Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * nvmem framework core.
4 *
5 * Copyright (C) 2015 Srinivas Kandagatla <srinivas.kandagatla@linaro.org>
6 * Copyright (C) 2013 Maxime Ripard <maxime.ripard@free-electrons.com>
7 */
8
9#include <linux/device.h>
10#include <linux/export.h>
11#include <linux/fs.h>
12#include <linux/idr.h>
13#include <linux/init.h>
14#include <linux/kref.h>
15#include <linux/module.h>
16#include <linux/nvmem-consumer.h>
17#include <linux/nvmem-provider.h>
18#include <linux/gpio/consumer.h>
19#include <linux/of.h>
20#include <linux/of_device.h>
21#include <linux/slab.h>
22
23struct nvmem_device {
24 struct module *owner;
25 struct device dev;
26 int stride;
27 int word_size;
28 int id;
29 struct kref refcnt;
30 size_t size;
31 bool read_only;
32 bool root_only;
33 int flags;
34 enum nvmem_type type;
35 struct bin_attribute eeprom;
36 struct device *base_dev;
37 struct list_head cells;
38 const struct nvmem_keepout *keepout;
39 unsigned int nkeepout;
40 nvmem_reg_read_t reg_read;
41 nvmem_reg_write_t reg_write;
42 struct gpio_desc *wp_gpio;
43 struct nvmem_layout *layout;
44 void *priv;
45};
46
47#define to_nvmem_device(d) container_of(d, struct nvmem_device, dev)
48
49#define FLAG_COMPAT BIT(0)
50struct nvmem_cell_entry {
51 const char *name;
52 int offset;
53 size_t raw_len;
54 int bytes;
55 int bit_offset;
56 int nbits;
57 nvmem_cell_post_process_t read_post_process;
58 void *priv;
59 struct device_node *np;
60 struct nvmem_device *nvmem;
61 struct list_head node;
62};
63
64struct nvmem_cell {
65 struct nvmem_cell_entry *entry;
66 const char *id;
67 int index;
68};
69
70static DEFINE_MUTEX(nvmem_mutex);
71static DEFINE_IDA(nvmem_ida);
72
73static DEFINE_MUTEX(nvmem_cell_mutex);
74static LIST_HEAD(nvmem_cell_tables);
75
76static DEFINE_MUTEX(nvmem_lookup_mutex);
77static LIST_HEAD(nvmem_lookup_list);
78
79static BLOCKING_NOTIFIER_HEAD(nvmem_notifier);
80
81static DEFINE_SPINLOCK(nvmem_layout_lock);
82static LIST_HEAD(nvmem_layouts);
83
84static int __nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
85 void *val, size_t bytes)
86{
87 if (nvmem->reg_read)
88 return nvmem->reg_read(nvmem->priv, offset, val, bytes);
89
90 return -EINVAL;
91}
92
93static int __nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
94 void *val, size_t bytes)
95{
96 int ret;
97
98 if (nvmem->reg_write) {
99 gpiod_set_value_cansleep(nvmem->wp_gpio, 0);
100 ret = nvmem->reg_write(nvmem->priv, offset, val, bytes);
101 gpiod_set_value_cansleep(nvmem->wp_gpio, 1);
102 return ret;
103 }
104
105 return -EINVAL;
106}
107
108static int nvmem_access_with_keepouts(struct nvmem_device *nvmem,
109 unsigned int offset, void *val,
110 size_t bytes, int write)
111{
112
113 unsigned int end = offset + bytes;
114 unsigned int kend, ksize;
115 const struct nvmem_keepout *keepout = nvmem->keepout;
116 const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
117 int rc;
118
119 /*
120 * Skip all keepouts before the range being accessed.
121 * Keepouts are sorted.
122 */
123 while ((keepout < keepoutend) && (keepout->end <= offset))
124 keepout++;
125
126 while ((offset < end) && (keepout < keepoutend)) {
127 /* Access the valid portion before the keepout. */
128 if (offset < keepout->start) {
129 kend = min(end, keepout->start);
130 ksize = kend - offset;
131 if (write)
132 rc = __nvmem_reg_write(nvmem, offset, val, ksize);
133 else
134 rc = __nvmem_reg_read(nvmem, offset, val, ksize);
135
136 if (rc)
137 return rc;
138
139 offset += ksize;
140 val += ksize;
141 }
142
143 /*
144 * Now we're aligned to the start of this keepout zone. Go
145 * through it.
146 */
147 kend = min(end, keepout->end);
148 ksize = kend - offset;
149 if (!write)
150 memset(val, keepout->value, ksize);
151
152 val += ksize;
153 offset += ksize;
154 keepout++;
155 }
156
157 /*
158 * If we ran out of keepouts but there's still stuff to do, send it
159 * down directly
160 */
161 if (offset < end) {
162 ksize = end - offset;
163 if (write)
164 return __nvmem_reg_write(nvmem, offset, val, ksize);
165 else
166 return __nvmem_reg_read(nvmem, offset, val, ksize);
167 }
168
169 return 0;
170}
171
172static int nvmem_reg_read(struct nvmem_device *nvmem, unsigned int offset,
173 void *val, size_t bytes)
174{
175 if (!nvmem->nkeepout)
176 return __nvmem_reg_read(nvmem, offset, val, bytes);
177
178 return nvmem_access_with_keepouts(nvmem, offset, val, bytes, false);
179}
180
181static int nvmem_reg_write(struct nvmem_device *nvmem, unsigned int offset,
182 void *val, size_t bytes)
183{
184 if (!nvmem->nkeepout)
185 return __nvmem_reg_write(nvmem, offset, val, bytes);
186
187 return nvmem_access_with_keepouts(nvmem, offset, val, bytes, true);
188}
189
190#ifdef CONFIG_NVMEM_SYSFS
191static const char * const nvmem_type_str[] = {
192 [NVMEM_TYPE_UNKNOWN] = "Unknown",
193 [NVMEM_TYPE_EEPROM] = "EEPROM",
194 [NVMEM_TYPE_OTP] = "OTP",
195 [NVMEM_TYPE_BATTERY_BACKED] = "Battery backed",
196 [NVMEM_TYPE_FRAM] = "FRAM",
197};
198
199#ifdef CONFIG_DEBUG_LOCK_ALLOC
200static struct lock_class_key eeprom_lock_key;
201#endif
202
203static ssize_t type_show(struct device *dev,
204 struct device_attribute *attr, char *buf)
205{
206 struct nvmem_device *nvmem = to_nvmem_device(dev);
207
208 return sprintf(buf, "%s\n", nvmem_type_str[nvmem->type]);
209}
210
211static DEVICE_ATTR_RO(type);
212
213static struct attribute *nvmem_attrs[] = {
214 &dev_attr_type.attr,
215 NULL,
216};
217
218static ssize_t bin_attr_nvmem_read(struct file *filp, struct kobject *kobj,
219 struct bin_attribute *attr, char *buf,
220 loff_t pos, size_t count)
221{
222 struct device *dev;
223 struct nvmem_device *nvmem;
224 int rc;
225
226 if (attr->private)
227 dev = attr->private;
228 else
229 dev = kobj_to_dev(kobj);
230 nvmem = to_nvmem_device(dev);
231
232 /* Stop the user from reading */
233 if (pos >= nvmem->size)
234 return 0;
235
236 if (!IS_ALIGNED(pos, nvmem->stride))
237 return -EINVAL;
238
239 if (count < nvmem->word_size)
240 return -EINVAL;
241
242 if (pos + count > nvmem->size)
243 count = nvmem->size - pos;
244
245 count = round_down(count, nvmem->word_size);
246
247 if (!nvmem->reg_read)
248 return -EPERM;
249
250 rc = nvmem_reg_read(nvmem, pos, buf, count);
251
252 if (rc)
253 return rc;
254
255 return count;
256}
257
258static ssize_t bin_attr_nvmem_write(struct file *filp, struct kobject *kobj,
259 struct bin_attribute *attr, char *buf,
260 loff_t pos, size_t count)
261{
262 struct device *dev;
263 struct nvmem_device *nvmem;
264 int rc;
265
266 if (attr->private)
267 dev = attr->private;
268 else
269 dev = kobj_to_dev(kobj);
270 nvmem = to_nvmem_device(dev);
271
272 /* Stop the user from writing */
273 if (pos >= nvmem->size)
274 return -EFBIG;
275
276 if (!IS_ALIGNED(pos, nvmem->stride))
277 return -EINVAL;
278
279 if (count < nvmem->word_size)
280 return -EINVAL;
281
282 if (pos + count > nvmem->size)
283 count = nvmem->size - pos;
284
285 count = round_down(count, nvmem->word_size);
286
287 if (!nvmem->reg_write)
288 return -EPERM;
289
290 rc = nvmem_reg_write(nvmem, pos, buf, count);
291
292 if (rc)
293 return rc;
294
295 return count;
296}
297
298static umode_t nvmem_bin_attr_get_umode(struct nvmem_device *nvmem)
299{
300 umode_t mode = 0400;
301
302 if (!nvmem->root_only)
303 mode |= 0044;
304
305 if (!nvmem->read_only)
306 mode |= 0200;
307
308 if (!nvmem->reg_write)
309 mode &= ~0200;
310
311 if (!nvmem->reg_read)
312 mode &= ~0444;
313
314 return mode;
315}
316
317static umode_t nvmem_bin_attr_is_visible(struct kobject *kobj,
318 struct bin_attribute *attr, int i)
319{
320 struct device *dev = kobj_to_dev(kobj);
321 struct nvmem_device *nvmem = to_nvmem_device(dev);
322
323 attr->size = nvmem->size;
324
325 return nvmem_bin_attr_get_umode(nvmem);
326}
327
328/* default read/write permissions */
329static struct bin_attribute bin_attr_rw_nvmem = {
330 .attr = {
331 .name = "nvmem",
332 .mode = 0644,
333 },
334 .read = bin_attr_nvmem_read,
335 .write = bin_attr_nvmem_write,
336};
337
338static struct bin_attribute *nvmem_bin_attributes[] = {
339 &bin_attr_rw_nvmem,
340 NULL,
341};
342
343static const struct attribute_group nvmem_bin_group = {
344 .bin_attrs = nvmem_bin_attributes,
345 .attrs = nvmem_attrs,
346 .is_bin_visible = nvmem_bin_attr_is_visible,
347};
348
349static const struct attribute_group *nvmem_dev_groups[] = {
350 &nvmem_bin_group,
351 NULL,
352};
353
354static struct bin_attribute bin_attr_nvmem_eeprom_compat = {
355 .attr = {
356 .name = "eeprom",
357 },
358 .read = bin_attr_nvmem_read,
359 .write = bin_attr_nvmem_write,
360};
361
362/*
363 * nvmem_setup_compat() - Create an additional binary entry in
364 * drivers sys directory, to be backwards compatible with the older
365 * drivers/misc/eeprom drivers.
366 */
367static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
368 const struct nvmem_config *config)
369{
370 int rval;
371
372 if (!config->compat)
373 return 0;
374
375 if (!config->base_dev)
376 return -EINVAL;
377
378 if (config->type == NVMEM_TYPE_FRAM)
379 bin_attr_nvmem_eeprom_compat.attr.name = "fram";
380
381 nvmem->eeprom = bin_attr_nvmem_eeprom_compat;
382 nvmem->eeprom.attr.mode = nvmem_bin_attr_get_umode(nvmem);
383 nvmem->eeprom.size = nvmem->size;
384#ifdef CONFIG_DEBUG_LOCK_ALLOC
385 nvmem->eeprom.attr.key = &eeprom_lock_key;
386#endif
387 nvmem->eeprom.private = &nvmem->dev;
388 nvmem->base_dev = config->base_dev;
389
390 rval = device_create_bin_file(nvmem->base_dev, &nvmem->eeprom);
391 if (rval) {
392 dev_err(&nvmem->dev,
393 "Failed to create eeprom binary file %d\n", rval);
394 return rval;
395 }
396
397 nvmem->flags |= FLAG_COMPAT;
398
399 return 0;
400}
401
402static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
403 const struct nvmem_config *config)
404{
405 if (config->compat)
406 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
407}
408
409#else /* CONFIG_NVMEM_SYSFS */
410
411static int nvmem_sysfs_setup_compat(struct nvmem_device *nvmem,
412 const struct nvmem_config *config)
413{
414 return -ENOSYS;
415}
416static void nvmem_sysfs_remove_compat(struct nvmem_device *nvmem,
417 const struct nvmem_config *config)
418{
419}
420
421#endif /* CONFIG_NVMEM_SYSFS */
422
423static void nvmem_release(struct device *dev)
424{
425 struct nvmem_device *nvmem = to_nvmem_device(dev);
426
427 ida_free(&nvmem_ida, nvmem->id);
428 gpiod_put(nvmem->wp_gpio);
429 kfree(nvmem);
430}
431
432static const struct device_type nvmem_provider_type = {
433 .release = nvmem_release,
434};
435
436static struct bus_type nvmem_bus_type = {
437 .name = "nvmem",
438};
439
440static void nvmem_cell_entry_drop(struct nvmem_cell_entry *cell)
441{
442 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_REMOVE, cell);
443 mutex_lock(&nvmem_mutex);
444 list_del(&cell->node);
445 mutex_unlock(&nvmem_mutex);
446 of_node_put(cell->np);
447 kfree_const(cell->name);
448 kfree(cell);
449}
450
451static void nvmem_device_remove_all_cells(const struct nvmem_device *nvmem)
452{
453 struct nvmem_cell_entry *cell, *p;
454
455 list_for_each_entry_safe(cell, p, &nvmem->cells, node)
456 nvmem_cell_entry_drop(cell);
457}
458
459static void nvmem_cell_entry_add(struct nvmem_cell_entry *cell)
460{
461 mutex_lock(&nvmem_mutex);
462 list_add_tail(&cell->node, &cell->nvmem->cells);
463 mutex_unlock(&nvmem_mutex);
464 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_CELL_ADD, cell);
465}
466
467static int nvmem_cell_info_to_nvmem_cell_entry_nodup(struct nvmem_device *nvmem,
468 const struct nvmem_cell_info *info,
469 struct nvmem_cell_entry *cell)
470{
471 cell->nvmem = nvmem;
472 cell->offset = info->offset;
473 cell->raw_len = info->raw_len ?: info->bytes;
474 cell->bytes = info->bytes;
475 cell->name = info->name;
476 cell->read_post_process = info->read_post_process;
477 cell->priv = info->priv;
478
479 cell->bit_offset = info->bit_offset;
480 cell->nbits = info->nbits;
481 cell->np = info->np;
482
483 if (cell->nbits)
484 cell->bytes = DIV_ROUND_UP(cell->nbits + cell->bit_offset,
485 BITS_PER_BYTE);
486
487 if (!IS_ALIGNED(cell->offset, nvmem->stride)) {
488 dev_err(&nvmem->dev,
489 "cell %s unaligned to nvmem stride %d\n",
490 cell->name ?: "<unknown>", nvmem->stride);
491 return -EINVAL;
492 }
493
494 return 0;
495}
496
497static int nvmem_cell_info_to_nvmem_cell_entry(struct nvmem_device *nvmem,
498 const struct nvmem_cell_info *info,
499 struct nvmem_cell_entry *cell)
500{
501 int err;
502
503 err = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, cell);
504 if (err)
505 return err;
506
507 cell->name = kstrdup_const(info->name, GFP_KERNEL);
508 if (!cell->name)
509 return -ENOMEM;
510
511 return 0;
512}
513
514/**
515 * nvmem_add_one_cell() - Add one cell information to an nvmem device
516 *
517 * @nvmem: nvmem device to add cells to.
518 * @info: nvmem cell info to add to the device
519 *
520 * Return: 0 or negative error code on failure.
521 */
522int nvmem_add_one_cell(struct nvmem_device *nvmem,
523 const struct nvmem_cell_info *info)
524{
525 struct nvmem_cell_entry *cell;
526 int rval;
527
528 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
529 if (!cell)
530 return -ENOMEM;
531
532 rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
533 if (rval) {
534 kfree(cell);
535 return rval;
536 }
537
538 nvmem_cell_entry_add(cell);
539
540 return 0;
541}
542EXPORT_SYMBOL_GPL(nvmem_add_one_cell);
543
544/**
545 * nvmem_add_cells() - Add cell information to an nvmem device
546 *
547 * @nvmem: nvmem device to add cells to.
548 * @info: nvmem cell info to add to the device
549 * @ncells: number of cells in info
550 *
551 * Return: 0 or negative error code on failure.
552 */
553static int nvmem_add_cells(struct nvmem_device *nvmem,
554 const struct nvmem_cell_info *info,
555 int ncells)
556{
557 int i, rval;
558
559 for (i = 0; i < ncells; i++) {
560 rval = nvmem_add_one_cell(nvmem, &info[i]);
561 if (rval)
562 return rval;
563 }
564
565 return 0;
566}
567
568/**
569 * nvmem_register_notifier() - Register a notifier block for nvmem events.
570 *
571 * @nb: notifier block to be called on nvmem events.
572 *
573 * Return: 0 on success, negative error number on failure.
574 */
575int nvmem_register_notifier(struct notifier_block *nb)
576{
577 return blocking_notifier_chain_register(&nvmem_notifier, nb);
578}
579EXPORT_SYMBOL_GPL(nvmem_register_notifier);
580
581/**
582 * nvmem_unregister_notifier() - Unregister a notifier block for nvmem events.
583 *
584 * @nb: notifier block to be unregistered.
585 *
586 * Return: 0 on success, negative error number on failure.
587 */
588int nvmem_unregister_notifier(struct notifier_block *nb)
589{
590 return blocking_notifier_chain_unregister(&nvmem_notifier, nb);
591}
592EXPORT_SYMBOL_GPL(nvmem_unregister_notifier);
593
594static int nvmem_add_cells_from_table(struct nvmem_device *nvmem)
595{
596 const struct nvmem_cell_info *info;
597 struct nvmem_cell_table *table;
598 struct nvmem_cell_entry *cell;
599 int rval = 0, i;
600
601 mutex_lock(&nvmem_cell_mutex);
602 list_for_each_entry(table, &nvmem_cell_tables, node) {
603 if (strcmp(nvmem_dev_name(nvmem), table->nvmem_name) == 0) {
604 for (i = 0; i < table->ncells; i++) {
605 info = &table->cells[i];
606
607 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
608 if (!cell) {
609 rval = -ENOMEM;
610 goto out;
611 }
612
613 rval = nvmem_cell_info_to_nvmem_cell_entry(nvmem, info, cell);
614 if (rval) {
615 kfree(cell);
616 goto out;
617 }
618
619 nvmem_cell_entry_add(cell);
620 }
621 }
622 }
623
624out:
625 mutex_unlock(&nvmem_cell_mutex);
626 return rval;
627}
628
629static struct nvmem_cell_entry *
630nvmem_find_cell_entry_by_name(struct nvmem_device *nvmem, const char *cell_id)
631{
632 struct nvmem_cell_entry *iter, *cell = NULL;
633
634 mutex_lock(&nvmem_mutex);
635 list_for_each_entry(iter, &nvmem->cells, node) {
636 if (strcmp(cell_id, iter->name) == 0) {
637 cell = iter;
638 break;
639 }
640 }
641 mutex_unlock(&nvmem_mutex);
642
643 return cell;
644}
645
646static int nvmem_validate_keepouts(struct nvmem_device *nvmem)
647{
648 unsigned int cur = 0;
649 const struct nvmem_keepout *keepout = nvmem->keepout;
650 const struct nvmem_keepout *keepoutend = keepout + nvmem->nkeepout;
651
652 while (keepout < keepoutend) {
653 /* Ensure keepouts are sorted and don't overlap. */
654 if (keepout->start < cur) {
655 dev_err(&nvmem->dev,
656 "Keepout regions aren't sorted or overlap.\n");
657
658 return -ERANGE;
659 }
660
661 if (keepout->end < keepout->start) {
662 dev_err(&nvmem->dev,
663 "Invalid keepout region.\n");
664
665 return -EINVAL;
666 }
667
668 /*
669 * Validate keepouts (and holes between) don't violate
670 * word_size constraints.
671 */
672 if ((keepout->end - keepout->start < nvmem->word_size) ||
673 ((keepout->start != cur) &&
674 (keepout->start - cur < nvmem->word_size))) {
675
676 dev_err(&nvmem->dev,
677 "Keepout regions violate word_size constraints.\n");
678
679 return -ERANGE;
680 }
681
682 /* Validate keepouts don't violate stride (alignment). */
683 if (!IS_ALIGNED(keepout->start, nvmem->stride) ||
684 !IS_ALIGNED(keepout->end, nvmem->stride)) {
685
686 dev_err(&nvmem->dev,
687 "Keepout regions violate stride.\n");
688
689 return -EINVAL;
690 }
691
692 cur = keepout->end;
693 keepout++;
694 }
695
696 return 0;
697}
698
699static int nvmem_add_cells_from_dt(struct nvmem_device *nvmem, struct device_node *np)
700{
701 struct nvmem_layout *layout = nvmem->layout;
702 struct device *dev = &nvmem->dev;
703 struct device_node *child;
704 const __be32 *addr;
705 int len, ret;
706
707 for_each_child_of_node(np, child) {
708 struct nvmem_cell_info info = {0};
709
710 addr = of_get_property(child, "reg", &len);
711 if (!addr)
712 continue;
713 if (len < 2 * sizeof(u32)) {
714 dev_err(dev, "nvmem: invalid reg on %pOF\n", child);
715 of_node_put(child);
716 return -EINVAL;
717 }
718
719 info.offset = be32_to_cpup(addr++);
720 info.bytes = be32_to_cpup(addr);
721 info.name = kasprintf(GFP_KERNEL, "%pOFn", child);
722
723 addr = of_get_property(child, "bits", &len);
724 if (addr && len == (2 * sizeof(u32))) {
725 info.bit_offset = be32_to_cpup(addr++);
726 info.nbits = be32_to_cpup(addr);
727 }
728
729 info.np = of_node_get(child);
730
731 if (layout && layout->fixup_cell_info)
732 layout->fixup_cell_info(nvmem, layout, &info);
733
734 ret = nvmem_add_one_cell(nvmem, &info);
735 kfree(info.name);
736 if (ret) {
737 of_node_put(child);
738 return ret;
739 }
740 }
741
742 return 0;
743}
744
745static int nvmem_add_cells_from_legacy_of(struct nvmem_device *nvmem)
746{
747 return nvmem_add_cells_from_dt(nvmem, nvmem->dev.of_node);
748}
749
750static int nvmem_add_cells_from_fixed_layout(struct nvmem_device *nvmem)
751{
752 struct device_node *layout_np;
753 int err = 0;
754
755 layout_np = of_nvmem_layout_get_container(nvmem);
756 if (!layout_np)
757 return 0;
758
759 if (of_device_is_compatible(layout_np, "fixed-layout"))
760 err = nvmem_add_cells_from_dt(nvmem, layout_np);
761
762 of_node_put(layout_np);
763
764 return err;
765}
766
767int __nvmem_layout_register(struct nvmem_layout *layout, struct module *owner)
768{
769 layout->owner = owner;
770
771 spin_lock(&nvmem_layout_lock);
772 list_add(&layout->node, &nvmem_layouts);
773 spin_unlock(&nvmem_layout_lock);
774
775 return 0;
776}
777EXPORT_SYMBOL_GPL(__nvmem_layout_register);
778
779void nvmem_layout_unregister(struct nvmem_layout *layout)
780{
781 spin_lock(&nvmem_layout_lock);
782 list_del(&layout->node);
783 spin_unlock(&nvmem_layout_lock);
784}
785EXPORT_SYMBOL_GPL(nvmem_layout_unregister);
786
787static struct nvmem_layout *nvmem_layout_get(struct nvmem_device *nvmem)
788{
789 struct device_node *layout_np, *np = nvmem->dev.of_node;
790 struct nvmem_layout *l, *layout = ERR_PTR(-EPROBE_DEFER);
791
792 layout_np = of_get_child_by_name(np, "nvmem-layout");
793 if (!layout_np)
794 return NULL;
795
796 /*
797 * In case the nvmem device was built-in while the layout was built as a
798 * module, we shall manually request the layout driver loading otherwise
799 * we'll never have any match.
800 */
801 of_request_module(layout_np);
802
803 spin_lock(&nvmem_layout_lock);
804
805 list_for_each_entry(l, &nvmem_layouts, node) {
806 if (of_match_node(l->of_match_table, layout_np)) {
807 if (try_module_get(l->owner))
808 layout = l;
809
810 break;
811 }
812 }
813
814 spin_unlock(&nvmem_layout_lock);
815 of_node_put(layout_np);
816
817 return layout;
818}
819
820static void nvmem_layout_put(struct nvmem_layout *layout)
821{
822 if (layout)
823 module_put(layout->owner);
824}
825
826static int nvmem_add_cells_from_layout(struct nvmem_device *nvmem)
827{
828 struct nvmem_layout *layout = nvmem->layout;
829 int ret;
830
831 if (layout && layout->add_cells) {
832 ret = layout->add_cells(&nvmem->dev, nvmem, layout);
833 if (ret)
834 return ret;
835 }
836
837 return 0;
838}
839
840#if IS_ENABLED(CONFIG_OF)
841/**
842 * of_nvmem_layout_get_container() - Get OF node to layout container.
843 *
844 * @nvmem: nvmem device.
845 *
846 * Return: a node pointer with refcount incremented or NULL if no
847 * container exists. Use of_node_put() on it when done.
848 */
849struct device_node *of_nvmem_layout_get_container(struct nvmem_device *nvmem)
850{
851 return of_get_child_by_name(nvmem->dev.of_node, "nvmem-layout");
852}
853EXPORT_SYMBOL_GPL(of_nvmem_layout_get_container);
854#endif
855
856const void *nvmem_layout_get_match_data(struct nvmem_device *nvmem,
857 struct nvmem_layout *layout)
858{
859 struct device_node __maybe_unused *layout_np;
860 const struct of_device_id *match;
861
862 layout_np = of_nvmem_layout_get_container(nvmem);
863 match = of_match_node(layout->of_match_table, layout_np);
864
865 return match ? match->data : NULL;
866}
867EXPORT_SYMBOL_GPL(nvmem_layout_get_match_data);
868
869/**
870 * nvmem_register() - Register a nvmem device for given nvmem_config.
871 * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
872 *
873 * @config: nvmem device configuration with which nvmem device is created.
874 *
875 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
876 * on success.
877 */
878
879struct nvmem_device *nvmem_register(const struct nvmem_config *config)
880{
881 struct nvmem_device *nvmem;
882 int rval;
883
884 if (!config->dev)
885 return ERR_PTR(-EINVAL);
886
887 if (!config->reg_read && !config->reg_write)
888 return ERR_PTR(-EINVAL);
889
890 nvmem = kzalloc(sizeof(*nvmem), GFP_KERNEL);
891 if (!nvmem)
892 return ERR_PTR(-ENOMEM);
893
894 rval = ida_alloc(&nvmem_ida, GFP_KERNEL);
895 if (rval < 0) {
896 kfree(nvmem);
897 return ERR_PTR(rval);
898 }
899
900 nvmem->id = rval;
901
902 nvmem->dev.type = &nvmem_provider_type;
903 nvmem->dev.bus = &nvmem_bus_type;
904 nvmem->dev.parent = config->dev;
905
906 device_initialize(&nvmem->dev);
907
908 if (!config->ignore_wp)
909 nvmem->wp_gpio = gpiod_get_optional(config->dev, "wp",
910 GPIOD_OUT_HIGH);
911 if (IS_ERR(nvmem->wp_gpio)) {
912 rval = PTR_ERR(nvmem->wp_gpio);
913 nvmem->wp_gpio = NULL;
914 goto err_put_device;
915 }
916
917 kref_init(&nvmem->refcnt);
918 INIT_LIST_HEAD(&nvmem->cells);
919
920 nvmem->owner = config->owner;
921 if (!nvmem->owner && config->dev->driver)
922 nvmem->owner = config->dev->driver->owner;
923 nvmem->stride = config->stride ?: 1;
924 nvmem->word_size = config->word_size ?: 1;
925 nvmem->size = config->size;
926 nvmem->root_only = config->root_only;
927 nvmem->priv = config->priv;
928 nvmem->type = config->type;
929 nvmem->reg_read = config->reg_read;
930 nvmem->reg_write = config->reg_write;
931 nvmem->keepout = config->keepout;
932 nvmem->nkeepout = config->nkeepout;
933 if (config->of_node)
934 nvmem->dev.of_node = config->of_node;
935 else if (!config->no_of_node)
936 nvmem->dev.of_node = config->dev->of_node;
937
938 switch (config->id) {
939 case NVMEM_DEVID_NONE:
940 rval = dev_set_name(&nvmem->dev, "%s", config->name);
941 break;
942 case NVMEM_DEVID_AUTO:
943 rval = dev_set_name(&nvmem->dev, "%s%d", config->name, nvmem->id);
944 break;
945 default:
946 rval = dev_set_name(&nvmem->dev, "%s%d",
947 config->name ? : "nvmem",
948 config->name ? config->id : nvmem->id);
949 break;
950 }
951
952 if (rval)
953 goto err_put_device;
954
955 nvmem->read_only = device_property_present(config->dev, "read-only") ||
956 config->read_only || !nvmem->reg_write;
957
958#ifdef CONFIG_NVMEM_SYSFS
959 nvmem->dev.groups = nvmem_dev_groups;
960#endif
961
962 if (nvmem->nkeepout) {
963 rval = nvmem_validate_keepouts(nvmem);
964 if (rval)
965 goto err_put_device;
966 }
967
968 if (config->compat) {
969 rval = nvmem_sysfs_setup_compat(nvmem, config);
970 if (rval)
971 goto err_put_device;
972 }
973
974 /*
975 * If the driver supplied a layout by config->layout, the module
976 * pointer will be NULL and nvmem_layout_put() will be a noop.
977 */
978 nvmem->layout = config->layout ?: nvmem_layout_get(nvmem);
979 if (IS_ERR(nvmem->layout)) {
980 rval = PTR_ERR(nvmem->layout);
981 nvmem->layout = NULL;
982
983 if (rval == -EPROBE_DEFER)
984 goto err_teardown_compat;
985 }
986
987 if (config->cells) {
988 rval = nvmem_add_cells(nvmem, config->cells, config->ncells);
989 if (rval)
990 goto err_remove_cells;
991 }
992
993 rval = nvmem_add_cells_from_table(nvmem);
994 if (rval)
995 goto err_remove_cells;
996
997 rval = nvmem_add_cells_from_legacy_of(nvmem);
998 if (rval)
999 goto err_remove_cells;
1000
1001 dev_dbg(&nvmem->dev, "Registering nvmem device %s\n", config->name);
1002
1003 rval = device_add(&nvmem->dev);
1004 if (rval)
1005 goto err_remove_cells;
1006
1007 rval = nvmem_add_cells_from_fixed_layout(nvmem);
1008 if (rval)
1009 goto err_remove_cells;
1010
1011 rval = nvmem_add_cells_from_layout(nvmem);
1012 if (rval)
1013 goto err_remove_cells;
1014
1015 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_ADD, nvmem);
1016
1017 return nvmem;
1018
1019err_remove_cells:
1020 nvmem_device_remove_all_cells(nvmem);
1021 nvmem_layout_put(nvmem->layout);
1022err_teardown_compat:
1023 if (config->compat)
1024 nvmem_sysfs_remove_compat(nvmem, config);
1025err_put_device:
1026 put_device(&nvmem->dev);
1027
1028 return ERR_PTR(rval);
1029}
1030EXPORT_SYMBOL_GPL(nvmem_register);
1031
1032static void nvmem_device_release(struct kref *kref)
1033{
1034 struct nvmem_device *nvmem;
1035
1036 nvmem = container_of(kref, struct nvmem_device, refcnt);
1037
1038 blocking_notifier_call_chain(&nvmem_notifier, NVMEM_REMOVE, nvmem);
1039
1040 if (nvmem->flags & FLAG_COMPAT)
1041 device_remove_bin_file(nvmem->base_dev, &nvmem->eeprom);
1042
1043 nvmem_device_remove_all_cells(nvmem);
1044 nvmem_layout_put(nvmem->layout);
1045 device_unregister(&nvmem->dev);
1046}
1047
1048/**
1049 * nvmem_unregister() - Unregister previously registered nvmem device
1050 *
1051 * @nvmem: Pointer to previously registered nvmem device.
1052 */
1053void nvmem_unregister(struct nvmem_device *nvmem)
1054{
1055 if (nvmem)
1056 kref_put(&nvmem->refcnt, nvmem_device_release);
1057}
1058EXPORT_SYMBOL_GPL(nvmem_unregister);
1059
1060static void devm_nvmem_unregister(void *nvmem)
1061{
1062 nvmem_unregister(nvmem);
1063}
1064
1065/**
1066 * devm_nvmem_register() - Register a managed nvmem device for given
1067 * nvmem_config.
1068 * Also creates a binary entry in /sys/bus/nvmem/devices/dev-name/nvmem
1069 *
1070 * @dev: Device that uses the nvmem device.
1071 * @config: nvmem device configuration with which nvmem device is created.
1072 *
1073 * Return: Will be an ERR_PTR() on error or a valid pointer to nvmem_device
1074 * on success.
1075 */
1076struct nvmem_device *devm_nvmem_register(struct device *dev,
1077 const struct nvmem_config *config)
1078{
1079 struct nvmem_device *nvmem;
1080 int ret;
1081
1082 nvmem = nvmem_register(config);
1083 if (IS_ERR(nvmem))
1084 return nvmem;
1085
1086 ret = devm_add_action_or_reset(dev, devm_nvmem_unregister, nvmem);
1087 if (ret)
1088 return ERR_PTR(ret);
1089
1090 return nvmem;
1091}
1092EXPORT_SYMBOL_GPL(devm_nvmem_register);
1093
1094static struct nvmem_device *__nvmem_device_get(void *data,
1095 int (*match)(struct device *dev, const void *data))
1096{
1097 struct nvmem_device *nvmem = NULL;
1098 struct device *dev;
1099
1100 mutex_lock(&nvmem_mutex);
1101 dev = bus_find_device(&nvmem_bus_type, NULL, data, match);
1102 if (dev)
1103 nvmem = to_nvmem_device(dev);
1104 mutex_unlock(&nvmem_mutex);
1105 if (!nvmem)
1106 return ERR_PTR(-EPROBE_DEFER);
1107
1108 if (!try_module_get(nvmem->owner)) {
1109 dev_err(&nvmem->dev,
1110 "could not increase module refcount for cell %s\n",
1111 nvmem_dev_name(nvmem));
1112
1113 put_device(&nvmem->dev);
1114 return ERR_PTR(-EINVAL);
1115 }
1116
1117 kref_get(&nvmem->refcnt);
1118
1119 return nvmem;
1120}
1121
1122static void __nvmem_device_put(struct nvmem_device *nvmem)
1123{
1124 put_device(&nvmem->dev);
1125 module_put(nvmem->owner);
1126 kref_put(&nvmem->refcnt, nvmem_device_release);
1127}
1128
1129#if IS_ENABLED(CONFIG_OF)
1130/**
1131 * of_nvmem_device_get() - Get nvmem device from a given id
1132 *
1133 * @np: Device tree node that uses the nvmem device.
1134 * @id: nvmem name from nvmem-names property.
1135 *
1136 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1137 * on success.
1138 */
1139struct nvmem_device *of_nvmem_device_get(struct device_node *np, const char *id)
1140{
1141
1142 struct device_node *nvmem_np;
1143 struct nvmem_device *nvmem;
1144 int index = 0;
1145
1146 if (id)
1147 index = of_property_match_string(np, "nvmem-names", id);
1148
1149 nvmem_np = of_parse_phandle(np, "nvmem", index);
1150 if (!nvmem_np)
1151 return ERR_PTR(-ENOENT);
1152
1153 nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1154 of_node_put(nvmem_np);
1155 return nvmem;
1156}
1157EXPORT_SYMBOL_GPL(of_nvmem_device_get);
1158#endif
1159
1160/**
1161 * nvmem_device_get() - Get nvmem device from a given id
1162 *
1163 * @dev: Device that uses the nvmem device.
1164 * @dev_name: name of the requested nvmem device.
1165 *
1166 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1167 * on success.
1168 */
1169struct nvmem_device *nvmem_device_get(struct device *dev, const char *dev_name)
1170{
1171 if (dev->of_node) { /* try dt first */
1172 struct nvmem_device *nvmem;
1173
1174 nvmem = of_nvmem_device_get(dev->of_node, dev_name);
1175
1176 if (!IS_ERR(nvmem) || PTR_ERR(nvmem) == -EPROBE_DEFER)
1177 return nvmem;
1178
1179 }
1180
1181 return __nvmem_device_get((void *)dev_name, device_match_name);
1182}
1183EXPORT_SYMBOL_GPL(nvmem_device_get);
1184
1185/**
1186 * nvmem_device_find() - Find nvmem device with matching function
1187 *
1188 * @data: Data to pass to match function
1189 * @match: Callback function to check device
1190 *
1191 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_device
1192 * on success.
1193 */
1194struct nvmem_device *nvmem_device_find(void *data,
1195 int (*match)(struct device *dev, const void *data))
1196{
1197 return __nvmem_device_get(data, match);
1198}
1199EXPORT_SYMBOL_GPL(nvmem_device_find);
1200
1201static int devm_nvmem_device_match(struct device *dev, void *res, void *data)
1202{
1203 struct nvmem_device **nvmem = res;
1204
1205 if (WARN_ON(!nvmem || !*nvmem))
1206 return 0;
1207
1208 return *nvmem == data;
1209}
1210
1211static void devm_nvmem_device_release(struct device *dev, void *res)
1212{
1213 nvmem_device_put(*(struct nvmem_device **)res);
1214}
1215
1216/**
1217 * devm_nvmem_device_put() - put alredy got nvmem device
1218 *
1219 * @dev: Device that uses the nvmem device.
1220 * @nvmem: pointer to nvmem device allocated by devm_nvmem_cell_get(),
1221 * that needs to be released.
1222 */
1223void devm_nvmem_device_put(struct device *dev, struct nvmem_device *nvmem)
1224{
1225 int ret;
1226
1227 ret = devres_release(dev, devm_nvmem_device_release,
1228 devm_nvmem_device_match, nvmem);
1229
1230 WARN_ON(ret);
1231}
1232EXPORT_SYMBOL_GPL(devm_nvmem_device_put);
1233
1234/**
1235 * nvmem_device_put() - put alredy got nvmem device
1236 *
1237 * @nvmem: pointer to nvmem device that needs to be released.
1238 */
1239void nvmem_device_put(struct nvmem_device *nvmem)
1240{
1241 __nvmem_device_put(nvmem);
1242}
1243EXPORT_SYMBOL_GPL(nvmem_device_put);
1244
1245/**
1246 * devm_nvmem_device_get() - Get nvmem cell of device form a given id
1247 *
1248 * @dev: Device that requests the nvmem device.
1249 * @id: name id for the requested nvmem device.
1250 *
1251 * Return: ERR_PTR() on error or a valid pointer to a struct nvmem_cell
1252 * on success. The nvmem_cell will be freed by the automatically once the
1253 * device is freed.
1254 */
1255struct nvmem_device *devm_nvmem_device_get(struct device *dev, const char *id)
1256{
1257 struct nvmem_device **ptr, *nvmem;
1258
1259 ptr = devres_alloc(devm_nvmem_device_release, sizeof(*ptr), GFP_KERNEL);
1260 if (!ptr)
1261 return ERR_PTR(-ENOMEM);
1262
1263 nvmem = nvmem_device_get(dev, id);
1264 if (!IS_ERR(nvmem)) {
1265 *ptr = nvmem;
1266 devres_add(dev, ptr);
1267 } else {
1268 devres_free(ptr);
1269 }
1270
1271 return nvmem;
1272}
1273EXPORT_SYMBOL_GPL(devm_nvmem_device_get);
1274
1275static struct nvmem_cell *nvmem_create_cell(struct nvmem_cell_entry *entry,
1276 const char *id, int index)
1277{
1278 struct nvmem_cell *cell;
1279 const char *name = NULL;
1280
1281 cell = kzalloc(sizeof(*cell), GFP_KERNEL);
1282 if (!cell)
1283 return ERR_PTR(-ENOMEM);
1284
1285 if (id) {
1286 name = kstrdup_const(id, GFP_KERNEL);
1287 if (!name) {
1288 kfree(cell);
1289 return ERR_PTR(-ENOMEM);
1290 }
1291 }
1292
1293 cell->id = name;
1294 cell->entry = entry;
1295 cell->index = index;
1296
1297 return cell;
1298}
1299
1300static struct nvmem_cell *
1301nvmem_cell_get_from_lookup(struct device *dev, const char *con_id)
1302{
1303 struct nvmem_cell_entry *cell_entry;
1304 struct nvmem_cell *cell = ERR_PTR(-ENOENT);
1305 struct nvmem_cell_lookup *lookup;
1306 struct nvmem_device *nvmem;
1307 const char *dev_id;
1308
1309 if (!dev)
1310 return ERR_PTR(-EINVAL);
1311
1312 dev_id = dev_name(dev);
1313
1314 mutex_lock(&nvmem_lookup_mutex);
1315
1316 list_for_each_entry(lookup, &nvmem_lookup_list, node) {
1317 if ((strcmp(lookup->dev_id, dev_id) == 0) &&
1318 (strcmp(lookup->con_id, con_id) == 0)) {
1319 /* This is the right entry. */
1320 nvmem = __nvmem_device_get((void *)lookup->nvmem_name,
1321 device_match_name);
1322 if (IS_ERR(nvmem)) {
1323 /* Provider may not be registered yet. */
1324 cell = ERR_CAST(nvmem);
1325 break;
1326 }
1327
1328 cell_entry = nvmem_find_cell_entry_by_name(nvmem,
1329 lookup->cell_name);
1330 if (!cell_entry) {
1331 __nvmem_device_put(nvmem);
1332 cell = ERR_PTR(-ENOENT);
1333 } else {
1334 cell = nvmem_create_cell(cell_entry, con_id, 0);
1335 if (IS_ERR(cell))
1336 __nvmem_device_put(nvmem);
1337 }
1338 break;
1339 }
1340 }
1341
1342 mutex_unlock(&nvmem_lookup_mutex);
1343 return cell;
1344}
1345
1346#if IS_ENABLED(CONFIG_OF)
1347static struct nvmem_cell_entry *
1348nvmem_find_cell_entry_by_node(struct nvmem_device *nvmem, struct device_node *np)
1349{
1350 struct nvmem_cell_entry *iter, *cell = NULL;
1351
1352 mutex_lock(&nvmem_mutex);
1353 list_for_each_entry(iter, &nvmem->cells, node) {
1354 if (np == iter->np) {
1355 cell = iter;
1356 break;
1357 }
1358 }
1359 mutex_unlock(&nvmem_mutex);
1360
1361 return cell;
1362}
1363
1364/**
1365 * of_nvmem_cell_get() - Get a nvmem cell from given device node and cell id
1366 *
1367 * @np: Device tree node that uses the nvmem cell.
1368 * @id: nvmem cell name from nvmem-cell-names property, or NULL
1369 * for the cell at index 0 (the lone cell with no accompanying
1370 * nvmem-cell-names property).
1371 *
1372 * Return: Will be an ERR_PTR() on error or a valid pointer
1373 * to a struct nvmem_cell. The nvmem_cell will be freed by the
1374 * nvmem_cell_put().
1375 */
1376struct nvmem_cell *of_nvmem_cell_get(struct device_node *np, const char *id)
1377{
1378 struct device_node *cell_np, *nvmem_np;
1379 struct nvmem_device *nvmem;
1380 struct nvmem_cell_entry *cell_entry;
1381 struct nvmem_cell *cell;
1382 struct of_phandle_args cell_spec;
1383 int index = 0;
1384 int cell_index = 0;
1385 int ret;
1386
1387 /* if cell name exists, find index to the name */
1388 if (id)
1389 index = of_property_match_string(np, "nvmem-cell-names", id);
1390
1391 ret = of_parse_phandle_with_optional_args(np, "nvmem-cells",
1392 "#nvmem-cell-cells",
1393 index, &cell_spec);
1394 if (ret)
1395 return ERR_PTR(-ENOENT);
1396
1397 if (cell_spec.args_count > 1)
1398 return ERR_PTR(-EINVAL);
1399
1400 cell_np = cell_spec.np;
1401 if (cell_spec.args_count)
1402 cell_index = cell_spec.args[0];
1403
1404 nvmem_np = of_get_parent(cell_np);
1405 if (!nvmem_np) {
1406 of_node_put(cell_np);
1407 return ERR_PTR(-EINVAL);
1408 }
1409
1410 /* nvmem layouts produce cells within the nvmem-layout container */
1411 if (of_node_name_eq(nvmem_np, "nvmem-layout")) {
1412 nvmem_np = of_get_next_parent(nvmem_np);
1413 if (!nvmem_np) {
1414 of_node_put(cell_np);
1415 return ERR_PTR(-EINVAL);
1416 }
1417 }
1418
1419 nvmem = __nvmem_device_get(nvmem_np, device_match_of_node);
1420 of_node_put(nvmem_np);
1421 if (IS_ERR(nvmem)) {
1422 of_node_put(cell_np);
1423 return ERR_CAST(nvmem);
1424 }
1425
1426 cell_entry = nvmem_find_cell_entry_by_node(nvmem, cell_np);
1427 of_node_put(cell_np);
1428 if (!cell_entry) {
1429 __nvmem_device_put(nvmem);
1430 return ERR_PTR(-ENOENT);
1431 }
1432
1433 cell = nvmem_create_cell(cell_entry, id, cell_index);
1434 if (IS_ERR(cell))
1435 __nvmem_device_put(nvmem);
1436
1437 return cell;
1438}
1439EXPORT_SYMBOL_GPL(of_nvmem_cell_get);
1440#endif
1441
1442/**
1443 * nvmem_cell_get() - Get nvmem cell of device form a given cell name
1444 *
1445 * @dev: Device that requests the nvmem cell.
1446 * @id: nvmem cell name to get (this corresponds with the name from the
1447 * nvmem-cell-names property for DT systems and with the con_id from
1448 * the lookup entry for non-DT systems).
1449 *
1450 * Return: Will be an ERR_PTR() on error or a valid pointer
1451 * to a struct nvmem_cell. The nvmem_cell will be freed by the
1452 * nvmem_cell_put().
1453 */
1454struct nvmem_cell *nvmem_cell_get(struct device *dev, const char *id)
1455{
1456 struct nvmem_cell *cell;
1457
1458 if (dev->of_node) { /* try dt first */
1459 cell = of_nvmem_cell_get(dev->of_node, id);
1460 if (!IS_ERR(cell) || PTR_ERR(cell) == -EPROBE_DEFER)
1461 return cell;
1462 }
1463
1464 /* NULL cell id only allowed for device tree; invalid otherwise */
1465 if (!id)
1466 return ERR_PTR(-EINVAL);
1467
1468 return nvmem_cell_get_from_lookup(dev, id);
1469}
1470EXPORT_SYMBOL_GPL(nvmem_cell_get);
1471
1472static void devm_nvmem_cell_release(struct device *dev, void *res)
1473{
1474 nvmem_cell_put(*(struct nvmem_cell **)res);
1475}
1476
1477/**
1478 * devm_nvmem_cell_get() - Get nvmem cell of device form a given id
1479 *
1480 * @dev: Device that requests the nvmem cell.
1481 * @id: nvmem cell name id to get.
1482 *
1483 * Return: Will be an ERR_PTR() on error or a valid pointer
1484 * to a struct nvmem_cell. The nvmem_cell will be freed by the
1485 * automatically once the device is freed.
1486 */
1487struct nvmem_cell *devm_nvmem_cell_get(struct device *dev, const char *id)
1488{
1489 struct nvmem_cell **ptr, *cell;
1490
1491 ptr = devres_alloc(devm_nvmem_cell_release, sizeof(*ptr), GFP_KERNEL);
1492 if (!ptr)
1493 return ERR_PTR(-ENOMEM);
1494
1495 cell = nvmem_cell_get(dev, id);
1496 if (!IS_ERR(cell)) {
1497 *ptr = cell;
1498 devres_add(dev, ptr);
1499 } else {
1500 devres_free(ptr);
1501 }
1502
1503 return cell;
1504}
1505EXPORT_SYMBOL_GPL(devm_nvmem_cell_get);
1506
1507static int devm_nvmem_cell_match(struct device *dev, void *res, void *data)
1508{
1509 struct nvmem_cell **c = res;
1510
1511 if (WARN_ON(!c || !*c))
1512 return 0;
1513
1514 return *c == data;
1515}
1516
1517/**
1518 * devm_nvmem_cell_put() - Release previously allocated nvmem cell
1519 * from devm_nvmem_cell_get.
1520 *
1521 * @dev: Device that requests the nvmem cell.
1522 * @cell: Previously allocated nvmem cell by devm_nvmem_cell_get().
1523 */
1524void devm_nvmem_cell_put(struct device *dev, struct nvmem_cell *cell)
1525{
1526 int ret;
1527
1528 ret = devres_release(dev, devm_nvmem_cell_release,
1529 devm_nvmem_cell_match, cell);
1530
1531 WARN_ON(ret);
1532}
1533EXPORT_SYMBOL(devm_nvmem_cell_put);
1534
1535/**
1536 * nvmem_cell_put() - Release previously allocated nvmem cell.
1537 *
1538 * @cell: Previously allocated nvmem cell by nvmem_cell_get().
1539 */
1540void nvmem_cell_put(struct nvmem_cell *cell)
1541{
1542 struct nvmem_device *nvmem = cell->entry->nvmem;
1543
1544 if (cell->id)
1545 kfree_const(cell->id);
1546
1547 kfree(cell);
1548 __nvmem_device_put(nvmem);
1549}
1550EXPORT_SYMBOL_GPL(nvmem_cell_put);
1551
1552static void nvmem_shift_read_buffer_in_place(struct nvmem_cell_entry *cell, void *buf)
1553{
1554 u8 *p, *b;
1555 int i, extra, bit_offset = cell->bit_offset;
1556
1557 p = b = buf;
1558 if (bit_offset) {
1559 /* First shift */
1560 *b++ >>= bit_offset;
1561
1562 /* setup rest of the bytes if any */
1563 for (i = 1; i < cell->bytes; i++) {
1564 /* Get bits from next byte and shift them towards msb */
1565 *p |= *b << (BITS_PER_BYTE - bit_offset);
1566
1567 p = b;
1568 *b++ >>= bit_offset;
1569 }
1570 } else {
1571 /* point to the msb */
1572 p += cell->bytes - 1;
1573 }
1574
1575 /* result fits in less bytes */
1576 extra = cell->bytes - DIV_ROUND_UP(cell->nbits, BITS_PER_BYTE);
1577 while (--extra >= 0)
1578 *p-- = 0;
1579
1580 /* clear msb bits if any leftover in the last byte */
1581 if (cell->nbits % BITS_PER_BYTE)
1582 *p &= GENMASK((cell->nbits % BITS_PER_BYTE) - 1, 0);
1583}
1584
1585static int __nvmem_cell_read(struct nvmem_device *nvmem,
1586 struct nvmem_cell_entry *cell,
1587 void *buf, size_t *len, const char *id, int index)
1588{
1589 int rc;
1590
1591 rc = nvmem_reg_read(nvmem, cell->offset, buf, cell->raw_len);
1592
1593 if (rc)
1594 return rc;
1595
1596 /* shift bits in-place */
1597 if (cell->bit_offset || cell->nbits)
1598 nvmem_shift_read_buffer_in_place(cell, buf);
1599
1600 if (cell->read_post_process) {
1601 rc = cell->read_post_process(cell->priv, id, index,
1602 cell->offset, buf, cell->raw_len);
1603 if (rc)
1604 return rc;
1605 }
1606
1607 if (len)
1608 *len = cell->bytes;
1609
1610 return 0;
1611}
1612
1613/**
1614 * nvmem_cell_read() - Read a given nvmem cell
1615 *
1616 * @cell: nvmem cell to be read.
1617 * @len: pointer to length of cell which will be populated on successful read;
1618 * can be NULL.
1619 *
1620 * Return: ERR_PTR() on error or a valid pointer to a buffer on success. The
1621 * buffer should be freed by the consumer with a kfree().
1622 */
1623void *nvmem_cell_read(struct nvmem_cell *cell, size_t *len)
1624{
1625 struct nvmem_cell_entry *entry = cell->entry;
1626 struct nvmem_device *nvmem = entry->nvmem;
1627 u8 *buf;
1628 int rc;
1629
1630 if (!nvmem)
1631 return ERR_PTR(-EINVAL);
1632
1633 buf = kzalloc(max_t(size_t, entry->raw_len, entry->bytes), GFP_KERNEL);
1634 if (!buf)
1635 return ERR_PTR(-ENOMEM);
1636
1637 rc = __nvmem_cell_read(nvmem, cell->entry, buf, len, cell->id, cell->index);
1638 if (rc) {
1639 kfree(buf);
1640 return ERR_PTR(rc);
1641 }
1642
1643 return buf;
1644}
1645EXPORT_SYMBOL_GPL(nvmem_cell_read);
1646
1647static void *nvmem_cell_prepare_write_buffer(struct nvmem_cell_entry *cell,
1648 u8 *_buf, int len)
1649{
1650 struct nvmem_device *nvmem = cell->nvmem;
1651 int i, rc, nbits, bit_offset = cell->bit_offset;
1652 u8 v, *p, *buf, *b, pbyte, pbits;
1653
1654 nbits = cell->nbits;
1655 buf = kzalloc(cell->bytes, GFP_KERNEL);
1656 if (!buf)
1657 return ERR_PTR(-ENOMEM);
1658
1659 memcpy(buf, _buf, len);
1660 p = b = buf;
1661
1662 if (bit_offset) {
1663 pbyte = *b;
1664 *b <<= bit_offset;
1665
1666 /* setup the first byte with lsb bits from nvmem */
1667 rc = nvmem_reg_read(nvmem, cell->offset, &v, 1);
1668 if (rc)
1669 goto err;
1670 *b++ |= GENMASK(bit_offset - 1, 0) & v;
1671
1672 /* setup rest of the byte if any */
1673 for (i = 1; i < cell->bytes; i++) {
1674 /* Get last byte bits and shift them towards lsb */
1675 pbits = pbyte >> (BITS_PER_BYTE - 1 - bit_offset);
1676 pbyte = *b;
1677 p = b;
1678 *b <<= bit_offset;
1679 *b++ |= pbits;
1680 }
1681 }
1682
1683 /* if it's not end on byte boundary */
1684 if ((nbits + bit_offset) % BITS_PER_BYTE) {
1685 /* setup the last byte with msb bits from nvmem */
1686 rc = nvmem_reg_read(nvmem,
1687 cell->offset + cell->bytes - 1, &v, 1);
1688 if (rc)
1689 goto err;
1690 *p |= GENMASK(7, (nbits + bit_offset) % BITS_PER_BYTE) & v;
1691
1692 }
1693
1694 return buf;
1695err:
1696 kfree(buf);
1697 return ERR_PTR(rc);
1698}
1699
1700static int __nvmem_cell_entry_write(struct nvmem_cell_entry *cell, void *buf, size_t len)
1701{
1702 struct nvmem_device *nvmem = cell->nvmem;
1703 int rc;
1704
1705 if (!nvmem || nvmem->read_only ||
1706 (cell->bit_offset == 0 && len != cell->bytes))
1707 return -EINVAL;
1708
1709 /*
1710 * Any cells which have a read_post_process hook are read-only because
1711 * we cannot reverse the operation and it might affect other cells,
1712 * too.
1713 */
1714 if (cell->read_post_process)
1715 return -EINVAL;
1716
1717 if (cell->bit_offset || cell->nbits) {
1718 buf = nvmem_cell_prepare_write_buffer(cell, buf, len);
1719 if (IS_ERR(buf))
1720 return PTR_ERR(buf);
1721 }
1722
1723 rc = nvmem_reg_write(nvmem, cell->offset, buf, cell->bytes);
1724
1725 /* free the tmp buffer */
1726 if (cell->bit_offset || cell->nbits)
1727 kfree(buf);
1728
1729 if (rc)
1730 return rc;
1731
1732 return len;
1733}
1734
1735/**
1736 * nvmem_cell_write() - Write to a given nvmem cell
1737 *
1738 * @cell: nvmem cell to be written.
1739 * @buf: Buffer to be written.
1740 * @len: length of buffer to be written to nvmem cell.
1741 *
1742 * Return: length of bytes written or negative on failure.
1743 */
1744int nvmem_cell_write(struct nvmem_cell *cell, void *buf, size_t len)
1745{
1746 return __nvmem_cell_entry_write(cell->entry, buf, len);
1747}
1748
1749EXPORT_SYMBOL_GPL(nvmem_cell_write);
1750
1751static int nvmem_cell_read_common(struct device *dev, const char *cell_id,
1752 void *val, size_t count)
1753{
1754 struct nvmem_cell *cell;
1755 void *buf;
1756 size_t len;
1757
1758 cell = nvmem_cell_get(dev, cell_id);
1759 if (IS_ERR(cell))
1760 return PTR_ERR(cell);
1761
1762 buf = nvmem_cell_read(cell, &len);
1763 if (IS_ERR(buf)) {
1764 nvmem_cell_put(cell);
1765 return PTR_ERR(buf);
1766 }
1767 if (len != count) {
1768 kfree(buf);
1769 nvmem_cell_put(cell);
1770 return -EINVAL;
1771 }
1772 memcpy(val, buf, count);
1773 kfree(buf);
1774 nvmem_cell_put(cell);
1775
1776 return 0;
1777}
1778
1779/**
1780 * nvmem_cell_read_u8() - Read a cell value as a u8
1781 *
1782 * @dev: Device that requests the nvmem cell.
1783 * @cell_id: Name of nvmem cell to read.
1784 * @val: pointer to output value.
1785 *
1786 * Return: 0 on success or negative errno.
1787 */
1788int nvmem_cell_read_u8(struct device *dev, const char *cell_id, u8 *val)
1789{
1790 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1791}
1792EXPORT_SYMBOL_GPL(nvmem_cell_read_u8);
1793
1794/**
1795 * nvmem_cell_read_u16() - Read a cell value as a u16
1796 *
1797 * @dev: Device that requests the nvmem cell.
1798 * @cell_id: Name of nvmem cell to read.
1799 * @val: pointer to output value.
1800 *
1801 * Return: 0 on success or negative errno.
1802 */
1803int nvmem_cell_read_u16(struct device *dev, const char *cell_id, u16 *val)
1804{
1805 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1806}
1807EXPORT_SYMBOL_GPL(nvmem_cell_read_u16);
1808
1809/**
1810 * nvmem_cell_read_u32() - Read a cell value as a u32
1811 *
1812 * @dev: Device that requests the nvmem cell.
1813 * @cell_id: Name of nvmem cell to read.
1814 * @val: pointer to output value.
1815 *
1816 * Return: 0 on success or negative errno.
1817 */
1818int nvmem_cell_read_u32(struct device *dev, const char *cell_id, u32 *val)
1819{
1820 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1821}
1822EXPORT_SYMBOL_GPL(nvmem_cell_read_u32);
1823
1824/**
1825 * nvmem_cell_read_u64() - Read a cell value as a u64
1826 *
1827 * @dev: Device that requests the nvmem cell.
1828 * @cell_id: Name of nvmem cell to read.
1829 * @val: pointer to output value.
1830 *
1831 * Return: 0 on success or negative errno.
1832 */
1833int nvmem_cell_read_u64(struct device *dev, const char *cell_id, u64 *val)
1834{
1835 return nvmem_cell_read_common(dev, cell_id, val, sizeof(*val));
1836}
1837EXPORT_SYMBOL_GPL(nvmem_cell_read_u64);
1838
1839static const void *nvmem_cell_read_variable_common(struct device *dev,
1840 const char *cell_id,
1841 size_t max_len, size_t *len)
1842{
1843 struct nvmem_cell *cell;
1844 int nbits;
1845 void *buf;
1846
1847 cell = nvmem_cell_get(dev, cell_id);
1848 if (IS_ERR(cell))
1849 return cell;
1850
1851 nbits = cell->entry->nbits;
1852 buf = nvmem_cell_read(cell, len);
1853 nvmem_cell_put(cell);
1854 if (IS_ERR(buf))
1855 return buf;
1856
1857 /*
1858 * If nbits is set then nvmem_cell_read() can significantly exaggerate
1859 * the length of the real data. Throw away the extra junk.
1860 */
1861 if (nbits)
1862 *len = DIV_ROUND_UP(nbits, 8);
1863
1864 if (*len > max_len) {
1865 kfree(buf);
1866 return ERR_PTR(-ERANGE);
1867 }
1868
1869 return buf;
1870}
1871
1872/**
1873 * nvmem_cell_read_variable_le_u32() - Read up to 32-bits of data as a little endian number.
1874 *
1875 * @dev: Device that requests the nvmem cell.
1876 * @cell_id: Name of nvmem cell to read.
1877 * @val: pointer to output value.
1878 *
1879 * Return: 0 on success or negative errno.
1880 */
1881int nvmem_cell_read_variable_le_u32(struct device *dev, const char *cell_id,
1882 u32 *val)
1883{
1884 size_t len;
1885 const u8 *buf;
1886 int i;
1887
1888 buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1889 if (IS_ERR(buf))
1890 return PTR_ERR(buf);
1891
1892 /* Copy w/ implicit endian conversion */
1893 *val = 0;
1894 for (i = 0; i < len; i++)
1895 *val |= buf[i] << (8 * i);
1896
1897 kfree(buf);
1898
1899 return 0;
1900}
1901EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u32);
1902
1903/**
1904 * nvmem_cell_read_variable_le_u64() - Read up to 64-bits of data as a little endian number.
1905 *
1906 * @dev: Device that requests the nvmem cell.
1907 * @cell_id: Name of nvmem cell to read.
1908 * @val: pointer to output value.
1909 *
1910 * Return: 0 on success or negative errno.
1911 */
1912int nvmem_cell_read_variable_le_u64(struct device *dev, const char *cell_id,
1913 u64 *val)
1914{
1915 size_t len;
1916 const u8 *buf;
1917 int i;
1918
1919 buf = nvmem_cell_read_variable_common(dev, cell_id, sizeof(*val), &len);
1920 if (IS_ERR(buf))
1921 return PTR_ERR(buf);
1922
1923 /* Copy w/ implicit endian conversion */
1924 *val = 0;
1925 for (i = 0; i < len; i++)
1926 *val |= (uint64_t)buf[i] << (8 * i);
1927
1928 kfree(buf);
1929
1930 return 0;
1931}
1932EXPORT_SYMBOL_GPL(nvmem_cell_read_variable_le_u64);
1933
1934/**
1935 * nvmem_device_cell_read() - Read a given nvmem device and cell
1936 *
1937 * @nvmem: nvmem device to read from.
1938 * @info: nvmem cell info to be read.
1939 * @buf: buffer pointer which will be populated on successful read.
1940 *
1941 * Return: length of successful bytes read on success and negative
1942 * error code on error.
1943 */
1944ssize_t nvmem_device_cell_read(struct nvmem_device *nvmem,
1945 struct nvmem_cell_info *info, void *buf)
1946{
1947 struct nvmem_cell_entry cell;
1948 int rc;
1949 ssize_t len;
1950
1951 if (!nvmem)
1952 return -EINVAL;
1953
1954 rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
1955 if (rc)
1956 return rc;
1957
1958 rc = __nvmem_cell_read(nvmem, &cell, buf, &len, NULL, 0);
1959 if (rc)
1960 return rc;
1961
1962 return len;
1963}
1964EXPORT_SYMBOL_GPL(nvmem_device_cell_read);
1965
1966/**
1967 * nvmem_device_cell_write() - Write cell to a given nvmem device
1968 *
1969 * @nvmem: nvmem device to be written to.
1970 * @info: nvmem cell info to be written.
1971 * @buf: buffer to be written to cell.
1972 *
1973 * Return: length of bytes written or negative error code on failure.
1974 */
1975int nvmem_device_cell_write(struct nvmem_device *nvmem,
1976 struct nvmem_cell_info *info, void *buf)
1977{
1978 struct nvmem_cell_entry cell;
1979 int rc;
1980
1981 if (!nvmem)
1982 return -EINVAL;
1983
1984 rc = nvmem_cell_info_to_nvmem_cell_entry_nodup(nvmem, info, &cell);
1985 if (rc)
1986 return rc;
1987
1988 return __nvmem_cell_entry_write(&cell, buf, cell.bytes);
1989}
1990EXPORT_SYMBOL_GPL(nvmem_device_cell_write);
1991
1992/**
1993 * nvmem_device_read() - Read from a given nvmem device
1994 *
1995 * @nvmem: nvmem device to read from.
1996 * @offset: offset in nvmem device.
1997 * @bytes: number of bytes to read.
1998 * @buf: buffer pointer which will be populated on successful read.
1999 *
2000 * Return: length of successful bytes read on success and negative
2001 * error code on error.
2002 */
2003int nvmem_device_read(struct nvmem_device *nvmem,
2004 unsigned int offset,
2005 size_t bytes, void *buf)
2006{
2007 int rc;
2008
2009 if (!nvmem)
2010 return -EINVAL;
2011
2012 rc = nvmem_reg_read(nvmem, offset, buf, bytes);
2013
2014 if (rc)
2015 return rc;
2016
2017 return bytes;
2018}
2019EXPORT_SYMBOL_GPL(nvmem_device_read);
2020
2021/**
2022 * nvmem_device_write() - Write cell to a given nvmem device
2023 *
2024 * @nvmem: nvmem device to be written to.
2025 * @offset: offset in nvmem device.
2026 * @bytes: number of bytes to write.
2027 * @buf: buffer to be written.
2028 *
2029 * Return: length of bytes written or negative error code on failure.
2030 */
2031int nvmem_device_write(struct nvmem_device *nvmem,
2032 unsigned int offset,
2033 size_t bytes, void *buf)
2034{
2035 int rc;
2036
2037 if (!nvmem)
2038 return -EINVAL;
2039
2040 rc = nvmem_reg_write(nvmem, offset, buf, bytes);
2041
2042 if (rc)
2043 return rc;
2044
2045
2046 return bytes;
2047}
2048EXPORT_SYMBOL_GPL(nvmem_device_write);
2049
2050/**
2051 * nvmem_add_cell_table() - register a table of cell info entries
2052 *
2053 * @table: table of cell info entries
2054 */
2055void nvmem_add_cell_table(struct nvmem_cell_table *table)
2056{
2057 mutex_lock(&nvmem_cell_mutex);
2058 list_add_tail(&table->node, &nvmem_cell_tables);
2059 mutex_unlock(&nvmem_cell_mutex);
2060}
2061EXPORT_SYMBOL_GPL(nvmem_add_cell_table);
2062
2063/**
2064 * nvmem_del_cell_table() - remove a previously registered cell info table
2065 *
2066 * @table: table of cell info entries
2067 */
2068void nvmem_del_cell_table(struct nvmem_cell_table *table)
2069{
2070 mutex_lock(&nvmem_cell_mutex);
2071 list_del(&table->node);
2072 mutex_unlock(&nvmem_cell_mutex);
2073}
2074EXPORT_SYMBOL_GPL(nvmem_del_cell_table);
2075
2076/**
2077 * nvmem_add_cell_lookups() - register a list of cell lookup entries
2078 *
2079 * @entries: array of cell lookup entries
2080 * @nentries: number of cell lookup entries in the array
2081 */
2082void nvmem_add_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
2083{
2084 int i;
2085
2086 mutex_lock(&nvmem_lookup_mutex);
2087 for (i = 0; i < nentries; i++)
2088 list_add_tail(&entries[i].node, &nvmem_lookup_list);
2089 mutex_unlock(&nvmem_lookup_mutex);
2090}
2091EXPORT_SYMBOL_GPL(nvmem_add_cell_lookups);
2092
2093/**
2094 * nvmem_del_cell_lookups() - remove a list of previously added cell lookup
2095 * entries
2096 *
2097 * @entries: array of cell lookup entries
2098 * @nentries: number of cell lookup entries in the array
2099 */
2100void nvmem_del_cell_lookups(struct nvmem_cell_lookup *entries, size_t nentries)
2101{
2102 int i;
2103
2104 mutex_lock(&nvmem_lookup_mutex);
2105 for (i = 0; i < nentries; i++)
2106 list_del(&entries[i].node);
2107 mutex_unlock(&nvmem_lookup_mutex);
2108}
2109EXPORT_SYMBOL_GPL(nvmem_del_cell_lookups);
2110
2111/**
2112 * nvmem_dev_name() - Get the name of a given nvmem device.
2113 *
2114 * @nvmem: nvmem device.
2115 *
2116 * Return: name of the nvmem device.
2117 */
2118const char *nvmem_dev_name(struct nvmem_device *nvmem)
2119{
2120 return dev_name(&nvmem->dev);
2121}
2122EXPORT_SYMBOL_GPL(nvmem_dev_name);
2123
2124static int __init nvmem_init(void)
2125{
2126 return bus_register(&nvmem_bus_type);
2127}
2128
2129static void __exit nvmem_exit(void)
2130{
2131 bus_unregister(&nvmem_bus_type);
2132}
2133
2134subsys_initcall(nvmem_init);
2135module_exit(nvmem_exit);
2136
2137MODULE_AUTHOR("Srinivas Kandagatla <srinivas.kandagatla@linaro.org");
2138MODULE_AUTHOR("Maxime Ripard <maxime.ripard@free-electrons.com");
2139MODULE_DESCRIPTION("nvmem Driver Core");