Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2//
3// Register map access API
4//
5// Copyright 2011 Wolfson Microelectronics plc
6//
7// Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
8
9#include <linux/device.h>
10#include <linux/slab.h>
11#include <linux/export.h>
12#include <linux/mutex.h>
13#include <linux/err.h>
14#include <linux/property.h>
15#include <linux/rbtree.h>
16#include <linux/sched.h>
17#include <linux/delay.h>
18#include <linux/log2.h>
19#include <linux/hwspinlock.h>
20#include <asm/unaligned.h>
21
22#define CREATE_TRACE_POINTS
23#include "trace.h"
24
25#include "internal.h"
26
27/*
28 * Sometimes for failures during very early init the trace
29 * infrastructure isn't available early enough to be used. For this
30 * sort of problem defining LOG_DEVICE will add printks for basic
31 * register I/O on a specific device.
32 */
33#undef LOG_DEVICE
34
35#ifdef LOG_DEVICE
36static inline bool regmap_should_log(struct regmap *map)
37{
38 return (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0);
39}
40#else
41static inline bool regmap_should_log(struct regmap *map) { return false; }
42#endif
43
44
45static int _regmap_update_bits(struct regmap *map, unsigned int reg,
46 unsigned int mask, unsigned int val,
47 bool *change, bool force_write);
48
49static int _regmap_bus_reg_read(void *context, unsigned int reg,
50 unsigned int *val);
51static int _regmap_bus_read(void *context, unsigned int reg,
52 unsigned int *val);
53static int _regmap_bus_formatted_write(void *context, unsigned int reg,
54 unsigned int val);
55static int _regmap_bus_reg_write(void *context, unsigned int reg,
56 unsigned int val);
57static int _regmap_bus_raw_write(void *context, unsigned int reg,
58 unsigned int val);
59
60bool regmap_reg_in_ranges(unsigned int reg,
61 const struct regmap_range *ranges,
62 unsigned int nranges)
63{
64 const struct regmap_range *r;
65 int i;
66
67 for (i = 0, r = ranges; i < nranges; i++, r++)
68 if (regmap_reg_in_range(reg, r))
69 return true;
70 return false;
71}
72EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
73
74bool regmap_check_range_table(struct regmap *map, unsigned int reg,
75 const struct regmap_access_table *table)
76{
77 /* Check "no ranges" first */
78 if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
79 return false;
80
81 /* In case zero "yes ranges" are supplied, any reg is OK */
82 if (!table->n_yes_ranges)
83 return true;
84
85 return regmap_reg_in_ranges(reg, table->yes_ranges,
86 table->n_yes_ranges);
87}
88EXPORT_SYMBOL_GPL(regmap_check_range_table);
89
90bool regmap_writeable(struct regmap *map, unsigned int reg)
91{
92 if (map->max_register && reg > map->max_register)
93 return false;
94
95 if (map->writeable_reg)
96 return map->writeable_reg(map->dev, reg);
97
98 if (map->wr_table)
99 return regmap_check_range_table(map, reg, map->wr_table);
100
101 return true;
102}
103
104bool regmap_cached(struct regmap *map, unsigned int reg)
105{
106 int ret;
107 unsigned int val;
108
109 if (map->cache_type == REGCACHE_NONE)
110 return false;
111
112 if (!map->cache_ops)
113 return false;
114
115 if (map->max_register && reg > map->max_register)
116 return false;
117
118 map->lock(map->lock_arg);
119 ret = regcache_read(map, reg, &val);
120 map->unlock(map->lock_arg);
121 if (ret)
122 return false;
123
124 return true;
125}
126
127bool regmap_readable(struct regmap *map, unsigned int reg)
128{
129 if (!map->reg_read)
130 return false;
131
132 if (map->max_register && reg > map->max_register)
133 return false;
134
135 if (map->format.format_write)
136 return false;
137
138 if (map->readable_reg)
139 return map->readable_reg(map->dev, reg);
140
141 if (map->rd_table)
142 return regmap_check_range_table(map, reg, map->rd_table);
143
144 return true;
145}
146
147bool regmap_volatile(struct regmap *map, unsigned int reg)
148{
149 if (!map->format.format_write && !regmap_readable(map, reg))
150 return false;
151
152 if (map->volatile_reg)
153 return map->volatile_reg(map->dev, reg);
154
155 if (map->volatile_table)
156 return regmap_check_range_table(map, reg, map->volatile_table);
157
158 if (map->cache_ops)
159 return false;
160 else
161 return true;
162}
163
164bool regmap_precious(struct regmap *map, unsigned int reg)
165{
166 if (!regmap_readable(map, reg))
167 return false;
168
169 if (map->precious_reg)
170 return map->precious_reg(map->dev, reg);
171
172 if (map->precious_table)
173 return regmap_check_range_table(map, reg, map->precious_table);
174
175 return false;
176}
177
178bool regmap_writeable_noinc(struct regmap *map, unsigned int reg)
179{
180 if (map->writeable_noinc_reg)
181 return map->writeable_noinc_reg(map->dev, reg);
182
183 if (map->wr_noinc_table)
184 return regmap_check_range_table(map, reg, map->wr_noinc_table);
185
186 return true;
187}
188
189bool regmap_readable_noinc(struct regmap *map, unsigned int reg)
190{
191 if (map->readable_noinc_reg)
192 return map->readable_noinc_reg(map->dev, reg);
193
194 if (map->rd_noinc_table)
195 return regmap_check_range_table(map, reg, map->rd_noinc_table);
196
197 return true;
198}
199
200static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
201 size_t num)
202{
203 unsigned int i;
204
205 for (i = 0; i < num; i++)
206 if (!regmap_volatile(map, reg + regmap_get_offset(map, i)))
207 return false;
208
209 return true;
210}
211
212static void regmap_format_12_20_write(struct regmap *map,
213 unsigned int reg, unsigned int val)
214{
215 u8 *out = map->work_buf;
216
217 out[0] = reg >> 4;
218 out[1] = (reg << 4) | (val >> 16);
219 out[2] = val >> 8;
220 out[3] = val;
221}
222
223
224static void regmap_format_2_6_write(struct regmap *map,
225 unsigned int reg, unsigned int val)
226{
227 u8 *out = map->work_buf;
228
229 *out = (reg << 6) | val;
230}
231
232static void regmap_format_4_12_write(struct regmap *map,
233 unsigned int reg, unsigned int val)
234{
235 __be16 *out = map->work_buf;
236 *out = cpu_to_be16((reg << 12) | val);
237}
238
239static void regmap_format_7_9_write(struct regmap *map,
240 unsigned int reg, unsigned int val)
241{
242 __be16 *out = map->work_buf;
243 *out = cpu_to_be16((reg << 9) | val);
244}
245
246static void regmap_format_7_17_write(struct regmap *map,
247 unsigned int reg, unsigned int val)
248{
249 u8 *out = map->work_buf;
250
251 out[2] = val;
252 out[1] = val >> 8;
253 out[0] = (val >> 16) | (reg << 1);
254}
255
256static void regmap_format_10_14_write(struct regmap *map,
257 unsigned int reg, unsigned int val)
258{
259 u8 *out = map->work_buf;
260
261 out[2] = val;
262 out[1] = (val >> 8) | (reg << 6);
263 out[0] = reg >> 2;
264}
265
266static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
267{
268 u8 *b = buf;
269
270 b[0] = val << shift;
271}
272
273static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
274{
275 put_unaligned_be16(val << shift, buf);
276}
277
278static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
279{
280 put_unaligned_le16(val << shift, buf);
281}
282
283static void regmap_format_16_native(void *buf, unsigned int val,
284 unsigned int shift)
285{
286 u16 v = val << shift;
287
288 memcpy(buf, &v, sizeof(v));
289}
290
291static void regmap_format_24_be(void *buf, unsigned int val, unsigned int shift)
292{
293 put_unaligned_be24(val << shift, buf);
294}
295
296static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
297{
298 put_unaligned_be32(val << shift, buf);
299}
300
301static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
302{
303 put_unaligned_le32(val << shift, buf);
304}
305
306static void regmap_format_32_native(void *buf, unsigned int val,
307 unsigned int shift)
308{
309 u32 v = val << shift;
310
311 memcpy(buf, &v, sizeof(v));
312}
313
314#ifdef CONFIG_64BIT
315static void regmap_format_64_be(void *buf, unsigned int val, unsigned int shift)
316{
317 put_unaligned_be64((u64) val << shift, buf);
318}
319
320static void regmap_format_64_le(void *buf, unsigned int val, unsigned int shift)
321{
322 put_unaligned_le64((u64) val << shift, buf);
323}
324
325static void regmap_format_64_native(void *buf, unsigned int val,
326 unsigned int shift)
327{
328 u64 v = (u64) val << shift;
329
330 memcpy(buf, &v, sizeof(v));
331}
332#endif
333
334static void regmap_parse_inplace_noop(void *buf)
335{
336}
337
338static unsigned int regmap_parse_8(const void *buf)
339{
340 const u8 *b = buf;
341
342 return b[0];
343}
344
345static unsigned int regmap_parse_16_be(const void *buf)
346{
347 return get_unaligned_be16(buf);
348}
349
350static unsigned int regmap_parse_16_le(const void *buf)
351{
352 return get_unaligned_le16(buf);
353}
354
355static void regmap_parse_16_be_inplace(void *buf)
356{
357 u16 v = get_unaligned_be16(buf);
358
359 memcpy(buf, &v, sizeof(v));
360}
361
362static void regmap_parse_16_le_inplace(void *buf)
363{
364 u16 v = get_unaligned_le16(buf);
365
366 memcpy(buf, &v, sizeof(v));
367}
368
369static unsigned int regmap_parse_16_native(const void *buf)
370{
371 u16 v;
372
373 memcpy(&v, buf, sizeof(v));
374 return v;
375}
376
377static unsigned int regmap_parse_24_be(const void *buf)
378{
379 return get_unaligned_be24(buf);
380}
381
382static unsigned int regmap_parse_32_be(const void *buf)
383{
384 return get_unaligned_be32(buf);
385}
386
387static unsigned int regmap_parse_32_le(const void *buf)
388{
389 return get_unaligned_le32(buf);
390}
391
392static void regmap_parse_32_be_inplace(void *buf)
393{
394 u32 v = get_unaligned_be32(buf);
395
396 memcpy(buf, &v, sizeof(v));
397}
398
399static void regmap_parse_32_le_inplace(void *buf)
400{
401 u32 v = get_unaligned_le32(buf);
402
403 memcpy(buf, &v, sizeof(v));
404}
405
406static unsigned int regmap_parse_32_native(const void *buf)
407{
408 u32 v;
409
410 memcpy(&v, buf, sizeof(v));
411 return v;
412}
413
414#ifdef CONFIG_64BIT
415static unsigned int regmap_parse_64_be(const void *buf)
416{
417 return get_unaligned_be64(buf);
418}
419
420static unsigned int regmap_parse_64_le(const void *buf)
421{
422 return get_unaligned_le64(buf);
423}
424
425static void regmap_parse_64_be_inplace(void *buf)
426{
427 u64 v = get_unaligned_be64(buf);
428
429 memcpy(buf, &v, sizeof(v));
430}
431
432static void regmap_parse_64_le_inplace(void *buf)
433{
434 u64 v = get_unaligned_le64(buf);
435
436 memcpy(buf, &v, sizeof(v));
437}
438
439static unsigned int regmap_parse_64_native(const void *buf)
440{
441 u64 v;
442
443 memcpy(&v, buf, sizeof(v));
444 return v;
445}
446#endif
447
448static void regmap_lock_hwlock(void *__map)
449{
450 struct regmap *map = __map;
451
452 hwspin_lock_timeout(map->hwlock, UINT_MAX);
453}
454
455static void regmap_lock_hwlock_irq(void *__map)
456{
457 struct regmap *map = __map;
458
459 hwspin_lock_timeout_irq(map->hwlock, UINT_MAX);
460}
461
462static void regmap_lock_hwlock_irqsave(void *__map)
463{
464 struct regmap *map = __map;
465
466 hwspin_lock_timeout_irqsave(map->hwlock, UINT_MAX,
467 &map->spinlock_flags);
468}
469
470static void regmap_unlock_hwlock(void *__map)
471{
472 struct regmap *map = __map;
473
474 hwspin_unlock(map->hwlock);
475}
476
477static void regmap_unlock_hwlock_irq(void *__map)
478{
479 struct regmap *map = __map;
480
481 hwspin_unlock_irq(map->hwlock);
482}
483
484static void regmap_unlock_hwlock_irqrestore(void *__map)
485{
486 struct regmap *map = __map;
487
488 hwspin_unlock_irqrestore(map->hwlock, &map->spinlock_flags);
489}
490
491static void regmap_lock_unlock_none(void *__map)
492{
493
494}
495
496static void regmap_lock_mutex(void *__map)
497{
498 struct regmap *map = __map;
499 mutex_lock(&map->mutex);
500}
501
502static void regmap_unlock_mutex(void *__map)
503{
504 struct regmap *map = __map;
505 mutex_unlock(&map->mutex);
506}
507
508static void regmap_lock_spinlock(void *__map)
509__acquires(&map->spinlock)
510{
511 struct regmap *map = __map;
512 unsigned long flags;
513
514 spin_lock_irqsave(&map->spinlock, flags);
515 map->spinlock_flags = flags;
516}
517
518static void regmap_unlock_spinlock(void *__map)
519__releases(&map->spinlock)
520{
521 struct regmap *map = __map;
522 spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
523}
524
525static void regmap_lock_raw_spinlock(void *__map)
526__acquires(&map->raw_spinlock)
527{
528 struct regmap *map = __map;
529 unsigned long flags;
530
531 raw_spin_lock_irqsave(&map->raw_spinlock, flags);
532 map->raw_spinlock_flags = flags;
533}
534
535static void regmap_unlock_raw_spinlock(void *__map)
536__releases(&map->raw_spinlock)
537{
538 struct regmap *map = __map;
539 raw_spin_unlock_irqrestore(&map->raw_spinlock, map->raw_spinlock_flags);
540}
541
542static void dev_get_regmap_release(struct device *dev, void *res)
543{
544 /*
545 * We don't actually have anything to do here; the goal here
546 * is not to manage the regmap but to provide a simple way to
547 * get the regmap back given a struct device.
548 */
549}
550
551static bool _regmap_range_add(struct regmap *map,
552 struct regmap_range_node *data)
553{
554 struct rb_root *root = &map->range_tree;
555 struct rb_node **new = &(root->rb_node), *parent = NULL;
556
557 while (*new) {
558 struct regmap_range_node *this =
559 rb_entry(*new, struct regmap_range_node, node);
560
561 parent = *new;
562 if (data->range_max < this->range_min)
563 new = &((*new)->rb_left);
564 else if (data->range_min > this->range_max)
565 new = &((*new)->rb_right);
566 else
567 return false;
568 }
569
570 rb_link_node(&data->node, parent, new);
571 rb_insert_color(&data->node, root);
572
573 return true;
574}
575
576static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
577 unsigned int reg)
578{
579 struct rb_node *node = map->range_tree.rb_node;
580
581 while (node) {
582 struct regmap_range_node *this =
583 rb_entry(node, struct regmap_range_node, node);
584
585 if (reg < this->range_min)
586 node = node->rb_left;
587 else if (reg > this->range_max)
588 node = node->rb_right;
589 else
590 return this;
591 }
592
593 return NULL;
594}
595
596static void regmap_range_exit(struct regmap *map)
597{
598 struct rb_node *next;
599 struct regmap_range_node *range_node;
600
601 next = rb_first(&map->range_tree);
602 while (next) {
603 range_node = rb_entry(next, struct regmap_range_node, node);
604 next = rb_next(&range_node->node);
605 rb_erase(&range_node->node, &map->range_tree);
606 kfree(range_node);
607 }
608
609 kfree(map->selector_work_buf);
610}
611
612static int regmap_set_name(struct regmap *map, const struct regmap_config *config)
613{
614 if (config->name) {
615 const char *name = kstrdup_const(config->name, GFP_KERNEL);
616
617 if (!name)
618 return -ENOMEM;
619
620 kfree_const(map->name);
621 map->name = name;
622 }
623
624 return 0;
625}
626
627int regmap_attach_dev(struct device *dev, struct regmap *map,
628 const struct regmap_config *config)
629{
630 struct regmap **m;
631 int ret;
632
633 map->dev = dev;
634
635 ret = regmap_set_name(map, config);
636 if (ret)
637 return ret;
638
639 regmap_debugfs_exit(map);
640 regmap_debugfs_init(map);
641
642 /* Add a devres resource for dev_get_regmap() */
643 m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
644 if (!m) {
645 regmap_debugfs_exit(map);
646 return -ENOMEM;
647 }
648 *m = map;
649 devres_add(dev, m);
650
651 return 0;
652}
653EXPORT_SYMBOL_GPL(regmap_attach_dev);
654
655static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
656 const struct regmap_config *config)
657{
658 enum regmap_endian endian;
659
660 /* Retrieve the endianness specification from the regmap config */
661 endian = config->reg_format_endian;
662
663 /* If the regmap config specified a non-default value, use that */
664 if (endian != REGMAP_ENDIAN_DEFAULT)
665 return endian;
666
667 /* Retrieve the endianness specification from the bus config */
668 if (bus && bus->reg_format_endian_default)
669 endian = bus->reg_format_endian_default;
670
671 /* If the bus specified a non-default value, use that */
672 if (endian != REGMAP_ENDIAN_DEFAULT)
673 return endian;
674
675 /* Use this if no other value was found */
676 return REGMAP_ENDIAN_BIG;
677}
678
679enum regmap_endian regmap_get_val_endian(struct device *dev,
680 const struct regmap_bus *bus,
681 const struct regmap_config *config)
682{
683 struct fwnode_handle *fwnode = dev ? dev_fwnode(dev) : NULL;
684 enum regmap_endian endian;
685
686 /* Retrieve the endianness specification from the regmap config */
687 endian = config->val_format_endian;
688
689 /* If the regmap config specified a non-default value, use that */
690 if (endian != REGMAP_ENDIAN_DEFAULT)
691 return endian;
692
693 /* If the firmware node exist try to get endianness from it */
694 if (fwnode_property_read_bool(fwnode, "big-endian"))
695 endian = REGMAP_ENDIAN_BIG;
696 else if (fwnode_property_read_bool(fwnode, "little-endian"))
697 endian = REGMAP_ENDIAN_LITTLE;
698 else if (fwnode_property_read_bool(fwnode, "native-endian"))
699 endian = REGMAP_ENDIAN_NATIVE;
700
701 /* If the endianness was specified in fwnode, use that */
702 if (endian != REGMAP_ENDIAN_DEFAULT)
703 return endian;
704
705 /* Retrieve the endianness specification from the bus config */
706 if (bus && bus->val_format_endian_default)
707 endian = bus->val_format_endian_default;
708
709 /* If the bus specified a non-default value, use that */
710 if (endian != REGMAP_ENDIAN_DEFAULT)
711 return endian;
712
713 /* Use this if no other value was found */
714 return REGMAP_ENDIAN_BIG;
715}
716EXPORT_SYMBOL_GPL(regmap_get_val_endian);
717
718struct regmap *__regmap_init(struct device *dev,
719 const struct regmap_bus *bus,
720 void *bus_context,
721 const struct regmap_config *config,
722 struct lock_class_key *lock_key,
723 const char *lock_name)
724{
725 struct regmap *map;
726 int ret = -EINVAL;
727 enum regmap_endian reg_endian, val_endian;
728 int i, j;
729
730 if (!config)
731 goto err;
732
733 map = kzalloc(sizeof(*map), GFP_KERNEL);
734 if (map == NULL) {
735 ret = -ENOMEM;
736 goto err;
737 }
738
739 ret = regmap_set_name(map, config);
740 if (ret)
741 goto err_map;
742
743 ret = -EINVAL; /* Later error paths rely on this */
744
745 if (config->disable_locking) {
746 map->lock = map->unlock = regmap_lock_unlock_none;
747 map->can_sleep = config->can_sleep;
748 regmap_debugfs_disable(map);
749 } else if (config->lock && config->unlock) {
750 map->lock = config->lock;
751 map->unlock = config->unlock;
752 map->lock_arg = config->lock_arg;
753 map->can_sleep = config->can_sleep;
754 } else if (config->use_hwlock) {
755 map->hwlock = hwspin_lock_request_specific(config->hwlock_id);
756 if (!map->hwlock) {
757 ret = -ENXIO;
758 goto err_name;
759 }
760
761 switch (config->hwlock_mode) {
762 case HWLOCK_IRQSTATE:
763 map->lock = regmap_lock_hwlock_irqsave;
764 map->unlock = regmap_unlock_hwlock_irqrestore;
765 break;
766 case HWLOCK_IRQ:
767 map->lock = regmap_lock_hwlock_irq;
768 map->unlock = regmap_unlock_hwlock_irq;
769 break;
770 default:
771 map->lock = regmap_lock_hwlock;
772 map->unlock = regmap_unlock_hwlock;
773 break;
774 }
775
776 map->lock_arg = map;
777 } else {
778 if ((bus && bus->fast_io) ||
779 config->fast_io) {
780 if (config->use_raw_spinlock) {
781 raw_spin_lock_init(&map->raw_spinlock);
782 map->lock = regmap_lock_raw_spinlock;
783 map->unlock = regmap_unlock_raw_spinlock;
784 lockdep_set_class_and_name(&map->raw_spinlock,
785 lock_key, lock_name);
786 } else {
787 spin_lock_init(&map->spinlock);
788 map->lock = regmap_lock_spinlock;
789 map->unlock = regmap_unlock_spinlock;
790 lockdep_set_class_and_name(&map->spinlock,
791 lock_key, lock_name);
792 }
793 } else {
794 mutex_init(&map->mutex);
795 map->lock = regmap_lock_mutex;
796 map->unlock = regmap_unlock_mutex;
797 map->can_sleep = true;
798 lockdep_set_class_and_name(&map->mutex,
799 lock_key, lock_name);
800 }
801 map->lock_arg = map;
802 }
803
804 /*
805 * When we write in fast-paths with regmap_bulk_write() don't allocate
806 * scratch buffers with sleeping allocations.
807 */
808 if ((bus && bus->fast_io) || config->fast_io)
809 map->alloc_flags = GFP_ATOMIC;
810 else
811 map->alloc_flags = GFP_KERNEL;
812
813 map->reg_base = config->reg_base;
814
815 map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
816 map->format.pad_bytes = config->pad_bits / 8;
817 map->format.reg_shift = config->reg_shift;
818 map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
819 map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
820 config->val_bits + config->pad_bits, 8);
821 map->reg_shift = config->pad_bits % 8;
822 if (config->reg_stride)
823 map->reg_stride = config->reg_stride;
824 else
825 map->reg_stride = 1;
826 if (is_power_of_2(map->reg_stride))
827 map->reg_stride_order = ilog2(map->reg_stride);
828 else
829 map->reg_stride_order = -1;
830 map->use_single_read = config->use_single_read || !(config->read || (bus && bus->read));
831 map->use_single_write = config->use_single_write || !(config->write || (bus && bus->write));
832 map->can_multi_write = config->can_multi_write && (config->write || (bus && bus->write));
833 if (bus) {
834 map->max_raw_read = bus->max_raw_read;
835 map->max_raw_write = bus->max_raw_write;
836 } else if (config->max_raw_read && config->max_raw_write) {
837 map->max_raw_read = config->max_raw_read;
838 map->max_raw_write = config->max_raw_write;
839 }
840 map->dev = dev;
841 map->bus = bus;
842 map->bus_context = bus_context;
843 map->max_register = config->max_register;
844 map->wr_table = config->wr_table;
845 map->rd_table = config->rd_table;
846 map->volatile_table = config->volatile_table;
847 map->precious_table = config->precious_table;
848 map->wr_noinc_table = config->wr_noinc_table;
849 map->rd_noinc_table = config->rd_noinc_table;
850 map->writeable_reg = config->writeable_reg;
851 map->readable_reg = config->readable_reg;
852 map->volatile_reg = config->volatile_reg;
853 map->precious_reg = config->precious_reg;
854 map->writeable_noinc_reg = config->writeable_noinc_reg;
855 map->readable_noinc_reg = config->readable_noinc_reg;
856 map->cache_type = config->cache_type;
857
858 spin_lock_init(&map->async_lock);
859 INIT_LIST_HEAD(&map->async_list);
860 INIT_LIST_HEAD(&map->async_free);
861 init_waitqueue_head(&map->async_waitq);
862
863 if (config->read_flag_mask ||
864 config->write_flag_mask ||
865 config->zero_flag_mask) {
866 map->read_flag_mask = config->read_flag_mask;
867 map->write_flag_mask = config->write_flag_mask;
868 } else if (bus) {
869 map->read_flag_mask = bus->read_flag_mask;
870 }
871
872 if (config && config->read && config->write) {
873 map->reg_read = _regmap_bus_read;
874 if (config->reg_update_bits)
875 map->reg_update_bits = config->reg_update_bits;
876
877 /* Bulk read/write */
878 map->read = config->read;
879 map->write = config->write;
880
881 reg_endian = REGMAP_ENDIAN_NATIVE;
882 val_endian = REGMAP_ENDIAN_NATIVE;
883 } else if (!bus) {
884 map->reg_read = config->reg_read;
885 map->reg_write = config->reg_write;
886 map->reg_update_bits = config->reg_update_bits;
887
888 map->defer_caching = false;
889 goto skip_format_initialization;
890 } else if (!bus->read || !bus->write) {
891 map->reg_read = _regmap_bus_reg_read;
892 map->reg_write = _regmap_bus_reg_write;
893 map->reg_update_bits = bus->reg_update_bits;
894
895 map->defer_caching = false;
896 goto skip_format_initialization;
897 } else {
898 map->reg_read = _regmap_bus_read;
899 map->reg_update_bits = bus->reg_update_bits;
900 /* Bulk read/write */
901 map->read = bus->read;
902 map->write = bus->write;
903
904 reg_endian = regmap_get_reg_endian(bus, config);
905 val_endian = regmap_get_val_endian(dev, bus, config);
906 }
907
908 switch (config->reg_bits + map->reg_shift) {
909 case 2:
910 switch (config->val_bits) {
911 case 6:
912 map->format.format_write = regmap_format_2_6_write;
913 break;
914 default:
915 goto err_hwlock;
916 }
917 break;
918
919 case 4:
920 switch (config->val_bits) {
921 case 12:
922 map->format.format_write = regmap_format_4_12_write;
923 break;
924 default:
925 goto err_hwlock;
926 }
927 break;
928
929 case 7:
930 switch (config->val_bits) {
931 case 9:
932 map->format.format_write = regmap_format_7_9_write;
933 break;
934 case 17:
935 map->format.format_write = regmap_format_7_17_write;
936 break;
937 default:
938 goto err_hwlock;
939 }
940 break;
941
942 case 10:
943 switch (config->val_bits) {
944 case 14:
945 map->format.format_write = regmap_format_10_14_write;
946 break;
947 default:
948 goto err_hwlock;
949 }
950 break;
951
952 case 12:
953 switch (config->val_bits) {
954 case 20:
955 map->format.format_write = regmap_format_12_20_write;
956 break;
957 default:
958 goto err_hwlock;
959 }
960 break;
961
962 case 8:
963 map->format.format_reg = regmap_format_8;
964 break;
965
966 case 16:
967 switch (reg_endian) {
968 case REGMAP_ENDIAN_BIG:
969 map->format.format_reg = regmap_format_16_be;
970 break;
971 case REGMAP_ENDIAN_LITTLE:
972 map->format.format_reg = regmap_format_16_le;
973 break;
974 case REGMAP_ENDIAN_NATIVE:
975 map->format.format_reg = regmap_format_16_native;
976 break;
977 default:
978 goto err_hwlock;
979 }
980 break;
981
982 case 24:
983 switch (reg_endian) {
984 case REGMAP_ENDIAN_BIG:
985 map->format.format_reg = regmap_format_24_be;
986 break;
987 default:
988 goto err_hwlock;
989 }
990 break;
991
992 case 32:
993 switch (reg_endian) {
994 case REGMAP_ENDIAN_BIG:
995 map->format.format_reg = regmap_format_32_be;
996 break;
997 case REGMAP_ENDIAN_LITTLE:
998 map->format.format_reg = regmap_format_32_le;
999 break;
1000 case REGMAP_ENDIAN_NATIVE:
1001 map->format.format_reg = regmap_format_32_native;
1002 break;
1003 default:
1004 goto err_hwlock;
1005 }
1006 break;
1007
1008#ifdef CONFIG_64BIT
1009 case 64:
1010 switch (reg_endian) {
1011 case REGMAP_ENDIAN_BIG:
1012 map->format.format_reg = regmap_format_64_be;
1013 break;
1014 case REGMAP_ENDIAN_LITTLE:
1015 map->format.format_reg = regmap_format_64_le;
1016 break;
1017 case REGMAP_ENDIAN_NATIVE:
1018 map->format.format_reg = regmap_format_64_native;
1019 break;
1020 default:
1021 goto err_hwlock;
1022 }
1023 break;
1024#endif
1025
1026 default:
1027 goto err_hwlock;
1028 }
1029
1030 if (val_endian == REGMAP_ENDIAN_NATIVE)
1031 map->format.parse_inplace = regmap_parse_inplace_noop;
1032
1033 switch (config->val_bits) {
1034 case 8:
1035 map->format.format_val = regmap_format_8;
1036 map->format.parse_val = regmap_parse_8;
1037 map->format.parse_inplace = regmap_parse_inplace_noop;
1038 break;
1039 case 16:
1040 switch (val_endian) {
1041 case REGMAP_ENDIAN_BIG:
1042 map->format.format_val = regmap_format_16_be;
1043 map->format.parse_val = regmap_parse_16_be;
1044 map->format.parse_inplace = regmap_parse_16_be_inplace;
1045 break;
1046 case REGMAP_ENDIAN_LITTLE:
1047 map->format.format_val = regmap_format_16_le;
1048 map->format.parse_val = regmap_parse_16_le;
1049 map->format.parse_inplace = regmap_parse_16_le_inplace;
1050 break;
1051 case REGMAP_ENDIAN_NATIVE:
1052 map->format.format_val = regmap_format_16_native;
1053 map->format.parse_val = regmap_parse_16_native;
1054 break;
1055 default:
1056 goto err_hwlock;
1057 }
1058 break;
1059 case 24:
1060 switch (val_endian) {
1061 case REGMAP_ENDIAN_BIG:
1062 map->format.format_val = regmap_format_24_be;
1063 map->format.parse_val = regmap_parse_24_be;
1064 break;
1065 default:
1066 goto err_hwlock;
1067 }
1068 break;
1069 case 32:
1070 switch (val_endian) {
1071 case REGMAP_ENDIAN_BIG:
1072 map->format.format_val = regmap_format_32_be;
1073 map->format.parse_val = regmap_parse_32_be;
1074 map->format.parse_inplace = regmap_parse_32_be_inplace;
1075 break;
1076 case REGMAP_ENDIAN_LITTLE:
1077 map->format.format_val = regmap_format_32_le;
1078 map->format.parse_val = regmap_parse_32_le;
1079 map->format.parse_inplace = regmap_parse_32_le_inplace;
1080 break;
1081 case REGMAP_ENDIAN_NATIVE:
1082 map->format.format_val = regmap_format_32_native;
1083 map->format.parse_val = regmap_parse_32_native;
1084 break;
1085 default:
1086 goto err_hwlock;
1087 }
1088 break;
1089#ifdef CONFIG_64BIT
1090 case 64:
1091 switch (val_endian) {
1092 case REGMAP_ENDIAN_BIG:
1093 map->format.format_val = regmap_format_64_be;
1094 map->format.parse_val = regmap_parse_64_be;
1095 map->format.parse_inplace = regmap_parse_64_be_inplace;
1096 break;
1097 case REGMAP_ENDIAN_LITTLE:
1098 map->format.format_val = regmap_format_64_le;
1099 map->format.parse_val = regmap_parse_64_le;
1100 map->format.parse_inplace = regmap_parse_64_le_inplace;
1101 break;
1102 case REGMAP_ENDIAN_NATIVE:
1103 map->format.format_val = regmap_format_64_native;
1104 map->format.parse_val = regmap_parse_64_native;
1105 break;
1106 default:
1107 goto err_hwlock;
1108 }
1109 break;
1110#endif
1111 }
1112
1113 if (map->format.format_write) {
1114 if ((reg_endian != REGMAP_ENDIAN_BIG) ||
1115 (val_endian != REGMAP_ENDIAN_BIG))
1116 goto err_hwlock;
1117 map->use_single_write = true;
1118 }
1119
1120 if (!map->format.format_write &&
1121 !(map->format.format_reg && map->format.format_val))
1122 goto err_hwlock;
1123
1124 map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
1125 if (map->work_buf == NULL) {
1126 ret = -ENOMEM;
1127 goto err_hwlock;
1128 }
1129
1130 if (map->format.format_write) {
1131 map->defer_caching = false;
1132 map->reg_write = _regmap_bus_formatted_write;
1133 } else if (map->format.format_val) {
1134 map->defer_caching = true;
1135 map->reg_write = _regmap_bus_raw_write;
1136 }
1137
1138skip_format_initialization:
1139
1140 map->range_tree = RB_ROOT;
1141 for (i = 0; i < config->num_ranges; i++) {
1142 const struct regmap_range_cfg *range_cfg = &config->ranges[i];
1143 struct regmap_range_node *new;
1144
1145 /* Sanity check */
1146 if (range_cfg->range_max < range_cfg->range_min) {
1147 dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
1148 range_cfg->range_max, range_cfg->range_min);
1149 goto err_range;
1150 }
1151
1152 if (range_cfg->range_max > map->max_register) {
1153 dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
1154 range_cfg->range_max, map->max_register);
1155 goto err_range;
1156 }
1157
1158 if (range_cfg->selector_reg > map->max_register) {
1159 dev_err(map->dev,
1160 "Invalid range %d: selector out of map\n", i);
1161 goto err_range;
1162 }
1163
1164 if (range_cfg->window_len == 0) {
1165 dev_err(map->dev, "Invalid range %d: window_len 0\n",
1166 i);
1167 goto err_range;
1168 }
1169
1170 /* Make sure, that this register range has no selector
1171 or data window within its boundary */
1172 for (j = 0; j < config->num_ranges; j++) {
1173 unsigned int sel_reg = config->ranges[j].selector_reg;
1174 unsigned int win_min = config->ranges[j].window_start;
1175 unsigned int win_max = win_min +
1176 config->ranges[j].window_len - 1;
1177
1178 /* Allow data window inside its own virtual range */
1179 if (j == i)
1180 continue;
1181
1182 if (range_cfg->range_min <= sel_reg &&
1183 sel_reg <= range_cfg->range_max) {
1184 dev_err(map->dev,
1185 "Range %d: selector for %d in window\n",
1186 i, j);
1187 goto err_range;
1188 }
1189
1190 if (!(win_max < range_cfg->range_min ||
1191 win_min > range_cfg->range_max)) {
1192 dev_err(map->dev,
1193 "Range %d: window for %d in window\n",
1194 i, j);
1195 goto err_range;
1196 }
1197 }
1198
1199 new = kzalloc(sizeof(*new), GFP_KERNEL);
1200 if (new == NULL) {
1201 ret = -ENOMEM;
1202 goto err_range;
1203 }
1204
1205 new->map = map;
1206 new->name = range_cfg->name;
1207 new->range_min = range_cfg->range_min;
1208 new->range_max = range_cfg->range_max;
1209 new->selector_reg = range_cfg->selector_reg;
1210 new->selector_mask = range_cfg->selector_mask;
1211 new->selector_shift = range_cfg->selector_shift;
1212 new->window_start = range_cfg->window_start;
1213 new->window_len = range_cfg->window_len;
1214
1215 if (!_regmap_range_add(map, new)) {
1216 dev_err(map->dev, "Failed to add range %d\n", i);
1217 kfree(new);
1218 goto err_range;
1219 }
1220
1221 if (map->selector_work_buf == NULL) {
1222 map->selector_work_buf =
1223 kzalloc(map->format.buf_size, GFP_KERNEL);
1224 if (map->selector_work_buf == NULL) {
1225 ret = -ENOMEM;
1226 goto err_range;
1227 }
1228 }
1229 }
1230
1231 ret = regcache_init(map, config);
1232 if (ret != 0)
1233 goto err_range;
1234
1235 if (dev) {
1236 ret = regmap_attach_dev(dev, map, config);
1237 if (ret != 0)
1238 goto err_regcache;
1239 } else {
1240 regmap_debugfs_init(map);
1241 }
1242
1243 return map;
1244
1245err_regcache:
1246 regcache_exit(map);
1247err_range:
1248 regmap_range_exit(map);
1249 kfree(map->work_buf);
1250err_hwlock:
1251 if (map->hwlock)
1252 hwspin_lock_free(map->hwlock);
1253err_name:
1254 kfree_const(map->name);
1255err_map:
1256 kfree(map);
1257err:
1258 return ERR_PTR(ret);
1259}
1260EXPORT_SYMBOL_GPL(__regmap_init);
1261
1262static void devm_regmap_release(struct device *dev, void *res)
1263{
1264 regmap_exit(*(struct regmap **)res);
1265}
1266
1267struct regmap *__devm_regmap_init(struct device *dev,
1268 const struct regmap_bus *bus,
1269 void *bus_context,
1270 const struct regmap_config *config,
1271 struct lock_class_key *lock_key,
1272 const char *lock_name)
1273{
1274 struct regmap **ptr, *regmap;
1275
1276 ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
1277 if (!ptr)
1278 return ERR_PTR(-ENOMEM);
1279
1280 regmap = __regmap_init(dev, bus, bus_context, config,
1281 lock_key, lock_name);
1282 if (!IS_ERR(regmap)) {
1283 *ptr = regmap;
1284 devres_add(dev, ptr);
1285 } else {
1286 devres_free(ptr);
1287 }
1288
1289 return regmap;
1290}
1291EXPORT_SYMBOL_GPL(__devm_regmap_init);
1292
1293static void regmap_field_init(struct regmap_field *rm_field,
1294 struct regmap *regmap, struct reg_field reg_field)
1295{
1296 rm_field->regmap = regmap;
1297 rm_field->reg = reg_field.reg;
1298 rm_field->shift = reg_field.lsb;
1299 rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
1300
1301 WARN_ONCE(rm_field->mask == 0, "invalid empty mask defined\n");
1302
1303 rm_field->id_size = reg_field.id_size;
1304 rm_field->id_offset = reg_field.id_offset;
1305}
1306
1307/**
1308 * devm_regmap_field_alloc() - Allocate and initialise a register field.
1309 *
1310 * @dev: Device that will be interacted with
1311 * @regmap: regmap bank in which this register field is located.
1312 * @reg_field: Register field with in the bank.
1313 *
1314 * The return value will be an ERR_PTR() on error or a valid pointer
1315 * to a struct regmap_field. The regmap_field will be automatically freed
1316 * by the device management code.
1317 */
1318struct regmap_field *devm_regmap_field_alloc(struct device *dev,
1319 struct regmap *regmap, struct reg_field reg_field)
1320{
1321 struct regmap_field *rm_field = devm_kzalloc(dev,
1322 sizeof(*rm_field), GFP_KERNEL);
1323 if (!rm_field)
1324 return ERR_PTR(-ENOMEM);
1325
1326 regmap_field_init(rm_field, regmap, reg_field);
1327
1328 return rm_field;
1329
1330}
1331EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
1332
1333
1334/**
1335 * regmap_field_bulk_alloc() - Allocate and initialise a bulk register field.
1336 *
1337 * @regmap: regmap bank in which this register field is located.
1338 * @rm_field: regmap register fields within the bank.
1339 * @reg_field: Register fields within the bank.
1340 * @num_fields: Number of register fields.
1341 *
1342 * The return value will be an -ENOMEM on error or zero for success.
1343 * Newly allocated regmap_fields should be freed by calling
1344 * regmap_field_bulk_free()
1345 */
1346int regmap_field_bulk_alloc(struct regmap *regmap,
1347 struct regmap_field **rm_field,
1348 const struct reg_field *reg_field,
1349 int num_fields)
1350{
1351 struct regmap_field *rf;
1352 int i;
1353
1354 rf = kcalloc(num_fields, sizeof(*rf), GFP_KERNEL);
1355 if (!rf)
1356 return -ENOMEM;
1357
1358 for (i = 0; i < num_fields; i++) {
1359 regmap_field_init(&rf[i], regmap, reg_field[i]);
1360 rm_field[i] = &rf[i];
1361 }
1362
1363 return 0;
1364}
1365EXPORT_SYMBOL_GPL(regmap_field_bulk_alloc);
1366
1367/**
1368 * devm_regmap_field_bulk_alloc() - Allocate and initialise a bulk register
1369 * fields.
1370 *
1371 * @dev: Device that will be interacted with
1372 * @regmap: regmap bank in which this register field is located.
1373 * @rm_field: regmap register fields within the bank.
1374 * @reg_field: Register fields within the bank.
1375 * @num_fields: Number of register fields.
1376 *
1377 * The return value will be an -ENOMEM on error or zero for success.
1378 * Newly allocated regmap_fields will be automatically freed by the
1379 * device management code.
1380 */
1381int devm_regmap_field_bulk_alloc(struct device *dev,
1382 struct regmap *regmap,
1383 struct regmap_field **rm_field,
1384 const struct reg_field *reg_field,
1385 int num_fields)
1386{
1387 struct regmap_field *rf;
1388 int i;
1389
1390 rf = devm_kcalloc(dev, num_fields, sizeof(*rf), GFP_KERNEL);
1391 if (!rf)
1392 return -ENOMEM;
1393
1394 for (i = 0; i < num_fields; i++) {
1395 regmap_field_init(&rf[i], regmap, reg_field[i]);
1396 rm_field[i] = &rf[i];
1397 }
1398
1399 return 0;
1400}
1401EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_alloc);
1402
1403/**
1404 * regmap_field_bulk_free() - Free register field allocated using
1405 * regmap_field_bulk_alloc.
1406 *
1407 * @field: regmap fields which should be freed.
1408 */
1409void regmap_field_bulk_free(struct regmap_field *field)
1410{
1411 kfree(field);
1412}
1413EXPORT_SYMBOL_GPL(regmap_field_bulk_free);
1414
1415/**
1416 * devm_regmap_field_bulk_free() - Free a bulk register field allocated using
1417 * devm_regmap_field_bulk_alloc.
1418 *
1419 * @dev: Device that will be interacted with
1420 * @field: regmap field which should be freed.
1421 *
1422 * Free register field allocated using devm_regmap_field_bulk_alloc(). Usually
1423 * drivers need not call this function, as the memory allocated via devm
1424 * will be freed as per device-driver life-cycle.
1425 */
1426void devm_regmap_field_bulk_free(struct device *dev,
1427 struct regmap_field *field)
1428{
1429 devm_kfree(dev, field);
1430}
1431EXPORT_SYMBOL_GPL(devm_regmap_field_bulk_free);
1432
1433/**
1434 * devm_regmap_field_free() - Free a register field allocated using
1435 * devm_regmap_field_alloc.
1436 *
1437 * @dev: Device that will be interacted with
1438 * @field: regmap field which should be freed.
1439 *
1440 * Free register field allocated using devm_regmap_field_alloc(). Usually
1441 * drivers need not call this function, as the memory allocated via devm
1442 * will be freed as per device-driver life-cyle.
1443 */
1444void devm_regmap_field_free(struct device *dev,
1445 struct regmap_field *field)
1446{
1447 devm_kfree(dev, field);
1448}
1449EXPORT_SYMBOL_GPL(devm_regmap_field_free);
1450
1451/**
1452 * regmap_field_alloc() - Allocate and initialise a register field.
1453 *
1454 * @regmap: regmap bank in which this register field is located.
1455 * @reg_field: Register field with in the bank.
1456 *
1457 * The return value will be an ERR_PTR() on error or a valid pointer
1458 * to a struct regmap_field. The regmap_field should be freed by the
1459 * user once its finished working with it using regmap_field_free().
1460 */
1461struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1462 struct reg_field reg_field)
1463{
1464 struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1465
1466 if (!rm_field)
1467 return ERR_PTR(-ENOMEM);
1468
1469 regmap_field_init(rm_field, regmap, reg_field);
1470
1471 return rm_field;
1472}
1473EXPORT_SYMBOL_GPL(regmap_field_alloc);
1474
1475/**
1476 * regmap_field_free() - Free register field allocated using
1477 * regmap_field_alloc.
1478 *
1479 * @field: regmap field which should be freed.
1480 */
1481void regmap_field_free(struct regmap_field *field)
1482{
1483 kfree(field);
1484}
1485EXPORT_SYMBOL_GPL(regmap_field_free);
1486
1487/**
1488 * regmap_reinit_cache() - Reinitialise the current register cache
1489 *
1490 * @map: Register map to operate on.
1491 * @config: New configuration. Only the cache data will be used.
1492 *
1493 * Discard any existing register cache for the map and initialize a
1494 * new cache. This can be used to restore the cache to defaults or to
1495 * update the cache configuration to reflect runtime discovery of the
1496 * hardware.
1497 *
1498 * No explicit locking is done here, the user needs to ensure that
1499 * this function will not race with other calls to regmap.
1500 */
1501int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1502{
1503 int ret;
1504
1505 regcache_exit(map);
1506 regmap_debugfs_exit(map);
1507
1508 map->max_register = config->max_register;
1509 map->writeable_reg = config->writeable_reg;
1510 map->readable_reg = config->readable_reg;
1511 map->volatile_reg = config->volatile_reg;
1512 map->precious_reg = config->precious_reg;
1513 map->writeable_noinc_reg = config->writeable_noinc_reg;
1514 map->readable_noinc_reg = config->readable_noinc_reg;
1515 map->cache_type = config->cache_type;
1516
1517 ret = regmap_set_name(map, config);
1518 if (ret)
1519 return ret;
1520
1521 regmap_debugfs_init(map);
1522
1523 map->cache_bypass = false;
1524 map->cache_only = false;
1525
1526 return regcache_init(map, config);
1527}
1528EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1529
1530/**
1531 * regmap_exit() - Free a previously allocated register map
1532 *
1533 * @map: Register map to operate on.
1534 */
1535void regmap_exit(struct regmap *map)
1536{
1537 struct regmap_async *async;
1538
1539 regcache_exit(map);
1540 regmap_debugfs_exit(map);
1541 regmap_range_exit(map);
1542 if (map->bus && map->bus->free_context)
1543 map->bus->free_context(map->bus_context);
1544 kfree(map->work_buf);
1545 while (!list_empty(&map->async_free)) {
1546 async = list_first_entry_or_null(&map->async_free,
1547 struct regmap_async,
1548 list);
1549 list_del(&async->list);
1550 kfree(async->work_buf);
1551 kfree(async);
1552 }
1553 if (map->hwlock)
1554 hwspin_lock_free(map->hwlock);
1555 if (map->lock == regmap_lock_mutex)
1556 mutex_destroy(&map->mutex);
1557 kfree_const(map->name);
1558 kfree(map->patch);
1559 if (map->bus && map->bus->free_on_exit)
1560 kfree(map->bus);
1561 kfree(map);
1562}
1563EXPORT_SYMBOL_GPL(regmap_exit);
1564
1565static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1566{
1567 struct regmap **r = res;
1568 if (!r || !*r) {
1569 WARN_ON(!r || !*r);
1570 return 0;
1571 }
1572
1573 /* If the user didn't specify a name match any */
1574 if (data)
1575 return !strcmp((*r)->name, data);
1576 else
1577 return 1;
1578}
1579
1580/**
1581 * dev_get_regmap() - Obtain the regmap (if any) for a device
1582 *
1583 * @dev: Device to retrieve the map for
1584 * @name: Optional name for the register map, usually NULL.
1585 *
1586 * Returns the regmap for the device if one is present, or NULL. If
1587 * name is specified then it must match the name specified when
1588 * registering the device, if it is NULL then the first regmap found
1589 * will be used. Devices with multiple register maps are very rare,
1590 * generic code should normally not need to specify a name.
1591 */
1592struct regmap *dev_get_regmap(struct device *dev, const char *name)
1593{
1594 struct regmap **r = devres_find(dev, dev_get_regmap_release,
1595 dev_get_regmap_match, (void *)name);
1596
1597 if (!r)
1598 return NULL;
1599 return *r;
1600}
1601EXPORT_SYMBOL_GPL(dev_get_regmap);
1602
1603/**
1604 * regmap_get_device() - Obtain the device from a regmap
1605 *
1606 * @map: Register map to operate on.
1607 *
1608 * Returns the underlying device that the regmap has been created for.
1609 */
1610struct device *regmap_get_device(struct regmap *map)
1611{
1612 return map->dev;
1613}
1614EXPORT_SYMBOL_GPL(regmap_get_device);
1615
1616static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1617 struct regmap_range_node *range,
1618 unsigned int val_num)
1619{
1620 void *orig_work_buf;
1621 unsigned int win_offset;
1622 unsigned int win_page;
1623 bool page_chg;
1624 int ret;
1625
1626 win_offset = (*reg - range->range_min) % range->window_len;
1627 win_page = (*reg - range->range_min) / range->window_len;
1628
1629 if (val_num > 1) {
1630 /* Bulk write shouldn't cross range boundary */
1631 if (*reg + val_num - 1 > range->range_max)
1632 return -EINVAL;
1633
1634 /* ... or single page boundary */
1635 if (val_num > range->window_len - win_offset)
1636 return -EINVAL;
1637 }
1638
1639 /* It is possible to have selector register inside data window.
1640 In that case, selector register is located on every page and
1641 it needs no page switching, when accessed alone. */
1642 if (val_num > 1 ||
1643 range->window_start + win_offset != range->selector_reg) {
1644 /* Use separate work_buf during page switching */
1645 orig_work_buf = map->work_buf;
1646 map->work_buf = map->selector_work_buf;
1647
1648 ret = _regmap_update_bits(map, range->selector_reg,
1649 range->selector_mask,
1650 win_page << range->selector_shift,
1651 &page_chg, false);
1652
1653 map->work_buf = orig_work_buf;
1654
1655 if (ret != 0)
1656 return ret;
1657 }
1658
1659 *reg = range->window_start + win_offset;
1660
1661 return 0;
1662}
1663
1664static void regmap_set_work_buf_flag_mask(struct regmap *map, int max_bytes,
1665 unsigned long mask)
1666{
1667 u8 *buf;
1668 int i;
1669
1670 if (!mask || !map->work_buf)
1671 return;
1672
1673 buf = map->work_buf;
1674
1675 for (i = 0; i < max_bytes; i++)
1676 buf[i] |= (mask >> (8 * i)) & 0xff;
1677}
1678
1679static unsigned int regmap_reg_addr(struct regmap *map, unsigned int reg)
1680{
1681 reg += map->reg_base;
1682
1683 if (map->format.reg_shift > 0)
1684 reg >>= map->format.reg_shift;
1685 else if (map->format.reg_shift < 0)
1686 reg <<= -(map->format.reg_shift);
1687
1688 return reg;
1689}
1690
1691static int _regmap_raw_write_impl(struct regmap *map, unsigned int reg,
1692 const void *val, size_t val_len, bool noinc)
1693{
1694 struct regmap_range_node *range;
1695 unsigned long flags;
1696 void *work_val = map->work_buf + map->format.reg_bytes +
1697 map->format.pad_bytes;
1698 void *buf;
1699 int ret = -ENOTSUPP;
1700 size_t len;
1701 int i;
1702
1703 /* Check for unwritable or noinc registers in range
1704 * before we start
1705 */
1706 if (!regmap_writeable_noinc(map, reg)) {
1707 for (i = 0; i < val_len / map->format.val_bytes; i++) {
1708 unsigned int element =
1709 reg + regmap_get_offset(map, i);
1710 if (!regmap_writeable(map, element) ||
1711 regmap_writeable_noinc(map, element))
1712 return -EINVAL;
1713 }
1714 }
1715
1716 if (!map->cache_bypass && map->format.parse_val) {
1717 unsigned int ival;
1718 int val_bytes = map->format.val_bytes;
1719 for (i = 0; i < val_len / val_bytes; i++) {
1720 ival = map->format.parse_val(val + (i * val_bytes));
1721 ret = regcache_write(map,
1722 reg + regmap_get_offset(map, i),
1723 ival);
1724 if (ret) {
1725 dev_err(map->dev,
1726 "Error in caching of register: %x ret: %d\n",
1727 reg + regmap_get_offset(map, i), ret);
1728 return ret;
1729 }
1730 }
1731 if (map->cache_only) {
1732 map->cache_dirty = true;
1733 return 0;
1734 }
1735 }
1736
1737 range = _regmap_range_lookup(map, reg);
1738 if (range) {
1739 int val_num = val_len / map->format.val_bytes;
1740 int win_offset = (reg - range->range_min) % range->window_len;
1741 int win_residue = range->window_len - win_offset;
1742
1743 /* If the write goes beyond the end of the window split it */
1744 while (val_num > win_residue) {
1745 dev_dbg(map->dev, "Writing window %d/%zu\n",
1746 win_residue, val_len / map->format.val_bytes);
1747 ret = _regmap_raw_write_impl(map, reg, val,
1748 win_residue *
1749 map->format.val_bytes, noinc);
1750 if (ret != 0)
1751 return ret;
1752
1753 reg += win_residue;
1754 val_num -= win_residue;
1755 val += win_residue * map->format.val_bytes;
1756 val_len -= win_residue * map->format.val_bytes;
1757
1758 win_offset = (reg - range->range_min) %
1759 range->window_len;
1760 win_residue = range->window_len - win_offset;
1761 }
1762
1763 ret = _regmap_select_page(map, ®, range, noinc ? 1 : val_num);
1764 if (ret != 0)
1765 return ret;
1766 }
1767
1768 reg = regmap_reg_addr(map, reg);
1769 map->format.format_reg(map->work_buf, reg, map->reg_shift);
1770 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
1771 map->write_flag_mask);
1772
1773 /*
1774 * Essentially all I/O mechanisms will be faster with a single
1775 * buffer to write. Since register syncs often generate raw
1776 * writes of single registers optimise that case.
1777 */
1778 if (val != work_val && val_len == map->format.val_bytes) {
1779 memcpy(work_val, val, map->format.val_bytes);
1780 val = work_val;
1781 }
1782
1783 if (map->async && map->bus && map->bus->async_write) {
1784 struct regmap_async *async;
1785
1786 trace_regmap_async_write_start(map, reg, val_len);
1787
1788 spin_lock_irqsave(&map->async_lock, flags);
1789 async = list_first_entry_or_null(&map->async_free,
1790 struct regmap_async,
1791 list);
1792 if (async)
1793 list_del(&async->list);
1794 spin_unlock_irqrestore(&map->async_lock, flags);
1795
1796 if (!async) {
1797 async = map->bus->async_alloc();
1798 if (!async)
1799 return -ENOMEM;
1800
1801 async->work_buf = kzalloc(map->format.buf_size,
1802 GFP_KERNEL | GFP_DMA);
1803 if (!async->work_buf) {
1804 kfree(async);
1805 return -ENOMEM;
1806 }
1807 }
1808
1809 async->map = map;
1810
1811 /* If the caller supplied the value we can use it safely. */
1812 memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1813 map->format.reg_bytes + map->format.val_bytes);
1814
1815 spin_lock_irqsave(&map->async_lock, flags);
1816 list_add_tail(&async->list, &map->async_list);
1817 spin_unlock_irqrestore(&map->async_lock, flags);
1818
1819 if (val != work_val)
1820 ret = map->bus->async_write(map->bus_context,
1821 async->work_buf,
1822 map->format.reg_bytes +
1823 map->format.pad_bytes,
1824 val, val_len, async);
1825 else
1826 ret = map->bus->async_write(map->bus_context,
1827 async->work_buf,
1828 map->format.reg_bytes +
1829 map->format.pad_bytes +
1830 val_len, NULL, 0, async);
1831
1832 if (ret != 0) {
1833 dev_err(map->dev, "Failed to schedule write: %d\n",
1834 ret);
1835
1836 spin_lock_irqsave(&map->async_lock, flags);
1837 list_move(&async->list, &map->async_free);
1838 spin_unlock_irqrestore(&map->async_lock, flags);
1839 }
1840
1841 return ret;
1842 }
1843
1844 trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1845
1846 /* If we're doing a single register write we can probably just
1847 * send the work_buf directly, otherwise try to do a gather
1848 * write.
1849 */
1850 if (val == work_val)
1851 ret = map->write(map->bus_context, map->work_buf,
1852 map->format.reg_bytes +
1853 map->format.pad_bytes +
1854 val_len);
1855 else if (map->bus && map->bus->gather_write)
1856 ret = map->bus->gather_write(map->bus_context, map->work_buf,
1857 map->format.reg_bytes +
1858 map->format.pad_bytes,
1859 val, val_len);
1860 else
1861 ret = -ENOTSUPP;
1862
1863 /* If that didn't work fall back on linearising by hand. */
1864 if (ret == -ENOTSUPP) {
1865 len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1866 buf = kzalloc(len, GFP_KERNEL);
1867 if (!buf)
1868 return -ENOMEM;
1869
1870 memcpy(buf, map->work_buf, map->format.reg_bytes);
1871 memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1872 val, val_len);
1873 ret = map->write(map->bus_context, buf, len);
1874
1875 kfree(buf);
1876 } else if (ret != 0 && !map->cache_bypass && map->format.parse_val) {
1877 /* regcache_drop_region() takes lock that we already have,
1878 * thus call map->cache_ops->drop() directly
1879 */
1880 if (map->cache_ops && map->cache_ops->drop)
1881 map->cache_ops->drop(map, reg, reg + 1);
1882 }
1883
1884 trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1885
1886 return ret;
1887}
1888
1889/**
1890 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1891 *
1892 * @map: Map to check.
1893 */
1894bool regmap_can_raw_write(struct regmap *map)
1895{
1896 return map->write && map->format.format_val && map->format.format_reg;
1897}
1898EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1899
1900/**
1901 * regmap_get_raw_read_max - Get the maximum size we can read
1902 *
1903 * @map: Map to check.
1904 */
1905size_t regmap_get_raw_read_max(struct regmap *map)
1906{
1907 return map->max_raw_read;
1908}
1909EXPORT_SYMBOL_GPL(regmap_get_raw_read_max);
1910
1911/**
1912 * regmap_get_raw_write_max - Get the maximum size we can read
1913 *
1914 * @map: Map to check.
1915 */
1916size_t regmap_get_raw_write_max(struct regmap *map)
1917{
1918 return map->max_raw_write;
1919}
1920EXPORT_SYMBOL_GPL(regmap_get_raw_write_max);
1921
1922static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1923 unsigned int val)
1924{
1925 int ret;
1926 struct regmap_range_node *range;
1927 struct regmap *map = context;
1928
1929 WARN_ON(!map->format.format_write);
1930
1931 range = _regmap_range_lookup(map, reg);
1932 if (range) {
1933 ret = _regmap_select_page(map, ®, range, 1);
1934 if (ret != 0)
1935 return ret;
1936 }
1937
1938 reg = regmap_reg_addr(map, reg);
1939 map->format.format_write(map, reg, val);
1940
1941 trace_regmap_hw_write_start(map, reg, 1);
1942
1943 ret = map->write(map->bus_context, map->work_buf, map->format.buf_size);
1944
1945 trace_regmap_hw_write_done(map, reg, 1);
1946
1947 return ret;
1948}
1949
1950static int _regmap_bus_reg_write(void *context, unsigned int reg,
1951 unsigned int val)
1952{
1953 struct regmap *map = context;
1954 struct regmap_range_node *range;
1955 int ret;
1956
1957 range = _regmap_range_lookup(map, reg);
1958 if (range) {
1959 ret = _regmap_select_page(map, ®, range, 1);
1960 if (ret != 0)
1961 return ret;
1962 }
1963
1964 reg = regmap_reg_addr(map, reg);
1965 return map->bus->reg_write(map->bus_context, reg, val);
1966}
1967
1968static int _regmap_bus_raw_write(void *context, unsigned int reg,
1969 unsigned int val)
1970{
1971 struct regmap *map = context;
1972
1973 WARN_ON(!map->format.format_val);
1974
1975 map->format.format_val(map->work_buf + map->format.reg_bytes
1976 + map->format.pad_bytes, val, 0);
1977 return _regmap_raw_write_impl(map, reg,
1978 map->work_buf +
1979 map->format.reg_bytes +
1980 map->format.pad_bytes,
1981 map->format.val_bytes,
1982 false);
1983}
1984
1985static inline void *_regmap_map_get_context(struct regmap *map)
1986{
1987 return (map->bus || (!map->bus && map->read)) ? map : map->bus_context;
1988}
1989
1990int _regmap_write(struct regmap *map, unsigned int reg,
1991 unsigned int val)
1992{
1993 int ret;
1994 void *context = _regmap_map_get_context(map);
1995
1996 if (!regmap_writeable(map, reg))
1997 return -EIO;
1998
1999 if (!map->cache_bypass && !map->defer_caching) {
2000 ret = regcache_write(map, reg, val);
2001 if (ret != 0)
2002 return ret;
2003 if (map->cache_only) {
2004 map->cache_dirty = true;
2005 return 0;
2006 }
2007 }
2008
2009 ret = map->reg_write(context, reg, val);
2010 if (ret == 0) {
2011 if (regmap_should_log(map))
2012 dev_info(map->dev, "%x <= %x\n", reg, val);
2013
2014 trace_regmap_reg_write(map, reg, val);
2015 }
2016
2017 return ret;
2018}
2019
2020/**
2021 * regmap_write() - Write a value to a single register
2022 *
2023 * @map: Register map to write to
2024 * @reg: Register to write to
2025 * @val: Value to be written
2026 *
2027 * A value of zero will be returned on success, a negative errno will
2028 * be returned in error cases.
2029 */
2030int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
2031{
2032 int ret;
2033
2034 if (!IS_ALIGNED(reg, map->reg_stride))
2035 return -EINVAL;
2036
2037 map->lock(map->lock_arg);
2038
2039 ret = _regmap_write(map, reg, val);
2040
2041 map->unlock(map->lock_arg);
2042
2043 return ret;
2044}
2045EXPORT_SYMBOL_GPL(regmap_write);
2046
2047/**
2048 * regmap_write_async() - Write a value to a single register asynchronously
2049 *
2050 * @map: Register map to write to
2051 * @reg: Register to write to
2052 * @val: Value to be written
2053 *
2054 * A value of zero will be returned on success, a negative errno will
2055 * be returned in error cases.
2056 */
2057int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
2058{
2059 int ret;
2060
2061 if (!IS_ALIGNED(reg, map->reg_stride))
2062 return -EINVAL;
2063
2064 map->lock(map->lock_arg);
2065
2066 map->async = true;
2067
2068 ret = _regmap_write(map, reg, val);
2069
2070 map->async = false;
2071
2072 map->unlock(map->lock_arg);
2073
2074 return ret;
2075}
2076EXPORT_SYMBOL_GPL(regmap_write_async);
2077
2078int _regmap_raw_write(struct regmap *map, unsigned int reg,
2079 const void *val, size_t val_len, bool noinc)
2080{
2081 size_t val_bytes = map->format.val_bytes;
2082 size_t val_count = val_len / val_bytes;
2083 size_t chunk_count, chunk_bytes;
2084 size_t chunk_regs = val_count;
2085 size_t max_data = map->max_raw_write - map->format.reg_bytes -
2086 map->format.pad_bytes;
2087 int ret, i;
2088
2089 if (!val_count)
2090 return -EINVAL;
2091
2092 if (map->use_single_write)
2093 chunk_regs = 1;
2094 else if (map->max_raw_write && val_len > max_data)
2095 chunk_regs = max_data / val_bytes;
2096
2097 chunk_count = val_count / chunk_regs;
2098 chunk_bytes = chunk_regs * val_bytes;
2099
2100 /* Write as many bytes as possible with chunk_size */
2101 for (i = 0; i < chunk_count; i++) {
2102 ret = _regmap_raw_write_impl(map, reg, val, chunk_bytes, noinc);
2103 if (ret)
2104 return ret;
2105
2106 reg += regmap_get_offset(map, chunk_regs);
2107 val += chunk_bytes;
2108 val_len -= chunk_bytes;
2109 }
2110
2111 /* Write remaining bytes */
2112 if (val_len)
2113 ret = _regmap_raw_write_impl(map, reg, val, val_len, noinc);
2114
2115 return ret;
2116}
2117
2118/**
2119 * regmap_raw_write() - Write raw values to one or more registers
2120 *
2121 * @map: Register map to write to
2122 * @reg: Initial register to write to
2123 * @val: Block of data to be written, laid out for direct transmission to the
2124 * device
2125 * @val_len: Length of data pointed to by val.
2126 *
2127 * This function is intended to be used for things like firmware
2128 * download where a large block of data needs to be transferred to the
2129 * device. No formatting will be done on the data provided.
2130 *
2131 * A value of zero will be returned on success, a negative errno will
2132 * be returned in error cases.
2133 */
2134int regmap_raw_write(struct regmap *map, unsigned int reg,
2135 const void *val, size_t val_len)
2136{
2137 int ret;
2138
2139 if (!regmap_can_raw_write(map))
2140 return -EINVAL;
2141 if (val_len % map->format.val_bytes)
2142 return -EINVAL;
2143
2144 map->lock(map->lock_arg);
2145
2146 ret = _regmap_raw_write(map, reg, val, val_len, false);
2147
2148 map->unlock(map->lock_arg);
2149
2150 return ret;
2151}
2152EXPORT_SYMBOL_GPL(regmap_raw_write);
2153
2154static int regmap_noinc_readwrite(struct regmap *map, unsigned int reg,
2155 void *val, unsigned int val_len, bool write)
2156{
2157 size_t val_bytes = map->format.val_bytes;
2158 size_t val_count = val_len / val_bytes;
2159 unsigned int lastval;
2160 u8 *u8p;
2161 u16 *u16p;
2162 u32 *u32p;
2163#ifdef CONFIG_64BIT
2164 u64 *u64p;
2165#endif
2166 int ret;
2167 int i;
2168
2169 switch (val_bytes) {
2170 case 1:
2171 u8p = val;
2172 if (write)
2173 lastval = (unsigned int)u8p[val_count - 1];
2174 break;
2175 case 2:
2176 u16p = val;
2177 if (write)
2178 lastval = (unsigned int)u16p[val_count - 1];
2179 break;
2180 case 4:
2181 u32p = val;
2182 if (write)
2183 lastval = (unsigned int)u32p[val_count - 1];
2184 break;
2185#ifdef CONFIG_64BIT
2186 case 8:
2187 u64p = val;
2188 if (write)
2189 lastval = (unsigned int)u64p[val_count - 1];
2190 break;
2191#endif
2192 default:
2193 return -EINVAL;
2194 }
2195
2196 /*
2197 * Update the cache with the last value we write, the rest is just
2198 * gone down in the hardware FIFO. We can't cache FIFOs. This makes
2199 * sure a single read from the cache will work.
2200 */
2201 if (write) {
2202 if (!map->cache_bypass && !map->defer_caching) {
2203 ret = regcache_write(map, reg, lastval);
2204 if (ret != 0)
2205 return ret;
2206 if (map->cache_only) {
2207 map->cache_dirty = true;
2208 return 0;
2209 }
2210 }
2211 ret = map->bus->reg_noinc_write(map->bus_context, reg, val, val_count);
2212 } else {
2213 ret = map->bus->reg_noinc_read(map->bus_context, reg, val, val_count);
2214 }
2215
2216 if (!ret && regmap_should_log(map)) {
2217 dev_info(map->dev, "%x %s [", reg, write ? "<=" : "=>");
2218 for (i = 0; i < val_count; i++) {
2219 switch (val_bytes) {
2220 case 1:
2221 pr_cont("%x", u8p[i]);
2222 break;
2223 case 2:
2224 pr_cont("%x", u16p[i]);
2225 break;
2226 case 4:
2227 pr_cont("%x", u32p[i]);
2228 break;
2229#ifdef CONFIG_64BIT
2230 case 8:
2231 pr_cont("%llx", u64p[i]);
2232 break;
2233#endif
2234 default:
2235 break;
2236 }
2237 if (i == (val_count - 1))
2238 pr_cont("]\n");
2239 else
2240 pr_cont(",");
2241 }
2242 }
2243
2244 return 0;
2245}
2246
2247/**
2248 * regmap_noinc_write(): Write data from a register without incrementing the
2249 * register number
2250 *
2251 * @map: Register map to write to
2252 * @reg: Register to write to
2253 * @val: Pointer to data buffer
2254 * @val_len: Length of output buffer in bytes.
2255 *
2256 * The regmap API usually assumes that bulk bus write operations will write a
2257 * range of registers. Some devices have certain registers for which a write
2258 * operation can write to an internal FIFO.
2259 *
2260 * The target register must be volatile but registers after it can be
2261 * completely unrelated cacheable registers.
2262 *
2263 * This will attempt multiple writes as required to write val_len bytes.
2264 *
2265 * A value of zero will be returned on success, a negative errno will be
2266 * returned in error cases.
2267 */
2268int regmap_noinc_write(struct regmap *map, unsigned int reg,
2269 const void *val, size_t val_len)
2270{
2271 size_t write_len;
2272 int ret;
2273
2274 if (!map->write && !(map->bus && map->bus->reg_noinc_write))
2275 return -EINVAL;
2276 if (val_len % map->format.val_bytes)
2277 return -EINVAL;
2278 if (!IS_ALIGNED(reg, map->reg_stride))
2279 return -EINVAL;
2280 if (val_len == 0)
2281 return -EINVAL;
2282
2283 map->lock(map->lock_arg);
2284
2285 if (!regmap_volatile(map, reg) || !regmap_writeable_noinc(map, reg)) {
2286 ret = -EINVAL;
2287 goto out_unlock;
2288 }
2289
2290 /*
2291 * Use the accelerated operation if we can. The val drops the const
2292 * typing in order to facilitate code reuse in regmap_noinc_readwrite().
2293 */
2294 if (map->bus->reg_noinc_write) {
2295 ret = regmap_noinc_readwrite(map, reg, (void *)val, val_len, true);
2296 goto out_unlock;
2297 }
2298
2299 while (val_len) {
2300 if (map->max_raw_write && map->max_raw_write < val_len)
2301 write_len = map->max_raw_write;
2302 else
2303 write_len = val_len;
2304 ret = _regmap_raw_write(map, reg, val, write_len, true);
2305 if (ret)
2306 goto out_unlock;
2307 val = ((u8 *)val) + write_len;
2308 val_len -= write_len;
2309 }
2310
2311out_unlock:
2312 map->unlock(map->lock_arg);
2313 return ret;
2314}
2315EXPORT_SYMBOL_GPL(regmap_noinc_write);
2316
2317/**
2318 * regmap_field_update_bits_base() - Perform a read/modify/write cycle a
2319 * register field.
2320 *
2321 * @field: Register field to write to
2322 * @mask: Bitmask to change
2323 * @val: Value to be written
2324 * @change: Boolean indicating if a write was done
2325 * @async: Boolean indicating asynchronously
2326 * @force: Boolean indicating use force update
2327 *
2328 * Perform a read/modify/write cycle on the register field with change,
2329 * async, force option.
2330 *
2331 * A value of zero will be returned on success, a negative errno will
2332 * be returned in error cases.
2333 */
2334int regmap_field_update_bits_base(struct regmap_field *field,
2335 unsigned int mask, unsigned int val,
2336 bool *change, bool async, bool force)
2337{
2338 mask = (mask << field->shift) & field->mask;
2339
2340 return regmap_update_bits_base(field->regmap, field->reg,
2341 mask, val << field->shift,
2342 change, async, force);
2343}
2344EXPORT_SYMBOL_GPL(regmap_field_update_bits_base);
2345
2346/**
2347 * regmap_field_test_bits() - Check if all specified bits are set in a
2348 * register field.
2349 *
2350 * @field: Register field to operate on
2351 * @bits: Bits to test
2352 *
2353 * Returns -1 if the underlying regmap_field_read() fails, 0 if at least one of the
2354 * tested bits is not set and 1 if all tested bits are set.
2355 */
2356int regmap_field_test_bits(struct regmap_field *field, unsigned int bits)
2357{
2358 unsigned int val, ret;
2359
2360 ret = regmap_field_read(field, &val);
2361 if (ret)
2362 return ret;
2363
2364 return (val & bits) == bits;
2365}
2366EXPORT_SYMBOL_GPL(regmap_field_test_bits);
2367
2368/**
2369 * regmap_fields_update_bits_base() - Perform a read/modify/write cycle a
2370 * register field with port ID
2371 *
2372 * @field: Register field to write to
2373 * @id: port ID
2374 * @mask: Bitmask to change
2375 * @val: Value to be written
2376 * @change: Boolean indicating if a write was done
2377 * @async: Boolean indicating asynchronously
2378 * @force: Boolean indicating use force update
2379 *
2380 * A value of zero will be returned on success, a negative errno will
2381 * be returned in error cases.
2382 */
2383int regmap_fields_update_bits_base(struct regmap_field *field, unsigned int id,
2384 unsigned int mask, unsigned int val,
2385 bool *change, bool async, bool force)
2386{
2387 if (id >= field->id_size)
2388 return -EINVAL;
2389
2390 mask = (mask << field->shift) & field->mask;
2391
2392 return regmap_update_bits_base(field->regmap,
2393 field->reg + (field->id_offset * id),
2394 mask, val << field->shift,
2395 change, async, force);
2396}
2397EXPORT_SYMBOL_GPL(regmap_fields_update_bits_base);
2398
2399/**
2400 * regmap_bulk_write() - Write multiple registers to the device
2401 *
2402 * @map: Register map to write to
2403 * @reg: First register to be write from
2404 * @val: Block of data to be written, in native register size for device
2405 * @val_count: Number of registers to write
2406 *
2407 * This function is intended to be used for writing a large block of
2408 * data to the device either in single transfer or multiple transfer.
2409 *
2410 * A value of zero will be returned on success, a negative errno will
2411 * be returned in error cases.
2412 */
2413int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
2414 size_t val_count)
2415{
2416 int ret = 0, i;
2417 size_t val_bytes = map->format.val_bytes;
2418
2419 if (!IS_ALIGNED(reg, map->reg_stride))
2420 return -EINVAL;
2421
2422 /*
2423 * Some devices don't support bulk write, for them we have a series of
2424 * single write operations.
2425 */
2426 if (!map->write || !map->format.parse_inplace) {
2427 map->lock(map->lock_arg);
2428 for (i = 0; i < val_count; i++) {
2429 unsigned int ival;
2430
2431 switch (val_bytes) {
2432 case 1:
2433 ival = *(u8 *)(val + (i * val_bytes));
2434 break;
2435 case 2:
2436 ival = *(u16 *)(val + (i * val_bytes));
2437 break;
2438 case 4:
2439 ival = *(u32 *)(val + (i * val_bytes));
2440 break;
2441#ifdef CONFIG_64BIT
2442 case 8:
2443 ival = *(u64 *)(val + (i * val_bytes));
2444 break;
2445#endif
2446 default:
2447 ret = -EINVAL;
2448 goto out;
2449 }
2450
2451 ret = _regmap_write(map,
2452 reg + regmap_get_offset(map, i),
2453 ival);
2454 if (ret != 0)
2455 goto out;
2456 }
2457out:
2458 map->unlock(map->lock_arg);
2459 } else {
2460 void *wval;
2461
2462 wval = kmemdup(val, val_count * val_bytes, map->alloc_flags);
2463 if (!wval)
2464 return -ENOMEM;
2465
2466 for (i = 0; i < val_count * val_bytes; i += val_bytes)
2467 map->format.parse_inplace(wval + i);
2468
2469 ret = regmap_raw_write(map, reg, wval, val_bytes * val_count);
2470
2471 kfree(wval);
2472 }
2473
2474 if (!ret)
2475 trace_regmap_bulk_write(map, reg, val, val_bytes * val_count);
2476
2477 return ret;
2478}
2479EXPORT_SYMBOL_GPL(regmap_bulk_write);
2480
2481/*
2482 * _regmap_raw_multi_reg_write()
2483 *
2484 * the (register,newvalue) pairs in regs have not been formatted, but
2485 * they are all in the same page and have been changed to being page
2486 * relative. The page register has been written if that was necessary.
2487 */
2488static int _regmap_raw_multi_reg_write(struct regmap *map,
2489 const struct reg_sequence *regs,
2490 size_t num_regs)
2491{
2492 int ret;
2493 void *buf;
2494 int i;
2495 u8 *u8;
2496 size_t val_bytes = map->format.val_bytes;
2497 size_t reg_bytes = map->format.reg_bytes;
2498 size_t pad_bytes = map->format.pad_bytes;
2499 size_t pair_size = reg_bytes + pad_bytes + val_bytes;
2500 size_t len = pair_size * num_regs;
2501
2502 if (!len)
2503 return -EINVAL;
2504
2505 buf = kzalloc(len, GFP_KERNEL);
2506 if (!buf)
2507 return -ENOMEM;
2508
2509 /* We have to linearise by hand. */
2510
2511 u8 = buf;
2512
2513 for (i = 0; i < num_regs; i++) {
2514 unsigned int reg = regs[i].reg;
2515 unsigned int val = regs[i].def;
2516 trace_regmap_hw_write_start(map, reg, 1);
2517 reg = regmap_reg_addr(map, reg);
2518 map->format.format_reg(u8, reg, map->reg_shift);
2519 u8 += reg_bytes + pad_bytes;
2520 map->format.format_val(u8, val, 0);
2521 u8 += val_bytes;
2522 }
2523 u8 = buf;
2524 *u8 |= map->write_flag_mask;
2525
2526 ret = map->write(map->bus_context, buf, len);
2527
2528 kfree(buf);
2529
2530 for (i = 0; i < num_regs; i++) {
2531 int reg = regs[i].reg;
2532 trace_regmap_hw_write_done(map, reg, 1);
2533 }
2534 return ret;
2535}
2536
2537static unsigned int _regmap_register_page(struct regmap *map,
2538 unsigned int reg,
2539 struct regmap_range_node *range)
2540{
2541 unsigned int win_page = (reg - range->range_min) / range->window_len;
2542
2543 return win_page;
2544}
2545
2546static int _regmap_range_multi_paged_reg_write(struct regmap *map,
2547 struct reg_sequence *regs,
2548 size_t num_regs)
2549{
2550 int ret;
2551 int i, n;
2552 struct reg_sequence *base;
2553 unsigned int this_page = 0;
2554 unsigned int page_change = 0;
2555 /*
2556 * the set of registers are not neccessarily in order, but
2557 * since the order of write must be preserved this algorithm
2558 * chops the set each time the page changes. This also applies
2559 * if there is a delay required at any point in the sequence.
2560 */
2561 base = regs;
2562 for (i = 0, n = 0; i < num_regs; i++, n++) {
2563 unsigned int reg = regs[i].reg;
2564 struct regmap_range_node *range;
2565
2566 range = _regmap_range_lookup(map, reg);
2567 if (range) {
2568 unsigned int win_page = _regmap_register_page(map, reg,
2569 range);
2570
2571 if (i == 0)
2572 this_page = win_page;
2573 if (win_page != this_page) {
2574 this_page = win_page;
2575 page_change = 1;
2576 }
2577 }
2578
2579 /* If we have both a page change and a delay make sure to
2580 * write the regs and apply the delay before we change the
2581 * page.
2582 */
2583
2584 if (page_change || regs[i].delay_us) {
2585
2586 /* For situations where the first write requires
2587 * a delay we need to make sure we don't call
2588 * raw_multi_reg_write with n=0
2589 * This can't occur with page breaks as we
2590 * never write on the first iteration
2591 */
2592 if (regs[i].delay_us && i == 0)
2593 n = 1;
2594
2595 ret = _regmap_raw_multi_reg_write(map, base, n);
2596 if (ret != 0)
2597 return ret;
2598
2599 if (regs[i].delay_us) {
2600 if (map->can_sleep)
2601 fsleep(regs[i].delay_us);
2602 else
2603 udelay(regs[i].delay_us);
2604 }
2605
2606 base += n;
2607 n = 0;
2608
2609 if (page_change) {
2610 ret = _regmap_select_page(map,
2611 &base[n].reg,
2612 range, 1);
2613 if (ret != 0)
2614 return ret;
2615
2616 page_change = 0;
2617 }
2618
2619 }
2620
2621 }
2622 if (n > 0)
2623 return _regmap_raw_multi_reg_write(map, base, n);
2624 return 0;
2625}
2626
2627static int _regmap_multi_reg_write(struct regmap *map,
2628 const struct reg_sequence *regs,
2629 size_t num_regs)
2630{
2631 int i;
2632 int ret;
2633
2634 if (!map->can_multi_write) {
2635 for (i = 0; i < num_regs; i++) {
2636 ret = _regmap_write(map, regs[i].reg, regs[i].def);
2637 if (ret != 0)
2638 return ret;
2639
2640 if (regs[i].delay_us) {
2641 if (map->can_sleep)
2642 fsleep(regs[i].delay_us);
2643 else
2644 udelay(regs[i].delay_us);
2645 }
2646 }
2647 return 0;
2648 }
2649
2650 if (!map->format.parse_inplace)
2651 return -EINVAL;
2652
2653 if (map->writeable_reg)
2654 for (i = 0; i < num_regs; i++) {
2655 int reg = regs[i].reg;
2656 if (!map->writeable_reg(map->dev, reg))
2657 return -EINVAL;
2658 if (!IS_ALIGNED(reg, map->reg_stride))
2659 return -EINVAL;
2660 }
2661
2662 if (!map->cache_bypass) {
2663 for (i = 0; i < num_regs; i++) {
2664 unsigned int val = regs[i].def;
2665 unsigned int reg = regs[i].reg;
2666 ret = regcache_write(map, reg, val);
2667 if (ret) {
2668 dev_err(map->dev,
2669 "Error in caching of register: %x ret: %d\n",
2670 reg, ret);
2671 return ret;
2672 }
2673 }
2674 if (map->cache_only) {
2675 map->cache_dirty = true;
2676 return 0;
2677 }
2678 }
2679
2680 WARN_ON(!map->bus);
2681
2682 for (i = 0; i < num_regs; i++) {
2683 unsigned int reg = regs[i].reg;
2684 struct regmap_range_node *range;
2685
2686 /* Coalesce all the writes between a page break or a delay
2687 * in a sequence
2688 */
2689 range = _regmap_range_lookup(map, reg);
2690 if (range || regs[i].delay_us) {
2691 size_t len = sizeof(struct reg_sequence)*num_regs;
2692 struct reg_sequence *base = kmemdup(regs, len,
2693 GFP_KERNEL);
2694 if (!base)
2695 return -ENOMEM;
2696 ret = _regmap_range_multi_paged_reg_write(map, base,
2697 num_regs);
2698 kfree(base);
2699
2700 return ret;
2701 }
2702 }
2703 return _regmap_raw_multi_reg_write(map, regs, num_regs);
2704}
2705
2706/**
2707 * regmap_multi_reg_write() - Write multiple registers to the device
2708 *
2709 * @map: Register map to write to
2710 * @regs: Array of structures containing register,value to be written
2711 * @num_regs: Number of registers to write
2712 *
2713 * Write multiple registers to the device where the set of register, value
2714 * pairs are supplied in any order, possibly not all in a single range.
2715 *
2716 * The 'normal' block write mode will send ultimately send data on the
2717 * target bus as R,V1,V2,V3,..,Vn where successively higher registers are
2718 * addressed. However, this alternative block multi write mode will send
2719 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
2720 * must of course support the mode.
2721 *
2722 * A value of zero will be returned on success, a negative errno will be
2723 * returned in error cases.
2724 */
2725int regmap_multi_reg_write(struct regmap *map, const struct reg_sequence *regs,
2726 int num_regs)
2727{
2728 int ret;
2729
2730 map->lock(map->lock_arg);
2731
2732 ret = _regmap_multi_reg_write(map, regs, num_regs);
2733
2734 map->unlock(map->lock_arg);
2735
2736 return ret;
2737}
2738EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
2739
2740/**
2741 * regmap_multi_reg_write_bypassed() - Write multiple registers to the
2742 * device but not the cache
2743 *
2744 * @map: Register map to write to
2745 * @regs: Array of structures containing register,value to be written
2746 * @num_regs: Number of registers to write
2747 *
2748 * Write multiple registers to the device but not the cache where the set
2749 * of register are supplied in any order.
2750 *
2751 * This function is intended to be used for writing a large block of data
2752 * atomically to the device in single transfer for those I2C client devices
2753 * that implement this alternative block write mode.
2754 *
2755 * A value of zero will be returned on success, a negative errno will
2756 * be returned in error cases.
2757 */
2758int regmap_multi_reg_write_bypassed(struct regmap *map,
2759 const struct reg_sequence *regs,
2760 int num_regs)
2761{
2762 int ret;
2763 bool bypass;
2764
2765 map->lock(map->lock_arg);
2766
2767 bypass = map->cache_bypass;
2768 map->cache_bypass = true;
2769
2770 ret = _regmap_multi_reg_write(map, regs, num_regs);
2771
2772 map->cache_bypass = bypass;
2773
2774 map->unlock(map->lock_arg);
2775
2776 return ret;
2777}
2778EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
2779
2780/**
2781 * regmap_raw_write_async() - Write raw values to one or more registers
2782 * asynchronously
2783 *
2784 * @map: Register map to write to
2785 * @reg: Initial register to write to
2786 * @val: Block of data to be written, laid out for direct transmission to the
2787 * device. Must be valid until regmap_async_complete() is called.
2788 * @val_len: Length of data pointed to by val.
2789 *
2790 * This function is intended to be used for things like firmware
2791 * download where a large block of data needs to be transferred to the
2792 * device. No formatting will be done on the data provided.
2793 *
2794 * If supported by the underlying bus the write will be scheduled
2795 * asynchronously, helping maximise I/O speed on higher speed buses
2796 * like SPI. regmap_async_complete() can be called to ensure that all
2797 * asynchrnous writes have been completed.
2798 *
2799 * A value of zero will be returned on success, a negative errno will
2800 * be returned in error cases.
2801 */
2802int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2803 const void *val, size_t val_len)
2804{
2805 int ret;
2806
2807 if (val_len % map->format.val_bytes)
2808 return -EINVAL;
2809 if (!IS_ALIGNED(reg, map->reg_stride))
2810 return -EINVAL;
2811
2812 map->lock(map->lock_arg);
2813
2814 map->async = true;
2815
2816 ret = _regmap_raw_write(map, reg, val, val_len, false);
2817
2818 map->async = false;
2819
2820 map->unlock(map->lock_arg);
2821
2822 return ret;
2823}
2824EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2825
2826static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2827 unsigned int val_len, bool noinc)
2828{
2829 struct regmap_range_node *range;
2830 int ret;
2831
2832 if (!map->read)
2833 return -EINVAL;
2834
2835 range = _regmap_range_lookup(map, reg);
2836 if (range) {
2837 ret = _regmap_select_page(map, ®, range,
2838 noinc ? 1 : val_len / map->format.val_bytes);
2839 if (ret != 0)
2840 return ret;
2841 }
2842
2843 reg = regmap_reg_addr(map, reg);
2844 map->format.format_reg(map->work_buf, reg, map->reg_shift);
2845 regmap_set_work_buf_flag_mask(map, map->format.reg_bytes,
2846 map->read_flag_mask);
2847 trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2848
2849 ret = map->read(map->bus_context, map->work_buf,
2850 map->format.reg_bytes + map->format.pad_bytes,
2851 val, val_len);
2852
2853 trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2854
2855 return ret;
2856}
2857
2858static int _regmap_bus_reg_read(void *context, unsigned int reg,
2859 unsigned int *val)
2860{
2861 struct regmap *map = context;
2862 struct regmap_range_node *range;
2863 int ret;
2864
2865 range = _regmap_range_lookup(map, reg);
2866 if (range) {
2867 ret = _regmap_select_page(map, ®, range, 1);
2868 if (ret != 0)
2869 return ret;
2870 }
2871
2872 reg = regmap_reg_addr(map, reg);
2873 return map->bus->reg_read(map->bus_context, reg, val);
2874}
2875
2876static int _regmap_bus_read(void *context, unsigned int reg,
2877 unsigned int *val)
2878{
2879 int ret;
2880 struct regmap *map = context;
2881 void *work_val = map->work_buf + map->format.reg_bytes +
2882 map->format.pad_bytes;
2883
2884 if (!map->format.parse_val)
2885 return -EINVAL;
2886
2887 ret = _regmap_raw_read(map, reg, work_val, map->format.val_bytes, false);
2888 if (ret == 0)
2889 *val = map->format.parse_val(work_val);
2890
2891 return ret;
2892}
2893
2894static int _regmap_read(struct regmap *map, unsigned int reg,
2895 unsigned int *val)
2896{
2897 int ret;
2898 void *context = _regmap_map_get_context(map);
2899
2900 if (!map->cache_bypass) {
2901 ret = regcache_read(map, reg, val);
2902 if (ret == 0)
2903 return 0;
2904 }
2905
2906 if (map->cache_only)
2907 return -EBUSY;
2908
2909 if (!regmap_readable(map, reg))
2910 return -EIO;
2911
2912 ret = map->reg_read(context, reg, val);
2913 if (ret == 0) {
2914 if (regmap_should_log(map))
2915 dev_info(map->dev, "%x => %x\n", reg, *val);
2916
2917 trace_regmap_reg_read(map, reg, *val);
2918
2919 if (!map->cache_bypass)
2920 regcache_write(map, reg, *val);
2921 }
2922
2923 return ret;
2924}
2925
2926/**
2927 * regmap_read() - Read a value from a single register
2928 *
2929 * @map: Register map to read from
2930 * @reg: Register to be read from
2931 * @val: Pointer to store read value
2932 *
2933 * A value of zero will be returned on success, a negative errno will
2934 * be returned in error cases.
2935 */
2936int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2937{
2938 int ret;
2939
2940 if (!IS_ALIGNED(reg, map->reg_stride))
2941 return -EINVAL;
2942
2943 map->lock(map->lock_arg);
2944
2945 ret = _regmap_read(map, reg, val);
2946
2947 map->unlock(map->lock_arg);
2948
2949 return ret;
2950}
2951EXPORT_SYMBOL_GPL(regmap_read);
2952
2953/**
2954 * regmap_raw_read() - Read raw data from the device
2955 *
2956 * @map: Register map to read from
2957 * @reg: First register to be read from
2958 * @val: Pointer to store read value
2959 * @val_len: Size of data to read
2960 *
2961 * A value of zero will be returned on success, a negative errno will
2962 * be returned in error cases.
2963 */
2964int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2965 size_t val_len)
2966{
2967 size_t val_bytes = map->format.val_bytes;
2968 size_t val_count = val_len / val_bytes;
2969 unsigned int v;
2970 int ret, i;
2971
2972 if (val_len % map->format.val_bytes)
2973 return -EINVAL;
2974 if (!IS_ALIGNED(reg, map->reg_stride))
2975 return -EINVAL;
2976 if (val_count == 0)
2977 return -EINVAL;
2978
2979 map->lock(map->lock_arg);
2980
2981 if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2982 map->cache_type == REGCACHE_NONE) {
2983 size_t chunk_count, chunk_bytes;
2984 size_t chunk_regs = val_count;
2985
2986 if (!map->cache_bypass && map->cache_only) {
2987 ret = -EBUSY;
2988 goto out;
2989 }
2990
2991 if (!map->read) {
2992 ret = -ENOTSUPP;
2993 goto out;
2994 }
2995
2996 if (map->use_single_read)
2997 chunk_regs = 1;
2998 else if (map->max_raw_read && val_len > map->max_raw_read)
2999 chunk_regs = map->max_raw_read / val_bytes;
3000
3001 chunk_count = val_count / chunk_regs;
3002 chunk_bytes = chunk_regs * val_bytes;
3003
3004 /* Read bytes that fit into whole chunks */
3005 for (i = 0; i < chunk_count; i++) {
3006 ret = _regmap_raw_read(map, reg, val, chunk_bytes, false);
3007 if (ret != 0)
3008 goto out;
3009
3010 reg += regmap_get_offset(map, chunk_regs);
3011 val += chunk_bytes;
3012 val_len -= chunk_bytes;
3013 }
3014
3015 /* Read remaining bytes */
3016 if (val_len) {
3017 ret = _regmap_raw_read(map, reg, val, val_len, false);
3018 if (ret != 0)
3019 goto out;
3020 }
3021 } else {
3022 /* Otherwise go word by word for the cache; should be low
3023 * cost as we expect to hit the cache.
3024 */
3025 for (i = 0; i < val_count; i++) {
3026 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
3027 &v);
3028 if (ret != 0)
3029 goto out;
3030
3031 map->format.format_val(val + (i * val_bytes), v, 0);
3032 }
3033 }
3034
3035 out:
3036 map->unlock(map->lock_arg);
3037
3038 return ret;
3039}
3040EXPORT_SYMBOL_GPL(regmap_raw_read);
3041
3042/**
3043 * regmap_noinc_read(): Read data from a register without incrementing the
3044 * register number
3045 *
3046 * @map: Register map to read from
3047 * @reg: Register to read from
3048 * @val: Pointer to data buffer
3049 * @val_len: Length of output buffer in bytes.
3050 *
3051 * The regmap API usually assumes that bulk read operations will read a
3052 * range of registers. Some devices have certain registers for which a read
3053 * operation read will read from an internal FIFO.
3054 *
3055 * The target register must be volatile but registers after it can be
3056 * completely unrelated cacheable registers.
3057 *
3058 * This will attempt multiple reads as required to read val_len bytes.
3059 *
3060 * A value of zero will be returned on success, a negative errno will be
3061 * returned in error cases.
3062 */
3063int regmap_noinc_read(struct regmap *map, unsigned int reg,
3064 void *val, size_t val_len)
3065{
3066 size_t read_len;
3067 int ret;
3068
3069 if (!map->read)
3070 return -ENOTSUPP;
3071
3072 if (val_len % map->format.val_bytes)
3073 return -EINVAL;
3074 if (!IS_ALIGNED(reg, map->reg_stride))
3075 return -EINVAL;
3076 if (val_len == 0)
3077 return -EINVAL;
3078
3079 map->lock(map->lock_arg);
3080
3081 if (!regmap_volatile(map, reg) || !regmap_readable_noinc(map, reg)) {
3082 ret = -EINVAL;
3083 goto out_unlock;
3084 }
3085
3086 /*
3087 * We have not defined the FIFO semantics for cache, as the
3088 * cache is just one value deep. Should we return the last
3089 * written value? Just avoid this by always reading the FIFO
3090 * even when using cache. Cache only will not work.
3091 */
3092 if (!map->cache_bypass && map->cache_only) {
3093 ret = -EBUSY;
3094 goto out_unlock;
3095 }
3096
3097 /* Use the accelerated operation if we can */
3098 if (map->bus->reg_noinc_read) {
3099 ret = regmap_noinc_readwrite(map, reg, val, val_len, false);
3100 goto out_unlock;
3101 }
3102
3103 while (val_len) {
3104 if (map->max_raw_read && map->max_raw_read < val_len)
3105 read_len = map->max_raw_read;
3106 else
3107 read_len = val_len;
3108 ret = _regmap_raw_read(map, reg, val, read_len, true);
3109 if (ret)
3110 goto out_unlock;
3111 val = ((u8 *)val) + read_len;
3112 val_len -= read_len;
3113 }
3114
3115out_unlock:
3116 map->unlock(map->lock_arg);
3117 return ret;
3118}
3119EXPORT_SYMBOL_GPL(regmap_noinc_read);
3120
3121/**
3122 * regmap_field_read(): Read a value to a single register field
3123 *
3124 * @field: Register field to read from
3125 * @val: Pointer to store read value
3126 *
3127 * A value of zero will be returned on success, a negative errno will
3128 * be returned in error cases.
3129 */
3130int regmap_field_read(struct regmap_field *field, unsigned int *val)
3131{
3132 int ret;
3133 unsigned int reg_val;
3134 ret = regmap_read(field->regmap, field->reg, ®_val);
3135 if (ret != 0)
3136 return ret;
3137
3138 reg_val &= field->mask;
3139 reg_val >>= field->shift;
3140 *val = reg_val;
3141
3142 return ret;
3143}
3144EXPORT_SYMBOL_GPL(regmap_field_read);
3145
3146/**
3147 * regmap_fields_read() - Read a value to a single register field with port ID
3148 *
3149 * @field: Register field to read from
3150 * @id: port ID
3151 * @val: Pointer to store read value
3152 *
3153 * A value of zero will be returned on success, a negative errno will
3154 * be returned in error cases.
3155 */
3156int regmap_fields_read(struct regmap_field *field, unsigned int id,
3157 unsigned int *val)
3158{
3159 int ret;
3160 unsigned int reg_val;
3161
3162 if (id >= field->id_size)
3163 return -EINVAL;
3164
3165 ret = regmap_read(field->regmap,
3166 field->reg + (field->id_offset * id),
3167 ®_val);
3168 if (ret != 0)
3169 return ret;
3170
3171 reg_val &= field->mask;
3172 reg_val >>= field->shift;
3173 *val = reg_val;
3174
3175 return ret;
3176}
3177EXPORT_SYMBOL_GPL(regmap_fields_read);
3178
3179/**
3180 * regmap_bulk_read() - Read multiple registers from the device
3181 *
3182 * @map: Register map to read from
3183 * @reg: First register to be read from
3184 * @val: Pointer to store read value, in native register size for device
3185 * @val_count: Number of registers to read
3186 *
3187 * A value of zero will be returned on success, a negative errno will
3188 * be returned in error cases.
3189 */
3190int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
3191 size_t val_count)
3192{
3193 int ret, i;
3194 size_t val_bytes = map->format.val_bytes;
3195 bool vol = regmap_volatile_range(map, reg, val_count);
3196
3197 if (!IS_ALIGNED(reg, map->reg_stride))
3198 return -EINVAL;
3199 if (val_count == 0)
3200 return -EINVAL;
3201
3202 if (map->read && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
3203 ret = regmap_raw_read(map, reg, val, val_bytes * val_count);
3204 if (ret != 0)
3205 return ret;
3206
3207 for (i = 0; i < val_count * val_bytes; i += val_bytes)
3208 map->format.parse_inplace(val + i);
3209 } else {
3210#ifdef CONFIG_64BIT
3211 u64 *u64 = val;
3212#endif
3213 u32 *u32 = val;
3214 u16 *u16 = val;
3215 u8 *u8 = val;
3216
3217 map->lock(map->lock_arg);
3218
3219 for (i = 0; i < val_count; i++) {
3220 unsigned int ival;
3221
3222 ret = _regmap_read(map, reg + regmap_get_offset(map, i),
3223 &ival);
3224 if (ret != 0)
3225 goto out;
3226
3227 switch (map->format.val_bytes) {
3228#ifdef CONFIG_64BIT
3229 case 8:
3230 u64[i] = ival;
3231 break;
3232#endif
3233 case 4:
3234 u32[i] = ival;
3235 break;
3236 case 2:
3237 u16[i] = ival;
3238 break;
3239 case 1:
3240 u8[i] = ival;
3241 break;
3242 default:
3243 ret = -EINVAL;
3244 goto out;
3245 }
3246 }
3247
3248out:
3249 map->unlock(map->lock_arg);
3250 }
3251
3252 if (!ret)
3253 trace_regmap_bulk_read(map, reg, val, val_bytes * val_count);
3254
3255 return ret;
3256}
3257EXPORT_SYMBOL_GPL(regmap_bulk_read);
3258
3259static int _regmap_update_bits(struct regmap *map, unsigned int reg,
3260 unsigned int mask, unsigned int val,
3261 bool *change, bool force_write)
3262{
3263 int ret;
3264 unsigned int tmp, orig;
3265
3266 if (change)
3267 *change = false;
3268
3269 if (regmap_volatile(map, reg) && map->reg_update_bits) {
3270 reg = regmap_reg_addr(map, reg);
3271 ret = map->reg_update_bits(map->bus_context, reg, mask, val);
3272 if (ret == 0 && change)
3273 *change = true;
3274 } else {
3275 ret = _regmap_read(map, reg, &orig);
3276 if (ret != 0)
3277 return ret;
3278
3279 tmp = orig & ~mask;
3280 tmp |= val & mask;
3281
3282 if (force_write || (tmp != orig) || map->force_write_field) {
3283 ret = _regmap_write(map, reg, tmp);
3284 if (ret == 0 && change)
3285 *change = true;
3286 }
3287 }
3288
3289 return ret;
3290}
3291
3292/**
3293 * regmap_update_bits_base() - Perform a read/modify/write cycle on a register
3294 *
3295 * @map: Register map to update
3296 * @reg: Register to update
3297 * @mask: Bitmask to change
3298 * @val: New value for bitmask
3299 * @change: Boolean indicating if a write was done
3300 * @async: Boolean indicating asynchronously
3301 * @force: Boolean indicating use force update
3302 *
3303 * Perform a read/modify/write cycle on a register map with change, async, force
3304 * options.
3305 *
3306 * If async is true:
3307 *
3308 * With most buses the read must be done synchronously so this is most useful
3309 * for devices with a cache which do not need to interact with the hardware to
3310 * determine the current register value.
3311 *
3312 * Returns zero for success, a negative number on error.
3313 */
3314int regmap_update_bits_base(struct regmap *map, unsigned int reg,
3315 unsigned int mask, unsigned int val,
3316 bool *change, bool async, bool force)
3317{
3318 int ret;
3319
3320 map->lock(map->lock_arg);
3321
3322 map->async = async;
3323
3324 ret = _regmap_update_bits(map, reg, mask, val, change, force);
3325
3326 map->async = false;
3327
3328 map->unlock(map->lock_arg);
3329
3330 return ret;
3331}
3332EXPORT_SYMBOL_GPL(regmap_update_bits_base);
3333
3334/**
3335 * regmap_test_bits() - Check if all specified bits are set in a register.
3336 *
3337 * @map: Register map to operate on
3338 * @reg: Register to read from
3339 * @bits: Bits to test
3340 *
3341 * Returns 0 if at least one of the tested bits is not set, 1 if all tested
3342 * bits are set and a negative error number if the underlying regmap_read()
3343 * fails.
3344 */
3345int regmap_test_bits(struct regmap *map, unsigned int reg, unsigned int bits)
3346{
3347 unsigned int val, ret;
3348
3349 ret = regmap_read(map, reg, &val);
3350 if (ret)
3351 return ret;
3352
3353 return (val & bits) == bits;
3354}
3355EXPORT_SYMBOL_GPL(regmap_test_bits);
3356
3357void regmap_async_complete_cb(struct regmap_async *async, int ret)
3358{
3359 struct regmap *map = async->map;
3360 bool wake;
3361
3362 trace_regmap_async_io_complete(map);
3363
3364 spin_lock(&map->async_lock);
3365 list_move(&async->list, &map->async_free);
3366 wake = list_empty(&map->async_list);
3367
3368 if (ret != 0)
3369 map->async_ret = ret;
3370
3371 spin_unlock(&map->async_lock);
3372
3373 if (wake)
3374 wake_up(&map->async_waitq);
3375}
3376EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
3377
3378static int regmap_async_is_done(struct regmap *map)
3379{
3380 unsigned long flags;
3381 int ret;
3382
3383 spin_lock_irqsave(&map->async_lock, flags);
3384 ret = list_empty(&map->async_list);
3385 spin_unlock_irqrestore(&map->async_lock, flags);
3386
3387 return ret;
3388}
3389
3390/**
3391 * regmap_async_complete - Ensure all asynchronous I/O has completed.
3392 *
3393 * @map: Map to operate on.
3394 *
3395 * Blocks until any pending asynchronous I/O has completed. Returns
3396 * an error code for any failed I/O operations.
3397 */
3398int regmap_async_complete(struct regmap *map)
3399{
3400 unsigned long flags;
3401 int ret;
3402
3403 /* Nothing to do with no async support */
3404 if (!map->bus || !map->bus->async_write)
3405 return 0;
3406
3407 trace_regmap_async_complete_start(map);
3408
3409 wait_event(map->async_waitq, regmap_async_is_done(map));
3410
3411 spin_lock_irqsave(&map->async_lock, flags);
3412 ret = map->async_ret;
3413 map->async_ret = 0;
3414 spin_unlock_irqrestore(&map->async_lock, flags);
3415
3416 trace_regmap_async_complete_done(map);
3417
3418 return ret;
3419}
3420EXPORT_SYMBOL_GPL(regmap_async_complete);
3421
3422/**
3423 * regmap_register_patch - Register and apply register updates to be applied
3424 * on device initialistion
3425 *
3426 * @map: Register map to apply updates to.
3427 * @regs: Values to update.
3428 * @num_regs: Number of entries in regs.
3429 *
3430 * Register a set of register updates to be applied to the device
3431 * whenever the device registers are synchronised with the cache and
3432 * apply them immediately. Typically this is used to apply
3433 * corrections to be applied to the device defaults on startup, such
3434 * as the updates some vendors provide to undocumented registers.
3435 *
3436 * The caller must ensure that this function cannot be called
3437 * concurrently with either itself or regcache_sync().
3438 */
3439int regmap_register_patch(struct regmap *map, const struct reg_sequence *regs,
3440 int num_regs)
3441{
3442 struct reg_sequence *p;
3443 int ret;
3444 bool bypass;
3445
3446 if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
3447 num_regs))
3448 return 0;
3449
3450 p = krealloc(map->patch,
3451 sizeof(struct reg_sequence) * (map->patch_regs + num_regs),
3452 GFP_KERNEL);
3453 if (p) {
3454 memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
3455 map->patch = p;
3456 map->patch_regs += num_regs;
3457 } else {
3458 return -ENOMEM;
3459 }
3460
3461 map->lock(map->lock_arg);
3462
3463 bypass = map->cache_bypass;
3464
3465 map->cache_bypass = true;
3466 map->async = true;
3467
3468 ret = _regmap_multi_reg_write(map, regs, num_regs);
3469
3470 map->async = false;
3471 map->cache_bypass = bypass;
3472
3473 map->unlock(map->lock_arg);
3474
3475 regmap_async_complete(map);
3476
3477 return ret;
3478}
3479EXPORT_SYMBOL_GPL(regmap_register_patch);
3480
3481/**
3482 * regmap_get_val_bytes() - Report the size of a register value
3483 *
3484 * @map: Register map to operate on.
3485 *
3486 * Report the size of a register value, mainly intended to for use by
3487 * generic infrastructure built on top of regmap.
3488 */
3489int regmap_get_val_bytes(struct regmap *map)
3490{
3491 if (map->format.format_write)
3492 return -EINVAL;
3493
3494 return map->format.val_bytes;
3495}
3496EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
3497
3498/**
3499 * regmap_get_max_register() - Report the max register value
3500 *
3501 * @map: Register map to operate on.
3502 *
3503 * Report the max register value, mainly intended to for use by
3504 * generic infrastructure built on top of regmap.
3505 */
3506int regmap_get_max_register(struct regmap *map)
3507{
3508 return map->max_register ? map->max_register : -EINVAL;
3509}
3510EXPORT_SYMBOL_GPL(regmap_get_max_register);
3511
3512/**
3513 * regmap_get_reg_stride() - Report the register address stride
3514 *
3515 * @map: Register map to operate on.
3516 *
3517 * Report the register address stride, mainly intended to for use by
3518 * generic infrastructure built on top of regmap.
3519 */
3520int regmap_get_reg_stride(struct regmap *map)
3521{
3522 return map->reg_stride;
3523}
3524EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
3525
3526/**
3527 * regmap_might_sleep() - Returns whether a regmap access might sleep.
3528 *
3529 * @map: Register map to operate on.
3530 *
3531 * Returns true if an access to the register might sleep, else false.
3532 */
3533bool regmap_might_sleep(struct regmap *map)
3534{
3535 return map->can_sleep;
3536}
3537EXPORT_SYMBOL_GPL(regmap_might_sleep);
3538
3539int regmap_parse_val(struct regmap *map, const void *buf,
3540 unsigned int *val)
3541{
3542 if (!map->format.parse_val)
3543 return -EINVAL;
3544
3545 *val = map->format.parse_val(buf);
3546
3547 return 0;
3548}
3549EXPORT_SYMBOL_GPL(regmap_parse_val);
3550
3551static int __init regmap_initcall(void)
3552{
3553 regmap_debugfs_initcall();
3554
3555 return 0;
3556}
3557postcore_initcall(regmap_initcall);