Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: Apache-2.0 OR MIT
2
3//! A contiguous growable array type with heap-allocated contents, written
4//! `Vec<T>`.
5//!
6//! Vectors have *O*(1) indexing, amortized *O*(1) push (to the end) and
7//! *O*(1) pop (from the end).
8//!
9//! Vectors ensure they never allocate more than `isize::MAX` bytes.
10//!
11//! # Examples
12//!
13//! You can explicitly create a [`Vec`] with [`Vec::new`]:
14//!
15//! ```
16//! let v: Vec<i32> = Vec::new();
17//! ```
18//!
19//! ...or by using the [`vec!`] macro:
20//!
21//! ```
22//! let v: Vec<i32> = vec![];
23//!
24//! let v = vec![1, 2, 3, 4, 5];
25//!
26//! let v = vec![0; 10]; // ten zeroes
27//! ```
28//!
29//! You can [`push`] values onto the end of a vector (which will grow the vector
30//! as needed):
31//!
32//! ```
33//! let mut v = vec![1, 2];
34//!
35//! v.push(3);
36//! ```
37//!
38//! Popping values works in much the same way:
39//!
40//! ```
41//! let mut v = vec![1, 2];
42//!
43//! let two = v.pop();
44//! ```
45//!
46//! Vectors also support indexing (through the [`Index`] and [`IndexMut`] traits):
47//!
48//! ```
49//! let mut v = vec![1, 2, 3];
50//! let three = v[2];
51//! v[1] = v[1] + 5;
52//! ```
53//!
54//! [`push`]: Vec::push
55
56#![stable(feature = "rust1", since = "1.0.0")]
57
58#[cfg(not(no_global_oom_handling))]
59use core::cmp;
60use core::cmp::Ordering;
61use core::convert::TryFrom;
62use core::fmt;
63use core::hash::{Hash, Hasher};
64use core::intrinsics::{arith_offset, assume};
65use core::iter;
66#[cfg(not(no_global_oom_handling))]
67use core::iter::FromIterator;
68use core::marker::PhantomData;
69use core::mem::{self, ManuallyDrop, MaybeUninit};
70use core::ops::{self, Index, IndexMut, Range, RangeBounds};
71use core::ptr::{self, NonNull};
72use core::slice::{self, SliceIndex};
73
74use crate::alloc::{Allocator, Global};
75#[cfg(not(no_borrow))]
76use crate::borrow::{Cow, ToOwned};
77use crate::boxed::Box;
78use crate::collections::TryReserveError;
79use crate::raw_vec::RawVec;
80
81#[unstable(feature = "drain_filter", reason = "recently added", issue = "43244")]
82pub use self::drain_filter::DrainFilter;
83
84mod drain_filter;
85
86#[cfg(not(no_global_oom_handling))]
87#[stable(feature = "vec_splice", since = "1.21.0")]
88pub use self::splice::Splice;
89
90#[cfg(not(no_global_oom_handling))]
91mod splice;
92
93#[stable(feature = "drain", since = "1.6.0")]
94pub use self::drain::Drain;
95
96mod drain;
97
98#[cfg(not(no_borrow))]
99#[cfg(not(no_global_oom_handling))]
100mod cow;
101
102#[cfg(not(no_global_oom_handling))]
103pub(crate) use self::in_place_collect::AsVecIntoIter;
104#[stable(feature = "rust1", since = "1.0.0")]
105pub use self::into_iter::IntoIter;
106
107mod into_iter;
108
109#[cfg(not(no_global_oom_handling))]
110use self::is_zero::IsZero;
111
112mod is_zero;
113
114#[cfg(not(no_global_oom_handling))]
115mod in_place_collect;
116
117mod partial_eq;
118
119#[cfg(not(no_global_oom_handling))]
120use self::spec_from_elem::SpecFromElem;
121
122#[cfg(not(no_global_oom_handling))]
123mod spec_from_elem;
124
125use self::set_len_on_drop::SetLenOnDrop;
126
127mod set_len_on_drop;
128
129#[cfg(not(no_global_oom_handling))]
130use self::in_place_drop::InPlaceDrop;
131
132#[cfg(not(no_global_oom_handling))]
133mod in_place_drop;
134
135#[cfg(not(no_global_oom_handling))]
136use self::spec_from_iter_nested::SpecFromIterNested;
137
138#[cfg(not(no_global_oom_handling))]
139mod spec_from_iter_nested;
140
141#[cfg(not(no_global_oom_handling))]
142use self::spec_from_iter::SpecFromIter;
143
144#[cfg(not(no_global_oom_handling))]
145mod spec_from_iter;
146
147#[cfg(not(no_global_oom_handling))]
148use self::spec_extend::SpecExtend;
149
150use self::spec_extend::TrySpecExtend;
151
152mod spec_extend;
153
154/// A contiguous growable array type, written as `Vec<T>`, short for 'vector'.
155///
156/// # Examples
157///
158/// ```
159/// let mut vec = Vec::new();
160/// vec.push(1);
161/// vec.push(2);
162///
163/// assert_eq!(vec.len(), 2);
164/// assert_eq!(vec[0], 1);
165///
166/// assert_eq!(vec.pop(), Some(2));
167/// assert_eq!(vec.len(), 1);
168///
169/// vec[0] = 7;
170/// assert_eq!(vec[0], 7);
171///
172/// vec.extend([1, 2, 3].iter().copied());
173///
174/// for x in &vec {
175/// println!("{x}");
176/// }
177/// assert_eq!(vec, [7, 1, 2, 3]);
178/// ```
179///
180/// The [`vec!`] macro is provided for convenient initialization:
181///
182/// ```
183/// let mut vec1 = vec![1, 2, 3];
184/// vec1.push(4);
185/// let vec2 = Vec::from([1, 2, 3, 4]);
186/// assert_eq!(vec1, vec2);
187/// ```
188///
189/// It can also initialize each element of a `Vec<T>` with a given value.
190/// This may be more efficient than performing allocation and initialization
191/// in separate steps, especially when initializing a vector of zeros:
192///
193/// ```
194/// let vec = vec![0; 5];
195/// assert_eq!(vec, [0, 0, 0, 0, 0]);
196///
197/// // The following is equivalent, but potentially slower:
198/// let mut vec = Vec::with_capacity(5);
199/// vec.resize(5, 0);
200/// assert_eq!(vec, [0, 0, 0, 0, 0]);
201/// ```
202///
203/// For more information, see
204/// [Capacity and Reallocation](#capacity-and-reallocation).
205///
206/// Use a `Vec<T>` as an efficient stack:
207///
208/// ```
209/// let mut stack = Vec::new();
210///
211/// stack.push(1);
212/// stack.push(2);
213/// stack.push(3);
214///
215/// while let Some(top) = stack.pop() {
216/// // Prints 3, 2, 1
217/// println!("{top}");
218/// }
219/// ```
220///
221/// # Indexing
222///
223/// The `Vec` type allows to access values by index, because it implements the
224/// [`Index`] trait. An example will be more explicit:
225///
226/// ```
227/// let v = vec![0, 2, 4, 6];
228/// println!("{}", v[1]); // it will display '2'
229/// ```
230///
231/// However be careful: if you try to access an index which isn't in the `Vec`,
232/// your software will panic! You cannot do this:
233///
234/// ```should_panic
235/// let v = vec![0, 2, 4, 6];
236/// println!("{}", v[6]); // it will panic!
237/// ```
238///
239/// Use [`get`] and [`get_mut`] if you want to check whether the index is in
240/// the `Vec`.
241///
242/// # Slicing
243///
244/// A `Vec` can be mutable. On the other hand, slices are read-only objects.
245/// To get a [slice][prim@slice], use [`&`]. Example:
246///
247/// ```
248/// fn read_slice(slice: &[usize]) {
249/// // ...
250/// }
251///
252/// let v = vec![0, 1];
253/// read_slice(&v);
254///
255/// // ... and that's all!
256/// // you can also do it like this:
257/// let u: &[usize] = &v;
258/// // or like this:
259/// let u: &[_] = &v;
260/// ```
261///
262/// In Rust, it's more common to pass slices as arguments rather than vectors
263/// when you just want to provide read access. The same goes for [`String`] and
264/// [`&str`].
265///
266/// # Capacity and reallocation
267///
268/// The capacity of a vector is the amount of space allocated for any future
269/// elements that will be added onto the vector. This is not to be confused with
270/// the *length* of a vector, which specifies the number of actual elements
271/// within the vector. If a vector's length exceeds its capacity, its capacity
272/// will automatically be increased, but its elements will have to be
273/// reallocated.
274///
275/// For example, a vector with capacity 10 and length 0 would be an empty vector
276/// with space for 10 more elements. Pushing 10 or fewer elements onto the
277/// vector will not change its capacity or cause reallocation to occur. However,
278/// if the vector's length is increased to 11, it will have to reallocate, which
279/// can be slow. For this reason, it is recommended to use [`Vec::with_capacity`]
280/// whenever possible to specify how big the vector is expected to get.
281///
282/// # Guarantees
283///
284/// Due to its incredibly fundamental nature, `Vec` makes a lot of guarantees
285/// about its design. This ensures that it's as low-overhead as possible in
286/// the general case, and can be correctly manipulated in primitive ways
287/// by unsafe code. Note that these guarantees refer to an unqualified `Vec<T>`.
288/// If additional type parameters are added (e.g., to support custom allocators),
289/// overriding their defaults may change the behavior.
290///
291/// Most fundamentally, `Vec` is and always will be a (pointer, capacity, length)
292/// triplet. No more, no less. The order of these fields is completely
293/// unspecified, and you should use the appropriate methods to modify these.
294/// The pointer will never be null, so this type is null-pointer-optimized.
295///
296/// However, the pointer might not actually point to allocated memory. In particular,
297/// if you construct a `Vec` with capacity 0 via [`Vec::new`], [`vec![]`][`vec!`],
298/// [`Vec::with_capacity(0)`][`Vec::with_capacity`], or by calling [`shrink_to_fit`]
299/// on an empty Vec, it will not allocate memory. Similarly, if you store zero-sized
300/// types inside a `Vec`, it will not allocate space for them. *Note that in this case
301/// the `Vec` might not report a [`capacity`] of 0*. `Vec` will allocate if and only
302/// if <code>[mem::size_of::\<T>]\() * [capacity]\() > 0</code>. In general, `Vec`'s allocation
303/// details are very subtle --- if you intend to allocate memory using a `Vec`
304/// and use it for something else (either to pass to unsafe code, or to build your
305/// own memory-backed collection), be sure to deallocate this memory by using
306/// `from_raw_parts` to recover the `Vec` and then dropping it.
307///
308/// If a `Vec` *has* allocated memory, then the memory it points to is on the heap
309/// (as defined by the allocator Rust is configured to use by default), and its
310/// pointer points to [`len`] initialized, contiguous elements in order (what
311/// you would see if you coerced it to a slice), followed by <code>[capacity] - [len]</code>
312/// logically uninitialized, contiguous elements.
313///
314/// A vector containing the elements `'a'` and `'b'` with capacity 4 can be
315/// visualized as below. The top part is the `Vec` struct, it contains a
316/// pointer to the head of the allocation in the heap, length and capacity.
317/// The bottom part is the allocation on the heap, a contiguous memory block.
318///
319/// ```text
320/// ptr len capacity
321/// +--------+--------+--------+
322/// | 0x0123 | 2 | 4 |
323/// +--------+--------+--------+
324/// |
325/// v
326/// Heap +--------+--------+--------+--------+
327/// | 'a' | 'b' | uninit | uninit |
328/// +--------+--------+--------+--------+
329/// ```
330///
331/// - **uninit** represents memory that is not initialized, see [`MaybeUninit`].
332/// - Note: the ABI is not stable and `Vec` makes no guarantees about its memory
333/// layout (including the order of fields).
334///
335/// `Vec` will never perform a "small optimization" where elements are actually
336/// stored on the stack for two reasons:
337///
338/// * It would make it more difficult for unsafe code to correctly manipulate
339/// a `Vec`. The contents of a `Vec` wouldn't have a stable address if it were
340/// only moved, and it would be more difficult to determine if a `Vec` had
341/// actually allocated memory.
342///
343/// * It would penalize the general case, incurring an additional branch
344/// on every access.
345///
346/// `Vec` will never automatically shrink itself, even if completely empty. This
347/// ensures no unnecessary allocations or deallocations occur. Emptying a `Vec`
348/// and then filling it back up to the same [`len`] should incur no calls to
349/// the allocator. If you wish to free up unused memory, use
350/// [`shrink_to_fit`] or [`shrink_to`].
351///
352/// [`push`] and [`insert`] will never (re)allocate if the reported capacity is
353/// sufficient. [`push`] and [`insert`] *will* (re)allocate if
354/// <code>[len] == [capacity]</code>. That is, the reported capacity is completely
355/// accurate, and can be relied on. It can even be used to manually free the memory
356/// allocated by a `Vec` if desired. Bulk insertion methods *may* reallocate, even
357/// when not necessary.
358///
359/// `Vec` does not guarantee any particular growth strategy when reallocating
360/// when full, nor when [`reserve`] is called. The current strategy is basic
361/// and it may prove desirable to use a non-constant growth factor. Whatever
362/// strategy is used will of course guarantee *O*(1) amortized [`push`].
363///
364/// `vec![x; n]`, `vec![a, b, c, d]`, and
365/// [`Vec::with_capacity(n)`][`Vec::with_capacity`], will all produce a `Vec`
366/// with exactly the requested capacity. If <code>[len] == [capacity]</code>,
367/// (as is the case for the [`vec!`] macro), then a `Vec<T>` can be converted to
368/// and from a [`Box<[T]>`][owned slice] without reallocating or moving the elements.
369///
370/// `Vec` will not specifically overwrite any data that is removed from it,
371/// but also won't specifically preserve it. Its uninitialized memory is
372/// scratch space that it may use however it wants. It will generally just do
373/// whatever is most efficient or otherwise easy to implement. Do not rely on
374/// removed data to be erased for security purposes. Even if you drop a `Vec`, its
375/// buffer may simply be reused by another allocation. Even if you zero a `Vec`'s memory
376/// first, that might not actually happen because the optimizer does not consider
377/// this a side-effect that must be preserved. There is one case which we will
378/// not break, however: using `unsafe` code to write to the excess capacity,
379/// and then increasing the length to match, is always valid.
380///
381/// Currently, `Vec` does not guarantee the order in which elements are dropped.
382/// The order has changed in the past and may change again.
383///
384/// [`get`]: ../../std/vec/struct.Vec.html#method.get
385/// [`get_mut`]: ../../std/vec/struct.Vec.html#method.get_mut
386/// [`String`]: crate::string::String
387/// [`&str`]: type@str
388/// [`shrink_to_fit`]: Vec::shrink_to_fit
389/// [`shrink_to`]: Vec::shrink_to
390/// [capacity]: Vec::capacity
391/// [`capacity`]: Vec::capacity
392/// [mem::size_of::\<T>]: core::mem::size_of
393/// [len]: Vec::len
394/// [`len`]: Vec::len
395/// [`push`]: Vec::push
396/// [`insert`]: Vec::insert
397/// [`reserve`]: Vec::reserve
398/// [`MaybeUninit`]: core::mem::MaybeUninit
399/// [owned slice]: Box
400#[stable(feature = "rust1", since = "1.0.0")]
401#[cfg_attr(not(test), rustc_diagnostic_item = "Vec")]
402#[rustc_insignificant_dtor]
403pub struct Vec<T, #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global> {
404 buf: RawVec<T, A>,
405 len: usize,
406}
407
408////////////////////////////////////////////////////////////////////////////////
409// Inherent methods
410////////////////////////////////////////////////////////////////////////////////
411
412impl<T> Vec<T> {
413 /// Constructs a new, empty `Vec<T>`.
414 ///
415 /// The vector will not allocate until elements are pushed onto it.
416 ///
417 /// # Examples
418 ///
419 /// ```
420 /// # #![allow(unused_mut)]
421 /// let mut vec: Vec<i32> = Vec::new();
422 /// ```
423 #[inline]
424 #[rustc_const_stable(feature = "const_vec_new", since = "1.39.0")]
425 #[stable(feature = "rust1", since = "1.0.0")]
426 #[must_use]
427 pub const fn new() -> Self {
428 Vec { buf: RawVec::NEW, len: 0 }
429 }
430
431 /// Constructs a new, empty `Vec<T>` with the specified capacity.
432 ///
433 /// The vector will be able to hold exactly `capacity` elements without
434 /// reallocating. If `capacity` is 0, the vector will not allocate.
435 ///
436 /// It is important to note that although the returned vector has the
437 /// *capacity* specified, the vector will have a zero *length*. For an
438 /// explanation of the difference between length and capacity, see
439 /// *[Capacity and reallocation]*.
440 ///
441 /// [Capacity and reallocation]: #capacity-and-reallocation
442 ///
443 /// # Panics
444 ///
445 /// Panics if the new capacity exceeds `isize::MAX` bytes.
446 ///
447 /// # Examples
448 ///
449 /// ```
450 /// let mut vec = Vec::with_capacity(10);
451 ///
452 /// // The vector contains no items, even though it has capacity for more
453 /// assert_eq!(vec.len(), 0);
454 /// assert_eq!(vec.capacity(), 10);
455 ///
456 /// // These are all done without reallocating...
457 /// for i in 0..10 {
458 /// vec.push(i);
459 /// }
460 /// assert_eq!(vec.len(), 10);
461 /// assert_eq!(vec.capacity(), 10);
462 ///
463 /// // ...but this may make the vector reallocate
464 /// vec.push(11);
465 /// assert_eq!(vec.len(), 11);
466 /// assert!(vec.capacity() >= 11);
467 /// ```
468 #[cfg(not(no_global_oom_handling))]
469 #[inline]
470 #[stable(feature = "rust1", since = "1.0.0")]
471 #[must_use]
472 pub fn with_capacity(capacity: usize) -> Self {
473 Self::with_capacity_in(capacity, Global)
474 }
475
476 /// Tries to construct a new, empty `Vec<T>` with the specified capacity.
477 ///
478 /// The vector will be able to hold exactly `capacity` elements without
479 /// reallocating. If `capacity` is 0, the vector will not allocate.
480 ///
481 /// It is important to note that although the returned vector has the
482 /// *capacity* specified, the vector will have a zero *length*. For an
483 /// explanation of the difference between length and capacity, see
484 /// *[Capacity and reallocation]*.
485 ///
486 /// [Capacity and reallocation]: #capacity-and-reallocation
487 ///
488 /// # Examples
489 ///
490 /// ```
491 /// let mut vec = Vec::try_with_capacity(10).unwrap();
492 ///
493 /// // The vector contains no items, even though it has capacity for more
494 /// assert_eq!(vec.len(), 0);
495 /// assert_eq!(vec.capacity(), 10);
496 ///
497 /// // These are all done without reallocating...
498 /// for i in 0..10 {
499 /// vec.push(i);
500 /// }
501 /// assert_eq!(vec.len(), 10);
502 /// assert_eq!(vec.capacity(), 10);
503 ///
504 /// // ...but this may make the vector reallocate
505 /// vec.push(11);
506 /// assert_eq!(vec.len(), 11);
507 /// assert!(vec.capacity() >= 11);
508 ///
509 /// let mut result = Vec::try_with_capacity(usize::MAX);
510 /// assert!(result.is_err());
511 /// ```
512 #[inline]
513 #[stable(feature = "kernel", since = "1.0.0")]
514 pub fn try_with_capacity(capacity: usize) -> Result<Self, TryReserveError> {
515 Self::try_with_capacity_in(capacity, Global)
516 }
517
518 /// Creates a `Vec<T>` directly from the raw components of another vector.
519 ///
520 /// # Safety
521 ///
522 /// This is highly unsafe, due to the number of invariants that aren't
523 /// checked:
524 ///
525 /// * `ptr` needs to have been previously allocated via [`String`]/`Vec<T>`
526 /// (at least, it's highly likely to be incorrect if it wasn't).
527 /// * `T` needs to have the same alignment as what `ptr` was allocated with.
528 /// (`T` having a less strict alignment is not sufficient, the alignment really
529 /// needs to be equal to satisfy the [`dealloc`] requirement that memory must be
530 /// allocated and deallocated with the same layout.)
531 /// * The size of `T` times the `capacity` (ie. the allocated size in bytes) needs
532 /// to be the same size as the pointer was allocated with. (Because similar to
533 /// alignment, [`dealloc`] must be called with the same layout `size`.)
534 /// * `length` needs to be less than or equal to `capacity`.
535 ///
536 /// Violating these may cause problems like corrupting the allocator's
537 /// internal data structures. For example it is normally **not** safe
538 /// to build a `Vec<u8>` from a pointer to a C `char` array with length
539 /// `size_t`, doing so is only safe if the array was initially allocated by
540 /// a `Vec` or `String`.
541 /// It's also not safe to build one from a `Vec<u16>` and its length, because
542 /// the allocator cares about the alignment, and these two types have different
543 /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
544 /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1. To avoid
545 /// these issues, it is often preferable to do casting/transmuting using
546 /// [`slice::from_raw_parts`] instead.
547 ///
548 /// The ownership of `ptr` is effectively transferred to the
549 /// `Vec<T>` which may then deallocate, reallocate or change the
550 /// contents of memory pointed to by the pointer at will. Ensure
551 /// that nothing else uses the pointer after calling this
552 /// function.
553 ///
554 /// [`String`]: crate::string::String
555 /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
556 ///
557 /// # Examples
558 ///
559 /// ```
560 /// use std::ptr;
561 /// use std::mem;
562 ///
563 /// let v = vec![1, 2, 3];
564 ///
565 // FIXME Update this when vec_into_raw_parts is stabilized
566 /// // Prevent running `v`'s destructor so we are in complete control
567 /// // of the allocation.
568 /// let mut v = mem::ManuallyDrop::new(v);
569 ///
570 /// // Pull out the various important pieces of information about `v`
571 /// let p = v.as_mut_ptr();
572 /// let len = v.len();
573 /// let cap = v.capacity();
574 ///
575 /// unsafe {
576 /// // Overwrite memory with 4, 5, 6
577 /// for i in 0..len as isize {
578 /// ptr::write(p.offset(i), 4 + i);
579 /// }
580 ///
581 /// // Put everything back together into a Vec
582 /// let rebuilt = Vec::from_raw_parts(p, len, cap);
583 /// assert_eq!(rebuilt, [4, 5, 6]);
584 /// }
585 /// ```
586 #[inline]
587 #[stable(feature = "rust1", since = "1.0.0")]
588 pub unsafe fn from_raw_parts(ptr: *mut T, length: usize, capacity: usize) -> Self {
589 unsafe { Self::from_raw_parts_in(ptr, length, capacity, Global) }
590 }
591}
592
593impl<T, A: Allocator> Vec<T, A> {
594 /// Constructs a new, empty `Vec<T, A>`.
595 ///
596 /// The vector will not allocate until elements are pushed onto it.
597 ///
598 /// # Examples
599 ///
600 /// ```
601 /// #![feature(allocator_api)]
602 ///
603 /// use std::alloc::System;
604 ///
605 /// # #[allow(unused_mut)]
606 /// let mut vec: Vec<i32, _> = Vec::new_in(System);
607 /// ```
608 #[inline]
609 #[unstable(feature = "allocator_api", issue = "32838")]
610 pub const fn new_in(alloc: A) -> Self {
611 Vec { buf: RawVec::new_in(alloc), len: 0 }
612 }
613
614 /// Constructs a new, empty `Vec<T, A>` with the specified capacity with the provided
615 /// allocator.
616 ///
617 /// The vector will be able to hold exactly `capacity` elements without
618 /// reallocating. If `capacity` is 0, the vector will not allocate.
619 ///
620 /// It is important to note that although the returned vector has the
621 /// *capacity* specified, the vector will have a zero *length*. For an
622 /// explanation of the difference between length and capacity, see
623 /// *[Capacity and reallocation]*.
624 ///
625 /// [Capacity and reallocation]: #capacity-and-reallocation
626 ///
627 /// # Panics
628 ///
629 /// Panics if the new capacity exceeds `isize::MAX` bytes.
630 ///
631 /// # Examples
632 ///
633 /// ```
634 /// #![feature(allocator_api)]
635 ///
636 /// use std::alloc::System;
637 ///
638 /// let mut vec = Vec::with_capacity_in(10, System);
639 ///
640 /// // The vector contains no items, even though it has capacity for more
641 /// assert_eq!(vec.len(), 0);
642 /// assert_eq!(vec.capacity(), 10);
643 ///
644 /// // These are all done without reallocating...
645 /// for i in 0..10 {
646 /// vec.push(i);
647 /// }
648 /// assert_eq!(vec.len(), 10);
649 /// assert_eq!(vec.capacity(), 10);
650 ///
651 /// // ...but this may make the vector reallocate
652 /// vec.push(11);
653 /// assert_eq!(vec.len(), 11);
654 /// assert!(vec.capacity() >= 11);
655 /// ```
656 #[cfg(not(no_global_oom_handling))]
657 #[inline]
658 #[unstable(feature = "allocator_api", issue = "32838")]
659 pub fn with_capacity_in(capacity: usize, alloc: A) -> Self {
660 Vec { buf: RawVec::with_capacity_in(capacity, alloc), len: 0 }
661 }
662
663 /// Tries to construct a new, empty `Vec<T, A>` with the specified capacity
664 /// with the provided allocator.
665 ///
666 /// The vector will be able to hold exactly `capacity` elements without
667 /// reallocating. If `capacity` is 0, the vector will not allocate.
668 ///
669 /// It is important to note that although the returned vector has the
670 /// *capacity* specified, the vector will have a zero *length*. For an
671 /// explanation of the difference between length and capacity, see
672 /// *[Capacity and reallocation]*.
673 ///
674 /// [Capacity and reallocation]: #capacity-and-reallocation
675 ///
676 /// # Examples
677 ///
678 /// ```
679 /// #![feature(allocator_api)]
680 ///
681 /// use std::alloc::System;
682 ///
683 /// let mut vec = Vec::try_with_capacity_in(10, System).unwrap();
684 ///
685 /// // The vector contains no items, even though it has capacity for more
686 /// assert_eq!(vec.len(), 0);
687 /// assert_eq!(vec.capacity(), 10);
688 ///
689 /// // These are all done without reallocating...
690 /// for i in 0..10 {
691 /// vec.push(i);
692 /// }
693 /// assert_eq!(vec.len(), 10);
694 /// assert_eq!(vec.capacity(), 10);
695 ///
696 /// // ...but this may make the vector reallocate
697 /// vec.push(11);
698 /// assert_eq!(vec.len(), 11);
699 /// assert!(vec.capacity() >= 11);
700 ///
701 /// let mut result = Vec::try_with_capacity_in(usize::MAX, System);
702 /// assert!(result.is_err());
703 /// ```
704 #[inline]
705 #[stable(feature = "kernel", since = "1.0.0")]
706 pub fn try_with_capacity_in(capacity: usize, alloc: A) -> Result<Self, TryReserveError> {
707 Ok(Vec { buf: RawVec::try_with_capacity_in(capacity, alloc)?, len: 0 })
708 }
709
710 /// Creates a `Vec<T, A>` directly from the raw components of another vector.
711 ///
712 /// # Safety
713 ///
714 /// This is highly unsafe, due to the number of invariants that aren't
715 /// checked:
716 ///
717 /// * `ptr` needs to have been previously allocated via [`String`]/`Vec<T>`
718 /// (at least, it's highly likely to be incorrect if it wasn't).
719 /// * `T` needs to have the same size and alignment as what `ptr` was allocated with.
720 /// (`T` having a less strict alignment is not sufficient, the alignment really
721 /// needs to be equal to satisfy the [`dealloc`] requirement that memory must be
722 /// allocated and deallocated with the same layout.)
723 /// * `length` needs to be less than or equal to `capacity`.
724 /// * `capacity` needs to be the capacity that the pointer was allocated with.
725 ///
726 /// Violating these may cause problems like corrupting the allocator's
727 /// internal data structures. For example it is **not** safe
728 /// to build a `Vec<u8>` from a pointer to a C `char` array with length `size_t`.
729 /// It's also not safe to build one from a `Vec<u16>` and its length, because
730 /// the allocator cares about the alignment, and these two types have different
731 /// alignments. The buffer was allocated with alignment 2 (for `u16`), but after
732 /// turning it into a `Vec<u8>` it'll be deallocated with alignment 1.
733 ///
734 /// The ownership of `ptr` is effectively transferred to the
735 /// `Vec<T>` which may then deallocate, reallocate or change the
736 /// contents of memory pointed to by the pointer at will. Ensure
737 /// that nothing else uses the pointer after calling this
738 /// function.
739 ///
740 /// [`String`]: crate::string::String
741 /// [`dealloc`]: crate::alloc::GlobalAlloc::dealloc
742 ///
743 /// # Examples
744 ///
745 /// ```
746 /// #![feature(allocator_api)]
747 ///
748 /// use std::alloc::System;
749 ///
750 /// use std::ptr;
751 /// use std::mem;
752 ///
753 /// let mut v = Vec::with_capacity_in(3, System);
754 /// v.push(1);
755 /// v.push(2);
756 /// v.push(3);
757 ///
758 // FIXME Update this when vec_into_raw_parts is stabilized
759 /// // Prevent running `v`'s destructor so we are in complete control
760 /// // of the allocation.
761 /// let mut v = mem::ManuallyDrop::new(v);
762 ///
763 /// // Pull out the various important pieces of information about `v`
764 /// let p = v.as_mut_ptr();
765 /// let len = v.len();
766 /// let cap = v.capacity();
767 /// let alloc = v.allocator();
768 ///
769 /// unsafe {
770 /// // Overwrite memory with 4, 5, 6
771 /// for i in 0..len as isize {
772 /// ptr::write(p.offset(i), 4 + i);
773 /// }
774 ///
775 /// // Put everything back together into a Vec
776 /// let rebuilt = Vec::from_raw_parts_in(p, len, cap, alloc.clone());
777 /// assert_eq!(rebuilt, [4, 5, 6]);
778 /// }
779 /// ```
780 #[inline]
781 #[unstable(feature = "allocator_api", issue = "32838")]
782 pub unsafe fn from_raw_parts_in(ptr: *mut T, length: usize, capacity: usize, alloc: A) -> Self {
783 unsafe { Vec { buf: RawVec::from_raw_parts_in(ptr, capacity, alloc), len: length } }
784 }
785
786 /// Decomposes a `Vec<T>` into its raw components.
787 ///
788 /// Returns the raw pointer to the underlying data, the length of
789 /// the vector (in elements), and the allocated capacity of the
790 /// data (in elements). These are the same arguments in the same
791 /// order as the arguments to [`from_raw_parts`].
792 ///
793 /// After calling this function, the caller is responsible for the
794 /// memory previously managed by the `Vec`. The only way to do
795 /// this is to convert the raw pointer, length, and capacity back
796 /// into a `Vec` with the [`from_raw_parts`] function, allowing
797 /// the destructor to perform the cleanup.
798 ///
799 /// [`from_raw_parts`]: Vec::from_raw_parts
800 ///
801 /// # Examples
802 ///
803 /// ```
804 /// #![feature(vec_into_raw_parts)]
805 /// let v: Vec<i32> = vec![-1, 0, 1];
806 ///
807 /// let (ptr, len, cap) = v.into_raw_parts();
808 ///
809 /// let rebuilt = unsafe {
810 /// // We can now make changes to the components, such as
811 /// // transmuting the raw pointer to a compatible type.
812 /// let ptr = ptr as *mut u32;
813 ///
814 /// Vec::from_raw_parts(ptr, len, cap)
815 /// };
816 /// assert_eq!(rebuilt, [4294967295, 0, 1]);
817 /// ```
818 #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
819 pub fn into_raw_parts(self) -> (*mut T, usize, usize) {
820 let mut me = ManuallyDrop::new(self);
821 (me.as_mut_ptr(), me.len(), me.capacity())
822 }
823
824 /// Decomposes a `Vec<T>` into its raw components.
825 ///
826 /// Returns the raw pointer to the underlying data, the length of the vector (in elements),
827 /// the allocated capacity of the data (in elements), and the allocator. These are the same
828 /// arguments in the same order as the arguments to [`from_raw_parts_in`].
829 ///
830 /// After calling this function, the caller is responsible for the
831 /// memory previously managed by the `Vec`. The only way to do
832 /// this is to convert the raw pointer, length, and capacity back
833 /// into a `Vec` with the [`from_raw_parts_in`] function, allowing
834 /// the destructor to perform the cleanup.
835 ///
836 /// [`from_raw_parts_in`]: Vec::from_raw_parts_in
837 ///
838 /// # Examples
839 ///
840 /// ```
841 /// #![feature(allocator_api, vec_into_raw_parts)]
842 ///
843 /// use std::alloc::System;
844 ///
845 /// let mut v: Vec<i32, System> = Vec::new_in(System);
846 /// v.push(-1);
847 /// v.push(0);
848 /// v.push(1);
849 ///
850 /// let (ptr, len, cap, alloc) = v.into_raw_parts_with_alloc();
851 ///
852 /// let rebuilt = unsafe {
853 /// // We can now make changes to the components, such as
854 /// // transmuting the raw pointer to a compatible type.
855 /// let ptr = ptr as *mut u32;
856 ///
857 /// Vec::from_raw_parts_in(ptr, len, cap, alloc)
858 /// };
859 /// assert_eq!(rebuilt, [4294967295, 0, 1]);
860 /// ```
861 #[unstable(feature = "allocator_api", issue = "32838")]
862 // #[unstable(feature = "vec_into_raw_parts", reason = "new API", issue = "65816")]
863 pub fn into_raw_parts_with_alloc(self) -> (*mut T, usize, usize, A) {
864 let mut me = ManuallyDrop::new(self);
865 let len = me.len();
866 let capacity = me.capacity();
867 let ptr = me.as_mut_ptr();
868 let alloc = unsafe { ptr::read(me.allocator()) };
869 (ptr, len, capacity, alloc)
870 }
871
872 /// Returns the number of elements the vector can hold without
873 /// reallocating.
874 ///
875 /// # Examples
876 ///
877 /// ```
878 /// let vec: Vec<i32> = Vec::with_capacity(10);
879 /// assert_eq!(vec.capacity(), 10);
880 /// ```
881 #[inline]
882 #[stable(feature = "rust1", since = "1.0.0")]
883 pub fn capacity(&self) -> usize {
884 self.buf.capacity()
885 }
886
887 /// Reserves capacity for at least `additional` more elements to be inserted
888 /// in the given `Vec<T>`. The collection may reserve more space to avoid
889 /// frequent reallocations. After calling `reserve`, capacity will be
890 /// greater than or equal to `self.len() + additional`. Does nothing if
891 /// capacity is already sufficient.
892 ///
893 /// # Panics
894 ///
895 /// Panics if the new capacity exceeds `isize::MAX` bytes.
896 ///
897 /// # Examples
898 ///
899 /// ```
900 /// let mut vec = vec![1];
901 /// vec.reserve(10);
902 /// assert!(vec.capacity() >= 11);
903 /// ```
904 #[cfg(not(no_global_oom_handling))]
905 #[stable(feature = "rust1", since = "1.0.0")]
906 pub fn reserve(&mut self, additional: usize) {
907 self.buf.reserve(self.len, additional);
908 }
909
910 /// Reserves the minimum capacity for exactly `additional` more elements to
911 /// be inserted in the given `Vec<T>`. After calling `reserve_exact`,
912 /// capacity will be greater than or equal to `self.len() + additional`.
913 /// Does nothing if the capacity is already sufficient.
914 ///
915 /// Note that the allocator may give the collection more space than it
916 /// requests. Therefore, capacity can not be relied upon to be precisely
917 /// minimal. Prefer [`reserve`] if future insertions are expected.
918 ///
919 /// [`reserve`]: Vec::reserve
920 ///
921 /// # Panics
922 ///
923 /// Panics if the new capacity exceeds `isize::MAX` bytes.
924 ///
925 /// # Examples
926 ///
927 /// ```
928 /// let mut vec = vec![1];
929 /// vec.reserve_exact(10);
930 /// assert!(vec.capacity() >= 11);
931 /// ```
932 #[cfg(not(no_global_oom_handling))]
933 #[stable(feature = "rust1", since = "1.0.0")]
934 pub fn reserve_exact(&mut self, additional: usize) {
935 self.buf.reserve_exact(self.len, additional);
936 }
937
938 /// Tries to reserve capacity for at least `additional` more elements to be inserted
939 /// in the given `Vec<T>`. The collection may reserve more space to avoid
940 /// frequent reallocations. After calling `try_reserve`, capacity will be
941 /// greater than or equal to `self.len() + additional`. Does nothing if
942 /// capacity is already sufficient.
943 ///
944 /// # Errors
945 ///
946 /// If the capacity overflows, or the allocator reports a failure, then an error
947 /// is returned.
948 ///
949 /// # Examples
950 ///
951 /// ```
952 /// use std::collections::TryReserveError;
953 ///
954 /// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> {
955 /// let mut output = Vec::new();
956 ///
957 /// // Pre-reserve the memory, exiting if we can't
958 /// output.try_reserve(data.len())?;
959 ///
960 /// // Now we know this can't OOM in the middle of our complex work
961 /// output.extend(data.iter().map(|&val| {
962 /// val * 2 + 5 // very complicated
963 /// }));
964 ///
965 /// Ok(output)
966 /// }
967 /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
968 /// ```
969 #[stable(feature = "try_reserve", since = "1.57.0")]
970 pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> {
971 self.buf.try_reserve(self.len, additional)
972 }
973
974 /// Tries to reserve the minimum capacity for exactly `additional`
975 /// elements to be inserted in the given `Vec<T>`. After calling
976 /// `try_reserve_exact`, capacity will be greater than or equal to
977 /// `self.len() + additional` if it returns `Ok(())`.
978 /// Does nothing if the capacity is already sufficient.
979 ///
980 /// Note that the allocator may give the collection more space than it
981 /// requests. Therefore, capacity can not be relied upon to be precisely
982 /// minimal. Prefer [`try_reserve`] if future insertions are expected.
983 ///
984 /// [`try_reserve`]: Vec::try_reserve
985 ///
986 /// # Errors
987 ///
988 /// If the capacity overflows, or the allocator reports a failure, then an error
989 /// is returned.
990 ///
991 /// # Examples
992 ///
993 /// ```
994 /// use std::collections::TryReserveError;
995 ///
996 /// fn process_data(data: &[u32]) -> Result<Vec<u32>, TryReserveError> {
997 /// let mut output = Vec::new();
998 ///
999 /// // Pre-reserve the memory, exiting if we can't
1000 /// output.try_reserve_exact(data.len())?;
1001 ///
1002 /// // Now we know this can't OOM in the middle of our complex work
1003 /// output.extend(data.iter().map(|&val| {
1004 /// val * 2 + 5 // very complicated
1005 /// }));
1006 ///
1007 /// Ok(output)
1008 /// }
1009 /// # process_data(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?");
1010 /// ```
1011 #[stable(feature = "try_reserve", since = "1.57.0")]
1012 pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> {
1013 self.buf.try_reserve_exact(self.len, additional)
1014 }
1015
1016 /// Shrinks the capacity of the vector as much as possible.
1017 ///
1018 /// It will drop down as close as possible to the length but the allocator
1019 /// may still inform the vector that there is space for a few more elements.
1020 ///
1021 /// # Examples
1022 ///
1023 /// ```
1024 /// let mut vec = Vec::with_capacity(10);
1025 /// vec.extend([1, 2, 3]);
1026 /// assert_eq!(vec.capacity(), 10);
1027 /// vec.shrink_to_fit();
1028 /// assert!(vec.capacity() >= 3);
1029 /// ```
1030 #[cfg(not(no_global_oom_handling))]
1031 #[stable(feature = "rust1", since = "1.0.0")]
1032 pub fn shrink_to_fit(&mut self) {
1033 // The capacity is never less than the length, and there's nothing to do when
1034 // they are equal, so we can avoid the panic case in `RawVec::shrink_to_fit`
1035 // by only calling it with a greater capacity.
1036 if self.capacity() > self.len {
1037 self.buf.shrink_to_fit(self.len);
1038 }
1039 }
1040
1041 /// Shrinks the capacity of the vector with a lower bound.
1042 ///
1043 /// The capacity will remain at least as large as both the length
1044 /// and the supplied value.
1045 ///
1046 /// If the current capacity is less than the lower limit, this is a no-op.
1047 ///
1048 /// # Examples
1049 ///
1050 /// ```
1051 /// let mut vec = Vec::with_capacity(10);
1052 /// vec.extend([1, 2, 3]);
1053 /// assert_eq!(vec.capacity(), 10);
1054 /// vec.shrink_to(4);
1055 /// assert!(vec.capacity() >= 4);
1056 /// vec.shrink_to(0);
1057 /// assert!(vec.capacity() >= 3);
1058 /// ```
1059 #[cfg(not(no_global_oom_handling))]
1060 #[stable(feature = "shrink_to", since = "1.56.0")]
1061 pub fn shrink_to(&mut self, min_capacity: usize) {
1062 if self.capacity() > min_capacity {
1063 self.buf.shrink_to_fit(cmp::max(self.len, min_capacity));
1064 }
1065 }
1066
1067 /// Converts the vector into [`Box<[T]>`][owned slice].
1068 ///
1069 /// Note that this will drop any excess capacity.
1070 ///
1071 /// [owned slice]: Box
1072 ///
1073 /// # Examples
1074 ///
1075 /// ```
1076 /// let v = vec![1, 2, 3];
1077 ///
1078 /// let slice = v.into_boxed_slice();
1079 /// ```
1080 ///
1081 /// Any excess capacity is removed:
1082 ///
1083 /// ```
1084 /// let mut vec = Vec::with_capacity(10);
1085 /// vec.extend([1, 2, 3]);
1086 ///
1087 /// assert_eq!(vec.capacity(), 10);
1088 /// let slice = vec.into_boxed_slice();
1089 /// assert_eq!(slice.into_vec().capacity(), 3);
1090 /// ```
1091 #[cfg(not(no_global_oom_handling))]
1092 #[stable(feature = "rust1", since = "1.0.0")]
1093 pub fn into_boxed_slice(mut self) -> Box<[T], A> {
1094 unsafe {
1095 self.shrink_to_fit();
1096 let me = ManuallyDrop::new(self);
1097 let buf = ptr::read(&me.buf);
1098 let len = me.len();
1099 buf.into_box(len).assume_init()
1100 }
1101 }
1102
1103 /// Shortens the vector, keeping the first `len` elements and dropping
1104 /// the rest.
1105 ///
1106 /// If `len` is greater than the vector's current length, this has no
1107 /// effect.
1108 ///
1109 /// The [`drain`] method can emulate `truncate`, but causes the excess
1110 /// elements to be returned instead of dropped.
1111 ///
1112 /// Note that this method has no effect on the allocated capacity
1113 /// of the vector.
1114 ///
1115 /// # Examples
1116 ///
1117 /// Truncating a five element vector to two elements:
1118 ///
1119 /// ```
1120 /// let mut vec = vec![1, 2, 3, 4, 5];
1121 /// vec.truncate(2);
1122 /// assert_eq!(vec, [1, 2]);
1123 /// ```
1124 ///
1125 /// No truncation occurs when `len` is greater than the vector's current
1126 /// length:
1127 ///
1128 /// ```
1129 /// let mut vec = vec![1, 2, 3];
1130 /// vec.truncate(8);
1131 /// assert_eq!(vec, [1, 2, 3]);
1132 /// ```
1133 ///
1134 /// Truncating when `len == 0` is equivalent to calling the [`clear`]
1135 /// method.
1136 ///
1137 /// ```
1138 /// let mut vec = vec![1, 2, 3];
1139 /// vec.truncate(0);
1140 /// assert_eq!(vec, []);
1141 /// ```
1142 ///
1143 /// [`clear`]: Vec::clear
1144 /// [`drain`]: Vec::drain
1145 #[stable(feature = "rust1", since = "1.0.0")]
1146 pub fn truncate(&mut self, len: usize) {
1147 // This is safe because:
1148 //
1149 // * the slice passed to `drop_in_place` is valid; the `len > self.len`
1150 // case avoids creating an invalid slice, and
1151 // * the `len` of the vector is shrunk before calling `drop_in_place`,
1152 // such that no value will be dropped twice in case `drop_in_place`
1153 // were to panic once (if it panics twice, the program aborts).
1154 unsafe {
1155 // Note: It's intentional that this is `>` and not `>=`.
1156 // Changing it to `>=` has negative performance
1157 // implications in some cases. See #78884 for more.
1158 if len > self.len {
1159 return;
1160 }
1161 let remaining_len = self.len - len;
1162 let s = ptr::slice_from_raw_parts_mut(self.as_mut_ptr().add(len), remaining_len);
1163 self.len = len;
1164 ptr::drop_in_place(s);
1165 }
1166 }
1167
1168 /// Extracts a slice containing the entire vector.
1169 ///
1170 /// Equivalent to `&s[..]`.
1171 ///
1172 /// # Examples
1173 ///
1174 /// ```
1175 /// use std::io::{self, Write};
1176 /// let buffer = vec![1, 2, 3, 5, 8];
1177 /// io::sink().write(buffer.as_slice()).unwrap();
1178 /// ```
1179 #[inline]
1180 #[stable(feature = "vec_as_slice", since = "1.7.0")]
1181 pub fn as_slice(&self) -> &[T] {
1182 self
1183 }
1184
1185 /// Extracts a mutable slice of the entire vector.
1186 ///
1187 /// Equivalent to `&mut s[..]`.
1188 ///
1189 /// # Examples
1190 ///
1191 /// ```
1192 /// use std::io::{self, Read};
1193 /// let mut buffer = vec![0; 3];
1194 /// io::repeat(0b101).read_exact(buffer.as_mut_slice()).unwrap();
1195 /// ```
1196 #[inline]
1197 #[stable(feature = "vec_as_slice", since = "1.7.0")]
1198 pub fn as_mut_slice(&mut self) -> &mut [T] {
1199 self
1200 }
1201
1202 /// Returns a raw pointer to the vector's buffer.
1203 ///
1204 /// The caller must ensure that the vector outlives the pointer this
1205 /// function returns, or else it will end up pointing to garbage.
1206 /// Modifying the vector may cause its buffer to be reallocated,
1207 /// which would also make any pointers to it invalid.
1208 ///
1209 /// The caller must also ensure that the memory the pointer (non-transitively) points to
1210 /// is never written to (except inside an `UnsafeCell`) using this pointer or any pointer
1211 /// derived from it. If you need to mutate the contents of the slice, use [`as_mut_ptr`].
1212 ///
1213 /// # Examples
1214 ///
1215 /// ```
1216 /// let x = vec![1, 2, 4];
1217 /// let x_ptr = x.as_ptr();
1218 ///
1219 /// unsafe {
1220 /// for i in 0..x.len() {
1221 /// assert_eq!(*x_ptr.add(i), 1 << i);
1222 /// }
1223 /// }
1224 /// ```
1225 ///
1226 /// [`as_mut_ptr`]: Vec::as_mut_ptr
1227 #[stable(feature = "vec_as_ptr", since = "1.37.0")]
1228 #[inline]
1229 pub fn as_ptr(&self) -> *const T {
1230 // We shadow the slice method of the same name to avoid going through
1231 // `deref`, which creates an intermediate reference.
1232 let ptr = self.buf.ptr();
1233 unsafe {
1234 assume(!ptr.is_null());
1235 }
1236 ptr
1237 }
1238
1239 /// Returns an unsafe mutable pointer to the vector's buffer.
1240 ///
1241 /// The caller must ensure that the vector outlives the pointer this
1242 /// function returns, or else it will end up pointing to garbage.
1243 /// Modifying the vector may cause its buffer to be reallocated,
1244 /// which would also make any pointers to it invalid.
1245 ///
1246 /// # Examples
1247 ///
1248 /// ```
1249 /// // Allocate vector big enough for 4 elements.
1250 /// let size = 4;
1251 /// let mut x: Vec<i32> = Vec::with_capacity(size);
1252 /// let x_ptr = x.as_mut_ptr();
1253 ///
1254 /// // Initialize elements via raw pointer writes, then set length.
1255 /// unsafe {
1256 /// for i in 0..size {
1257 /// *x_ptr.add(i) = i as i32;
1258 /// }
1259 /// x.set_len(size);
1260 /// }
1261 /// assert_eq!(&*x, &[0, 1, 2, 3]);
1262 /// ```
1263 #[stable(feature = "vec_as_ptr", since = "1.37.0")]
1264 #[inline]
1265 pub fn as_mut_ptr(&mut self) -> *mut T {
1266 // We shadow the slice method of the same name to avoid going through
1267 // `deref_mut`, which creates an intermediate reference.
1268 let ptr = self.buf.ptr();
1269 unsafe {
1270 assume(!ptr.is_null());
1271 }
1272 ptr
1273 }
1274
1275 /// Returns a reference to the underlying allocator.
1276 #[unstable(feature = "allocator_api", issue = "32838")]
1277 #[inline]
1278 pub fn allocator(&self) -> &A {
1279 self.buf.allocator()
1280 }
1281
1282 /// Forces the length of the vector to `new_len`.
1283 ///
1284 /// This is a low-level operation that maintains none of the normal
1285 /// invariants of the type. Normally changing the length of a vector
1286 /// is done using one of the safe operations instead, such as
1287 /// [`truncate`], [`resize`], [`extend`], or [`clear`].
1288 ///
1289 /// [`truncate`]: Vec::truncate
1290 /// [`resize`]: Vec::resize
1291 /// [`extend`]: Extend::extend
1292 /// [`clear`]: Vec::clear
1293 ///
1294 /// # Safety
1295 ///
1296 /// - `new_len` must be less than or equal to [`capacity()`].
1297 /// - The elements at `old_len..new_len` must be initialized.
1298 ///
1299 /// [`capacity()`]: Vec::capacity
1300 ///
1301 /// # Examples
1302 ///
1303 /// This method can be useful for situations in which the vector
1304 /// is serving as a buffer for other code, particularly over FFI:
1305 ///
1306 /// ```no_run
1307 /// # #![allow(dead_code)]
1308 /// # // This is just a minimal skeleton for the doc example;
1309 /// # // don't use this as a starting point for a real library.
1310 /// # pub struct StreamWrapper { strm: *mut std::ffi::c_void }
1311 /// # const Z_OK: i32 = 0;
1312 /// # extern "C" {
1313 /// # fn deflateGetDictionary(
1314 /// # strm: *mut std::ffi::c_void,
1315 /// # dictionary: *mut u8,
1316 /// # dictLength: *mut usize,
1317 /// # ) -> i32;
1318 /// # }
1319 /// # impl StreamWrapper {
1320 /// pub fn get_dictionary(&self) -> Option<Vec<u8>> {
1321 /// // Per the FFI method's docs, "32768 bytes is always enough".
1322 /// let mut dict = Vec::with_capacity(32_768);
1323 /// let mut dict_length = 0;
1324 /// // SAFETY: When `deflateGetDictionary` returns `Z_OK`, it holds that:
1325 /// // 1. `dict_length` elements were initialized.
1326 /// // 2. `dict_length` <= the capacity (32_768)
1327 /// // which makes `set_len` safe to call.
1328 /// unsafe {
1329 /// // Make the FFI call...
1330 /// let r = deflateGetDictionary(self.strm, dict.as_mut_ptr(), &mut dict_length);
1331 /// if r == Z_OK {
1332 /// // ...and update the length to what was initialized.
1333 /// dict.set_len(dict_length);
1334 /// Some(dict)
1335 /// } else {
1336 /// None
1337 /// }
1338 /// }
1339 /// }
1340 /// # }
1341 /// ```
1342 ///
1343 /// While the following example is sound, there is a memory leak since
1344 /// the inner vectors were not freed prior to the `set_len` call:
1345 ///
1346 /// ```
1347 /// let mut vec = vec![vec![1, 0, 0],
1348 /// vec![0, 1, 0],
1349 /// vec![0, 0, 1]];
1350 /// // SAFETY:
1351 /// // 1. `old_len..0` is empty so no elements need to be initialized.
1352 /// // 2. `0 <= capacity` always holds whatever `capacity` is.
1353 /// unsafe {
1354 /// vec.set_len(0);
1355 /// }
1356 /// ```
1357 ///
1358 /// Normally, here, one would use [`clear`] instead to correctly drop
1359 /// the contents and thus not leak memory.
1360 #[inline]
1361 #[stable(feature = "rust1", since = "1.0.0")]
1362 pub unsafe fn set_len(&mut self, new_len: usize) {
1363 debug_assert!(new_len <= self.capacity());
1364
1365 self.len = new_len;
1366 }
1367
1368 /// Removes an element from the vector and returns it.
1369 ///
1370 /// The removed element is replaced by the last element of the vector.
1371 ///
1372 /// This does not preserve ordering, but is *O*(1).
1373 /// If you need to preserve the element order, use [`remove`] instead.
1374 ///
1375 /// [`remove`]: Vec::remove
1376 ///
1377 /// # Panics
1378 ///
1379 /// Panics if `index` is out of bounds.
1380 ///
1381 /// # Examples
1382 ///
1383 /// ```
1384 /// let mut v = vec!["foo", "bar", "baz", "qux"];
1385 ///
1386 /// assert_eq!(v.swap_remove(1), "bar");
1387 /// assert_eq!(v, ["foo", "qux", "baz"]);
1388 ///
1389 /// assert_eq!(v.swap_remove(0), "foo");
1390 /// assert_eq!(v, ["baz", "qux"]);
1391 /// ```
1392 #[inline]
1393 #[stable(feature = "rust1", since = "1.0.0")]
1394 pub fn swap_remove(&mut self, index: usize) -> T {
1395 #[cold]
1396 #[inline(never)]
1397 fn assert_failed(index: usize, len: usize) -> ! {
1398 panic!("swap_remove index (is {index}) should be < len (is {len})");
1399 }
1400
1401 let len = self.len();
1402 if index >= len {
1403 assert_failed(index, len);
1404 }
1405 unsafe {
1406 // We replace self[index] with the last element. Note that if the
1407 // bounds check above succeeds there must be a last element (which
1408 // can be self[index] itself).
1409 let value = ptr::read(self.as_ptr().add(index));
1410 let base_ptr = self.as_mut_ptr();
1411 ptr::copy(base_ptr.add(len - 1), base_ptr.add(index), 1);
1412 self.set_len(len - 1);
1413 value
1414 }
1415 }
1416
1417 /// Inserts an element at position `index` within the vector, shifting all
1418 /// elements after it to the right.
1419 ///
1420 /// # Panics
1421 ///
1422 /// Panics if `index > len`.
1423 ///
1424 /// # Examples
1425 ///
1426 /// ```
1427 /// let mut vec = vec![1, 2, 3];
1428 /// vec.insert(1, 4);
1429 /// assert_eq!(vec, [1, 4, 2, 3]);
1430 /// vec.insert(4, 5);
1431 /// assert_eq!(vec, [1, 4, 2, 3, 5]);
1432 /// ```
1433 #[cfg(not(no_global_oom_handling))]
1434 #[stable(feature = "rust1", since = "1.0.0")]
1435 pub fn insert(&mut self, index: usize, element: T) {
1436 #[cold]
1437 #[inline(never)]
1438 fn assert_failed(index: usize, len: usize) -> ! {
1439 panic!("insertion index (is {index}) should be <= len (is {len})");
1440 }
1441
1442 let len = self.len();
1443 if index > len {
1444 assert_failed(index, len);
1445 }
1446
1447 // space for the new element
1448 if len == self.buf.capacity() {
1449 self.reserve(1);
1450 }
1451
1452 unsafe {
1453 // infallible
1454 // The spot to put the new value
1455 {
1456 let p = self.as_mut_ptr().add(index);
1457 // Shift everything over to make space. (Duplicating the
1458 // `index`th element into two consecutive places.)
1459 ptr::copy(p, p.offset(1), len - index);
1460 // Write it in, overwriting the first copy of the `index`th
1461 // element.
1462 ptr::write(p, element);
1463 }
1464 self.set_len(len + 1);
1465 }
1466 }
1467
1468 /// Removes and returns the element at position `index` within the vector,
1469 /// shifting all elements after it to the left.
1470 ///
1471 /// Note: Because this shifts over the remaining elements, it has a
1472 /// worst-case performance of *O*(*n*). If you don't need the order of elements
1473 /// to be preserved, use [`swap_remove`] instead. If you'd like to remove
1474 /// elements from the beginning of the `Vec`, consider using
1475 /// [`VecDeque::pop_front`] instead.
1476 ///
1477 /// [`swap_remove`]: Vec::swap_remove
1478 /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
1479 ///
1480 /// # Panics
1481 ///
1482 /// Panics if `index` is out of bounds.
1483 ///
1484 /// # Examples
1485 ///
1486 /// ```
1487 /// let mut v = vec![1, 2, 3];
1488 /// assert_eq!(v.remove(1), 2);
1489 /// assert_eq!(v, [1, 3]);
1490 /// ```
1491 #[stable(feature = "rust1", since = "1.0.0")]
1492 #[track_caller]
1493 pub fn remove(&mut self, index: usize) -> T {
1494 #[cold]
1495 #[inline(never)]
1496 #[track_caller]
1497 fn assert_failed(index: usize, len: usize) -> ! {
1498 panic!("removal index (is {index}) should be < len (is {len})");
1499 }
1500
1501 let len = self.len();
1502 if index >= len {
1503 assert_failed(index, len);
1504 }
1505 unsafe {
1506 // infallible
1507 let ret;
1508 {
1509 // the place we are taking from.
1510 let ptr = self.as_mut_ptr().add(index);
1511 // copy it out, unsafely having a copy of the value on
1512 // the stack and in the vector at the same time.
1513 ret = ptr::read(ptr);
1514
1515 // Shift everything down to fill in that spot.
1516 ptr::copy(ptr.offset(1), ptr, len - index - 1);
1517 }
1518 self.set_len(len - 1);
1519 ret
1520 }
1521 }
1522
1523 /// Retains only the elements specified by the predicate.
1524 ///
1525 /// In other words, remove all elements `e` for which `f(&e)` returns `false`.
1526 /// This method operates in place, visiting each element exactly once in the
1527 /// original order, and preserves the order of the retained elements.
1528 ///
1529 /// # Examples
1530 ///
1531 /// ```
1532 /// let mut vec = vec![1, 2, 3, 4];
1533 /// vec.retain(|&x| x % 2 == 0);
1534 /// assert_eq!(vec, [2, 4]);
1535 /// ```
1536 ///
1537 /// Because the elements are visited exactly once in the original order,
1538 /// external state may be used to decide which elements to keep.
1539 ///
1540 /// ```
1541 /// let mut vec = vec![1, 2, 3, 4, 5];
1542 /// let keep = [false, true, true, false, true];
1543 /// let mut iter = keep.iter();
1544 /// vec.retain(|_| *iter.next().unwrap());
1545 /// assert_eq!(vec, [2, 3, 5]);
1546 /// ```
1547 #[stable(feature = "rust1", since = "1.0.0")]
1548 pub fn retain<F>(&mut self, mut f: F)
1549 where
1550 F: FnMut(&T) -> bool,
1551 {
1552 self.retain_mut(|elem| f(elem));
1553 }
1554
1555 /// Retains only the elements specified by the predicate, passing a mutable reference to it.
1556 ///
1557 /// In other words, remove all elements `e` such that `f(&mut e)` returns `false`.
1558 /// This method operates in place, visiting each element exactly once in the
1559 /// original order, and preserves the order of the retained elements.
1560 ///
1561 /// # Examples
1562 ///
1563 /// ```
1564 /// let mut vec = vec![1, 2, 3, 4];
1565 /// vec.retain_mut(|x| if *x > 3 {
1566 /// false
1567 /// } else {
1568 /// *x += 1;
1569 /// true
1570 /// });
1571 /// assert_eq!(vec, [2, 3, 4]);
1572 /// ```
1573 #[stable(feature = "vec_retain_mut", since = "1.61.0")]
1574 pub fn retain_mut<F>(&mut self, mut f: F)
1575 where
1576 F: FnMut(&mut T) -> bool,
1577 {
1578 let original_len = self.len();
1579 // Avoid double drop if the drop guard is not executed,
1580 // since we may make some holes during the process.
1581 unsafe { self.set_len(0) };
1582
1583 // Vec: [Kept, Kept, Hole, Hole, Hole, Hole, Unchecked, Unchecked]
1584 // |<- processed len ->| ^- next to check
1585 // |<- deleted cnt ->|
1586 // |<- original_len ->|
1587 // Kept: Elements which predicate returns true on.
1588 // Hole: Moved or dropped element slot.
1589 // Unchecked: Unchecked valid elements.
1590 //
1591 // This drop guard will be invoked when predicate or `drop` of element panicked.
1592 // It shifts unchecked elements to cover holes and `set_len` to the correct length.
1593 // In cases when predicate and `drop` never panick, it will be optimized out.
1594 struct BackshiftOnDrop<'a, T, A: Allocator> {
1595 v: &'a mut Vec<T, A>,
1596 processed_len: usize,
1597 deleted_cnt: usize,
1598 original_len: usize,
1599 }
1600
1601 impl<T, A: Allocator> Drop for BackshiftOnDrop<'_, T, A> {
1602 fn drop(&mut self) {
1603 if self.deleted_cnt > 0 {
1604 // SAFETY: Trailing unchecked items must be valid since we never touch them.
1605 unsafe {
1606 ptr::copy(
1607 self.v.as_ptr().add(self.processed_len),
1608 self.v.as_mut_ptr().add(self.processed_len - self.deleted_cnt),
1609 self.original_len - self.processed_len,
1610 );
1611 }
1612 }
1613 // SAFETY: After filling holes, all items are in contiguous memory.
1614 unsafe {
1615 self.v.set_len(self.original_len - self.deleted_cnt);
1616 }
1617 }
1618 }
1619
1620 let mut g = BackshiftOnDrop { v: self, processed_len: 0, deleted_cnt: 0, original_len };
1621
1622 fn process_loop<F, T, A: Allocator, const DELETED: bool>(
1623 original_len: usize,
1624 f: &mut F,
1625 g: &mut BackshiftOnDrop<'_, T, A>,
1626 ) where
1627 F: FnMut(&mut T) -> bool,
1628 {
1629 while g.processed_len != original_len {
1630 // SAFETY: Unchecked element must be valid.
1631 let cur = unsafe { &mut *g.v.as_mut_ptr().add(g.processed_len) };
1632 if !f(cur) {
1633 // Advance early to avoid double drop if `drop_in_place` panicked.
1634 g.processed_len += 1;
1635 g.deleted_cnt += 1;
1636 // SAFETY: We never touch this element again after dropped.
1637 unsafe { ptr::drop_in_place(cur) };
1638 // We already advanced the counter.
1639 if DELETED {
1640 continue;
1641 } else {
1642 break;
1643 }
1644 }
1645 if DELETED {
1646 // SAFETY: `deleted_cnt` > 0, so the hole slot must not overlap with current element.
1647 // We use copy for move, and never touch this element again.
1648 unsafe {
1649 let hole_slot = g.v.as_mut_ptr().add(g.processed_len - g.deleted_cnt);
1650 ptr::copy_nonoverlapping(cur, hole_slot, 1);
1651 }
1652 }
1653 g.processed_len += 1;
1654 }
1655 }
1656
1657 // Stage 1: Nothing was deleted.
1658 process_loop::<F, T, A, false>(original_len, &mut f, &mut g);
1659
1660 // Stage 2: Some elements were deleted.
1661 process_loop::<F, T, A, true>(original_len, &mut f, &mut g);
1662
1663 // All item are processed. This can be optimized to `set_len` by LLVM.
1664 drop(g);
1665 }
1666
1667 /// Removes all but the first of consecutive elements in the vector that resolve to the same
1668 /// key.
1669 ///
1670 /// If the vector is sorted, this removes all duplicates.
1671 ///
1672 /// # Examples
1673 ///
1674 /// ```
1675 /// let mut vec = vec![10, 20, 21, 30, 20];
1676 ///
1677 /// vec.dedup_by_key(|i| *i / 10);
1678 ///
1679 /// assert_eq!(vec, [10, 20, 30, 20]);
1680 /// ```
1681 #[stable(feature = "dedup_by", since = "1.16.0")]
1682 #[inline]
1683 pub fn dedup_by_key<F, K>(&mut self, mut key: F)
1684 where
1685 F: FnMut(&mut T) -> K,
1686 K: PartialEq,
1687 {
1688 self.dedup_by(|a, b| key(a) == key(b))
1689 }
1690
1691 /// Removes all but the first of consecutive elements in the vector satisfying a given equality
1692 /// relation.
1693 ///
1694 /// The `same_bucket` function is passed references to two elements from the vector and
1695 /// must determine if the elements compare equal. The elements are passed in opposite order
1696 /// from their order in the slice, so if `same_bucket(a, b)` returns `true`, `a` is removed.
1697 ///
1698 /// If the vector is sorted, this removes all duplicates.
1699 ///
1700 /// # Examples
1701 ///
1702 /// ```
1703 /// let mut vec = vec!["foo", "bar", "Bar", "baz", "bar"];
1704 ///
1705 /// vec.dedup_by(|a, b| a.eq_ignore_ascii_case(b));
1706 ///
1707 /// assert_eq!(vec, ["foo", "bar", "baz", "bar"]);
1708 /// ```
1709 #[stable(feature = "dedup_by", since = "1.16.0")]
1710 pub fn dedup_by<F>(&mut self, mut same_bucket: F)
1711 where
1712 F: FnMut(&mut T, &mut T) -> bool,
1713 {
1714 let len = self.len();
1715 if len <= 1 {
1716 return;
1717 }
1718
1719 /* INVARIANT: vec.len() > read >= write > write-1 >= 0 */
1720 struct FillGapOnDrop<'a, T, A: core::alloc::Allocator> {
1721 /* Offset of the element we want to check if it is duplicate */
1722 read: usize,
1723
1724 /* Offset of the place where we want to place the non-duplicate
1725 * when we find it. */
1726 write: usize,
1727
1728 /* The Vec that would need correction if `same_bucket` panicked */
1729 vec: &'a mut Vec<T, A>,
1730 }
1731
1732 impl<'a, T, A: core::alloc::Allocator> Drop for FillGapOnDrop<'a, T, A> {
1733 fn drop(&mut self) {
1734 /* This code gets executed when `same_bucket` panics */
1735
1736 /* SAFETY: invariant guarantees that `read - write`
1737 * and `len - read` never overflow and that the copy is always
1738 * in-bounds. */
1739 unsafe {
1740 let ptr = self.vec.as_mut_ptr();
1741 let len = self.vec.len();
1742
1743 /* How many items were left when `same_bucket` panicked.
1744 * Basically vec[read..].len() */
1745 let items_left = len.wrapping_sub(self.read);
1746
1747 /* Pointer to first item in vec[write..write+items_left] slice */
1748 let dropped_ptr = ptr.add(self.write);
1749 /* Pointer to first item in vec[read..] slice */
1750 let valid_ptr = ptr.add(self.read);
1751
1752 /* Copy `vec[read..]` to `vec[write..write+items_left]`.
1753 * The slices can overlap, so `copy_nonoverlapping` cannot be used */
1754 ptr::copy(valid_ptr, dropped_ptr, items_left);
1755
1756 /* How many items have been already dropped
1757 * Basically vec[read..write].len() */
1758 let dropped = self.read.wrapping_sub(self.write);
1759
1760 self.vec.set_len(len - dropped);
1761 }
1762 }
1763 }
1764
1765 let mut gap = FillGapOnDrop { read: 1, write: 1, vec: self };
1766 let ptr = gap.vec.as_mut_ptr();
1767
1768 /* Drop items while going through Vec, it should be more efficient than
1769 * doing slice partition_dedup + truncate */
1770
1771 /* SAFETY: Because of the invariant, read_ptr, prev_ptr and write_ptr
1772 * are always in-bounds and read_ptr never aliases prev_ptr */
1773 unsafe {
1774 while gap.read < len {
1775 let read_ptr = ptr.add(gap.read);
1776 let prev_ptr = ptr.add(gap.write.wrapping_sub(1));
1777
1778 if same_bucket(&mut *read_ptr, &mut *prev_ptr) {
1779 // Increase `gap.read` now since the drop may panic.
1780 gap.read += 1;
1781 /* We have found duplicate, drop it in-place */
1782 ptr::drop_in_place(read_ptr);
1783 } else {
1784 let write_ptr = ptr.add(gap.write);
1785
1786 /* Because `read_ptr` can be equal to `write_ptr`, we either
1787 * have to use `copy` or conditional `copy_nonoverlapping`.
1788 * Looks like the first option is faster. */
1789 ptr::copy(read_ptr, write_ptr, 1);
1790
1791 /* We have filled that place, so go further */
1792 gap.write += 1;
1793 gap.read += 1;
1794 }
1795 }
1796
1797 /* Technically we could let `gap` clean up with its Drop, but
1798 * when `same_bucket` is guaranteed to not panic, this bloats a little
1799 * the codegen, so we just do it manually */
1800 gap.vec.set_len(gap.write);
1801 mem::forget(gap);
1802 }
1803 }
1804
1805 /// Appends an element to the back of a collection.
1806 ///
1807 /// # Panics
1808 ///
1809 /// Panics if the new capacity exceeds `isize::MAX` bytes.
1810 ///
1811 /// # Examples
1812 ///
1813 /// ```
1814 /// let mut vec = vec![1, 2];
1815 /// vec.push(3);
1816 /// assert_eq!(vec, [1, 2, 3]);
1817 /// ```
1818 #[cfg(not(no_global_oom_handling))]
1819 #[inline]
1820 #[stable(feature = "rust1", since = "1.0.0")]
1821 pub fn push(&mut self, value: T) {
1822 // This will panic or abort if we would allocate > isize::MAX bytes
1823 // or if the length increment would overflow for zero-sized types.
1824 if self.len == self.buf.capacity() {
1825 self.buf.reserve_for_push(self.len);
1826 }
1827 unsafe {
1828 let end = self.as_mut_ptr().add(self.len);
1829 ptr::write(end, value);
1830 self.len += 1;
1831 }
1832 }
1833
1834 /// Tries to append an element to the back of a collection.
1835 ///
1836 /// # Examples
1837 ///
1838 /// ```
1839 /// let mut vec = vec![1, 2];
1840 /// vec.try_push(3).unwrap();
1841 /// assert_eq!(vec, [1, 2, 3]);
1842 /// ```
1843 #[inline]
1844 #[stable(feature = "kernel", since = "1.0.0")]
1845 pub fn try_push(&mut self, value: T) -> Result<(), TryReserveError> {
1846 if self.len == self.buf.capacity() {
1847 self.buf.try_reserve_for_push(self.len)?;
1848 }
1849 unsafe {
1850 let end = self.as_mut_ptr().add(self.len);
1851 ptr::write(end, value);
1852 self.len += 1;
1853 }
1854 Ok(())
1855 }
1856
1857 /// Removes the last element from a vector and returns it, or [`None`] if it
1858 /// is empty.
1859 ///
1860 /// If you'd like to pop the first element, consider using
1861 /// [`VecDeque::pop_front`] instead.
1862 ///
1863 /// [`VecDeque::pop_front`]: crate::collections::VecDeque::pop_front
1864 ///
1865 /// # Examples
1866 ///
1867 /// ```
1868 /// let mut vec = vec![1, 2, 3];
1869 /// assert_eq!(vec.pop(), Some(3));
1870 /// assert_eq!(vec, [1, 2]);
1871 /// ```
1872 #[inline]
1873 #[stable(feature = "rust1", since = "1.0.0")]
1874 pub fn pop(&mut self) -> Option<T> {
1875 if self.len == 0 {
1876 None
1877 } else {
1878 unsafe {
1879 self.len -= 1;
1880 Some(ptr::read(self.as_ptr().add(self.len())))
1881 }
1882 }
1883 }
1884
1885 /// Moves all the elements of `other` into `self`, leaving `other` empty.
1886 ///
1887 /// # Panics
1888 ///
1889 /// Panics if the number of elements in the vector overflows a `usize`.
1890 ///
1891 /// # Examples
1892 ///
1893 /// ```
1894 /// let mut vec = vec![1, 2, 3];
1895 /// let mut vec2 = vec![4, 5, 6];
1896 /// vec.append(&mut vec2);
1897 /// assert_eq!(vec, [1, 2, 3, 4, 5, 6]);
1898 /// assert_eq!(vec2, []);
1899 /// ```
1900 #[cfg(not(no_global_oom_handling))]
1901 #[inline]
1902 #[stable(feature = "append", since = "1.4.0")]
1903 pub fn append(&mut self, other: &mut Self) {
1904 unsafe {
1905 self.append_elements(other.as_slice() as _);
1906 other.set_len(0);
1907 }
1908 }
1909
1910 /// Appends elements to `self` from other buffer.
1911 #[cfg(not(no_global_oom_handling))]
1912 #[inline]
1913 unsafe fn append_elements(&mut self, other: *const [T]) {
1914 let count = unsafe { (*other).len() };
1915 self.reserve(count);
1916 let len = self.len();
1917 unsafe { ptr::copy_nonoverlapping(other as *const T, self.as_mut_ptr().add(len), count) };
1918 self.len += count;
1919 }
1920
1921 /// Tries to append elements to `self` from other buffer.
1922 #[inline]
1923 unsafe fn try_append_elements(&mut self, other: *const [T]) -> Result<(), TryReserveError> {
1924 let count = unsafe { (*other).len() };
1925 self.try_reserve(count)?;
1926 let len = self.len();
1927 unsafe { ptr::copy_nonoverlapping(other as *const T, self.as_mut_ptr().add(len), count) };
1928 self.len += count;
1929 Ok(())
1930 }
1931
1932 /// Removes the specified range from the vector in bulk, returning all
1933 /// removed elements as an iterator. If the iterator is dropped before
1934 /// being fully consumed, it drops the remaining removed elements.
1935 ///
1936 /// The returned iterator keeps a mutable borrow on the vector to optimize
1937 /// its implementation.
1938 ///
1939 /// # Panics
1940 ///
1941 /// Panics if the starting point is greater than the end point or if
1942 /// the end point is greater than the length of the vector.
1943 ///
1944 /// # Leaking
1945 ///
1946 /// If the returned iterator goes out of scope without being dropped (due to
1947 /// [`mem::forget`], for example), the vector may have lost and leaked
1948 /// elements arbitrarily, including elements outside the range.
1949 ///
1950 /// # Examples
1951 ///
1952 /// ```
1953 /// let mut v = vec![1, 2, 3];
1954 /// let u: Vec<_> = v.drain(1..).collect();
1955 /// assert_eq!(v, &[1]);
1956 /// assert_eq!(u, &[2, 3]);
1957 ///
1958 /// // A full range clears the vector, like `clear()` does
1959 /// v.drain(..);
1960 /// assert_eq!(v, &[]);
1961 /// ```
1962 #[stable(feature = "drain", since = "1.6.0")]
1963 pub fn drain<R>(&mut self, range: R) -> Drain<'_, T, A>
1964 where
1965 R: RangeBounds<usize>,
1966 {
1967 // Memory safety
1968 //
1969 // When the Drain is first created, it shortens the length of
1970 // the source vector to make sure no uninitialized or moved-from elements
1971 // are accessible at all if the Drain's destructor never gets to run.
1972 //
1973 // Drain will ptr::read out the values to remove.
1974 // When finished, remaining tail of the vec is copied back to cover
1975 // the hole, and the vector length is restored to the new length.
1976 //
1977 let len = self.len();
1978 let Range { start, end } = slice::range(range, ..len);
1979
1980 unsafe {
1981 // set self.vec length's to start, to be safe in case Drain is leaked
1982 self.set_len(start);
1983 // Use the borrow in the IterMut to indicate borrowing behavior of the
1984 // whole Drain iterator (like &mut T).
1985 let range_slice = slice::from_raw_parts_mut(self.as_mut_ptr().add(start), end - start);
1986 Drain {
1987 tail_start: end,
1988 tail_len: len - end,
1989 iter: range_slice.iter(),
1990 vec: NonNull::from(self),
1991 }
1992 }
1993 }
1994
1995 /// Clears the vector, removing all values.
1996 ///
1997 /// Note that this method has no effect on the allocated capacity
1998 /// of the vector.
1999 ///
2000 /// # Examples
2001 ///
2002 /// ```
2003 /// let mut v = vec![1, 2, 3];
2004 ///
2005 /// v.clear();
2006 ///
2007 /// assert!(v.is_empty());
2008 /// ```
2009 #[inline]
2010 #[stable(feature = "rust1", since = "1.0.0")]
2011 pub fn clear(&mut self) {
2012 let elems: *mut [T] = self.as_mut_slice();
2013
2014 // SAFETY:
2015 // - `elems` comes directly from `as_mut_slice` and is therefore valid.
2016 // - Setting `self.len` before calling `drop_in_place` means that,
2017 // if an element's `Drop` impl panics, the vector's `Drop` impl will
2018 // do nothing (leaking the rest of the elements) instead of dropping
2019 // some twice.
2020 unsafe {
2021 self.len = 0;
2022 ptr::drop_in_place(elems);
2023 }
2024 }
2025
2026 /// Returns the number of elements in the vector, also referred to
2027 /// as its 'length'.
2028 ///
2029 /// # Examples
2030 ///
2031 /// ```
2032 /// let a = vec![1, 2, 3];
2033 /// assert_eq!(a.len(), 3);
2034 /// ```
2035 #[inline]
2036 #[stable(feature = "rust1", since = "1.0.0")]
2037 pub fn len(&self) -> usize {
2038 self.len
2039 }
2040
2041 /// Returns `true` if the vector contains no elements.
2042 ///
2043 /// # Examples
2044 ///
2045 /// ```
2046 /// let mut v = Vec::new();
2047 /// assert!(v.is_empty());
2048 ///
2049 /// v.push(1);
2050 /// assert!(!v.is_empty());
2051 /// ```
2052 #[stable(feature = "rust1", since = "1.0.0")]
2053 pub fn is_empty(&self) -> bool {
2054 self.len() == 0
2055 }
2056
2057 /// Splits the collection into two at the given index.
2058 ///
2059 /// Returns a newly allocated vector containing the elements in the range
2060 /// `[at, len)`. After the call, the original vector will be left containing
2061 /// the elements `[0, at)` with its previous capacity unchanged.
2062 ///
2063 /// # Panics
2064 ///
2065 /// Panics if `at > len`.
2066 ///
2067 /// # Examples
2068 ///
2069 /// ```
2070 /// let mut vec = vec![1, 2, 3];
2071 /// let vec2 = vec.split_off(1);
2072 /// assert_eq!(vec, [1]);
2073 /// assert_eq!(vec2, [2, 3]);
2074 /// ```
2075 #[cfg(not(no_global_oom_handling))]
2076 #[inline]
2077 #[must_use = "use `.truncate()` if you don't need the other half"]
2078 #[stable(feature = "split_off", since = "1.4.0")]
2079 pub fn split_off(&mut self, at: usize) -> Self
2080 where
2081 A: Clone,
2082 {
2083 #[cold]
2084 #[inline(never)]
2085 fn assert_failed(at: usize, len: usize) -> ! {
2086 panic!("`at` split index (is {at}) should be <= len (is {len})");
2087 }
2088
2089 if at > self.len() {
2090 assert_failed(at, self.len());
2091 }
2092
2093 if at == 0 {
2094 // the new vector can take over the original buffer and avoid the copy
2095 return mem::replace(
2096 self,
2097 Vec::with_capacity_in(self.capacity(), self.allocator().clone()),
2098 );
2099 }
2100
2101 let other_len = self.len - at;
2102 let mut other = Vec::with_capacity_in(other_len, self.allocator().clone());
2103
2104 // Unsafely `set_len` and copy items to `other`.
2105 unsafe {
2106 self.set_len(at);
2107 other.set_len(other_len);
2108
2109 ptr::copy_nonoverlapping(self.as_ptr().add(at), other.as_mut_ptr(), other.len());
2110 }
2111 other
2112 }
2113
2114 /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
2115 ///
2116 /// If `new_len` is greater than `len`, the `Vec` is extended by the
2117 /// difference, with each additional slot filled with the result of
2118 /// calling the closure `f`. The return values from `f` will end up
2119 /// in the `Vec` in the order they have been generated.
2120 ///
2121 /// If `new_len` is less than `len`, the `Vec` is simply truncated.
2122 ///
2123 /// This method uses a closure to create new values on every push. If
2124 /// you'd rather [`Clone`] a given value, use [`Vec::resize`]. If you
2125 /// want to use the [`Default`] trait to generate values, you can
2126 /// pass [`Default::default`] as the second argument.
2127 ///
2128 /// # Examples
2129 ///
2130 /// ```
2131 /// let mut vec = vec![1, 2, 3];
2132 /// vec.resize_with(5, Default::default);
2133 /// assert_eq!(vec, [1, 2, 3, 0, 0]);
2134 ///
2135 /// let mut vec = vec![];
2136 /// let mut p = 1;
2137 /// vec.resize_with(4, || { p *= 2; p });
2138 /// assert_eq!(vec, [2, 4, 8, 16]);
2139 /// ```
2140 #[cfg(not(no_global_oom_handling))]
2141 #[stable(feature = "vec_resize_with", since = "1.33.0")]
2142 pub fn resize_with<F>(&mut self, new_len: usize, f: F)
2143 where
2144 F: FnMut() -> T,
2145 {
2146 let len = self.len();
2147 if new_len > len {
2148 self.extend_with(new_len - len, ExtendFunc(f));
2149 } else {
2150 self.truncate(new_len);
2151 }
2152 }
2153
2154 /// Consumes and leaks the `Vec`, returning a mutable reference to the contents,
2155 /// `&'a mut [T]`. Note that the type `T` must outlive the chosen lifetime
2156 /// `'a`. If the type has only static references, or none at all, then this
2157 /// may be chosen to be `'static`.
2158 ///
2159 /// As of Rust 1.57, this method does not reallocate or shrink the `Vec`,
2160 /// so the leaked allocation may include unused capacity that is not part
2161 /// of the returned slice.
2162 ///
2163 /// This function is mainly useful for data that lives for the remainder of
2164 /// the program's life. Dropping the returned reference will cause a memory
2165 /// leak.
2166 ///
2167 /// # Examples
2168 ///
2169 /// Simple usage:
2170 ///
2171 /// ```
2172 /// let x = vec![1, 2, 3];
2173 /// let static_ref: &'static mut [usize] = x.leak();
2174 /// static_ref[0] += 1;
2175 /// assert_eq!(static_ref, &[2, 2, 3]);
2176 /// ```
2177 #[cfg(not(no_global_oom_handling))]
2178 #[stable(feature = "vec_leak", since = "1.47.0")]
2179 #[inline]
2180 pub fn leak<'a>(self) -> &'a mut [T]
2181 where
2182 A: 'a,
2183 {
2184 let mut me = ManuallyDrop::new(self);
2185 unsafe { slice::from_raw_parts_mut(me.as_mut_ptr(), me.len) }
2186 }
2187
2188 /// Returns the remaining spare capacity of the vector as a slice of
2189 /// `MaybeUninit<T>`.
2190 ///
2191 /// The returned slice can be used to fill the vector with data (e.g. by
2192 /// reading from a file) before marking the data as initialized using the
2193 /// [`set_len`] method.
2194 ///
2195 /// [`set_len`]: Vec::set_len
2196 ///
2197 /// # Examples
2198 ///
2199 /// ```
2200 /// // Allocate vector big enough for 10 elements.
2201 /// let mut v = Vec::with_capacity(10);
2202 ///
2203 /// // Fill in the first 3 elements.
2204 /// let uninit = v.spare_capacity_mut();
2205 /// uninit[0].write(0);
2206 /// uninit[1].write(1);
2207 /// uninit[2].write(2);
2208 ///
2209 /// // Mark the first 3 elements of the vector as being initialized.
2210 /// unsafe {
2211 /// v.set_len(3);
2212 /// }
2213 ///
2214 /// assert_eq!(&v, &[0, 1, 2]);
2215 /// ```
2216 #[stable(feature = "vec_spare_capacity", since = "1.60.0")]
2217 #[inline]
2218 pub fn spare_capacity_mut(&mut self) -> &mut [MaybeUninit<T>] {
2219 // Note:
2220 // This method is not implemented in terms of `split_at_spare_mut`,
2221 // to prevent invalidation of pointers to the buffer.
2222 unsafe {
2223 slice::from_raw_parts_mut(
2224 self.as_mut_ptr().add(self.len) as *mut MaybeUninit<T>,
2225 self.buf.capacity() - self.len,
2226 )
2227 }
2228 }
2229
2230 /// Returns vector content as a slice of `T`, along with the remaining spare
2231 /// capacity of the vector as a slice of `MaybeUninit<T>`.
2232 ///
2233 /// The returned spare capacity slice can be used to fill the vector with data
2234 /// (e.g. by reading from a file) before marking the data as initialized using
2235 /// the [`set_len`] method.
2236 ///
2237 /// [`set_len`]: Vec::set_len
2238 ///
2239 /// Note that this is a low-level API, which should be used with care for
2240 /// optimization purposes. If you need to append data to a `Vec`
2241 /// you can use [`push`], [`extend`], [`extend_from_slice`],
2242 /// [`extend_from_within`], [`insert`], [`append`], [`resize`] or
2243 /// [`resize_with`], depending on your exact needs.
2244 ///
2245 /// [`push`]: Vec::push
2246 /// [`extend`]: Vec::extend
2247 /// [`extend_from_slice`]: Vec::extend_from_slice
2248 /// [`extend_from_within`]: Vec::extend_from_within
2249 /// [`insert`]: Vec::insert
2250 /// [`append`]: Vec::append
2251 /// [`resize`]: Vec::resize
2252 /// [`resize_with`]: Vec::resize_with
2253 ///
2254 /// # Examples
2255 ///
2256 /// ```
2257 /// #![feature(vec_split_at_spare)]
2258 ///
2259 /// let mut v = vec![1, 1, 2];
2260 ///
2261 /// // Reserve additional space big enough for 10 elements.
2262 /// v.reserve(10);
2263 ///
2264 /// let (init, uninit) = v.split_at_spare_mut();
2265 /// let sum = init.iter().copied().sum::<u32>();
2266 ///
2267 /// // Fill in the next 4 elements.
2268 /// uninit[0].write(sum);
2269 /// uninit[1].write(sum * 2);
2270 /// uninit[2].write(sum * 3);
2271 /// uninit[3].write(sum * 4);
2272 ///
2273 /// // Mark the 4 elements of the vector as being initialized.
2274 /// unsafe {
2275 /// let len = v.len();
2276 /// v.set_len(len + 4);
2277 /// }
2278 ///
2279 /// assert_eq!(&v, &[1, 1, 2, 4, 8, 12, 16]);
2280 /// ```
2281 #[unstable(feature = "vec_split_at_spare", issue = "81944")]
2282 #[inline]
2283 pub fn split_at_spare_mut(&mut self) -> (&mut [T], &mut [MaybeUninit<T>]) {
2284 // SAFETY:
2285 // - len is ignored and so never changed
2286 let (init, spare, _) = unsafe { self.split_at_spare_mut_with_len() };
2287 (init, spare)
2288 }
2289
2290 /// Safety: changing returned .2 (&mut usize) is considered the same as calling `.set_len(_)`.
2291 ///
2292 /// This method provides unique access to all vec parts at once in `extend_from_within`.
2293 unsafe fn split_at_spare_mut_with_len(
2294 &mut self,
2295 ) -> (&mut [T], &mut [MaybeUninit<T>], &mut usize) {
2296 let ptr = self.as_mut_ptr();
2297 // SAFETY:
2298 // - `ptr` is guaranteed to be valid for `self.len` elements
2299 // - but the allocation extends out to `self.buf.capacity()` elements, possibly
2300 // uninitialized
2301 let spare_ptr = unsafe { ptr.add(self.len) };
2302 let spare_ptr = spare_ptr.cast::<MaybeUninit<T>>();
2303 let spare_len = self.buf.capacity() - self.len;
2304
2305 // SAFETY:
2306 // - `ptr` is guaranteed to be valid for `self.len` elements
2307 // - `spare_ptr` is pointing one element past the buffer, so it doesn't overlap with `initialized`
2308 unsafe {
2309 let initialized = slice::from_raw_parts_mut(ptr, self.len);
2310 let spare = slice::from_raw_parts_mut(spare_ptr, spare_len);
2311
2312 (initialized, spare, &mut self.len)
2313 }
2314 }
2315}
2316
2317impl<T: Clone, A: Allocator> Vec<T, A> {
2318 /// Resizes the `Vec` in-place so that `len` is equal to `new_len`.
2319 ///
2320 /// If `new_len` is greater than `len`, the `Vec` is extended by the
2321 /// difference, with each additional slot filled with `value`.
2322 /// If `new_len` is less than `len`, the `Vec` is simply truncated.
2323 ///
2324 /// This method requires `T` to implement [`Clone`],
2325 /// in order to be able to clone the passed value.
2326 /// If you need more flexibility (or want to rely on [`Default`] instead of
2327 /// [`Clone`]), use [`Vec::resize_with`].
2328 /// If you only need to resize to a smaller size, use [`Vec::truncate`].
2329 ///
2330 /// # Examples
2331 ///
2332 /// ```
2333 /// let mut vec = vec!["hello"];
2334 /// vec.resize(3, "world");
2335 /// assert_eq!(vec, ["hello", "world", "world"]);
2336 ///
2337 /// let mut vec = vec![1, 2, 3, 4];
2338 /// vec.resize(2, 0);
2339 /// assert_eq!(vec, [1, 2]);
2340 /// ```
2341 #[cfg(not(no_global_oom_handling))]
2342 #[stable(feature = "vec_resize", since = "1.5.0")]
2343 pub fn resize(&mut self, new_len: usize, value: T) {
2344 let len = self.len();
2345
2346 if new_len > len {
2347 self.extend_with(new_len - len, ExtendElement(value))
2348 } else {
2349 self.truncate(new_len);
2350 }
2351 }
2352
2353 /// Tries to resize the `Vec` in-place so that `len` is equal to `new_len`.
2354 ///
2355 /// If `new_len` is greater than `len`, the `Vec` is extended by the
2356 /// difference, with each additional slot filled with `value`.
2357 /// If `new_len` is less than `len`, the `Vec` is simply truncated.
2358 ///
2359 /// This method requires `T` to implement [`Clone`],
2360 /// in order to be able to clone the passed value.
2361 /// If you need more flexibility (or want to rely on [`Default`] instead of
2362 /// [`Clone`]), use [`Vec::resize_with`].
2363 /// If you only need to resize to a smaller size, use [`Vec::truncate`].
2364 ///
2365 /// # Examples
2366 ///
2367 /// ```
2368 /// let mut vec = vec!["hello"];
2369 /// vec.try_resize(3, "world").unwrap();
2370 /// assert_eq!(vec, ["hello", "world", "world"]);
2371 ///
2372 /// let mut vec = vec![1, 2, 3, 4];
2373 /// vec.try_resize(2, 0).unwrap();
2374 /// assert_eq!(vec, [1, 2]);
2375 ///
2376 /// let mut vec = vec![42];
2377 /// let result = vec.try_resize(usize::MAX, 0);
2378 /// assert!(result.is_err());
2379 /// ```
2380 #[stable(feature = "kernel", since = "1.0.0")]
2381 pub fn try_resize(&mut self, new_len: usize, value: T) -> Result<(), TryReserveError> {
2382 let len = self.len();
2383
2384 if new_len > len {
2385 self.try_extend_with(new_len - len, ExtendElement(value))
2386 } else {
2387 self.truncate(new_len);
2388 Ok(())
2389 }
2390 }
2391
2392 /// Clones and appends all elements in a slice to the `Vec`.
2393 ///
2394 /// Iterates over the slice `other`, clones each element, and then appends
2395 /// it to this `Vec`. The `other` slice is traversed in-order.
2396 ///
2397 /// Note that this function is same as [`extend`] except that it is
2398 /// specialized to work with slices instead. If and when Rust gets
2399 /// specialization this function will likely be deprecated (but still
2400 /// available).
2401 ///
2402 /// # Examples
2403 ///
2404 /// ```
2405 /// let mut vec = vec![1];
2406 /// vec.extend_from_slice(&[2, 3, 4]);
2407 /// assert_eq!(vec, [1, 2, 3, 4]);
2408 /// ```
2409 ///
2410 /// [`extend`]: Vec::extend
2411 #[cfg(not(no_global_oom_handling))]
2412 #[stable(feature = "vec_extend_from_slice", since = "1.6.0")]
2413 pub fn extend_from_slice(&mut self, other: &[T]) {
2414 self.spec_extend(other.iter())
2415 }
2416
2417 /// Tries to clone and append all elements in a slice to the `Vec`.
2418 ///
2419 /// Iterates over the slice `other`, clones each element, and then appends
2420 /// it to this `Vec`. The `other` slice is traversed in-order.
2421 ///
2422 /// Note that this function is same as [`extend`] except that it is
2423 /// specialized to work with slices instead. If and when Rust gets
2424 /// specialization this function will likely be deprecated (but still
2425 /// available).
2426 ///
2427 /// # Examples
2428 ///
2429 /// ```
2430 /// let mut vec = vec![1];
2431 /// vec.try_extend_from_slice(&[2, 3, 4]).unwrap();
2432 /// assert_eq!(vec, [1, 2, 3, 4]);
2433 /// ```
2434 ///
2435 /// [`extend`]: Vec::extend
2436 #[stable(feature = "kernel", since = "1.0.0")]
2437 pub fn try_extend_from_slice(&mut self, other: &[T]) -> Result<(), TryReserveError> {
2438 self.try_spec_extend(other.iter())
2439 }
2440
2441 /// Copies elements from `src` range to the end of the vector.
2442 ///
2443 /// # Panics
2444 ///
2445 /// Panics if the starting point is greater than the end point or if
2446 /// the end point is greater than the length of the vector.
2447 ///
2448 /// # Examples
2449 ///
2450 /// ```
2451 /// let mut vec = vec![0, 1, 2, 3, 4];
2452 ///
2453 /// vec.extend_from_within(2..);
2454 /// assert_eq!(vec, [0, 1, 2, 3, 4, 2, 3, 4]);
2455 ///
2456 /// vec.extend_from_within(..2);
2457 /// assert_eq!(vec, [0, 1, 2, 3, 4, 2, 3, 4, 0, 1]);
2458 ///
2459 /// vec.extend_from_within(4..8);
2460 /// assert_eq!(vec, [0, 1, 2, 3, 4, 2, 3, 4, 0, 1, 4, 2, 3, 4]);
2461 /// ```
2462 #[cfg(not(no_global_oom_handling))]
2463 #[stable(feature = "vec_extend_from_within", since = "1.53.0")]
2464 pub fn extend_from_within<R>(&mut self, src: R)
2465 where
2466 R: RangeBounds<usize>,
2467 {
2468 let range = slice::range(src, ..self.len());
2469 self.reserve(range.len());
2470
2471 // SAFETY:
2472 // - `slice::range` guarantees that the given range is valid for indexing self
2473 unsafe {
2474 self.spec_extend_from_within(range);
2475 }
2476 }
2477}
2478
2479impl<T, A: Allocator, const N: usize> Vec<[T; N], A> {
2480 /// Takes a `Vec<[T; N]>` and flattens it into a `Vec<T>`.
2481 ///
2482 /// # Panics
2483 ///
2484 /// Panics if the length of the resulting vector would overflow a `usize`.
2485 ///
2486 /// This is only possible when flattening a vector of arrays of zero-sized
2487 /// types, and thus tends to be irrelevant in practice. If
2488 /// `size_of::<T>() > 0`, this will never panic.
2489 ///
2490 /// # Examples
2491 ///
2492 /// ```
2493 /// #![feature(slice_flatten)]
2494 ///
2495 /// let mut vec = vec![[1, 2, 3], [4, 5, 6], [7, 8, 9]];
2496 /// assert_eq!(vec.pop(), Some([7, 8, 9]));
2497 ///
2498 /// let mut flattened = vec.into_flattened();
2499 /// assert_eq!(flattened.pop(), Some(6));
2500 /// ```
2501 #[unstable(feature = "slice_flatten", issue = "95629")]
2502 pub fn into_flattened(self) -> Vec<T, A> {
2503 let (ptr, len, cap, alloc) = self.into_raw_parts_with_alloc();
2504 let (new_len, new_cap) = if mem::size_of::<T>() == 0 {
2505 (len.checked_mul(N).expect("vec len overflow"), usize::MAX)
2506 } else {
2507 // SAFETY:
2508 // - `cap * N` cannot overflow because the allocation is already in
2509 // the address space.
2510 // - Each `[T; N]` has `N` valid elements, so there are `len * N`
2511 // valid elements in the allocation.
2512 unsafe { (len.unchecked_mul(N), cap.unchecked_mul(N)) }
2513 };
2514 // SAFETY:
2515 // - `ptr` was allocated by `self`
2516 // - `ptr` is well-aligned because `[T; N]` has the same alignment as `T`.
2517 // - `new_cap` refers to the same sized allocation as `cap` because
2518 // `new_cap * size_of::<T>()` == `cap * size_of::<[T; N]>()`
2519 // - `len` <= `cap`, so `len * N` <= `cap * N`.
2520 unsafe { Vec::<T, A>::from_raw_parts_in(ptr.cast(), new_len, new_cap, alloc) }
2521 }
2522}
2523
2524// This code generalizes `extend_with_{element,default}`.
2525trait ExtendWith<T> {
2526 fn next(&mut self) -> T;
2527 fn last(self) -> T;
2528}
2529
2530struct ExtendElement<T>(T);
2531impl<T: Clone> ExtendWith<T> for ExtendElement<T> {
2532 fn next(&mut self) -> T {
2533 self.0.clone()
2534 }
2535 fn last(self) -> T {
2536 self.0
2537 }
2538}
2539
2540struct ExtendFunc<F>(F);
2541impl<T, F: FnMut() -> T> ExtendWith<T> for ExtendFunc<F> {
2542 fn next(&mut self) -> T {
2543 (self.0)()
2544 }
2545 fn last(mut self) -> T {
2546 (self.0)()
2547 }
2548}
2549
2550impl<T, A: Allocator> Vec<T, A> {
2551 #[cfg(not(no_global_oom_handling))]
2552 /// Extend the vector by `n` values, using the given generator.
2553 fn extend_with<E: ExtendWith<T>>(&mut self, n: usize, mut value: E) {
2554 self.reserve(n);
2555
2556 unsafe {
2557 let mut ptr = self.as_mut_ptr().add(self.len());
2558 // Use SetLenOnDrop to work around bug where compiler
2559 // might not realize the store through `ptr` through self.set_len()
2560 // don't alias.
2561 let mut local_len = SetLenOnDrop::new(&mut self.len);
2562
2563 // Write all elements except the last one
2564 for _ in 1..n {
2565 ptr::write(ptr, value.next());
2566 ptr = ptr.offset(1);
2567 // Increment the length in every step in case next() panics
2568 local_len.increment_len(1);
2569 }
2570
2571 if n > 0 {
2572 // We can write the last element directly without cloning needlessly
2573 ptr::write(ptr, value.last());
2574 local_len.increment_len(1);
2575 }
2576
2577 // len set by scope guard
2578 }
2579 }
2580
2581 /// Try to extend the vector by `n` values, using the given generator.
2582 fn try_extend_with<E: ExtendWith<T>>(&mut self, n: usize, mut value: E) -> Result<(), TryReserveError> {
2583 self.try_reserve(n)?;
2584
2585 unsafe {
2586 let mut ptr = self.as_mut_ptr().add(self.len());
2587 // Use SetLenOnDrop to work around bug where compiler
2588 // might not realize the store through `ptr` through self.set_len()
2589 // don't alias.
2590 let mut local_len = SetLenOnDrop::new(&mut self.len);
2591
2592 // Write all elements except the last one
2593 for _ in 1..n {
2594 ptr::write(ptr, value.next());
2595 ptr = ptr.offset(1);
2596 // Increment the length in every step in case next() panics
2597 local_len.increment_len(1);
2598 }
2599
2600 if n > 0 {
2601 // We can write the last element directly without cloning needlessly
2602 ptr::write(ptr, value.last());
2603 local_len.increment_len(1);
2604 }
2605
2606 // len set by scope guard
2607 Ok(())
2608 }
2609 }
2610}
2611
2612impl<T: PartialEq, A: Allocator> Vec<T, A> {
2613 /// Removes consecutive repeated elements in the vector according to the
2614 /// [`PartialEq`] trait implementation.
2615 ///
2616 /// If the vector is sorted, this removes all duplicates.
2617 ///
2618 /// # Examples
2619 ///
2620 /// ```
2621 /// let mut vec = vec![1, 2, 2, 3, 2];
2622 ///
2623 /// vec.dedup();
2624 ///
2625 /// assert_eq!(vec, [1, 2, 3, 2]);
2626 /// ```
2627 #[stable(feature = "rust1", since = "1.0.0")]
2628 #[inline]
2629 pub fn dedup(&mut self) {
2630 self.dedup_by(|a, b| a == b)
2631 }
2632}
2633
2634////////////////////////////////////////////////////////////////////////////////
2635// Internal methods and functions
2636////////////////////////////////////////////////////////////////////////////////
2637
2638#[doc(hidden)]
2639#[cfg(not(no_global_oom_handling))]
2640#[stable(feature = "rust1", since = "1.0.0")]
2641pub fn from_elem<T: Clone>(elem: T, n: usize) -> Vec<T> {
2642 <T as SpecFromElem>::from_elem(elem, n, Global)
2643}
2644
2645#[doc(hidden)]
2646#[cfg(not(no_global_oom_handling))]
2647#[unstable(feature = "allocator_api", issue = "32838")]
2648pub fn from_elem_in<T: Clone, A: Allocator>(elem: T, n: usize, alloc: A) -> Vec<T, A> {
2649 <T as SpecFromElem>::from_elem(elem, n, alloc)
2650}
2651
2652trait ExtendFromWithinSpec {
2653 /// # Safety
2654 ///
2655 /// - `src` needs to be valid index
2656 /// - `self.capacity() - self.len()` must be `>= src.len()`
2657 unsafe fn spec_extend_from_within(&mut self, src: Range<usize>);
2658}
2659
2660impl<T: Clone, A: Allocator> ExtendFromWithinSpec for Vec<T, A> {
2661 default unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) {
2662 // SAFETY:
2663 // - len is increased only after initializing elements
2664 let (this, spare, len) = unsafe { self.split_at_spare_mut_with_len() };
2665
2666 // SAFETY:
2667 // - caller guaratees that src is a valid index
2668 let to_clone = unsafe { this.get_unchecked(src) };
2669
2670 iter::zip(to_clone, spare)
2671 .map(|(src, dst)| dst.write(src.clone()))
2672 // Note:
2673 // - Element was just initialized with `MaybeUninit::write`, so it's ok to increase len
2674 // - len is increased after each element to prevent leaks (see issue #82533)
2675 .for_each(|_| *len += 1);
2676 }
2677}
2678
2679impl<T: Copy, A: Allocator> ExtendFromWithinSpec for Vec<T, A> {
2680 unsafe fn spec_extend_from_within(&mut self, src: Range<usize>) {
2681 let count = src.len();
2682 {
2683 let (init, spare) = self.split_at_spare_mut();
2684
2685 // SAFETY:
2686 // - caller guaratees that `src` is a valid index
2687 let source = unsafe { init.get_unchecked(src) };
2688
2689 // SAFETY:
2690 // - Both pointers are created from unique slice references (`&mut [_]`)
2691 // so they are valid and do not overlap.
2692 // - Elements are :Copy so it's OK to to copy them, without doing
2693 // anything with the original values
2694 // - `count` is equal to the len of `source`, so source is valid for
2695 // `count` reads
2696 // - `.reserve(count)` guarantees that `spare.len() >= count` so spare
2697 // is valid for `count` writes
2698 unsafe { ptr::copy_nonoverlapping(source.as_ptr(), spare.as_mut_ptr() as _, count) };
2699 }
2700
2701 // SAFETY:
2702 // - The elements were just initialized by `copy_nonoverlapping`
2703 self.len += count;
2704 }
2705}
2706
2707////////////////////////////////////////////////////////////////////////////////
2708// Common trait implementations for Vec
2709////////////////////////////////////////////////////////////////////////////////
2710
2711#[stable(feature = "rust1", since = "1.0.0")]
2712impl<T, A: Allocator> ops::Deref for Vec<T, A> {
2713 type Target = [T];
2714
2715 fn deref(&self) -> &[T] {
2716 unsafe { slice::from_raw_parts(self.as_ptr(), self.len) }
2717 }
2718}
2719
2720#[stable(feature = "rust1", since = "1.0.0")]
2721impl<T, A: Allocator> ops::DerefMut for Vec<T, A> {
2722 fn deref_mut(&mut self) -> &mut [T] {
2723 unsafe { slice::from_raw_parts_mut(self.as_mut_ptr(), self.len) }
2724 }
2725}
2726
2727#[cfg(not(no_global_oom_handling))]
2728trait SpecCloneFrom {
2729 fn clone_from(this: &mut Self, other: &Self);
2730}
2731
2732#[cfg(not(no_global_oom_handling))]
2733impl<T: Clone, A: Allocator> SpecCloneFrom for Vec<T, A> {
2734 default fn clone_from(this: &mut Self, other: &Self) {
2735 // drop anything that will not be overwritten
2736 this.truncate(other.len());
2737
2738 // self.len <= other.len due to the truncate above, so the
2739 // slices here are always in-bounds.
2740 let (init, tail) = other.split_at(this.len());
2741
2742 // reuse the contained values' allocations/resources.
2743 this.clone_from_slice(init);
2744 this.extend_from_slice(tail);
2745 }
2746}
2747
2748#[cfg(not(no_global_oom_handling))]
2749impl<T: Copy, A: Allocator> SpecCloneFrom for Vec<T, A> {
2750 fn clone_from(this: &mut Self, other: &Self) {
2751 this.clear();
2752 this.extend_from_slice(other);
2753 }
2754}
2755
2756#[cfg(not(no_global_oom_handling))]
2757#[stable(feature = "rust1", since = "1.0.0")]
2758impl<T: Clone, A: Allocator + Clone> Clone for Vec<T, A> {
2759 #[cfg(not(test))]
2760 fn clone(&self) -> Self {
2761 let alloc = self.allocator().clone();
2762 <[T]>::to_vec_in(&**self, alloc)
2763 }
2764
2765 // HACK(japaric): with cfg(test) the inherent `[T]::to_vec` method, which is
2766 // required for this method definition, is not available. Instead use the
2767 // `slice::to_vec` function which is only available with cfg(test)
2768 // NB see the slice::hack module in slice.rs for more information
2769 #[cfg(test)]
2770 fn clone(&self) -> Self {
2771 let alloc = self.allocator().clone();
2772 crate::slice::to_vec(&**self, alloc)
2773 }
2774
2775 fn clone_from(&mut self, other: &Self) {
2776 SpecCloneFrom::clone_from(self, other)
2777 }
2778}
2779
2780/// The hash of a vector is the same as that of the corresponding slice,
2781/// as required by the `core::borrow::Borrow` implementation.
2782///
2783/// ```
2784/// #![feature(build_hasher_simple_hash_one)]
2785/// use std::hash::BuildHasher;
2786///
2787/// let b = std::collections::hash_map::RandomState::new();
2788/// let v: Vec<u8> = vec![0xa8, 0x3c, 0x09];
2789/// let s: &[u8] = &[0xa8, 0x3c, 0x09];
2790/// assert_eq!(b.hash_one(v), b.hash_one(s));
2791/// ```
2792#[stable(feature = "rust1", since = "1.0.0")]
2793impl<T: Hash, A: Allocator> Hash for Vec<T, A> {
2794 #[inline]
2795 fn hash<H: Hasher>(&self, state: &mut H) {
2796 Hash::hash(&**self, state)
2797 }
2798}
2799
2800#[stable(feature = "rust1", since = "1.0.0")]
2801#[rustc_on_unimplemented(
2802 message = "vector indices are of type `usize` or ranges of `usize`",
2803 label = "vector indices are of type `usize` or ranges of `usize`"
2804)]
2805impl<T, I: SliceIndex<[T]>, A: Allocator> Index<I> for Vec<T, A> {
2806 type Output = I::Output;
2807
2808 #[inline]
2809 fn index(&self, index: I) -> &Self::Output {
2810 Index::index(&**self, index)
2811 }
2812}
2813
2814#[stable(feature = "rust1", since = "1.0.0")]
2815#[rustc_on_unimplemented(
2816 message = "vector indices are of type `usize` or ranges of `usize`",
2817 label = "vector indices are of type `usize` or ranges of `usize`"
2818)]
2819impl<T, I: SliceIndex<[T]>, A: Allocator> IndexMut<I> for Vec<T, A> {
2820 #[inline]
2821 fn index_mut(&mut self, index: I) -> &mut Self::Output {
2822 IndexMut::index_mut(&mut **self, index)
2823 }
2824}
2825
2826#[cfg(not(no_global_oom_handling))]
2827#[stable(feature = "rust1", since = "1.0.0")]
2828impl<T> FromIterator<T> for Vec<T> {
2829 #[inline]
2830 fn from_iter<I: IntoIterator<Item = T>>(iter: I) -> Vec<T> {
2831 <Self as SpecFromIter<T, I::IntoIter>>::from_iter(iter.into_iter())
2832 }
2833}
2834
2835#[stable(feature = "rust1", since = "1.0.0")]
2836impl<T, A: Allocator> IntoIterator for Vec<T, A> {
2837 type Item = T;
2838 type IntoIter = IntoIter<T, A>;
2839
2840 /// Creates a consuming iterator, that is, one that moves each value out of
2841 /// the vector (from start to end). The vector cannot be used after calling
2842 /// this.
2843 ///
2844 /// # Examples
2845 ///
2846 /// ```
2847 /// let v = vec!["a".to_string(), "b".to_string()];
2848 /// for s in v.into_iter() {
2849 /// // s has type String, not &String
2850 /// println!("{s}");
2851 /// }
2852 /// ```
2853 #[inline]
2854 fn into_iter(self) -> IntoIter<T, A> {
2855 unsafe {
2856 let mut me = ManuallyDrop::new(self);
2857 let alloc = ManuallyDrop::new(ptr::read(me.allocator()));
2858 let begin = me.as_mut_ptr();
2859 let end = if mem::size_of::<T>() == 0 {
2860 arith_offset(begin as *const i8, me.len() as isize) as *const T
2861 } else {
2862 begin.add(me.len()) as *const T
2863 };
2864 let cap = me.buf.capacity();
2865 IntoIter {
2866 buf: NonNull::new_unchecked(begin),
2867 phantom: PhantomData,
2868 cap,
2869 alloc,
2870 ptr: begin,
2871 end,
2872 }
2873 }
2874 }
2875}
2876
2877#[stable(feature = "rust1", since = "1.0.0")]
2878impl<'a, T, A: Allocator> IntoIterator for &'a Vec<T, A> {
2879 type Item = &'a T;
2880 type IntoIter = slice::Iter<'a, T>;
2881
2882 fn into_iter(self) -> slice::Iter<'a, T> {
2883 self.iter()
2884 }
2885}
2886
2887#[stable(feature = "rust1", since = "1.0.0")]
2888impl<'a, T, A: Allocator> IntoIterator for &'a mut Vec<T, A> {
2889 type Item = &'a mut T;
2890 type IntoIter = slice::IterMut<'a, T>;
2891
2892 fn into_iter(self) -> slice::IterMut<'a, T> {
2893 self.iter_mut()
2894 }
2895}
2896
2897#[cfg(not(no_global_oom_handling))]
2898#[stable(feature = "rust1", since = "1.0.0")]
2899impl<T, A: Allocator> Extend<T> for Vec<T, A> {
2900 #[inline]
2901 fn extend<I: IntoIterator<Item = T>>(&mut self, iter: I) {
2902 <Self as SpecExtend<T, I::IntoIter>>::spec_extend(self, iter.into_iter())
2903 }
2904
2905 #[inline]
2906 fn extend_one(&mut self, item: T) {
2907 self.push(item);
2908 }
2909
2910 #[inline]
2911 fn extend_reserve(&mut self, additional: usize) {
2912 self.reserve(additional);
2913 }
2914}
2915
2916impl<T, A: Allocator> Vec<T, A> {
2917 // leaf method to which various SpecFrom/SpecExtend implementations delegate when
2918 // they have no further optimizations to apply
2919 #[cfg(not(no_global_oom_handling))]
2920 fn extend_desugared<I: Iterator<Item = T>>(&mut self, mut iterator: I) {
2921 // This is the case for a general iterator.
2922 //
2923 // This function should be the moral equivalent of:
2924 //
2925 // for item in iterator {
2926 // self.push(item);
2927 // }
2928 while let Some(element) = iterator.next() {
2929 let len = self.len();
2930 if len == self.capacity() {
2931 let (lower, _) = iterator.size_hint();
2932 self.reserve(lower.saturating_add(1));
2933 }
2934 unsafe {
2935 ptr::write(self.as_mut_ptr().add(len), element);
2936 // Since next() executes user code which can panic we have to bump the length
2937 // after each step.
2938 // NB can't overflow since we would have had to alloc the address space
2939 self.set_len(len + 1);
2940 }
2941 }
2942 }
2943
2944 // leaf method to which various SpecFrom/SpecExtend implementations delegate when
2945 // they have no further optimizations to apply
2946 fn try_extend_desugared<I: Iterator<Item = T>>(&mut self, mut iterator: I) -> Result<(), TryReserveError> {
2947 // This is the case for a general iterator.
2948 //
2949 // This function should be the moral equivalent of:
2950 //
2951 // for item in iterator {
2952 // self.push(item);
2953 // }
2954 while let Some(element) = iterator.next() {
2955 let len = self.len();
2956 if len == self.capacity() {
2957 let (lower, _) = iterator.size_hint();
2958 self.try_reserve(lower.saturating_add(1))?;
2959 }
2960 unsafe {
2961 ptr::write(self.as_mut_ptr().add(len), element);
2962 // Since next() executes user code which can panic we have to bump the length
2963 // after each step.
2964 // NB can't overflow since we would have had to alloc the address space
2965 self.set_len(len + 1);
2966 }
2967 }
2968
2969 Ok(())
2970 }
2971
2972 /// Creates a splicing iterator that replaces the specified range in the vector
2973 /// with the given `replace_with` iterator and yields the removed items.
2974 /// `replace_with` does not need to be the same length as `range`.
2975 ///
2976 /// `range` is removed even if the iterator is not consumed until the end.
2977 ///
2978 /// It is unspecified how many elements are removed from the vector
2979 /// if the `Splice` value is leaked.
2980 ///
2981 /// The input iterator `replace_with` is only consumed when the `Splice` value is dropped.
2982 ///
2983 /// This is optimal if:
2984 ///
2985 /// * The tail (elements in the vector after `range`) is empty,
2986 /// * or `replace_with` yields fewer or equal elements than `range`’s length
2987 /// * or the lower bound of its `size_hint()` is exact.
2988 ///
2989 /// Otherwise, a temporary vector is allocated and the tail is moved twice.
2990 ///
2991 /// # Panics
2992 ///
2993 /// Panics if the starting point is greater than the end point or if
2994 /// the end point is greater than the length of the vector.
2995 ///
2996 /// # Examples
2997 ///
2998 /// ```
2999 /// let mut v = vec![1, 2, 3, 4];
3000 /// let new = [7, 8, 9];
3001 /// let u: Vec<_> = v.splice(1..3, new).collect();
3002 /// assert_eq!(v, &[1, 7, 8, 9, 4]);
3003 /// assert_eq!(u, &[2, 3]);
3004 /// ```
3005 #[cfg(not(no_global_oom_handling))]
3006 #[inline]
3007 #[stable(feature = "vec_splice", since = "1.21.0")]
3008 pub fn splice<R, I>(&mut self, range: R, replace_with: I) -> Splice<'_, I::IntoIter, A>
3009 where
3010 R: RangeBounds<usize>,
3011 I: IntoIterator<Item = T>,
3012 {
3013 Splice { drain: self.drain(range), replace_with: replace_with.into_iter() }
3014 }
3015
3016 /// Creates an iterator which uses a closure to determine if an element should be removed.
3017 ///
3018 /// If the closure returns true, then the element is removed and yielded.
3019 /// If the closure returns false, the element will remain in the vector and will not be yielded
3020 /// by the iterator.
3021 ///
3022 /// Using this method is equivalent to the following code:
3023 ///
3024 /// ```
3025 /// # let some_predicate = |x: &mut i32| { *x == 2 || *x == 3 || *x == 6 };
3026 /// # let mut vec = vec![1, 2, 3, 4, 5, 6];
3027 /// let mut i = 0;
3028 /// while i < vec.len() {
3029 /// if some_predicate(&mut vec[i]) {
3030 /// let val = vec.remove(i);
3031 /// // your code here
3032 /// } else {
3033 /// i += 1;
3034 /// }
3035 /// }
3036 ///
3037 /// # assert_eq!(vec, vec![1, 4, 5]);
3038 /// ```
3039 ///
3040 /// But `drain_filter` is easier to use. `drain_filter` is also more efficient,
3041 /// because it can backshift the elements of the array in bulk.
3042 ///
3043 /// Note that `drain_filter` also lets you mutate every element in the filter closure,
3044 /// regardless of whether you choose to keep or remove it.
3045 ///
3046 /// # Examples
3047 ///
3048 /// Splitting an array into evens and odds, reusing the original allocation:
3049 ///
3050 /// ```
3051 /// #![feature(drain_filter)]
3052 /// let mut numbers = vec![1, 2, 3, 4, 5, 6, 8, 9, 11, 13, 14, 15];
3053 ///
3054 /// let evens = numbers.drain_filter(|x| *x % 2 == 0).collect::<Vec<_>>();
3055 /// let odds = numbers;
3056 ///
3057 /// assert_eq!(evens, vec![2, 4, 6, 8, 14]);
3058 /// assert_eq!(odds, vec![1, 3, 5, 9, 11, 13, 15]);
3059 /// ```
3060 #[unstable(feature = "drain_filter", reason = "recently added", issue = "43244")]
3061 pub fn drain_filter<F>(&mut self, filter: F) -> DrainFilter<'_, T, F, A>
3062 where
3063 F: FnMut(&mut T) -> bool,
3064 {
3065 let old_len = self.len();
3066
3067 // Guard against us getting leaked (leak amplification)
3068 unsafe {
3069 self.set_len(0);
3070 }
3071
3072 DrainFilter { vec: self, idx: 0, del: 0, old_len, pred: filter, panic_flag: false }
3073 }
3074}
3075
3076/// Extend implementation that copies elements out of references before pushing them onto the Vec.
3077///
3078/// This implementation is specialized for slice iterators, where it uses [`copy_from_slice`] to
3079/// append the entire slice at once.
3080///
3081/// [`copy_from_slice`]: slice::copy_from_slice
3082#[cfg(not(no_global_oom_handling))]
3083#[stable(feature = "extend_ref", since = "1.2.0")]
3084impl<'a, T: Copy + 'a, A: Allocator + 'a> Extend<&'a T> for Vec<T, A> {
3085 fn extend<I: IntoIterator<Item = &'a T>>(&mut self, iter: I) {
3086 self.spec_extend(iter.into_iter())
3087 }
3088
3089 #[inline]
3090 fn extend_one(&mut self, &item: &'a T) {
3091 self.push(item);
3092 }
3093
3094 #[inline]
3095 fn extend_reserve(&mut self, additional: usize) {
3096 self.reserve(additional);
3097 }
3098}
3099
3100/// Implements comparison of vectors, [lexicographically](core::cmp::Ord#lexicographical-comparison).
3101#[stable(feature = "rust1", since = "1.0.0")]
3102impl<T: PartialOrd, A: Allocator> PartialOrd for Vec<T, A> {
3103 #[inline]
3104 fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
3105 PartialOrd::partial_cmp(&**self, &**other)
3106 }
3107}
3108
3109#[stable(feature = "rust1", since = "1.0.0")]
3110impl<T: Eq, A: Allocator> Eq for Vec<T, A> {}
3111
3112/// Implements ordering of vectors, [lexicographically](core::cmp::Ord#lexicographical-comparison).
3113#[stable(feature = "rust1", since = "1.0.0")]
3114impl<T: Ord, A: Allocator> Ord for Vec<T, A> {
3115 #[inline]
3116 fn cmp(&self, other: &Self) -> Ordering {
3117 Ord::cmp(&**self, &**other)
3118 }
3119}
3120
3121#[stable(feature = "rust1", since = "1.0.0")]
3122unsafe impl<#[may_dangle] T, A: Allocator> Drop for Vec<T, A> {
3123 fn drop(&mut self) {
3124 unsafe {
3125 // use drop for [T]
3126 // use a raw slice to refer to the elements of the vector as weakest necessary type;
3127 // could avoid questions of validity in certain cases
3128 ptr::drop_in_place(ptr::slice_from_raw_parts_mut(self.as_mut_ptr(), self.len))
3129 }
3130 // RawVec handles deallocation
3131 }
3132}
3133
3134#[stable(feature = "rust1", since = "1.0.0")]
3135#[rustc_const_unstable(feature = "const_default_impls", issue = "87864")]
3136impl<T> const Default for Vec<T> {
3137 /// Creates an empty `Vec<T>`.
3138 fn default() -> Vec<T> {
3139 Vec::new()
3140 }
3141}
3142
3143#[stable(feature = "rust1", since = "1.0.0")]
3144impl<T: fmt::Debug, A: Allocator> fmt::Debug for Vec<T, A> {
3145 fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
3146 fmt::Debug::fmt(&**self, f)
3147 }
3148}
3149
3150#[stable(feature = "rust1", since = "1.0.0")]
3151impl<T, A: Allocator> AsRef<Vec<T, A>> for Vec<T, A> {
3152 fn as_ref(&self) -> &Vec<T, A> {
3153 self
3154 }
3155}
3156
3157#[stable(feature = "vec_as_mut", since = "1.5.0")]
3158impl<T, A: Allocator> AsMut<Vec<T, A>> for Vec<T, A> {
3159 fn as_mut(&mut self) -> &mut Vec<T, A> {
3160 self
3161 }
3162}
3163
3164#[stable(feature = "rust1", since = "1.0.0")]
3165impl<T, A: Allocator> AsRef<[T]> for Vec<T, A> {
3166 fn as_ref(&self) -> &[T] {
3167 self
3168 }
3169}
3170
3171#[stable(feature = "vec_as_mut", since = "1.5.0")]
3172impl<T, A: Allocator> AsMut<[T]> for Vec<T, A> {
3173 fn as_mut(&mut self) -> &mut [T] {
3174 self
3175 }
3176}
3177
3178#[cfg(not(no_global_oom_handling))]
3179#[stable(feature = "rust1", since = "1.0.0")]
3180impl<T: Clone> From<&[T]> for Vec<T> {
3181 /// Allocate a `Vec<T>` and fill it by cloning `s`'s items.
3182 ///
3183 /// # Examples
3184 ///
3185 /// ```
3186 /// assert_eq!(Vec::from(&[1, 2, 3][..]), vec![1, 2, 3]);
3187 /// ```
3188 #[cfg(not(test))]
3189 fn from(s: &[T]) -> Vec<T> {
3190 s.to_vec()
3191 }
3192 #[cfg(test)]
3193 fn from(s: &[T]) -> Vec<T> {
3194 crate::slice::to_vec(s, Global)
3195 }
3196}
3197
3198#[cfg(not(no_global_oom_handling))]
3199#[stable(feature = "vec_from_mut", since = "1.19.0")]
3200impl<T: Clone> From<&mut [T]> for Vec<T> {
3201 /// Allocate a `Vec<T>` and fill it by cloning `s`'s items.
3202 ///
3203 /// # Examples
3204 ///
3205 /// ```
3206 /// assert_eq!(Vec::from(&mut [1, 2, 3][..]), vec![1, 2, 3]);
3207 /// ```
3208 #[cfg(not(test))]
3209 fn from(s: &mut [T]) -> Vec<T> {
3210 s.to_vec()
3211 }
3212 #[cfg(test)]
3213 fn from(s: &mut [T]) -> Vec<T> {
3214 crate::slice::to_vec(s, Global)
3215 }
3216}
3217
3218#[cfg(not(no_global_oom_handling))]
3219#[stable(feature = "vec_from_array", since = "1.44.0")]
3220impl<T, const N: usize> From<[T; N]> for Vec<T> {
3221 /// Allocate a `Vec<T>` and move `s`'s items into it.
3222 ///
3223 /// # Examples
3224 ///
3225 /// ```
3226 /// assert_eq!(Vec::from([1, 2, 3]), vec![1, 2, 3]);
3227 /// ```
3228 #[cfg(not(test))]
3229 fn from(s: [T; N]) -> Vec<T> {
3230 <[T]>::into_vec(box s)
3231 }
3232
3233 #[cfg(test)]
3234 fn from(s: [T; N]) -> Vec<T> {
3235 crate::slice::into_vec(box s)
3236 }
3237}
3238
3239#[cfg(not(no_borrow))]
3240#[stable(feature = "vec_from_cow_slice", since = "1.14.0")]
3241impl<'a, T> From<Cow<'a, [T]>> for Vec<T>
3242where
3243 [T]: ToOwned<Owned = Vec<T>>,
3244{
3245 /// Convert a clone-on-write slice into a vector.
3246 ///
3247 /// If `s` already owns a `Vec<T>`, it will be returned directly.
3248 /// If `s` is borrowing a slice, a new `Vec<T>` will be allocated and
3249 /// filled by cloning `s`'s items into it.
3250 ///
3251 /// # Examples
3252 ///
3253 /// ```
3254 /// # use std::borrow::Cow;
3255 /// let o: Cow<[i32]> = Cow::Owned(vec![1, 2, 3]);
3256 /// let b: Cow<[i32]> = Cow::Borrowed(&[1, 2, 3]);
3257 /// assert_eq!(Vec::from(o), Vec::from(b));
3258 /// ```
3259 fn from(s: Cow<'a, [T]>) -> Vec<T> {
3260 s.into_owned()
3261 }
3262}
3263
3264// note: test pulls in libstd, which causes errors here
3265#[cfg(not(test))]
3266#[stable(feature = "vec_from_box", since = "1.18.0")]
3267impl<T, A: Allocator> From<Box<[T], A>> for Vec<T, A> {
3268 /// Convert a boxed slice into a vector by transferring ownership of
3269 /// the existing heap allocation.
3270 ///
3271 /// # Examples
3272 ///
3273 /// ```
3274 /// let b: Box<[i32]> = vec![1, 2, 3].into_boxed_slice();
3275 /// assert_eq!(Vec::from(b), vec![1, 2, 3]);
3276 /// ```
3277 fn from(s: Box<[T], A>) -> Self {
3278 s.into_vec()
3279 }
3280}
3281
3282// note: test pulls in libstd, which causes errors here
3283#[cfg(not(no_global_oom_handling))]
3284#[cfg(not(test))]
3285#[stable(feature = "box_from_vec", since = "1.20.0")]
3286impl<T, A: Allocator> From<Vec<T, A>> for Box<[T], A> {
3287 /// Convert a vector into a boxed slice.
3288 ///
3289 /// If `v` has excess capacity, its items will be moved into a
3290 /// newly-allocated buffer with exactly the right capacity.
3291 ///
3292 /// # Examples
3293 ///
3294 /// ```
3295 /// assert_eq!(Box::from(vec![1, 2, 3]), vec![1, 2, 3].into_boxed_slice());
3296 /// ```
3297 fn from(v: Vec<T, A>) -> Self {
3298 v.into_boxed_slice()
3299 }
3300}
3301
3302#[cfg(not(no_global_oom_handling))]
3303#[stable(feature = "rust1", since = "1.0.0")]
3304impl From<&str> for Vec<u8> {
3305 /// Allocate a `Vec<u8>` and fill it with a UTF-8 string.
3306 ///
3307 /// # Examples
3308 ///
3309 /// ```
3310 /// assert_eq!(Vec::from("123"), vec![b'1', b'2', b'3']);
3311 /// ```
3312 fn from(s: &str) -> Vec<u8> {
3313 From::from(s.as_bytes())
3314 }
3315}
3316
3317#[stable(feature = "array_try_from_vec", since = "1.48.0")]
3318impl<T, A: Allocator, const N: usize> TryFrom<Vec<T, A>> for [T; N] {
3319 type Error = Vec<T, A>;
3320
3321 /// Gets the entire contents of the `Vec<T>` as an array,
3322 /// if its size exactly matches that of the requested array.
3323 ///
3324 /// # Examples
3325 ///
3326 /// ```
3327 /// assert_eq!(vec![1, 2, 3].try_into(), Ok([1, 2, 3]));
3328 /// assert_eq!(<Vec<i32>>::new().try_into(), Ok([]));
3329 /// ```
3330 ///
3331 /// If the length doesn't match, the input comes back in `Err`:
3332 /// ```
3333 /// let r: Result<[i32; 4], _> = (0..10).collect::<Vec<_>>().try_into();
3334 /// assert_eq!(r, Err(vec![0, 1, 2, 3, 4, 5, 6, 7, 8, 9]));
3335 /// ```
3336 ///
3337 /// If you're fine with just getting a prefix of the `Vec<T>`,
3338 /// you can call [`.truncate(N)`](Vec::truncate) first.
3339 /// ```
3340 /// let mut v = String::from("hello world").into_bytes();
3341 /// v.sort();
3342 /// v.truncate(2);
3343 /// let [a, b]: [_; 2] = v.try_into().unwrap();
3344 /// assert_eq!(a, b' ');
3345 /// assert_eq!(b, b'd');
3346 /// ```
3347 fn try_from(mut vec: Vec<T, A>) -> Result<[T; N], Vec<T, A>> {
3348 if vec.len() != N {
3349 return Err(vec);
3350 }
3351
3352 // SAFETY: `.set_len(0)` is always sound.
3353 unsafe { vec.set_len(0) };
3354
3355 // SAFETY: A `Vec`'s pointer is always aligned properly, and
3356 // the alignment the array needs is the same as the items.
3357 // We checked earlier that we have sufficient items.
3358 // The items will not double-drop as the `set_len`
3359 // tells the `Vec` not to also drop them.
3360 let array = unsafe { ptr::read(vec.as_ptr() as *const [T; N]) };
3361 Ok(array)
3362 }
3363}