Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Procedures for creating, accessing and interpreting the device tree.
4 *
5 * Paul Mackerras August 1996.
6 * Copyright (C) 1996-2005 Paul Mackerras.
7 *
8 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
9 * {engebret|bergner}@us.ibm.com
10 *
11 * Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
12 *
13 * Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
14 * Grant Likely.
15 */
16
17#define pr_fmt(fmt) "OF: " fmt
18
19#include <linux/console.h>
20#include <linux/ctype.h>
21#include <linux/cpu.h>
22#include <linux/module.h>
23#include <linux/of.h>
24#include <linux/of_device.h>
25#include <linux/of_graph.h>
26#include <linux/spinlock.h>
27#include <linux/slab.h>
28#include <linux/string.h>
29#include <linux/proc_fs.h>
30
31#include "of_private.h"
32
33LIST_HEAD(aliases_lookup);
34
35struct device_node *of_root;
36EXPORT_SYMBOL(of_root);
37struct device_node *of_chosen;
38EXPORT_SYMBOL(of_chosen);
39struct device_node *of_aliases;
40struct device_node *of_stdout;
41static const char *of_stdout_options;
42
43struct kset *of_kset;
44
45/*
46 * Used to protect the of_aliases, to hold off addition of nodes to sysfs.
47 * This mutex must be held whenever modifications are being made to the
48 * device tree. The of_{attach,detach}_node() and
49 * of_{add,remove,update}_property() helpers make sure this happens.
50 */
51DEFINE_MUTEX(of_mutex);
52
53/* use when traversing tree through the child, sibling,
54 * or parent members of struct device_node.
55 */
56DEFINE_RAW_SPINLOCK(devtree_lock);
57
58bool of_node_name_eq(const struct device_node *np, const char *name)
59{
60 const char *node_name;
61 size_t len;
62
63 if (!np)
64 return false;
65
66 node_name = kbasename(np->full_name);
67 len = strchrnul(node_name, '@') - node_name;
68
69 return (strlen(name) == len) && (strncmp(node_name, name, len) == 0);
70}
71EXPORT_SYMBOL(of_node_name_eq);
72
73bool of_node_name_prefix(const struct device_node *np, const char *prefix)
74{
75 if (!np)
76 return false;
77
78 return strncmp(kbasename(np->full_name), prefix, strlen(prefix)) == 0;
79}
80EXPORT_SYMBOL(of_node_name_prefix);
81
82static bool __of_node_is_type(const struct device_node *np, const char *type)
83{
84 const char *match = __of_get_property(np, "device_type", NULL);
85
86 return np && match && type && !strcmp(match, type);
87}
88
89int of_bus_n_addr_cells(struct device_node *np)
90{
91 u32 cells;
92
93 for (; np; np = np->parent)
94 if (!of_property_read_u32(np, "#address-cells", &cells))
95 return cells;
96
97 /* No #address-cells property for the root node */
98 return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
99}
100
101int of_n_addr_cells(struct device_node *np)
102{
103 if (np->parent)
104 np = np->parent;
105
106 return of_bus_n_addr_cells(np);
107}
108EXPORT_SYMBOL(of_n_addr_cells);
109
110int of_bus_n_size_cells(struct device_node *np)
111{
112 u32 cells;
113
114 for (; np; np = np->parent)
115 if (!of_property_read_u32(np, "#size-cells", &cells))
116 return cells;
117
118 /* No #size-cells property for the root node */
119 return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
120}
121
122int of_n_size_cells(struct device_node *np)
123{
124 if (np->parent)
125 np = np->parent;
126
127 return of_bus_n_size_cells(np);
128}
129EXPORT_SYMBOL(of_n_size_cells);
130
131#ifdef CONFIG_NUMA
132int __weak of_node_to_nid(struct device_node *np)
133{
134 return NUMA_NO_NODE;
135}
136#endif
137
138#define OF_PHANDLE_CACHE_BITS 7
139#define OF_PHANDLE_CACHE_SZ BIT(OF_PHANDLE_CACHE_BITS)
140
141static struct device_node *phandle_cache[OF_PHANDLE_CACHE_SZ];
142
143static u32 of_phandle_cache_hash(phandle handle)
144{
145 return hash_32(handle, OF_PHANDLE_CACHE_BITS);
146}
147
148/*
149 * Caller must hold devtree_lock.
150 */
151void __of_phandle_cache_inv_entry(phandle handle)
152{
153 u32 handle_hash;
154 struct device_node *np;
155
156 if (!handle)
157 return;
158
159 handle_hash = of_phandle_cache_hash(handle);
160
161 np = phandle_cache[handle_hash];
162 if (np && handle == np->phandle)
163 phandle_cache[handle_hash] = NULL;
164}
165
166void __init of_core_init(void)
167{
168 struct device_node *np;
169
170
171 /* Create the kset, and register existing nodes */
172 mutex_lock(&of_mutex);
173 of_kset = kset_create_and_add("devicetree", NULL, firmware_kobj);
174 if (!of_kset) {
175 mutex_unlock(&of_mutex);
176 pr_err("failed to register existing nodes\n");
177 return;
178 }
179 for_each_of_allnodes(np) {
180 __of_attach_node_sysfs(np);
181 if (np->phandle && !phandle_cache[of_phandle_cache_hash(np->phandle)])
182 phandle_cache[of_phandle_cache_hash(np->phandle)] = np;
183 }
184 mutex_unlock(&of_mutex);
185
186 /* Symlink in /proc as required by userspace ABI */
187 if (of_root)
188 proc_symlink("device-tree", NULL, "/sys/firmware/devicetree/base");
189}
190
191static struct property *__of_find_property(const struct device_node *np,
192 const char *name, int *lenp)
193{
194 struct property *pp;
195
196 if (!np)
197 return NULL;
198
199 for (pp = np->properties; pp; pp = pp->next) {
200 if (of_prop_cmp(pp->name, name) == 0) {
201 if (lenp)
202 *lenp = pp->length;
203 break;
204 }
205 }
206
207 return pp;
208}
209
210struct property *of_find_property(const struct device_node *np,
211 const char *name,
212 int *lenp)
213{
214 struct property *pp;
215 unsigned long flags;
216
217 raw_spin_lock_irqsave(&devtree_lock, flags);
218 pp = __of_find_property(np, name, lenp);
219 raw_spin_unlock_irqrestore(&devtree_lock, flags);
220
221 return pp;
222}
223EXPORT_SYMBOL(of_find_property);
224
225struct device_node *__of_find_all_nodes(struct device_node *prev)
226{
227 struct device_node *np;
228 if (!prev) {
229 np = of_root;
230 } else if (prev->child) {
231 np = prev->child;
232 } else {
233 /* Walk back up looking for a sibling, or the end of the structure */
234 np = prev;
235 while (np->parent && !np->sibling)
236 np = np->parent;
237 np = np->sibling; /* Might be null at the end of the tree */
238 }
239 return np;
240}
241
242/**
243 * of_find_all_nodes - Get next node in global list
244 * @prev: Previous node or NULL to start iteration
245 * of_node_put() will be called on it
246 *
247 * Return: A node pointer with refcount incremented, use
248 * of_node_put() on it when done.
249 */
250struct device_node *of_find_all_nodes(struct device_node *prev)
251{
252 struct device_node *np;
253 unsigned long flags;
254
255 raw_spin_lock_irqsave(&devtree_lock, flags);
256 np = __of_find_all_nodes(prev);
257 of_node_get(np);
258 of_node_put(prev);
259 raw_spin_unlock_irqrestore(&devtree_lock, flags);
260 return np;
261}
262EXPORT_SYMBOL(of_find_all_nodes);
263
264/*
265 * Find a property with a given name for a given node
266 * and return the value.
267 */
268const void *__of_get_property(const struct device_node *np,
269 const char *name, int *lenp)
270{
271 struct property *pp = __of_find_property(np, name, lenp);
272
273 return pp ? pp->value : NULL;
274}
275
276/*
277 * Find a property with a given name for a given node
278 * and return the value.
279 */
280const void *of_get_property(const struct device_node *np, const char *name,
281 int *lenp)
282{
283 struct property *pp = of_find_property(np, name, lenp);
284
285 return pp ? pp->value : NULL;
286}
287EXPORT_SYMBOL(of_get_property);
288
289/**
290 * __of_device_is_compatible() - Check if the node matches given constraints
291 * @device: pointer to node
292 * @compat: required compatible string, NULL or "" for any match
293 * @type: required device_type value, NULL or "" for any match
294 * @name: required node name, NULL or "" for any match
295 *
296 * Checks if the given @compat, @type and @name strings match the
297 * properties of the given @device. A constraints can be skipped by
298 * passing NULL or an empty string as the constraint.
299 *
300 * Returns 0 for no match, and a positive integer on match. The return
301 * value is a relative score with larger values indicating better
302 * matches. The score is weighted for the most specific compatible value
303 * to get the highest score. Matching type is next, followed by matching
304 * name. Practically speaking, this results in the following priority
305 * order for matches:
306 *
307 * 1. specific compatible && type && name
308 * 2. specific compatible && type
309 * 3. specific compatible && name
310 * 4. specific compatible
311 * 5. general compatible && type && name
312 * 6. general compatible && type
313 * 7. general compatible && name
314 * 8. general compatible
315 * 9. type && name
316 * 10. type
317 * 11. name
318 */
319static int __of_device_is_compatible(const struct device_node *device,
320 const char *compat, const char *type, const char *name)
321{
322 struct property *prop;
323 const char *cp;
324 int index = 0, score = 0;
325
326 /* Compatible match has highest priority */
327 if (compat && compat[0]) {
328 prop = __of_find_property(device, "compatible", NULL);
329 for (cp = of_prop_next_string(prop, NULL); cp;
330 cp = of_prop_next_string(prop, cp), index++) {
331 if (of_compat_cmp(cp, compat, strlen(compat)) == 0) {
332 score = INT_MAX/2 - (index << 2);
333 break;
334 }
335 }
336 if (!score)
337 return 0;
338 }
339
340 /* Matching type is better than matching name */
341 if (type && type[0]) {
342 if (!__of_node_is_type(device, type))
343 return 0;
344 score += 2;
345 }
346
347 /* Matching name is a bit better than not */
348 if (name && name[0]) {
349 if (!of_node_name_eq(device, name))
350 return 0;
351 score++;
352 }
353
354 return score;
355}
356
357/** Checks if the given "compat" string matches one of the strings in
358 * the device's "compatible" property
359 */
360int of_device_is_compatible(const struct device_node *device,
361 const char *compat)
362{
363 unsigned long flags;
364 int res;
365
366 raw_spin_lock_irqsave(&devtree_lock, flags);
367 res = __of_device_is_compatible(device, compat, NULL, NULL);
368 raw_spin_unlock_irqrestore(&devtree_lock, flags);
369 return res;
370}
371EXPORT_SYMBOL(of_device_is_compatible);
372
373/** Checks if the device is compatible with any of the entries in
374 * a NULL terminated array of strings. Returns the best match
375 * score or 0.
376 */
377int of_device_compatible_match(const struct device_node *device,
378 const char *const *compat)
379{
380 unsigned int tmp, score = 0;
381
382 if (!compat)
383 return 0;
384
385 while (*compat) {
386 tmp = of_device_is_compatible(device, *compat);
387 if (tmp > score)
388 score = tmp;
389 compat++;
390 }
391
392 return score;
393}
394EXPORT_SYMBOL_GPL(of_device_compatible_match);
395
396/**
397 * of_machine_is_compatible - Test root of device tree for a given compatible value
398 * @compat: compatible string to look for in root node's compatible property.
399 *
400 * Return: A positive integer if the root node has the given value in its
401 * compatible property.
402 */
403int of_machine_is_compatible(const char *compat)
404{
405 struct device_node *root;
406 int rc = 0;
407
408 root = of_find_node_by_path("/");
409 if (root) {
410 rc = of_device_is_compatible(root, compat);
411 of_node_put(root);
412 }
413 return rc;
414}
415EXPORT_SYMBOL(of_machine_is_compatible);
416
417/**
418 * __of_device_is_available - check if a device is available for use
419 *
420 * @device: Node to check for availability, with locks already held
421 *
422 * Return: True if the status property is absent or set to "okay" or "ok",
423 * false otherwise
424 */
425static bool __of_device_is_available(const struct device_node *device)
426{
427 const char *status;
428 int statlen;
429
430 if (!device)
431 return false;
432
433 status = __of_get_property(device, "status", &statlen);
434 if (status == NULL)
435 return true;
436
437 if (statlen > 0) {
438 if (!strcmp(status, "okay") || !strcmp(status, "ok"))
439 return true;
440 }
441
442 return false;
443}
444
445/**
446 * of_device_is_available - check if a device is available for use
447 *
448 * @device: Node to check for availability
449 *
450 * Return: True if the status property is absent or set to "okay" or "ok",
451 * false otherwise
452 */
453bool of_device_is_available(const struct device_node *device)
454{
455 unsigned long flags;
456 bool res;
457
458 raw_spin_lock_irqsave(&devtree_lock, flags);
459 res = __of_device_is_available(device);
460 raw_spin_unlock_irqrestore(&devtree_lock, flags);
461 return res;
462
463}
464EXPORT_SYMBOL(of_device_is_available);
465
466/**
467 * __of_device_is_fail - check if a device has status "fail" or "fail-..."
468 *
469 * @device: Node to check status for, with locks already held
470 *
471 * Return: True if the status property is set to "fail" or "fail-..." (for any
472 * error code suffix), false otherwise
473 */
474static bool __of_device_is_fail(const struct device_node *device)
475{
476 const char *status;
477
478 if (!device)
479 return false;
480
481 status = __of_get_property(device, "status", NULL);
482 if (status == NULL)
483 return false;
484
485 return !strcmp(status, "fail") || !strncmp(status, "fail-", 5);
486}
487
488/**
489 * of_device_is_big_endian - check if a device has BE registers
490 *
491 * @device: Node to check for endianness
492 *
493 * Return: True if the device has a "big-endian" property, or if the kernel
494 * was compiled for BE *and* the device has a "native-endian" property.
495 * Returns false otherwise.
496 *
497 * Callers would nominally use ioread32be/iowrite32be if
498 * of_device_is_big_endian() == true, or readl/writel otherwise.
499 */
500bool of_device_is_big_endian(const struct device_node *device)
501{
502 if (of_property_read_bool(device, "big-endian"))
503 return true;
504 if (IS_ENABLED(CONFIG_CPU_BIG_ENDIAN) &&
505 of_property_read_bool(device, "native-endian"))
506 return true;
507 return false;
508}
509EXPORT_SYMBOL(of_device_is_big_endian);
510
511/**
512 * of_get_parent - Get a node's parent if any
513 * @node: Node to get parent
514 *
515 * Return: A node pointer with refcount incremented, use
516 * of_node_put() on it when done.
517 */
518struct device_node *of_get_parent(const struct device_node *node)
519{
520 struct device_node *np;
521 unsigned long flags;
522
523 if (!node)
524 return NULL;
525
526 raw_spin_lock_irqsave(&devtree_lock, flags);
527 np = of_node_get(node->parent);
528 raw_spin_unlock_irqrestore(&devtree_lock, flags);
529 return np;
530}
531EXPORT_SYMBOL(of_get_parent);
532
533/**
534 * of_get_next_parent - Iterate to a node's parent
535 * @node: Node to get parent of
536 *
537 * This is like of_get_parent() except that it drops the
538 * refcount on the passed node, making it suitable for iterating
539 * through a node's parents.
540 *
541 * Return: A node pointer with refcount incremented, use
542 * of_node_put() on it when done.
543 */
544struct device_node *of_get_next_parent(struct device_node *node)
545{
546 struct device_node *parent;
547 unsigned long flags;
548
549 if (!node)
550 return NULL;
551
552 raw_spin_lock_irqsave(&devtree_lock, flags);
553 parent = of_node_get(node->parent);
554 of_node_put(node);
555 raw_spin_unlock_irqrestore(&devtree_lock, flags);
556 return parent;
557}
558EXPORT_SYMBOL(of_get_next_parent);
559
560static struct device_node *__of_get_next_child(const struct device_node *node,
561 struct device_node *prev)
562{
563 struct device_node *next;
564
565 if (!node)
566 return NULL;
567
568 next = prev ? prev->sibling : node->child;
569 of_node_get(next);
570 of_node_put(prev);
571 return next;
572}
573#define __for_each_child_of_node(parent, child) \
574 for (child = __of_get_next_child(parent, NULL); child != NULL; \
575 child = __of_get_next_child(parent, child))
576
577/**
578 * of_get_next_child - Iterate a node childs
579 * @node: parent node
580 * @prev: previous child of the parent node, or NULL to get first
581 *
582 * Return: A node pointer with refcount incremented, use of_node_put() on
583 * it when done. Returns NULL when prev is the last child. Decrements the
584 * refcount of prev.
585 */
586struct device_node *of_get_next_child(const struct device_node *node,
587 struct device_node *prev)
588{
589 struct device_node *next;
590 unsigned long flags;
591
592 raw_spin_lock_irqsave(&devtree_lock, flags);
593 next = __of_get_next_child(node, prev);
594 raw_spin_unlock_irqrestore(&devtree_lock, flags);
595 return next;
596}
597EXPORT_SYMBOL(of_get_next_child);
598
599/**
600 * of_get_next_available_child - Find the next available child node
601 * @node: parent node
602 * @prev: previous child of the parent node, or NULL to get first
603 *
604 * This function is like of_get_next_child(), except that it
605 * automatically skips any disabled nodes (i.e. status = "disabled").
606 */
607struct device_node *of_get_next_available_child(const struct device_node *node,
608 struct device_node *prev)
609{
610 struct device_node *next;
611 unsigned long flags;
612
613 if (!node)
614 return NULL;
615
616 raw_spin_lock_irqsave(&devtree_lock, flags);
617 next = prev ? prev->sibling : node->child;
618 for (; next; next = next->sibling) {
619 if (!__of_device_is_available(next))
620 continue;
621 if (of_node_get(next))
622 break;
623 }
624 of_node_put(prev);
625 raw_spin_unlock_irqrestore(&devtree_lock, flags);
626 return next;
627}
628EXPORT_SYMBOL(of_get_next_available_child);
629
630/**
631 * of_get_next_cpu_node - Iterate on cpu nodes
632 * @prev: previous child of the /cpus node, or NULL to get first
633 *
634 * Unusable CPUs (those with the status property set to "fail" or "fail-...")
635 * will be skipped.
636 *
637 * Return: A cpu node pointer with refcount incremented, use of_node_put()
638 * on it when done. Returns NULL when prev is the last child. Decrements
639 * the refcount of prev.
640 */
641struct device_node *of_get_next_cpu_node(struct device_node *prev)
642{
643 struct device_node *next = NULL;
644 unsigned long flags;
645 struct device_node *node;
646
647 if (!prev)
648 node = of_find_node_by_path("/cpus");
649
650 raw_spin_lock_irqsave(&devtree_lock, flags);
651 if (prev)
652 next = prev->sibling;
653 else if (node) {
654 next = node->child;
655 of_node_put(node);
656 }
657 for (; next; next = next->sibling) {
658 if (__of_device_is_fail(next))
659 continue;
660 if (!(of_node_name_eq(next, "cpu") ||
661 __of_node_is_type(next, "cpu")))
662 continue;
663 if (of_node_get(next))
664 break;
665 }
666 of_node_put(prev);
667 raw_spin_unlock_irqrestore(&devtree_lock, flags);
668 return next;
669}
670EXPORT_SYMBOL(of_get_next_cpu_node);
671
672/**
673 * of_get_compatible_child - Find compatible child node
674 * @parent: parent node
675 * @compatible: compatible string
676 *
677 * Lookup child node whose compatible property contains the given compatible
678 * string.
679 *
680 * Return: a node pointer with refcount incremented, use of_node_put() on it
681 * when done; or NULL if not found.
682 */
683struct device_node *of_get_compatible_child(const struct device_node *parent,
684 const char *compatible)
685{
686 struct device_node *child;
687
688 for_each_child_of_node(parent, child) {
689 if (of_device_is_compatible(child, compatible))
690 break;
691 }
692
693 return child;
694}
695EXPORT_SYMBOL(of_get_compatible_child);
696
697/**
698 * of_get_child_by_name - Find the child node by name for a given parent
699 * @node: parent node
700 * @name: child name to look for.
701 *
702 * This function looks for child node for given matching name
703 *
704 * Return: A node pointer if found, with refcount incremented, use
705 * of_node_put() on it when done.
706 * Returns NULL if node is not found.
707 */
708struct device_node *of_get_child_by_name(const struct device_node *node,
709 const char *name)
710{
711 struct device_node *child;
712
713 for_each_child_of_node(node, child)
714 if (of_node_name_eq(child, name))
715 break;
716 return child;
717}
718EXPORT_SYMBOL(of_get_child_by_name);
719
720struct device_node *__of_find_node_by_path(struct device_node *parent,
721 const char *path)
722{
723 struct device_node *child;
724 int len;
725
726 len = strcspn(path, "/:");
727 if (!len)
728 return NULL;
729
730 __for_each_child_of_node(parent, child) {
731 const char *name = kbasename(child->full_name);
732 if (strncmp(path, name, len) == 0 && (strlen(name) == len))
733 return child;
734 }
735 return NULL;
736}
737
738struct device_node *__of_find_node_by_full_path(struct device_node *node,
739 const char *path)
740{
741 const char *separator = strchr(path, ':');
742
743 while (node && *path == '/') {
744 struct device_node *tmp = node;
745
746 path++; /* Increment past '/' delimiter */
747 node = __of_find_node_by_path(node, path);
748 of_node_put(tmp);
749 path = strchrnul(path, '/');
750 if (separator && separator < path)
751 break;
752 }
753 return node;
754}
755
756/**
757 * of_find_node_opts_by_path - Find a node matching a full OF path
758 * @path: Either the full path to match, or if the path does not
759 * start with '/', the name of a property of the /aliases
760 * node (an alias). In the case of an alias, the node
761 * matching the alias' value will be returned.
762 * @opts: Address of a pointer into which to store the start of
763 * an options string appended to the end of the path with
764 * a ':' separator.
765 *
766 * Valid paths:
767 * * /foo/bar Full path
768 * * foo Valid alias
769 * * foo/bar Valid alias + relative path
770 *
771 * Return: A node pointer with refcount incremented, use
772 * of_node_put() on it when done.
773 */
774struct device_node *of_find_node_opts_by_path(const char *path, const char **opts)
775{
776 struct device_node *np = NULL;
777 struct property *pp;
778 unsigned long flags;
779 const char *separator = strchr(path, ':');
780
781 if (opts)
782 *opts = separator ? separator + 1 : NULL;
783
784 if (strcmp(path, "/") == 0)
785 return of_node_get(of_root);
786
787 /* The path could begin with an alias */
788 if (*path != '/') {
789 int len;
790 const char *p = separator;
791
792 if (!p)
793 p = strchrnul(path, '/');
794 len = p - path;
795
796 /* of_aliases must not be NULL */
797 if (!of_aliases)
798 return NULL;
799
800 for_each_property_of_node(of_aliases, pp) {
801 if (strlen(pp->name) == len && !strncmp(pp->name, path, len)) {
802 np = of_find_node_by_path(pp->value);
803 break;
804 }
805 }
806 if (!np)
807 return NULL;
808 path = p;
809 }
810
811 /* Step down the tree matching path components */
812 raw_spin_lock_irqsave(&devtree_lock, flags);
813 if (!np)
814 np = of_node_get(of_root);
815 np = __of_find_node_by_full_path(np, path);
816 raw_spin_unlock_irqrestore(&devtree_lock, flags);
817 return np;
818}
819EXPORT_SYMBOL(of_find_node_opts_by_path);
820
821/**
822 * of_find_node_by_name - Find a node by its "name" property
823 * @from: The node to start searching from or NULL; the node
824 * you pass will not be searched, only the next one
825 * will. Typically, you pass what the previous call
826 * returned. of_node_put() will be called on @from.
827 * @name: The name string to match against
828 *
829 * Return: A node pointer with refcount incremented, use
830 * of_node_put() on it when done.
831 */
832struct device_node *of_find_node_by_name(struct device_node *from,
833 const char *name)
834{
835 struct device_node *np;
836 unsigned long flags;
837
838 raw_spin_lock_irqsave(&devtree_lock, flags);
839 for_each_of_allnodes_from(from, np)
840 if (of_node_name_eq(np, name) && of_node_get(np))
841 break;
842 of_node_put(from);
843 raw_spin_unlock_irqrestore(&devtree_lock, flags);
844 return np;
845}
846EXPORT_SYMBOL(of_find_node_by_name);
847
848/**
849 * of_find_node_by_type - Find a node by its "device_type" property
850 * @from: The node to start searching from, or NULL to start searching
851 * the entire device tree. The node you pass will not be
852 * searched, only the next one will; typically, you pass
853 * what the previous call returned. of_node_put() will be
854 * called on from for you.
855 * @type: The type string to match against
856 *
857 * Return: A node pointer with refcount incremented, use
858 * of_node_put() on it when done.
859 */
860struct device_node *of_find_node_by_type(struct device_node *from,
861 const char *type)
862{
863 struct device_node *np;
864 unsigned long flags;
865
866 raw_spin_lock_irqsave(&devtree_lock, flags);
867 for_each_of_allnodes_from(from, np)
868 if (__of_node_is_type(np, type) && of_node_get(np))
869 break;
870 of_node_put(from);
871 raw_spin_unlock_irqrestore(&devtree_lock, flags);
872 return np;
873}
874EXPORT_SYMBOL(of_find_node_by_type);
875
876/**
877 * of_find_compatible_node - Find a node based on type and one of the
878 * tokens in its "compatible" property
879 * @from: The node to start searching from or NULL, the node
880 * you pass will not be searched, only the next one
881 * will; typically, you pass what the previous call
882 * returned. of_node_put() will be called on it
883 * @type: The type string to match "device_type" or NULL to ignore
884 * @compatible: The string to match to one of the tokens in the device
885 * "compatible" list.
886 *
887 * Return: A node pointer with refcount incremented, use
888 * of_node_put() on it when done.
889 */
890struct device_node *of_find_compatible_node(struct device_node *from,
891 const char *type, const char *compatible)
892{
893 struct device_node *np;
894 unsigned long flags;
895
896 raw_spin_lock_irqsave(&devtree_lock, flags);
897 for_each_of_allnodes_from(from, np)
898 if (__of_device_is_compatible(np, compatible, type, NULL) &&
899 of_node_get(np))
900 break;
901 of_node_put(from);
902 raw_spin_unlock_irqrestore(&devtree_lock, flags);
903 return np;
904}
905EXPORT_SYMBOL(of_find_compatible_node);
906
907/**
908 * of_find_node_with_property - Find a node which has a property with
909 * the given name.
910 * @from: The node to start searching from or NULL, the node
911 * you pass will not be searched, only the next one
912 * will; typically, you pass what the previous call
913 * returned. of_node_put() will be called on it
914 * @prop_name: The name of the property to look for.
915 *
916 * Return: A node pointer with refcount incremented, use
917 * of_node_put() on it when done.
918 */
919struct device_node *of_find_node_with_property(struct device_node *from,
920 const char *prop_name)
921{
922 struct device_node *np;
923 struct property *pp;
924 unsigned long flags;
925
926 raw_spin_lock_irqsave(&devtree_lock, flags);
927 for_each_of_allnodes_from(from, np) {
928 for (pp = np->properties; pp; pp = pp->next) {
929 if (of_prop_cmp(pp->name, prop_name) == 0) {
930 of_node_get(np);
931 goto out;
932 }
933 }
934 }
935out:
936 of_node_put(from);
937 raw_spin_unlock_irqrestore(&devtree_lock, flags);
938 return np;
939}
940EXPORT_SYMBOL(of_find_node_with_property);
941
942static
943const struct of_device_id *__of_match_node(const struct of_device_id *matches,
944 const struct device_node *node)
945{
946 const struct of_device_id *best_match = NULL;
947 int score, best_score = 0;
948
949 if (!matches)
950 return NULL;
951
952 for (; matches->name[0] || matches->type[0] || matches->compatible[0]; matches++) {
953 score = __of_device_is_compatible(node, matches->compatible,
954 matches->type, matches->name);
955 if (score > best_score) {
956 best_match = matches;
957 best_score = score;
958 }
959 }
960
961 return best_match;
962}
963
964/**
965 * of_match_node - Tell if a device_node has a matching of_match structure
966 * @matches: array of of device match structures to search in
967 * @node: the of device structure to match against
968 *
969 * Low level utility function used by device matching.
970 */
971const struct of_device_id *of_match_node(const struct of_device_id *matches,
972 const struct device_node *node)
973{
974 const struct of_device_id *match;
975 unsigned long flags;
976
977 raw_spin_lock_irqsave(&devtree_lock, flags);
978 match = __of_match_node(matches, node);
979 raw_spin_unlock_irqrestore(&devtree_lock, flags);
980 return match;
981}
982EXPORT_SYMBOL(of_match_node);
983
984/**
985 * of_find_matching_node_and_match - Find a node based on an of_device_id
986 * match table.
987 * @from: The node to start searching from or NULL, the node
988 * you pass will not be searched, only the next one
989 * will; typically, you pass what the previous call
990 * returned. of_node_put() will be called on it
991 * @matches: array of of device match structures to search in
992 * @match: Updated to point at the matches entry which matched
993 *
994 * Return: A node pointer with refcount incremented, use
995 * of_node_put() on it when done.
996 */
997struct device_node *of_find_matching_node_and_match(struct device_node *from,
998 const struct of_device_id *matches,
999 const struct of_device_id **match)
1000{
1001 struct device_node *np;
1002 const struct of_device_id *m;
1003 unsigned long flags;
1004
1005 if (match)
1006 *match = NULL;
1007
1008 raw_spin_lock_irqsave(&devtree_lock, flags);
1009 for_each_of_allnodes_from(from, np) {
1010 m = __of_match_node(matches, np);
1011 if (m && of_node_get(np)) {
1012 if (match)
1013 *match = m;
1014 break;
1015 }
1016 }
1017 of_node_put(from);
1018 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1019 return np;
1020}
1021EXPORT_SYMBOL(of_find_matching_node_and_match);
1022
1023/**
1024 * of_alias_from_compatible - Lookup appropriate alias for a device node
1025 * depending on compatible
1026 * @node: pointer to a device tree node
1027 * @alias: Pointer to buffer that alias value will be copied into
1028 * @len: Length of alias value
1029 *
1030 * Based on the value of the compatible property, this routine will attempt
1031 * to choose an appropriate alias value for a particular device tree node.
1032 * It does this by stripping the manufacturer prefix (as delimited by a ',')
1033 * from the first entry in the compatible list property.
1034 *
1035 * Note: The matching on just the "product" side of the compatible is a relic
1036 * from I2C and SPI. Please do not add any new user.
1037 *
1038 * Return: This routine returns 0 on success, <0 on failure.
1039 */
1040int of_alias_from_compatible(const struct device_node *node, char *alias, int len)
1041{
1042 const char *compatible, *p;
1043 int cplen;
1044
1045 compatible = of_get_property(node, "compatible", &cplen);
1046 if (!compatible || strlen(compatible) > cplen)
1047 return -ENODEV;
1048 p = strchr(compatible, ',');
1049 strscpy(alias, p ? p + 1 : compatible, len);
1050 return 0;
1051}
1052EXPORT_SYMBOL_GPL(of_alias_from_compatible);
1053
1054/**
1055 * of_find_node_by_phandle - Find a node given a phandle
1056 * @handle: phandle of the node to find
1057 *
1058 * Return: A node pointer with refcount incremented, use
1059 * of_node_put() on it when done.
1060 */
1061struct device_node *of_find_node_by_phandle(phandle handle)
1062{
1063 struct device_node *np = NULL;
1064 unsigned long flags;
1065 u32 handle_hash;
1066
1067 if (!handle)
1068 return NULL;
1069
1070 handle_hash = of_phandle_cache_hash(handle);
1071
1072 raw_spin_lock_irqsave(&devtree_lock, flags);
1073
1074 if (phandle_cache[handle_hash] &&
1075 handle == phandle_cache[handle_hash]->phandle)
1076 np = phandle_cache[handle_hash];
1077
1078 if (!np) {
1079 for_each_of_allnodes(np)
1080 if (np->phandle == handle &&
1081 !of_node_check_flag(np, OF_DETACHED)) {
1082 phandle_cache[handle_hash] = np;
1083 break;
1084 }
1085 }
1086
1087 of_node_get(np);
1088 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1089 return np;
1090}
1091EXPORT_SYMBOL(of_find_node_by_phandle);
1092
1093void of_print_phandle_args(const char *msg, const struct of_phandle_args *args)
1094{
1095 int i;
1096 printk("%s %pOF", msg, args->np);
1097 for (i = 0; i < args->args_count; i++) {
1098 const char delim = i ? ',' : ':';
1099
1100 pr_cont("%c%08x", delim, args->args[i]);
1101 }
1102 pr_cont("\n");
1103}
1104
1105int of_phandle_iterator_init(struct of_phandle_iterator *it,
1106 const struct device_node *np,
1107 const char *list_name,
1108 const char *cells_name,
1109 int cell_count)
1110{
1111 const __be32 *list;
1112 int size;
1113
1114 memset(it, 0, sizeof(*it));
1115
1116 /*
1117 * one of cell_count or cells_name must be provided to determine the
1118 * argument length.
1119 */
1120 if (cell_count < 0 && !cells_name)
1121 return -EINVAL;
1122
1123 list = of_get_property(np, list_name, &size);
1124 if (!list)
1125 return -ENOENT;
1126
1127 it->cells_name = cells_name;
1128 it->cell_count = cell_count;
1129 it->parent = np;
1130 it->list_end = list + size / sizeof(*list);
1131 it->phandle_end = list;
1132 it->cur = list;
1133
1134 return 0;
1135}
1136EXPORT_SYMBOL_GPL(of_phandle_iterator_init);
1137
1138int of_phandle_iterator_next(struct of_phandle_iterator *it)
1139{
1140 uint32_t count = 0;
1141
1142 if (it->node) {
1143 of_node_put(it->node);
1144 it->node = NULL;
1145 }
1146
1147 if (!it->cur || it->phandle_end >= it->list_end)
1148 return -ENOENT;
1149
1150 it->cur = it->phandle_end;
1151
1152 /* If phandle is 0, then it is an empty entry with no arguments. */
1153 it->phandle = be32_to_cpup(it->cur++);
1154
1155 if (it->phandle) {
1156
1157 /*
1158 * Find the provider node and parse the #*-cells property to
1159 * determine the argument length.
1160 */
1161 it->node = of_find_node_by_phandle(it->phandle);
1162
1163 if (it->cells_name) {
1164 if (!it->node) {
1165 pr_err("%pOF: could not find phandle %d\n",
1166 it->parent, it->phandle);
1167 goto err;
1168 }
1169
1170 if (of_property_read_u32(it->node, it->cells_name,
1171 &count)) {
1172 /*
1173 * If both cell_count and cells_name is given,
1174 * fall back to cell_count in absence
1175 * of the cells_name property
1176 */
1177 if (it->cell_count >= 0) {
1178 count = it->cell_count;
1179 } else {
1180 pr_err("%pOF: could not get %s for %pOF\n",
1181 it->parent,
1182 it->cells_name,
1183 it->node);
1184 goto err;
1185 }
1186 }
1187 } else {
1188 count = it->cell_count;
1189 }
1190
1191 /*
1192 * Make sure that the arguments actually fit in the remaining
1193 * property data length
1194 */
1195 if (it->cur + count > it->list_end) {
1196 if (it->cells_name)
1197 pr_err("%pOF: %s = %d found %td\n",
1198 it->parent, it->cells_name,
1199 count, it->list_end - it->cur);
1200 else
1201 pr_err("%pOF: phandle %s needs %d, found %td\n",
1202 it->parent, of_node_full_name(it->node),
1203 count, it->list_end - it->cur);
1204 goto err;
1205 }
1206 }
1207
1208 it->phandle_end = it->cur + count;
1209 it->cur_count = count;
1210
1211 return 0;
1212
1213err:
1214 if (it->node) {
1215 of_node_put(it->node);
1216 it->node = NULL;
1217 }
1218
1219 return -EINVAL;
1220}
1221EXPORT_SYMBOL_GPL(of_phandle_iterator_next);
1222
1223int of_phandle_iterator_args(struct of_phandle_iterator *it,
1224 uint32_t *args,
1225 int size)
1226{
1227 int i, count;
1228
1229 count = it->cur_count;
1230
1231 if (WARN_ON(size < count))
1232 count = size;
1233
1234 for (i = 0; i < count; i++)
1235 args[i] = be32_to_cpup(it->cur++);
1236
1237 return count;
1238}
1239
1240int __of_parse_phandle_with_args(const struct device_node *np,
1241 const char *list_name,
1242 const char *cells_name,
1243 int cell_count, int index,
1244 struct of_phandle_args *out_args)
1245{
1246 struct of_phandle_iterator it;
1247 int rc, cur_index = 0;
1248
1249 if (index < 0)
1250 return -EINVAL;
1251
1252 /* Loop over the phandles until all the requested entry is found */
1253 of_for_each_phandle(&it, rc, np, list_name, cells_name, cell_count) {
1254 /*
1255 * All of the error cases bail out of the loop, so at
1256 * this point, the parsing is successful. If the requested
1257 * index matches, then fill the out_args structure and return,
1258 * or return -ENOENT for an empty entry.
1259 */
1260 rc = -ENOENT;
1261 if (cur_index == index) {
1262 if (!it.phandle)
1263 goto err;
1264
1265 if (out_args) {
1266 int c;
1267
1268 c = of_phandle_iterator_args(&it,
1269 out_args->args,
1270 MAX_PHANDLE_ARGS);
1271 out_args->np = it.node;
1272 out_args->args_count = c;
1273 } else {
1274 of_node_put(it.node);
1275 }
1276
1277 /* Found it! return success */
1278 return 0;
1279 }
1280
1281 cur_index++;
1282 }
1283
1284 /*
1285 * Unlock node before returning result; will be one of:
1286 * -ENOENT : index is for empty phandle
1287 * -EINVAL : parsing error on data
1288 */
1289
1290 err:
1291 of_node_put(it.node);
1292 return rc;
1293}
1294EXPORT_SYMBOL(__of_parse_phandle_with_args);
1295
1296/**
1297 * of_parse_phandle_with_args_map() - Find a node pointed by phandle in a list and remap it
1298 * @np: pointer to a device tree node containing a list
1299 * @list_name: property name that contains a list
1300 * @stem_name: stem of property names that specify phandles' arguments count
1301 * @index: index of a phandle to parse out
1302 * @out_args: optional pointer to output arguments structure (will be filled)
1303 *
1304 * This function is useful to parse lists of phandles and their arguments.
1305 * Returns 0 on success and fills out_args, on error returns appropriate errno
1306 * value. The difference between this function and of_parse_phandle_with_args()
1307 * is that this API remaps a phandle if the node the phandle points to has
1308 * a <@stem_name>-map property.
1309 *
1310 * Caller is responsible to call of_node_put() on the returned out_args->np
1311 * pointer.
1312 *
1313 * Example::
1314 *
1315 * phandle1: node1 {
1316 * #list-cells = <2>;
1317 * };
1318 *
1319 * phandle2: node2 {
1320 * #list-cells = <1>;
1321 * };
1322 *
1323 * phandle3: node3 {
1324 * #list-cells = <1>;
1325 * list-map = <0 &phandle2 3>,
1326 * <1 &phandle2 2>,
1327 * <2 &phandle1 5 1>;
1328 * list-map-mask = <0x3>;
1329 * };
1330 *
1331 * node4 {
1332 * list = <&phandle1 1 2 &phandle3 0>;
1333 * };
1334 *
1335 * To get a device_node of the ``node2`` node you may call this:
1336 * of_parse_phandle_with_args(node4, "list", "list", 1, &args);
1337 */
1338int of_parse_phandle_with_args_map(const struct device_node *np,
1339 const char *list_name,
1340 const char *stem_name,
1341 int index, struct of_phandle_args *out_args)
1342{
1343 char *cells_name, *map_name = NULL, *mask_name = NULL;
1344 char *pass_name = NULL;
1345 struct device_node *cur, *new = NULL;
1346 const __be32 *map, *mask, *pass;
1347 static const __be32 dummy_mask[] = { [0 ... MAX_PHANDLE_ARGS] = ~0 };
1348 static const __be32 dummy_pass[] = { [0 ... MAX_PHANDLE_ARGS] = 0 };
1349 __be32 initial_match_array[MAX_PHANDLE_ARGS];
1350 const __be32 *match_array = initial_match_array;
1351 int i, ret, map_len, match;
1352 u32 list_size, new_size;
1353
1354 if (index < 0)
1355 return -EINVAL;
1356
1357 cells_name = kasprintf(GFP_KERNEL, "#%s-cells", stem_name);
1358 if (!cells_name)
1359 return -ENOMEM;
1360
1361 ret = -ENOMEM;
1362 map_name = kasprintf(GFP_KERNEL, "%s-map", stem_name);
1363 if (!map_name)
1364 goto free;
1365
1366 mask_name = kasprintf(GFP_KERNEL, "%s-map-mask", stem_name);
1367 if (!mask_name)
1368 goto free;
1369
1370 pass_name = kasprintf(GFP_KERNEL, "%s-map-pass-thru", stem_name);
1371 if (!pass_name)
1372 goto free;
1373
1374 ret = __of_parse_phandle_with_args(np, list_name, cells_name, -1, index,
1375 out_args);
1376 if (ret)
1377 goto free;
1378
1379 /* Get the #<list>-cells property */
1380 cur = out_args->np;
1381 ret = of_property_read_u32(cur, cells_name, &list_size);
1382 if (ret < 0)
1383 goto put;
1384
1385 /* Precalculate the match array - this simplifies match loop */
1386 for (i = 0; i < list_size; i++)
1387 initial_match_array[i] = cpu_to_be32(out_args->args[i]);
1388
1389 ret = -EINVAL;
1390 while (cur) {
1391 /* Get the <list>-map property */
1392 map = of_get_property(cur, map_name, &map_len);
1393 if (!map) {
1394 ret = 0;
1395 goto free;
1396 }
1397 map_len /= sizeof(u32);
1398
1399 /* Get the <list>-map-mask property (optional) */
1400 mask = of_get_property(cur, mask_name, NULL);
1401 if (!mask)
1402 mask = dummy_mask;
1403 /* Iterate through <list>-map property */
1404 match = 0;
1405 while (map_len > (list_size + 1) && !match) {
1406 /* Compare specifiers */
1407 match = 1;
1408 for (i = 0; i < list_size; i++, map_len--)
1409 match &= !((match_array[i] ^ *map++) & mask[i]);
1410
1411 of_node_put(new);
1412 new = of_find_node_by_phandle(be32_to_cpup(map));
1413 map++;
1414 map_len--;
1415
1416 /* Check if not found */
1417 if (!new)
1418 goto put;
1419
1420 if (!of_device_is_available(new))
1421 match = 0;
1422
1423 ret = of_property_read_u32(new, cells_name, &new_size);
1424 if (ret)
1425 goto put;
1426
1427 /* Check for malformed properties */
1428 if (WARN_ON(new_size > MAX_PHANDLE_ARGS))
1429 goto put;
1430 if (map_len < new_size)
1431 goto put;
1432
1433 /* Move forward by new node's #<list>-cells amount */
1434 map += new_size;
1435 map_len -= new_size;
1436 }
1437 if (!match)
1438 goto put;
1439
1440 /* Get the <list>-map-pass-thru property (optional) */
1441 pass = of_get_property(cur, pass_name, NULL);
1442 if (!pass)
1443 pass = dummy_pass;
1444
1445 /*
1446 * Successfully parsed a <list>-map translation; copy new
1447 * specifier into the out_args structure, keeping the
1448 * bits specified in <list>-map-pass-thru.
1449 */
1450 match_array = map - new_size;
1451 for (i = 0; i < new_size; i++) {
1452 __be32 val = *(map - new_size + i);
1453
1454 if (i < list_size) {
1455 val &= ~pass[i];
1456 val |= cpu_to_be32(out_args->args[i]) & pass[i];
1457 }
1458
1459 out_args->args[i] = be32_to_cpu(val);
1460 }
1461 out_args->args_count = list_size = new_size;
1462 /* Iterate again with new provider */
1463 out_args->np = new;
1464 of_node_put(cur);
1465 cur = new;
1466 }
1467put:
1468 of_node_put(cur);
1469 of_node_put(new);
1470free:
1471 kfree(mask_name);
1472 kfree(map_name);
1473 kfree(cells_name);
1474 kfree(pass_name);
1475
1476 return ret;
1477}
1478EXPORT_SYMBOL(of_parse_phandle_with_args_map);
1479
1480/**
1481 * of_count_phandle_with_args() - Find the number of phandles references in a property
1482 * @np: pointer to a device tree node containing a list
1483 * @list_name: property name that contains a list
1484 * @cells_name: property name that specifies phandles' arguments count
1485 *
1486 * Return: The number of phandle + argument tuples within a property. It
1487 * is a typical pattern to encode a list of phandle and variable
1488 * arguments into a single property. The number of arguments is encoded
1489 * by a property in the phandle-target node. For example, a gpios
1490 * property would contain a list of GPIO specifies consisting of a
1491 * phandle and 1 or more arguments. The number of arguments are
1492 * determined by the #gpio-cells property in the node pointed to by the
1493 * phandle.
1494 */
1495int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1496 const char *cells_name)
1497{
1498 struct of_phandle_iterator it;
1499 int rc, cur_index = 0;
1500
1501 /*
1502 * If cells_name is NULL we assume a cell count of 0. This makes
1503 * counting the phandles trivial as each 32bit word in the list is a
1504 * phandle and no arguments are to consider. So we don't iterate through
1505 * the list but just use the length to determine the phandle count.
1506 */
1507 if (!cells_name) {
1508 const __be32 *list;
1509 int size;
1510
1511 list = of_get_property(np, list_name, &size);
1512 if (!list)
1513 return -ENOENT;
1514
1515 return size / sizeof(*list);
1516 }
1517
1518 rc = of_phandle_iterator_init(&it, np, list_name, cells_name, -1);
1519 if (rc)
1520 return rc;
1521
1522 while ((rc = of_phandle_iterator_next(&it)) == 0)
1523 cur_index += 1;
1524
1525 if (rc != -ENOENT)
1526 return rc;
1527
1528 return cur_index;
1529}
1530EXPORT_SYMBOL(of_count_phandle_with_args);
1531
1532/**
1533 * __of_add_property - Add a property to a node without lock operations
1534 * @np: Caller's Device Node
1535 * @prop: Property to add
1536 */
1537int __of_add_property(struct device_node *np, struct property *prop)
1538{
1539 struct property **next;
1540
1541 prop->next = NULL;
1542 next = &np->properties;
1543 while (*next) {
1544 if (strcmp(prop->name, (*next)->name) == 0)
1545 /* duplicate ! don't insert it */
1546 return -EEXIST;
1547
1548 next = &(*next)->next;
1549 }
1550 *next = prop;
1551
1552 return 0;
1553}
1554
1555/**
1556 * of_add_property - Add a property to a node
1557 * @np: Caller's Device Node
1558 * @prop: Property to add
1559 */
1560int of_add_property(struct device_node *np, struct property *prop)
1561{
1562 unsigned long flags;
1563 int rc;
1564
1565 mutex_lock(&of_mutex);
1566
1567 raw_spin_lock_irqsave(&devtree_lock, flags);
1568 rc = __of_add_property(np, prop);
1569 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1570
1571 if (!rc)
1572 __of_add_property_sysfs(np, prop);
1573
1574 mutex_unlock(&of_mutex);
1575
1576 if (!rc)
1577 of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop, NULL);
1578
1579 return rc;
1580}
1581EXPORT_SYMBOL_GPL(of_add_property);
1582
1583int __of_remove_property(struct device_node *np, struct property *prop)
1584{
1585 struct property **next;
1586
1587 for (next = &np->properties; *next; next = &(*next)->next) {
1588 if (*next == prop)
1589 break;
1590 }
1591 if (*next == NULL)
1592 return -ENODEV;
1593
1594 /* found the node */
1595 *next = prop->next;
1596 prop->next = np->deadprops;
1597 np->deadprops = prop;
1598
1599 return 0;
1600}
1601
1602/**
1603 * of_remove_property - Remove a property from a node.
1604 * @np: Caller's Device Node
1605 * @prop: Property to remove
1606 *
1607 * Note that we don't actually remove it, since we have given out
1608 * who-knows-how-many pointers to the data using get-property.
1609 * Instead we just move the property to the "dead properties"
1610 * list, so it won't be found any more.
1611 */
1612int of_remove_property(struct device_node *np, struct property *prop)
1613{
1614 unsigned long flags;
1615 int rc;
1616
1617 if (!prop)
1618 return -ENODEV;
1619
1620 mutex_lock(&of_mutex);
1621
1622 raw_spin_lock_irqsave(&devtree_lock, flags);
1623 rc = __of_remove_property(np, prop);
1624 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1625
1626 if (!rc)
1627 __of_remove_property_sysfs(np, prop);
1628
1629 mutex_unlock(&of_mutex);
1630
1631 if (!rc)
1632 of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop, NULL);
1633
1634 return rc;
1635}
1636EXPORT_SYMBOL_GPL(of_remove_property);
1637
1638int __of_update_property(struct device_node *np, struct property *newprop,
1639 struct property **oldpropp)
1640{
1641 struct property **next, *oldprop;
1642
1643 for (next = &np->properties; *next; next = &(*next)->next) {
1644 if (of_prop_cmp((*next)->name, newprop->name) == 0)
1645 break;
1646 }
1647 *oldpropp = oldprop = *next;
1648
1649 if (oldprop) {
1650 /* replace the node */
1651 newprop->next = oldprop->next;
1652 *next = newprop;
1653 oldprop->next = np->deadprops;
1654 np->deadprops = oldprop;
1655 } else {
1656 /* new node */
1657 newprop->next = NULL;
1658 *next = newprop;
1659 }
1660
1661 return 0;
1662}
1663
1664/*
1665 * of_update_property - Update a property in a node, if the property does
1666 * not exist, add it.
1667 *
1668 * Note that we don't actually remove it, since we have given out
1669 * who-knows-how-many pointers to the data using get-property.
1670 * Instead we just move the property to the "dead properties" list,
1671 * and add the new property to the property list
1672 */
1673int of_update_property(struct device_node *np, struct property *newprop)
1674{
1675 struct property *oldprop;
1676 unsigned long flags;
1677 int rc;
1678
1679 if (!newprop->name)
1680 return -EINVAL;
1681
1682 mutex_lock(&of_mutex);
1683
1684 raw_spin_lock_irqsave(&devtree_lock, flags);
1685 rc = __of_update_property(np, newprop, &oldprop);
1686 raw_spin_unlock_irqrestore(&devtree_lock, flags);
1687
1688 if (!rc)
1689 __of_update_property_sysfs(np, newprop, oldprop);
1690
1691 mutex_unlock(&of_mutex);
1692
1693 if (!rc)
1694 of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop, oldprop);
1695
1696 return rc;
1697}
1698
1699static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1700 int id, const char *stem, int stem_len)
1701{
1702 ap->np = np;
1703 ap->id = id;
1704 strscpy(ap->stem, stem, stem_len + 1);
1705 list_add_tail(&ap->link, &aliases_lookup);
1706 pr_debug("adding DT alias:%s: stem=%s id=%i node=%pOF\n",
1707 ap->alias, ap->stem, ap->id, np);
1708}
1709
1710/**
1711 * of_alias_scan - Scan all properties of the 'aliases' node
1712 * @dt_alloc: An allocator that provides a virtual address to memory
1713 * for storing the resulting tree
1714 *
1715 * The function scans all the properties of the 'aliases' node and populates
1716 * the global lookup table with the properties. It returns the
1717 * number of alias properties found, or an error code in case of failure.
1718 */
1719void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1720{
1721 struct property *pp;
1722
1723 of_aliases = of_find_node_by_path("/aliases");
1724 of_chosen = of_find_node_by_path("/chosen");
1725 if (of_chosen == NULL)
1726 of_chosen = of_find_node_by_path("/chosen@0");
1727
1728 if (of_chosen) {
1729 /* linux,stdout-path and /aliases/stdout are for legacy compatibility */
1730 const char *name = NULL;
1731
1732 if (of_property_read_string(of_chosen, "stdout-path", &name))
1733 of_property_read_string(of_chosen, "linux,stdout-path",
1734 &name);
1735 if (IS_ENABLED(CONFIG_PPC) && !name)
1736 of_property_read_string(of_aliases, "stdout", &name);
1737 if (name)
1738 of_stdout = of_find_node_opts_by_path(name, &of_stdout_options);
1739 if (of_stdout)
1740 of_stdout->fwnode.flags |= FWNODE_FLAG_BEST_EFFORT;
1741 }
1742
1743 if (!of_aliases)
1744 return;
1745
1746 for_each_property_of_node(of_aliases, pp) {
1747 const char *start = pp->name;
1748 const char *end = start + strlen(start);
1749 struct device_node *np;
1750 struct alias_prop *ap;
1751 int id, len;
1752
1753 /* Skip those we do not want to proceed */
1754 if (!strcmp(pp->name, "name") ||
1755 !strcmp(pp->name, "phandle") ||
1756 !strcmp(pp->name, "linux,phandle"))
1757 continue;
1758
1759 np = of_find_node_by_path(pp->value);
1760 if (!np)
1761 continue;
1762
1763 /* walk the alias backwards to extract the id and work out
1764 * the 'stem' string */
1765 while (isdigit(*(end-1)) && end > start)
1766 end--;
1767 len = end - start;
1768
1769 if (kstrtoint(end, 10, &id) < 0)
1770 continue;
1771
1772 /* Allocate an alias_prop with enough space for the stem */
1773 ap = dt_alloc(sizeof(*ap) + len + 1, __alignof__(*ap));
1774 if (!ap)
1775 continue;
1776 memset(ap, 0, sizeof(*ap) + len + 1);
1777 ap->alias = start;
1778 of_alias_add(ap, np, id, start, len);
1779 }
1780}
1781
1782/**
1783 * of_alias_get_id - Get alias id for the given device_node
1784 * @np: Pointer to the given device_node
1785 * @stem: Alias stem of the given device_node
1786 *
1787 * The function travels the lookup table to get the alias id for the given
1788 * device_node and alias stem.
1789 *
1790 * Return: The alias id if found.
1791 */
1792int of_alias_get_id(struct device_node *np, const char *stem)
1793{
1794 struct alias_prop *app;
1795 int id = -ENODEV;
1796
1797 mutex_lock(&of_mutex);
1798 list_for_each_entry(app, &aliases_lookup, link) {
1799 if (strcmp(app->stem, stem) != 0)
1800 continue;
1801
1802 if (np == app->np) {
1803 id = app->id;
1804 break;
1805 }
1806 }
1807 mutex_unlock(&of_mutex);
1808
1809 return id;
1810}
1811EXPORT_SYMBOL_GPL(of_alias_get_id);
1812
1813/**
1814 * of_alias_get_highest_id - Get highest alias id for the given stem
1815 * @stem: Alias stem to be examined
1816 *
1817 * The function travels the lookup table to get the highest alias id for the
1818 * given alias stem. It returns the alias id if found.
1819 */
1820int of_alias_get_highest_id(const char *stem)
1821{
1822 struct alias_prop *app;
1823 int id = -ENODEV;
1824
1825 mutex_lock(&of_mutex);
1826 list_for_each_entry(app, &aliases_lookup, link) {
1827 if (strcmp(app->stem, stem) != 0)
1828 continue;
1829
1830 if (app->id > id)
1831 id = app->id;
1832 }
1833 mutex_unlock(&of_mutex);
1834
1835 return id;
1836}
1837EXPORT_SYMBOL_GPL(of_alias_get_highest_id);
1838
1839/**
1840 * of_console_check() - Test and setup console for DT setup
1841 * @dn: Pointer to device node
1842 * @name: Name to use for preferred console without index. ex. "ttyS"
1843 * @index: Index to use for preferred console.
1844 *
1845 * Check if the given device node matches the stdout-path property in the
1846 * /chosen node. If it does then register it as the preferred console.
1847 *
1848 * Return: TRUE if console successfully setup. Otherwise return FALSE.
1849 */
1850bool of_console_check(struct device_node *dn, char *name, int index)
1851{
1852 if (!dn || dn != of_stdout || console_set_on_cmdline)
1853 return false;
1854
1855 /*
1856 * XXX: cast `options' to char pointer to suppress complication
1857 * warnings: printk, UART and console drivers expect char pointer.
1858 */
1859 return !add_preferred_console(name, index, (char *)of_stdout_options);
1860}
1861EXPORT_SYMBOL_GPL(of_console_check);
1862
1863/**
1864 * of_find_next_cache_node - Find a node's subsidiary cache
1865 * @np: node of type "cpu" or "cache"
1866 *
1867 * Return: A node pointer with refcount incremented, use
1868 * of_node_put() on it when done. Caller should hold a reference
1869 * to np.
1870 */
1871struct device_node *of_find_next_cache_node(const struct device_node *np)
1872{
1873 struct device_node *child, *cache_node;
1874
1875 cache_node = of_parse_phandle(np, "l2-cache", 0);
1876 if (!cache_node)
1877 cache_node = of_parse_phandle(np, "next-level-cache", 0);
1878
1879 if (cache_node)
1880 return cache_node;
1881
1882 /* OF on pmac has nodes instead of properties named "l2-cache"
1883 * beneath CPU nodes.
1884 */
1885 if (IS_ENABLED(CONFIG_PPC_PMAC) && of_node_is_type(np, "cpu"))
1886 for_each_child_of_node(np, child)
1887 if (of_node_is_type(child, "cache"))
1888 return child;
1889
1890 return NULL;
1891}
1892
1893/**
1894 * of_find_last_cache_level - Find the level at which the last cache is
1895 * present for the given logical cpu
1896 *
1897 * @cpu: cpu number(logical index) for which the last cache level is needed
1898 *
1899 * Return: The level at which the last cache is present. It is exactly
1900 * same as the total number of cache levels for the given logical cpu.
1901 */
1902int of_find_last_cache_level(unsigned int cpu)
1903{
1904 u32 cache_level = 0;
1905 struct device_node *prev = NULL, *np = of_cpu_device_node_get(cpu);
1906
1907 while (np) {
1908 of_node_put(prev);
1909 prev = np;
1910 np = of_find_next_cache_node(np);
1911 }
1912
1913 of_property_read_u32(prev, "cache-level", &cache_level);
1914 of_node_put(prev);
1915
1916 return cache_level;
1917}
1918
1919/**
1920 * of_map_id - Translate an ID through a downstream mapping.
1921 * @np: root complex device node.
1922 * @id: device ID to map.
1923 * @map_name: property name of the map to use.
1924 * @map_mask_name: optional property name of the mask to use.
1925 * @target: optional pointer to a target device node.
1926 * @id_out: optional pointer to receive the translated ID.
1927 *
1928 * Given a device ID, look up the appropriate implementation-defined
1929 * platform ID and/or the target device which receives transactions on that
1930 * ID, as per the "iommu-map" and "msi-map" bindings. Either of @target or
1931 * @id_out may be NULL if only the other is required. If @target points to
1932 * a non-NULL device node pointer, only entries targeting that node will be
1933 * matched; if it points to a NULL value, it will receive the device node of
1934 * the first matching target phandle, with a reference held.
1935 *
1936 * Return: 0 on success or a standard error code on failure.
1937 */
1938int of_map_id(struct device_node *np, u32 id,
1939 const char *map_name, const char *map_mask_name,
1940 struct device_node **target, u32 *id_out)
1941{
1942 u32 map_mask, masked_id;
1943 int map_len;
1944 const __be32 *map = NULL;
1945
1946 if (!np || !map_name || (!target && !id_out))
1947 return -EINVAL;
1948
1949 map = of_get_property(np, map_name, &map_len);
1950 if (!map) {
1951 if (target)
1952 return -ENODEV;
1953 /* Otherwise, no map implies no translation */
1954 *id_out = id;
1955 return 0;
1956 }
1957
1958 if (!map_len || map_len % (4 * sizeof(*map))) {
1959 pr_err("%pOF: Error: Bad %s length: %d\n", np,
1960 map_name, map_len);
1961 return -EINVAL;
1962 }
1963
1964 /* The default is to select all bits. */
1965 map_mask = 0xffffffff;
1966
1967 /*
1968 * Can be overridden by "{iommu,msi}-map-mask" property.
1969 * If of_property_read_u32() fails, the default is used.
1970 */
1971 if (map_mask_name)
1972 of_property_read_u32(np, map_mask_name, &map_mask);
1973
1974 masked_id = map_mask & id;
1975 for ( ; map_len > 0; map_len -= 4 * sizeof(*map), map += 4) {
1976 struct device_node *phandle_node;
1977 u32 id_base = be32_to_cpup(map + 0);
1978 u32 phandle = be32_to_cpup(map + 1);
1979 u32 out_base = be32_to_cpup(map + 2);
1980 u32 id_len = be32_to_cpup(map + 3);
1981
1982 if (id_base & ~map_mask) {
1983 pr_err("%pOF: Invalid %s translation - %s-mask (0x%x) ignores id-base (0x%x)\n",
1984 np, map_name, map_name,
1985 map_mask, id_base);
1986 return -EFAULT;
1987 }
1988
1989 if (masked_id < id_base || masked_id >= id_base + id_len)
1990 continue;
1991
1992 phandle_node = of_find_node_by_phandle(phandle);
1993 if (!phandle_node)
1994 return -ENODEV;
1995
1996 if (target) {
1997 if (*target)
1998 of_node_put(phandle_node);
1999 else
2000 *target = phandle_node;
2001
2002 if (*target != phandle_node)
2003 continue;
2004 }
2005
2006 if (id_out)
2007 *id_out = masked_id - id_base + out_base;
2008
2009 pr_debug("%pOF: %s, using mask %08x, id-base: %08x, out-base: %08x, length: %08x, id: %08x -> %08x\n",
2010 np, map_name, map_mask, id_base, out_base,
2011 id_len, id, masked_id - id_base + out_base);
2012 return 0;
2013 }
2014
2015 pr_info("%pOF: no %s translation for id 0x%x on %pOF\n", np, map_name,
2016 id, target && *target ? *target : NULL);
2017
2018 /* Bypasses translation */
2019 if (id_out)
2020 *id_out = id;
2021 return 0;
2022}
2023EXPORT_SYMBOL_GPL(of_map_id);