Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2#include <dirent.h>
3#include <errno.h>
4#include <inttypes.h>
5#include <regex.h>
6#include <stdlib.h>
7#include "callchain.h"
8#include "debug.h"
9#include "dso.h"
10#include "env.h"
11#include "event.h"
12#include "evsel.h"
13#include "hist.h"
14#include "machine.h"
15#include "map.h"
16#include "map_symbol.h"
17#include "branch.h"
18#include "mem-events.h"
19#include "path.h"
20#include "srcline.h"
21#include "symbol.h"
22#include "sort.h"
23#include "strlist.h"
24#include "target.h"
25#include "thread.h"
26#include "util.h"
27#include "vdso.h"
28#include <stdbool.h>
29#include <sys/types.h>
30#include <sys/stat.h>
31#include <unistd.h>
32#include "unwind.h"
33#include "linux/hash.h"
34#include "asm/bug.h"
35#include "bpf-event.h"
36#include <internal/lib.h> // page_size
37#include "cgroup.h"
38#include "arm64-frame-pointer-unwind-support.h"
39
40#include <linux/ctype.h>
41#include <symbol/kallsyms.h>
42#include <linux/mman.h>
43#include <linux/string.h>
44#include <linux/zalloc.h>
45
46static void __machine__remove_thread(struct machine *machine, struct thread_rb_node *nd,
47 struct thread *th, bool lock);
48static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip);
49
50static struct dso *machine__kernel_dso(struct machine *machine)
51{
52 return map__dso(machine->vmlinux_map);
53}
54
55static void dsos__init(struct dsos *dsos)
56{
57 INIT_LIST_HEAD(&dsos->head);
58 dsos->root = RB_ROOT;
59 init_rwsem(&dsos->lock);
60}
61
62static void machine__threads_init(struct machine *machine)
63{
64 int i;
65
66 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
67 struct threads *threads = &machine->threads[i];
68 threads->entries = RB_ROOT_CACHED;
69 init_rwsem(&threads->lock);
70 threads->nr = 0;
71 INIT_LIST_HEAD(&threads->dead);
72 threads->last_match = NULL;
73 }
74}
75
76static int thread_rb_node__cmp_tid(const void *key, const struct rb_node *nd)
77{
78 int to_find = (int) *((pid_t *)key);
79
80 return to_find - (int)thread__tid(rb_entry(nd, struct thread_rb_node, rb_node)->thread);
81}
82
83static struct thread_rb_node *thread_rb_node__find(const struct thread *th,
84 struct rb_root *tree)
85{
86 pid_t to_find = thread__tid(th);
87 struct rb_node *nd = rb_find(&to_find, tree, thread_rb_node__cmp_tid);
88
89 return rb_entry(nd, struct thread_rb_node, rb_node);
90}
91
92static int machine__set_mmap_name(struct machine *machine)
93{
94 if (machine__is_host(machine))
95 machine->mmap_name = strdup("[kernel.kallsyms]");
96 else if (machine__is_default_guest(machine))
97 machine->mmap_name = strdup("[guest.kernel.kallsyms]");
98 else if (asprintf(&machine->mmap_name, "[guest.kernel.kallsyms.%d]",
99 machine->pid) < 0)
100 machine->mmap_name = NULL;
101
102 return machine->mmap_name ? 0 : -ENOMEM;
103}
104
105static void thread__set_guest_comm(struct thread *thread, pid_t pid)
106{
107 char comm[64];
108
109 snprintf(comm, sizeof(comm), "[guest/%d]", pid);
110 thread__set_comm(thread, comm, 0);
111}
112
113int machine__init(struct machine *machine, const char *root_dir, pid_t pid)
114{
115 int err = -ENOMEM;
116
117 memset(machine, 0, sizeof(*machine));
118 machine->kmaps = maps__new(machine);
119 if (machine->kmaps == NULL)
120 return -ENOMEM;
121
122 RB_CLEAR_NODE(&machine->rb_node);
123 dsos__init(&machine->dsos);
124
125 machine__threads_init(machine);
126
127 machine->vdso_info = NULL;
128 machine->env = NULL;
129
130 machine->pid = pid;
131
132 machine->id_hdr_size = 0;
133 machine->kptr_restrict_warned = false;
134 machine->comm_exec = false;
135 machine->kernel_start = 0;
136 machine->vmlinux_map = NULL;
137
138 machine->root_dir = strdup(root_dir);
139 if (machine->root_dir == NULL)
140 goto out;
141
142 if (machine__set_mmap_name(machine))
143 goto out;
144
145 if (pid != HOST_KERNEL_ID) {
146 struct thread *thread = machine__findnew_thread(machine, -1,
147 pid);
148
149 if (thread == NULL)
150 goto out;
151
152 thread__set_guest_comm(thread, pid);
153 thread__put(thread);
154 }
155
156 machine->current_tid = NULL;
157 err = 0;
158
159out:
160 if (err) {
161 zfree(&machine->kmaps);
162 zfree(&machine->root_dir);
163 zfree(&machine->mmap_name);
164 }
165 return 0;
166}
167
168struct machine *machine__new_host(void)
169{
170 struct machine *machine = malloc(sizeof(*machine));
171
172 if (machine != NULL) {
173 machine__init(machine, "", HOST_KERNEL_ID);
174
175 if (machine__create_kernel_maps(machine) < 0)
176 goto out_delete;
177 }
178
179 return machine;
180out_delete:
181 free(machine);
182 return NULL;
183}
184
185struct machine *machine__new_kallsyms(void)
186{
187 struct machine *machine = machine__new_host();
188 /*
189 * FIXME:
190 * 1) We should switch to machine__load_kallsyms(), i.e. not explicitly
191 * ask for not using the kcore parsing code, once this one is fixed
192 * to create a map per module.
193 */
194 if (machine && machine__load_kallsyms(machine, "/proc/kallsyms") <= 0) {
195 machine__delete(machine);
196 machine = NULL;
197 }
198
199 return machine;
200}
201
202static void dsos__purge(struct dsos *dsos)
203{
204 struct dso *pos, *n;
205
206 down_write(&dsos->lock);
207
208 list_for_each_entry_safe(pos, n, &dsos->head, node) {
209 RB_CLEAR_NODE(&pos->rb_node);
210 pos->root = NULL;
211 list_del_init(&pos->node);
212 dso__put(pos);
213 }
214
215 up_write(&dsos->lock);
216}
217
218static void dsos__exit(struct dsos *dsos)
219{
220 dsos__purge(dsos);
221 exit_rwsem(&dsos->lock);
222}
223
224void machine__delete_threads(struct machine *machine)
225{
226 struct rb_node *nd;
227 int i;
228
229 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
230 struct threads *threads = &machine->threads[i];
231 down_write(&threads->lock);
232 nd = rb_first_cached(&threads->entries);
233 while (nd) {
234 struct thread_rb_node *trb = rb_entry(nd, struct thread_rb_node, rb_node);
235
236 nd = rb_next(nd);
237 __machine__remove_thread(machine, trb, trb->thread, false);
238 }
239 up_write(&threads->lock);
240 }
241}
242
243void machine__exit(struct machine *machine)
244{
245 int i;
246
247 if (machine == NULL)
248 return;
249
250 machine__destroy_kernel_maps(machine);
251 maps__zput(machine->kmaps);
252 dsos__exit(&machine->dsos);
253 machine__exit_vdso(machine);
254 zfree(&machine->root_dir);
255 zfree(&machine->mmap_name);
256 zfree(&machine->current_tid);
257 zfree(&machine->kallsyms_filename);
258
259 machine__delete_threads(machine);
260 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
261 struct threads *threads = &machine->threads[i];
262
263 exit_rwsem(&threads->lock);
264 }
265}
266
267void machine__delete(struct machine *machine)
268{
269 if (machine) {
270 machine__exit(machine);
271 free(machine);
272 }
273}
274
275void machines__init(struct machines *machines)
276{
277 machine__init(&machines->host, "", HOST_KERNEL_ID);
278 machines->guests = RB_ROOT_CACHED;
279}
280
281void machines__exit(struct machines *machines)
282{
283 machine__exit(&machines->host);
284 /* XXX exit guest */
285}
286
287struct machine *machines__add(struct machines *machines, pid_t pid,
288 const char *root_dir)
289{
290 struct rb_node **p = &machines->guests.rb_root.rb_node;
291 struct rb_node *parent = NULL;
292 struct machine *pos, *machine = malloc(sizeof(*machine));
293 bool leftmost = true;
294
295 if (machine == NULL)
296 return NULL;
297
298 if (machine__init(machine, root_dir, pid) != 0) {
299 free(machine);
300 return NULL;
301 }
302
303 while (*p != NULL) {
304 parent = *p;
305 pos = rb_entry(parent, struct machine, rb_node);
306 if (pid < pos->pid)
307 p = &(*p)->rb_left;
308 else {
309 p = &(*p)->rb_right;
310 leftmost = false;
311 }
312 }
313
314 rb_link_node(&machine->rb_node, parent, p);
315 rb_insert_color_cached(&machine->rb_node, &machines->guests, leftmost);
316
317 machine->machines = machines;
318
319 return machine;
320}
321
322void machines__set_comm_exec(struct machines *machines, bool comm_exec)
323{
324 struct rb_node *nd;
325
326 machines->host.comm_exec = comm_exec;
327
328 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
329 struct machine *machine = rb_entry(nd, struct machine, rb_node);
330
331 machine->comm_exec = comm_exec;
332 }
333}
334
335struct machine *machines__find(struct machines *machines, pid_t pid)
336{
337 struct rb_node **p = &machines->guests.rb_root.rb_node;
338 struct rb_node *parent = NULL;
339 struct machine *machine;
340 struct machine *default_machine = NULL;
341
342 if (pid == HOST_KERNEL_ID)
343 return &machines->host;
344
345 while (*p != NULL) {
346 parent = *p;
347 machine = rb_entry(parent, struct machine, rb_node);
348 if (pid < machine->pid)
349 p = &(*p)->rb_left;
350 else if (pid > machine->pid)
351 p = &(*p)->rb_right;
352 else
353 return machine;
354 if (!machine->pid)
355 default_machine = machine;
356 }
357
358 return default_machine;
359}
360
361struct machine *machines__findnew(struct machines *machines, pid_t pid)
362{
363 char path[PATH_MAX];
364 const char *root_dir = "";
365 struct machine *machine = machines__find(machines, pid);
366
367 if (machine && (machine->pid == pid))
368 goto out;
369
370 if ((pid != HOST_KERNEL_ID) &&
371 (pid != DEFAULT_GUEST_KERNEL_ID) &&
372 (symbol_conf.guestmount)) {
373 sprintf(path, "%s/%d", symbol_conf.guestmount, pid);
374 if (access(path, R_OK)) {
375 static struct strlist *seen;
376
377 if (!seen)
378 seen = strlist__new(NULL, NULL);
379
380 if (!strlist__has_entry(seen, path)) {
381 pr_err("Can't access file %s\n", path);
382 strlist__add(seen, path);
383 }
384 machine = NULL;
385 goto out;
386 }
387 root_dir = path;
388 }
389
390 machine = machines__add(machines, pid, root_dir);
391out:
392 return machine;
393}
394
395struct machine *machines__find_guest(struct machines *machines, pid_t pid)
396{
397 struct machine *machine = machines__find(machines, pid);
398
399 if (!machine)
400 machine = machines__findnew(machines, DEFAULT_GUEST_KERNEL_ID);
401 return machine;
402}
403
404/*
405 * A common case for KVM test programs is that the test program acts as the
406 * hypervisor, creating, running and destroying the virtual machine, and
407 * providing the guest object code from its own object code. In this case,
408 * the VM is not running an OS, but only the functions loaded into it by the
409 * hypervisor test program, and conveniently, loaded at the same virtual
410 * addresses.
411 *
412 * Normally to resolve addresses, MMAP events are needed to map addresses
413 * back to the object code and debug symbols for that object code.
414 *
415 * Currently, there is no way to get such mapping information from guests
416 * but, in the scenario described above, the guest has the same mappings
417 * as the hypervisor, so support for that scenario can be achieved.
418 *
419 * To support that, copy the host thread's maps to the guest thread's maps.
420 * Note, we do not discover the guest until we encounter a guest event,
421 * which works well because it is not until then that we know that the host
422 * thread's maps have been set up.
423 *
424 * This function returns the guest thread. Apart from keeping the data
425 * structures sane, using a thread belonging to the guest machine, instead
426 * of the host thread, allows it to have its own comm (refer
427 * thread__set_guest_comm()).
428 */
429static struct thread *findnew_guest_code(struct machine *machine,
430 struct machine *host_machine,
431 pid_t pid)
432{
433 struct thread *host_thread;
434 struct thread *thread;
435 int err;
436
437 if (!machine)
438 return NULL;
439
440 thread = machine__findnew_thread(machine, -1, pid);
441 if (!thread)
442 return NULL;
443
444 /* Assume maps are set up if there are any */
445 if (maps__nr_maps(thread__maps(thread)))
446 return thread;
447
448 host_thread = machine__find_thread(host_machine, -1, pid);
449 if (!host_thread)
450 goto out_err;
451
452 thread__set_guest_comm(thread, pid);
453
454 /*
455 * Guest code can be found in hypervisor process at the same address
456 * so copy host maps.
457 */
458 err = maps__clone(thread, thread__maps(host_thread));
459 thread__put(host_thread);
460 if (err)
461 goto out_err;
462
463 return thread;
464
465out_err:
466 thread__zput(thread);
467 return NULL;
468}
469
470struct thread *machines__findnew_guest_code(struct machines *machines, pid_t pid)
471{
472 struct machine *host_machine = machines__find(machines, HOST_KERNEL_ID);
473 struct machine *machine = machines__findnew(machines, pid);
474
475 return findnew_guest_code(machine, host_machine, pid);
476}
477
478struct thread *machine__findnew_guest_code(struct machine *machine, pid_t pid)
479{
480 struct machines *machines = machine->machines;
481 struct machine *host_machine;
482
483 if (!machines)
484 return NULL;
485
486 host_machine = machines__find(machines, HOST_KERNEL_ID);
487
488 return findnew_guest_code(machine, host_machine, pid);
489}
490
491void machines__process_guests(struct machines *machines,
492 machine__process_t process, void *data)
493{
494 struct rb_node *nd;
495
496 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
497 struct machine *pos = rb_entry(nd, struct machine, rb_node);
498 process(pos, data);
499 }
500}
501
502void machines__set_id_hdr_size(struct machines *machines, u16 id_hdr_size)
503{
504 struct rb_node *node;
505 struct machine *machine;
506
507 machines->host.id_hdr_size = id_hdr_size;
508
509 for (node = rb_first_cached(&machines->guests); node;
510 node = rb_next(node)) {
511 machine = rb_entry(node, struct machine, rb_node);
512 machine->id_hdr_size = id_hdr_size;
513 }
514
515 return;
516}
517
518static void machine__update_thread_pid(struct machine *machine,
519 struct thread *th, pid_t pid)
520{
521 struct thread *leader;
522
523 if (pid == thread__pid(th) || pid == -1 || thread__pid(th) != -1)
524 return;
525
526 thread__set_pid(th, pid);
527
528 if (thread__pid(th) == thread__tid(th))
529 return;
530
531 leader = __machine__findnew_thread(machine, thread__pid(th), thread__pid(th));
532 if (!leader)
533 goto out_err;
534
535 if (!thread__maps(leader))
536 thread__set_maps(leader, maps__new(machine));
537
538 if (!thread__maps(leader))
539 goto out_err;
540
541 if (thread__maps(th) == thread__maps(leader))
542 goto out_put;
543
544 if (thread__maps(th)) {
545 /*
546 * Maps are created from MMAP events which provide the pid and
547 * tid. Consequently there never should be any maps on a thread
548 * with an unknown pid. Just print an error if there are.
549 */
550 if (!maps__empty(thread__maps(th)))
551 pr_err("Discarding thread maps for %d:%d\n",
552 thread__pid(th), thread__tid(th));
553 maps__put(thread__maps(th));
554 }
555
556 thread__set_maps(th, maps__get(thread__maps(leader)));
557out_put:
558 thread__put(leader);
559 return;
560out_err:
561 pr_err("Failed to join map groups for %d:%d\n", thread__pid(th), thread__tid(th));
562 goto out_put;
563}
564
565/*
566 * Front-end cache - TID lookups come in blocks,
567 * so most of the time we dont have to look up
568 * the full rbtree:
569 */
570static struct thread*
571__threads__get_last_match(struct threads *threads, struct machine *machine,
572 int pid, int tid)
573{
574 struct thread *th;
575
576 th = threads->last_match;
577 if (th != NULL) {
578 if (thread__tid(th) == tid) {
579 machine__update_thread_pid(machine, th, pid);
580 return thread__get(th);
581 }
582 thread__put(threads->last_match);
583 threads->last_match = NULL;
584 }
585
586 return NULL;
587}
588
589static struct thread*
590threads__get_last_match(struct threads *threads, struct machine *machine,
591 int pid, int tid)
592{
593 struct thread *th = NULL;
594
595 if (perf_singlethreaded)
596 th = __threads__get_last_match(threads, machine, pid, tid);
597
598 return th;
599}
600
601static void
602__threads__set_last_match(struct threads *threads, struct thread *th)
603{
604 thread__put(threads->last_match);
605 threads->last_match = thread__get(th);
606}
607
608static void
609threads__set_last_match(struct threads *threads, struct thread *th)
610{
611 if (perf_singlethreaded)
612 __threads__set_last_match(threads, th);
613}
614
615/*
616 * Caller must eventually drop thread->refcnt returned with a successful
617 * lookup/new thread inserted.
618 */
619static struct thread *____machine__findnew_thread(struct machine *machine,
620 struct threads *threads,
621 pid_t pid, pid_t tid,
622 bool create)
623{
624 struct rb_node **p = &threads->entries.rb_root.rb_node;
625 struct rb_node *parent = NULL;
626 struct thread *th;
627 struct thread_rb_node *nd;
628 bool leftmost = true;
629
630 th = threads__get_last_match(threads, machine, pid, tid);
631 if (th)
632 return th;
633
634 while (*p != NULL) {
635 parent = *p;
636 th = rb_entry(parent, struct thread_rb_node, rb_node)->thread;
637
638 if (thread__tid(th) == tid) {
639 threads__set_last_match(threads, th);
640 machine__update_thread_pid(machine, th, pid);
641 return thread__get(th);
642 }
643
644 if (tid < thread__tid(th))
645 p = &(*p)->rb_left;
646 else {
647 p = &(*p)->rb_right;
648 leftmost = false;
649 }
650 }
651
652 if (!create)
653 return NULL;
654
655 th = thread__new(pid, tid);
656 if (th == NULL)
657 return NULL;
658
659 nd = malloc(sizeof(*nd));
660 if (nd == NULL) {
661 thread__put(th);
662 return NULL;
663 }
664 nd->thread = th;
665
666 rb_link_node(&nd->rb_node, parent, p);
667 rb_insert_color_cached(&nd->rb_node, &threads->entries, leftmost);
668 /*
669 * We have to initialize maps separately after rb tree is updated.
670 *
671 * The reason is that we call machine__findnew_thread within
672 * thread__init_maps to find the thread leader and that would screwed
673 * the rb tree.
674 */
675 if (thread__init_maps(th, machine)) {
676 pr_err("Thread init failed thread %d\n", pid);
677 rb_erase_cached(&nd->rb_node, &threads->entries);
678 RB_CLEAR_NODE(&nd->rb_node);
679 free(nd);
680 thread__put(th);
681 return NULL;
682 }
683 /*
684 * It is now in the rbtree, get a ref
685 */
686 threads__set_last_match(threads, th);
687 ++threads->nr;
688
689 return thread__get(th);
690}
691
692struct thread *__machine__findnew_thread(struct machine *machine, pid_t pid, pid_t tid)
693{
694 return ____machine__findnew_thread(machine, machine__threads(machine, tid), pid, tid, true);
695}
696
697struct thread *machine__findnew_thread(struct machine *machine, pid_t pid,
698 pid_t tid)
699{
700 struct threads *threads = machine__threads(machine, tid);
701 struct thread *th;
702
703 down_write(&threads->lock);
704 th = __machine__findnew_thread(machine, pid, tid);
705 up_write(&threads->lock);
706 return th;
707}
708
709struct thread *machine__find_thread(struct machine *machine, pid_t pid,
710 pid_t tid)
711{
712 struct threads *threads = machine__threads(machine, tid);
713 struct thread *th;
714
715 down_read(&threads->lock);
716 th = ____machine__findnew_thread(machine, threads, pid, tid, false);
717 up_read(&threads->lock);
718 return th;
719}
720
721/*
722 * Threads are identified by pid and tid, and the idle task has pid == tid == 0.
723 * So here a single thread is created for that, but actually there is a separate
724 * idle task per cpu, so there should be one 'struct thread' per cpu, but there
725 * is only 1. That causes problems for some tools, requiring workarounds. For
726 * example get_idle_thread() in builtin-sched.c, or thread_stack__per_cpu().
727 */
728struct thread *machine__idle_thread(struct machine *machine)
729{
730 struct thread *thread = machine__findnew_thread(machine, 0, 0);
731
732 if (!thread || thread__set_comm(thread, "swapper", 0) ||
733 thread__set_namespaces(thread, 0, NULL))
734 pr_err("problem inserting idle task for machine pid %d\n", machine->pid);
735
736 return thread;
737}
738
739struct comm *machine__thread_exec_comm(struct machine *machine,
740 struct thread *thread)
741{
742 if (machine->comm_exec)
743 return thread__exec_comm(thread);
744 else
745 return thread__comm(thread);
746}
747
748int machine__process_comm_event(struct machine *machine, union perf_event *event,
749 struct perf_sample *sample)
750{
751 struct thread *thread = machine__findnew_thread(machine,
752 event->comm.pid,
753 event->comm.tid);
754 bool exec = event->header.misc & PERF_RECORD_MISC_COMM_EXEC;
755 int err = 0;
756
757 if (exec)
758 machine->comm_exec = true;
759
760 if (dump_trace)
761 perf_event__fprintf_comm(event, stdout);
762
763 if (thread == NULL ||
764 __thread__set_comm(thread, event->comm.comm, sample->time, exec)) {
765 dump_printf("problem processing PERF_RECORD_COMM, skipping event.\n");
766 err = -1;
767 }
768
769 thread__put(thread);
770
771 return err;
772}
773
774int machine__process_namespaces_event(struct machine *machine __maybe_unused,
775 union perf_event *event,
776 struct perf_sample *sample __maybe_unused)
777{
778 struct thread *thread = machine__findnew_thread(machine,
779 event->namespaces.pid,
780 event->namespaces.tid);
781 int err = 0;
782
783 WARN_ONCE(event->namespaces.nr_namespaces > NR_NAMESPACES,
784 "\nWARNING: kernel seems to support more namespaces than perf"
785 " tool.\nTry updating the perf tool..\n\n");
786
787 WARN_ONCE(event->namespaces.nr_namespaces < NR_NAMESPACES,
788 "\nWARNING: perf tool seems to support more namespaces than"
789 " the kernel.\nTry updating the kernel..\n\n");
790
791 if (dump_trace)
792 perf_event__fprintf_namespaces(event, stdout);
793
794 if (thread == NULL ||
795 thread__set_namespaces(thread, sample->time, &event->namespaces)) {
796 dump_printf("problem processing PERF_RECORD_NAMESPACES, skipping event.\n");
797 err = -1;
798 }
799
800 thread__put(thread);
801
802 return err;
803}
804
805int machine__process_cgroup_event(struct machine *machine,
806 union perf_event *event,
807 struct perf_sample *sample __maybe_unused)
808{
809 struct cgroup *cgrp;
810
811 if (dump_trace)
812 perf_event__fprintf_cgroup(event, stdout);
813
814 cgrp = cgroup__findnew(machine->env, event->cgroup.id, event->cgroup.path);
815 if (cgrp == NULL)
816 return -ENOMEM;
817
818 return 0;
819}
820
821int machine__process_lost_event(struct machine *machine __maybe_unused,
822 union perf_event *event, struct perf_sample *sample __maybe_unused)
823{
824 dump_printf(": id:%" PRI_lu64 ": lost:%" PRI_lu64 "\n",
825 event->lost.id, event->lost.lost);
826 return 0;
827}
828
829int machine__process_lost_samples_event(struct machine *machine __maybe_unused,
830 union perf_event *event, struct perf_sample *sample)
831{
832 dump_printf(": id:%" PRIu64 ": lost samples :%" PRI_lu64 "\n",
833 sample->id, event->lost_samples.lost);
834 return 0;
835}
836
837static struct dso *machine__findnew_module_dso(struct machine *machine,
838 struct kmod_path *m,
839 const char *filename)
840{
841 struct dso *dso;
842
843 down_write(&machine->dsos.lock);
844
845 dso = __dsos__find(&machine->dsos, m->name, true);
846 if (!dso) {
847 dso = __dsos__addnew(&machine->dsos, m->name);
848 if (dso == NULL)
849 goto out_unlock;
850
851 dso__set_module_info(dso, m, machine);
852 dso__set_long_name(dso, strdup(filename), true);
853 dso->kernel = DSO_SPACE__KERNEL;
854 }
855
856 dso__get(dso);
857out_unlock:
858 up_write(&machine->dsos.lock);
859 return dso;
860}
861
862int machine__process_aux_event(struct machine *machine __maybe_unused,
863 union perf_event *event)
864{
865 if (dump_trace)
866 perf_event__fprintf_aux(event, stdout);
867 return 0;
868}
869
870int machine__process_itrace_start_event(struct machine *machine __maybe_unused,
871 union perf_event *event)
872{
873 if (dump_trace)
874 perf_event__fprintf_itrace_start(event, stdout);
875 return 0;
876}
877
878int machine__process_aux_output_hw_id_event(struct machine *machine __maybe_unused,
879 union perf_event *event)
880{
881 if (dump_trace)
882 perf_event__fprintf_aux_output_hw_id(event, stdout);
883 return 0;
884}
885
886int machine__process_switch_event(struct machine *machine __maybe_unused,
887 union perf_event *event)
888{
889 if (dump_trace)
890 perf_event__fprintf_switch(event, stdout);
891 return 0;
892}
893
894static int machine__process_ksymbol_register(struct machine *machine,
895 union perf_event *event,
896 struct perf_sample *sample __maybe_unused)
897{
898 struct symbol *sym;
899 struct dso *dso;
900 struct map *map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
901 bool put_map = false;
902 int err = 0;
903
904 if (!map) {
905 dso = dso__new(event->ksymbol.name);
906
907 if (!dso) {
908 err = -ENOMEM;
909 goto out;
910 }
911 dso->kernel = DSO_SPACE__KERNEL;
912 map = map__new2(0, dso);
913 dso__put(dso);
914 if (!map) {
915 err = -ENOMEM;
916 goto out;
917 }
918 /*
919 * The inserted map has a get on it, we need to put to release
920 * the reference count here, but do it after all accesses are
921 * done.
922 */
923 put_map = true;
924 if (event->ksymbol.ksym_type == PERF_RECORD_KSYMBOL_TYPE_OOL) {
925 dso->binary_type = DSO_BINARY_TYPE__OOL;
926 dso->data.file_size = event->ksymbol.len;
927 dso__set_loaded(dso);
928 }
929
930 map__set_start(map, event->ksymbol.addr);
931 map__set_end(map, map__start(map) + event->ksymbol.len);
932 err = maps__insert(machine__kernel_maps(machine), map);
933 if (err) {
934 err = -ENOMEM;
935 goto out;
936 }
937
938 dso__set_loaded(dso);
939
940 if (is_bpf_image(event->ksymbol.name)) {
941 dso->binary_type = DSO_BINARY_TYPE__BPF_IMAGE;
942 dso__set_long_name(dso, "", false);
943 }
944 } else {
945 dso = map__dso(map);
946 }
947
948 sym = symbol__new(map__map_ip(map, map__start(map)),
949 event->ksymbol.len,
950 0, 0, event->ksymbol.name);
951 if (!sym) {
952 err = -ENOMEM;
953 goto out;
954 }
955 dso__insert_symbol(dso, sym);
956out:
957 if (put_map)
958 map__put(map);
959 return err;
960}
961
962static int machine__process_ksymbol_unregister(struct machine *machine,
963 union perf_event *event,
964 struct perf_sample *sample __maybe_unused)
965{
966 struct symbol *sym;
967 struct map *map;
968
969 map = maps__find(machine__kernel_maps(machine), event->ksymbol.addr);
970 if (!map)
971 return 0;
972
973 if (RC_CHK_ACCESS(map) != RC_CHK_ACCESS(machine->vmlinux_map))
974 maps__remove(machine__kernel_maps(machine), map);
975 else {
976 struct dso *dso = map__dso(map);
977
978 sym = dso__find_symbol(dso, map__map_ip(map, map__start(map)));
979 if (sym)
980 dso__delete_symbol(dso, sym);
981 }
982
983 return 0;
984}
985
986int machine__process_ksymbol(struct machine *machine __maybe_unused,
987 union perf_event *event,
988 struct perf_sample *sample)
989{
990 if (dump_trace)
991 perf_event__fprintf_ksymbol(event, stdout);
992
993 if (event->ksymbol.flags & PERF_RECORD_KSYMBOL_FLAGS_UNREGISTER)
994 return machine__process_ksymbol_unregister(machine, event,
995 sample);
996 return machine__process_ksymbol_register(machine, event, sample);
997}
998
999int machine__process_text_poke(struct machine *machine, union perf_event *event,
1000 struct perf_sample *sample __maybe_unused)
1001{
1002 struct map *map = maps__find(machine__kernel_maps(machine), event->text_poke.addr);
1003 u8 cpumode = event->header.misc & PERF_RECORD_MISC_CPUMODE_MASK;
1004 struct dso *dso = map ? map__dso(map) : NULL;
1005
1006 if (dump_trace)
1007 perf_event__fprintf_text_poke(event, machine, stdout);
1008
1009 if (!event->text_poke.new_len)
1010 return 0;
1011
1012 if (cpumode != PERF_RECORD_MISC_KERNEL) {
1013 pr_debug("%s: unsupported cpumode - ignoring\n", __func__);
1014 return 0;
1015 }
1016
1017 if (dso) {
1018 u8 *new_bytes = event->text_poke.bytes + event->text_poke.old_len;
1019 int ret;
1020
1021 /*
1022 * Kernel maps might be changed when loading symbols so loading
1023 * must be done prior to using kernel maps.
1024 */
1025 map__load(map);
1026 ret = dso__data_write_cache_addr(dso, map, machine,
1027 event->text_poke.addr,
1028 new_bytes,
1029 event->text_poke.new_len);
1030 if (ret != event->text_poke.new_len)
1031 pr_debug("Failed to write kernel text poke at %#" PRI_lx64 "\n",
1032 event->text_poke.addr);
1033 } else {
1034 pr_debug("Failed to find kernel text poke address map for %#" PRI_lx64 "\n",
1035 event->text_poke.addr);
1036 }
1037
1038 return 0;
1039}
1040
1041static struct map *machine__addnew_module_map(struct machine *machine, u64 start,
1042 const char *filename)
1043{
1044 struct map *map = NULL;
1045 struct kmod_path m;
1046 struct dso *dso;
1047 int err;
1048
1049 if (kmod_path__parse_name(&m, filename))
1050 return NULL;
1051
1052 dso = machine__findnew_module_dso(machine, &m, filename);
1053 if (dso == NULL)
1054 goto out;
1055
1056 map = map__new2(start, dso);
1057 if (map == NULL)
1058 goto out;
1059
1060 err = maps__insert(machine__kernel_maps(machine), map);
1061 /* If maps__insert failed, return NULL. */
1062 if (err) {
1063 map__put(map);
1064 map = NULL;
1065 }
1066out:
1067 /* put the dso here, corresponding to machine__findnew_module_dso */
1068 dso__put(dso);
1069 zfree(&m.name);
1070 return map;
1071}
1072
1073size_t machines__fprintf_dsos(struct machines *machines, FILE *fp)
1074{
1075 struct rb_node *nd;
1076 size_t ret = __dsos__fprintf(&machines->host.dsos.head, fp);
1077
1078 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
1079 struct machine *pos = rb_entry(nd, struct machine, rb_node);
1080 ret += __dsos__fprintf(&pos->dsos.head, fp);
1081 }
1082
1083 return ret;
1084}
1085
1086size_t machine__fprintf_dsos_buildid(struct machine *m, FILE *fp,
1087 bool (skip)(struct dso *dso, int parm), int parm)
1088{
1089 return __dsos__fprintf_buildid(&m->dsos.head, fp, skip, parm);
1090}
1091
1092size_t machines__fprintf_dsos_buildid(struct machines *machines, FILE *fp,
1093 bool (skip)(struct dso *dso, int parm), int parm)
1094{
1095 struct rb_node *nd;
1096 size_t ret = machine__fprintf_dsos_buildid(&machines->host, fp, skip, parm);
1097
1098 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
1099 struct machine *pos = rb_entry(nd, struct machine, rb_node);
1100 ret += machine__fprintf_dsos_buildid(pos, fp, skip, parm);
1101 }
1102 return ret;
1103}
1104
1105size_t machine__fprintf_vmlinux_path(struct machine *machine, FILE *fp)
1106{
1107 int i;
1108 size_t printed = 0;
1109 struct dso *kdso = machine__kernel_dso(machine);
1110
1111 if (kdso->has_build_id) {
1112 char filename[PATH_MAX];
1113 if (dso__build_id_filename(kdso, filename, sizeof(filename),
1114 false))
1115 printed += fprintf(fp, "[0] %s\n", filename);
1116 }
1117
1118 for (i = 0; i < vmlinux_path__nr_entries; ++i)
1119 printed += fprintf(fp, "[%d] %s\n",
1120 i + kdso->has_build_id, vmlinux_path[i]);
1121
1122 return printed;
1123}
1124
1125size_t machine__fprintf(struct machine *machine, FILE *fp)
1126{
1127 struct rb_node *nd;
1128 size_t ret;
1129 int i;
1130
1131 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
1132 struct threads *threads = &machine->threads[i];
1133
1134 down_read(&threads->lock);
1135
1136 ret = fprintf(fp, "Threads: %u\n", threads->nr);
1137
1138 for (nd = rb_first_cached(&threads->entries); nd;
1139 nd = rb_next(nd)) {
1140 struct thread *pos = rb_entry(nd, struct thread_rb_node, rb_node)->thread;
1141
1142 ret += thread__fprintf(pos, fp);
1143 }
1144
1145 up_read(&threads->lock);
1146 }
1147 return ret;
1148}
1149
1150static struct dso *machine__get_kernel(struct machine *machine)
1151{
1152 const char *vmlinux_name = machine->mmap_name;
1153 struct dso *kernel;
1154
1155 if (machine__is_host(machine)) {
1156 if (symbol_conf.vmlinux_name)
1157 vmlinux_name = symbol_conf.vmlinux_name;
1158
1159 kernel = machine__findnew_kernel(machine, vmlinux_name,
1160 "[kernel]", DSO_SPACE__KERNEL);
1161 } else {
1162 if (symbol_conf.default_guest_vmlinux_name)
1163 vmlinux_name = symbol_conf.default_guest_vmlinux_name;
1164
1165 kernel = machine__findnew_kernel(machine, vmlinux_name,
1166 "[guest.kernel]",
1167 DSO_SPACE__KERNEL_GUEST);
1168 }
1169
1170 if (kernel != NULL && (!kernel->has_build_id))
1171 dso__read_running_kernel_build_id(kernel, machine);
1172
1173 return kernel;
1174}
1175
1176void machine__get_kallsyms_filename(struct machine *machine, char *buf,
1177 size_t bufsz)
1178{
1179 if (machine__is_default_guest(machine))
1180 scnprintf(buf, bufsz, "%s", symbol_conf.default_guest_kallsyms);
1181 else
1182 scnprintf(buf, bufsz, "%s/proc/kallsyms", machine->root_dir);
1183}
1184
1185const char *ref_reloc_sym_names[] = {"_text", "_stext", NULL};
1186
1187/* Figure out the start address of kernel map from /proc/kallsyms.
1188 * Returns the name of the start symbol in *symbol_name. Pass in NULL as
1189 * symbol_name if it's not that important.
1190 */
1191static int machine__get_running_kernel_start(struct machine *machine,
1192 const char **symbol_name,
1193 u64 *start, u64 *end)
1194{
1195 char filename[PATH_MAX];
1196 int i, err = -1;
1197 const char *name;
1198 u64 addr = 0;
1199
1200 machine__get_kallsyms_filename(machine, filename, PATH_MAX);
1201
1202 if (symbol__restricted_filename(filename, "/proc/kallsyms"))
1203 return 0;
1204
1205 for (i = 0; (name = ref_reloc_sym_names[i]) != NULL; i++) {
1206 err = kallsyms__get_function_start(filename, name, &addr);
1207 if (!err)
1208 break;
1209 }
1210
1211 if (err)
1212 return -1;
1213
1214 if (symbol_name)
1215 *symbol_name = name;
1216
1217 *start = addr;
1218
1219 err = kallsyms__get_function_start(filename, "_etext", &addr);
1220 if (!err)
1221 *end = addr;
1222
1223 return 0;
1224}
1225
1226int machine__create_extra_kernel_map(struct machine *machine,
1227 struct dso *kernel,
1228 struct extra_kernel_map *xm)
1229{
1230 struct kmap *kmap;
1231 struct map *map;
1232 int err;
1233
1234 map = map__new2(xm->start, kernel);
1235 if (!map)
1236 return -ENOMEM;
1237
1238 map__set_end(map, xm->end);
1239 map__set_pgoff(map, xm->pgoff);
1240
1241 kmap = map__kmap(map);
1242
1243 strlcpy(kmap->name, xm->name, KMAP_NAME_LEN);
1244
1245 err = maps__insert(machine__kernel_maps(machine), map);
1246
1247 if (!err) {
1248 pr_debug2("Added extra kernel map %s %" PRIx64 "-%" PRIx64 "\n",
1249 kmap->name, map__start(map), map__end(map));
1250 }
1251
1252 map__put(map);
1253
1254 return err;
1255}
1256
1257static u64 find_entry_trampoline(struct dso *dso)
1258{
1259 /* Duplicates are removed so lookup all aliases */
1260 const char *syms[] = {
1261 "_entry_trampoline",
1262 "__entry_trampoline_start",
1263 "entry_SYSCALL_64_trampoline",
1264 };
1265 struct symbol *sym = dso__first_symbol(dso);
1266 unsigned int i;
1267
1268 for (; sym; sym = dso__next_symbol(sym)) {
1269 if (sym->binding != STB_GLOBAL)
1270 continue;
1271 for (i = 0; i < ARRAY_SIZE(syms); i++) {
1272 if (!strcmp(sym->name, syms[i]))
1273 return sym->start;
1274 }
1275 }
1276
1277 return 0;
1278}
1279
1280/*
1281 * These values can be used for kernels that do not have symbols for the entry
1282 * trampolines in kallsyms.
1283 */
1284#define X86_64_CPU_ENTRY_AREA_PER_CPU 0xfffffe0000000000ULL
1285#define X86_64_CPU_ENTRY_AREA_SIZE 0x2c000
1286#define X86_64_ENTRY_TRAMPOLINE 0x6000
1287
1288/* Map x86_64 PTI entry trampolines */
1289int machine__map_x86_64_entry_trampolines(struct machine *machine,
1290 struct dso *kernel)
1291{
1292 struct maps *kmaps = machine__kernel_maps(machine);
1293 int nr_cpus_avail, cpu;
1294 bool found = false;
1295 struct map_rb_node *rb_node;
1296 u64 pgoff;
1297
1298 /*
1299 * In the vmlinux case, pgoff is a virtual address which must now be
1300 * mapped to a vmlinux offset.
1301 */
1302 maps__for_each_entry(kmaps, rb_node) {
1303 struct map *dest_map, *map = rb_node->map;
1304 struct kmap *kmap = __map__kmap(map);
1305
1306 if (!kmap || !is_entry_trampoline(kmap->name))
1307 continue;
1308
1309 dest_map = maps__find(kmaps, map__pgoff(map));
1310 if (dest_map != map)
1311 map__set_pgoff(map, map__map_ip(dest_map, map__pgoff(map)));
1312 found = true;
1313 }
1314 if (found || machine->trampolines_mapped)
1315 return 0;
1316
1317 pgoff = find_entry_trampoline(kernel);
1318 if (!pgoff)
1319 return 0;
1320
1321 nr_cpus_avail = machine__nr_cpus_avail(machine);
1322
1323 /* Add a 1 page map for each CPU's entry trampoline */
1324 for (cpu = 0; cpu < nr_cpus_avail; cpu++) {
1325 u64 va = X86_64_CPU_ENTRY_AREA_PER_CPU +
1326 cpu * X86_64_CPU_ENTRY_AREA_SIZE +
1327 X86_64_ENTRY_TRAMPOLINE;
1328 struct extra_kernel_map xm = {
1329 .start = va,
1330 .end = va + page_size,
1331 .pgoff = pgoff,
1332 };
1333
1334 strlcpy(xm.name, ENTRY_TRAMPOLINE_NAME, KMAP_NAME_LEN);
1335
1336 if (machine__create_extra_kernel_map(machine, kernel, &xm) < 0)
1337 return -1;
1338 }
1339
1340 machine->trampolines_mapped = nr_cpus_avail;
1341
1342 return 0;
1343}
1344
1345int __weak machine__create_extra_kernel_maps(struct machine *machine __maybe_unused,
1346 struct dso *kernel __maybe_unused)
1347{
1348 return 0;
1349}
1350
1351static int
1352__machine__create_kernel_maps(struct machine *machine, struct dso *kernel)
1353{
1354 /* In case of renewal the kernel map, destroy previous one */
1355 machine__destroy_kernel_maps(machine);
1356
1357 map__put(machine->vmlinux_map);
1358 machine->vmlinux_map = map__new2(0, kernel);
1359 if (machine->vmlinux_map == NULL)
1360 return -ENOMEM;
1361
1362 map__set_map_ip(machine->vmlinux_map, identity__map_ip);
1363 map__set_unmap_ip(machine->vmlinux_map, identity__map_ip);
1364 return maps__insert(machine__kernel_maps(machine), machine->vmlinux_map);
1365}
1366
1367void machine__destroy_kernel_maps(struct machine *machine)
1368{
1369 struct kmap *kmap;
1370 struct map *map = machine__kernel_map(machine);
1371
1372 if (map == NULL)
1373 return;
1374
1375 kmap = map__kmap(map);
1376 maps__remove(machine__kernel_maps(machine), map);
1377 if (kmap && kmap->ref_reloc_sym) {
1378 zfree((char **)&kmap->ref_reloc_sym->name);
1379 zfree(&kmap->ref_reloc_sym);
1380 }
1381
1382 map__zput(machine->vmlinux_map);
1383}
1384
1385int machines__create_guest_kernel_maps(struct machines *machines)
1386{
1387 int ret = 0;
1388 struct dirent **namelist = NULL;
1389 int i, items = 0;
1390 char path[PATH_MAX];
1391 pid_t pid;
1392 char *endp;
1393
1394 if (symbol_conf.default_guest_vmlinux_name ||
1395 symbol_conf.default_guest_modules ||
1396 symbol_conf.default_guest_kallsyms) {
1397 machines__create_kernel_maps(machines, DEFAULT_GUEST_KERNEL_ID);
1398 }
1399
1400 if (symbol_conf.guestmount) {
1401 items = scandir(symbol_conf.guestmount, &namelist, NULL, NULL);
1402 if (items <= 0)
1403 return -ENOENT;
1404 for (i = 0; i < items; i++) {
1405 if (!isdigit(namelist[i]->d_name[0])) {
1406 /* Filter out . and .. */
1407 continue;
1408 }
1409 pid = (pid_t)strtol(namelist[i]->d_name, &endp, 10);
1410 if ((*endp != '\0') ||
1411 (endp == namelist[i]->d_name) ||
1412 (errno == ERANGE)) {
1413 pr_debug("invalid directory (%s). Skipping.\n",
1414 namelist[i]->d_name);
1415 continue;
1416 }
1417 sprintf(path, "%s/%s/proc/kallsyms",
1418 symbol_conf.guestmount,
1419 namelist[i]->d_name);
1420 ret = access(path, R_OK);
1421 if (ret) {
1422 pr_debug("Can't access file %s\n", path);
1423 goto failure;
1424 }
1425 machines__create_kernel_maps(machines, pid);
1426 }
1427failure:
1428 free(namelist);
1429 }
1430
1431 return ret;
1432}
1433
1434void machines__destroy_kernel_maps(struct machines *machines)
1435{
1436 struct rb_node *next = rb_first_cached(&machines->guests);
1437
1438 machine__destroy_kernel_maps(&machines->host);
1439
1440 while (next) {
1441 struct machine *pos = rb_entry(next, struct machine, rb_node);
1442
1443 next = rb_next(&pos->rb_node);
1444 rb_erase_cached(&pos->rb_node, &machines->guests);
1445 machine__delete(pos);
1446 }
1447}
1448
1449int machines__create_kernel_maps(struct machines *machines, pid_t pid)
1450{
1451 struct machine *machine = machines__findnew(machines, pid);
1452
1453 if (machine == NULL)
1454 return -1;
1455
1456 return machine__create_kernel_maps(machine);
1457}
1458
1459int machine__load_kallsyms(struct machine *machine, const char *filename)
1460{
1461 struct map *map = machine__kernel_map(machine);
1462 struct dso *dso = map__dso(map);
1463 int ret = __dso__load_kallsyms(dso, filename, map, true);
1464
1465 if (ret > 0) {
1466 dso__set_loaded(dso);
1467 /*
1468 * Since /proc/kallsyms will have multiple sessions for the
1469 * kernel, with modules between them, fixup the end of all
1470 * sections.
1471 */
1472 maps__fixup_end(machine__kernel_maps(machine));
1473 }
1474
1475 return ret;
1476}
1477
1478int machine__load_vmlinux_path(struct machine *machine)
1479{
1480 struct map *map = machine__kernel_map(machine);
1481 struct dso *dso = map__dso(map);
1482 int ret = dso__load_vmlinux_path(dso, map);
1483
1484 if (ret > 0)
1485 dso__set_loaded(dso);
1486
1487 return ret;
1488}
1489
1490static char *get_kernel_version(const char *root_dir)
1491{
1492 char version[PATH_MAX];
1493 FILE *file;
1494 char *name, *tmp;
1495 const char *prefix = "Linux version ";
1496
1497 sprintf(version, "%s/proc/version", root_dir);
1498 file = fopen(version, "r");
1499 if (!file)
1500 return NULL;
1501
1502 tmp = fgets(version, sizeof(version), file);
1503 fclose(file);
1504 if (!tmp)
1505 return NULL;
1506
1507 name = strstr(version, prefix);
1508 if (!name)
1509 return NULL;
1510 name += strlen(prefix);
1511 tmp = strchr(name, ' ');
1512 if (tmp)
1513 *tmp = '\0';
1514
1515 return strdup(name);
1516}
1517
1518static bool is_kmod_dso(struct dso *dso)
1519{
1520 return dso->symtab_type == DSO_BINARY_TYPE__SYSTEM_PATH_KMODULE ||
1521 dso->symtab_type == DSO_BINARY_TYPE__GUEST_KMODULE;
1522}
1523
1524static int maps__set_module_path(struct maps *maps, const char *path, struct kmod_path *m)
1525{
1526 char *long_name;
1527 struct dso *dso;
1528 struct map *map = maps__find_by_name(maps, m->name);
1529
1530 if (map == NULL)
1531 return 0;
1532
1533 long_name = strdup(path);
1534 if (long_name == NULL)
1535 return -ENOMEM;
1536
1537 dso = map__dso(map);
1538 dso__set_long_name(dso, long_name, true);
1539 dso__kernel_module_get_build_id(dso, "");
1540
1541 /*
1542 * Full name could reveal us kmod compression, so
1543 * we need to update the symtab_type if needed.
1544 */
1545 if (m->comp && is_kmod_dso(dso)) {
1546 dso->symtab_type++;
1547 dso->comp = m->comp;
1548 }
1549
1550 return 0;
1551}
1552
1553static int maps__set_modules_path_dir(struct maps *maps, const char *dir_name, int depth)
1554{
1555 struct dirent *dent;
1556 DIR *dir = opendir(dir_name);
1557 int ret = 0;
1558
1559 if (!dir) {
1560 pr_debug("%s: cannot open %s dir\n", __func__, dir_name);
1561 return -1;
1562 }
1563
1564 while ((dent = readdir(dir)) != NULL) {
1565 char path[PATH_MAX];
1566 struct stat st;
1567
1568 /*sshfs might return bad dent->d_type, so we have to stat*/
1569 path__join(path, sizeof(path), dir_name, dent->d_name);
1570 if (stat(path, &st))
1571 continue;
1572
1573 if (S_ISDIR(st.st_mode)) {
1574 if (!strcmp(dent->d_name, ".") ||
1575 !strcmp(dent->d_name, ".."))
1576 continue;
1577
1578 /* Do not follow top-level source and build symlinks */
1579 if (depth == 0) {
1580 if (!strcmp(dent->d_name, "source") ||
1581 !strcmp(dent->d_name, "build"))
1582 continue;
1583 }
1584
1585 ret = maps__set_modules_path_dir(maps, path, depth + 1);
1586 if (ret < 0)
1587 goto out;
1588 } else {
1589 struct kmod_path m;
1590
1591 ret = kmod_path__parse_name(&m, dent->d_name);
1592 if (ret)
1593 goto out;
1594
1595 if (m.kmod)
1596 ret = maps__set_module_path(maps, path, &m);
1597
1598 zfree(&m.name);
1599
1600 if (ret)
1601 goto out;
1602 }
1603 }
1604
1605out:
1606 closedir(dir);
1607 return ret;
1608}
1609
1610static int machine__set_modules_path(struct machine *machine)
1611{
1612 char *version;
1613 char modules_path[PATH_MAX];
1614
1615 version = get_kernel_version(machine->root_dir);
1616 if (!version)
1617 return -1;
1618
1619 snprintf(modules_path, sizeof(modules_path), "%s/lib/modules/%s",
1620 machine->root_dir, version);
1621 free(version);
1622
1623 return maps__set_modules_path_dir(machine__kernel_maps(machine), modules_path, 0);
1624}
1625int __weak arch__fix_module_text_start(u64 *start __maybe_unused,
1626 u64 *size __maybe_unused,
1627 const char *name __maybe_unused)
1628{
1629 return 0;
1630}
1631
1632static int machine__create_module(void *arg, const char *name, u64 start,
1633 u64 size)
1634{
1635 struct machine *machine = arg;
1636 struct map *map;
1637
1638 if (arch__fix_module_text_start(&start, &size, name) < 0)
1639 return -1;
1640
1641 map = machine__addnew_module_map(machine, start, name);
1642 if (map == NULL)
1643 return -1;
1644 map__set_end(map, start + size);
1645
1646 dso__kernel_module_get_build_id(map__dso(map), machine->root_dir);
1647 map__put(map);
1648 return 0;
1649}
1650
1651static int machine__create_modules(struct machine *machine)
1652{
1653 const char *modules;
1654 char path[PATH_MAX];
1655
1656 if (machine__is_default_guest(machine)) {
1657 modules = symbol_conf.default_guest_modules;
1658 } else {
1659 snprintf(path, PATH_MAX, "%s/proc/modules", machine->root_dir);
1660 modules = path;
1661 }
1662
1663 if (symbol__restricted_filename(modules, "/proc/modules"))
1664 return -1;
1665
1666 if (modules__parse(modules, machine, machine__create_module))
1667 return -1;
1668
1669 if (!machine__set_modules_path(machine))
1670 return 0;
1671
1672 pr_debug("Problems setting modules path maps, continuing anyway...\n");
1673
1674 return 0;
1675}
1676
1677static void machine__set_kernel_mmap(struct machine *machine,
1678 u64 start, u64 end)
1679{
1680 map__set_start(machine->vmlinux_map, start);
1681 map__set_end(machine->vmlinux_map, end);
1682 /*
1683 * Be a bit paranoid here, some perf.data file came with
1684 * a zero sized synthesized MMAP event for the kernel.
1685 */
1686 if (start == 0 && end == 0)
1687 map__set_end(machine->vmlinux_map, ~0ULL);
1688}
1689
1690static int machine__update_kernel_mmap(struct machine *machine,
1691 u64 start, u64 end)
1692{
1693 struct map *orig, *updated;
1694 int err;
1695
1696 orig = machine->vmlinux_map;
1697 updated = map__get(orig);
1698
1699 machine->vmlinux_map = updated;
1700 machine__set_kernel_mmap(machine, start, end);
1701 maps__remove(machine__kernel_maps(machine), orig);
1702 err = maps__insert(machine__kernel_maps(machine), updated);
1703 map__put(orig);
1704
1705 return err;
1706}
1707
1708int machine__create_kernel_maps(struct machine *machine)
1709{
1710 struct dso *kernel = machine__get_kernel(machine);
1711 const char *name = NULL;
1712 u64 start = 0, end = ~0ULL;
1713 int ret;
1714
1715 if (kernel == NULL)
1716 return -1;
1717
1718 ret = __machine__create_kernel_maps(machine, kernel);
1719 if (ret < 0)
1720 goto out_put;
1721
1722 if (symbol_conf.use_modules && machine__create_modules(machine) < 0) {
1723 if (machine__is_host(machine))
1724 pr_debug("Problems creating module maps, "
1725 "continuing anyway...\n");
1726 else
1727 pr_debug("Problems creating module maps for guest %d, "
1728 "continuing anyway...\n", machine->pid);
1729 }
1730
1731 if (!machine__get_running_kernel_start(machine, &name, &start, &end)) {
1732 if (name &&
1733 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map, name, start)) {
1734 machine__destroy_kernel_maps(machine);
1735 ret = -1;
1736 goto out_put;
1737 }
1738
1739 /*
1740 * we have a real start address now, so re-order the kmaps
1741 * assume it's the last in the kmaps
1742 */
1743 ret = machine__update_kernel_mmap(machine, start, end);
1744 if (ret < 0)
1745 goto out_put;
1746 }
1747
1748 if (machine__create_extra_kernel_maps(machine, kernel))
1749 pr_debug("Problems creating extra kernel maps, continuing anyway...\n");
1750
1751 if (end == ~0ULL) {
1752 /* update end address of the kernel map using adjacent module address */
1753 struct map_rb_node *rb_node = maps__find_node(machine__kernel_maps(machine),
1754 machine__kernel_map(machine));
1755 struct map_rb_node *next = map_rb_node__next(rb_node);
1756
1757 if (next)
1758 machine__set_kernel_mmap(machine, start, map__start(next->map));
1759 }
1760
1761out_put:
1762 dso__put(kernel);
1763 return ret;
1764}
1765
1766static bool machine__uses_kcore(struct machine *machine)
1767{
1768 struct dso *dso;
1769
1770 list_for_each_entry(dso, &machine->dsos.head, node) {
1771 if (dso__is_kcore(dso))
1772 return true;
1773 }
1774
1775 return false;
1776}
1777
1778static bool perf_event__is_extra_kernel_mmap(struct machine *machine,
1779 struct extra_kernel_map *xm)
1780{
1781 return machine__is(machine, "x86_64") &&
1782 is_entry_trampoline(xm->name);
1783}
1784
1785static int machine__process_extra_kernel_map(struct machine *machine,
1786 struct extra_kernel_map *xm)
1787{
1788 struct dso *kernel = machine__kernel_dso(machine);
1789
1790 if (kernel == NULL)
1791 return -1;
1792
1793 return machine__create_extra_kernel_map(machine, kernel, xm);
1794}
1795
1796static int machine__process_kernel_mmap_event(struct machine *machine,
1797 struct extra_kernel_map *xm,
1798 struct build_id *bid)
1799{
1800 enum dso_space_type dso_space;
1801 bool is_kernel_mmap;
1802 const char *mmap_name = machine->mmap_name;
1803
1804 /* If we have maps from kcore then we do not need or want any others */
1805 if (machine__uses_kcore(machine))
1806 return 0;
1807
1808 if (machine__is_host(machine))
1809 dso_space = DSO_SPACE__KERNEL;
1810 else
1811 dso_space = DSO_SPACE__KERNEL_GUEST;
1812
1813 is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1814 if (!is_kernel_mmap && !machine__is_host(machine)) {
1815 /*
1816 * If the event was recorded inside the guest and injected into
1817 * the host perf.data file, then it will match a host mmap_name,
1818 * so try that - see machine__set_mmap_name().
1819 */
1820 mmap_name = "[kernel.kallsyms]";
1821 is_kernel_mmap = memcmp(xm->name, mmap_name, strlen(mmap_name) - 1) == 0;
1822 }
1823 if (xm->name[0] == '/' ||
1824 (!is_kernel_mmap && xm->name[0] == '[')) {
1825 struct map *map = machine__addnew_module_map(machine, xm->start, xm->name);
1826
1827 if (map == NULL)
1828 goto out_problem;
1829
1830 map__set_end(map, map__start(map) + xm->end - xm->start);
1831
1832 if (build_id__is_defined(bid))
1833 dso__set_build_id(map__dso(map), bid);
1834
1835 map__put(map);
1836 } else if (is_kernel_mmap) {
1837 const char *symbol_name = xm->name + strlen(mmap_name);
1838 /*
1839 * Should be there already, from the build-id table in
1840 * the header.
1841 */
1842 struct dso *kernel = NULL;
1843 struct dso *dso;
1844
1845 down_read(&machine->dsos.lock);
1846
1847 list_for_each_entry(dso, &machine->dsos.head, node) {
1848
1849 /*
1850 * The cpumode passed to is_kernel_module is not the
1851 * cpumode of *this* event. If we insist on passing
1852 * correct cpumode to is_kernel_module, we should
1853 * record the cpumode when we adding this dso to the
1854 * linked list.
1855 *
1856 * However we don't really need passing correct
1857 * cpumode. We know the correct cpumode must be kernel
1858 * mode (if not, we should not link it onto kernel_dsos
1859 * list).
1860 *
1861 * Therefore, we pass PERF_RECORD_MISC_CPUMODE_UNKNOWN.
1862 * is_kernel_module() treats it as a kernel cpumode.
1863 */
1864
1865 if (!dso->kernel ||
1866 is_kernel_module(dso->long_name,
1867 PERF_RECORD_MISC_CPUMODE_UNKNOWN))
1868 continue;
1869
1870
1871 kernel = dso__get(dso);
1872 break;
1873 }
1874
1875 up_read(&machine->dsos.lock);
1876
1877 if (kernel == NULL)
1878 kernel = machine__findnew_dso(machine, machine->mmap_name);
1879 if (kernel == NULL)
1880 goto out_problem;
1881
1882 kernel->kernel = dso_space;
1883 if (__machine__create_kernel_maps(machine, kernel) < 0) {
1884 dso__put(kernel);
1885 goto out_problem;
1886 }
1887
1888 if (strstr(kernel->long_name, "vmlinux"))
1889 dso__set_short_name(kernel, "[kernel.vmlinux]", false);
1890
1891 if (machine__update_kernel_mmap(machine, xm->start, xm->end) < 0) {
1892 dso__put(kernel);
1893 goto out_problem;
1894 }
1895
1896 if (build_id__is_defined(bid))
1897 dso__set_build_id(kernel, bid);
1898
1899 /*
1900 * Avoid using a zero address (kptr_restrict) for the ref reloc
1901 * symbol. Effectively having zero here means that at record
1902 * time /proc/sys/kernel/kptr_restrict was non zero.
1903 */
1904 if (xm->pgoff != 0) {
1905 map__set_kallsyms_ref_reloc_sym(machine->vmlinux_map,
1906 symbol_name,
1907 xm->pgoff);
1908 }
1909
1910 if (machine__is_default_guest(machine)) {
1911 /*
1912 * preload dso of guest kernel and modules
1913 */
1914 dso__load(kernel, machine__kernel_map(machine));
1915 }
1916 dso__put(kernel);
1917 } else if (perf_event__is_extra_kernel_mmap(machine, xm)) {
1918 return machine__process_extra_kernel_map(machine, xm);
1919 }
1920 return 0;
1921out_problem:
1922 return -1;
1923}
1924
1925int machine__process_mmap2_event(struct machine *machine,
1926 union perf_event *event,
1927 struct perf_sample *sample)
1928{
1929 struct thread *thread;
1930 struct map *map;
1931 struct dso_id dso_id = {
1932 .maj = event->mmap2.maj,
1933 .min = event->mmap2.min,
1934 .ino = event->mmap2.ino,
1935 .ino_generation = event->mmap2.ino_generation,
1936 };
1937 struct build_id __bid, *bid = NULL;
1938 int ret = 0;
1939
1940 if (dump_trace)
1941 perf_event__fprintf_mmap2(event, stdout);
1942
1943 if (event->header.misc & PERF_RECORD_MISC_MMAP_BUILD_ID) {
1944 bid = &__bid;
1945 build_id__init(bid, event->mmap2.build_id, event->mmap2.build_id_size);
1946 }
1947
1948 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
1949 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
1950 struct extra_kernel_map xm = {
1951 .start = event->mmap2.start,
1952 .end = event->mmap2.start + event->mmap2.len,
1953 .pgoff = event->mmap2.pgoff,
1954 };
1955
1956 strlcpy(xm.name, event->mmap2.filename, KMAP_NAME_LEN);
1957 ret = machine__process_kernel_mmap_event(machine, &xm, bid);
1958 if (ret < 0)
1959 goto out_problem;
1960 return 0;
1961 }
1962
1963 thread = machine__findnew_thread(machine, event->mmap2.pid,
1964 event->mmap2.tid);
1965 if (thread == NULL)
1966 goto out_problem;
1967
1968 map = map__new(machine, event->mmap2.start,
1969 event->mmap2.len, event->mmap2.pgoff,
1970 &dso_id, event->mmap2.prot,
1971 event->mmap2.flags, bid,
1972 event->mmap2.filename, thread);
1973
1974 if (map == NULL)
1975 goto out_problem_map;
1976
1977 ret = thread__insert_map(thread, map);
1978 if (ret)
1979 goto out_problem_insert;
1980
1981 thread__put(thread);
1982 map__put(map);
1983 return 0;
1984
1985out_problem_insert:
1986 map__put(map);
1987out_problem_map:
1988 thread__put(thread);
1989out_problem:
1990 dump_printf("problem processing PERF_RECORD_MMAP2, skipping event.\n");
1991 return 0;
1992}
1993
1994int machine__process_mmap_event(struct machine *machine, union perf_event *event,
1995 struct perf_sample *sample)
1996{
1997 struct thread *thread;
1998 struct map *map;
1999 u32 prot = 0;
2000 int ret = 0;
2001
2002 if (dump_trace)
2003 perf_event__fprintf_mmap(event, stdout);
2004
2005 if (sample->cpumode == PERF_RECORD_MISC_GUEST_KERNEL ||
2006 sample->cpumode == PERF_RECORD_MISC_KERNEL) {
2007 struct extra_kernel_map xm = {
2008 .start = event->mmap.start,
2009 .end = event->mmap.start + event->mmap.len,
2010 .pgoff = event->mmap.pgoff,
2011 };
2012
2013 strlcpy(xm.name, event->mmap.filename, KMAP_NAME_LEN);
2014 ret = machine__process_kernel_mmap_event(machine, &xm, NULL);
2015 if (ret < 0)
2016 goto out_problem;
2017 return 0;
2018 }
2019
2020 thread = machine__findnew_thread(machine, event->mmap.pid,
2021 event->mmap.tid);
2022 if (thread == NULL)
2023 goto out_problem;
2024
2025 if (!(event->header.misc & PERF_RECORD_MISC_MMAP_DATA))
2026 prot = PROT_EXEC;
2027
2028 map = map__new(machine, event->mmap.start,
2029 event->mmap.len, event->mmap.pgoff,
2030 NULL, prot, 0, NULL, event->mmap.filename, thread);
2031
2032 if (map == NULL)
2033 goto out_problem_map;
2034
2035 ret = thread__insert_map(thread, map);
2036 if (ret)
2037 goto out_problem_insert;
2038
2039 thread__put(thread);
2040 map__put(map);
2041 return 0;
2042
2043out_problem_insert:
2044 map__put(map);
2045out_problem_map:
2046 thread__put(thread);
2047out_problem:
2048 dump_printf("problem processing PERF_RECORD_MMAP, skipping event.\n");
2049 return 0;
2050}
2051
2052static void __machine__remove_thread(struct machine *machine, struct thread_rb_node *nd,
2053 struct thread *th, bool lock)
2054{
2055 struct threads *threads = machine__threads(machine, thread__tid(th));
2056
2057 if (!nd)
2058 nd = thread_rb_node__find(th, &threads->entries.rb_root);
2059
2060 if (threads->last_match && RC_CHK_ACCESS(threads->last_match) == RC_CHK_ACCESS(th))
2061 threads__set_last_match(threads, NULL);
2062
2063 if (lock)
2064 down_write(&threads->lock);
2065
2066 BUG_ON(refcount_read(thread__refcnt(th)) == 0);
2067
2068 thread__put(nd->thread);
2069 rb_erase_cached(&nd->rb_node, &threads->entries);
2070 RB_CLEAR_NODE(&nd->rb_node);
2071 --threads->nr;
2072
2073 free(nd);
2074
2075 if (lock)
2076 up_write(&threads->lock);
2077}
2078
2079void machine__remove_thread(struct machine *machine, struct thread *th)
2080{
2081 return __machine__remove_thread(machine, NULL, th, true);
2082}
2083
2084int machine__process_fork_event(struct machine *machine, union perf_event *event,
2085 struct perf_sample *sample)
2086{
2087 struct thread *thread = machine__find_thread(machine,
2088 event->fork.pid,
2089 event->fork.tid);
2090 struct thread *parent = machine__findnew_thread(machine,
2091 event->fork.ppid,
2092 event->fork.ptid);
2093 bool do_maps_clone = true;
2094 int err = 0;
2095
2096 if (dump_trace)
2097 perf_event__fprintf_task(event, stdout);
2098
2099 /*
2100 * There may be an existing thread that is not actually the parent,
2101 * either because we are processing events out of order, or because the
2102 * (fork) event that would have removed the thread was lost. Assume the
2103 * latter case and continue on as best we can.
2104 */
2105 if (thread__pid(parent) != (pid_t)event->fork.ppid) {
2106 dump_printf("removing erroneous parent thread %d/%d\n",
2107 thread__pid(parent), thread__tid(parent));
2108 machine__remove_thread(machine, parent);
2109 thread__put(parent);
2110 parent = machine__findnew_thread(machine, event->fork.ppid,
2111 event->fork.ptid);
2112 }
2113
2114 /* if a thread currently exists for the thread id remove it */
2115 if (thread != NULL) {
2116 machine__remove_thread(machine, thread);
2117 thread__put(thread);
2118 }
2119
2120 thread = machine__findnew_thread(machine, event->fork.pid,
2121 event->fork.tid);
2122 /*
2123 * When synthesizing FORK events, we are trying to create thread
2124 * objects for the already running tasks on the machine.
2125 *
2126 * Normally, for a kernel FORK event, we want to clone the parent's
2127 * maps because that is what the kernel just did.
2128 *
2129 * But when synthesizing, this should not be done. If we do, we end up
2130 * with overlapping maps as we process the synthesized MMAP2 events that
2131 * get delivered shortly thereafter.
2132 *
2133 * Use the FORK event misc flags in an internal way to signal this
2134 * situation, so we can elide the map clone when appropriate.
2135 */
2136 if (event->fork.header.misc & PERF_RECORD_MISC_FORK_EXEC)
2137 do_maps_clone = false;
2138
2139 if (thread == NULL || parent == NULL ||
2140 thread__fork(thread, parent, sample->time, do_maps_clone) < 0) {
2141 dump_printf("problem processing PERF_RECORD_FORK, skipping event.\n");
2142 err = -1;
2143 }
2144 thread__put(thread);
2145 thread__put(parent);
2146
2147 return err;
2148}
2149
2150int machine__process_exit_event(struct machine *machine, union perf_event *event,
2151 struct perf_sample *sample __maybe_unused)
2152{
2153 struct thread *thread = machine__find_thread(machine,
2154 event->fork.pid,
2155 event->fork.tid);
2156
2157 if (dump_trace)
2158 perf_event__fprintf_task(event, stdout);
2159
2160 if (thread != NULL)
2161 thread__put(thread);
2162
2163 return 0;
2164}
2165
2166int machine__process_event(struct machine *machine, union perf_event *event,
2167 struct perf_sample *sample)
2168{
2169 int ret;
2170
2171 switch (event->header.type) {
2172 case PERF_RECORD_COMM:
2173 ret = machine__process_comm_event(machine, event, sample); break;
2174 case PERF_RECORD_MMAP:
2175 ret = machine__process_mmap_event(machine, event, sample); break;
2176 case PERF_RECORD_NAMESPACES:
2177 ret = machine__process_namespaces_event(machine, event, sample); break;
2178 case PERF_RECORD_CGROUP:
2179 ret = machine__process_cgroup_event(machine, event, sample); break;
2180 case PERF_RECORD_MMAP2:
2181 ret = machine__process_mmap2_event(machine, event, sample); break;
2182 case PERF_RECORD_FORK:
2183 ret = machine__process_fork_event(machine, event, sample); break;
2184 case PERF_RECORD_EXIT:
2185 ret = machine__process_exit_event(machine, event, sample); break;
2186 case PERF_RECORD_LOST:
2187 ret = machine__process_lost_event(machine, event, sample); break;
2188 case PERF_RECORD_AUX:
2189 ret = machine__process_aux_event(machine, event); break;
2190 case PERF_RECORD_ITRACE_START:
2191 ret = machine__process_itrace_start_event(machine, event); break;
2192 case PERF_RECORD_LOST_SAMPLES:
2193 ret = machine__process_lost_samples_event(machine, event, sample); break;
2194 case PERF_RECORD_SWITCH:
2195 case PERF_RECORD_SWITCH_CPU_WIDE:
2196 ret = machine__process_switch_event(machine, event); break;
2197 case PERF_RECORD_KSYMBOL:
2198 ret = machine__process_ksymbol(machine, event, sample); break;
2199 case PERF_RECORD_BPF_EVENT:
2200 ret = machine__process_bpf(machine, event, sample); break;
2201 case PERF_RECORD_TEXT_POKE:
2202 ret = machine__process_text_poke(machine, event, sample); break;
2203 case PERF_RECORD_AUX_OUTPUT_HW_ID:
2204 ret = machine__process_aux_output_hw_id_event(machine, event); break;
2205 default:
2206 ret = -1;
2207 break;
2208 }
2209
2210 return ret;
2211}
2212
2213static bool symbol__match_regex(struct symbol *sym, regex_t *regex)
2214{
2215 if (!regexec(regex, sym->name, 0, NULL, 0))
2216 return true;
2217 return false;
2218}
2219
2220static void ip__resolve_ams(struct thread *thread,
2221 struct addr_map_symbol *ams,
2222 u64 ip)
2223{
2224 struct addr_location al;
2225
2226 addr_location__init(&al);
2227 /*
2228 * We cannot use the header.misc hint to determine whether a
2229 * branch stack address is user, kernel, guest, hypervisor.
2230 * Branches may straddle the kernel/user/hypervisor boundaries.
2231 * Thus, we have to try consecutively until we find a match
2232 * or else, the symbol is unknown
2233 */
2234 thread__find_cpumode_addr_location(thread, ip, &al);
2235
2236 ams->addr = ip;
2237 ams->al_addr = al.addr;
2238 ams->al_level = al.level;
2239 ams->ms.maps = maps__get(al.maps);
2240 ams->ms.sym = al.sym;
2241 ams->ms.map = map__get(al.map);
2242 ams->phys_addr = 0;
2243 ams->data_page_size = 0;
2244 addr_location__exit(&al);
2245}
2246
2247static void ip__resolve_data(struct thread *thread,
2248 u8 m, struct addr_map_symbol *ams,
2249 u64 addr, u64 phys_addr, u64 daddr_page_size)
2250{
2251 struct addr_location al;
2252
2253 addr_location__init(&al);
2254
2255 thread__find_symbol(thread, m, addr, &al);
2256
2257 ams->addr = addr;
2258 ams->al_addr = al.addr;
2259 ams->al_level = al.level;
2260 ams->ms.maps = maps__get(al.maps);
2261 ams->ms.sym = al.sym;
2262 ams->ms.map = map__get(al.map);
2263 ams->phys_addr = phys_addr;
2264 ams->data_page_size = daddr_page_size;
2265 addr_location__exit(&al);
2266}
2267
2268struct mem_info *sample__resolve_mem(struct perf_sample *sample,
2269 struct addr_location *al)
2270{
2271 struct mem_info *mi = mem_info__new();
2272
2273 if (!mi)
2274 return NULL;
2275
2276 ip__resolve_ams(al->thread, &mi->iaddr, sample->ip);
2277 ip__resolve_data(al->thread, al->cpumode, &mi->daddr,
2278 sample->addr, sample->phys_addr,
2279 sample->data_page_size);
2280 mi->data_src.val = sample->data_src;
2281
2282 return mi;
2283}
2284
2285static char *callchain_srcline(struct map_symbol *ms, u64 ip)
2286{
2287 struct map *map = ms->map;
2288 char *srcline = NULL;
2289 struct dso *dso;
2290
2291 if (!map || callchain_param.key == CCKEY_FUNCTION)
2292 return srcline;
2293
2294 dso = map__dso(map);
2295 srcline = srcline__tree_find(&dso->srclines, ip);
2296 if (!srcline) {
2297 bool show_sym = false;
2298 bool show_addr = callchain_param.key == CCKEY_ADDRESS;
2299
2300 srcline = get_srcline(dso, map__rip_2objdump(map, ip),
2301 ms->sym, show_sym, show_addr, ip);
2302 srcline__tree_insert(&dso->srclines, ip, srcline);
2303 }
2304
2305 return srcline;
2306}
2307
2308struct iterations {
2309 int nr_loop_iter;
2310 u64 cycles;
2311};
2312
2313static int add_callchain_ip(struct thread *thread,
2314 struct callchain_cursor *cursor,
2315 struct symbol **parent,
2316 struct addr_location *root_al,
2317 u8 *cpumode,
2318 u64 ip,
2319 bool branch,
2320 struct branch_flags *flags,
2321 struct iterations *iter,
2322 u64 branch_from)
2323{
2324 struct map_symbol ms = {};
2325 struct addr_location al;
2326 int nr_loop_iter = 0, err = 0;
2327 u64 iter_cycles = 0;
2328 const char *srcline = NULL;
2329
2330 addr_location__init(&al);
2331 al.filtered = 0;
2332 al.sym = NULL;
2333 al.srcline = NULL;
2334 if (!cpumode) {
2335 thread__find_cpumode_addr_location(thread, ip, &al);
2336 } else {
2337 if (ip >= PERF_CONTEXT_MAX) {
2338 switch (ip) {
2339 case PERF_CONTEXT_HV:
2340 *cpumode = PERF_RECORD_MISC_HYPERVISOR;
2341 break;
2342 case PERF_CONTEXT_KERNEL:
2343 *cpumode = PERF_RECORD_MISC_KERNEL;
2344 break;
2345 case PERF_CONTEXT_USER:
2346 *cpumode = PERF_RECORD_MISC_USER;
2347 break;
2348 default:
2349 pr_debug("invalid callchain context: "
2350 "%"PRId64"\n", (s64) ip);
2351 /*
2352 * It seems the callchain is corrupted.
2353 * Discard all.
2354 */
2355 callchain_cursor_reset(cursor);
2356 err = 1;
2357 goto out;
2358 }
2359 goto out;
2360 }
2361 thread__find_symbol(thread, *cpumode, ip, &al);
2362 }
2363
2364 if (al.sym != NULL) {
2365 if (perf_hpp_list.parent && !*parent &&
2366 symbol__match_regex(al.sym, &parent_regex))
2367 *parent = al.sym;
2368 else if (have_ignore_callees && root_al &&
2369 symbol__match_regex(al.sym, &ignore_callees_regex)) {
2370 /* Treat this symbol as the root,
2371 forgetting its callees. */
2372 addr_location__copy(root_al, &al);
2373 callchain_cursor_reset(cursor);
2374 }
2375 }
2376
2377 if (symbol_conf.hide_unresolved && al.sym == NULL)
2378 goto out;
2379
2380 if (iter) {
2381 nr_loop_iter = iter->nr_loop_iter;
2382 iter_cycles = iter->cycles;
2383 }
2384
2385 ms.maps = maps__get(al.maps);
2386 ms.map = map__get(al.map);
2387 ms.sym = al.sym;
2388
2389 if (!branch && append_inlines(cursor, &ms, ip) == 0)
2390 goto out;
2391
2392 srcline = callchain_srcline(&ms, al.addr);
2393 err = callchain_cursor_append(cursor, ip, &ms,
2394 branch, flags, nr_loop_iter,
2395 iter_cycles, branch_from, srcline);
2396out:
2397 addr_location__exit(&al);
2398 maps__put(ms.maps);
2399 map__put(ms.map);
2400 return err;
2401}
2402
2403struct branch_info *sample__resolve_bstack(struct perf_sample *sample,
2404 struct addr_location *al)
2405{
2406 unsigned int i;
2407 const struct branch_stack *bs = sample->branch_stack;
2408 struct branch_entry *entries = perf_sample__branch_entries(sample);
2409 struct branch_info *bi = calloc(bs->nr, sizeof(struct branch_info));
2410
2411 if (!bi)
2412 return NULL;
2413
2414 for (i = 0; i < bs->nr; i++) {
2415 ip__resolve_ams(al->thread, &bi[i].to, entries[i].to);
2416 ip__resolve_ams(al->thread, &bi[i].from, entries[i].from);
2417 bi[i].flags = entries[i].flags;
2418 }
2419 return bi;
2420}
2421
2422static void save_iterations(struct iterations *iter,
2423 struct branch_entry *be, int nr)
2424{
2425 int i;
2426
2427 iter->nr_loop_iter++;
2428 iter->cycles = 0;
2429
2430 for (i = 0; i < nr; i++)
2431 iter->cycles += be[i].flags.cycles;
2432}
2433
2434#define CHASHSZ 127
2435#define CHASHBITS 7
2436#define NO_ENTRY 0xff
2437
2438#define PERF_MAX_BRANCH_DEPTH 127
2439
2440/* Remove loops. */
2441static int remove_loops(struct branch_entry *l, int nr,
2442 struct iterations *iter)
2443{
2444 int i, j, off;
2445 unsigned char chash[CHASHSZ];
2446
2447 memset(chash, NO_ENTRY, sizeof(chash));
2448
2449 BUG_ON(PERF_MAX_BRANCH_DEPTH > 255);
2450
2451 for (i = 0; i < nr; i++) {
2452 int h = hash_64(l[i].from, CHASHBITS) % CHASHSZ;
2453
2454 /* no collision handling for now */
2455 if (chash[h] == NO_ENTRY) {
2456 chash[h] = i;
2457 } else if (l[chash[h]].from == l[i].from) {
2458 bool is_loop = true;
2459 /* check if it is a real loop */
2460 off = 0;
2461 for (j = chash[h]; j < i && i + off < nr; j++, off++)
2462 if (l[j].from != l[i + off].from) {
2463 is_loop = false;
2464 break;
2465 }
2466 if (is_loop) {
2467 j = nr - (i + off);
2468 if (j > 0) {
2469 save_iterations(iter + i + off,
2470 l + i, off);
2471
2472 memmove(iter + i, iter + i + off,
2473 j * sizeof(*iter));
2474
2475 memmove(l + i, l + i + off,
2476 j * sizeof(*l));
2477 }
2478
2479 nr -= off;
2480 }
2481 }
2482 }
2483 return nr;
2484}
2485
2486static int lbr_callchain_add_kernel_ip(struct thread *thread,
2487 struct callchain_cursor *cursor,
2488 struct perf_sample *sample,
2489 struct symbol **parent,
2490 struct addr_location *root_al,
2491 u64 branch_from,
2492 bool callee, int end)
2493{
2494 struct ip_callchain *chain = sample->callchain;
2495 u8 cpumode = PERF_RECORD_MISC_USER;
2496 int err, i;
2497
2498 if (callee) {
2499 for (i = 0; i < end + 1; i++) {
2500 err = add_callchain_ip(thread, cursor, parent,
2501 root_al, &cpumode, chain->ips[i],
2502 false, NULL, NULL, branch_from);
2503 if (err)
2504 return err;
2505 }
2506 return 0;
2507 }
2508
2509 for (i = end; i >= 0; i--) {
2510 err = add_callchain_ip(thread, cursor, parent,
2511 root_al, &cpumode, chain->ips[i],
2512 false, NULL, NULL, branch_from);
2513 if (err)
2514 return err;
2515 }
2516
2517 return 0;
2518}
2519
2520static void save_lbr_cursor_node(struct thread *thread,
2521 struct callchain_cursor *cursor,
2522 int idx)
2523{
2524 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2525
2526 if (!lbr_stitch)
2527 return;
2528
2529 if (cursor->pos == cursor->nr) {
2530 lbr_stitch->prev_lbr_cursor[idx].valid = false;
2531 return;
2532 }
2533
2534 if (!cursor->curr)
2535 cursor->curr = cursor->first;
2536 else
2537 cursor->curr = cursor->curr->next;
2538 memcpy(&lbr_stitch->prev_lbr_cursor[idx], cursor->curr,
2539 sizeof(struct callchain_cursor_node));
2540
2541 lbr_stitch->prev_lbr_cursor[idx].valid = true;
2542 cursor->pos++;
2543}
2544
2545static int lbr_callchain_add_lbr_ip(struct thread *thread,
2546 struct callchain_cursor *cursor,
2547 struct perf_sample *sample,
2548 struct symbol **parent,
2549 struct addr_location *root_al,
2550 u64 *branch_from,
2551 bool callee)
2552{
2553 struct branch_stack *lbr_stack = sample->branch_stack;
2554 struct branch_entry *entries = perf_sample__branch_entries(sample);
2555 u8 cpumode = PERF_RECORD_MISC_USER;
2556 int lbr_nr = lbr_stack->nr;
2557 struct branch_flags *flags;
2558 int err, i;
2559 u64 ip;
2560
2561 /*
2562 * The curr and pos are not used in writing session. They are cleared
2563 * in callchain_cursor_commit() when the writing session is closed.
2564 * Using curr and pos to track the current cursor node.
2565 */
2566 if (thread__lbr_stitch(thread)) {
2567 cursor->curr = NULL;
2568 cursor->pos = cursor->nr;
2569 if (cursor->nr) {
2570 cursor->curr = cursor->first;
2571 for (i = 0; i < (int)(cursor->nr - 1); i++)
2572 cursor->curr = cursor->curr->next;
2573 }
2574 }
2575
2576 if (callee) {
2577 /* Add LBR ip from first entries.to */
2578 ip = entries[0].to;
2579 flags = &entries[0].flags;
2580 *branch_from = entries[0].from;
2581 err = add_callchain_ip(thread, cursor, parent,
2582 root_al, &cpumode, ip,
2583 true, flags, NULL,
2584 *branch_from);
2585 if (err)
2586 return err;
2587
2588 /*
2589 * The number of cursor node increases.
2590 * Move the current cursor node.
2591 * But does not need to save current cursor node for entry 0.
2592 * It's impossible to stitch the whole LBRs of previous sample.
2593 */
2594 if (thread__lbr_stitch(thread) && (cursor->pos != cursor->nr)) {
2595 if (!cursor->curr)
2596 cursor->curr = cursor->first;
2597 else
2598 cursor->curr = cursor->curr->next;
2599 cursor->pos++;
2600 }
2601
2602 /* Add LBR ip from entries.from one by one. */
2603 for (i = 0; i < lbr_nr; i++) {
2604 ip = entries[i].from;
2605 flags = &entries[i].flags;
2606 err = add_callchain_ip(thread, cursor, parent,
2607 root_al, &cpumode, ip,
2608 true, flags, NULL,
2609 *branch_from);
2610 if (err)
2611 return err;
2612 save_lbr_cursor_node(thread, cursor, i);
2613 }
2614 return 0;
2615 }
2616
2617 /* Add LBR ip from entries.from one by one. */
2618 for (i = lbr_nr - 1; i >= 0; i--) {
2619 ip = entries[i].from;
2620 flags = &entries[i].flags;
2621 err = add_callchain_ip(thread, cursor, parent,
2622 root_al, &cpumode, ip,
2623 true, flags, NULL,
2624 *branch_from);
2625 if (err)
2626 return err;
2627 save_lbr_cursor_node(thread, cursor, i);
2628 }
2629
2630 /* Add LBR ip from first entries.to */
2631 ip = entries[0].to;
2632 flags = &entries[0].flags;
2633 *branch_from = entries[0].from;
2634 err = add_callchain_ip(thread, cursor, parent,
2635 root_al, &cpumode, ip,
2636 true, flags, NULL,
2637 *branch_from);
2638 if (err)
2639 return err;
2640
2641 return 0;
2642}
2643
2644static int lbr_callchain_add_stitched_lbr_ip(struct thread *thread,
2645 struct callchain_cursor *cursor)
2646{
2647 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2648 struct callchain_cursor_node *cnode;
2649 struct stitch_list *stitch_node;
2650 int err;
2651
2652 list_for_each_entry(stitch_node, &lbr_stitch->lists, node) {
2653 cnode = &stitch_node->cursor;
2654
2655 err = callchain_cursor_append(cursor, cnode->ip,
2656 &cnode->ms,
2657 cnode->branch,
2658 &cnode->branch_flags,
2659 cnode->nr_loop_iter,
2660 cnode->iter_cycles,
2661 cnode->branch_from,
2662 cnode->srcline);
2663 if (err)
2664 return err;
2665 }
2666 return 0;
2667}
2668
2669static struct stitch_list *get_stitch_node(struct thread *thread)
2670{
2671 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2672 struct stitch_list *stitch_node;
2673
2674 if (!list_empty(&lbr_stitch->free_lists)) {
2675 stitch_node = list_first_entry(&lbr_stitch->free_lists,
2676 struct stitch_list, node);
2677 list_del(&stitch_node->node);
2678
2679 return stitch_node;
2680 }
2681
2682 return malloc(sizeof(struct stitch_list));
2683}
2684
2685static bool has_stitched_lbr(struct thread *thread,
2686 struct perf_sample *cur,
2687 struct perf_sample *prev,
2688 unsigned int max_lbr,
2689 bool callee)
2690{
2691 struct branch_stack *cur_stack = cur->branch_stack;
2692 struct branch_entry *cur_entries = perf_sample__branch_entries(cur);
2693 struct branch_stack *prev_stack = prev->branch_stack;
2694 struct branch_entry *prev_entries = perf_sample__branch_entries(prev);
2695 struct lbr_stitch *lbr_stitch = thread__lbr_stitch(thread);
2696 int i, j, nr_identical_branches = 0;
2697 struct stitch_list *stitch_node;
2698 u64 cur_base, distance;
2699
2700 if (!cur_stack || !prev_stack)
2701 return false;
2702
2703 /* Find the physical index of the base-of-stack for current sample. */
2704 cur_base = max_lbr - cur_stack->nr + cur_stack->hw_idx + 1;
2705
2706 distance = (prev_stack->hw_idx > cur_base) ? (prev_stack->hw_idx - cur_base) :
2707 (max_lbr + prev_stack->hw_idx - cur_base);
2708 /* Previous sample has shorter stack. Nothing can be stitched. */
2709 if (distance + 1 > prev_stack->nr)
2710 return false;
2711
2712 /*
2713 * Check if there are identical LBRs between two samples.
2714 * Identical LBRs must have same from, to and flags values. Also,
2715 * they have to be saved in the same LBR registers (same physical
2716 * index).
2717 *
2718 * Starts from the base-of-stack of current sample.
2719 */
2720 for (i = distance, j = cur_stack->nr - 1; (i >= 0) && (j >= 0); i--, j--) {
2721 if ((prev_entries[i].from != cur_entries[j].from) ||
2722 (prev_entries[i].to != cur_entries[j].to) ||
2723 (prev_entries[i].flags.value != cur_entries[j].flags.value))
2724 break;
2725 nr_identical_branches++;
2726 }
2727
2728 if (!nr_identical_branches)
2729 return false;
2730
2731 /*
2732 * Save the LBRs between the base-of-stack of previous sample
2733 * and the base-of-stack of current sample into lbr_stitch->lists.
2734 * These LBRs will be stitched later.
2735 */
2736 for (i = prev_stack->nr - 1; i > (int)distance; i--) {
2737
2738 if (!lbr_stitch->prev_lbr_cursor[i].valid)
2739 continue;
2740
2741 stitch_node = get_stitch_node(thread);
2742 if (!stitch_node)
2743 return false;
2744
2745 memcpy(&stitch_node->cursor, &lbr_stitch->prev_lbr_cursor[i],
2746 sizeof(struct callchain_cursor_node));
2747
2748 if (callee)
2749 list_add(&stitch_node->node, &lbr_stitch->lists);
2750 else
2751 list_add_tail(&stitch_node->node, &lbr_stitch->lists);
2752 }
2753
2754 return true;
2755}
2756
2757static bool alloc_lbr_stitch(struct thread *thread, unsigned int max_lbr)
2758{
2759 if (thread__lbr_stitch(thread))
2760 return true;
2761
2762 thread__set_lbr_stitch(thread, zalloc(sizeof(struct lbr_stitch)));
2763 if (!thread__lbr_stitch(thread))
2764 goto err;
2765
2766 thread__lbr_stitch(thread)->prev_lbr_cursor =
2767 calloc(max_lbr + 1, sizeof(struct callchain_cursor_node));
2768 if (!thread__lbr_stitch(thread)->prev_lbr_cursor)
2769 goto free_lbr_stitch;
2770
2771 INIT_LIST_HEAD(&thread__lbr_stitch(thread)->lists);
2772 INIT_LIST_HEAD(&thread__lbr_stitch(thread)->free_lists);
2773
2774 return true;
2775
2776free_lbr_stitch:
2777 free(thread__lbr_stitch(thread));
2778 thread__set_lbr_stitch(thread, NULL);
2779err:
2780 pr_warning("Failed to allocate space for stitched LBRs. Disable LBR stitch\n");
2781 thread__set_lbr_stitch_enable(thread, false);
2782 return false;
2783}
2784
2785/*
2786 * Resolve LBR callstack chain sample
2787 * Return:
2788 * 1 on success get LBR callchain information
2789 * 0 no available LBR callchain information, should try fp
2790 * negative error code on other errors.
2791 */
2792static int resolve_lbr_callchain_sample(struct thread *thread,
2793 struct callchain_cursor *cursor,
2794 struct perf_sample *sample,
2795 struct symbol **parent,
2796 struct addr_location *root_al,
2797 int max_stack,
2798 unsigned int max_lbr)
2799{
2800 bool callee = (callchain_param.order == ORDER_CALLEE);
2801 struct ip_callchain *chain = sample->callchain;
2802 int chain_nr = min(max_stack, (int)chain->nr), i;
2803 struct lbr_stitch *lbr_stitch;
2804 bool stitched_lbr = false;
2805 u64 branch_from = 0;
2806 int err;
2807
2808 for (i = 0; i < chain_nr; i++) {
2809 if (chain->ips[i] == PERF_CONTEXT_USER)
2810 break;
2811 }
2812
2813 /* LBR only affects the user callchain */
2814 if (i == chain_nr)
2815 return 0;
2816
2817 if (thread__lbr_stitch_enable(thread) && !sample->no_hw_idx &&
2818 (max_lbr > 0) && alloc_lbr_stitch(thread, max_lbr)) {
2819 lbr_stitch = thread__lbr_stitch(thread);
2820
2821 stitched_lbr = has_stitched_lbr(thread, sample,
2822 &lbr_stitch->prev_sample,
2823 max_lbr, callee);
2824
2825 if (!stitched_lbr && !list_empty(&lbr_stitch->lists)) {
2826 list_replace_init(&lbr_stitch->lists,
2827 &lbr_stitch->free_lists);
2828 }
2829 memcpy(&lbr_stitch->prev_sample, sample, sizeof(*sample));
2830 }
2831
2832 if (callee) {
2833 /* Add kernel ip */
2834 err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2835 parent, root_al, branch_from,
2836 true, i);
2837 if (err)
2838 goto error;
2839
2840 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2841 root_al, &branch_from, true);
2842 if (err)
2843 goto error;
2844
2845 if (stitched_lbr) {
2846 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2847 if (err)
2848 goto error;
2849 }
2850
2851 } else {
2852 if (stitched_lbr) {
2853 err = lbr_callchain_add_stitched_lbr_ip(thread, cursor);
2854 if (err)
2855 goto error;
2856 }
2857 err = lbr_callchain_add_lbr_ip(thread, cursor, sample, parent,
2858 root_al, &branch_from, false);
2859 if (err)
2860 goto error;
2861
2862 /* Add kernel ip */
2863 err = lbr_callchain_add_kernel_ip(thread, cursor, sample,
2864 parent, root_al, branch_from,
2865 false, i);
2866 if (err)
2867 goto error;
2868 }
2869 return 1;
2870
2871error:
2872 return (err < 0) ? err : 0;
2873}
2874
2875static int find_prev_cpumode(struct ip_callchain *chain, struct thread *thread,
2876 struct callchain_cursor *cursor,
2877 struct symbol **parent,
2878 struct addr_location *root_al,
2879 u8 *cpumode, int ent)
2880{
2881 int err = 0;
2882
2883 while (--ent >= 0) {
2884 u64 ip = chain->ips[ent];
2885
2886 if (ip >= PERF_CONTEXT_MAX) {
2887 err = add_callchain_ip(thread, cursor, parent,
2888 root_al, cpumode, ip,
2889 false, NULL, NULL, 0);
2890 break;
2891 }
2892 }
2893 return err;
2894}
2895
2896static u64 get_leaf_frame_caller(struct perf_sample *sample,
2897 struct thread *thread, int usr_idx)
2898{
2899 if (machine__normalized_is(maps__machine(thread__maps(thread)), "arm64"))
2900 return get_leaf_frame_caller_aarch64(sample, thread, usr_idx);
2901 else
2902 return 0;
2903}
2904
2905static int thread__resolve_callchain_sample(struct thread *thread,
2906 struct callchain_cursor *cursor,
2907 struct evsel *evsel,
2908 struct perf_sample *sample,
2909 struct symbol **parent,
2910 struct addr_location *root_al,
2911 int max_stack)
2912{
2913 struct branch_stack *branch = sample->branch_stack;
2914 struct branch_entry *entries = perf_sample__branch_entries(sample);
2915 struct ip_callchain *chain = sample->callchain;
2916 int chain_nr = 0;
2917 u8 cpumode = PERF_RECORD_MISC_USER;
2918 int i, j, err, nr_entries, usr_idx;
2919 int skip_idx = -1;
2920 int first_call = 0;
2921 u64 leaf_frame_caller;
2922
2923 if (chain)
2924 chain_nr = chain->nr;
2925
2926 if (evsel__has_branch_callstack(evsel)) {
2927 struct perf_env *env = evsel__env(evsel);
2928
2929 err = resolve_lbr_callchain_sample(thread, cursor, sample, parent,
2930 root_al, max_stack,
2931 !env ? 0 : env->max_branches);
2932 if (err)
2933 return (err < 0) ? err : 0;
2934 }
2935
2936 /*
2937 * Based on DWARF debug information, some architectures skip
2938 * a callchain entry saved by the kernel.
2939 */
2940 skip_idx = arch_skip_callchain_idx(thread, chain);
2941
2942 /*
2943 * Add branches to call stack for easier browsing. This gives
2944 * more context for a sample than just the callers.
2945 *
2946 * This uses individual histograms of paths compared to the
2947 * aggregated histograms the normal LBR mode uses.
2948 *
2949 * Limitations for now:
2950 * - No extra filters
2951 * - No annotations (should annotate somehow)
2952 */
2953
2954 if (branch && callchain_param.branch_callstack) {
2955 int nr = min(max_stack, (int)branch->nr);
2956 struct branch_entry be[nr];
2957 struct iterations iter[nr];
2958
2959 if (branch->nr > PERF_MAX_BRANCH_DEPTH) {
2960 pr_warning("corrupted branch chain. skipping...\n");
2961 goto check_calls;
2962 }
2963
2964 for (i = 0; i < nr; i++) {
2965 if (callchain_param.order == ORDER_CALLEE) {
2966 be[i] = entries[i];
2967
2968 if (chain == NULL)
2969 continue;
2970
2971 /*
2972 * Check for overlap into the callchain.
2973 * The return address is one off compared to
2974 * the branch entry. To adjust for this
2975 * assume the calling instruction is not longer
2976 * than 8 bytes.
2977 */
2978 if (i == skip_idx ||
2979 chain->ips[first_call] >= PERF_CONTEXT_MAX)
2980 first_call++;
2981 else if (be[i].from < chain->ips[first_call] &&
2982 be[i].from >= chain->ips[first_call] - 8)
2983 first_call++;
2984 } else
2985 be[i] = entries[branch->nr - i - 1];
2986 }
2987
2988 memset(iter, 0, sizeof(struct iterations) * nr);
2989 nr = remove_loops(be, nr, iter);
2990
2991 for (i = 0; i < nr; i++) {
2992 err = add_callchain_ip(thread, cursor, parent,
2993 root_al,
2994 NULL, be[i].to,
2995 true, &be[i].flags,
2996 NULL, be[i].from);
2997
2998 if (!err)
2999 err = add_callchain_ip(thread, cursor, parent, root_al,
3000 NULL, be[i].from,
3001 true, &be[i].flags,
3002 &iter[i], 0);
3003 if (err == -EINVAL)
3004 break;
3005 if (err)
3006 return err;
3007 }
3008
3009 if (chain_nr == 0)
3010 return 0;
3011
3012 chain_nr -= nr;
3013 }
3014
3015check_calls:
3016 if (chain && callchain_param.order != ORDER_CALLEE) {
3017 err = find_prev_cpumode(chain, thread, cursor, parent, root_al,
3018 &cpumode, chain->nr - first_call);
3019 if (err)
3020 return (err < 0) ? err : 0;
3021 }
3022 for (i = first_call, nr_entries = 0;
3023 i < chain_nr && nr_entries < max_stack; i++) {
3024 u64 ip;
3025
3026 if (callchain_param.order == ORDER_CALLEE)
3027 j = i;
3028 else
3029 j = chain->nr - i - 1;
3030
3031#ifdef HAVE_SKIP_CALLCHAIN_IDX
3032 if (j == skip_idx)
3033 continue;
3034#endif
3035 ip = chain->ips[j];
3036 if (ip < PERF_CONTEXT_MAX)
3037 ++nr_entries;
3038 else if (callchain_param.order != ORDER_CALLEE) {
3039 err = find_prev_cpumode(chain, thread, cursor, parent,
3040 root_al, &cpumode, j);
3041 if (err)
3042 return (err < 0) ? err : 0;
3043 continue;
3044 }
3045
3046 /*
3047 * PERF_CONTEXT_USER allows us to locate where the user stack ends.
3048 * Depending on callchain_param.order and the position of PERF_CONTEXT_USER,
3049 * the index will be different in order to add the missing frame
3050 * at the right place.
3051 */
3052
3053 usr_idx = callchain_param.order == ORDER_CALLEE ? j-2 : j-1;
3054
3055 if (usr_idx >= 0 && chain->ips[usr_idx] == PERF_CONTEXT_USER) {
3056
3057 leaf_frame_caller = get_leaf_frame_caller(sample, thread, usr_idx);
3058
3059 /*
3060 * check if leaf_frame_Caller != ip to not add the same
3061 * value twice.
3062 */
3063
3064 if (leaf_frame_caller && leaf_frame_caller != ip) {
3065
3066 err = add_callchain_ip(thread, cursor, parent,
3067 root_al, &cpumode, leaf_frame_caller,
3068 false, NULL, NULL, 0);
3069 if (err)
3070 return (err < 0) ? err : 0;
3071 }
3072 }
3073
3074 err = add_callchain_ip(thread, cursor, parent,
3075 root_al, &cpumode, ip,
3076 false, NULL, NULL, 0);
3077
3078 if (err)
3079 return (err < 0) ? err : 0;
3080 }
3081
3082 return 0;
3083}
3084
3085static int append_inlines(struct callchain_cursor *cursor, struct map_symbol *ms, u64 ip)
3086{
3087 struct symbol *sym = ms->sym;
3088 struct map *map = ms->map;
3089 struct inline_node *inline_node;
3090 struct inline_list *ilist;
3091 struct dso *dso;
3092 u64 addr;
3093 int ret = 1;
3094 struct map_symbol ilist_ms;
3095
3096 if (!symbol_conf.inline_name || !map || !sym)
3097 return ret;
3098
3099 addr = map__dso_map_ip(map, ip);
3100 addr = map__rip_2objdump(map, addr);
3101 dso = map__dso(map);
3102
3103 inline_node = inlines__tree_find(&dso->inlined_nodes, addr);
3104 if (!inline_node) {
3105 inline_node = dso__parse_addr_inlines(dso, addr, sym);
3106 if (!inline_node)
3107 return ret;
3108 inlines__tree_insert(&dso->inlined_nodes, inline_node);
3109 }
3110
3111 ilist_ms = (struct map_symbol) {
3112 .maps = maps__get(ms->maps),
3113 .map = map__get(map),
3114 };
3115 list_for_each_entry(ilist, &inline_node->val, list) {
3116 ilist_ms.sym = ilist->symbol;
3117 ret = callchain_cursor_append(cursor, ip, &ilist_ms, false,
3118 NULL, 0, 0, 0, ilist->srcline);
3119
3120 if (ret != 0)
3121 return ret;
3122 }
3123 map__put(ilist_ms.map);
3124 maps__put(ilist_ms.maps);
3125
3126 return ret;
3127}
3128
3129static int unwind_entry(struct unwind_entry *entry, void *arg)
3130{
3131 struct callchain_cursor *cursor = arg;
3132 const char *srcline = NULL;
3133 u64 addr = entry->ip;
3134
3135 if (symbol_conf.hide_unresolved && entry->ms.sym == NULL)
3136 return 0;
3137
3138 if (append_inlines(cursor, &entry->ms, entry->ip) == 0)
3139 return 0;
3140
3141 /*
3142 * Convert entry->ip from a virtual address to an offset in
3143 * its corresponding binary.
3144 */
3145 if (entry->ms.map)
3146 addr = map__dso_map_ip(entry->ms.map, entry->ip);
3147
3148 srcline = callchain_srcline(&entry->ms, addr);
3149 return callchain_cursor_append(cursor, entry->ip, &entry->ms,
3150 false, NULL, 0, 0, 0, srcline);
3151}
3152
3153static int thread__resolve_callchain_unwind(struct thread *thread,
3154 struct callchain_cursor *cursor,
3155 struct evsel *evsel,
3156 struct perf_sample *sample,
3157 int max_stack)
3158{
3159 /* Can we do dwarf post unwind? */
3160 if (!((evsel->core.attr.sample_type & PERF_SAMPLE_REGS_USER) &&
3161 (evsel->core.attr.sample_type & PERF_SAMPLE_STACK_USER)))
3162 return 0;
3163
3164 /* Bail out if nothing was captured. */
3165 if ((!sample->user_regs.regs) ||
3166 (!sample->user_stack.size))
3167 return 0;
3168
3169 return unwind__get_entries(unwind_entry, cursor,
3170 thread, sample, max_stack, false);
3171}
3172
3173int thread__resolve_callchain(struct thread *thread,
3174 struct callchain_cursor *cursor,
3175 struct evsel *evsel,
3176 struct perf_sample *sample,
3177 struct symbol **parent,
3178 struct addr_location *root_al,
3179 int max_stack)
3180{
3181 int ret = 0;
3182
3183 if (cursor == NULL)
3184 return -ENOMEM;
3185
3186 callchain_cursor_reset(cursor);
3187
3188 if (callchain_param.order == ORDER_CALLEE) {
3189 ret = thread__resolve_callchain_sample(thread, cursor,
3190 evsel, sample,
3191 parent, root_al,
3192 max_stack);
3193 if (ret)
3194 return ret;
3195 ret = thread__resolve_callchain_unwind(thread, cursor,
3196 evsel, sample,
3197 max_stack);
3198 } else {
3199 ret = thread__resolve_callchain_unwind(thread, cursor,
3200 evsel, sample,
3201 max_stack);
3202 if (ret)
3203 return ret;
3204 ret = thread__resolve_callchain_sample(thread, cursor,
3205 evsel, sample,
3206 parent, root_al,
3207 max_stack);
3208 }
3209
3210 return ret;
3211}
3212
3213int machine__for_each_thread(struct machine *machine,
3214 int (*fn)(struct thread *thread, void *p),
3215 void *priv)
3216{
3217 struct threads *threads;
3218 struct rb_node *nd;
3219 int rc = 0;
3220 int i;
3221
3222 for (i = 0; i < THREADS__TABLE_SIZE; i++) {
3223 threads = &machine->threads[i];
3224 for (nd = rb_first_cached(&threads->entries); nd;
3225 nd = rb_next(nd)) {
3226 struct thread_rb_node *trb = rb_entry(nd, struct thread_rb_node, rb_node);
3227
3228 rc = fn(trb->thread, priv);
3229 if (rc != 0)
3230 return rc;
3231 }
3232 }
3233 return rc;
3234}
3235
3236int machines__for_each_thread(struct machines *machines,
3237 int (*fn)(struct thread *thread, void *p),
3238 void *priv)
3239{
3240 struct rb_node *nd;
3241 int rc = 0;
3242
3243 rc = machine__for_each_thread(&machines->host, fn, priv);
3244 if (rc != 0)
3245 return rc;
3246
3247 for (nd = rb_first_cached(&machines->guests); nd; nd = rb_next(nd)) {
3248 struct machine *machine = rb_entry(nd, struct machine, rb_node);
3249
3250 rc = machine__for_each_thread(machine, fn, priv);
3251 if (rc != 0)
3252 return rc;
3253 }
3254 return rc;
3255}
3256
3257pid_t machine__get_current_tid(struct machine *machine, int cpu)
3258{
3259 if (cpu < 0 || (size_t)cpu >= machine->current_tid_sz)
3260 return -1;
3261
3262 return machine->current_tid[cpu];
3263}
3264
3265int machine__set_current_tid(struct machine *machine, int cpu, pid_t pid,
3266 pid_t tid)
3267{
3268 struct thread *thread;
3269 const pid_t init_val = -1;
3270
3271 if (cpu < 0)
3272 return -EINVAL;
3273
3274 if (realloc_array_as_needed(machine->current_tid,
3275 machine->current_tid_sz,
3276 (unsigned int)cpu,
3277 &init_val))
3278 return -ENOMEM;
3279
3280 machine->current_tid[cpu] = tid;
3281
3282 thread = machine__findnew_thread(machine, pid, tid);
3283 if (!thread)
3284 return -ENOMEM;
3285
3286 thread__set_cpu(thread, cpu);
3287 thread__put(thread);
3288
3289 return 0;
3290}
3291
3292/*
3293 * Compares the raw arch string. N.B. see instead perf_env__arch() or
3294 * machine__normalized_is() if a normalized arch is needed.
3295 */
3296bool machine__is(struct machine *machine, const char *arch)
3297{
3298 return machine && !strcmp(perf_env__raw_arch(machine->env), arch);
3299}
3300
3301bool machine__normalized_is(struct machine *machine, const char *arch)
3302{
3303 return machine && !strcmp(perf_env__arch(machine->env), arch);
3304}
3305
3306int machine__nr_cpus_avail(struct machine *machine)
3307{
3308 return machine ? perf_env__nr_cpus_avail(machine->env) : 0;
3309}
3310
3311int machine__get_kernel_start(struct machine *machine)
3312{
3313 struct map *map = machine__kernel_map(machine);
3314 int err = 0;
3315
3316 /*
3317 * The only addresses above 2^63 are kernel addresses of a 64-bit
3318 * kernel. Note that addresses are unsigned so that on a 32-bit system
3319 * all addresses including kernel addresses are less than 2^32. In
3320 * that case (32-bit system), if the kernel mapping is unknown, all
3321 * addresses will be assumed to be in user space - see
3322 * machine__kernel_ip().
3323 */
3324 machine->kernel_start = 1ULL << 63;
3325 if (map) {
3326 err = map__load(map);
3327 /*
3328 * On x86_64, PTI entry trampolines are less than the
3329 * start of kernel text, but still above 2^63. So leave
3330 * kernel_start = 1ULL << 63 for x86_64.
3331 */
3332 if (!err && !machine__is(machine, "x86_64"))
3333 machine->kernel_start = map__start(map);
3334 }
3335 return err;
3336}
3337
3338u8 machine__addr_cpumode(struct machine *machine, u8 cpumode, u64 addr)
3339{
3340 u8 addr_cpumode = cpumode;
3341 bool kernel_ip;
3342
3343 if (!machine->single_address_space)
3344 goto out;
3345
3346 kernel_ip = machine__kernel_ip(machine, addr);
3347 switch (cpumode) {
3348 case PERF_RECORD_MISC_KERNEL:
3349 case PERF_RECORD_MISC_USER:
3350 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_KERNEL :
3351 PERF_RECORD_MISC_USER;
3352 break;
3353 case PERF_RECORD_MISC_GUEST_KERNEL:
3354 case PERF_RECORD_MISC_GUEST_USER:
3355 addr_cpumode = kernel_ip ? PERF_RECORD_MISC_GUEST_KERNEL :
3356 PERF_RECORD_MISC_GUEST_USER;
3357 break;
3358 default:
3359 break;
3360 }
3361out:
3362 return addr_cpumode;
3363}
3364
3365struct dso *machine__findnew_dso_id(struct machine *machine, const char *filename, struct dso_id *id)
3366{
3367 return dsos__findnew_id(&machine->dsos, filename, id);
3368}
3369
3370struct dso *machine__findnew_dso(struct machine *machine, const char *filename)
3371{
3372 return machine__findnew_dso_id(machine, filename, NULL);
3373}
3374
3375char *machine__resolve_kernel_addr(void *vmachine, unsigned long long *addrp, char **modp)
3376{
3377 struct machine *machine = vmachine;
3378 struct map *map;
3379 struct symbol *sym = machine__find_kernel_symbol(machine, *addrp, &map);
3380
3381 if (sym == NULL)
3382 return NULL;
3383
3384 *modp = __map__is_kmodule(map) ? (char *)map__dso(map)->short_name : NULL;
3385 *addrp = map__unmap_ip(map, sym->start);
3386 return sym->name;
3387}
3388
3389int machine__for_each_dso(struct machine *machine, machine__dso_t fn, void *priv)
3390{
3391 struct dso *pos;
3392 int err = 0;
3393
3394 list_for_each_entry(pos, &machine->dsos.head, node) {
3395 if (fn(pos, machine, priv))
3396 err = -1;
3397 }
3398 return err;
3399}
3400
3401int machine__for_each_kernel_map(struct machine *machine, machine__map_t fn, void *priv)
3402{
3403 struct maps *maps = machine__kernel_maps(machine);
3404 struct map_rb_node *pos;
3405 int err = 0;
3406
3407 maps__for_each_entry(maps, pos) {
3408 err = fn(pos->map, priv);
3409 if (err != 0) {
3410 break;
3411 }
3412 }
3413 return err;
3414}
3415
3416bool machine__is_lock_function(struct machine *machine, u64 addr)
3417{
3418 if (!machine->sched.text_start) {
3419 struct map *kmap;
3420 struct symbol *sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_start", &kmap);
3421
3422 if (!sym) {
3423 /* to avoid retry */
3424 machine->sched.text_start = 1;
3425 return false;
3426 }
3427
3428 machine->sched.text_start = map__unmap_ip(kmap, sym->start);
3429
3430 /* should not fail from here */
3431 sym = machine__find_kernel_symbol_by_name(machine, "__sched_text_end", &kmap);
3432 machine->sched.text_end = map__unmap_ip(kmap, sym->start);
3433
3434 sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_start", &kmap);
3435 machine->lock.text_start = map__unmap_ip(kmap, sym->start);
3436
3437 sym = machine__find_kernel_symbol_by_name(machine, "__lock_text_end", &kmap);
3438 machine->lock.text_end = map__unmap_ip(kmap, sym->start);
3439 }
3440
3441 /* failed to get kernel symbols */
3442 if (machine->sched.text_start == 1)
3443 return false;
3444
3445 /* mutex and rwsem functions are in sched text section */
3446 if (machine->sched.text_start <= addr && addr < machine->sched.text_end)
3447 return true;
3448
3449 /* spinlock functions are in lock text section */
3450 if (machine->lock.text_start <= addr && addr < machine->lock.text_end)
3451 return true;
3452
3453 return false;
3454}