group), GFP_KERNEL);
648 if (!group)
649 return -ENOMEM;
650
651 group->name = name;
652 group->pins = pins;
653 group->num_pins = num_pins;
654 group->data = data;
655
656 radix_tree_insert(&pctldev->pin_group_tree, selector, group);
657
658 pctldev->num_groups++;
659
660 return selector;
661}
662EXPORT_SYMBOL_GPL(pinctrl_generic_add_group);
663
664/**
665 * pinctrl_generic_remove_group() - removes a numbered pin group
666 * @pctldev: pin controller device
667 * @selector: group number
668 *
669 * Note that the caller must take care of locking.
670 */
671int pinctrl_generic_remove_group(struct pinctrl_dev *pctldev,
672 unsigned int selector)
673{
674 struct group_desc *group;
675
676 group = radix_tree_lookup(&pctldev->pin_group_tree,
677 selector);
678 if (!group)
679 return -ENOENT;
680
681 radix_tree_delete(&pctldev->pin_group_tree, selector);
682 devm_kfree(pctldev->dev, group);
683
684 pctldev->num_groups--;
685
686 return 0;
687}
688EXPORT_SYMBOL_GPL(pinctrl_generic_remove_group);
689
690/**
691 * pinctrl_generic_free_groups() - removes all pin groups
692 * @pctldev: pin controller device
693 *
694 * Note that the caller must take care of locking. The pinctrl groups
695 * are allocated with devm_kzalloc() so no need to free them here.
696 */
697static void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
698{
699 struct radix_tree_iter iter;
700 void __rcu **slot;
701
702 radix_tree_for_each_slot(slot, &pctldev->pin_group_tree, &iter, 0)
703 radix_tree_delete(&pctldev->pin_group_tree, iter.index);
704
705 pctldev->num_groups = 0;
706}
707
708#else
709static inline void pinctrl_generic_free_groups(struct pinctrl_dev *pctldev)
710{
711}
712#endif /* CONFIG_GENERIC_PINCTRL_GROUPS */
713
714/**
715 * pinctrl_get_group_selector() - returns the group selector for a group
716 * @pctldev: the pin controller handling the group
717 * @pin_group: the pin group to look up
718 */
719int pinctrl_get_group_selector(struct pinctrl_dev *pctldev,
720 const char *pin_group)
721{
722 const struct pinctrl_ops *pctlops = pctldev->desc->pctlops;
723 unsigned ngroups = pctlops->get_groups_count(pctldev);
724 unsigned group_selector = 0;
725
726 while (group_selector < ngroups) {
727 const char *gname = pctlops->get_group_name(pctldev,
728 group_selector);
729 if (gname && !strcmp(gname, pin_group)) {
730 dev_dbg(pctldev->dev,
731 "found group selector %u for %s\n",
732 group_selector,
733 pin_group);
734 return group_selector;
735 }
736
737 group_selector++;
738 }
739
740 dev_err(pctldev->dev, "does not have pin group %s\n",
741 pin_group);
742
743 return -EINVAL;
744}
745
746bool pinctrl_gpio_can_use_line(unsigned gpio)
747{
748 struct pinctrl_dev *pctldev;
749 struct pinctrl_gpio_range *range;
750 bool result;
751 int pin;
752
753 /*
754 * Try to obtain GPIO range, if it fails
755 * we're probably dealing with GPIO driver
756 * without a backing pin controller - bail out.
757 */
758 if (pinctrl_get_device_gpio_range(gpio, &pctldev, &range))
759 return true;
760
761 mutex_lock(&pctldev->mutex);
762
763 /* Convert to the pin controllers number space */
764 pin = gpio_to_pin(range, gpio);
765
766 result = pinmux_can_be_used_for_gpio(pctldev, pin);
767
768 mutex_unlock(&pctldev->mutex);
769
770 return result;
771}
772EXPORT_SYMBOL_GPL(pinctrl_gpio_can_use_line);
773
774/**
775 * pinctrl_gpio_request() - request a single pin to be used as GPIO
776 * @gpio: the GPIO pin number from the GPIO subsystem number space
777 *
778 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
779 * as part of their gpio_request() semantics, platforms and individual drivers
780 * shall *NOT* request GPIO pins to be muxed in.
781 */
782int pinctrl_gpio_request(unsigned gpio)
783{
784 struct pinctrl_dev *pctldev;
785 struct pinctrl_gpio_range *range;
786 int ret;
787 int pin;
788
789 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
790 if (ret) {
791 if (pinctrl_ready_for_gpio_range(gpio))
792 ret = 0;
793 return ret;
794 }
795
796 mutex_lock(&pctldev->mutex);
797
798 /* Convert to the pin controllers number space */
799 pin = gpio_to_pin(range, gpio);
800
801 ret = pinmux_request_gpio(pctldev, range, pin, gpio);
802
803 mutex_unlock(&pctldev->mutex);
804
805 return ret;
806}
807EXPORT_SYMBOL_GPL(pinctrl_gpio_request);
808
809/**
810 * pinctrl_gpio_free() - free control on a single pin, currently used as GPIO
811 * @gpio: the GPIO pin number from the GPIO subsystem number space
812 *
813 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
814 * as part of their gpio_free() semantics, platforms and individual drivers
815 * shall *NOT* request GPIO pins to be muxed out.
816 */
817void pinctrl_gpio_free(unsigned gpio)
818{
819 struct pinctrl_dev *pctldev;
820 struct pinctrl_gpio_range *range;
821 int ret;
822 int pin;
823
824 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
825 if (ret) {
826 return;
827 }
828 mutex_lock(&pctldev->mutex);
829
830 /* Convert to the pin controllers number space */
831 pin = gpio_to_pin(range, gpio);
832
833 pinmux_free_gpio(pctldev, pin, range);
834
835 mutex_unlock(&pctldev->mutex);
836}
837EXPORT_SYMBOL_GPL(pinctrl_gpio_free);
838
839static int pinctrl_gpio_direction(unsigned gpio, bool input)
840{
841 struct pinctrl_dev *pctldev;
842 struct pinctrl_gpio_range *range;
843 int ret;
844 int pin;
845
846 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
847 if (ret) {
848 return ret;
849 }
850
851 mutex_lock(&pctldev->mutex);
852
853 /* Convert to the pin controllers number space */
854 pin = gpio_to_pin(range, gpio);
855 ret = pinmux_gpio_direction(pctldev, range, pin, input);
856
857 mutex_unlock(&pctldev->mutex);
858
859 return ret;
860}
861
862/**
863 * pinctrl_gpio_direction_input() - request a GPIO pin to go into input mode
864 * @gpio: the GPIO pin number from the GPIO subsystem number space
865 *
866 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
867 * as part of their gpio_direction_input() semantics, platforms and individual
868 * drivers shall *NOT* touch pin control GPIO calls.
869 */
870int pinctrl_gpio_direction_input(unsigned gpio)
871{
872 return pinctrl_gpio_direction(gpio, true);
873}
874EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_input);
875
876/**
877 * pinctrl_gpio_direction_output() - request a GPIO pin to go into output mode
878 * @gpio: the GPIO pin number from the GPIO subsystem number space
879 *
880 * This function should *ONLY* be used from gpiolib-based GPIO drivers,
881 * as part of their gpio_direction_output() semantics, platforms and individual
882 * drivers shall *NOT* touch pin control GPIO calls.
883 */
884int pinctrl_gpio_direction_output(unsigned gpio)
885{
886 return pinctrl_gpio_direction(gpio, false);
887}
888EXPORT_SYMBOL_GPL(pinctrl_gpio_direction_output);
889
890/**
891 * pinctrl_gpio_set_config() - Apply config to given GPIO pin
892 * @gpio: the GPIO pin number from the GPIO subsystem number space
893 * @config: the configuration to apply to the GPIO
894 *
895 * This function should *ONLY* be used from gpiolib-based GPIO drivers, if
896 * they need to call the underlying pin controller to change GPIO config
897 * (for example set debounce time).
898 */
899int pinctrl_gpio_set_config(unsigned gpio, unsigned long config)
900{
901 unsigned long configs[] = { config };
902 struct pinctrl_gpio_range *range;
903 struct pinctrl_dev *pctldev;
904 int ret, pin;
905
906 ret = pinctrl_get_device_gpio_range(gpio, &pctldev, &range);
907 if (ret)
908 return ret;
909
910 mutex_lock(&pctldev->mutex);
911 pin = gpio_to_pin(range, gpio);
912 ret = pinconf_set_config(pctldev, pin, configs, ARRAY_SIZE(configs));
913 mutex_unlock(&pctldev->mutex);
914
915 return ret;
916}
917EXPORT_SYMBOL_GPL(pinctrl_gpio_set_config);
918
919static struct pinctrl_state *find_state(struct pinctrl *p,
920 const char *name)
921{
922 struct pinctrl_state *state;
923
924 list_for_each_entry(state, &p->states, node)
925 if (!strcmp(state->name, name))
926 return state;
927
928 return NULL;
929}
930
931static struct pinctrl_state *create_state(struct pinctrl *p,
932 const char *name)
933{
934 struct pinctrl_state *state;
935
936 state = kzalloc(sizeof(*state), GFP_KERNEL);
937 if (!state)
938 return ERR_PTR(-ENOMEM);
939
940 state->name = name;
941 INIT_LIST_HEAD(&state->settings);
942
943 list_add_tail(&state->node, &p->states);
944
945 return state;
946}
947
948static int add_setting(struct pinctrl *p, struct pinctrl_dev *pctldev,
949 const struct pinctrl_map *map)
950{
951 struct pinctrl_state *state;
952 struct pinctrl_setting *setting;
953 int ret;
954
955 state = find_state(p, map->name);
956 if (!state)
957 state = create_state(p, map->name);
958 if (IS_ERR(state))
959 return PTR_ERR(state);
960
961 if (map->type == PIN_MAP_TYPE_DUMMY_STATE)
962 return 0;
963
964 setting = kzalloc(sizeof(*setting), GFP_KERNEL);
965 if (!setting)
966 return -ENOMEM;
967
968 setting->type = map->type;
969
970 if (pctldev)
971 setting->pctldev = pctldev;
972 else
973 setting->pctldev =
974 get_pinctrl_dev_from_devname(map->ctrl_dev_name);
975 if (!setting->pctldev) {
976 kfree(setting);
977 /* Do not defer probing of hogs (circular loop) */
978 if (!strcmp(map->ctrl_dev_name, map->dev_name))
979 return -ENODEV;
980 /*
981 * OK let us guess that the driver is not there yet, and
982 * let's defer obtaining this pinctrl handle to later...
983 */
984 dev_info(p->dev, "unknown pinctrl device %s in map entry, deferring probe",
985 map->ctrl_dev_name);
986 return -EPROBE_DEFER;
987 }
988
989 setting->dev_name = map->dev_name;
990
991 switch (map->type) {
992 case PIN_MAP_TYPE_MUX_GROUP:
993 ret = pinmux_map_to_setting(map, setting);
994 break;
995 case PIN_MAP_TYPE_CONFIGS_PIN:
996 case PIN_MAP_TYPE_CONFIGS_GROUP:
997 ret = pinconf_map_to_setting(map, setting);
998 break;
999 default:
1000 ret = -EINVAL;
1001 break;
1002 }
1003 if (ret < 0) {
1004 kfree(setting);
1005 return ret;
1006 }
1007
1008 list_add_tail(&setting->node, &state->settings);
1009
1010 return 0;
1011}
1012
1013static struct pinctrl *find_pinctrl(struct device *dev)
1014{
1015 struct pinctrl *p;
1016
1017 mutex_lock(&pinctrl_list_mutex);
1018 list_for_each_entry(p, &pinctrl_list, node)
1019 if (p->dev == dev) {
1020 mutex_unlock(&pinctrl_list_mutex);
1021 return p;
1022 }
1023
1024 mutex_unlock(&pinctrl_list_mutex);
1025 return NULL;
1026}
1027
1028static void pinctrl_free(struct pinctrl *p, bool inlist);
1029
1030static struct pinctrl *create_pinctrl(struct device *dev,
1031 struct pinctrl_dev *pctldev)
1032{
1033 struct pinctrl *p;
1034 const char *devname;
1035 struct pinctrl_maps *maps_node;
1036 const struct pinctrl_map *map;
1037 int ret;
1038
1039 /*
1040 * create the state cookie holder struct pinctrl for each
1041 * mapping, this is what consumers will get when requesting
1042 * a pin control handle with pinctrl_get()
1043 */
1044 p = kzalloc(sizeof(*p), GFP_KERNEL);
1045 if (!p)
1046 return ERR_PTR(-ENOMEM);
1047 p->dev = dev;
1048 INIT_LIST_HEAD(&p->states);
1049 INIT_LIST_HEAD(&p->dt_maps);
1050
1051 ret = pinctrl_dt_to_map(p, pctldev);
1052 if (ret < 0) {
1053 kfree(p);
1054 return ERR_PTR(ret);
1055 }
1056
1057 devname = dev_name(dev);
1058
1059 mutex_lock(&pinctrl_maps_mutex);
1060 /* Iterate over the pin control maps to locate the right ones */
1061 for_each_pin_map(maps_node, map) {
1062 /* Map must be for this device */
1063 if (strcmp(map->dev_name, devname))
1064 continue;
1065 /*
1066 * If pctldev is not null, we are claiming hog for it,
1067 * that means, setting that is served by pctldev by itself.
1068 *
1069 * Thus we must skip map that is for this device but is served
1070 * by other device.
1071 */
1072 if (pctldev &&
1073 strcmp(dev_name(pctldev->dev), map->ctrl_dev_name))
1074 continue;
1075
1076 ret = add_setting(p, pctldev, map);
1077 /*
1078 * At this point the adding of a setting may:
1079 *
1080 * - Defer, if the pinctrl device is not yet available
1081 * - Fail, if the pinctrl device is not yet available,
1082 * AND the setting is a hog. We cannot defer that, since
1083 * the hog will kick in immediately after the device
1084 * is registered.
1085 *
1086 * If the error returned was not -EPROBE_DEFER then we
1087 * accumulate the errors to see if we end up with
1088 * an -EPROBE_DEFER later, as that is the worst case.
1089 */
1090 if (ret == -EPROBE_DEFER) {
1091 pinctrl_free(p, false);
1092 mutex_unlock(&pinctrl_maps_mutex);
1093 return ERR_PTR(ret);
1094 }
1095 }
1096 mutex_unlock(&pinctrl_maps_mutex);
1097
1098 if (ret < 0) {
1099 /* If some other error than deferral occurred, return here */
1100 pinctrl_free(p, false);
1101 return ERR_PTR(ret);
1102 }
1103
1104 kref_init(&p->users);
1105
1106 /* Add the pinctrl handle to the global list */
1107 mutex_lock(&pinctrl_list_mutex);
1108 list_add_tail(&p->node, &pinctrl_list);
1109 mutex_unlock(&pinctrl_list_mutex);
1110
1111 return p;
1112}
1113
1114/**
1115 * pinctrl_get() - retrieves the pinctrl handle for a device
1116 * @dev: the device to obtain the handle for
1117 */
1118struct pinctrl *pinctrl_get(struct device *dev)
1119{
1120 struct pinctrl *p;
1121
1122 if (WARN_ON(!dev))
1123 return ERR_PTR(-EINVAL);
1124
1125 /*
1126 * See if somebody else (such as the device core) has already
1127 * obtained a handle to the pinctrl for this device. In that case,
1128 * return another pointer to it.
1129 */
1130 p = find_pinctrl(dev);
1131 if (p) {
1132 dev_dbg(dev, "obtain a copy of previously claimed pinctrl\n");
1133 kref_get(&p->users);
1134 return p;
1135 }
1136
1137 return create_pinctrl(dev, NULL);
1138}
1139EXPORT_SYMBOL_GPL(pinctrl_get);
1140
1141static void pinctrl_free_setting(bool disable_setting,
1142 struct pinctrl_setting *setting)
1143{
1144 switch (setting->type) {
1145 case PIN_MAP_TYPE_MUX_GROUP:
1146 if (disable_setting)
1147 pinmux_disable_setting(setting);
1148 pinmux_free_setting(setting);
1149 break;
1150 case PIN_MAP_TYPE_CONFIGS_PIN:
1151 case PIN_MAP_TYPE_CONFIGS_GROUP:
1152 pinconf_free_setting(setting);
1153 break;
1154 default:
1155 break;
1156 }
1157}
1158
1159static void pinctrl_free(struct pinctrl *p, bool inlist)
1160{
1161 struct pinctrl_state *state, *n1;
1162 struct pinctrl_setting *setting, *n2;
1163
1164 mutex_lock(&pinctrl_list_mutex);
1165 list_for_each_entry_safe(state, n1, &p->states, node) {
1166 list_for_each_entry_safe(setting, n2, &state->settings, node) {
1167 pinctrl_free_setting(state == p->state, setting);
1168 list_del(&setting->node);
1169 kfree(setting);
1170 }
1171 list_del(&state->node);
1172 kfree(state);
1173 }
1174
1175 pinctrl_dt_free_maps(p);
1176
1177 if (inlist)
1178 list_del(&p->node);
1179 kfree(p);
1180 mutex_unlock(&pinctrl_list_mutex);
1181}
1182
1183/**
1184 * pinctrl_release() - release the pinctrl handle
1185 * @kref: the kref in the pinctrl being released
1186 */
1187static void pinctrl_release(struct kref *kref)
1188{
1189 struct pinctrl *p = container_of(kref, struct pinctrl, users);
1190
1191 pinctrl_free(p, true);
1192}
1193
1194/**
1195 * pinctrl_put() - decrease use count on a previously claimed pinctrl handle
1196 * @p: the pinctrl handle to release
1197 */
1198void pinctrl_put(struct pinctrl *p)
1199{
1200 kref_put(&p->users, pinctrl_release);
1201}
1202EXPORT_SYMBOL_GPL(pinctrl_put);
1203
1204/**
1205 * pinctrl_lookup_state() - retrieves a state handle from a pinctrl handle
1206 * @p: the pinctrl handle to retrieve the state from
1207 * @name: the state name to retrieve
1208 */
1209struct pinctrl_state *pinctrl_lookup_state(struct pinctrl *p,
1210 const char *name)
1211{
1212 struct pinctrl_state *state;
1213
1214 state = find_state(p, name);
1215 if (!state) {
1216 if (pinctrl_dummy_state) {
1217 /* create dummy state */
1218 dev_dbg(p->dev, "using pinctrl dummy state (%s)\n",
1219 name);
1220 state = create_state(p, name);
1221 } else
1222 state = ERR_PTR(-ENODEV);
1223 }
1224
1225 return state;
1226}
1227EXPORT_SYMBOL_GPL(pinctrl_lookup_state);
1228
1229static void pinctrl_link_add(struct pinctrl_dev *pctldev,
1230 struct device *consumer)
1231{
1232 if (pctldev->desc->link_consumers)
1233 device_link_add(consumer, pctldev->dev,
1234 DL_FLAG_PM_RUNTIME |
1235 DL_FLAG_AUTOREMOVE_CONSUMER);
1236}
1237
1238/**
1239 * pinctrl_commit_state() - select/activate/program a pinctrl state to HW
1240 * @p: the pinctrl handle for the device that requests configuration
1241 * @state: the state handle to select/activate/program
1242 */
1243static int pinctrl_commit_state(struct pinctrl *p, struct pinctrl_state *state)
1244{
1245 struct pinctrl_setting *setting, *setting2;
1246 struct pinctrl_state *old_state = p->state;
1247 int ret;
1248
1249 if (p->state) {
1250 /*
1251 * For each pinmux setting in the old state, forget SW's record
1252 * of mux owner for that pingroup. Any pingroups which are
1253 * still owned by the new state will be re-acquired by the call
1254 * to pinmux_enable_setting() in the loop below.
1255 */
1256 list_for_each_entry(setting, &p->state->settings, node) {
1257 if (setting->type != PIN_MAP_TYPE_MUX_GROUP)
1258 continue;
1259 pinmux_disable_setting(setting);
1260 }
1261 }
1262
1263 p->state = NULL;
1264
1265 /* Apply all the settings for the new state - pinmux first */
1266 list_for_each_entry(setting, &state->settings, node) {
1267 switch (setting->type) {
1268 case PIN_MAP_TYPE_MUX_GROUP:
1269 ret = pinmux_enable_setting(setting);
1270 break;
1271 case PIN_MAP_TYPE_CONFIGS_PIN:
1272 case PIN_MAP_TYPE_CONFIGS_GROUP:
1273 ret = 0;
1274 break;
1275 default:
1276 ret = -EINVAL;
1277 break;
1278 }
1279
1280 if (ret < 0)
1281 goto unapply_new_state;
1282
1283 /* Do not link hogs (circular dependency) */
1284 if (p != setting->pctldev->p)
1285 pinctrl_link_add(setting->pctldev, p->dev);
1286 }
1287
1288 /* Apply all the settings for the new state - pinconf after */
1289 list_for_each_entry(setting, &state->settings, node) {
1290 switch (setting->type) {
1291 case PIN_MAP_TYPE_MUX_GROUP:
1292 ret = 0;
1293 break;
1294 case PIN_MAP_TYPE_CONFIGS_PIN:
1295 case PIN_MAP_TYPE_CONFIGS_GROUP:
1296 ret = pinconf_apply_setting(setting);
1297 break;
1298 default:
1299 ret = -EINVAL;
1300 break;
1301 }
1302
1303 if (ret < 0) {
1304 goto unapply_new_state;
1305 }
1306
1307 /* Do not link hogs (circular dependency) */
1308 if (p != setting->pctldev->p)
1309 pinctrl_link_add(setting->pctldev, p->dev);
1310 }
1311
1312 p->state = state;
1313
1314 return 0;
1315
1316unapply_new_state:
1317 dev_err(p->dev, "Error applying setting, reverse things back\n");
1318
1319 list_for_each_entry(setting2, &state->settings, node) {
1320 if (&setting2->node == &setting->node)
1321 break;
1322 /*
1323 * All we can do here is pinmux_disable_setting.
1324 * That means that some pins are muxed differently now
1325 * than they were before applying the setting (We can't
1326 * "unmux a pin"!), but it's not a big deal since the pins
1327 * are free to be muxed by another apply_setting.
1328 */
1329 if (setting2->type == PIN_MAP_TYPE_MUX_GROUP)
1330 pinmux_disable_setting(setting2);
1331 }
1332
1333 /* There's no infinite recursive loop here because p->state is NULL */
1334 if (old_state)
1335 pinctrl_select_state(p, old_state);
1336
1337 return ret;
1338}
1339
1340/**
1341 * pinctrl_select_state() - select/activate/program a pinctrl state to HW
1342 * @p: the pinctrl handle for the device that requests configuration
1343 * @state: the state handle to select/activate/program
1344 */
1345int pinctrl_select_state(struct pinctrl *p, struct pinctrl_state *state)
1346{
1347 if (p->state == state)
1348 return 0;
1349
1350 return pinctrl_commit_state(p, state);
1351}
1352EXPORT_SYMBOL_GPL(pinctrl_select_state);
1353
1354static void devm_pinctrl_release(struct device *dev, void *res)
1355{
1356 pinctrl_put(*(struct pinctrl **)res);
1357}
1358
1359/**
1360 * devm_pinctrl_get() - Resource managed pinctrl_get()
1361 * @dev: the device to obtain the handle for
1362 *
1363 * If there is a need to explicitly destroy the returned struct pinctrl,
1364 * devm_pinctrl_put() should be used, rather than plain pinctrl_put().
1365 */
1366struct pinctrl *devm_pinctrl_get(struct device *dev)
1367{
1368 struct pinctrl **ptr, *p;
1369
1370 ptr = devres_alloc(devm_pinctrl_release, sizeof(*ptr), GFP_KERNEL);
1371 if (!ptr)
1372 return ERR_PTR(-ENOMEM);
1373
1374 p = pinctrl_get(dev);
1375 if (!IS_ERR(p)) {
1376 *ptr = p;
1377 devres_add(dev, ptr);
1378 } else {
1379 devres_free(ptr);
1380 }
1381
1382 return p;
1383}
1384EXPORT_SYMBOL_GPL(devm_pinctrl_get);
1385
1386static int devm_pinctrl_match(struct device *dev, void *res, void *data)
1387{
1388 struct pinctrl **p = res;
1389
1390 return *p == data;
1391}
1392
1393/**
1394 * devm_pinctrl_put() - Resource managed pinctrl_put()
1395 * @p: the pinctrl handle to release
1396 *
1397 * Deallocate a struct pinctrl obtained via devm_pinctrl_get(). Normally
1398 * this function will not need to be called and the resource management
1399 * code will ensure that the resource is freed.
1400 */
1401void devm_pinctrl_put(struct pinctrl *p)
1402{
1403 WARN_ON(devres_release(p->dev, devm_pinctrl_release,
1404 devm_pinctrl_match, p));
1405}
1406EXPORT_SYMBOL_GPL(devm_pinctrl_put);
1407
1408/**
1409 * pinctrl_register_mappings() - register a set of pin controller mappings
1410 * @maps: the pincontrol mappings table to register. Note the pinctrl-core
1411 * keeps a reference to the passed in maps, so they should _not_ be
1412 * marked with __initdata.
1413 * @num_maps: the number of maps in the mapping table
1414 */
1415int pinctrl_register_mappings(const struct pinctrl_map *maps,
1416 unsigned num_maps)
1417{
1418 int i, ret;
1419 struct pinctrl_maps *maps_node;
1420
1421 pr_debug("add %u pinctrl maps\n", num_maps);
1422
1423 /* First sanity check the new mapping */
1424 for (i = 0; i < num_maps; i++) {
1425 if (!maps[i].dev_name) {
1426 pr_err("failed to register map %s (%d): no device given\n",
1427 maps[i].name, i);
1428 return -EINVAL;
1429 }
1430
1431 if (!maps[i].name) {
1432 pr_err("failed to register map %d: no map name given\n",
1433 i);
1434 return -EINVAL;
1435 }
1436
1437 if (maps[i].type != PIN_MAP_TYPE_DUMMY_STATE &&
1438 !maps[i].ctrl_dev_name) {
1439 pr_err("failed to register map %s (%d): no pin control device given\n",
1440 maps[i].name, i);
1441 return -EINVAL;
1442 }
1443
1444 switch (maps[i].type) {
1445 case PIN_MAP_TYPE_DUMMY_STATE:
1446 break;
1447 case PIN_MAP_TYPE_MUX_GROUP:
1448 ret = pinmux_validate_map(&maps[i], i);
1449 if (ret < 0)
1450 return ret;
1451 break;
1452 case PIN_MAP_TYPE_CONFIGS_PIN:
1453 case PIN_MAP_TYPE_CONFIGS_GROUP:
1454 ret = pinconf_validate_map(&maps[i], i);
1455 if (ret < 0)
1456 return ret;
1457 break;
1458 default:
1459 pr_err("failed to register map %s (%d): invalid type given\n",
1460 maps[i].name, i);
1461 return -EINVAL;
1462 }
1463 }
1464
1465 maps_node = kzalloc(sizeof(*maps_node), GFP_KERNEL);
1466 if (!maps_node)
1467 return -ENOMEM;
1468
1469 maps_node->maps = maps;
1470 maps_node->num_maps = num_maps;
1471
1472 mutex_lock(&pinctrl_maps_mutex);
1473 list_add_tail(&maps_node->node, &pinctrl_maps);
1474 mutex_unlock(&pinctrl_maps_mutex);
1475
1476 return 0;
1477}
1478EXPORT_SYMBOL_GPL(pinctrl_register_mappings);
1479
1480/**
1481 * pinctrl_unregister_mappings() - unregister a set of pin controller mappings
1482 * @map: the pincontrol mappings table passed to pinctrl_register_mappings()
1483 * when registering the mappings.
1484 */
1485void pinctrl_unregister_mappings(const struct pinctrl_map *map)
1486{
1487 struct pinctrl_maps *maps_node;
1488
1489 mutex_lock(&pinctrl_maps_mutex);
1490 list_for_each_entry(maps_node, &pinctrl_maps, node) {
1491 if (maps_node->maps == map) {
1492 list_del(&maps_node->node);
1493 kfree(maps_node);
1494 mutex_unlock(&pinctrl_maps_mutex);
1495 return;
1496 }
1497 }
1498 mutex_unlock(&pinctrl_maps_mutex);
1499}
1500EXPORT_SYMBOL_GPL(pinctrl_unregister_mappings);
1501
1502/**
1503 * pinctrl_force_sleep() - turn a given controller device into sleep state
1504 * @pctldev: pin controller device
1505 */
1506int pinctrl_force_sleep(struct pinctrl_dev *pctldev)
1507{
1508 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_sleep))
1509 return pinctrl_commit_state(pctldev->p, pctldev->hog_sleep);
1510 return 0;
1511}
1512EXPORT_SYMBOL_GPL(pinctrl_force_sleep);
1513
1514/**
1515 * pinctrl_force_default() - turn a given controller device into default state
1516 * @pctldev: pin controller device
1517 */
1518int pinctrl_force_default(struct pinctrl_dev *pctldev)
1519{
1520 if (!IS_ERR(pctldev->p) && !IS_ERR(pctldev->hog_default))
1521 return pinctrl_commit_state(pctldev->p, pctldev->hog_default);
1522 return 0;
1523}
1524EXPORT_SYMBOL_GPL(pinctrl_force_default);
1525
1526/**
1527 * pinctrl_init_done() - tell pinctrl probe is done
1528 *
1529 * We'll use this time to switch the pins from "init" to "default" unless the
1530 * driver selected some other state.
1531 *
1532 * @dev: device to that's done probing
1533 */
1534int pinctrl_init_done(struct device *dev)
1535{
1536 struct dev_pin_info *pins = dev->pins;
1537 int ret;
1538
1539 if (!pins)
1540 return 0;
1541
1542 if (IS_ERR(pins->init_state))
1543 return 0; /* No such state */
1544
1545 if (pins->p->state != pins->init_state)
1546 return 0; /* Not at init anyway */
1547
1548 if (IS_ERR(pins->default_state))
1549 return 0; /* No default state */
1550
1551 ret = pinctrl_select_state(pins->p, pins->default_state);
1552 if (ret)
1553 dev_err(dev, "failed to activate default pinctrl state\n");
1554
1555 return ret;
1556}
1557
1558static int pinctrl_select_bound_state(struct device *dev,
1559 struct pinctrl_state *state)
1560{
1561 struct dev_pin_info *pins = dev->pins;
1562 int ret;
1563
1564 if (IS_ERR(state))
1565 return 0; /* No such state */
1566 ret = pinctrl_select_state(pins->p, state);
1567 if (ret)
1568 dev_err(dev, "failed to activate pinctrl state %s\n",
1569 state->name);
1570 return ret;
1571}
1572
1573/**
1574 * pinctrl_select_default_state() - select default pinctrl state
1575 * @dev: device to select default state for
1576 */
1577int pinctrl_select_default_state(struct device *dev)
1578{
1579 if (!dev->pins)
1580 return 0;
1581
1582 return pinctrl_select_bound_state(dev, dev->pins->default_state);
1583}
1584EXPORT_SYMBOL_GPL(pinctrl_select_default_state);
1585
1586#ifdef CONFIG_PM
1587
1588/**
1589 * pinctrl_pm_select_default_state() - select default pinctrl state for PM
1590 * @dev: device to select default state for
1591 */
1592int pinctrl_pm_select_default_state(struct device *dev)
1593{
1594 return pinctrl_select_default_state(dev);
1595}
1596EXPORT_SYMBOL_GPL(pinctrl_pm_select_default_state);
1597
1598/**
1599 * pinctrl_pm_select_sleep_state() - select sleep pinctrl state for PM
1600 * @dev: device to select sleep state for
1601 */
1602int pinctrl_pm_select_sleep_state(struct device *dev)
1603{
1604 if (!dev->pins)
1605 return 0;
1606
1607 return pinctrl_select_bound_state(dev, dev->pins->sleep_state);
1608}
1609EXPORT_SYMBOL_GPL(pinctrl_pm_select_sleep_state);
1610
1611/**
1612 * pinctrl_pm_select_idle_state() - select idle pinctrl state for PM
1613 * @dev: device to select idle state for
1614 */
1615int pinctrl_pm_select_idle_state(struct device *dev)
1616{
1617 if (!dev->pins)
1618 return 0;
1619
1620 return pinctrl_select_bound_state(dev, dev->pins->idle_state);
1621}
1622EXPORT_SYMBOL_GPL(pinctrl_pm_select_idle_state);
1623#endif
1624
1625#ifdef CONFIG_DEBUG_FS
1626
1627static int pinctrl_pins_show(struct seq_file *s, void *what)
1628{
1629 struct pinctrl_dev *pctldev = s->private;
1630 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1631 unsigned i, pin;
1632#ifdef CONFIG_GPIOLIB
1633 struct pinctrl_gpio_range *range;
1634 struct gpio_chip *chip;
1635 int gpio_num;
1636#endif
1637
1638 seq_printf(s, "registered pins: %d\n", pctldev->desc->npins);
1639
1640 mutex_lock(&pctldev->mutex);
1641
1642 /* The pin number can be retrived from the pin controller descriptor */
1643 for (i = 0; i < pctldev->desc->npins; i++) {
1644 struct pin_desc *desc;
1645
1646 pin = pctldev->desc->pins[i].number;
1647 desc = pin_desc_get(pctldev, pin);
1648 /* Pin space may be sparse */
1649 if (!desc)
1650 continue;
1651
1652 seq_printf(s, "pin %d (%s) ", pin, desc->name);
1653
1654#ifdef CONFIG_GPIOLIB
1655 gpio_num = -1;
1656 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1657 if ((pin >= range->pin_base) &&
1658 (pin < (range->pin_base + range->npins))) {
1659 gpio_num = range->base + (pin - range->pin_base);
1660 break;
1661 }
1662 }
1663 if (gpio_num >= 0)
1664 /*
1665 * FIXME: gpio_num comes from the global GPIO numberspace.
1666 * we need to get rid of the range->base eventually and
1667 * get the descriptor directly from the gpio_chip.
1668 */
1669 chip = gpiod_to_chip(gpio_to_desc(gpio_num));
1670 else
1671 chip = NULL;
1672 if (chip)
1673 seq_printf(s, "%u:%s ", gpio_num - chip->gpiodev->base, chip->label);
1674 else
1675 seq_puts(s, "0:? ");
1676#endif
1677
1678 /* Driver-specific info per pin */
1679 if (ops->pin_dbg_show)
1680 ops->pin_dbg_show(pctldev, s, pin);
1681
1682 seq_puts(s, "\n");
1683 }
1684
1685 mutex_unlock(&pctldev->mutex);
1686
1687 return 0;
1688}
1689DEFINE_SHOW_ATTRIBUTE(pinctrl_pins);
1690
1691static int pinctrl_groups_show(struct seq_file *s, void *what)
1692{
1693 struct pinctrl_dev *pctldev = s->private;
1694 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1695 unsigned ngroups, selector = 0;
1696
1697 mutex_lock(&pctldev->mutex);
1698
1699 ngroups = ops->get_groups_count(pctldev);
1700
1701 seq_puts(s, "registered pin groups:\n");
1702 while (selector < ngroups) {
1703 const unsigned *pins = NULL;
1704 unsigned num_pins = 0;
1705 const char *gname = ops->get_group_name(pctldev, selector);
1706 const char *pname;
1707 int ret = 0;
1708 int i;
1709
1710 if (ops->get_group_pins)
1711 ret = ops->get_group_pins(pctldev, selector,
1712 &pins, &num_pins);
1713 if (ret)
1714 seq_printf(s, "%s [ERROR GETTING PINS]\n",
1715 gname);
1716 else {
1717 seq_printf(s, "group: %s\n", gname);
1718 for (i = 0; i < num_pins; i++) {
1719 pname = pin_get_name(pctldev, pins[i]);
1720 if (WARN_ON(!pname)) {
1721 mutex_unlock(&pctldev->mutex);
1722 return -EINVAL;
1723 }
1724 seq_printf(s, "pin %d (%s)\n", pins[i], pname);
1725 }
1726 seq_puts(s, "\n");
1727 }
1728 selector++;
1729 }
1730
1731 mutex_unlock(&pctldev->mutex);
1732
1733 return 0;
1734}
1735DEFINE_SHOW_ATTRIBUTE(pinctrl_groups);
1736
1737static int pinctrl_gpioranges_show(struct seq_file *s, void *what)
1738{
1739 struct pinctrl_dev *pctldev = s->private;
1740 struct pinctrl_gpio_range *range;
1741
1742 seq_puts(s, "GPIO ranges handled:\n");
1743
1744 mutex_lock(&pctldev->mutex);
1745
1746 /* Loop over the ranges */
1747 list_for_each_entry(range, &pctldev->gpio_ranges, node) {
1748 if (range->pins) {
1749 int a;
1750 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS {",
1751 range->id, range->name,
1752 range->base, (range->base + range->npins - 1));
1753 for (a = 0; a < range->npins - 1; a++)
1754 seq_printf(s, "%u, ", range->pins[a]);
1755 seq_printf(s, "%u}\n", range->pins[a]);
1756 }
1757 else
1758 seq_printf(s, "%u: %s GPIOS [%u - %u] PINS [%u - %u]\n",
1759 range->id, range->name,
1760 range->base, (range->base + range->npins - 1),
1761 range->pin_base,
1762 (range->pin_base + range->npins - 1));
1763 }
1764
1765 mutex_unlock(&pctldev->mutex);
1766
1767 return 0;
1768}
1769DEFINE_SHOW_ATTRIBUTE(pinctrl_gpioranges);
1770
1771static int pinctrl_devices_show(struct seq_file *s, void *what)
1772{
1773 struct pinctrl_dev *pctldev;
1774
1775 seq_puts(s, "name [pinmux] [pinconf]\n");
1776
1777 mutex_lock(&pinctrldev_list_mutex);
1778
1779 list_for_each_entry(pctldev, &pinctrldev_list, node) {
1780 seq_printf(s, "%s ", pctldev->desc->name);
1781 if (pctldev->desc->pmxops)
1782 seq_puts(s, "yes ");
1783 else
1784 seq_puts(s, "no ");
1785 if (pctldev->desc->confops)
1786 seq_puts(s, "yes");
1787 else
1788 seq_puts(s, "no");
1789 seq_puts(s, "\n");
1790 }
1791
1792 mutex_unlock(&pinctrldev_list_mutex);
1793
1794 return 0;
1795}
1796DEFINE_SHOW_ATTRIBUTE(pinctrl_devices);
1797
1798static inline const char *map_type(enum pinctrl_map_type type)
1799{
1800 static const char * const names[] = {
1801 "INVALID",
1802 "DUMMY_STATE",
1803 "MUX_GROUP",
1804 "CONFIGS_PIN",
1805 "CONFIGS_GROUP",
1806 };
1807
1808 if (type >= ARRAY_SIZE(names))
1809 return "UNKNOWN";
1810
1811 return names[type];
1812}
1813
1814static int pinctrl_maps_show(struct seq_file *s, void *what)
1815{
1816 struct pinctrl_maps *maps_node;
1817 const struct pinctrl_map *map;
1818
1819 seq_puts(s, "Pinctrl maps:\n");
1820
1821 mutex_lock(&pinctrl_maps_mutex);
1822 for_each_pin_map(maps_node, map) {
1823 seq_printf(s, "device %s\nstate %s\ntype %s (%d)\n",
1824 map->dev_name, map->name, map_type(map->type),
1825 map->type);
1826
1827 if (map->type != PIN_MAP_TYPE_DUMMY_STATE)
1828 seq_printf(s, "controlling device %s\n",
1829 map->ctrl_dev_name);
1830
1831 switch (map->type) {
1832 case PIN_MAP_TYPE_MUX_GROUP:
1833 pinmux_show_map(s, map);
1834 break;
1835 case PIN_MAP_TYPE_CONFIGS_PIN:
1836 case PIN_MAP_TYPE_CONFIGS_GROUP:
1837 pinconf_show_map(s, map);
1838 break;
1839 default:
1840 break;
1841 }
1842
1843 seq_putc(s, '\n');
1844 }
1845 mutex_unlock(&pinctrl_maps_mutex);
1846
1847 return 0;
1848}
1849DEFINE_SHOW_ATTRIBUTE(pinctrl_maps);
1850
1851static int pinctrl_show(struct seq_file *s, void *what)
1852{
1853 struct pinctrl *p;
1854 struct pinctrl_state *state;
1855 struct pinctrl_setting *setting;
1856
1857 seq_puts(s, "Requested pin control handlers their pinmux maps:\n");
1858
1859 mutex_lock(&pinctrl_list_mutex);
1860
1861 list_for_each_entry(p, &pinctrl_list, node) {
1862 seq_printf(s, "device: %s current state: %s\n",
1863 dev_name(p->dev),
1864 p->state ? p->state->name : "none");
1865
1866 list_for_each_entry(state, &p->states, node) {
1867 seq_printf(s, " state: %s\n", state->name);
1868
1869 list_for_each_entry(setting, &state->settings, node) {
1870 struct pinctrl_dev *pctldev = setting->pctldev;
1871
1872 seq_printf(s, " type: %s controller %s ",
1873 map_type(setting->type),
1874 pinctrl_dev_get_name(pctldev));
1875
1876 switch (setting->type) {
1877 case PIN_MAP_TYPE_MUX_GROUP:
1878 pinmux_show_setting(s, setting);
1879 break;
1880 case PIN_MAP_TYPE_CONFIGS_PIN:
1881 case PIN_MAP_TYPE_CONFIGS_GROUP:
1882 pinconf_show_setting(s, setting);
1883 break;
1884 default:
1885 break;
1886 }
1887 }
1888 }
1889 }
1890
1891 mutex_unlock(&pinctrl_list_mutex);
1892
1893 return 0;
1894}
1895DEFINE_SHOW_ATTRIBUTE(pinctrl);
1896
1897static struct dentry *debugfs_root;
1898
1899static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1900{
1901 struct dentry *device_root;
1902 const char *debugfs_name;
1903
1904 if (pctldev->desc->name &&
1905 strcmp(dev_name(pctldev->dev), pctldev->desc->name)) {
1906 debugfs_name = devm_kasprintf(pctldev->dev, GFP_KERNEL,
1907 "%s-%s", dev_name(pctldev->dev),
1908 pctldev->desc->name);
1909 if (!debugfs_name) {
1910 pr_warn("failed to determine debugfs dir name for %s\n",
1911 dev_name(pctldev->dev));
1912 return;
1913 }
1914 } else {
1915 debugfs_name = dev_name(pctldev->dev);
1916 }
1917
1918 device_root = debugfs_create_dir(debugfs_name, debugfs_root);
1919 pctldev->device_root = device_root;
1920
1921 if (IS_ERR(device_root) || !device_root) {
1922 pr_warn("failed to create debugfs directory for %s\n",
1923 dev_name(pctldev->dev));
1924 return;
1925 }
1926 debugfs_create_file("pins", 0444,
1927 device_root, pctldev, &pinctrl_pins_fops);
1928 debugfs_create_file("pingroups", 0444,
1929 device_root, pctldev, &pinctrl_groups_fops);
1930 debugfs_create_file("gpio-ranges", 0444,
1931 device_root, pctldev, &pinctrl_gpioranges_fops);
1932 if (pctldev->desc->pmxops)
1933 pinmux_init_device_debugfs(device_root, pctldev);
1934 if (pctldev->desc->confops)
1935 pinconf_init_device_debugfs(device_root, pctldev);
1936}
1937
1938static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1939{
1940 debugfs_remove_recursive(pctldev->device_root);
1941}
1942
1943static void pinctrl_init_debugfs(void)
1944{
1945 debugfs_root = debugfs_create_dir("pinctrl", NULL);
1946 if (IS_ERR(debugfs_root) || !debugfs_root) {
1947 pr_warn("failed to create debugfs directory\n");
1948 debugfs_root = NULL;
1949 return;
1950 }
1951
1952 debugfs_create_file("pinctrl-devices", 0444,
1953 debugfs_root, NULL, &pinctrl_devices_fops);
1954 debugfs_create_file("pinctrl-maps", 0444,
1955 debugfs_root, NULL, &pinctrl_maps_fops);
1956 debugfs_create_file("pinctrl-handles", 0444,
1957 debugfs_root, NULL, &pinctrl_fops);
1958}
1959
1960#else /* CONFIG_DEBUG_FS */
1961
1962static void pinctrl_init_device_debugfs(struct pinctrl_dev *pctldev)
1963{
1964}
1965
1966static void pinctrl_init_debugfs(void)
1967{
1968}
1969
1970static void pinctrl_remove_device_debugfs(struct pinctrl_dev *pctldev)
1971{
1972}
1973
1974#endif
1975
1976static int pinctrl_check_ops(struct pinctrl_dev *pctldev)
1977{
1978 const struct pinctrl_ops *ops = pctldev->desc->pctlops;
1979
1980 if (!ops ||
1981 !ops->get_groups_count ||
1982 !ops->get_group_name)
1983 return -EINVAL;
1984
1985 return 0;
1986}
1987
1988/**
1989 * pinctrl_init_controller() - init a pin controller device
1990 * @pctldesc: descriptor for this pin controller
1991 * @dev: parent device for this pin controller
1992 * @driver_data: private pin controller data for this pin controller
1993 */
1994static struct pinctrl_dev *
1995pinctrl_init_controller(struct pinctrl_desc *pctldesc, struct device *dev,
1996 void *driver_data)
1997{
1998 struct pinctrl_dev *pctldev;
1999 int ret;
2000
2001 if (!pctldesc)
2002 return ERR_PTR(-EINVAL);
2003 if (!pctldesc->name)
2004 return ERR_PTR(-EINVAL);
2005
2006 pctldev = kzalloc(sizeof(*pctldev), GFP_KERNEL);
2007 if (!pctldev)
2008 return ERR_PTR(-ENOMEM);
2009
2010 /* Initialize pin control device struct */
2011 pctldev->owner = pctldesc->owner;
2012 pctldev->desc = pctldesc;
2013 pctldev->driver_data = driver_data;
2014 INIT_RADIX_TREE(&pctldev->pin_desc_tree, GFP_KERNEL);
2015#ifdef CONFIG_GENERIC_PINCTRL_GROUPS
2016 INIT_RADIX_TREE(&pctldev->pin_group_tree, GFP_KERNEL);
2017#endif
2018#ifdef CONFIG_GENERIC_PINMUX_FUNCTIONS
2019 INIT_RADIX_TREE(&pctldev->pin_function_tree, GFP_KERNEL);
2020#endif
2021 INIT_LIST_HEAD(&pctldev->gpio_ranges);
2022 INIT_LIST_HEAD(&pctldev->node);
2023 pctldev->dev = dev;
2024 mutex_init(&pctldev->mutex);
2025
2026 /* check core ops for sanity */
2027 ret = pinctrl_check_ops(pctldev);
2028 if (ret) {
2029 dev_err(dev, "pinctrl ops lacks necessary functions\n");
2030 goto out_err;
2031 }
2032
2033 /* If we're implementing pinmuxing, check the ops for sanity */
2034 if (pctldesc->pmxops) {
2035 ret = pinmux_check_ops(pctldev);
2036 if (ret)
2037 goto out_err;
2038 }
2039
2040 /* If we're implementing pinconfig, check the ops for sanity */
2041 if (pctldesc->confops) {
2042 ret = pinconf_check_ops(pctldev);
2043 if (ret)
2044 goto out_err;
2045 }
2046
2047 /* Register all the pins */
2048 dev_dbg(dev, "try to register %d pins ...\n", pctldesc->npins);
2049 ret = pinctrl_register_pins(pctldev, pctldesc->pins, pctldesc->npins);
2050 if (ret) {
2051 dev_err(dev, "error during pin registration\n");
2052 pinctrl_free_pindescs(pctldev, pctldesc->pins,
2053 pctldesc->npins);
2054 goto out_err;
2055 }
2056
2057 return pctldev;
2058
2059out_err:
2060 mutex_destroy(&pctldev->mutex);
2061 kfree(pctldev);
2062 return ERR_PTR(ret);
2063}
2064
2065static int pinctrl_claim_hogs(struct pinctrl_dev *pctldev)
2066{
2067 pctldev->p = create_pinctrl(pctldev->dev, pctldev);
2068 if (PTR_ERR(pctldev->p) == -ENODEV) {
2069 dev_dbg(pctldev->dev, "no hogs found\n");
2070
2071 return 0;
2072 }
2073
2074 if (IS_ERR(pctldev->p)) {
2075 dev_err(pctldev->dev, "error claiming hogs: %li\n",
2076 PTR_ERR(pctldev->p));
2077
2078 return PTR_ERR(pctldev->p);
2079 }
2080
2081 pctldev->hog_default =
2082 pinctrl_lookup_state(pctldev->p, PINCTRL_STATE_DEFAULT);
2083 if (IS_ERR(pctldev->hog_default)) {
2084 dev_dbg(pctldev->dev,
2085 "failed to lookup the default state\n");
2086 } else {
2087 if (pinctrl_select_state(pctldev->p,
2088 pctldev->hog_default))
2089 dev_err(pctldev->dev,
2090 "failed to select default state\n");
2091 }
2092
2093 pctldev->hog_sleep =
2094 pinctrl_lookup_state(pctldev->p,
2095 PINCTRL_STATE_SLEEP);
2096 if (IS_ERR(pctldev->hog_sleep))
2097 dev_dbg(pctldev->dev,
2098 "failed to lookup the sleep state\n");
2099
2100 return 0;
2101}
2102
2103int pinctrl_enable(struct pinctrl_dev *pctldev)
2104{
2105 int error;
2106
2107 error = pinctrl_claim_hogs(pctldev);
2108 if (error) {
2109 dev_err(pctldev->dev, "could not claim hogs: %i\n",
2110 error);
2111 pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
2112 pctldev->desc->npins);
2113 mutex_destroy(&pctldev->mutex);
2114 kfree(pctldev);
2115
2116 return error;
2117 }
2118
2119 mutex_lock(&pinctrldev_list_mutex);
2120 list_add_tail(&pctldev->node, &pinctrldev_list);
2121 mutex_unlock(&pinctrldev_list_mutex);
2122
2123 pinctrl_init_device_debugfs(pctldev);
2124
2125 return 0;
2126}
2127EXPORT_SYMBOL_GPL(pinctrl_enable);
2128
2129/**
2130 * pinctrl_register() - register a pin controller device
2131 * @pctldesc: descriptor for this pin controller
2132 * @dev: parent device for this pin controller
2133 * @driver_data: private pin controller data for this pin controller
2134 *
2135 * Note that pinctrl_register() is known to have problems as the pin
2136 * controller driver functions are called before the driver has a
2137 * struct pinctrl_dev handle. To avoid issues later on, please use the
2138 * new pinctrl_register_and_init() below instead.
2139 */
2140struct pinctrl_dev *pinctrl_register(struct pinctrl_desc *pctldesc,
2141 struct device *dev, void *driver_data)
2142{
2143 struct pinctrl_dev *pctldev;
2144 int error;
2145
2146 pctldev = pinctrl_init_controller(pctldesc, dev, driver_data);
2147 if (IS_ERR(pctldev))
2148 return pctldev;
2149
2150 error = pinctrl_enable(pctldev);
2151 if (error)
2152 return ERR_PTR(error);
2153
2154 return pctldev;
2155}
2156EXPORT_SYMBOL_GPL(pinctrl_register);
2157
2158/**
2159 * pinctrl_register_and_init() - register and init pin controller device
2160 * @pctldesc: descriptor for this pin controller
2161 * @dev: parent device for this pin controller
2162 * @driver_data: private pin controller data for this pin controller
2163 * @pctldev: pin controller device
2164 *
2165 * Note that pinctrl_enable() still needs to be manually called after
2166 * this once the driver is ready.
2167 */
2168int pinctrl_register_and_init(struct pinctrl_desc *pctldesc,
2169 struct device *dev, void *driver_data,
2170 struct pinctrl_dev **pctldev)
2171{
2172 struct pinctrl_dev *p;
2173
2174 p = pinctrl_init_controller(pctldesc, dev, driver_data);
2175 if (IS_ERR(p))
2176 return PTR_ERR(p);
2177
2178 /*
2179 * We have pinctrl_start() call functions in the pin controller
2180 * driver with create_pinctrl() for at least dt_node_to_map(). So
2181 * let's make sure pctldev is properly initialized for the
2182 * pin controller driver before we do anything.
2183 */
2184 *pctldev = p;
2185
2186 return 0;
2187}
2188EXPORT_SYMBOL_GPL(pinctrl_register_and_init);
2189
2190/**
2191 * pinctrl_unregister() - unregister pinmux
2192 * @pctldev: pin controller to unregister
2193 *
2194 * Called by pinmux drivers to unregister a pinmux.
2195 */
2196void pinctrl_unregister(struct pinctrl_dev *pctldev)
2197{
2198 struct pinctrl_gpio_range *range, *n;
2199
2200 if (!pctldev)
2201 return;
2202
2203 mutex_lock(&pctldev->mutex);
2204 pinctrl_remove_device_debugfs(pctldev);
2205 mutex_unlock(&pctldev->mutex);
2206
2207 if (!IS_ERR_OR_NULL(pctldev->p))
2208 pinctrl_put(pctldev->p);
2209
2210 mutex_lock(&pinctrldev_list_mutex);
2211 mutex_lock(&pctldev->mutex);
2212 /* TODO: check that no pinmuxes are still active? */
2213 list_del(&pctldev->node);
2214 pinmux_generic_free_functions(pctldev);
2215 pinctrl_generic_free_groups(pctldev);
2216 /* Destroy descriptor tree */
2217 pinctrl_free_pindescs(pctldev, pctldev->desc->pins,
2218 pctldev->desc->npins);
2219 /* remove gpio ranges map */
2220 list_for_each_entry_safe(range, n, &pctldev->gpio_ranges, node)
2221 list_del(&range->node);
2222
2223 mutex_unlock(&pctldev->mutex);
2224 mutex_destroy(&pctldev->mutex);
2225 kfree(pctldev);
2226 mutex_unlock(&pinctrldev_list_mutex);
2227}
2228EXPORT_SYMBOL_GPL(pinctrl_unregister);
2229
2230static void devm_pinctrl_dev_release(struct device *dev, void *res)
2231{
2232 struct pinctrl_dev *pctldev = *(struct pinctrl_dev **)res;
2233
2234 pinctrl_unregister(pctldev);
2235}
2236
2237static int devm_pinctrl_dev_match(struct device *dev, void *res, void *data)
2238{
2239 struct pctldev **r = res;
2240
2241 if (WARN_ON(!r || !*r))
2242 return 0;
2243
2244 return *r == data;
2245}
2246
2247/**
2248 * devm_pinctrl_register() - Resource managed version of pinctrl_register().
2249 * @dev: parent device for this pin controller
2250 * @pctldesc: descriptor for this pin controller
2251 * @driver_data: private pin controller data for this pin controller
2252 *
2253 * Returns an error pointer if pincontrol register failed. Otherwise
2254 * it returns valid pinctrl handle.
2255 *
2256 * The pinctrl device will be automatically released when the device is unbound.
2257 */
2258struct pinctrl_dev *devm_pinctrl_register(struct device *dev,
2259 struct pinctrl_desc *pctldesc,
2260 void *driver_data)
2261{
2262 struct pinctrl_dev **ptr, *pctldev;
2263
2264 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2265 if (!ptr)
2266 return ERR_PTR(-ENOMEM);
2267
2268 pctldev = pinctrl_register(pctldesc, dev, driver_data);
2269 if (IS_ERR(pctldev)) {
2270 devres_free(ptr);
2271 return pctldev;
2272 }
2273
2274 *ptr = pctldev;
2275 devres_add(dev, ptr);
2276
2277 return pctldev;
2278}
2279EXPORT_SYMBOL_GPL(devm_pinctrl_register);
2280
2281/**
2282 * devm_pinctrl_register_and_init() - Resource managed pinctrl register and init
2283 * @dev: parent device for this pin controller
2284 * @pctldesc: descriptor for this pin controller
2285 * @driver_data: private pin controller data for this pin controller
2286 * @pctldev: pin controller device
2287 *
2288 * Returns zero on success or an error number on failure.
2289 *
2290 * The pinctrl device will be automatically released when the device is unbound.
2291 */
2292int devm_pinctrl_register_and_init(struct device *dev,
2293 struct pinctrl_desc *pctldesc,
2294 void *driver_data,
2295 struct pinctrl_dev **pctldev)
2296{
2297 struct pinctrl_dev **ptr;
2298 int error;
2299
2300 ptr = devres_alloc(devm_pinctrl_dev_release, sizeof(*ptr), GFP_KERNEL);
2301 if (!ptr)
2302 return -ENOMEM;
2303
2304 error = pinctrl_register_and_init(pctldesc, dev, driver_data, pctldev);
2305 if (error) {
2306 devres_free(ptr);
2307 return error;
2308 }
2309
2310 *ptr = *pctldev;
2311 devres_add(dev, ptr);
2312
2313 return 0;
2314}
2315EXPORT_SYMBOL_GPL(devm_pinctrl_register_and_init);
2316
2317/**
2318 * devm_pinctrl_unregister() - Resource managed version of pinctrl_unregister().
2319 * @dev: device for which resource was allocated
2320 * @pctldev: the pinctrl device to unregister.
2321 */
2322void devm_pinctrl_unregister(struct device *dev, struct pinctrl_dev *pctldev)
2323{
2324 WARN_ON(devres_release(dev, devm_pinctrl_dev_release,
2325 devm_pinctrl_dev_match, pctldev));
2326}
2327EXPORT_SYMBOL_GPL(devm_pinctrl_unregister);
2328
2329static int __init pinctrl_init(void)
2330{
2331 pr_info("initialized pinctrl subsystem\n");
2332 pinctrl_init_debugfs();
2333 return 0;
2334}
2335
2336/* init early since many drivers really need to initialized pinmux early */
2337core_initcall(pinctrl_init);