Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 2015 Shaohua Li <shli@fb.com>
4 * Copyright (C) 2016 Song Liu <songliubraving@fb.com>
5 */
6#include <linux/kernel.h>
7#include <linux/wait.h>
8#include <linux/blkdev.h>
9#include <linux/slab.h>
10#include <linux/raid/md_p.h>
11#include <linux/crc32c.h>
12#include <linux/random.h>
13#include <linux/kthread.h>
14#include <linux/types.h>
15#include "md.h"
16#include "raid5.h"
17#include "md-bitmap.h"
18#include "raid5-log.h"
19
20/*
21 * metadata/data stored in disk with 4k size unit (a block) regardless
22 * underneath hardware sector size. only works with PAGE_SIZE == 4096
23 */
24#define BLOCK_SECTORS (8)
25#define BLOCK_SECTOR_SHIFT (3)
26
27/*
28 * log->max_free_space is min(1/4 disk size, 10G reclaimable space).
29 *
30 * In write through mode, the reclaim runs every log->max_free_space.
31 * This can prevent the recovery scans for too long
32 */
33#define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
34#define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
35
36/* wake up reclaim thread periodically */
37#define R5C_RECLAIM_WAKEUP_INTERVAL (30 * HZ)
38/* start flush with these full stripes */
39#define R5C_FULL_STRIPE_FLUSH_BATCH(conf) (conf->max_nr_stripes / 4)
40/* reclaim stripes in groups */
41#define R5C_RECLAIM_STRIPE_GROUP (NR_STRIPE_HASH_LOCKS * 2)
42
43/*
44 * We only need 2 bios per I/O unit to make progress, but ensure we
45 * have a few more available to not get too tight.
46 */
47#define R5L_POOL_SIZE 4
48
49static char *r5c_journal_mode_str[] = {"write-through",
50 "write-back"};
51/*
52 * raid5 cache state machine
53 *
54 * With the RAID cache, each stripe works in two phases:
55 * - caching phase
56 * - writing-out phase
57 *
58 * These two phases are controlled by bit STRIPE_R5C_CACHING:
59 * if STRIPE_R5C_CACHING == 0, the stripe is in writing-out phase
60 * if STRIPE_R5C_CACHING == 1, the stripe is in caching phase
61 *
62 * When there is no journal, or the journal is in write-through mode,
63 * the stripe is always in writing-out phase.
64 *
65 * For write-back journal, the stripe is sent to caching phase on write
66 * (r5c_try_caching_write). r5c_make_stripe_write_out() kicks off
67 * the write-out phase by clearing STRIPE_R5C_CACHING.
68 *
69 * Stripes in caching phase do not write the raid disks. Instead, all
70 * writes are committed from the log device. Therefore, a stripe in
71 * caching phase handles writes as:
72 * - write to log device
73 * - return IO
74 *
75 * Stripes in writing-out phase handle writes as:
76 * - calculate parity
77 * - write pending data and parity to journal
78 * - write data and parity to raid disks
79 * - return IO for pending writes
80 */
81
82struct r5l_log {
83 struct md_rdev *rdev;
84
85 u32 uuid_checksum;
86
87 sector_t device_size; /* log device size, round to
88 * BLOCK_SECTORS */
89 sector_t max_free_space; /* reclaim run if free space is at
90 * this size */
91
92 sector_t last_checkpoint; /* log tail. where recovery scan
93 * starts from */
94 u64 last_cp_seq; /* log tail sequence */
95
96 sector_t log_start; /* log head. where new data appends */
97 u64 seq; /* log head sequence */
98
99 sector_t next_checkpoint;
100
101 struct mutex io_mutex;
102 struct r5l_io_unit *current_io; /* current io_unit accepting new data */
103
104 spinlock_t io_list_lock;
105 struct list_head running_ios; /* io_units which are still running,
106 * and have not yet been completely
107 * written to the log */
108 struct list_head io_end_ios; /* io_units which have been completely
109 * written to the log but not yet written
110 * to the RAID */
111 struct list_head flushing_ios; /* io_units which are waiting for log
112 * cache flush */
113 struct list_head finished_ios; /* io_units which settle down in log disk */
114 struct bio flush_bio;
115
116 struct list_head no_mem_stripes; /* pending stripes, -ENOMEM */
117
118 struct kmem_cache *io_kc;
119 mempool_t io_pool;
120 struct bio_set bs;
121 mempool_t meta_pool;
122
123 struct md_thread __rcu *reclaim_thread;
124 unsigned long reclaim_target; /* number of space that need to be
125 * reclaimed. if it's 0, reclaim spaces
126 * used by io_units which are in
127 * IO_UNIT_STRIPE_END state (eg, reclaim
128 * doesn't wait for specific io_unit
129 * switching to IO_UNIT_STRIPE_END
130 * state) */
131 wait_queue_head_t iounit_wait;
132
133 struct list_head no_space_stripes; /* pending stripes, log has no space */
134 spinlock_t no_space_stripes_lock;
135
136 bool need_cache_flush;
137
138 /* for r5c_cache */
139 enum r5c_journal_mode r5c_journal_mode;
140
141 /* all stripes in r5cache, in the order of seq at sh->log_start */
142 struct list_head stripe_in_journal_list;
143
144 spinlock_t stripe_in_journal_lock;
145 atomic_t stripe_in_journal_count;
146
147 /* to submit async io_units, to fulfill ordering of flush */
148 struct work_struct deferred_io_work;
149 /* to disable write back during in degraded mode */
150 struct work_struct disable_writeback_work;
151
152 /* to for chunk_aligned_read in writeback mode, details below */
153 spinlock_t tree_lock;
154 struct radix_tree_root big_stripe_tree;
155};
156
157/*
158 * Enable chunk_aligned_read() with write back cache.
159 *
160 * Each chunk may contain more than one stripe (for example, a 256kB
161 * chunk contains 64 4kB-page, so this chunk contain 64 stripes). For
162 * chunk_aligned_read, these stripes are grouped into one "big_stripe".
163 * For each big_stripe, we count how many stripes of this big_stripe
164 * are in the write back cache. These data are tracked in a radix tree
165 * (big_stripe_tree). We use radix_tree item pointer as the counter.
166 * r5c_tree_index() is used to calculate keys for the radix tree.
167 *
168 * chunk_aligned_read() calls r5c_big_stripe_cached() to look up
169 * big_stripe of each chunk in the tree. If this big_stripe is in the
170 * tree, chunk_aligned_read() aborts. This look up is protected by
171 * rcu_read_lock().
172 *
173 * It is necessary to remember whether a stripe is counted in
174 * big_stripe_tree. Instead of adding new flag, we reuses existing flags:
175 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE. If either of these
176 * two flags are set, the stripe is counted in big_stripe_tree. This
177 * requires moving set_bit(STRIPE_R5C_PARTIAL_STRIPE) to
178 * r5c_try_caching_write(); and moving clear_bit of
179 * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE to
180 * r5c_finish_stripe_write_out().
181 */
182
183/*
184 * radix tree requests lowest 2 bits of data pointer to be 2b'00.
185 * So it is necessary to left shift the counter by 2 bits before using it
186 * as data pointer of the tree.
187 */
188#define R5C_RADIX_COUNT_SHIFT 2
189
190/*
191 * calculate key for big_stripe_tree
192 *
193 * sect: align_bi->bi_iter.bi_sector or sh->sector
194 */
195static inline sector_t r5c_tree_index(struct r5conf *conf,
196 sector_t sect)
197{
198 sector_div(sect, conf->chunk_sectors);
199 return sect;
200}
201
202/*
203 * an IO range starts from a meta data block and end at the next meta data
204 * block. The io unit's the meta data block tracks data/parity followed it. io
205 * unit is written to log disk with normal write, as we always flush log disk
206 * first and then start move data to raid disks, there is no requirement to
207 * write io unit with FLUSH/FUA
208 */
209struct r5l_io_unit {
210 struct r5l_log *log;
211
212 struct page *meta_page; /* store meta block */
213 int meta_offset; /* current offset in meta_page */
214
215 struct bio *current_bio;/* current_bio accepting new data */
216
217 atomic_t pending_stripe;/* how many stripes not flushed to raid */
218 u64 seq; /* seq number of the metablock */
219 sector_t log_start; /* where the io_unit starts */
220 sector_t log_end; /* where the io_unit ends */
221 struct list_head log_sibling; /* log->running_ios */
222 struct list_head stripe_list; /* stripes added to the io_unit */
223
224 int state;
225 bool need_split_bio;
226 struct bio *split_bio;
227
228 unsigned int has_flush:1; /* include flush request */
229 unsigned int has_fua:1; /* include fua request */
230 unsigned int has_null_flush:1; /* include null flush request */
231 unsigned int has_flush_payload:1; /* include flush payload */
232 /*
233 * io isn't sent yet, flush/fua request can only be submitted till it's
234 * the first IO in running_ios list
235 */
236 unsigned int io_deferred:1;
237
238 struct bio_list flush_barriers; /* size == 0 flush bios */
239};
240
241/* r5l_io_unit state */
242enum r5l_io_unit_state {
243 IO_UNIT_RUNNING = 0, /* accepting new IO */
244 IO_UNIT_IO_START = 1, /* io_unit bio start writing to log,
245 * don't accepting new bio */
246 IO_UNIT_IO_END = 2, /* io_unit bio finish writing to log */
247 IO_UNIT_STRIPE_END = 3, /* stripes data finished writing to raid */
248};
249
250bool r5c_is_writeback(struct r5l_log *log)
251{
252 return (log != NULL &&
253 log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK);
254}
255
256static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc)
257{
258 start += inc;
259 if (start >= log->device_size)
260 start = start - log->device_size;
261 return start;
262}
263
264static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start,
265 sector_t end)
266{
267 if (end >= start)
268 return end - start;
269 else
270 return end + log->device_size - start;
271}
272
273static bool r5l_has_free_space(struct r5l_log *log, sector_t size)
274{
275 sector_t used_size;
276
277 used_size = r5l_ring_distance(log, log->last_checkpoint,
278 log->log_start);
279
280 return log->device_size > used_size + size;
281}
282
283static void __r5l_set_io_unit_state(struct r5l_io_unit *io,
284 enum r5l_io_unit_state state)
285{
286 if (WARN_ON(io->state >= state))
287 return;
288 io->state = state;
289}
290
291static void
292r5c_return_dev_pending_writes(struct r5conf *conf, struct r5dev *dev)
293{
294 struct bio *wbi, *wbi2;
295
296 wbi = dev->written;
297 dev->written = NULL;
298 while (wbi && wbi->bi_iter.bi_sector <
299 dev->sector + RAID5_STRIPE_SECTORS(conf)) {
300 wbi2 = r5_next_bio(conf, wbi, dev->sector);
301 md_write_end(conf->mddev);
302 bio_endio(wbi);
303 wbi = wbi2;
304 }
305}
306
307void r5c_handle_cached_data_endio(struct r5conf *conf,
308 struct stripe_head *sh, int disks)
309{
310 int i;
311
312 for (i = sh->disks; i--; ) {
313 if (sh->dev[i].written) {
314 set_bit(R5_UPTODATE, &sh->dev[i].flags);
315 r5c_return_dev_pending_writes(conf, &sh->dev[i]);
316 md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
317 RAID5_STRIPE_SECTORS(conf),
318 !test_bit(STRIPE_DEGRADED, &sh->state),
319 0);
320 }
321 }
322}
323
324void r5l_wake_reclaim(struct r5l_log *log, sector_t space);
325
326/* Check whether we should flush some stripes to free up stripe cache */
327void r5c_check_stripe_cache_usage(struct r5conf *conf)
328{
329 int total_cached;
330
331 if (!r5c_is_writeback(conf->log))
332 return;
333
334 total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
335 atomic_read(&conf->r5c_cached_full_stripes);
336
337 /*
338 * The following condition is true for either of the following:
339 * - stripe cache pressure high:
340 * total_cached > 3/4 min_nr_stripes ||
341 * empty_inactive_list_nr > 0
342 * - stripe cache pressure moderate:
343 * total_cached > 1/2 min_nr_stripes
344 */
345 if (total_cached > conf->min_nr_stripes * 1 / 2 ||
346 atomic_read(&conf->empty_inactive_list_nr) > 0)
347 r5l_wake_reclaim(conf->log, 0);
348}
349
350/*
351 * flush cache when there are R5C_FULL_STRIPE_FLUSH_BATCH or more full
352 * stripes in the cache
353 */
354void r5c_check_cached_full_stripe(struct r5conf *conf)
355{
356 if (!r5c_is_writeback(conf->log))
357 return;
358
359 /*
360 * wake up reclaim for R5C_FULL_STRIPE_FLUSH_BATCH cached stripes
361 * or a full stripe (chunk size / 4k stripes).
362 */
363 if (atomic_read(&conf->r5c_cached_full_stripes) >=
364 min(R5C_FULL_STRIPE_FLUSH_BATCH(conf),
365 conf->chunk_sectors >> RAID5_STRIPE_SHIFT(conf)))
366 r5l_wake_reclaim(conf->log, 0);
367}
368
369/*
370 * Total log space (in sectors) needed to flush all data in cache
371 *
372 * To avoid deadlock due to log space, it is necessary to reserve log
373 * space to flush critical stripes (stripes that occupying log space near
374 * last_checkpoint). This function helps check how much log space is
375 * required to flush all cached stripes.
376 *
377 * To reduce log space requirements, two mechanisms are used to give cache
378 * flush higher priorities:
379 * 1. In handle_stripe_dirtying() and schedule_reconstruction(),
380 * stripes ALREADY in journal can be flushed w/o pending writes;
381 * 2. In r5l_write_stripe() and r5c_cache_data(), stripes NOT in journal
382 * can be delayed (r5l_add_no_space_stripe).
383 *
384 * In cache flush, the stripe goes through 1 and then 2. For a stripe that
385 * already passed 1, flushing it requires at most (conf->max_degraded + 1)
386 * pages of journal space. For stripes that has not passed 1, flushing it
387 * requires (conf->raid_disks + 1) pages of journal space. There are at
388 * most (conf->group_cnt + 1) stripe that passed 1. So total journal space
389 * required to flush all cached stripes (in pages) is:
390 *
391 * (stripe_in_journal_count - group_cnt - 1) * (max_degraded + 1) +
392 * (group_cnt + 1) * (raid_disks + 1)
393 * or
394 * (stripe_in_journal_count) * (max_degraded + 1) +
395 * (group_cnt + 1) * (raid_disks - max_degraded)
396 */
397static sector_t r5c_log_required_to_flush_cache(struct r5conf *conf)
398{
399 struct r5l_log *log = conf->log;
400
401 if (!r5c_is_writeback(log))
402 return 0;
403
404 return BLOCK_SECTORS *
405 ((conf->max_degraded + 1) * atomic_read(&log->stripe_in_journal_count) +
406 (conf->raid_disks - conf->max_degraded) * (conf->group_cnt + 1));
407}
408
409/*
410 * evaluate log space usage and update R5C_LOG_TIGHT and R5C_LOG_CRITICAL
411 *
412 * R5C_LOG_TIGHT is set when free space on the log device is less than 3x of
413 * reclaim_required_space. R5C_LOG_CRITICAL is set when free space on the log
414 * device is less than 2x of reclaim_required_space.
415 */
416static inline void r5c_update_log_state(struct r5l_log *log)
417{
418 struct r5conf *conf = log->rdev->mddev->private;
419 sector_t free_space;
420 sector_t reclaim_space;
421 bool wake_reclaim = false;
422
423 if (!r5c_is_writeback(log))
424 return;
425
426 free_space = r5l_ring_distance(log, log->log_start,
427 log->last_checkpoint);
428 reclaim_space = r5c_log_required_to_flush_cache(conf);
429 if (free_space < 2 * reclaim_space)
430 set_bit(R5C_LOG_CRITICAL, &conf->cache_state);
431 else {
432 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
433 wake_reclaim = true;
434 clear_bit(R5C_LOG_CRITICAL, &conf->cache_state);
435 }
436 if (free_space < 3 * reclaim_space)
437 set_bit(R5C_LOG_TIGHT, &conf->cache_state);
438 else
439 clear_bit(R5C_LOG_TIGHT, &conf->cache_state);
440
441 if (wake_reclaim)
442 r5l_wake_reclaim(log, 0);
443}
444
445/*
446 * Put the stripe into writing-out phase by clearing STRIPE_R5C_CACHING.
447 * This function should only be called in write-back mode.
448 */
449void r5c_make_stripe_write_out(struct stripe_head *sh)
450{
451 struct r5conf *conf = sh->raid_conf;
452 struct r5l_log *log = conf->log;
453
454 BUG_ON(!r5c_is_writeback(log));
455
456 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
457 clear_bit(STRIPE_R5C_CACHING, &sh->state);
458
459 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
460 atomic_inc(&conf->preread_active_stripes);
461}
462
463static void r5c_handle_data_cached(struct stripe_head *sh)
464{
465 int i;
466
467 for (i = sh->disks; i--; )
468 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
469 set_bit(R5_InJournal, &sh->dev[i].flags);
470 clear_bit(R5_LOCKED, &sh->dev[i].flags);
471 }
472 clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
473}
474
475/*
476 * this journal write must contain full parity,
477 * it may also contain some data pages
478 */
479static void r5c_handle_parity_cached(struct stripe_head *sh)
480{
481 int i;
482
483 for (i = sh->disks; i--; )
484 if (test_bit(R5_InJournal, &sh->dev[i].flags))
485 set_bit(R5_Wantwrite, &sh->dev[i].flags);
486}
487
488/*
489 * Setting proper flags after writing (or flushing) data and/or parity to the
490 * log device. This is called from r5l_log_endio() or r5l_log_flush_endio().
491 */
492static void r5c_finish_cache_stripe(struct stripe_head *sh)
493{
494 struct r5l_log *log = sh->raid_conf->log;
495
496 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
497 BUG_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
498 /*
499 * Set R5_InJournal for parity dev[pd_idx]. This means
500 * all data AND parity in the journal. For RAID 6, it is
501 * NOT necessary to set the flag for dev[qd_idx], as the
502 * two parities are written out together.
503 */
504 set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
505 } else if (test_bit(STRIPE_R5C_CACHING, &sh->state)) {
506 r5c_handle_data_cached(sh);
507 } else {
508 r5c_handle_parity_cached(sh);
509 set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
510 }
511}
512
513static void r5l_io_run_stripes(struct r5l_io_unit *io)
514{
515 struct stripe_head *sh, *next;
516
517 list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
518 list_del_init(&sh->log_list);
519
520 r5c_finish_cache_stripe(sh);
521
522 set_bit(STRIPE_HANDLE, &sh->state);
523 raid5_release_stripe(sh);
524 }
525}
526
527static void r5l_log_run_stripes(struct r5l_log *log)
528{
529 struct r5l_io_unit *io, *next;
530
531 lockdep_assert_held(&log->io_list_lock);
532
533 list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
534 /* don't change list order */
535 if (io->state < IO_UNIT_IO_END)
536 break;
537
538 list_move_tail(&io->log_sibling, &log->finished_ios);
539 r5l_io_run_stripes(io);
540 }
541}
542
543static void r5l_move_to_end_ios(struct r5l_log *log)
544{
545 struct r5l_io_unit *io, *next;
546
547 lockdep_assert_held(&log->io_list_lock);
548
549 list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
550 /* don't change list order */
551 if (io->state < IO_UNIT_IO_END)
552 break;
553 list_move_tail(&io->log_sibling, &log->io_end_ios);
554 }
555}
556
557static void __r5l_stripe_write_finished(struct r5l_io_unit *io);
558static void r5l_log_endio(struct bio *bio)
559{
560 struct r5l_io_unit *io = bio->bi_private;
561 struct r5l_io_unit *io_deferred;
562 struct r5l_log *log = io->log;
563 unsigned long flags;
564 bool has_null_flush;
565 bool has_flush_payload;
566
567 if (bio->bi_status)
568 md_error(log->rdev->mddev, log->rdev);
569
570 bio_put(bio);
571 mempool_free(io->meta_page, &log->meta_pool);
572
573 spin_lock_irqsave(&log->io_list_lock, flags);
574 __r5l_set_io_unit_state(io, IO_UNIT_IO_END);
575
576 /*
577 * if the io doesn't not have null_flush or flush payload,
578 * it is not safe to access it after releasing io_list_lock.
579 * Therefore, it is necessary to check the condition with
580 * the lock held.
581 */
582 has_null_flush = io->has_null_flush;
583 has_flush_payload = io->has_flush_payload;
584
585 if (log->need_cache_flush && !list_empty(&io->stripe_list))
586 r5l_move_to_end_ios(log);
587 else
588 r5l_log_run_stripes(log);
589 if (!list_empty(&log->running_ios)) {
590 /*
591 * FLUSH/FUA io_unit is deferred because of ordering, now we
592 * can dispatch it
593 */
594 io_deferred = list_first_entry(&log->running_ios,
595 struct r5l_io_unit, log_sibling);
596 if (io_deferred->io_deferred)
597 schedule_work(&log->deferred_io_work);
598 }
599
600 spin_unlock_irqrestore(&log->io_list_lock, flags);
601
602 if (log->need_cache_flush)
603 md_wakeup_thread(log->rdev->mddev->thread);
604
605 /* finish flush only io_unit and PAYLOAD_FLUSH only io_unit */
606 if (has_null_flush) {
607 struct bio *bi;
608
609 WARN_ON(bio_list_empty(&io->flush_barriers));
610 while ((bi = bio_list_pop(&io->flush_barriers)) != NULL) {
611 bio_endio(bi);
612 if (atomic_dec_and_test(&io->pending_stripe)) {
613 __r5l_stripe_write_finished(io);
614 return;
615 }
616 }
617 }
618 /* decrease pending_stripe for flush payload */
619 if (has_flush_payload)
620 if (atomic_dec_and_test(&io->pending_stripe))
621 __r5l_stripe_write_finished(io);
622}
623
624static void r5l_do_submit_io(struct r5l_log *log, struct r5l_io_unit *io)
625{
626 unsigned long flags;
627
628 spin_lock_irqsave(&log->io_list_lock, flags);
629 __r5l_set_io_unit_state(io, IO_UNIT_IO_START);
630 spin_unlock_irqrestore(&log->io_list_lock, flags);
631
632 /*
633 * In case of journal device failures, submit_bio will get error
634 * and calls endio, then active stripes will continue write
635 * process. Therefore, it is not necessary to check Faulty bit
636 * of journal device here.
637 *
638 * We can't check split_bio after current_bio is submitted. If
639 * io->split_bio is null, after current_bio is submitted, current_bio
640 * might already be completed and the io_unit is freed. We submit
641 * split_bio first to avoid the issue.
642 */
643 if (io->split_bio) {
644 if (io->has_flush)
645 io->split_bio->bi_opf |= REQ_PREFLUSH;
646 if (io->has_fua)
647 io->split_bio->bi_opf |= REQ_FUA;
648 submit_bio(io->split_bio);
649 }
650
651 if (io->has_flush)
652 io->current_bio->bi_opf |= REQ_PREFLUSH;
653 if (io->has_fua)
654 io->current_bio->bi_opf |= REQ_FUA;
655 submit_bio(io->current_bio);
656}
657
658/* deferred io_unit will be dispatched here */
659static void r5l_submit_io_async(struct work_struct *work)
660{
661 struct r5l_log *log = container_of(work, struct r5l_log,
662 deferred_io_work);
663 struct r5l_io_unit *io = NULL;
664 unsigned long flags;
665
666 spin_lock_irqsave(&log->io_list_lock, flags);
667 if (!list_empty(&log->running_ios)) {
668 io = list_first_entry(&log->running_ios, struct r5l_io_unit,
669 log_sibling);
670 if (!io->io_deferred)
671 io = NULL;
672 else
673 io->io_deferred = 0;
674 }
675 spin_unlock_irqrestore(&log->io_list_lock, flags);
676 if (io)
677 r5l_do_submit_io(log, io);
678}
679
680static void r5c_disable_writeback_async(struct work_struct *work)
681{
682 struct r5l_log *log = container_of(work, struct r5l_log,
683 disable_writeback_work);
684 struct mddev *mddev = log->rdev->mddev;
685 struct r5conf *conf = mddev->private;
686 int locked = 0;
687
688 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
689 return;
690 pr_info("md/raid:%s: Disabling writeback cache for degraded array.\n",
691 mdname(mddev));
692
693 /* wait superblock change before suspend */
694 wait_event(mddev->sb_wait,
695 conf->log == NULL ||
696 (!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags) &&
697 (locked = mddev_trylock(mddev))));
698 if (locked) {
699 mddev_suspend(mddev);
700 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
701 mddev_resume(mddev);
702 mddev_unlock(mddev);
703 }
704}
705
706static void r5l_submit_current_io(struct r5l_log *log)
707{
708 struct r5l_io_unit *io = log->current_io;
709 struct r5l_meta_block *block;
710 unsigned long flags;
711 u32 crc;
712 bool do_submit = true;
713
714 if (!io)
715 return;
716
717 block = page_address(io->meta_page);
718 block->meta_size = cpu_to_le32(io->meta_offset);
719 crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE);
720 block->checksum = cpu_to_le32(crc);
721
722 log->current_io = NULL;
723 spin_lock_irqsave(&log->io_list_lock, flags);
724 if (io->has_flush || io->has_fua) {
725 if (io != list_first_entry(&log->running_ios,
726 struct r5l_io_unit, log_sibling)) {
727 io->io_deferred = 1;
728 do_submit = false;
729 }
730 }
731 spin_unlock_irqrestore(&log->io_list_lock, flags);
732 if (do_submit)
733 r5l_do_submit_io(log, io);
734}
735
736static struct bio *r5l_bio_alloc(struct r5l_log *log)
737{
738 struct bio *bio = bio_alloc_bioset(log->rdev->bdev, BIO_MAX_VECS,
739 REQ_OP_WRITE, GFP_NOIO, &log->bs);
740
741 bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start;
742
743 return bio;
744}
745
746static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io)
747{
748 log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS);
749
750 r5c_update_log_state(log);
751 /*
752 * If we filled up the log device start from the beginning again,
753 * which will require a new bio.
754 *
755 * Note: for this to work properly the log size needs to me a multiple
756 * of BLOCK_SECTORS.
757 */
758 if (log->log_start == 0)
759 io->need_split_bio = true;
760
761 io->log_end = log->log_start;
762}
763
764static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log)
765{
766 struct r5l_io_unit *io;
767 struct r5l_meta_block *block;
768
769 io = mempool_alloc(&log->io_pool, GFP_ATOMIC);
770 if (!io)
771 return NULL;
772 memset(io, 0, sizeof(*io));
773
774 io->log = log;
775 INIT_LIST_HEAD(&io->log_sibling);
776 INIT_LIST_HEAD(&io->stripe_list);
777 bio_list_init(&io->flush_barriers);
778 io->state = IO_UNIT_RUNNING;
779
780 io->meta_page = mempool_alloc(&log->meta_pool, GFP_NOIO);
781 block = page_address(io->meta_page);
782 clear_page(block);
783 block->magic = cpu_to_le32(R5LOG_MAGIC);
784 block->version = R5LOG_VERSION;
785 block->seq = cpu_to_le64(log->seq);
786 block->position = cpu_to_le64(log->log_start);
787
788 io->log_start = log->log_start;
789 io->meta_offset = sizeof(struct r5l_meta_block);
790 io->seq = log->seq++;
791
792 io->current_bio = r5l_bio_alloc(log);
793 io->current_bio->bi_end_io = r5l_log_endio;
794 io->current_bio->bi_private = io;
795 __bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0);
796
797 r5_reserve_log_entry(log, io);
798
799 spin_lock_irq(&log->io_list_lock);
800 list_add_tail(&io->log_sibling, &log->running_ios);
801 spin_unlock_irq(&log->io_list_lock);
802
803 return io;
804}
805
806static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size)
807{
808 if (log->current_io &&
809 log->current_io->meta_offset + payload_size > PAGE_SIZE)
810 r5l_submit_current_io(log);
811
812 if (!log->current_io) {
813 log->current_io = r5l_new_meta(log);
814 if (!log->current_io)
815 return -ENOMEM;
816 }
817
818 return 0;
819}
820
821static void r5l_append_payload_meta(struct r5l_log *log, u16 type,
822 sector_t location,
823 u32 checksum1, u32 checksum2,
824 bool checksum2_valid)
825{
826 struct r5l_io_unit *io = log->current_io;
827 struct r5l_payload_data_parity *payload;
828
829 payload = page_address(io->meta_page) + io->meta_offset;
830 payload->header.type = cpu_to_le16(type);
831 payload->header.flags = cpu_to_le16(0);
832 payload->size = cpu_to_le32((1 + !!checksum2_valid) <<
833 (PAGE_SHIFT - 9));
834 payload->location = cpu_to_le64(location);
835 payload->checksum[0] = cpu_to_le32(checksum1);
836 if (checksum2_valid)
837 payload->checksum[1] = cpu_to_le32(checksum2);
838
839 io->meta_offset += sizeof(struct r5l_payload_data_parity) +
840 sizeof(__le32) * (1 + !!checksum2_valid);
841}
842
843static void r5l_append_payload_page(struct r5l_log *log, struct page *page)
844{
845 struct r5l_io_unit *io = log->current_io;
846
847 if (io->need_split_bio) {
848 BUG_ON(io->split_bio);
849 io->split_bio = io->current_bio;
850 io->current_bio = r5l_bio_alloc(log);
851 bio_chain(io->current_bio, io->split_bio);
852 io->need_split_bio = false;
853 }
854
855 if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0))
856 BUG();
857
858 r5_reserve_log_entry(log, io);
859}
860
861static void r5l_append_flush_payload(struct r5l_log *log, sector_t sect)
862{
863 struct mddev *mddev = log->rdev->mddev;
864 struct r5conf *conf = mddev->private;
865 struct r5l_io_unit *io;
866 struct r5l_payload_flush *payload;
867 int meta_size;
868
869 /*
870 * payload_flush requires extra writes to the journal.
871 * To avoid handling the extra IO in quiesce, just skip
872 * flush_payload
873 */
874 if (conf->quiesce)
875 return;
876
877 mutex_lock(&log->io_mutex);
878 meta_size = sizeof(struct r5l_payload_flush) + sizeof(__le64);
879
880 if (r5l_get_meta(log, meta_size)) {
881 mutex_unlock(&log->io_mutex);
882 return;
883 }
884
885 /* current implementation is one stripe per flush payload */
886 io = log->current_io;
887 payload = page_address(io->meta_page) + io->meta_offset;
888 payload->header.type = cpu_to_le16(R5LOG_PAYLOAD_FLUSH);
889 payload->header.flags = cpu_to_le16(0);
890 payload->size = cpu_to_le32(sizeof(__le64));
891 payload->flush_stripes[0] = cpu_to_le64(sect);
892 io->meta_offset += meta_size;
893 /* multiple flush payloads count as one pending_stripe */
894 if (!io->has_flush_payload) {
895 io->has_flush_payload = 1;
896 atomic_inc(&io->pending_stripe);
897 }
898 mutex_unlock(&log->io_mutex);
899}
900
901static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh,
902 int data_pages, int parity_pages)
903{
904 int i;
905 int meta_size;
906 int ret;
907 struct r5l_io_unit *io;
908
909 meta_size =
910 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
911 * data_pages) +
912 sizeof(struct r5l_payload_data_parity) +
913 sizeof(__le32) * parity_pages;
914
915 ret = r5l_get_meta(log, meta_size);
916 if (ret)
917 return ret;
918
919 io = log->current_io;
920
921 if (test_and_clear_bit(STRIPE_R5C_PREFLUSH, &sh->state))
922 io->has_flush = 1;
923
924 for (i = 0; i < sh->disks; i++) {
925 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
926 test_bit(R5_InJournal, &sh->dev[i].flags))
927 continue;
928 if (i == sh->pd_idx || i == sh->qd_idx)
929 continue;
930 if (test_bit(R5_WantFUA, &sh->dev[i].flags) &&
931 log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) {
932 io->has_fua = 1;
933 /*
934 * we need to flush journal to make sure recovery can
935 * reach the data with fua flag
936 */
937 io->has_flush = 1;
938 }
939 r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA,
940 raid5_compute_blocknr(sh, i, 0),
941 sh->dev[i].log_checksum, 0, false);
942 r5l_append_payload_page(log, sh->dev[i].page);
943 }
944
945 if (parity_pages == 2) {
946 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
947 sh->sector, sh->dev[sh->pd_idx].log_checksum,
948 sh->dev[sh->qd_idx].log_checksum, true);
949 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
950 r5l_append_payload_page(log, sh->dev[sh->qd_idx].page);
951 } else if (parity_pages == 1) {
952 r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
953 sh->sector, sh->dev[sh->pd_idx].log_checksum,
954 0, false);
955 r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
956 } else /* Just writing data, not parity, in caching phase */
957 BUG_ON(parity_pages != 0);
958
959 list_add_tail(&sh->log_list, &io->stripe_list);
960 atomic_inc(&io->pending_stripe);
961 sh->log_io = io;
962
963 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
964 return 0;
965
966 if (sh->log_start == MaxSector) {
967 BUG_ON(!list_empty(&sh->r5c));
968 sh->log_start = io->log_start;
969 spin_lock_irq(&log->stripe_in_journal_lock);
970 list_add_tail(&sh->r5c,
971 &log->stripe_in_journal_list);
972 spin_unlock_irq(&log->stripe_in_journal_lock);
973 atomic_inc(&log->stripe_in_journal_count);
974 }
975 return 0;
976}
977
978/* add stripe to no_space_stripes, and then wake up reclaim */
979static inline void r5l_add_no_space_stripe(struct r5l_log *log,
980 struct stripe_head *sh)
981{
982 spin_lock(&log->no_space_stripes_lock);
983 list_add_tail(&sh->log_list, &log->no_space_stripes);
984 spin_unlock(&log->no_space_stripes_lock);
985}
986
987/*
988 * running in raid5d, where reclaim could wait for raid5d too (when it flushes
989 * data from log to raid disks), so we shouldn't wait for reclaim here
990 */
991int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh)
992{
993 struct r5conf *conf = sh->raid_conf;
994 int write_disks = 0;
995 int data_pages, parity_pages;
996 int reserve;
997 int i;
998 int ret = 0;
999 bool wake_reclaim = false;
1000
1001 if (!log)
1002 return -EAGAIN;
1003 /* Don't support stripe batch */
1004 if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
1005 test_bit(STRIPE_SYNCING, &sh->state)) {
1006 /* the stripe is written to log, we start writing it to raid */
1007 clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
1008 return -EAGAIN;
1009 }
1010
1011 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
1012
1013 for (i = 0; i < sh->disks; i++) {
1014 void *addr;
1015
1016 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
1017 test_bit(R5_InJournal, &sh->dev[i].flags))
1018 continue;
1019
1020 write_disks++;
1021 /* checksum is already calculated in last run */
1022 if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
1023 continue;
1024 addr = kmap_atomic(sh->dev[i].page);
1025 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
1026 addr, PAGE_SIZE);
1027 kunmap_atomic(addr);
1028 }
1029 parity_pages = 1 + !!(sh->qd_idx >= 0);
1030 data_pages = write_disks - parity_pages;
1031
1032 set_bit(STRIPE_LOG_TRAPPED, &sh->state);
1033 /*
1034 * The stripe must enter state machine again to finish the write, so
1035 * don't delay.
1036 */
1037 clear_bit(STRIPE_DELAYED, &sh->state);
1038 atomic_inc(&sh->count);
1039
1040 mutex_lock(&log->io_mutex);
1041 /* meta + data */
1042 reserve = (1 + write_disks) << (PAGE_SHIFT - 9);
1043
1044 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
1045 if (!r5l_has_free_space(log, reserve)) {
1046 r5l_add_no_space_stripe(log, sh);
1047 wake_reclaim = true;
1048 } else {
1049 ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
1050 if (ret) {
1051 spin_lock_irq(&log->io_list_lock);
1052 list_add_tail(&sh->log_list,
1053 &log->no_mem_stripes);
1054 spin_unlock_irq(&log->io_list_lock);
1055 }
1056 }
1057 } else { /* R5C_JOURNAL_MODE_WRITE_BACK */
1058 /*
1059 * log space critical, do not process stripes that are
1060 * not in cache yet (sh->log_start == MaxSector).
1061 */
1062 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
1063 sh->log_start == MaxSector) {
1064 r5l_add_no_space_stripe(log, sh);
1065 wake_reclaim = true;
1066 reserve = 0;
1067 } else if (!r5l_has_free_space(log, reserve)) {
1068 if (sh->log_start == log->last_checkpoint)
1069 BUG();
1070 else
1071 r5l_add_no_space_stripe(log, sh);
1072 } else {
1073 ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
1074 if (ret) {
1075 spin_lock_irq(&log->io_list_lock);
1076 list_add_tail(&sh->log_list,
1077 &log->no_mem_stripes);
1078 spin_unlock_irq(&log->io_list_lock);
1079 }
1080 }
1081 }
1082
1083 mutex_unlock(&log->io_mutex);
1084 if (wake_reclaim)
1085 r5l_wake_reclaim(log, reserve);
1086 return 0;
1087}
1088
1089void r5l_write_stripe_run(struct r5l_log *log)
1090{
1091 if (!log)
1092 return;
1093 mutex_lock(&log->io_mutex);
1094 r5l_submit_current_io(log);
1095 mutex_unlock(&log->io_mutex);
1096}
1097
1098int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio)
1099{
1100 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
1101 /*
1102 * in write through (journal only)
1103 * we flush log disk cache first, then write stripe data to
1104 * raid disks. So if bio is finished, the log disk cache is
1105 * flushed already. The recovery guarantees we can recovery
1106 * the bio from log disk, so we don't need to flush again
1107 */
1108 if (bio->bi_iter.bi_size == 0) {
1109 bio_endio(bio);
1110 return 0;
1111 }
1112 bio->bi_opf &= ~REQ_PREFLUSH;
1113 } else {
1114 /* write back (with cache) */
1115 if (bio->bi_iter.bi_size == 0) {
1116 mutex_lock(&log->io_mutex);
1117 r5l_get_meta(log, 0);
1118 bio_list_add(&log->current_io->flush_barriers, bio);
1119 log->current_io->has_flush = 1;
1120 log->current_io->has_null_flush = 1;
1121 atomic_inc(&log->current_io->pending_stripe);
1122 r5l_submit_current_io(log);
1123 mutex_unlock(&log->io_mutex);
1124 return 0;
1125 }
1126 }
1127 return -EAGAIN;
1128}
1129
1130/* This will run after log space is reclaimed */
1131static void r5l_run_no_space_stripes(struct r5l_log *log)
1132{
1133 struct stripe_head *sh;
1134
1135 spin_lock(&log->no_space_stripes_lock);
1136 while (!list_empty(&log->no_space_stripes)) {
1137 sh = list_first_entry(&log->no_space_stripes,
1138 struct stripe_head, log_list);
1139 list_del_init(&sh->log_list);
1140 set_bit(STRIPE_HANDLE, &sh->state);
1141 raid5_release_stripe(sh);
1142 }
1143 spin_unlock(&log->no_space_stripes_lock);
1144}
1145
1146/*
1147 * calculate new last_checkpoint
1148 * for write through mode, returns log->next_checkpoint
1149 * for write back, returns log_start of first sh in stripe_in_journal_list
1150 */
1151static sector_t r5c_calculate_new_cp(struct r5conf *conf)
1152{
1153 struct stripe_head *sh;
1154 struct r5l_log *log = conf->log;
1155 sector_t new_cp;
1156 unsigned long flags;
1157
1158 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
1159 return log->next_checkpoint;
1160
1161 spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1162 if (list_empty(&conf->log->stripe_in_journal_list)) {
1163 /* all stripes flushed */
1164 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1165 return log->next_checkpoint;
1166 }
1167 sh = list_first_entry(&conf->log->stripe_in_journal_list,
1168 struct stripe_head, r5c);
1169 new_cp = sh->log_start;
1170 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1171 return new_cp;
1172}
1173
1174static sector_t r5l_reclaimable_space(struct r5l_log *log)
1175{
1176 struct r5conf *conf = log->rdev->mddev->private;
1177
1178 return r5l_ring_distance(log, log->last_checkpoint,
1179 r5c_calculate_new_cp(conf));
1180}
1181
1182static void r5l_run_no_mem_stripe(struct r5l_log *log)
1183{
1184 struct stripe_head *sh;
1185
1186 lockdep_assert_held(&log->io_list_lock);
1187
1188 if (!list_empty(&log->no_mem_stripes)) {
1189 sh = list_first_entry(&log->no_mem_stripes,
1190 struct stripe_head, log_list);
1191 list_del_init(&sh->log_list);
1192 set_bit(STRIPE_HANDLE, &sh->state);
1193 raid5_release_stripe(sh);
1194 }
1195}
1196
1197static bool r5l_complete_finished_ios(struct r5l_log *log)
1198{
1199 struct r5l_io_unit *io, *next;
1200 bool found = false;
1201
1202 lockdep_assert_held(&log->io_list_lock);
1203
1204 list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) {
1205 /* don't change list order */
1206 if (io->state < IO_UNIT_STRIPE_END)
1207 break;
1208
1209 log->next_checkpoint = io->log_start;
1210
1211 list_del(&io->log_sibling);
1212 mempool_free(io, &log->io_pool);
1213 r5l_run_no_mem_stripe(log);
1214
1215 found = true;
1216 }
1217
1218 return found;
1219}
1220
1221static void __r5l_stripe_write_finished(struct r5l_io_unit *io)
1222{
1223 struct r5l_log *log = io->log;
1224 struct r5conf *conf = log->rdev->mddev->private;
1225 unsigned long flags;
1226
1227 spin_lock_irqsave(&log->io_list_lock, flags);
1228 __r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END);
1229
1230 if (!r5l_complete_finished_ios(log)) {
1231 spin_unlock_irqrestore(&log->io_list_lock, flags);
1232 return;
1233 }
1234
1235 if (r5l_reclaimable_space(log) > log->max_free_space ||
1236 test_bit(R5C_LOG_TIGHT, &conf->cache_state))
1237 r5l_wake_reclaim(log, 0);
1238
1239 spin_unlock_irqrestore(&log->io_list_lock, flags);
1240 wake_up(&log->iounit_wait);
1241}
1242
1243void r5l_stripe_write_finished(struct stripe_head *sh)
1244{
1245 struct r5l_io_unit *io;
1246
1247 io = sh->log_io;
1248 sh->log_io = NULL;
1249
1250 if (io && atomic_dec_and_test(&io->pending_stripe))
1251 __r5l_stripe_write_finished(io);
1252}
1253
1254static void r5l_log_flush_endio(struct bio *bio)
1255{
1256 struct r5l_log *log = container_of(bio, struct r5l_log,
1257 flush_bio);
1258 unsigned long flags;
1259 struct r5l_io_unit *io;
1260
1261 if (bio->bi_status)
1262 md_error(log->rdev->mddev, log->rdev);
1263
1264 spin_lock_irqsave(&log->io_list_lock, flags);
1265 list_for_each_entry(io, &log->flushing_ios, log_sibling)
1266 r5l_io_run_stripes(io);
1267 list_splice_tail_init(&log->flushing_ios, &log->finished_ios);
1268 spin_unlock_irqrestore(&log->io_list_lock, flags);
1269
1270 bio_uninit(bio);
1271}
1272
1273/*
1274 * Starting dispatch IO to raid.
1275 * io_unit(meta) consists of a log. There is one situation we want to avoid. A
1276 * broken meta in the middle of a log causes recovery can't find meta at the
1277 * head of log. If operations require meta at the head persistent in log, we
1278 * must make sure meta before it persistent in log too. A case is:
1279 *
1280 * stripe data/parity is in log, we start write stripe to raid disks. stripe
1281 * data/parity must be persistent in log before we do the write to raid disks.
1282 *
1283 * The solution is we restrictly maintain io_unit list order. In this case, we
1284 * only write stripes of an io_unit to raid disks till the io_unit is the first
1285 * one whose data/parity is in log.
1286 */
1287void r5l_flush_stripe_to_raid(struct r5l_log *log)
1288{
1289 bool do_flush;
1290
1291 if (!log || !log->need_cache_flush)
1292 return;
1293
1294 spin_lock_irq(&log->io_list_lock);
1295 /* flush bio is running */
1296 if (!list_empty(&log->flushing_ios)) {
1297 spin_unlock_irq(&log->io_list_lock);
1298 return;
1299 }
1300 list_splice_tail_init(&log->io_end_ios, &log->flushing_ios);
1301 do_flush = !list_empty(&log->flushing_ios);
1302 spin_unlock_irq(&log->io_list_lock);
1303
1304 if (!do_flush)
1305 return;
1306 bio_init(&log->flush_bio, log->rdev->bdev, NULL, 0,
1307 REQ_OP_WRITE | REQ_PREFLUSH);
1308 log->flush_bio.bi_end_io = r5l_log_flush_endio;
1309 submit_bio(&log->flush_bio);
1310}
1311
1312static void r5l_write_super(struct r5l_log *log, sector_t cp);
1313static void r5l_write_super_and_discard_space(struct r5l_log *log,
1314 sector_t end)
1315{
1316 struct block_device *bdev = log->rdev->bdev;
1317 struct mddev *mddev;
1318
1319 r5l_write_super(log, end);
1320
1321 if (!bdev_max_discard_sectors(bdev))
1322 return;
1323
1324 mddev = log->rdev->mddev;
1325 /*
1326 * Discard could zero data, so before discard we must make sure
1327 * superblock is updated to new log tail. Updating superblock (either
1328 * directly call md_update_sb() or depend on md thread) must hold
1329 * reconfig mutex. On the other hand, raid5_quiesce is called with
1330 * reconfig_mutex hold. The first step of raid5_quiesce() is waiting
1331 * for all IO finish, hence waiting for reclaim thread, while reclaim
1332 * thread is calling this function and waiting for reconfig mutex. So
1333 * there is a deadlock. We workaround this issue with a trylock.
1334 * FIXME: we could miss discard if we can't take reconfig mutex
1335 */
1336 set_mask_bits(&mddev->sb_flags, 0,
1337 BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1338 if (!mddev_trylock(mddev))
1339 return;
1340 md_update_sb(mddev, 1);
1341 mddev_unlock(mddev);
1342
1343 /* discard IO error really doesn't matter, ignore it */
1344 if (log->last_checkpoint < end) {
1345 blkdev_issue_discard(bdev,
1346 log->last_checkpoint + log->rdev->data_offset,
1347 end - log->last_checkpoint, GFP_NOIO);
1348 } else {
1349 blkdev_issue_discard(bdev,
1350 log->last_checkpoint + log->rdev->data_offset,
1351 log->device_size - log->last_checkpoint,
1352 GFP_NOIO);
1353 blkdev_issue_discard(bdev, log->rdev->data_offset, end,
1354 GFP_NOIO);
1355 }
1356}
1357
1358/*
1359 * r5c_flush_stripe moves stripe from cached list to handle_list. When called,
1360 * the stripe must be on r5c_cached_full_stripes or r5c_cached_partial_stripes.
1361 *
1362 * must hold conf->device_lock
1363 */
1364static void r5c_flush_stripe(struct r5conf *conf, struct stripe_head *sh)
1365{
1366 BUG_ON(list_empty(&sh->lru));
1367 BUG_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
1368 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
1369
1370 /*
1371 * The stripe is not ON_RELEASE_LIST, so it is safe to call
1372 * raid5_release_stripe() while holding conf->device_lock
1373 */
1374 BUG_ON(test_bit(STRIPE_ON_RELEASE_LIST, &sh->state));
1375 lockdep_assert_held(&conf->device_lock);
1376
1377 list_del_init(&sh->lru);
1378 atomic_inc(&sh->count);
1379
1380 set_bit(STRIPE_HANDLE, &sh->state);
1381 atomic_inc(&conf->active_stripes);
1382 r5c_make_stripe_write_out(sh);
1383
1384 if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
1385 atomic_inc(&conf->r5c_flushing_partial_stripes);
1386 else
1387 atomic_inc(&conf->r5c_flushing_full_stripes);
1388 raid5_release_stripe(sh);
1389}
1390
1391/*
1392 * if num == 0, flush all full stripes
1393 * if num > 0, flush all full stripes. If less than num full stripes are
1394 * flushed, flush some partial stripes until totally num stripes are
1395 * flushed or there is no more cached stripes.
1396 */
1397void r5c_flush_cache(struct r5conf *conf, int num)
1398{
1399 int count;
1400 struct stripe_head *sh, *next;
1401
1402 lockdep_assert_held(&conf->device_lock);
1403 if (!conf->log)
1404 return;
1405
1406 count = 0;
1407 list_for_each_entry_safe(sh, next, &conf->r5c_full_stripe_list, lru) {
1408 r5c_flush_stripe(conf, sh);
1409 count++;
1410 }
1411
1412 if (count >= num)
1413 return;
1414 list_for_each_entry_safe(sh, next,
1415 &conf->r5c_partial_stripe_list, lru) {
1416 r5c_flush_stripe(conf, sh);
1417 if (++count >= num)
1418 break;
1419 }
1420}
1421
1422static void r5c_do_reclaim(struct r5conf *conf)
1423{
1424 struct r5l_log *log = conf->log;
1425 struct stripe_head *sh;
1426 int count = 0;
1427 unsigned long flags;
1428 int total_cached;
1429 int stripes_to_flush;
1430 int flushing_partial, flushing_full;
1431
1432 if (!r5c_is_writeback(log))
1433 return;
1434
1435 flushing_partial = atomic_read(&conf->r5c_flushing_partial_stripes);
1436 flushing_full = atomic_read(&conf->r5c_flushing_full_stripes);
1437 total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
1438 atomic_read(&conf->r5c_cached_full_stripes) -
1439 flushing_full - flushing_partial;
1440
1441 if (total_cached > conf->min_nr_stripes * 3 / 4 ||
1442 atomic_read(&conf->empty_inactive_list_nr) > 0)
1443 /*
1444 * if stripe cache pressure high, flush all full stripes and
1445 * some partial stripes
1446 */
1447 stripes_to_flush = R5C_RECLAIM_STRIPE_GROUP;
1448 else if (total_cached > conf->min_nr_stripes * 1 / 2 ||
1449 atomic_read(&conf->r5c_cached_full_stripes) - flushing_full >
1450 R5C_FULL_STRIPE_FLUSH_BATCH(conf))
1451 /*
1452 * if stripe cache pressure moderate, or if there is many full
1453 * stripes,flush all full stripes
1454 */
1455 stripes_to_flush = 0;
1456 else
1457 /* no need to flush */
1458 stripes_to_flush = -1;
1459
1460 if (stripes_to_flush >= 0) {
1461 spin_lock_irqsave(&conf->device_lock, flags);
1462 r5c_flush_cache(conf, stripes_to_flush);
1463 spin_unlock_irqrestore(&conf->device_lock, flags);
1464 }
1465
1466 /* if log space is tight, flush stripes on stripe_in_journal_list */
1467 if (test_bit(R5C_LOG_TIGHT, &conf->cache_state)) {
1468 spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1469 spin_lock(&conf->device_lock);
1470 list_for_each_entry(sh, &log->stripe_in_journal_list, r5c) {
1471 /*
1472 * stripes on stripe_in_journal_list could be in any
1473 * state of the stripe_cache state machine. In this
1474 * case, we only want to flush stripe on
1475 * r5c_cached_full/partial_stripes. The following
1476 * condition makes sure the stripe is on one of the
1477 * two lists.
1478 */
1479 if (!list_empty(&sh->lru) &&
1480 !test_bit(STRIPE_HANDLE, &sh->state) &&
1481 atomic_read(&sh->count) == 0) {
1482 r5c_flush_stripe(conf, sh);
1483 if (count++ >= R5C_RECLAIM_STRIPE_GROUP)
1484 break;
1485 }
1486 }
1487 spin_unlock(&conf->device_lock);
1488 spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1489 }
1490
1491 if (!test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
1492 r5l_run_no_space_stripes(log);
1493
1494 md_wakeup_thread(conf->mddev->thread);
1495}
1496
1497static void r5l_do_reclaim(struct r5l_log *log)
1498{
1499 struct r5conf *conf = log->rdev->mddev->private;
1500 sector_t reclaim_target = xchg(&log->reclaim_target, 0);
1501 sector_t reclaimable;
1502 sector_t next_checkpoint;
1503 bool write_super;
1504
1505 spin_lock_irq(&log->io_list_lock);
1506 write_super = r5l_reclaimable_space(log) > log->max_free_space ||
1507 reclaim_target != 0 || !list_empty(&log->no_space_stripes);
1508 /*
1509 * move proper io_unit to reclaim list. We should not change the order.
1510 * reclaimable/unreclaimable io_unit can be mixed in the list, we
1511 * shouldn't reuse space of an unreclaimable io_unit
1512 */
1513 while (1) {
1514 reclaimable = r5l_reclaimable_space(log);
1515 if (reclaimable >= reclaim_target ||
1516 (list_empty(&log->running_ios) &&
1517 list_empty(&log->io_end_ios) &&
1518 list_empty(&log->flushing_ios) &&
1519 list_empty(&log->finished_ios)))
1520 break;
1521
1522 md_wakeup_thread(log->rdev->mddev->thread);
1523 wait_event_lock_irq(log->iounit_wait,
1524 r5l_reclaimable_space(log) > reclaimable,
1525 log->io_list_lock);
1526 }
1527
1528 next_checkpoint = r5c_calculate_new_cp(conf);
1529 spin_unlock_irq(&log->io_list_lock);
1530
1531 if (reclaimable == 0 || !write_super)
1532 return;
1533
1534 /*
1535 * write_super will flush cache of each raid disk. We must write super
1536 * here, because the log area might be reused soon and we don't want to
1537 * confuse recovery
1538 */
1539 r5l_write_super_and_discard_space(log, next_checkpoint);
1540
1541 mutex_lock(&log->io_mutex);
1542 log->last_checkpoint = next_checkpoint;
1543 r5c_update_log_state(log);
1544 mutex_unlock(&log->io_mutex);
1545
1546 r5l_run_no_space_stripes(log);
1547}
1548
1549static void r5l_reclaim_thread(struct md_thread *thread)
1550{
1551 struct mddev *mddev = thread->mddev;
1552 struct r5conf *conf = mddev->private;
1553 struct r5l_log *log = conf->log;
1554
1555 if (!log)
1556 return;
1557 r5c_do_reclaim(conf);
1558 r5l_do_reclaim(log);
1559}
1560
1561void r5l_wake_reclaim(struct r5l_log *log, sector_t space)
1562{
1563 unsigned long target;
1564 unsigned long new = (unsigned long)space; /* overflow in theory */
1565
1566 if (!log)
1567 return;
1568
1569 target = READ_ONCE(log->reclaim_target);
1570 do {
1571 if (new < target)
1572 return;
1573 } while (!try_cmpxchg(&log->reclaim_target, &target, new));
1574 md_wakeup_thread(log->reclaim_thread);
1575}
1576
1577void r5l_quiesce(struct r5l_log *log, int quiesce)
1578{
1579 struct mddev *mddev = log->rdev->mddev;
1580 struct md_thread *thread = rcu_dereference_protected(
1581 log->reclaim_thread, lockdep_is_held(&mddev->reconfig_mutex));
1582
1583 if (quiesce) {
1584 /* make sure r5l_write_super_and_discard_space exits */
1585 wake_up(&mddev->sb_wait);
1586 kthread_park(thread->tsk);
1587 r5l_wake_reclaim(log, MaxSector);
1588 r5l_do_reclaim(log);
1589 } else
1590 kthread_unpark(thread->tsk);
1591}
1592
1593bool r5l_log_disk_error(struct r5conf *conf)
1594{
1595 struct r5l_log *log = conf->log;
1596
1597 /* don't allow write if journal disk is missing */
1598 if (!log)
1599 return test_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
1600 else
1601 return test_bit(Faulty, &log->rdev->flags);
1602}
1603
1604#define R5L_RECOVERY_PAGE_POOL_SIZE 256
1605
1606struct r5l_recovery_ctx {
1607 struct page *meta_page; /* current meta */
1608 sector_t meta_total_blocks; /* total size of current meta and data */
1609 sector_t pos; /* recovery position */
1610 u64 seq; /* recovery position seq */
1611 int data_parity_stripes; /* number of data_parity stripes */
1612 int data_only_stripes; /* number of data_only stripes */
1613 struct list_head cached_list;
1614
1615 /*
1616 * read ahead page pool (ra_pool)
1617 * in recovery, log is read sequentially. It is not efficient to
1618 * read every page with sync_page_io(). The read ahead page pool
1619 * reads multiple pages with one IO, so further log read can
1620 * just copy data from the pool.
1621 */
1622 struct page *ra_pool[R5L_RECOVERY_PAGE_POOL_SIZE];
1623 struct bio_vec ra_bvec[R5L_RECOVERY_PAGE_POOL_SIZE];
1624 sector_t pool_offset; /* offset of first page in the pool */
1625 int total_pages; /* total allocated pages */
1626 int valid_pages; /* pages with valid data */
1627};
1628
1629static int r5l_recovery_allocate_ra_pool(struct r5l_log *log,
1630 struct r5l_recovery_ctx *ctx)
1631{
1632 struct page *page;
1633
1634 ctx->valid_pages = 0;
1635 ctx->total_pages = 0;
1636 while (ctx->total_pages < R5L_RECOVERY_PAGE_POOL_SIZE) {
1637 page = alloc_page(GFP_KERNEL);
1638
1639 if (!page)
1640 break;
1641 ctx->ra_pool[ctx->total_pages] = page;
1642 ctx->total_pages += 1;
1643 }
1644
1645 if (ctx->total_pages == 0)
1646 return -ENOMEM;
1647
1648 ctx->pool_offset = 0;
1649 return 0;
1650}
1651
1652static void r5l_recovery_free_ra_pool(struct r5l_log *log,
1653 struct r5l_recovery_ctx *ctx)
1654{
1655 int i;
1656
1657 for (i = 0; i < ctx->total_pages; ++i)
1658 put_page(ctx->ra_pool[i]);
1659}
1660
1661/*
1662 * fetch ctx->valid_pages pages from offset
1663 * In normal cases, ctx->valid_pages == ctx->total_pages after the call.
1664 * However, if the offset is close to the end of the journal device,
1665 * ctx->valid_pages could be smaller than ctx->total_pages
1666 */
1667static int r5l_recovery_fetch_ra_pool(struct r5l_log *log,
1668 struct r5l_recovery_ctx *ctx,
1669 sector_t offset)
1670{
1671 struct bio bio;
1672 int ret;
1673
1674 bio_init(&bio, log->rdev->bdev, ctx->ra_bvec,
1675 R5L_RECOVERY_PAGE_POOL_SIZE, REQ_OP_READ);
1676 bio.bi_iter.bi_sector = log->rdev->data_offset + offset;
1677
1678 ctx->valid_pages = 0;
1679 ctx->pool_offset = offset;
1680
1681 while (ctx->valid_pages < ctx->total_pages) {
1682 __bio_add_page(&bio, ctx->ra_pool[ctx->valid_pages], PAGE_SIZE,
1683 0);
1684 ctx->valid_pages += 1;
1685
1686 offset = r5l_ring_add(log, offset, BLOCK_SECTORS);
1687
1688 if (offset == 0) /* reached end of the device */
1689 break;
1690 }
1691
1692 ret = submit_bio_wait(&bio);
1693 bio_uninit(&bio);
1694 return ret;
1695}
1696
1697/*
1698 * try read a page from the read ahead page pool, if the page is not in the
1699 * pool, call r5l_recovery_fetch_ra_pool
1700 */
1701static int r5l_recovery_read_page(struct r5l_log *log,
1702 struct r5l_recovery_ctx *ctx,
1703 struct page *page,
1704 sector_t offset)
1705{
1706 int ret;
1707
1708 if (offset < ctx->pool_offset ||
1709 offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS) {
1710 ret = r5l_recovery_fetch_ra_pool(log, ctx, offset);
1711 if (ret)
1712 return ret;
1713 }
1714
1715 BUG_ON(offset < ctx->pool_offset ||
1716 offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS);
1717
1718 memcpy(page_address(page),
1719 page_address(ctx->ra_pool[(offset - ctx->pool_offset) >>
1720 BLOCK_SECTOR_SHIFT]),
1721 PAGE_SIZE);
1722 return 0;
1723}
1724
1725static int r5l_recovery_read_meta_block(struct r5l_log *log,
1726 struct r5l_recovery_ctx *ctx)
1727{
1728 struct page *page = ctx->meta_page;
1729 struct r5l_meta_block *mb;
1730 u32 crc, stored_crc;
1731 int ret;
1732
1733 ret = r5l_recovery_read_page(log, ctx, page, ctx->pos);
1734 if (ret != 0)
1735 return ret;
1736
1737 mb = page_address(page);
1738 stored_crc = le32_to_cpu(mb->checksum);
1739 mb->checksum = 0;
1740
1741 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
1742 le64_to_cpu(mb->seq) != ctx->seq ||
1743 mb->version != R5LOG_VERSION ||
1744 le64_to_cpu(mb->position) != ctx->pos)
1745 return -EINVAL;
1746
1747 crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
1748 if (stored_crc != crc)
1749 return -EINVAL;
1750
1751 if (le32_to_cpu(mb->meta_size) > PAGE_SIZE)
1752 return -EINVAL;
1753
1754 ctx->meta_total_blocks = BLOCK_SECTORS;
1755
1756 return 0;
1757}
1758
1759static void
1760r5l_recovery_create_empty_meta_block(struct r5l_log *log,
1761 struct page *page,
1762 sector_t pos, u64 seq)
1763{
1764 struct r5l_meta_block *mb;
1765
1766 mb = page_address(page);
1767 clear_page(mb);
1768 mb->magic = cpu_to_le32(R5LOG_MAGIC);
1769 mb->version = R5LOG_VERSION;
1770 mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block));
1771 mb->seq = cpu_to_le64(seq);
1772 mb->position = cpu_to_le64(pos);
1773}
1774
1775static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos,
1776 u64 seq)
1777{
1778 struct page *page;
1779 struct r5l_meta_block *mb;
1780
1781 page = alloc_page(GFP_KERNEL);
1782 if (!page)
1783 return -ENOMEM;
1784 r5l_recovery_create_empty_meta_block(log, page, pos, seq);
1785 mb = page_address(page);
1786 mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
1787 mb, PAGE_SIZE));
1788 if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, REQ_OP_WRITE |
1789 REQ_SYNC | REQ_FUA, false)) {
1790 __free_page(page);
1791 return -EIO;
1792 }
1793 __free_page(page);
1794 return 0;
1795}
1796
1797/*
1798 * r5l_recovery_load_data and r5l_recovery_load_parity uses flag R5_Wantwrite
1799 * to mark valid (potentially not flushed) data in the journal.
1800 *
1801 * We already verified checksum in r5l_recovery_verify_data_checksum_for_mb,
1802 * so there should not be any mismatch here.
1803 */
1804static void r5l_recovery_load_data(struct r5l_log *log,
1805 struct stripe_head *sh,
1806 struct r5l_recovery_ctx *ctx,
1807 struct r5l_payload_data_parity *payload,
1808 sector_t log_offset)
1809{
1810 struct mddev *mddev = log->rdev->mddev;
1811 struct r5conf *conf = mddev->private;
1812 int dd_idx;
1813
1814 raid5_compute_sector(conf,
1815 le64_to_cpu(payload->location), 0,
1816 &dd_idx, sh);
1817 r5l_recovery_read_page(log, ctx, sh->dev[dd_idx].page, log_offset);
1818 sh->dev[dd_idx].log_checksum =
1819 le32_to_cpu(payload->checksum[0]);
1820 ctx->meta_total_blocks += BLOCK_SECTORS;
1821
1822 set_bit(R5_Wantwrite, &sh->dev[dd_idx].flags);
1823 set_bit(STRIPE_R5C_CACHING, &sh->state);
1824}
1825
1826static void r5l_recovery_load_parity(struct r5l_log *log,
1827 struct stripe_head *sh,
1828 struct r5l_recovery_ctx *ctx,
1829 struct r5l_payload_data_parity *payload,
1830 sector_t log_offset)
1831{
1832 struct mddev *mddev = log->rdev->mddev;
1833 struct r5conf *conf = mddev->private;
1834
1835 ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded;
1836 r5l_recovery_read_page(log, ctx, sh->dev[sh->pd_idx].page, log_offset);
1837 sh->dev[sh->pd_idx].log_checksum =
1838 le32_to_cpu(payload->checksum[0]);
1839 set_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags);
1840
1841 if (sh->qd_idx >= 0) {
1842 r5l_recovery_read_page(
1843 log, ctx, sh->dev[sh->qd_idx].page,
1844 r5l_ring_add(log, log_offset, BLOCK_SECTORS));
1845 sh->dev[sh->qd_idx].log_checksum =
1846 le32_to_cpu(payload->checksum[1]);
1847 set_bit(R5_Wantwrite, &sh->dev[sh->qd_idx].flags);
1848 }
1849 clear_bit(STRIPE_R5C_CACHING, &sh->state);
1850}
1851
1852static void r5l_recovery_reset_stripe(struct stripe_head *sh)
1853{
1854 int i;
1855
1856 sh->state = 0;
1857 sh->log_start = MaxSector;
1858 for (i = sh->disks; i--; )
1859 sh->dev[i].flags = 0;
1860}
1861
1862static void
1863r5l_recovery_replay_one_stripe(struct r5conf *conf,
1864 struct stripe_head *sh,
1865 struct r5l_recovery_ctx *ctx)
1866{
1867 struct md_rdev *rdev, *rrdev;
1868 int disk_index;
1869 int data_count = 0;
1870
1871 for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1872 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1873 continue;
1874 if (disk_index == sh->qd_idx || disk_index == sh->pd_idx)
1875 continue;
1876 data_count++;
1877 }
1878
1879 /*
1880 * stripes that only have parity must have been flushed
1881 * before the crash that we are now recovering from, so
1882 * there is nothing more to recovery.
1883 */
1884 if (data_count == 0)
1885 goto out;
1886
1887 for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1888 if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1889 continue;
1890
1891 /* in case device is broken */
1892 rcu_read_lock();
1893 rdev = rcu_dereference(conf->disks[disk_index].rdev);
1894 if (rdev) {
1895 atomic_inc(&rdev->nr_pending);
1896 rcu_read_unlock();
1897 sync_page_io(rdev, sh->sector, PAGE_SIZE,
1898 sh->dev[disk_index].page, REQ_OP_WRITE,
1899 false);
1900 rdev_dec_pending(rdev, rdev->mddev);
1901 rcu_read_lock();
1902 }
1903 rrdev = rcu_dereference(conf->disks[disk_index].replacement);
1904 if (rrdev) {
1905 atomic_inc(&rrdev->nr_pending);
1906 rcu_read_unlock();
1907 sync_page_io(rrdev, sh->sector, PAGE_SIZE,
1908 sh->dev[disk_index].page, REQ_OP_WRITE,
1909 false);
1910 rdev_dec_pending(rrdev, rrdev->mddev);
1911 rcu_read_lock();
1912 }
1913 rcu_read_unlock();
1914 }
1915 ctx->data_parity_stripes++;
1916out:
1917 r5l_recovery_reset_stripe(sh);
1918}
1919
1920static struct stripe_head *
1921r5c_recovery_alloc_stripe(
1922 struct r5conf *conf,
1923 sector_t stripe_sect,
1924 int noblock)
1925{
1926 struct stripe_head *sh;
1927
1928 sh = raid5_get_active_stripe(conf, NULL, stripe_sect,
1929 noblock ? R5_GAS_NOBLOCK : 0);
1930 if (!sh)
1931 return NULL; /* no more stripe available */
1932
1933 r5l_recovery_reset_stripe(sh);
1934
1935 return sh;
1936}
1937
1938static struct stripe_head *
1939r5c_recovery_lookup_stripe(struct list_head *list, sector_t sect)
1940{
1941 struct stripe_head *sh;
1942
1943 list_for_each_entry(sh, list, lru)
1944 if (sh->sector == sect)
1945 return sh;
1946 return NULL;
1947}
1948
1949static void
1950r5c_recovery_drop_stripes(struct list_head *cached_stripe_list,
1951 struct r5l_recovery_ctx *ctx)
1952{
1953 struct stripe_head *sh, *next;
1954
1955 list_for_each_entry_safe(sh, next, cached_stripe_list, lru) {
1956 r5l_recovery_reset_stripe(sh);
1957 list_del_init(&sh->lru);
1958 raid5_release_stripe(sh);
1959 }
1960}
1961
1962static void
1963r5c_recovery_replay_stripes(struct list_head *cached_stripe_list,
1964 struct r5l_recovery_ctx *ctx)
1965{
1966 struct stripe_head *sh, *next;
1967
1968 list_for_each_entry_safe(sh, next, cached_stripe_list, lru)
1969 if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
1970 r5l_recovery_replay_one_stripe(sh->raid_conf, sh, ctx);
1971 list_del_init(&sh->lru);
1972 raid5_release_stripe(sh);
1973 }
1974}
1975
1976/* if matches return 0; otherwise return -EINVAL */
1977static int
1978r5l_recovery_verify_data_checksum(struct r5l_log *log,
1979 struct r5l_recovery_ctx *ctx,
1980 struct page *page,
1981 sector_t log_offset, __le32 log_checksum)
1982{
1983 void *addr;
1984 u32 checksum;
1985
1986 r5l_recovery_read_page(log, ctx, page, log_offset);
1987 addr = kmap_atomic(page);
1988 checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE);
1989 kunmap_atomic(addr);
1990 return (le32_to_cpu(log_checksum) == checksum) ? 0 : -EINVAL;
1991}
1992
1993/*
1994 * before loading data to stripe cache, we need verify checksum for all data,
1995 * if there is mismatch for any data page, we drop all data in the mata block
1996 */
1997static int
1998r5l_recovery_verify_data_checksum_for_mb(struct r5l_log *log,
1999 struct r5l_recovery_ctx *ctx)
2000{
2001 struct mddev *mddev = log->rdev->mddev;
2002 struct r5conf *conf = mddev->private;
2003 struct r5l_meta_block *mb = page_address(ctx->meta_page);
2004 sector_t mb_offset = sizeof(struct r5l_meta_block);
2005 sector_t log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2006 struct page *page;
2007 struct r5l_payload_data_parity *payload;
2008 struct r5l_payload_flush *payload_flush;
2009
2010 page = alloc_page(GFP_KERNEL);
2011 if (!page)
2012 return -ENOMEM;
2013
2014 while (mb_offset < le32_to_cpu(mb->meta_size)) {
2015 payload = (void *)mb + mb_offset;
2016 payload_flush = (void *)mb + mb_offset;
2017
2018 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
2019 if (r5l_recovery_verify_data_checksum(
2020 log, ctx, page, log_offset,
2021 payload->checksum[0]) < 0)
2022 goto mismatch;
2023 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY) {
2024 if (r5l_recovery_verify_data_checksum(
2025 log, ctx, page, log_offset,
2026 payload->checksum[0]) < 0)
2027 goto mismatch;
2028 if (conf->max_degraded == 2 && /* q for RAID 6 */
2029 r5l_recovery_verify_data_checksum(
2030 log, ctx, page,
2031 r5l_ring_add(log, log_offset,
2032 BLOCK_SECTORS),
2033 payload->checksum[1]) < 0)
2034 goto mismatch;
2035 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2036 /* nothing to do for R5LOG_PAYLOAD_FLUSH here */
2037 } else /* not R5LOG_PAYLOAD_DATA/PARITY/FLUSH */
2038 goto mismatch;
2039
2040 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2041 mb_offset += sizeof(struct r5l_payload_flush) +
2042 le32_to_cpu(payload_flush->size);
2043 } else {
2044 /* DATA or PARITY payload */
2045 log_offset = r5l_ring_add(log, log_offset,
2046 le32_to_cpu(payload->size));
2047 mb_offset += sizeof(struct r5l_payload_data_parity) +
2048 sizeof(__le32) *
2049 (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
2050 }
2051
2052 }
2053
2054 put_page(page);
2055 return 0;
2056
2057mismatch:
2058 put_page(page);
2059 return -EINVAL;
2060}
2061
2062/*
2063 * Analyze all data/parity pages in one meta block
2064 * Returns:
2065 * 0 for success
2066 * -EINVAL for unknown playload type
2067 * -EAGAIN for checksum mismatch of data page
2068 * -ENOMEM for run out of memory (alloc_page failed or run out of stripes)
2069 */
2070static int
2071r5c_recovery_analyze_meta_block(struct r5l_log *log,
2072 struct r5l_recovery_ctx *ctx,
2073 struct list_head *cached_stripe_list)
2074{
2075 struct mddev *mddev = log->rdev->mddev;
2076 struct r5conf *conf = mddev->private;
2077 struct r5l_meta_block *mb;
2078 struct r5l_payload_data_parity *payload;
2079 struct r5l_payload_flush *payload_flush;
2080 int mb_offset;
2081 sector_t log_offset;
2082 sector_t stripe_sect;
2083 struct stripe_head *sh;
2084 int ret;
2085
2086 /*
2087 * for mismatch in data blocks, we will drop all data in this mb, but
2088 * we will still read next mb for other data with FLUSH flag, as
2089 * io_unit could finish out of order.
2090 */
2091 ret = r5l_recovery_verify_data_checksum_for_mb(log, ctx);
2092 if (ret == -EINVAL)
2093 return -EAGAIN;
2094 else if (ret)
2095 return ret; /* -ENOMEM duo to alloc_page() failed */
2096
2097 mb = page_address(ctx->meta_page);
2098 mb_offset = sizeof(struct r5l_meta_block);
2099 log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2100
2101 while (mb_offset < le32_to_cpu(mb->meta_size)) {
2102 int dd;
2103
2104 payload = (void *)mb + mb_offset;
2105 payload_flush = (void *)mb + mb_offset;
2106
2107 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2108 int i, count;
2109
2110 count = le32_to_cpu(payload_flush->size) / sizeof(__le64);
2111 for (i = 0; i < count; ++i) {
2112 stripe_sect = le64_to_cpu(payload_flush->flush_stripes[i]);
2113 sh = r5c_recovery_lookup_stripe(cached_stripe_list,
2114 stripe_sect);
2115 if (sh) {
2116 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2117 r5l_recovery_reset_stripe(sh);
2118 list_del_init(&sh->lru);
2119 raid5_release_stripe(sh);
2120 }
2121 }
2122
2123 mb_offset += sizeof(struct r5l_payload_flush) +
2124 le32_to_cpu(payload_flush->size);
2125 continue;
2126 }
2127
2128 /* DATA or PARITY payload */
2129 stripe_sect = (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) ?
2130 raid5_compute_sector(
2131 conf, le64_to_cpu(payload->location), 0, &dd,
2132 NULL)
2133 : le64_to_cpu(payload->location);
2134
2135 sh = r5c_recovery_lookup_stripe(cached_stripe_list,
2136 stripe_sect);
2137
2138 if (!sh) {
2139 sh = r5c_recovery_alloc_stripe(conf, stripe_sect, 1);
2140 /*
2141 * cannot get stripe from raid5_get_active_stripe
2142 * try replay some stripes
2143 */
2144 if (!sh) {
2145 r5c_recovery_replay_stripes(
2146 cached_stripe_list, ctx);
2147 sh = r5c_recovery_alloc_stripe(
2148 conf, stripe_sect, 1);
2149 }
2150 if (!sh) {
2151 int new_size = conf->min_nr_stripes * 2;
2152 pr_debug("md/raid:%s: Increasing stripe cache size to %d to recovery data on journal.\n",
2153 mdname(mddev),
2154 new_size);
2155 ret = raid5_set_cache_size(mddev, new_size);
2156 if (conf->min_nr_stripes <= new_size / 2) {
2157 pr_err("md/raid:%s: Cannot increase cache size, ret=%d, new_size=%d, min_nr_stripes=%d, max_nr_stripes=%d\n",
2158 mdname(mddev),
2159 ret,
2160 new_size,
2161 conf->min_nr_stripes,
2162 conf->max_nr_stripes);
2163 return -ENOMEM;
2164 }
2165 sh = r5c_recovery_alloc_stripe(
2166 conf, stripe_sect, 0);
2167 }
2168 if (!sh) {
2169 pr_err("md/raid:%s: Cannot get enough stripes due to memory pressure. Recovery failed.\n",
2170 mdname(mddev));
2171 return -ENOMEM;
2172 }
2173 list_add_tail(&sh->lru, cached_stripe_list);
2174 }
2175
2176 if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
2177 if (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
2178 test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags)) {
2179 r5l_recovery_replay_one_stripe(conf, sh, ctx);
2180 list_move_tail(&sh->lru, cached_stripe_list);
2181 }
2182 r5l_recovery_load_data(log, sh, ctx, payload,
2183 log_offset);
2184 } else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY)
2185 r5l_recovery_load_parity(log, sh, ctx, payload,
2186 log_offset);
2187 else
2188 return -EINVAL;
2189
2190 log_offset = r5l_ring_add(log, log_offset,
2191 le32_to_cpu(payload->size));
2192
2193 mb_offset += sizeof(struct r5l_payload_data_parity) +
2194 sizeof(__le32) *
2195 (le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
2196 }
2197
2198 return 0;
2199}
2200
2201/*
2202 * Load the stripe into cache. The stripe will be written out later by
2203 * the stripe cache state machine.
2204 */
2205static void r5c_recovery_load_one_stripe(struct r5l_log *log,
2206 struct stripe_head *sh)
2207{
2208 struct r5dev *dev;
2209 int i;
2210
2211 for (i = sh->disks; i--; ) {
2212 dev = sh->dev + i;
2213 if (test_and_clear_bit(R5_Wantwrite, &dev->flags)) {
2214 set_bit(R5_InJournal, &dev->flags);
2215 set_bit(R5_UPTODATE, &dev->flags);
2216 }
2217 }
2218}
2219
2220/*
2221 * Scan through the log for all to-be-flushed data
2222 *
2223 * For stripes with data and parity, namely Data-Parity stripe
2224 * (STRIPE_R5C_CACHING == 0), we simply replay all the writes.
2225 *
2226 * For stripes with only data, namely Data-Only stripe
2227 * (STRIPE_R5C_CACHING == 1), we load them to stripe cache state machine.
2228 *
2229 * For a stripe, if we see data after parity, we should discard all previous
2230 * data and parity for this stripe, as these data are already flushed to
2231 * the array.
2232 *
2233 * At the end of the scan, we return the new journal_tail, which points to
2234 * first data-only stripe on the journal device, or next invalid meta block.
2235 */
2236static int r5c_recovery_flush_log(struct r5l_log *log,
2237 struct r5l_recovery_ctx *ctx)
2238{
2239 struct stripe_head *sh;
2240 int ret = 0;
2241
2242 /* scan through the log */
2243 while (1) {
2244 if (r5l_recovery_read_meta_block(log, ctx))
2245 break;
2246
2247 ret = r5c_recovery_analyze_meta_block(log, ctx,
2248 &ctx->cached_list);
2249 /*
2250 * -EAGAIN means mismatch in data block, in this case, we still
2251 * try scan the next metablock
2252 */
2253 if (ret && ret != -EAGAIN)
2254 break; /* ret == -EINVAL or -ENOMEM */
2255 ctx->seq++;
2256 ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks);
2257 }
2258
2259 if (ret == -ENOMEM) {
2260 r5c_recovery_drop_stripes(&ctx->cached_list, ctx);
2261 return ret;
2262 }
2263
2264 /* replay data-parity stripes */
2265 r5c_recovery_replay_stripes(&ctx->cached_list, ctx);
2266
2267 /* load data-only stripes to stripe cache */
2268 list_for_each_entry(sh, &ctx->cached_list, lru) {
2269 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2270 r5c_recovery_load_one_stripe(log, sh);
2271 ctx->data_only_stripes++;
2272 }
2273
2274 return 0;
2275}
2276
2277/*
2278 * we did a recovery. Now ctx.pos points to an invalid meta block. New
2279 * log will start here. but we can't let superblock point to last valid
2280 * meta block. The log might looks like:
2281 * | meta 1| meta 2| meta 3|
2282 * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
2283 * superblock points to meta 1, we write a new valid meta 2n. if crash
2284 * happens again, new recovery will start from meta 1. Since meta 2n is
2285 * valid now, recovery will think meta 3 is valid, which is wrong.
2286 * The solution is we create a new meta in meta2 with its seq == meta
2287 * 1's seq + 10000 and let superblock points to meta2. The same recovery
2288 * will not think meta 3 is a valid meta, because its seq doesn't match
2289 */
2290
2291/*
2292 * Before recovery, the log looks like the following
2293 *
2294 * ---------------------------------------------
2295 * | valid log | invalid log |
2296 * ---------------------------------------------
2297 * ^
2298 * |- log->last_checkpoint
2299 * |- log->last_cp_seq
2300 *
2301 * Now we scan through the log until we see invalid entry
2302 *
2303 * ---------------------------------------------
2304 * | valid log | invalid log |
2305 * ---------------------------------------------
2306 * ^ ^
2307 * |- log->last_checkpoint |- ctx->pos
2308 * |- log->last_cp_seq |- ctx->seq
2309 *
2310 * From this point, we need to increase seq number by 10 to avoid
2311 * confusing next recovery.
2312 *
2313 * ---------------------------------------------
2314 * | valid log | invalid log |
2315 * ---------------------------------------------
2316 * ^ ^
2317 * |- log->last_checkpoint |- ctx->pos+1
2318 * |- log->last_cp_seq |- ctx->seq+10001
2319 *
2320 * However, it is not safe to start the state machine yet, because data only
2321 * parities are not yet secured in RAID. To save these data only parities, we
2322 * rewrite them from seq+11.
2323 *
2324 * -----------------------------------------------------------------
2325 * | valid log | data only stripes | invalid log |
2326 * -----------------------------------------------------------------
2327 * ^ ^
2328 * |- log->last_checkpoint |- ctx->pos+n
2329 * |- log->last_cp_seq |- ctx->seq+10000+n
2330 *
2331 * If failure happens again during this process, the recovery can safe start
2332 * again from log->last_checkpoint.
2333 *
2334 * Once data only stripes are rewritten to journal, we move log_tail
2335 *
2336 * -----------------------------------------------------------------
2337 * | old log | data only stripes | invalid log |
2338 * -----------------------------------------------------------------
2339 * ^ ^
2340 * |- log->last_checkpoint |- ctx->pos+n
2341 * |- log->last_cp_seq |- ctx->seq+10000+n
2342 *
2343 * Then we can safely start the state machine. If failure happens from this
2344 * point on, the recovery will start from new log->last_checkpoint.
2345 */
2346static int
2347r5c_recovery_rewrite_data_only_stripes(struct r5l_log *log,
2348 struct r5l_recovery_ctx *ctx)
2349{
2350 struct stripe_head *sh;
2351 struct mddev *mddev = log->rdev->mddev;
2352 struct page *page;
2353 sector_t next_checkpoint = MaxSector;
2354
2355 page = alloc_page(GFP_KERNEL);
2356 if (!page) {
2357 pr_err("md/raid:%s: cannot allocate memory to rewrite data only stripes\n",
2358 mdname(mddev));
2359 return -ENOMEM;
2360 }
2361
2362 WARN_ON(list_empty(&ctx->cached_list));
2363
2364 list_for_each_entry(sh, &ctx->cached_list, lru) {
2365 struct r5l_meta_block *mb;
2366 int i;
2367 int offset;
2368 sector_t write_pos;
2369
2370 WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2371 r5l_recovery_create_empty_meta_block(log, page,
2372 ctx->pos, ctx->seq);
2373 mb = page_address(page);
2374 offset = le32_to_cpu(mb->meta_size);
2375 write_pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2376
2377 for (i = sh->disks; i--; ) {
2378 struct r5dev *dev = &sh->dev[i];
2379 struct r5l_payload_data_parity *payload;
2380 void *addr;
2381
2382 if (test_bit(R5_InJournal, &dev->flags)) {
2383 payload = (void *)mb + offset;
2384 payload->header.type = cpu_to_le16(
2385 R5LOG_PAYLOAD_DATA);
2386 payload->size = cpu_to_le32(BLOCK_SECTORS);
2387 payload->location = cpu_to_le64(
2388 raid5_compute_blocknr(sh, i, 0));
2389 addr = kmap_atomic(dev->page);
2390 payload->checksum[0] = cpu_to_le32(
2391 crc32c_le(log->uuid_checksum, addr,
2392 PAGE_SIZE));
2393 kunmap_atomic(addr);
2394 sync_page_io(log->rdev, write_pos, PAGE_SIZE,
2395 dev->page, REQ_OP_WRITE, false);
2396 write_pos = r5l_ring_add(log, write_pos,
2397 BLOCK_SECTORS);
2398 offset += sizeof(__le32) +
2399 sizeof(struct r5l_payload_data_parity);
2400
2401 }
2402 }
2403 mb->meta_size = cpu_to_le32(offset);
2404 mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
2405 mb, PAGE_SIZE));
2406 sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page,
2407 REQ_OP_WRITE | REQ_SYNC | REQ_FUA, false);
2408 sh->log_start = ctx->pos;
2409 list_add_tail(&sh->r5c, &log->stripe_in_journal_list);
2410 atomic_inc(&log->stripe_in_journal_count);
2411 ctx->pos = write_pos;
2412 ctx->seq += 1;
2413 next_checkpoint = sh->log_start;
2414 }
2415 log->next_checkpoint = next_checkpoint;
2416 __free_page(page);
2417 return 0;
2418}
2419
2420static void r5c_recovery_flush_data_only_stripes(struct r5l_log *log,
2421 struct r5l_recovery_ctx *ctx)
2422{
2423 struct mddev *mddev = log->rdev->mddev;
2424 struct r5conf *conf = mddev->private;
2425 struct stripe_head *sh, *next;
2426 bool cleared_pending = false;
2427
2428 if (ctx->data_only_stripes == 0)
2429 return;
2430
2431 if (test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags)) {
2432 cleared_pending = true;
2433 clear_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
2434 }
2435 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_BACK;
2436
2437 list_for_each_entry_safe(sh, next, &ctx->cached_list, lru) {
2438 r5c_make_stripe_write_out(sh);
2439 set_bit(STRIPE_HANDLE, &sh->state);
2440 list_del_init(&sh->lru);
2441 raid5_release_stripe(sh);
2442 }
2443
2444 /* reuse conf->wait_for_quiescent in recovery */
2445 wait_event(conf->wait_for_quiescent,
2446 atomic_read(&conf->active_stripes) == 0);
2447
2448 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
2449 if (cleared_pending)
2450 set_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags);
2451}
2452
2453static int r5l_recovery_log(struct r5l_log *log)
2454{
2455 struct mddev *mddev = log->rdev->mddev;
2456 struct r5l_recovery_ctx *ctx;
2457 int ret;
2458 sector_t pos;
2459
2460 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2461 if (!ctx)
2462 return -ENOMEM;
2463
2464 ctx->pos = log->last_checkpoint;
2465 ctx->seq = log->last_cp_seq;
2466 INIT_LIST_HEAD(&ctx->cached_list);
2467 ctx->meta_page = alloc_page(GFP_KERNEL);
2468
2469 if (!ctx->meta_page) {
2470 ret = -ENOMEM;
2471 goto meta_page;
2472 }
2473
2474 if (r5l_recovery_allocate_ra_pool(log, ctx) != 0) {
2475 ret = -ENOMEM;
2476 goto ra_pool;
2477 }
2478
2479 ret = r5c_recovery_flush_log(log, ctx);
2480
2481 if (ret)
2482 goto error;
2483
2484 pos = ctx->pos;
2485 ctx->seq += 10000;
2486
2487 if ((ctx->data_only_stripes == 0) && (ctx->data_parity_stripes == 0))
2488 pr_info("md/raid:%s: starting from clean shutdown\n",
2489 mdname(mddev));
2490 else
2491 pr_info("md/raid:%s: recovering %d data-only stripes and %d data-parity stripes\n",
2492 mdname(mddev), ctx->data_only_stripes,
2493 ctx->data_parity_stripes);
2494
2495 if (ctx->data_only_stripes == 0) {
2496 log->next_checkpoint = ctx->pos;
2497 r5l_log_write_empty_meta_block(log, ctx->pos, ctx->seq++);
2498 ctx->pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2499 } else if (r5c_recovery_rewrite_data_only_stripes(log, ctx)) {
2500 pr_err("md/raid:%s: failed to rewrite stripes to journal\n",
2501 mdname(mddev));
2502 ret = -EIO;
2503 goto error;
2504 }
2505
2506 log->log_start = ctx->pos;
2507 log->seq = ctx->seq;
2508 log->last_checkpoint = pos;
2509 r5l_write_super(log, pos);
2510
2511 r5c_recovery_flush_data_only_stripes(log, ctx);
2512 ret = 0;
2513error:
2514 r5l_recovery_free_ra_pool(log, ctx);
2515ra_pool:
2516 __free_page(ctx->meta_page);
2517meta_page:
2518 kfree(ctx);
2519 return ret;
2520}
2521
2522static void r5l_write_super(struct r5l_log *log, sector_t cp)
2523{
2524 struct mddev *mddev = log->rdev->mddev;
2525
2526 log->rdev->journal_tail = cp;
2527 set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2528}
2529
2530static ssize_t r5c_journal_mode_show(struct mddev *mddev, char *page)
2531{
2532 struct r5conf *conf;
2533 int ret;
2534
2535 ret = mddev_lock(mddev);
2536 if (ret)
2537 return ret;
2538
2539 conf = mddev->private;
2540 if (!conf || !conf->log)
2541 goto out_unlock;
2542
2543 switch (conf->log->r5c_journal_mode) {
2544 case R5C_JOURNAL_MODE_WRITE_THROUGH:
2545 ret = snprintf(
2546 page, PAGE_SIZE, "[%s] %s\n",
2547 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2548 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2549 break;
2550 case R5C_JOURNAL_MODE_WRITE_BACK:
2551 ret = snprintf(
2552 page, PAGE_SIZE, "%s [%s]\n",
2553 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2554 r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2555 break;
2556 default:
2557 ret = 0;
2558 }
2559
2560out_unlock:
2561 mddev_unlock(mddev);
2562 return ret;
2563}
2564
2565/*
2566 * Set journal cache mode on @mddev (external API initially needed by dm-raid).
2567 *
2568 * @mode as defined in 'enum r5c_journal_mode'.
2569 *
2570 */
2571int r5c_journal_mode_set(struct mddev *mddev, int mode)
2572{
2573 struct r5conf *conf;
2574
2575 if (mode < R5C_JOURNAL_MODE_WRITE_THROUGH ||
2576 mode > R5C_JOURNAL_MODE_WRITE_BACK)
2577 return -EINVAL;
2578
2579 conf = mddev->private;
2580 if (!conf || !conf->log)
2581 return -ENODEV;
2582
2583 if (raid5_calc_degraded(conf) > 0 &&
2584 mode == R5C_JOURNAL_MODE_WRITE_BACK)
2585 return -EINVAL;
2586
2587 mddev_suspend(mddev);
2588 conf->log->r5c_journal_mode = mode;
2589 mddev_resume(mddev);
2590
2591 pr_debug("md/raid:%s: setting r5c cache mode to %d: %s\n",
2592 mdname(mddev), mode, r5c_journal_mode_str[mode]);
2593 return 0;
2594}
2595EXPORT_SYMBOL(r5c_journal_mode_set);
2596
2597static ssize_t r5c_journal_mode_store(struct mddev *mddev,
2598 const char *page, size_t length)
2599{
2600 int mode = ARRAY_SIZE(r5c_journal_mode_str);
2601 size_t len = length;
2602 int ret;
2603
2604 if (len < 2)
2605 return -EINVAL;
2606
2607 if (page[len - 1] == '\n')
2608 len--;
2609
2610 while (mode--)
2611 if (strlen(r5c_journal_mode_str[mode]) == len &&
2612 !strncmp(page, r5c_journal_mode_str[mode], len))
2613 break;
2614 ret = mddev_lock(mddev);
2615 if (ret)
2616 return ret;
2617 ret = r5c_journal_mode_set(mddev, mode);
2618 mddev_unlock(mddev);
2619 return ret ?: length;
2620}
2621
2622struct md_sysfs_entry
2623r5c_journal_mode = __ATTR(journal_mode, 0644,
2624 r5c_journal_mode_show, r5c_journal_mode_store);
2625
2626/*
2627 * Try handle write operation in caching phase. This function should only
2628 * be called in write-back mode.
2629 *
2630 * If all outstanding writes can be handled in caching phase, returns 0
2631 * If writes requires write-out phase, call r5c_make_stripe_write_out()
2632 * and returns -EAGAIN
2633 */
2634int r5c_try_caching_write(struct r5conf *conf,
2635 struct stripe_head *sh,
2636 struct stripe_head_state *s,
2637 int disks)
2638{
2639 struct r5l_log *log = conf->log;
2640 int i;
2641 struct r5dev *dev;
2642 int to_cache = 0;
2643 void __rcu **pslot;
2644 sector_t tree_index;
2645 int ret;
2646 uintptr_t refcount;
2647
2648 BUG_ON(!r5c_is_writeback(log));
2649
2650 if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
2651 /*
2652 * There are two different scenarios here:
2653 * 1. The stripe has some data cached, and it is sent to
2654 * write-out phase for reclaim
2655 * 2. The stripe is clean, and this is the first write
2656 *
2657 * For 1, return -EAGAIN, so we continue with
2658 * handle_stripe_dirtying().
2659 *
2660 * For 2, set STRIPE_R5C_CACHING and continue with caching
2661 * write.
2662 */
2663
2664 /* case 1: anything injournal or anything in written */
2665 if (s->injournal > 0 || s->written > 0)
2666 return -EAGAIN;
2667 /* case 2 */
2668 set_bit(STRIPE_R5C_CACHING, &sh->state);
2669 }
2670
2671 /*
2672 * When run in degraded mode, array is set to write-through mode.
2673 * This check helps drain pending write safely in the transition to
2674 * write-through mode.
2675 *
2676 * When a stripe is syncing, the write is also handled in write
2677 * through mode.
2678 */
2679 if (s->failed || test_bit(STRIPE_SYNCING, &sh->state)) {
2680 r5c_make_stripe_write_out(sh);
2681 return -EAGAIN;
2682 }
2683
2684 for (i = disks; i--; ) {
2685 dev = &sh->dev[i];
2686 /* if non-overwrite, use writing-out phase */
2687 if (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags) &&
2688 !test_bit(R5_InJournal, &dev->flags)) {
2689 r5c_make_stripe_write_out(sh);
2690 return -EAGAIN;
2691 }
2692 }
2693
2694 /* if the stripe is not counted in big_stripe_tree, add it now */
2695 if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
2696 !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2697 tree_index = r5c_tree_index(conf, sh->sector);
2698 spin_lock(&log->tree_lock);
2699 pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2700 tree_index);
2701 if (pslot) {
2702 refcount = (uintptr_t)radix_tree_deref_slot_protected(
2703 pslot, &log->tree_lock) >>
2704 R5C_RADIX_COUNT_SHIFT;
2705 radix_tree_replace_slot(
2706 &log->big_stripe_tree, pslot,
2707 (void *)((refcount + 1) << R5C_RADIX_COUNT_SHIFT));
2708 } else {
2709 /*
2710 * this radix_tree_insert can fail safely, so no
2711 * need to call radix_tree_preload()
2712 */
2713 ret = radix_tree_insert(
2714 &log->big_stripe_tree, tree_index,
2715 (void *)(1 << R5C_RADIX_COUNT_SHIFT));
2716 if (ret) {
2717 spin_unlock(&log->tree_lock);
2718 r5c_make_stripe_write_out(sh);
2719 return -EAGAIN;
2720 }
2721 }
2722 spin_unlock(&log->tree_lock);
2723
2724 /*
2725 * set STRIPE_R5C_PARTIAL_STRIPE, this shows the stripe is
2726 * counted in the radix tree
2727 */
2728 set_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state);
2729 atomic_inc(&conf->r5c_cached_partial_stripes);
2730 }
2731
2732 for (i = disks; i--; ) {
2733 dev = &sh->dev[i];
2734 if (dev->towrite) {
2735 set_bit(R5_Wantwrite, &dev->flags);
2736 set_bit(R5_Wantdrain, &dev->flags);
2737 set_bit(R5_LOCKED, &dev->flags);
2738 to_cache++;
2739 }
2740 }
2741
2742 if (to_cache) {
2743 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2744 /*
2745 * set STRIPE_LOG_TRAPPED, which triggers r5c_cache_data()
2746 * in ops_run_io(). STRIPE_LOG_TRAPPED will be cleared in
2747 * r5c_handle_data_cached()
2748 */
2749 set_bit(STRIPE_LOG_TRAPPED, &sh->state);
2750 }
2751
2752 return 0;
2753}
2754
2755/*
2756 * free extra pages (orig_page) we allocated for prexor
2757 */
2758void r5c_release_extra_page(struct stripe_head *sh)
2759{
2760 struct r5conf *conf = sh->raid_conf;
2761 int i;
2762 bool using_disk_info_extra_page;
2763
2764 using_disk_info_extra_page =
2765 sh->dev[0].orig_page == conf->disks[0].extra_page;
2766
2767 for (i = sh->disks; i--; )
2768 if (sh->dev[i].page != sh->dev[i].orig_page) {
2769 struct page *p = sh->dev[i].orig_page;
2770
2771 sh->dev[i].orig_page = sh->dev[i].page;
2772 clear_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2773
2774 if (!using_disk_info_extra_page)
2775 put_page(p);
2776 }
2777
2778 if (using_disk_info_extra_page) {
2779 clear_bit(R5C_EXTRA_PAGE_IN_USE, &conf->cache_state);
2780 md_wakeup_thread(conf->mddev->thread);
2781 }
2782}
2783
2784void r5c_use_extra_page(struct stripe_head *sh)
2785{
2786 struct r5conf *conf = sh->raid_conf;
2787 int i;
2788 struct r5dev *dev;
2789
2790 for (i = sh->disks; i--; ) {
2791 dev = &sh->dev[i];
2792 if (dev->orig_page != dev->page)
2793 put_page(dev->orig_page);
2794 dev->orig_page = conf->disks[i].extra_page;
2795 }
2796}
2797
2798/*
2799 * clean up the stripe (clear R5_InJournal for dev[pd_idx] etc.) after the
2800 * stripe is committed to RAID disks.
2801 */
2802void r5c_finish_stripe_write_out(struct r5conf *conf,
2803 struct stripe_head *sh,
2804 struct stripe_head_state *s)
2805{
2806 struct r5l_log *log = conf->log;
2807 int i;
2808 int do_wakeup = 0;
2809 sector_t tree_index;
2810 void __rcu **pslot;
2811 uintptr_t refcount;
2812
2813 if (!log || !test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags))
2814 return;
2815
2816 WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2817 clear_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
2818
2819 if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
2820 return;
2821
2822 for (i = sh->disks; i--; ) {
2823 clear_bit(R5_InJournal, &sh->dev[i].flags);
2824 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2825 do_wakeup = 1;
2826 }
2827
2828 /*
2829 * analyse_stripe() runs before r5c_finish_stripe_write_out(),
2830 * We updated R5_InJournal, so we also update s->injournal.
2831 */
2832 s->injournal = 0;
2833
2834 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2835 if (atomic_dec_and_test(&conf->pending_full_writes))
2836 md_wakeup_thread(conf->mddev->thread);
2837
2838 if (do_wakeup)
2839 wake_up(&conf->wait_for_overlap);
2840
2841 spin_lock_irq(&log->stripe_in_journal_lock);
2842 list_del_init(&sh->r5c);
2843 spin_unlock_irq(&log->stripe_in_journal_lock);
2844 sh->log_start = MaxSector;
2845
2846 atomic_dec(&log->stripe_in_journal_count);
2847 r5c_update_log_state(log);
2848
2849 /* stop counting this stripe in big_stripe_tree */
2850 if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) ||
2851 test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2852 tree_index = r5c_tree_index(conf, sh->sector);
2853 spin_lock(&log->tree_lock);
2854 pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2855 tree_index);
2856 BUG_ON(pslot == NULL);
2857 refcount = (uintptr_t)radix_tree_deref_slot_protected(
2858 pslot, &log->tree_lock) >>
2859 R5C_RADIX_COUNT_SHIFT;
2860 if (refcount == 1)
2861 radix_tree_delete(&log->big_stripe_tree, tree_index);
2862 else
2863 radix_tree_replace_slot(
2864 &log->big_stripe_tree, pslot,
2865 (void *)((refcount - 1) << R5C_RADIX_COUNT_SHIFT));
2866 spin_unlock(&log->tree_lock);
2867 }
2868
2869 if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) {
2870 BUG_ON(atomic_read(&conf->r5c_cached_partial_stripes) == 0);
2871 atomic_dec(&conf->r5c_flushing_partial_stripes);
2872 atomic_dec(&conf->r5c_cached_partial_stripes);
2873 }
2874
2875 if (test_and_clear_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2876 BUG_ON(atomic_read(&conf->r5c_cached_full_stripes) == 0);
2877 atomic_dec(&conf->r5c_flushing_full_stripes);
2878 atomic_dec(&conf->r5c_cached_full_stripes);
2879 }
2880
2881 r5l_append_flush_payload(log, sh->sector);
2882 /* stripe is flused to raid disks, we can do resync now */
2883 if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
2884 set_bit(STRIPE_HANDLE, &sh->state);
2885}
2886
2887int r5c_cache_data(struct r5l_log *log, struct stripe_head *sh)
2888{
2889 struct r5conf *conf = sh->raid_conf;
2890 int pages = 0;
2891 int reserve;
2892 int i;
2893 int ret = 0;
2894
2895 BUG_ON(!log);
2896
2897 for (i = 0; i < sh->disks; i++) {
2898 void *addr;
2899
2900 if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
2901 continue;
2902 addr = kmap_atomic(sh->dev[i].page);
2903 sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
2904 addr, PAGE_SIZE);
2905 kunmap_atomic(addr);
2906 pages++;
2907 }
2908 WARN_ON(pages == 0);
2909
2910 /*
2911 * The stripe must enter state machine again to call endio, so
2912 * don't delay.
2913 */
2914 clear_bit(STRIPE_DELAYED, &sh->state);
2915 atomic_inc(&sh->count);
2916
2917 mutex_lock(&log->io_mutex);
2918 /* meta + data */
2919 reserve = (1 + pages) << (PAGE_SHIFT - 9);
2920
2921 if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
2922 sh->log_start == MaxSector)
2923 r5l_add_no_space_stripe(log, sh);
2924 else if (!r5l_has_free_space(log, reserve)) {
2925 if (sh->log_start == log->last_checkpoint)
2926 BUG();
2927 else
2928 r5l_add_no_space_stripe(log, sh);
2929 } else {
2930 ret = r5l_log_stripe(log, sh, pages, 0);
2931 if (ret) {
2932 spin_lock_irq(&log->io_list_lock);
2933 list_add_tail(&sh->log_list, &log->no_mem_stripes);
2934 spin_unlock_irq(&log->io_list_lock);
2935 }
2936 }
2937
2938 mutex_unlock(&log->io_mutex);
2939 return 0;
2940}
2941
2942/* check whether this big stripe is in write back cache. */
2943bool r5c_big_stripe_cached(struct r5conf *conf, sector_t sect)
2944{
2945 struct r5l_log *log = conf->log;
2946 sector_t tree_index;
2947 void *slot;
2948
2949 if (!log)
2950 return false;
2951
2952 WARN_ON_ONCE(!rcu_read_lock_held());
2953 tree_index = r5c_tree_index(conf, sect);
2954 slot = radix_tree_lookup(&log->big_stripe_tree, tree_index);
2955 return slot != NULL;
2956}
2957
2958static int r5l_load_log(struct r5l_log *log)
2959{
2960 struct md_rdev *rdev = log->rdev;
2961 struct page *page;
2962 struct r5l_meta_block *mb;
2963 sector_t cp = log->rdev->journal_tail;
2964 u32 stored_crc, expected_crc;
2965 bool create_super = false;
2966 int ret = 0;
2967
2968 /* Make sure it's valid */
2969 if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp)
2970 cp = 0;
2971 page = alloc_page(GFP_KERNEL);
2972 if (!page)
2973 return -ENOMEM;
2974
2975 if (!sync_page_io(rdev, cp, PAGE_SIZE, page, REQ_OP_READ, false)) {
2976 ret = -EIO;
2977 goto ioerr;
2978 }
2979 mb = page_address(page);
2980
2981 if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
2982 mb->version != R5LOG_VERSION) {
2983 create_super = true;
2984 goto create;
2985 }
2986 stored_crc = le32_to_cpu(mb->checksum);
2987 mb->checksum = 0;
2988 expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
2989 if (stored_crc != expected_crc) {
2990 create_super = true;
2991 goto create;
2992 }
2993 if (le64_to_cpu(mb->position) != cp) {
2994 create_super = true;
2995 goto create;
2996 }
2997create:
2998 if (create_super) {
2999 log->last_cp_seq = get_random_u32();
3000 cp = 0;
3001 r5l_log_write_empty_meta_block(log, cp, log->last_cp_seq);
3002 /*
3003 * Make sure super points to correct address. Log might have
3004 * data very soon. If super hasn't correct log tail address,
3005 * recovery can't find the log
3006 */
3007 r5l_write_super(log, cp);
3008 } else
3009 log->last_cp_seq = le64_to_cpu(mb->seq);
3010
3011 log->device_size = round_down(rdev->sectors, BLOCK_SECTORS);
3012 log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT;
3013 if (log->max_free_space > RECLAIM_MAX_FREE_SPACE)
3014 log->max_free_space = RECLAIM_MAX_FREE_SPACE;
3015 log->last_checkpoint = cp;
3016
3017 __free_page(page);
3018
3019 if (create_super) {
3020 log->log_start = r5l_ring_add(log, cp, BLOCK_SECTORS);
3021 log->seq = log->last_cp_seq + 1;
3022 log->next_checkpoint = cp;
3023 } else
3024 ret = r5l_recovery_log(log);
3025
3026 r5c_update_log_state(log);
3027 return ret;
3028ioerr:
3029 __free_page(page);
3030 return ret;
3031}
3032
3033int r5l_start(struct r5l_log *log)
3034{
3035 int ret;
3036
3037 if (!log)
3038 return 0;
3039
3040 ret = r5l_load_log(log);
3041 if (ret) {
3042 struct mddev *mddev = log->rdev->mddev;
3043 struct r5conf *conf = mddev->private;
3044
3045 r5l_exit_log(conf);
3046 }
3047 return ret;
3048}
3049
3050void r5c_update_on_rdev_error(struct mddev *mddev, struct md_rdev *rdev)
3051{
3052 struct r5conf *conf = mddev->private;
3053 struct r5l_log *log = conf->log;
3054
3055 if (!log)
3056 return;
3057
3058 if ((raid5_calc_degraded(conf) > 0 ||
3059 test_bit(Journal, &rdev->flags)) &&
3060 conf->log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK)
3061 schedule_work(&log->disable_writeback_work);
3062}
3063
3064int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev)
3065{
3066 struct r5l_log *log;
3067 struct md_thread *thread;
3068 int ret;
3069
3070 pr_debug("md/raid:%s: using device %pg as journal\n",
3071 mdname(conf->mddev), rdev->bdev);
3072
3073 if (PAGE_SIZE != 4096)
3074 return -EINVAL;
3075
3076 /*
3077 * The PAGE_SIZE must be big enough to hold 1 r5l_meta_block and
3078 * raid_disks r5l_payload_data_parity.
3079 *
3080 * Write journal and cache does not work for very big array
3081 * (raid_disks > 203)
3082 */
3083 if (sizeof(struct r5l_meta_block) +
3084 ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) *
3085 conf->raid_disks) > PAGE_SIZE) {
3086 pr_err("md/raid:%s: write journal/cache doesn't work for array with %d disks\n",
3087 mdname(conf->mddev), conf->raid_disks);
3088 return -EINVAL;
3089 }
3090
3091 log = kzalloc(sizeof(*log), GFP_KERNEL);
3092 if (!log)
3093 return -ENOMEM;
3094 log->rdev = rdev;
3095 log->need_cache_flush = bdev_write_cache(rdev->bdev);
3096 log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid,
3097 sizeof(rdev->mddev->uuid));
3098
3099 mutex_init(&log->io_mutex);
3100
3101 spin_lock_init(&log->io_list_lock);
3102 INIT_LIST_HEAD(&log->running_ios);
3103 INIT_LIST_HEAD(&log->io_end_ios);
3104 INIT_LIST_HEAD(&log->flushing_ios);
3105 INIT_LIST_HEAD(&log->finished_ios);
3106
3107 log->io_kc = KMEM_CACHE(r5l_io_unit, 0);
3108 if (!log->io_kc)
3109 goto io_kc;
3110
3111 ret = mempool_init_slab_pool(&log->io_pool, R5L_POOL_SIZE, log->io_kc);
3112 if (ret)
3113 goto io_pool;
3114
3115 ret = bioset_init(&log->bs, R5L_POOL_SIZE, 0, BIOSET_NEED_BVECS);
3116 if (ret)
3117 goto io_bs;
3118
3119 ret = mempool_init_page_pool(&log->meta_pool, R5L_POOL_SIZE, 0);
3120 if (ret)
3121 goto out_mempool;
3122
3123 spin_lock_init(&log->tree_lock);
3124 INIT_RADIX_TREE(&log->big_stripe_tree, GFP_NOWAIT | __GFP_NOWARN);
3125
3126 thread = md_register_thread(r5l_reclaim_thread, log->rdev->mddev,
3127 "reclaim");
3128 if (!thread)
3129 goto reclaim_thread;
3130
3131 thread->timeout = R5C_RECLAIM_WAKEUP_INTERVAL;
3132 rcu_assign_pointer(log->reclaim_thread, thread);
3133
3134 init_waitqueue_head(&log->iounit_wait);
3135
3136 INIT_LIST_HEAD(&log->no_mem_stripes);
3137
3138 INIT_LIST_HEAD(&log->no_space_stripes);
3139 spin_lock_init(&log->no_space_stripes_lock);
3140
3141 INIT_WORK(&log->deferred_io_work, r5l_submit_io_async);
3142 INIT_WORK(&log->disable_writeback_work, r5c_disable_writeback_async);
3143
3144 log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
3145 INIT_LIST_HEAD(&log->stripe_in_journal_list);
3146 spin_lock_init(&log->stripe_in_journal_lock);
3147 atomic_set(&log->stripe_in_journal_count, 0);
3148
3149 conf->log = log;
3150
3151 set_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
3152 return 0;
3153
3154reclaim_thread:
3155 mempool_exit(&log->meta_pool);
3156out_mempool:
3157 bioset_exit(&log->bs);
3158io_bs:
3159 mempool_exit(&log->io_pool);
3160io_pool:
3161 kmem_cache_destroy(log->io_kc);
3162io_kc:
3163 kfree(log);
3164 return -EINVAL;
3165}
3166
3167void r5l_exit_log(struct r5conf *conf)
3168{
3169 struct r5l_log *log = conf->log;
3170
3171 /* Ensure disable_writeback_work wakes up and exits */
3172 wake_up(&conf->mddev->sb_wait);
3173 flush_work(&log->disable_writeback_work);
3174 md_unregister_thread(&log->reclaim_thread);
3175
3176 conf->log = NULL;
3177
3178 mempool_exit(&log->meta_pool);
3179 bioset_exit(&log->bs);
3180 mempool_exit(&log->io_pool);
3181 kmem_cache_destroy(log->io_kc);
3182 kfree(log);
3183}