Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * NET3 Protocol independent device support routines.
4 *
5 * Derived from the non IP parts of dev.c 1.0.19
6 * Authors: Ross Biro
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
69 */
70
71#include <linux/uaccess.h>
72#include <linux/bitops.h>
73#include <linux/capability.h>
74#include <linux/cpu.h>
75#include <linux/types.h>
76#include <linux/kernel.h>
77#include <linux/hash.h>
78#include <linux/slab.h>
79#include <linux/sched.h>
80#include <linux/sched/mm.h>
81#include <linux/mutex.h>
82#include <linux/rwsem.h>
83#include <linux/string.h>
84#include <linux/mm.h>
85#include <linux/socket.h>
86#include <linux/sockios.h>
87#include <linux/errno.h>
88#include <linux/interrupt.h>
89#include <linux/if_ether.h>
90#include <linux/netdevice.h>
91#include <linux/etherdevice.h>
92#include <linux/ethtool.h>
93#include <linux/skbuff.h>
94#include <linux/kthread.h>
95#include <linux/bpf.h>
96#include <linux/bpf_trace.h>
97#include <net/net_namespace.h>
98#include <net/sock.h>
99#include <net/busy_poll.h>
100#include <linux/rtnetlink.h>
101#include <linux/stat.h>
102#include <net/dsa.h>
103#include <net/dst.h>
104#include <net/dst_metadata.h>
105#include <net/gro.h>
106#include <net/pkt_sched.h>
107#include <net/pkt_cls.h>
108#include <net/checksum.h>
109#include <net/xfrm.h>
110#include <linux/highmem.h>
111#include <linux/init.h>
112#include <linux/module.h>
113#include <linux/netpoll.h>
114#include <linux/rcupdate.h>
115#include <linux/delay.h>
116#include <net/iw_handler.h>
117#include <asm/current.h>
118#include <linux/audit.h>
119#include <linux/dmaengine.h>
120#include <linux/err.h>
121#include <linux/ctype.h>
122#include <linux/if_arp.h>
123#include <linux/if_vlan.h>
124#include <linux/ip.h>
125#include <net/ip.h>
126#include <net/mpls.h>
127#include <linux/ipv6.h>
128#include <linux/in.h>
129#include <linux/jhash.h>
130#include <linux/random.h>
131#include <trace/events/napi.h>
132#include <trace/events/net.h>
133#include <trace/events/skb.h>
134#include <trace/events/qdisc.h>
135#include <linux/inetdevice.h>
136#include <linux/cpu_rmap.h>
137#include <linux/static_key.h>
138#include <linux/hashtable.h>
139#include <linux/vmalloc.h>
140#include <linux/if_macvlan.h>
141#include <linux/errqueue.h>
142#include <linux/hrtimer.h>
143#include <linux/netfilter_netdev.h>
144#include <linux/crash_dump.h>
145#include <linux/sctp.h>
146#include <net/udp_tunnel.h>
147#include <linux/net_namespace.h>
148#include <linux/indirect_call_wrapper.h>
149#include <net/devlink.h>
150#include <linux/pm_runtime.h>
151#include <linux/prandom.h>
152#include <linux/once_lite.h>
153
154#include "dev.h"
155#include "net-sysfs.h"
156
157
158static DEFINE_SPINLOCK(ptype_lock);
159struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
160struct list_head ptype_all __read_mostly; /* Taps */
161
162static int netif_rx_internal(struct sk_buff *skb);
163static int call_netdevice_notifiers_extack(unsigned long val,
164 struct net_device *dev,
165 struct netlink_ext_ack *extack);
166static struct napi_struct *napi_by_id(unsigned int napi_id);
167
168/*
169 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
170 * semaphore.
171 *
172 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
173 *
174 * Writers must hold the rtnl semaphore while they loop through the
175 * dev_base_head list, and hold dev_base_lock for writing when they do the
176 * actual updates. This allows pure readers to access the list even
177 * while a writer is preparing to update it.
178 *
179 * To put it another way, dev_base_lock is held for writing only to
180 * protect against pure readers; the rtnl semaphore provides the
181 * protection against other writers.
182 *
183 * See, for example usages, register_netdevice() and
184 * unregister_netdevice(), which must be called with the rtnl
185 * semaphore held.
186 */
187DEFINE_RWLOCK(dev_base_lock);
188EXPORT_SYMBOL(dev_base_lock);
189
190static DEFINE_MUTEX(ifalias_mutex);
191
192/* protects napi_hash addition/deletion and napi_gen_id */
193static DEFINE_SPINLOCK(napi_hash_lock);
194
195static unsigned int napi_gen_id = NR_CPUS;
196static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
197
198static DECLARE_RWSEM(devnet_rename_sem);
199
200static inline void dev_base_seq_inc(struct net *net)
201{
202 while (++net->dev_base_seq == 0)
203 ;
204}
205
206static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
207{
208 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
209
210 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
211}
212
213static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
214{
215 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
216}
217
218static inline void rps_lock_irqsave(struct softnet_data *sd,
219 unsigned long *flags)
220{
221 if (IS_ENABLED(CONFIG_RPS))
222 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
223 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
224 local_irq_save(*flags);
225}
226
227static inline void rps_lock_irq_disable(struct softnet_data *sd)
228{
229 if (IS_ENABLED(CONFIG_RPS))
230 spin_lock_irq(&sd->input_pkt_queue.lock);
231 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
232 local_irq_disable();
233}
234
235static inline void rps_unlock_irq_restore(struct softnet_data *sd,
236 unsigned long *flags)
237{
238 if (IS_ENABLED(CONFIG_RPS))
239 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
240 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
241 local_irq_restore(*flags);
242}
243
244static inline void rps_unlock_irq_enable(struct softnet_data *sd)
245{
246 if (IS_ENABLED(CONFIG_RPS))
247 spin_unlock_irq(&sd->input_pkt_queue.lock);
248 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
249 local_irq_enable();
250}
251
252static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
253 const char *name)
254{
255 struct netdev_name_node *name_node;
256
257 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
258 if (!name_node)
259 return NULL;
260 INIT_HLIST_NODE(&name_node->hlist);
261 name_node->dev = dev;
262 name_node->name = name;
263 return name_node;
264}
265
266static struct netdev_name_node *
267netdev_name_node_head_alloc(struct net_device *dev)
268{
269 struct netdev_name_node *name_node;
270
271 name_node = netdev_name_node_alloc(dev, dev->name);
272 if (!name_node)
273 return NULL;
274 INIT_LIST_HEAD(&name_node->list);
275 return name_node;
276}
277
278static void netdev_name_node_free(struct netdev_name_node *name_node)
279{
280 kfree(name_node);
281}
282
283static void netdev_name_node_add(struct net *net,
284 struct netdev_name_node *name_node)
285{
286 hlist_add_head_rcu(&name_node->hlist,
287 dev_name_hash(net, name_node->name));
288}
289
290static void netdev_name_node_del(struct netdev_name_node *name_node)
291{
292 hlist_del_rcu(&name_node->hlist);
293}
294
295static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
296 const char *name)
297{
298 struct hlist_head *head = dev_name_hash(net, name);
299 struct netdev_name_node *name_node;
300
301 hlist_for_each_entry(name_node, head, hlist)
302 if (!strcmp(name_node->name, name))
303 return name_node;
304 return NULL;
305}
306
307static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
308 const char *name)
309{
310 struct hlist_head *head = dev_name_hash(net, name);
311 struct netdev_name_node *name_node;
312
313 hlist_for_each_entry_rcu(name_node, head, hlist)
314 if (!strcmp(name_node->name, name))
315 return name_node;
316 return NULL;
317}
318
319bool netdev_name_in_use(struct net *net, const char *name)
320{
321 return netdev_name_node_lookup(net, name);
322}
323EXPORT_SYMBOL(netdev_name_in_use);
324
325int netdev_name_node_alt_create(struct net_device *dev, const char *name)
326{
327 struct netdev_name_node *name_node;
328 struct net *net = dev_net(dev);
329
330 name_node = netdev_name_node_lookup(net, name);
331 if (name_node)
332 return -EEXIST;
333 name_node = netdev_name_node_alloc(dev, name);
334 if (!name_node)
335 return -ENOMEM;
336 netdev_name_node_add(net, name_node);
337 /* The node that holds dev->name acts as a head of per-device list. */
338 list_add_tail(&name_node->list, &dev->name_node->list);
339
340 return 0;
341}
342
343static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
344{
345 list_del(&name_node->list);
346 netdev_name_node_del(name_node);
347 kfree(name_node->name);
348 netdev_name_node_free(name_node);
349}
350
351int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
352{
353 struct netdev_name_node *name_node;
354 struct net *net = dev_net(dev);
355
356 name_node = netdev_name_node_lookup(net, name);
357 if (!name_node)
358 return -ENOENT;
359 /* lookup might have found our primary name or a name belonging
360 * to another device.
361 */
362 if (name_node == dev->name_node || name_node->dev != dev)
363 return -EINVAL;
364
365 __netdev_name_node_alt_destroy(name_node);
366
367 return 0;
368}
369
370static void netdev_name_node_alt_flush(struct net_device *dev)
371{
372 struct netdev_name_node *name_node, *tmp;
373
374 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
375 __netdev_name_node_alt_destroy(name_node);
376}
377
378/* Device list insertion */
379static void list_netdevice(struct net_device *dev)
380{
381 struct net *net = dev_net(dev);
382
383 ASSERT_RTNL();
384
385 write_lock(&dev_base_lock);
386 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
387 netdev_name_node_add(net, dev->name_node);
388 hlist_add_head_rcu(&dev->index_hlist,
389 dev_index_hash(net, dev->ifindex));
390 write_unlock(&dev_base_lock);
391
392 dev_base_seq_inc(net);
393}
394
395/* Device list removal
396 * caller must respect a RCU grace period before freeing/reusing dev
397 */
398static void unlist_netdevice(struct net_device *dev, bool lock)
399{
400 ASSERT_RTNL();
401
402 /* Unlink dev from the device chain */
403 if (lock)
404 write_lock(&dev_base_lock);
405 list_del_rcu(&dev->dev_list);
406 netdev_name_node_del(dev->name_node);
407 hlist_del_rcu(&dev->index_hlist);
408 if (lock)
409 write_unlock(&dev_base_lock);
410
411 dev_base_seq_inc(dev_net(dev));
412}
413
414/*
415 * Our notifier list
416 */
417
418static RAW_NOTIFIER_HEAD(netdev_chain);
419
420/*
421 * Device drivers call our routines to queue packets here. We empty the
422 * queue in the local softnet handler.
423 */
424
425DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
426EXPORT_PER_CPU_SYMBOL(softnet_data);
427
428#ifdef CONFIG_LOCKDEP
429/*
430 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
431 * according to dev->type
432 */
433static const unsigned short netdev_lock_type[] = {
434 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
435 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
436 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
437 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
438 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
439 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
440 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
441 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
442 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
443 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
444 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
445 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
446 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
447 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
448 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
449
450static const char *const netdev_lock_name[] = {
451 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
452 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
453 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
454 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
455 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
456 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
457 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
458 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
459 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
460 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
461 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
462 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
463 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
464 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
465 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
466
467static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
468static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
469
470static inline unsigned short netdev_lock_pos(unsigned short dev_type)
471{
472 int i;
473
474 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
475 if (netdev_lock_type[i] == dev_type)
476 return i;
477 /* the last key is used by default */
478 return ARRAY_SIZE(netdev_lock_type) - 1;
479}
480
481static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
482 unsigned short dev_type)
483{
484 int i;
485
486 i = netdev_lock_pos(dev_type);
487 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
488 netdev_lock_name[i]);
489}
490
491static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
492{
493 int i;
494
495 i = netdev_lock_pos(dev->type);
496 lockdep_set_class_and_name(&dev->addr_list_lock,
497 &netdev_addr_lock_key[i],
498 netdev_lock_name[i]);
499}
500#else
501static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
502 unsigned short dev_type)
503{
504}
505
506static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
507{
508}
509#endif
510
511/*******************************************************************************
512 *
513 * Protocol management and registration routines
514 *
515 *******************************************************************************/
516
517
518/*
519 * Add a protocol ID to the list. Now that the input handler is
520 * smarter we can dispense with all the messy stuff that used to be
521 * here.
522 *
523 * BEWARE!!! Protocol handlers, mangling input packets,
524 * MUST BE last in hash buckets and checking protocol handlers
525 * MUST start from promiscuous ptype_all chain in net_bh.
526 * It is true now, do not change it.
527 * Explanation follows: if protocol handler, mangling packet, will
528 * be the first on list, it is not able to sense, that packet
529 * is cloned and should be copied-on-write, so that it will
530 * change it and subsequent readers will get broken packet.
531 * --ANK (980803)
532 */
533
534static inline struct list_head *ptype_head(const struct packet_type *pt)
535{
536 if (pt->type == htons(ETH_P_ALL))
537 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
538 else
539 return pt->dev ? &pt->dev->ptype_specific :
540 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
541}
542
543/**
544 * dev_add_pack - add packet handler
545 * @pt: packet type declaration
546 *
547 * Add a protocol handler to the networking stack. The passed &packet_type
548 * is linked into kernel lists and may not be freed until it has been
549 * removed from the kernel lists.
550 *
551 * This call does not sleep therefore it can not
552 * guarantee all CPU's that are in middle of receiving packets
553 * will see the new packet type (until the next received packet).
554 */
555
556void dev_add_pack(struct packet_type *pt)
557{
558 struct list_head *head = ptype_head(pt);
559
560 spin_lock(&ptype_lock);
561 list_add_rcu(&pt->list, head);
562 spin_unlock(&ptype_lock);
563}
564EXPORT_SYMBOL(dev_add_pack);
565
566/**
567 * __dev_remove_pack - remove packet handler
568 * @pt: packet type declaration
569 *
570 * Remove a protocol handler that was previously added to the kernel
571 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
572 * from the kernel lists and can be freed or reused once this function
573 * returns.
574 *
575 * The packet type might still be in use by receivers
576 * and must not be freed until after all the CPU's have gone
577 * through a quiescent state.
578 */
579void __dev_remove_pack(struct packet_type *pt)
580{
581 struct list_head *head = ptype_head(pt);
582 struct packet_type *pt1;
583
584 spin_lock(&ptype_lock);
585
586 list_for_each_entry(pt1, head, list) {
587 if (pt == pt1) {
588 list_del_rcu(&pt->list);
589 goto out;
590 }
591 }
592
593 pr_warn("dev_remove_pack: %p not found\n", pt);
594out:
595 spin_unlock(&ptype_lock);
596}
597EXPORT_SYMBOL(__dev_remove_pack);
598
599/**
600 * dev_remove_pack - remove packet handler
601 * @pt: packet type declaration
602 *
603 * Remove a protocol handler that was previously added to the kernel
604 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
605 * from the kernel lists and can be freed or reused once this function
606 * returns.
607 *
608 * This call sleeps to guarantee that no CPU is looking at the packet
609 * type after return.
610 */
611void dev_remove_pack(struct packet_type *pt)
612{
613 __dev_remove_pack(pt);
614
615 synchronize_net();
616}
617EXPORT_SYMBOL(dev_remove_pack);
618
619
620/*******************************************************************************
621 *
622 * Device Interface Subroutines
623 *
624 *******************************************************************************/
625
626/**
627 * dev_get_iflink - get 'iflink' value of a interface
628 * @dev: targeted interface
629 *
630 * Indicates the ifindex the interface is linked to.
631 * Physical interfaces have the same 'ifindex' and 'iflink' values.
632 */
633
634int dev_get_iflink(const struct net_device *dev)
635{
636 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
637 return dev->netdev_ops->ndo_get_iflink(dev);
638
639 return dev->ifindex;
640}
641EXPORT_SYMBOL(dev_get_iflink);
642
643/**
644 * dev_fill_metadata_dst - Retrieve tunnel egress information.
645 * @dev: targeted interface
646 * @skb: The packet.
647 *
648 * For better visibility of tunnel traffic OVS needs to retrieve
649 * egress tunnel information for a packet. Following API allows
650 * user to get this info.
651 */
652int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
653{
654 struct ip_tunnel_info *info;
655
656 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
657 return -EINVAL;
658
659 info = skb_tunnel_info_unclone(skb);
660 if (!info)
661 return -ENOMEM;
662 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
663 return -EINVAL;
664
665 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
666}
667EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
668
669static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
670{
671 int k = stack->num_paths++;
672
673 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
674 return NULL;
675
676 return &stack->path[k];
677}
678
679int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
680 struct net_device_path_stack *stack)
681{
682 const struct net_device *last_dev;
683 struct net_device_path_ctx ctx = {
684 .dev = dev,
685 };
686 struct net_device_path *path;
687 int ret = 0;
688
689 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
690 stack->num_paths = 0;
691 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
692 last_dev = ctx.dev;
693 path = dev_fwd_path(stack);
694 if (!path)
695 return -1;
696
697 memset(path, 0, sizeof(struct net_device_path));
698 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
699 if (ret < 0)
700 return -1;
701
702 if (WARN_ON_ONCE(last_dev == ctx.dev))
703 return -1;
704 }
705
706 if (!ctx.dev)
707 return ret;
708
709 path = dev_fwd_path(stack);
710 if (!path)
711 return -1;
712 path->type = DEV_PATH_ETHERNET;
713 path->dev = ctx.dev;
714
715 return ret;
716}
717EXPORT_SYMBOL_GPL(dev_fill_forward_path);
718
719/**
720 * __dev_get_by_name - find a device by its name
721 * @net: the applicable net namespace
722 * @name: name to find
723 *
724 * Find an interface by name. Must be called under RTNL semaphore
725 * or @dev_base_lock. If the name is found a pointer to the device
726 * is returned. If the name is not found then %NULL is returned. The
727 * reference counters are not incremented so the caller must be
728 * careful with locks.
729 */
730
731struct net_device *__dev_get_by_name(struct net *net, const char *name)
732{
733 struct netdev_name_node *node_name;
734
735 node_name = netdev_name_node_lookup(net, name);
736 return node_name ? node_name->dev : NULL;
737}
738EXPORT_SYMBOL(__dev_get_by_name);
739
740/**
741 * dev_get_by_name_rcu - find a device by its name
742 * @net: the applicable net namespace
743 * @name: name to find
744 *
745 * Find an interface by name.
746 * If the name is found a pointer to the device is returned.
747 * If the name is not found then %NULL is returned.
748 * The reference counters are not incremented so the caller must be
749 * careful with locks. The caller must hold RCU lock.
750 */
751
752struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
753{
754 struct netdev_name_node *node_name;
755
756 node_name = netdev_name_node_lookup_rcu(net, name);
757 return node_name ? node_name->dev : NULL;
758}
759EXPORT_SYMBOL(dev_get_by_name_rcu);
760
761/**
762 * dev_get_by_name - find a device by its name
763 * @net: the applicable net namespace
764 * @name: name to find
765 *
766 * Find an interface by name. This can be called from any
767 * context and does its own locking. The returned handle has
768 * the usage count incremented and the caller must use dev_put() to
769 * release it when it is no longer needed. %NULL is returned if no
770 * matching device is found.
771 */
772
773struct net_device *dev_get_by_name(struct net *net, const char *name)
774{
775 struct net_device *dev;
776
777 rcu_read_lock();
778 dev = dev_get_by_name_rcu(net, name);
779 dev_hold(dev);
780 rcu_read_unlock();
781 return dev;
782}
783EXPORT_SYMBOL(dev_get_by_name);
784
785/**
786 * __dev_get_by_index - find a device by its ifindex
787 * @net: the applicable net namespace
788 * @ifindex: index of device
789 *
790 * Search for an interface by index. Returns %NULL if the device
791 * is not found or a pointer to the device. The device has not
792 * had its reference counter increased so the caller must be careful
793 * about locking. The caller must hold either the RTNL semaphore
794 * or @dev_base_lock.
795 */
796
797struct net_device *__dev_get_by_index(struct net *net, int ifindex)
798{
799 struct net_device *dev;
800 struct hlist_head *head = dev_index_hash(net, ifindex);
801
802 hlist_for_each_entry(dev, head, index_hlist)
803 if (dev->ifindex == ifindex)
804 return dev;
805
806 return NULL;
807}
808EXPORT_SYMBOL(__dev_get_by_index);
809
810/**
811 * dev_get_by_index_rcu - find a device by its ifindex
812 * @net: the applicable net namespace
813 * @ifindex: index of device
814 *
815 * Search for an interface by index. Returns %NULL if the device
816 * is not found or a pointer to the device. The device has not
817 * had its reference counter increased so the caller must be careful
818 * about locking. The caller must hold RCU lock.
819 */
820
821struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
822{
823 struct net_device *dev;
824 struct hlist_head *head = dev_index_hash(net, ifindex);
825
826 hlist_for_each_entry_rcu(dev, head, index_hlist)
827 if (dev->ifindex == ifindex)
828 return dev;
829
830 return NULL;
831}
832EXPORT_SYMBOL(dev_get_by_index_rcu);
833
834
835/**
836 * dev_get_by_index - find a device by its ifindex
837 * @net: the applicable net namespace
838 * @ifindex: index of device
839 *
840 * Search for an interface by index. Returns NULL if the device
841 * is not found or a pointer to the device. The device returned has
842 * had a reference added and the pointer is safe until the user calls
843 * dev_put to indicate they have finished with it.
844 */
845
846struct net_device *dev_get_by_index(struct net *net, int ifindex)
847{
848 struct net_device *dev;
849
850 rcu_read_lock();
851 dev = dev_get_by_index_rcu(net, ifindex);
852 dev_hold(dev);
853 rcu_read_unlock();
854 return dev;
855}
856EXPORT_SYMBOL(dev_get_by_index);
857
858/**
859 * dev_get_by_napi_id - find a device by napi_id
860 * @napi_id: ID of the NAPI struct
861 *
862 * Search for an interface by NAPI ID. Returns %NULL if the device
863 * is not found or a pointer to the device. The device has not had
864 * its reference counter increased so the caller must be careful
865 * about locking. The caller must hold RCU lock.
866 */
867
868struct net_device *dev_get_by_napi_id(unsigned int napi_id)
869{
870 struct napi_struct *napi;
871
872 WARN_ON_ONCE(!rcu_read_lock_held());
873
874 if (napi_id < MIN_NAPI_ID)
875 return NULL;
876
877 napi = napi_by_id(napi_id);
878
879 return napi ? napi->dev : NULL;
880}
881EXPORT_SYMBOL(dev_get_by_napi_id);
882
883/**
884 * netdev_get_name - get a netdevice name, knowing its ifindex.
885 * @net: network namespace
886 * @name: a pointer to the buffer where the name will be stored.
887 * @ifindex: the ifindex of the interface to get the name from.
888 */
889int netdev_get_name(struct net *net, char *name, int ifindex)
890{
891 struct net_device *dev;
892 int ret;
893
894 down_read(&devnet_rename_sem);
895 rcu_read_lock();
896
897 dev = dev_get_by_index_rcu(net, ifindex);
898 if (!dev) {
899 ret = -ENODEV;
900 goto out;
901 }
902
903 strcpy(name, dev->name);
904
905 ret = 0;
906out:
907 rcu_read_unlock();
908 up_read(&devnet_rename_sem);
909 return ret;
910}
911
912/**
913 * dev_getbyhwaddr_rcu - find a device by its hardware address
914 * @net: the applicable net namespace
915 * @type: media type of device
916 * @ha: hardware address
917 *
918 * Search for an interface by MAC address. Returns NULL if the device
919 * is not found or a pointer to the device.
920 * The caller must hold RCU or RTNL.
921 * The returned device has not had its ref count increased
922 * and the caller must therefore be careful about locking
923 *
924 */
925
926struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
927 const char *ha)
928{
929 struct net_device *dev;
930
931 for_each_netdev_rcu(net, dev)
932 if (dev->type == type &&
933 !memcmp(dev->dev_addr, ha, dev->addr_len))
934 return dev;
935
936 return NULL;
937}
938EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
939
940struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
941{
942 struct net_device *dev, *ret = NULL;
943
944 rcu_read_lock();
945 for_each_netdev_rcu(net, dev)
946 if (dev->type == type) {
947 dev_hold(dev);
948 ret = dev;
949 break;
950 }
951 rcu_read_unlock();
952 return ret;
953}
954EXPORT_SYMBOL(dev_getfirstbyhwtype);
955
956/**
957 * __dev_get_by_flags - find any device with given flags
958 * @net: the applicable net namespace
959 * @if_flags: IFF_* values
960 * @mask: bitmask of bits in if_flags to check
961 *
962 * Search for any interface with the given flags. Returns NULL if a device
963 * is not found or a pointer to the device. Must be called inside
964 * rtnl_lock(), and result refcount is unchanged.
965 */
966
967struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
968 unsigned short mask)
969{
970 struct net_device *dev, *ret;
971
972 ASSERT_RTNL();
973
974 ret = NULL;
975 for_each_netdev(net, dev) {
976 if (((dev->flags ^ if_flags) & mask) == 0) {
977 ret = dev;
978 break;
979 }
980 }
981 return ret;
982}
983EXPORT_SYMBOL(__dev_get_by_flags);
984
985/**
986 * dev_valid_name - check if name is okay for network device
987 * @name: name string
988 *
989 * Network device names need to be valid file names to
990 * allow sysfs to work. We also disallow any kind of
991 * whitespace.
992 */
993bool dev_valid_name(const char *name)
994{
995 if (*name == '\0')
996 return false;
997 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
998 return false;
999 if (!strcmp(name, ".") || !strcmp(name, ".."))
1000 return false;
1001
1002 while (*name) {
1003 if (*name == '/' || *name == ':' || isspace(*name))
1004 return false;
1005 name++;
1006 }
1007 return true;
1008}
1009EXPORT_SYMBOL(dev_valid_name);
1010
1011/**
1012 * __dev_alloc_name - allocate a name for a device
1013 * @net: network namespace to allocate the device name in
1014 * @name: name format string
1015 * @buf: scratch buffer and result name string
1016 *
1017 * Passed a format string - eg "lt%d" it will try and find a suitable
1018 * id. It scans list of devices to build up a free map, then chooses
1019 * the first empty slot. The caller must hold the dev_base or rtnl lock
1020 * while allocating the name and adding the device in order to avoid
1021 * duplicates.
1022 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1023 * Returns the number of the unit assigned or a negative errno code.
1024 */
1025
1026static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1027{
1028 int i = 0;
1029 const char *p;
1030 const int max_netdevices = 8*PAGE_SIZE;
1031 unsigned long *inuse;
1032 struct net_device *d;
1033
1034 if (!dev_valid_name(name))
1035 return -EINVAL;
1036
1037 p = strchr(name, '%');
1038 if (p) {
1039 /*
1040 * Verify the string as this thing may have come from
1041 * the user. There must be either one "%d" and no other "%"
1042 * characters.
1043 */
1044 if (p[1] != 'd' || strchr(p + 2, '%'))
1045 return -EINVAL;
1046
1047 /* Use one page as a bit array of possible slots */
1048 inuse = (unsigned long *) get_zeroed_page(GFP_ATOMIC);
1049 if (!inuse)
1050 return -ENOMEM;
1051
1052 for_each_netdev(net, d) {
1053 struct netdev_name_node *name_node;
1054 list_for_each_entry(name_node, &d->name_node->list, list) {
1055 if (!sscanf(name_node->name, name, &i))
1056 continue;
1057 if (i < 0 || i >= max_netdevices)
1058 continue;
1059
1060 /* avoid cases where sscanf is not exact inverse of printf */
1061 snprintf(buf, IFNAMSIZ, name, i);
1062 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1063 __set_bit(i, inuse);
1064 }
1065 if (!sscanf(d->name, name, &i))
1066 continue;
1067 if (i < 0 || i >= max_netdevices)
1068 continue;
1069
1070 /* avoid cases where sscanf is not exact inverse of printf */
1071 snprintf(buf, IFNAMSIZ, name, i);
1072 if (!strncmp(buf, d->name, IFNAMSIZ))
1073 __set_bit(i, inuse);
1074 }
1075
1076 i = find_first_zero_bit(inuse, max_netdevices);
1077 free_page((unsigned long) inuse);
1078 }
1079
1080 snprintf(buf, IFNAMSIZ, name, i);
1081 if (!netdev_name_in_use(net, buf))
1082 return i;
1083
1084 /* It is possible to run out of possible slots
1085 * when the name is long and there isn't enough space left
1086 * for the digits, or if all bits are used.
1087 */
1088 return -ENFILE;
1089}
1090
1091static int dev_alloc_name_ns(struct net *net,
1092 struct net_device *dev,
1093 const char *name)
1094{
1095 char buf[IFNAMSIZ];
1096 int ret;
1097
1098 BUG_ON(!net);
1099 ret = __dev_alloc_name(net, name, buf);
1100 if (ret >= 0)
1101 strscpy(dev->name, buf, IFNAMSIZ);
1102 return ret;
1103}
1104
1105/**
1106 * dev_alloc_name - allocate a name for a device
1107 * @dev: device
1108 * @name: name format string
1109 *
1110 * Passed a format string - eg "lt%d" it will try and find a suitable
1111 * id. It scans list of devices to build up a free map, then chooses
1112 * the first empty slot. The caller must hold the dev_base or rtnl lock
1113 * while allocating the name and adding the device in order to avoid
1114 * duplicates.
1115 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1116 * Returns the number of the unit assigned or a negative errno code.
1117 */
1118
1119int dev_alloc_name(struct net_device *dev, const char *name)
1120{
1121 return dev_alloc_name_ns(dev_net(dev), dev, name);
1122}
1123EXPORT_SYMBOL(dev_alloc_name);
1124
1125static int dev_get_valid_name(struct net *net, struct net_device *dev,
1126 const char *name)
1127{
1128 BUG_ON(!net);
1129
1130 if (!dev_valid_name(name))
1131 return -EINVAL;
1132
1133 if (strchr(name, '%'))
1134 return dev_alloc_name_ns(net, dev, name);
1135 else if (netdev_name_in_use(net, name))
1136 return -EEXIST;
1137 else if (dev->name != name)
1138 strscpy(dev->name, name, IFNAMSIZ);
1139
1140 return 0;
1141}
1142
1143/**
1144 * dev_change_name - change name of a device
1145 * @dev: device
1146 * @newname: name (or format string) must be at least IFNAMSIZ
1147 *
1148 * Change name of a device, can pass format strings "eth%d".
1149 * for wildcarding.
1150 */
1151int dev_change_name(struct net_device *dev, const char *newname)
1152{
1153 unsigned char old_assign_type;
1154 char oldname[IFNAMSIZ];
1155 int err = 0;
1156 int ret;
1157 struct net *net;
1158
1159 ASSERT_RTNL();
1160 BUG_ON(!dev_net(dev));
1161
1162 net = dev_net(dev);
1163
1164 down_write(&devnet_rename_sem);
1165
1166 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1167 up_write(&devnet_rename_sem);
1168 return 0;
1169 }
1170
1171 memcpy(oldname, dev->name, IFNAMSIZ);
1172
1173 err = dev_get_valid_name(net, dev, newname);
1174 if (err < 0) {
1175 up_write(&devnet_rename_sem);
1176 return err;
1177 }
1178
1179 if (oldname[0] && !strchr(oldname, '%'))
1180 netdev_info(dev, "renamed from %s%s\n", oldname,
1181 dev->flags & IFF_UP ? " (while UP)" : "");
1182
1183 old_assign_type = dev->name_assign_type;
1184 dev->name_assign_type = NET_NAME_RENAMED;
1185
1186rollback:
1187 ret = device_rename(&dev->dev, dev->name);
1188 if (ret) {
1189 memcpy(dev->name, oldname, IFNAMSIZ);
1190 dev->name_assign_type = old_assign_type;
1191 up_write(&devnet_rename_sem);
1192 return ret;
1193 }
1194
1195 up_write(&devnet_rename_sem);
1196
1197 netdev_adjacent_rename_links(dev, oldname);
1198
1199 write_lock(&dev_base_lock);
1200 netdev_name_node_del(dev->name_node);
1201 write_unlock(&dev_base_lock);
1202
1203 synchronize_rcu();
1204
1205 write_lock(&dev_base_lock);
1206 netdev_name_node_add(net, dev->name_node);
1207 write_unlock(&dev_base_lock);
1208
1209 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1210 ret = notifier_to_errno(ret);
1211
1212 if (ret) {
1213 /* err >= 0 after dev_alloc_name() or stores the first errno */
1214 if (err >= 0) {
1215 err = ret;
1216 down_write(&devnet_rename_sem);
1217 memcpy(dev->name, oldname, IFNAMSIZ);
1218 memcpy(oldname, newname, IFNAMSIZ);
1219 dev->name_assign_type = old_assign_type;
1220 old_assign_type = NET_NAME_RENAMED;
1221 goto rollback;
1222 } else {
1223 netdev_err(dev, "name change rollback failed: %d\n",
1224 ret);
1225 }
1226 }
1227
1228 return err;
1229}
1230
1231/**
1232 * dev_set_alias - change ifalias of a device
1233 * @dev: device
1234 * @alias: name up to IFALIASZ
1235 * @len: limit of bytes to copy from info
1236 *
1237 * Set ifalias for a device,
1238 */
1239int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1240{
1241 struct dev_ifalias *new_alias = NULL;
1242
1243 if (len >= IFALIASZ)
1244 return -EINVAL;
1245
1246 if (len) {
1247 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1248 if (!new_alias)
1249 return -ENOMEM;
1250
1251 memcpy(new_alias->ifalias, alias, len);
1252 new_alias->ifalias[len] = 0;
1253 }
1254
1255 mutex_lock(&ifalias_mutex);
1256 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1257 mutex_is_locked(&ifalias_mutex));
1258 mutex_unlock(&ifalias_mutex);
1259
1260 if (new_alias)
1261 kfree_rcu(new_alias, rcuhead);
1262
1263 return len;
1264}
1265EXPORT_SYMBOL(dev_set_alias);
1266
1267/**
1268 * dev_get_alias - get ifalias of a device
1269 * @dev: device
1270 * @name: buffer to store name of ifalias
1271 * @len: size of buffer
1272 *
1273 * get ifalias for a device. Caller must make sure dev cannot go
1274 * away, e.g. rcu read lock or own a reference count to device.
1275 */
1276int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1277{
1278 const struct dev_ifalias *alias;
1279 int ret = 0;
1280
1281 rcu_read_lock();
1282 alias = rcu_dereference(dev->ifalias);
1283 if (alias)
1284 ret = snprintf(name, len, "%s", alias->ifalias);
1285 rcu_read_unlock();
1286
1287 return ret;
1288}
1289
1290/**
1291 * netdev_features_change - device changes features
1292 * @dev: device to cause notification
1293 *
1294 * Called to indicate a device has changed features.
1295 */
1296void netdev_features_change(struct net_device *dev)
1297{
1298 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1299}
1300EXPORT_SYMBOL(netdev_features_change);
1301
1302/**
1303 * netdev_state_change - device changes state
1304 * @dev: device to cause notification
1305 *
1306 * Called to indicate a device has changed state. This function calls
1307 * the notifier chains for netdev_chain and sends a NEWLINK message
1308 * to the routing socket.
1309 */
1310void netdev_state_change(struct net_device *dev)
1311{
1312 if (dev->flags & IFF_UP) {
1313 struct netdev_notifier_change_info change_info = {
1314 .info.dev = dev,
1315 };
1316
1317 call_netdevice_notifiers_info(NETDEV_CHANGE,
1318 &change_info.info);
1319 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1320 }
1321}
1322EXPORT_SYMBOL(netdev_state_change);
1323
1324/**
1325 * __netdev_notify_peers - notify network peers about existence of @dev,
1326 * to be called when rtnl lock is already held.
1327 * @dev: network device
1328 *
1329 * Generate traffic such that interested network peers are aware of
1330 * @dev, such as by generating a gratuitous ARP. This may be used when
1331 * a device wants to inform the rest of the network about some sort of
1332 * reconfiguration such as a failover event or virtual machine
1333 * migration.
1334 */
1335void __netdev_notify_peers(struct net_device *dev)
1336{
1337 ASSERT_RTNL();
1338 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1339 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1340}
1341EXPORT_SYMBOL(__netdev_notify_peers);
1342
1343/**
1344 * netdev_notify_peers - notify network peers about existence of @dev
1345 * @dev: network device
1346 *
1347 * Generate traffic such that interested network peers are aware of
1348 * @dev, such as by generating a gratuitous ARP. This may be used when
1349 * a device wants to inform the rest of the network about some sort of
1350 * reconfiguration such as a failover event or virtual machine
1351 * migration.
1352 */
1353void netdev_notify_peers(struct net_device *dev)
1354{
1355 rtnl_lock();
1356 __netdev_notify_peers(dev);
1357 rtnl_unlock();
1358}
1359EXPORT_SYMBOL(netdev_notify_peers);
1360
1361static int napi_threaded_poll(void *data);
1362
1363static int napi_kthread_create(struct napi_struct *n)
1364{
1365 int err = 0;
1366
1367 /* Create and wake up the kthread once to put it in
1368 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1369 * warning and work with loadavg.
1370 */
1371 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1372 n->dev->name, n->napi_id);
1373 if (IS_ERR(n->thread)) {
1374 err = PTR_ERR(n->thread);
1375 pr_err("kthread_run failed with err %d\n", err);
1376 n->thread = NULL;
1377 }
1378
1379 return err;
1380}
1381
1382static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1383{
1384 const struct net_device_ops *ops = dev->netdev_ops;
1385 int ret;
1386
1387 ASSERT_RTNL();
1388 dev_addr_check(dev);
1389
1390 if (!netif_device_present(dev)) {
1391 /* may be detached because parent is runtime-suspended */
1392 if (dev->dev.parent)
1393 pm_runtime_resume(dev->dev.parent);
1394 if (!netif_device_present(dev))
1395 return -ENODEV;
1396 }
1397
1398 /* Block netpoll from trying to do any rx path servicing.
1399 * If we don't do this there is a chance ndo_poll_controller
1400 * or ndo_poll may be running while we open the device
1401 */
1402 netpoll_poll_disable(dev);
1403
1404 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1405 ret = notifier_to_errno(ret);
1406 if (ret)
1407 return ret;
1408
1409 set_bit(__LINK_STATE_START, &dev->state);
1410
1411 if (ops->ndo_validate_addr)
1412 ret = ops->ndo_validate_addr(dev);
1413
1414 if (!ret && ops->ndo_open)
1415 ret = ops->ndo_open(dev);
1416
1417 netpoll_poll_enable(dev);
1418
1419 if (ret)
1420 clear_bit(__LINK_STATE_START, &dev->state);
1421 else {
1422 dev->flags |= IFF_UP;
1423 dev_set_rx_mode(dev);
1424 dev_activate(dev);
1425 add_device_randomness(dev->dev_addr, dev->addr_len);
1426 }
1427
1428 return ret;
1429}
1430
1431/**
1432 * dev_open - prepare an interface for use.
1433 * @dev: device to open
1434 * @extack: netlink extended ack
1435 *
1436 * Takes a device from down to up state. The device's private open
1437 * function is invoked and then the multicast lists are loaded. Finally
1438 * the device is moved into the up state and a %NETDEV_UP message is
1439 * sent to the netdev notifier chain.
1440 *
1441 * Calling this function on an active interface is a nop. On a failure
1442 * a negative errno code is returned.
1443 */
1444int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1445{
1446 int ret;
1447
1448 if (dev->flags & IFF_UP)
1449 return 0;
1450
1451 ret = __dev_open(dev, extack);
1452 if (ret < 0)
1453 return ret;
1454
1455 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1456 call_netdevice_notifiers(NETDEV_UP, dev);
1457
1458 return ret;
1459}
1460EXPORT_SYMBOL(dev_open);
1461
1462static void __dev_close_many(struct list_head *head)
1463{
1464 struct net_device *dev;
1465
1466 ASSERT_RTNL();
1467 might_sleep();
1468
1469 list_for_each_entry(dev, head, close_list) {
1470 /* Temporarily disable netpoll until the interface is down */
1471 netpoll_poll_disable(dev);
1472
1473 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1474
1475 clear_bit(__LINK_STATE_START, &dev->state);
1476
1477 /* Synchronize to scheduled poll. We cannot touch poll list, it
1478 * can be even on different cpu. So just clear netif_running().
1479 *
1480 * dev->stop() will invoke napi_disable() on all of it's
1481 * napi_struct instances on this device.
1482 */
1483 smp_mb__after_atomic(); /* Commit netif_running(). */
1484 }
1485
1486 dev_deactivate_many(head);
1487
1488 list_for_each_entry(dev, head, close_list) {
1489 const struct net_device_ops *ops = dev->netdev_ops;
1490
1491 /*
1492 * Call the device specific close. This cannot fail.
1493 * Only if device is UP
1494 *
1495 * We allow it to be called even after a DETACH hot-plug
1496 * event.
1497 */
1498 if (ops->ndo_stop)
1499 ops->ndo_stop(dev);
1500
1501 dev->flags &= ~IFF_UP;
1502 netpoll_poll_enable(dev);
1503 }
1504}
1505
1506static void __dev_close(struct net_device *dev)
1507{
1508 LIST_HEAD(single);
1509
1510 list_add(&dev->close_list, &single);
1511 __dev_close_many(&single);
1512 list_del(&single);
1513}
1514
1515void dev_close_many(struct list_head *head, bool unlink)
1516{
1517 struct net_device *dev, *tmp;
1518
1519 /* Remove the devices that don't need to be closed */
1520 list_for_each_entry_safe(dev, tmp, head, close_list)
1521 if (!(dev->flags & IFF_UP))
1522 list_del_init(&dev->close_list);
1523
1524 __dev_close_many(head);
1525
1526 list_for_each_entry_safe(dev, tmp, head, close_list) {
1527 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1528 call_netdevice_notifiers(NETDEV_DOWN, dev);
1529 if (unlink)
1530 list_del_init(&dev->close_list);
1531 }
1532}
1533EXPORT_SYMBOL(dev_close_many);
1534
1535/**
1536 * dev_close - shutdown an interface.
1537 * @dev: device to shutdown
1538 *
1539 * This function moves an active device into down state. A
1540 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1541 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1542 * chain.
1543 */
1544void dev_close(struct net_device *dev)
1545{
1546 if (dev->flags & IFF_UP) {
1547 LIST_HEAD(single);
1548
1549 list_add(&dev->close_list, &single);
1550 dev_close_many(&single, true);
1551 list_del(&single);
1552 }
1553}
1554EXPORT_SYMBOL(dev_close);
1555
1556
1557/**
1558 * dev_disable_lro - disable Large Receive Offload on a device
1559 * @dev: device
1560 *
1561 * Disable Large Receive Offload (LRO) on a net device. Must be
1562 * called under RTNL. This is needed if received packets may be
1563 * forwarded to another interface.
1564 */
1565void dev_disable_lro(struct net_device *dev)
1566{
1567 struct net_device *lower_dev;
1568 struct list_head *iter;
1569
1570 dev->wanted_features &= ~NETIF_F_LRO;
1571 netdev_update_features(dev);
1572
1573 if (unlikely(dev->features & NETIF_F_LRO))
1574 netdev_WARN(dev, "failed to disable LRO!\n");
1575
1576 netdev_for_each_lower_dev(dev, lower_dev, iter)
1577 dev_disable_lro(lower_dev);
1578}
1579EXPORT_SYMBOL(dev_disable_lro);
1580
1581/**
1582 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1583 * @dev: device
1584 *
1585 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1586 * called under RTNL. This is needed if Generic XDP is installed on
1587 * the device.
1588 */
1589static void dev_disable_gro_hw(struct net_device *dev)
1590{
1591 dev->wanted_features &= ~NETIF_F_GRO_HW;
1592 netdev_update_features(dev);
1593
1594 if (unlikely(dev->features & NETIF_F_GRO_HW))
1595 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1596}
1597
1598const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1599{
1600#define N(val) \
1601 case NETDEV_##val: \
1602 return "NETDEV_" __stringify(val);
1603 switch (cmd) {
1604 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1605 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1606 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1607 N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1608 N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1609 N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1610 N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1611 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1612 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1613 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1614 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1615 N(XDP_FEAT_CHANGE)
1616 }
1617#undef N
1618 return "UNKNOWN_NETDEV_EVENT";
1619}
1620EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1621
1622static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1623 struct net_device *dev)
1624{
1625 struct netdev_notifier_info info = {
1626 .dev = dev,
1627 };
1628
1629 return nb->notifier_call(nb, val, &info);
1630}
1631
1632static int call_netdevice_register_notifiers(struct notifier_block *nb,
1633 struct net_device *dev)
1634{
1635 int err;
1636
1637 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1638 err = notifier_to_errno(err);
1639 if (err)
1640 return err;
1641
1642 if (!(dev->flags & IFF_UP))
1643 return 0;
1644
1645 call_netdevice_notifier(nb, NETDEV_UP, dev);
1646 return 0;
1647}
1648
1649static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1650 struct net_device *dev)
1651{
1652 if (dev->flags & IFF_UP) {
1653 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1654 dev);
1655 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1656 }
1657 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1658}
1659
1660static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1661 struct net *net)
1662{
1663 struct net_device *dev;
1664 int err;
1665
1666 for_each_netdev(net, dev) {
1667 err = call_netdevice_register_notifiers(nb, dev);
1668 if (err)
1669 goto rollback;
1670 }
1671 return 0;
1672
1673rollback:
1674 for_each_netdev_continue_reverse(net, dev)
1675 call_netdevice_unregister_notifiers(nb, dev);
1676 return err;
1677}
1678
1679static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1680 struct net *net)
1681{
1682 struct net_device *dev;
1683
1684 for_each_netdev(net, dev)
1685 call_netdevice_unregister_notifiers(nb, dev);
1686}
1687
1688static int dev_boot_phase = 1;
1689
1690/**
1691 * register_netdevice_notifier - register a network notifier block
1692 * @nb: notifier
1693 *
1694 * Register a notifier to be called when network device events occur.
1695 * The notifier passed is linked into the kernel structures and must
1696 * not be reused until it has been unregistered. A negative errno code
1697 * is returned on a failure.
1698 *
1699 * When registered all registration and up events are replayed
1700 * to the new notifier to allow device to have a race free
1701 * view of the network device list.
1702 */
1703
1704int register_netdevice_notifier(struct notifier_block *nb)
1705{
1706 struct net *net;
1707 int err;
1708
1709 /* Close race with setup_net() and cleanup_net() */
1710 down_write(&pernet_ops_rwsem);
1711 rtnl_lock();
1712 err = raw_notifier_chain_register(&netdev_chain, nb);
1713 if (err)
1714 goto unlock;
1715 if (dev_boot_phase)
1716 goto unlock;
1717 for_each_net(net) {
1718 err = call_netdevice_register_net_notifiers(nb, net);
1719 if (err)
1720 goto rollback;
1721 }
1722
1723unlock:
1724 rtnl_unlock();
1725 up_write(&pernet_ops_rwsem);
1726 return err;
1727
1728rollback:
1729 for_each_net_continue_reverse(net)
1730 call_netdevice_unregister_net_notifiers(nb, net);
1731
1732 raw_notifier_chain_unregister(&netdev_chain, nb);
1733 goto unlock;
1734}
1735EXPORT_SYMBOL(register_netdevice_notifier);
1736
1737/**
1738 * unregister_netdevice_notifier - unregister a network notifier block
1739 * @nb: notifier
1740 *
1741 * Unregister a notifier previously registered by
1742 * register_netdevice_notifier(). The notifier is unlinked into the
1743 * kernel structures and may then be reused. A negative errno code
1744 * is returned on a failure.
1745 *
1746 * After unregistering unregister and down device events are synthesized
1747 * for all devices on the device list to the removed notifier to remove
1748 * the need for special case cleanup code.
1749 */
1750
1751int unregister_netdevice_notifier(struct notifier_block *nb)
1752{
1753 struct net *net;
1754 int err;
1755
1756 /* Close race with setup_net() and cleanup_net() */
1757 down_write(&pernet_ops_rwsem);
1758 rtnl_lock();
1759 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1760 if (err)
1761 goto unlock;
1762
1763 for_each_net(net)
1764 call_netdevice_unregister_net_notifiers(nb, net);
1765
1766unlock:
1767 rtnl_unlock();
1768 up_write(&pernet_ops_rwsem);
1769 return err;
1770}
1771EXPORT_SYMBOL(unregister_netdevice_notifier);
1772
1773static int __register_netdevice_notifier_net(struct net *net,
1774 struct notifier_block *nb,
1775 bool ignore_call_fail)
1776{
1777 int err;
1778
1779 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1780 if (err)
1781 return err;
1782 if (dev_boot_phase)
1783 return 0;
1784
1785 err = call_netdevice_register_net_notifiers(nb, net);
1786 if (err && !ignore_call_fail)
1787 goto chain_unregister;
1788
1789 return 0;
1790
1791chain_unregister:
1792 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1793 return err;
1794}
1795
1796static int __unregister_netdevice_notifier_net(struct net *net,
1797 struct notifier_block *nb)
1798{
1799 int err;
1800
1801 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1802 if (err)
1803 return err;
1804
1805 call_netdevice_unregister_net_notifiers(nb, net);
1806 return 0;
1807}
1808
1809/**
1810 * register_netdevice_notifier_net - register a per-netns network notifier block
1811 * @net: network namespace
1812 * @nb: notifier
1813 *
1814 * Register a notifier to be called when network device events occur.
1815 * The notifier passed is linked into the kernel structures and must
1816 * not be reused until it has been unregistered. A negative errno code
1817 * is returned on a failure.
1818 *
1819 * When registered all registration and up events are replayed
1820 * to the new notifier to allow device to have a race free
1821 * view of the network device list.
1822 */
1823
1824int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1825{
1826 int err;
1827
1828 rtnl_lock();
1829 err = __register_netdevice_notifier_net(net, nb, false);
1830 rtnl_unlock();
1831 return err;
1832}
1833EXPORT_SYMBOL(register_netdevice_notifier_net);
1834
1835/**
1836 * unregister_netdevice_notifier_net - unregister a per-netns
1837 * network notifier block
1838 * @net: network namespace
1839 * @nb: notifier
1840 *
1841 * Unregister a notifier previously registered by
1842 * register_netdevice_notifier_net(). The notifier is unlinked from the
1843 * kernel structures and may then be reused. A negative errno code
1844 * is returned on a failure.
1845 *
1846 * After unregistering unregister and down device events are synthesized
1847 * for all devices on the device list to the removed notifier to remove
1848 * the need for special case cleanup code.
1849 */
1850
1851int unregister_netdevice_notifier_net(struct net *net,
1852 struct notifier_block *nb)
1853{
1854 int err;
1855
1856 rtnl_lock();
1857 err = __unregister_netdevice_notifier_net(net, nb);
1858 rtnl_unlock();
1859 return err;
1860}
1861EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1862
1863static void __move_netdevice_notifier_net(struct net *src_net,
1864 struct net *dst_net,
1865 struct notifier_block *nb)
1866{
1867 __unregister_netdevice_notifier_net(src_net, nb);
1868 __register_netdevice_notifier_net(dst_net, nb, true);
1869}
1870
1871int register_netdevice_notifier_dev_net(struct net_device *dev,
1872 struct notifier_block *nb,
1873 struct netdev_net_notifier *nn)
1874{
1875 int err;
1876
1877 rtnl_lock();
1878 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1879 if (!err) {
1880 nn->nb = nb;
1881 list_add(&nn->list, &dev->net_notifier_list);
1882 }
1883 rtnl_unlock();
1884 return err;
1885}
1886EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1887
1888int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1889 struct notifier_block *nb,
1890 struct netdev_net_notifier *nn)
1891{
1892 int err;
1893
1894 rtnl_lock();
1895 list_del(&nn->list);
1896 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1897 rtnl_unlock();
1898 return err;
1899}
1900EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1901
1902static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1903 struct net *net)
1904{
1905 struct netdev_net_notifier *nn;
1906
1907 list_for_each_entry(nn, &dev->net_notifier_list, list)
1908 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1909}
1910
1911/**
1912 * call_netdevice_notifiers_info - call all network notifier blocks
1913 * @val: value passed unmodified to notifier function
1914 * @info: notifier information data
1915 *
1916 * Call all network notifier blocks. Parameters and return value
1917 * are as for raw_notifier_call_chain().
1918 */
1919
1920int call_netdevice_notifiers_info(unsigned long val,
1921 struct netdev_notifier_info *info)
1922{
1923 struct net *net = dev_net(info->dev);
1924 int ret;
1925
1926 ASSERT_RTNL();
1927
1928 /* Run per-netns notifier block chain first, then run the global one.
1929 * Hopefully, one day, the global one is going to be removed after
1930 * all notifier block registrators get converted to be per-netns.
1931 */
1932 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1933 if (ret & NOTIFY_STOP_MASK)
1934 return ret;
1935 return raw_notifier_call_chain(&netdev_chain, val, info);
1936}
1937
1938/**
1939 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks
1940 * for and rollback on error
1941 * @val_up: value passed unmodified to notifier function
1942 * @val_down: value passed unmodified to the notifier function when
1943 * recovering from an error on @val_up
1944 * @info: notifier information data
1945 *
1946 * Call all per-netns network notifier blocks, but not notifier blocks on
1947 * the global notifier chain. Parameters and return value are as for
1948 * raw_notifier_call_chain_robust().
1949 */
1950
1951static int
1952call_netdevice_notifiers_info_robust(unsigned long val_up,
1953 unsigned long val_down,
1954 struct netdev_notifier_info *info)
1955{
1956 struct net *net = dev_net(info->dev);
1957
1958 ASSERT_RTNL();
1959
1960 return raw_notifier_call_chain_robust(&net->netdev_chain,
1961 val_up, val_down, info);
1962}
1963
1964static int call_netdevice_notifiers_extack(unsigned long val,
1965 struct net_device *dev,
1966 struct netlink_ext_ack *extack)
1967{
1968 struct netdev_notifier_info info = {
1969 .dev = dev,
1970 .extack = extack,
1971 };
1972
1973 return call_netdevice_notifiers_info(val, &info);
1974}
1975
1976/**
1977 * call_netdevice_notifiers - call all network notifier blocks
1978 * @val: value passed unmodified to notifier function
1979 * @dev: net_device pointer passed unmodified to notifier function
1980 *
1981 * Call all network notifier blocks. Parameters and return value
1982 * are as for raw_notifier_call_chain().
1983 */
1984
1985int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
1986{
1987 return call_netdevice_notifiers_extack(val, dev, NULL);
1988}
1989EXPORT_SYMBOL(call_netdevice_notifiers);
1990
1991/**
1992 * call_netdevice_notifiers_mtu - call all network notifier blocks
1993 * @val: value passed unmodified to notifier function
1994 * @dev: net_device pointer passed unmodified to notifier function
1995 * @arg: additional u32 argument passed to the notifier function
1996 *
1997 * Call all network notifier blocks. Parameters and return value
1998 * are as for raw_notifier_call_chain().
1999 */
2000static int call_netdevice_notifiers_mtu(unsigned long val,
2001 struct net_device *dev, u32 arg)
2002{
2003 struct netdev_notifier_info_ext info = {
2004 .info.dev = dev,
2005 .ext.mtu = arg,
2006 };
2007
2008 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2009
2010 return call_netdevice_notifiers_info(val, &info.info);
2011}
2012
2013#ifdef CONFIG_NET_INGRESS
2014static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2015
2016void net_inc_ingress_queue(void)
2017{
2018 static_branch_inc(&ingress_needed_key);
2019}
2020EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2021
2022void net_dec_ingress_queue(void)
2023{
2024 static_branch_dec(&ingress_needed_key);
2025}
2026EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2027#endif
2028
2029#ifdef CONFIG_NET_EGRESS
2030static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2031
2032void net_inc_egress_queue(void)
2033{
2034 static_branch_inc(&egress_needed_key);
2035}
2036EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2037
2038void net_dec_egress_queue(void)
2039{
2040 static_branch_dec(&egress_needed_key);
2041}
2042EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2043#endif
2044
2045DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2046EXPORT_SYMBOL(netstamp_needed_key);
2047#ifdef CONFIG_JUMP_LABEL
2048static atomic_t netstamp_needed_deferred;
2049static atomic_t netstamp_wanted;
2050static void netstamp_clear(struct work_struct *work)
2051{
2052 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2053 int wanted;
2054
2055 wanted = atomic_add_return(deferred, &netstamp_wanted);
2056 if (wanted > 0)
2057 static_branch_enable(&netstamp_needed_key);
2058 else
2059 static_branch_disable(&netstamp_needed_key);
2060}
2061static DECLARE_WORK(netstamp_work, netstamp_clear);
2062#endif
2063
2064void net_enable_timestamp(void)
2065{
2066#ifdef CONFIG_JUMP_LABEL
2067 int wanted = atomic_read(&netstamp_wanted);
2068
2069 while (wanted > 0) {
2070 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2071 return;
2072 }
2073 atomic_inc(&netstamp_needed_deferred);
2074 schedule_work(&netstamp_work);
2075#else
2076 static_branch_inc(&netstamp_needed_key);
2077#endif
2078}
2079EXPORT_SYMBOL(net_enable_timestamp);
2080
2081void net_disable_timestamp(void)
2082{
2083#ifdef CONFIG_JUMP_LABEL
2084 int wanted = atomic_read(&netstamp_wanted);
2085
2086 while (wanted > 1) {
2087 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2088 return;
2089 }
2090 atomic_dec(&netstamp_needed_deferred);
2091 schedule_work(&netstamp_work);
2092#else
2093 static_branch_dec(&netstamp_needed_key);
2094#endif
2095}
2096EXPORT_SYMBOL(net_disable_timestamp);
2097
2098static inline void net_timestamp_set(struct sk_buff *skb)
2099{
2100 skb->tstamp = 0;
2101 skb->mono_delivery_time = 0;
2102 if (static_branch_unlikely(&netstamp_needed_key))
2103 skb->tstamp = ktime_get_real();
2104}
2105
2106#define net_timestamp_check(COND, SKB) \
2107 if (static_branch_unlikely(&netstamp_needed_key)) { \
2108 if ((COND) && !(SKB)->tstamp) \
2109 (SKB)->tstamp = ktime_get_real(); \
2110 } \
2111
2112bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2113{
2114 return __is_skb_forwardable(dev, skb, true);
2115}
2116EXPORT_SYMBOL_GPL(is_skb_forwardable);
2117
2118static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2119 bool check_mtu)
2120{
2121 int ret = ____dev_forward_skb(dev, skb, check_mtu);
2122
2123 if (likely(!ret)) {
2124 skb->protocol = eth_type_trans(skb, dev);
2125 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2126 }
2127
2128 return ret;
2129}
2130
2131int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2132{
2133 return __dev_forward_skb2(dev, skb, true);
2134}
2135EXPORT_SYMBOL_GPL(__dev_forward_skb);
2136
2137/**
2138 * dev_forward_skb - loopback an skb to another netif
2139 *
2140 * @dev: destination network device
2141 * @skb: buffer to forward
2142 *
2143 * return values:
2144 * NET_RX_SUCCESS (no congestion)
2145 * NET_RX_DROP (packet was dropped, but freed)
2146 *
2147 * dev_forward_skb can be used for injecting an skb from the
2148 * start_xmit function of one device into the receive queue
2149 * of another device.
2150 *
2151 * The receiving device may be in another namespace, so
2152 * we have to clear all information in the skb that could
2153 * impact namespace isolation.
2154 */
2155int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2156{
2157 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2158}
2159EXPORT_SYMBOL_GPL(dev_forward_skb);
2160
2161int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2162{
2163 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2164}
2165
2166static inline int deliver_skb(struct sk_buff *skb,
2167 struct packet_type *pt_prev,
2168 struct net_device *orig_dev)
2169{
2170 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2171 return -ENOMEM;
2172 refcount_inc(&skb->users);
2173 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2174}
2175
2176static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2177 struct packet_type **pt,
2178 struct net_device *orig_dev,
2179 __be16 type,
2180 struct list_head *ptype_list)
2181{
2182 struct packet_type *ptype, *pt_prev = *pt;
2183
2184 list_for_each_entry_rcu(ptype, ptype_list, list) {
2185 if (ptype->type != type)
2186 continue;
2187 if (pt_prev)
2188 deliver_skb(skb, pt_prev, orig_dev);
2189 pt_prev = ptype;
2190 }
2191 *pt = pt_prev;
2192}
2193
2194static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2195{
2196 if (!ptype->af_packet_priv || !skb->sk)
2197 return false;
2198
2199 if (ptype->id_match)
2200 return ptype->id_match(ptype, skb->sk);
2201 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2202 return true;
2203
2204 return false;
2205}
2206
2207/**
2208 * dev_nit_active - return true if any network interface taps are in use
2209 *
2210 * @dev: network device to check for the presence of taps
2211 */
2212bool dev_nit_active(struct net_device *dev)
2213{
2214 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2215}
2216EXPORT_SYMBOL_GPL(dev_nit_active);
2217
2218/*
2219 * Support routine. Sends outgoing frames to any network
2220 * taps currently in use.
2221 */
2222
2223void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2224{
2225 struct packet_type *ptype;
2226 struct sk_buff *skb2 = NULL;
2227 struct packet_type *pt_prev = NULL;
2228 struct list_head *ptype_list = &ptype_all;
2229
2230 rcu_read_lock();
2231again:
2232 list_for_each_entry_rcu(ptype, ptype_list, list) {
2233 if (ptype->ignore_outgoing)
2234 continue;
2235
2236 /* Never send packets back to the socket
2237 * they originated from - MvS (miquels@drinkel.ow.org)
2238 */
2239 if (skb_loop_sk(ptype, skb))
2240 continue;
2241
2242 if (pt_prev) {
2243 deliver_skb(skb2, pt_prev, skb->dev);
2244 pt_prev = ptype;
2245 continue;
2246 }
2247
2248 /* need to clone skb, done only once */
2249 skb2 = skb_clone(skb, GFP_ATOMIC);
2250 if (!skb2)
2251 goto out_unlock;
2252
2253 net_timestamp_set(skb2);
2254
2255 /* skb->nh should be correctly
2256 * set by sender, so that the second statement is
2257 * just protection against buggy protocols.
2258 */
2259 skb_reset_mac_header(skb2);
2260
2261 if (skb_network_header(skb2) < skb2->data ||
2262 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2263 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2264 ntohs(skb2->protocol),
2265 dev->name);
2266 skb_reset_network_header(skb2);
2267 }
2268
2269 skb2->transport_header = skb2->network_header;
2270 skb2->pkt_type = PACKET_OUTGOING;
2271 pt_prev = ptype;
2272 }
2273
2274 if (ptype_list == &ptype_all) {
2275 ptype_list = &dev->ptype_all;
2276 goto again;
2277 }
2278out_unlock:
2279 if (pt_prev) {
2280 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2281 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2282 else
2283 kfree_skb(skb2);
2284 }
2285 rcu_read_unlock();
2286}
2287EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2288
2289/**
2290 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2291 * @dev: Network device
2292 * @txq: number of queues available
2293 *
2294 * If real_num_tx_queues is changed the tc mappings may no longer be
2295 * valid. To resolve this verify the tc mapping remains valid and if
2296 * not NULL the mapping. With no priorities mapping to this
2297 * offset/count pair it will no longer be used. In the worst case TC0
2298 * is invalid nothing can be done so disable priority mappings. If is
2299 * expected that drivers will fix this mapping if they can before
2300 * calling netif_set_real_num_tx_queues.
2301 */
2302static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2303{
2304 int i;
2305 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2306
2307 /* If TC0 is invalidated disable TC mapping */
2308 if (tc->offset + tc->count > txq) {
2309 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2310 dev->num_tc = 0;
2311 return;
2312 }
2313
2314 /* Invalidated prio to tc mappings set to TC0 */
2315 for (i = 1; i < TC_BITMASK + 1; i++) {
2316 int q = netdev_get_prio_tc_map(dev, i);
2317
2318 tc = &dev->tc_to_txq[q];
2319 if (tc->offset + tc->count > txq) {
2320 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2321 i, q);
2322 netdev_set_prio_tc_map(dev, i, 0);
2323 }
2324 }
2325}
2326
2327int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2328{
2329 if (dev->num_tc) {
2330 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2331 int i;
2332
2333 /* walk through the TCs and see if it falls into any of them */
2334 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2335 if ((txq - tc->offset) < tc->count)
2336 return i;
2337 }
2338
2339 /* didn't find it, just return -1 to indicate no match */
2340 return -1;
2341 }
2342
2343 return 0;
2344}
2345EXPORT_SYMBOL(netdev_txq_to_tc);
2346
2347#ifdef CONFIG_XPS
2348static struct static_key xps_needed __read_mostly;
2349static struct static_key xps_rxqs_needed __read_mostly;
2350static DEFINE_MUTEX(xps_map_mutex);
2351#define xmap_dereference(P) \
2352 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2353
2354static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2355 struct xps_dev_maps *old_maps, int tci, u16 index)
2356{
2357 struct xps_map *map = NULL;
2358 int pos;
2359
2360 if (dev_maps)
2361 map = xmap_dereference(dev_maps->attr_map[tci]);
2362 if (!map)
2363 return false;
2364
2365 for (pos = map->len; pos--;) {
2366 if (map->queues[pos] != index)
2367 continue;
2368
2369 if (map->len > 1) {
2370 map->queues[pos] = map->queues[--map->len];
2371 break;
2372 }
2373
2374 if (old_maps)
2375 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2376 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2377 kfree_rcu(map, rcu);
2378 return false;
2379 }
2380
2381 return true;
2382}
2383
2384static bool remove_xps_queue_cpu(struct net_device *dev,
2385 struct xps_dev_maps *dev_maps,
2386 int cpu, u16 offset, u16 count)
2387{
2388 int num_tc = dev_maps->num_tc;
2389 bool active = false;
2390 int tci;
2391
2392 for (tci = cpu * num_tc; num_tc--; tci++) {
2393 int i, j;
2394
2395 for (i = count, j = offset; i--; j++) {
2396 if (!remove_xps_queue(dev_maps, NULL, tci, j))
2397 break;
2398 }
2399
2400 active |= i < 0;
2401 }
2402
2403 return active;
2404}
2405
2406static void reset_xps_maps(struct net_device *dev,
2407 struct xps_dev_maps *dev_maps,
2408 enum xps_map_type type)
2409{
2410 static_key_slow_dec_cpuslocked(&xps_needed);
2411 if (type == XPS_RXQS)
2412 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2413
2414 RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2415
2416 kfree_rcu(dev_maps, rcu);
2417}
2418
2419static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2420 u16 offset, u16 count)
2421{
2422 struct xps_dev_maps *dev_maps;
2423 bool active = false;
2424 int i, j;
2425
2426 dev_maps = xmap_dereference(dev->xps_maps[type]);
2427 if (!dev_maps)
2428 return;
2429
2430 for (j = 0; j < dev_maps->nr_ids; j++)
2431 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2432 if (!active)
2433 reset_xps_maps(dev, dev_maps, type);
2434
2435 if (type == XPS_CPUS) {
2436 for (i = offset + (count - 1); count--; i--)
2437 netdev_queue_numa_node_write(
2438 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2439 }
2440}
2441
2442static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2443 u16 count)
2444{
2445 if (!static_key_false(&xps_needed))
2446 return;
2447
2448 cpus_read_lock();
2449 mutex_lock(&xps_map_mutex);
2450
2451 if (static_key_false(&xps_rxqs_needed))
2452 clean_xps_maps(dev, XPS_RXQS, offset, count);
2453
2454 clean_xps_maps(dev, XPS_CPUS, offset, count);
2455
2456 mutex_unlock(&xps_map_mutex);
2457 cpus_read_unlock();
2458}
2459
2460static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2461{
2462 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2463}
2464
2465static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2466 u16 index, bool is_rxqs_map)
2467{
2468 struct xps_map *new_map;
2469 int alloc_len = XPS_MIN_MAP_ALLOC;
2470 int i, pos;
2471
2472 for (pos = 0; map && pos < map->len; pos++) {
2473 if (map->queues[pos] != index)
2474 continue;
2475 return map;
2476 }
2477
2478 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2479 if (map) {
2480 if (pos < map->alloc_len)
2481 return map;
2482
2483 alloc_len = map->alloc_len * 2;
2484 }
2485
2486 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2487 * map
2488 */
2489 if (is_rxqs_map)
2490 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2491 else
2492 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2493 cpu_to_node(attr_index));
2494 if (!new_map)
2495 return NULL;
2496
2497 for (i = 0; i < pos; i++)
2498 new_map->queues[i] = map->queues[i];
2499 new_map->alloc_len = alloc_len;
2500 new_map->len = pos;
2501
2502 return new_map;
2503}
2504
2505/* Copy xps maps at a given index */
2506static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2507 struct xps_dev_maps *new_dev_maps, int index,
2508 int tc, bool skip_tc)
2509{
2510 int i, tci = index * dev_maps->num_tc;
2511 struct xps_map *map;
2512
2513 /* copy maps belonging to foreign traffic classes */
2514 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2515 if (i == tc && skip_tc)
2516 continue;
2517
2518 /* fill in the new device map from the old device map */
2519 map = xmap_dereference(dev_maps->attr_map[tci]);
2520 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2521 }
2522}
2523
2524/* Must be called under cpus_read_lock */
2525int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2526 u16 index, enum xps_map_type type)
2527{
2528 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2529 const unsigned long *online_mask = NULL;
2530 bool active = false, copy = false;
2531 int i, j, tci, numa_node_id = -2;
2532 int maps_sz, num_tc = 1, tc = 0;
2533 struct xps_map *map, *new_map;
2534 unsigned int nr_ids;
2535
2536 WARN_ON_ONCE(index >= dev->num_tx_queues);
2537
2538 if (dev->num_tc) {
2539 /* Do not allow XPS on subordinate device directly */
2540 num_tc = dev->num_tc;
2541 if (num_tc < 0)
2542 return -EINVAL;
2543
2544 /* If queue belongs to subordinate dev use its map */
2545 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2546
2547 tc = netdev_txq_to_tc(dev, index);
2548 if (tc < 0)
2549 return -EINVAL;
2550 }
2551
2552 mutex_lock(&xps_map_mutex);
2553
2554 dev_maps = xmap_dereference(dev->xps_maps[type]);
2555 if (type == XPS_RXQS) {
2556 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2557 nr_ids = dev->num_rx_queues;
2558 } else {
2559 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2560 if (num_possible_cpus() > 1)
2561 online_mask = cpumask_bits(cpu_online_mask);
2562 nr_ids = nr_cpu_ids;
2563 }
2564
2565 if (maps_sz < L1_CACHE_BYTES)
2566 maps_sz = L1_CACHE_BYTES;
2567
2568 /* The old dev_maps could be larger or smaller than the one we're
2569 * setting up now, as dev->num_tc or nr_ids could have been updated in
2570 * between. We could try to be smart, but let's be safe instead and only
2571 * copy foreign traffic classes if the two map sizes match.
2572 */
2573 if (dev_maps &&
2574 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2575 copy = true;
2576
2577 /* allocate memory for queue storage */
2578 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2579 j < nr_ids;) {
2580 if (!new_dev_maps) {
2581 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2582 if (!new_dev_maps) {
2583 mutex_unlock(&xps_map_mutex);
2584 return -ENOMEM;
2585 }
2586
2587 new_dev_maps->nr_ids = nr_ids;
2588 new_dev_maps->num_tc = num_tc;
2589 }
2590
2591 tci = j * num_tc + tc;
2592 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2593
2594 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2595 if (!map)
2596 goto error;
2597
2598 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2599 }
2600
2601 if (!new_dev_maps)
2602 goto out_no_new_maps;
2603
2604 if (!dev_maps) {
2605 /* Increment static keys at most once per type */
2606 static_key_slow_inc_cpuslocked(&xps_needed);
2607 if (type == XPS_RXQS)
2608 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2609 }
2610
2611 for (j = 0; j < nr_ids; j++) {
2612 bool skip_tc = false;
2613
2614 tci = j * num_tc + tc;
2615 if (netif_attr_test_mask(j, mask, nr_ids) &&
2616 netif_attr_test_online(j, online_mask, nr_ids)) {
2617 /* add tx-queue to CPU/rx-queue maps */
2618 int pos = 0;
2619
2620 skip_tc = true;
2621
2622 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2623 while ((pos < map->len) && (map->queues[pos] != index))
2624 pos++;
2625
2626 if (pos == map->len)
2627 map->queues[map->len++] = index;
2628#ifdef CONFIG_NUMA
2629 if (type == XPS_CPUS) {
2630 if (numa_node_id == -2)
2631 numa_node_id = cpu_to_node(j);
2632 else if (numa_node_id != cpu_to_node(j))
2633 numa_node_id = -1;
2634 }
2635#endif
2636 }
2637
2638 if (copy)
2639 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2640 skip_tc);
2641 }
2642
2643 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2644
2645 /* Cleanup old maps */
2646 if (!dev_maps)
2647 goto out_no_old_maps;
2648
2649 for (j = 0; j < dev_maps->nr_ids; j++) {
2650 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2651 map = xmap_dereference(dev_maps->attr_map[tci]);
2652 if (!map)
2653 continue;
2654
2655 if (copy) {
2656 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2657 if (map == new_map)
2658 continue;
2659 }
2660
2661 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2662 kfree_rcu(map, rcu);
2663 }
2664 }
2665
2666 old_dev_maps = dev_maps;
2667
2668out_no_old_maps:
2669 dev_maps = new_dev_maps;
2670 active = true;
2671
2672out_no_new_maps:
2673 if (type == XPS_CPUS)
2674 /* update Tx queue numa node */
2675 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2676 (numa_node_id >= 0) ?
2677 numa_node_id : NUMA_NO_NODE);
2678
2679 if (!dev_maps)
2680 goto out_no_maps;
2681
2682 /* removes tx-queue from unused CPUs/rx-queues */
2683 for (j = 0; j < dev_maps->nr_ids; j++) {
2684 tci = j * dev_maps->num_tc;
2685
2686 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2687 if (i == tc &&
2688 netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2689 netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2690 continue;
2691
2692 active |= remove_xps_queue(dev_maps,
2693 copy ? old_dev_maps : NULL,
2694 tci, index);
2695 }
2696 }
2697
2698 if (old_dev_maps)
2699 kfree_rcu(old_dev_maps, rcu);
2700
2701 /* free map if not active */
2702 if (!active)
2703 reset_xps_maps(dev, dev_maps, type);
2704
2705out_no_maps:
2706 mutex_unlock(&xps_map_mutex);
2707
2708 return 0;
2709error:
2710 /* remove any maps that we added */
2711 for (j = 0; j < nr_ids; j++) {
2712 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2713 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2714 map = copy ?
2715 xmap_dereference(dev_maps->attr_map[tci]) :
2716 NULL;
2717 if (new_map && new_map != map)
2718 kfree(new_map);
2719 }
2720 }
2721
2722 mutex_unlock(&xps_map_mutex);
2723
2724 kfree(new_dev_maps);
2725 return -ENOMEM;
2726}
2727EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2728
2729int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2730 u16 index)
2731{
2732 int ret;
2733
2734 cpus_read_lock();
2735 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2736 cpus_read_unlock();
2737
2738 return ret;
2739}
2740EXPORT_SYMBOL(netif_set_xps_queue);
2741
2742#endif
2743static void netdev_unbind_all_sb_channels(struct net_device *dev)
2744{
2745 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2746
2747 /* Unbind any subordinate channels */
2748 while (txq-- != &dev->_tx[0]) {
2749 if (txq->sb_dev)
2750 netdev_unbind_sb_channel(dev, txq->sb_dev);
2751 }
2752}
2753
2754void netdev_reset_tc(struct net_device *dev)
2755{
2756#ifdef CONFIG_XPS
2757 netif_reset_xps_queues_gt(dev, 0);
2758#endif
2759 netdev_unbind_all_sb_channels(dev);
2760
2761 /* Reset TC configuration of device */
2762 dev->num_tc = 0;
2763 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2764 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2765}
2766EXPORT_SYMBOL(netdev_reset_tc);
2767
2768int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2769{
2770 if (tc >= dev->num_tc)
2771 return -EINVAL;
2772
2773#ifdef CONFIG_XPS
2774 netif_reset_xps_queues(dev, offset, count);
2775#endif
2776 dev->tc_to_txq[tc].count = count;
2777 dev->tc_to_txq[tc].offset = offset;
2778 return 0;
2779}
2780EXPORT_SYMBOL(netdev_set_tc_queue);
2781
2782int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2783{
2784 if (num_tc > TC_MAX_QUEUE)
2785 return -EINVAL;
2786
2787#ifdef CONFIG_XPS
2788 netif_reset_xps_queues_gt(dev, 0);
2789#endif
2790 netdev_unbind_all_sb_channels(dev);
2791
2792 dev->num_tc = num_tc;
2793 return 0;
2794}
2795EXPORT_SYMBOL(netdev_set_num_tc);
2796
2797void netdev_unbind_sb_channel(struct net_device *dev,
2798 struct net_device *sb_dev)
2799{
2800 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2801
2802#ifdef CONFIG_XPS
2803 netif_reset_xps_queues_gt(sb_dev, 0);
2804#endif
2805 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2806 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2807
2808 while (txq-- != &dev->_tx[0]) {
2809 if (txq->sb_dev == sb_dev)
2810 txq->sb_dev = NULL;
2811 }
2812}
2813EXPORT_SYMBOL(netdev_unbind_sb_channel);
2814
2815int netdev_bind_sb_channel_queue(struct net_device *dev,
2816 struct net_device *sb_dev,
2817 u8 tc, u16 count, u16 offset)
2818{
2819 /* Make certain the sb_dev and dev are already configured */
2820 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2821 return -EINVAL;
2822
2823 /* We cannot hand out queues we don't have */
2824 if ((offset + count) > dev->real_num_tx_queues)
2825 return -EINVAL;
2826
2827 /* Record the mapping */
2828 sb_dev->tc_to_txq[tc].count = count;
2829 sb_dev->tc_to_txq[tc].offset = offset;
2830
2831 /* Provide a way for Tx queue to find the tc_to_txq map or
2832 * XPS map for itself.
2833 */
2834 while (count--)
2835 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2836
2837 return 0;
2838}
2839EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2840
2841int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2842{
2843 /* Do not use a multiqueue device to represent a subordinate channel */
2844 if (netif_is_multiqueue(dev))
2845 return -ENODEV;
2846
2847 /* We allow channels 1 - 32767 to be used for subordinate channels.
2848 * Channel 0 is meant to be "native" mode and used only to represent
2849 * the main root device. We allow writing 0 to reset the device back
2850 * to normal mode after being used as a subordinate channel.
2851 */
2852 if (channel > S16_MAX)
2853 return -EINVAL;
2854
2855 dev->num_tc = -channel;
2856
2857 return 0;
2858}
2859EXPORT_SYMBOL(netdev_set_sb_channel);
2860
2861/*
2862 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2863 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2864 */
2865int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2866{
2867 bool disabling;
2868 int rc;
2869
2870 disabling = txq < dev->real_num_tx_queues;
2871
2872 if (txq < 1 || txq > dev->num_tx_queues)
2873 return -EINVAL;
2874
2875 if (dev->reg_state == NETREG_REGISTERED ||
2876 dev->reg_state == NETREG_UNREGISTERING) {
2877 ASSERT_RTNL();
2878
2879 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2880 txq);
2881 if (rc)
2882 return rc;
2883
2884 if (dev->num_tc)
2885 netif_setup_tc(dev, txq);
2886
2887 dev_qdisc_change_real_num_tx(dev, txq);
2888
2889 dev->real_num_tx_queues = txq;
2890
2891 if (disabling) {
2892 synchronize_net();
2893 qdisc_reset_all_tx_gt(dev, txq);
2894#ifdef CONFIG_XPS
2895 netif_reset_xps_queues_gt(dev, txq);
2896#endif
2897 }
2898 } else {
2899 dev->real_num_tx_queues = txq;
2900 }
2901
2902 return 0;
2903}
2904EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2905
2906#ifdef CONFIG_SYSFS
2907/**
2908 * netif_set_real_num_rx_queues - set actual number of RX queues used
2909 * @dev: Network device
2910 * @rxq: Actual number of RX queues
2911 *
2912 * This must be called either with the rtnl_lock held or before
2913 * registration of the net device. Returns 0 on success, or a
2914 * negative error code. If called before registration, it always
2915 * succeeds.
2916 */
2917int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2918{
2919 int rc;
2920
2921 if (rxq < 1 || rxq > dev->num_rx_queues)
2922 return -EINVAL;
2923
2924 if (dev->reg_state == NETREG_REGISTERED) {
2925 ASSERT_RTNL();
2926
2927 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2928 rxq);
2929 if (rc)
2930 return rc;
2931 }
2932
2933 dev->real_num_rx_queues = rxq;
2934 return 0;
2935}
2936EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2937#endif
2938
2939/**
2940 * netif_set_real_num_queues - set actual number of RX and TX queues used
2941 * @dev: Network device
2942 * @txq: Actual number of TX queues
2943 * @rxq: Actual number of RX queues
2944 *
2945 * Set the real number of both TX and RX queues.
2946 * Does nothing if the number of queues is already correct.
2947 */
2948int netif_set_real_num_queues(struct net_device *dev,
2949 unsigned int txq, unsigned int rxq)
2950{
2951 unsigned int old_rxq = dev->real_num_rx_queues;
2952 int err;
2953
2954 if (txq < 1 || txq > dev->num_tx_queues ||
2955 rxq < 1 || rxq > dev->num_rx_queues)
2956 return -EINVAL;
2957
2958 /* Start from increases, so the error path only does decreases -
2959 * decreases can't fail.
2960 */
2961 if (rxq > dev->real_num_rx_queues) {
2962 err = netif_set_real_num_rx_queues(dev, rxq);
2963 if (err)
2964 return err;
2965 }
2966 if (txq > dev->real_num_tx_queues) {
2967 err = netif_set_real_num_tx_queues(dev, txq);
2968 if (err)
2969 goto undo_rx;
2970 }
2971 if (rxq < dev->real_num_rx_queues)
2972 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
2973 if (txq < dev->real_num_tx_queues)
2974 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
2975
2976 return 0;
2977undo_rx:
2978 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
2979 return err;
2980}
2981EXPORT_SYMBOL(netif_set_real_num_queues);
2982
2983/**
2984 * netif_set_tso_max_size() - set the max size of TSO frames supported
2985 * @dev: netdev to update
2986 * @size: max skb->len of a TSO frame
2987 *
2988 * Set the limit on the size of TSO super-frames the device can handle.
2989 * Unless explicitly set the stack will assume the value of
2990 * %GSO_LEGACY_MAX_SIZE.
2991 */
2992void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
2993{
2994 dev->tso_max_size = min(GSO_MAX_SIZE, size);
2995 if (size < READ_ONCE(dev->gso_max_size))
2996 netif_set_gso_max_size(dev, size);
2997 if (size < READ_ONCE(dev->gso_ipv4_max_size))
2998 netif_set_gso_ipv4_max_size(dev, size);
2999}
3000EXPORT_SYMBOL(netif_set_tso_max_size);
3001
3002/**
3003 * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3004 * @dev: netdev to update
3005 * @segs: max number of TCP segments
3006 *
3007 * Set the limit on the number of TCP segments the device can generate from
3008 * a single TSO super-frame.
3009 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3010 */
3011void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3012{
3013 dev->tso_max_segs = segs;
3014 if (segs < READ_ONCE(dev->gso_max_segs))
3015 netif_set_gso_max_segs(dev, segs);
3016}
3017EXPORT_SYMBOL(netif_set_tso_max_segs);
3018
3019/**
3020 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3021 * @to: netdev to update
3022 * @from: netdev from which to copy the limits
3023 */
3024void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3025{
3026 netif_set_tso_max_size(to, from->tso_max_size);
3027 netif_set_tso_max_segs(to, from->tso_max_segs);
3028}
3029EXPORT_SYMBOL(netif_inherit_tso_max);
3030
3031/**
3032 * netif_get_num_default_rss_queues - default number of RSS queues
3033 *
3034 * Default value is the number of physical cores if there are only 1 or 2, or
3035 * divided by 2 if there are more.
3036 */
3037int netif_get_num_default_rss_queues(void)
3038{
3039 cpumask_var_t cpus;
3040 int cpu, count = 0;
3041
3042 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3043 return 1;
3044
3045 cpumask_copy(cpus, cpu_online_mask);
3046 for_each_cpu(cpu, cpus) {
3047 ++count;
3048 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3049 }
3050 free_cpumask_var(cpus);
3051
3052 return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3053}
3054EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3055
3056static void __netif_reschedule(struct Qdisc *q)
3057{
3058 struct softnet_data *sd;
3059 unsigned long flags;
3060
3061 local_irq_save(flags);
3062 sd = this_cpu_ptr(&softnet_data);
3063 q->next_sched = NULL;
3064 *sd->output_queue_tailp = q;
3065 sd->output_queue_tailp = &q->next_sched;
3066 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3067 local_irq_restore(flags);
3068}
3069
3070void __netif_schedule(struct Qdisc *q)
3071{
3072 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3073 __netif_reschedule(q);
3074}
3075EXPORT_SYMBOL(__netif_schedule);
3076
3077struct dev_kfree_skb_cb {
3078 enum skb_drop_reason reason;
3079};
3080
3081static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3082{
3083 return (struct dev_kfree_skb_cb *)skb->cb;
3084}
3085
3086void netif_schedule_queue(struct netdev_queue *txq)
3087{
3088 rcu_read_lock();
3089 if (!netif_xmit_stopped(txq)) {
3090 struct Qdisc *q = rcu_dereference(txq->qdisc);
3091
3092 __netif_schedule(q);
3093 }
3094 rcu_read_unlock();
3095}
3096EXPORT_SYMBOL(netif_schedule_queue);
3097
3098void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3099{
3100 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3101 struct Qdisc *q;
3102
3103 rcu_read_lock();
3104 q = rcu_dereference(dev_queue->qdisc);
3105 __netif_schedule(q);
3106 rcu_read_unlock();
3107 }
3108}
3109EXPORT_SYMBOL(netif_tx_wake_queue);
3110
3111void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3112{
3113 unsigned long flags;
3114
3115 if (unlikely(!skb))
3116 return;
3117
3118 if (likely(refcount_read(&skb->users) == 1)) {
3119 smp_rmb();
3120 refcount_set(&skb->users, 0);
3121 } else if (likely(!refcount_dec_and_test(&skb->users))) {
3122 return;
3123 }
3124 get_kfree_skb_cb(skb)->reason = reason;
3125 local_irq_save(flags);
3126 skb->next = __this_cpu_read(softnet_data.completion_queue);
3127 __this_cpu_write(softnet_data.completion_queue, skb);
3128 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3129 local_irq_restore(flags);
3130}
3131EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3132
3133void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3134{
3135 if (in_hardirq() || irqs_disabled())
3136 dev_kfree_skb_irq_reason(skb, reason);
3137 else
3138 kfree_skb_reason(skb, reason);
3139}
3140EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3141
3142
3143/**
3144 * netif_device_detach - mark device as removed
3145 * @dev: network device
3146 *
3147 * Mark device as removed from system and therefore no longer available.
3148 */
3149void netif_device_detach(struct net_device *dev)
3150{
3151 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3152 netif_running(dev)) {
3153 netif_tx_stop_all_queues(dev);
3154 }
3155}
3156EXPORT_SYMBOL(netif_device_detach);
3157
3158/**
3159 * netif_device_attach - mark device as attached
3160 * @dev: network device
3161 *
3162 * Mark device as attached from system and restart if needed.
3163 */
3164void netif_device_attach(struct net_device *dev)
3165{
3166 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3167 netif_running(dev)) {
3168 netif_tx_wake_all_queues(dev);
3169 __netdev_watchdog_up(dev);
3170 }
3171}
3172EXPORT_SYMBOL(netif_device_attach);
3173
3174/*
3175 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3176 * to be used as a distribution range.
3177 */
3178static u16 skb_tx_hash(const struct net_device *dev,
3179 const struct net_device *sb_dev,
3180 struct sk_buff *skb)
3181{
3182 u32 hash;
3183 u16 qoffset = 0;
3184 u16 qcount = dev->real_num_tx_queues;
3185
3186 if (dev->num_tc) {
3187 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3188
3189 qoffset = sb_dev->tc_to_txq[tc].offset;
3190 qcount = sb_dev->tc_to_txq[tc].count;
3191 if (unlikely(!qcount)) {
3192 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3193 sb_dev->name, qoffset, tc);
3194 qoffset = 0;
3195 qcount = dev->real_num_tx_queues;
3196 }
3197 }
3198
3199 if (skb_rx_queue_recorded(skb)) {
3200 DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3201 hash = skb_get_rx_queue(skb);
3202 if (hash >= qoffset)
3203 hash -= qoffset;
3204 while (unlikely(hash >= qcount))
3205 hash -= qcount;
3206 return hash + qoffset;
3207 }
3208
3209 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3210}
3211
3212static void skb_warn_bad_offload(const struct sk_buff *skb)
3213{
3214 static const netdev_features_t null_features;
3215 struct net_device *dev = skb->dev;
3216 const char *name = "";
3217
3218 if (!net_ratelimit())
3219 return;
3220
3221 if (dev) {
3222 if (dev->dev.parent)
3223 name = dev_driver_string(dev->dev.parent);
3224 else
3225 name = netdev_name(dev);
3226 }
3227 skb_dump(KERN_WARNING, skb, false);
3228 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3229 name, dev ? &dev->features : &null_features,
3230 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3231}
3232
3233/*
3234 * Invalidate hardware checksum when packet is to be mangled, and
3235 * complete checksum manually on outgoing path.
3236 */
3237int skb_checksum_help(struct sk_buff *skb)
3238{
3239 __wsum csum;
3240 int ret = 0, offset;
3241
3242 if (skb->ip_summed == CHECKSUM_COMPLETE)
3243 goto out_set_summed;
3244
3245 if (unlikely(skb_is_gso(skb))) {
3246 skb_warn_bad_offload(skb);
3247 return -EINVAL;
3248 }
3249
3250 /* Before computing a checksum, we should make sure no frag could
3251 * be modified by an external entity : checksum could be wrong.
3252 */
3253 if (skb_has_shared_frag(skb)) {
3254 ret = __skb_linearize(skb);
3255 if (ret)
3256 goto out;
3257 }
3258
3259 offset = skb_checksum_start_offset(skb);
3260 ret = -EINVAL;
3261 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3262 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3263 goto out;
3264 }
3265 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3266
3267 offset += skb->csum_offset;
3268 if (WARN_ON_ONCE(offset + sizeof(__sum16) > skb_headlen(skb))) {
3269 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3270 goto out;
3271 }
3272 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3273 if (ret)
3274 goto out;
3275
3276 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3277out_set_summed:
3278 skb->ip_summed = CHECKSUM_NONE;
3279out:
3280 return ret;
3281}
3282EXPORT_SYMBOL(skb_checksum_help);
3283
3284int skb_crc32c_csum_help(struct sk_buff *skb)
3285{
3286 __le32 crc32c_csum;
3287 int ret = 0, offset, start;
3288
3289 if (skb->ip_summed != CHECKSUM_PARTIAL)
3290 goto out;
3291
3292 if (unlikely(skb_is_gso(skb)))
3293 goto out;
3294
3295 /* Before computing a checksum, we should make sure no frag could
3296 * be modified by an external entity : checksum could be wrong.
3297 */
3298 if (unlikely(skb_has_shared_frag(skb))) {
3299 ret = __skb_linearize(skb);
3300 if (ret)
3301 goto out;
3302 }
3303 start = skb_checksum_start_offset(skb);
3304 offset = start + offsetof(struct sctphdr, checksum);
3305 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3306 ret = -EINVAL;
3307 goto out;
3308 }
3309
3310 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3311 if (ret)
3312 goto out;
3313
3314 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3315 skb->len - start, ~(__u32)0,
3316 crc32c_csum_stub));
3317 *(__le32 *)(skb->data + offset) = crc32c_csum;
3318 skb_reset_csum_not_inet(skb);
3319out:
3320 return ret;
3321}
3322
3323__be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3324{
3325 __be16 type = skb->protocol;
3326
3327 /* Tunnel gso handlers can set protocol to ethernet. */
3328 if (type == htons(ETH_P_TEB)) {
3329 struct ethhdr *eth;
3330
3331 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3332 return 0;
3333
3334 eth = (struct ethhdr *)skb->data;
3335 type = eth->h_proto;
3336 }
3337
3338 return vlan_get_protocol_and_depth(skb, type, depth);
3339}
3340
3341/* openvswitch calls this on rx path, so we need a different check.
3342 */
3343static inline bool skb_needs_check(struct sk_buff *skb, bool tx_path)
3344{
3345 if (tx_path)
3346 return skb->ip_summed != CHECKSUM_PARTIAL &&
3347 skb->ip_summed != CHECKSUM_UNNECESSARY;
3348
3349 return skb->ip_summed == CHECKSUM_NONE;
3350}
3351
3352/**
3353 * __skb_gso_segment - Perform segmentation on skb.
3354 * @skb: buffer to segment
3355 * @features: features for the output path (see dev->features)
3356 * @tx_path: whether it is called in TX path
3357 *
3358 * This function segments the given skb and returns a list of segments.
3359 *
3360 * It may return NULL if the skb requires no segmentation. This is
3361 * only possible when GSO is used for verifying header integrity.
3362 *
3363 * Segmentation preserves SKB_GSO_CB_OFFSET bytes of previous skb cb.
3364 */
3365struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
3366 netdev_features_t features, bool tx_path)
3367{
3368 struct sk_buff *segs;
3369
3370 if (unlikely(skb_needs_check(skb, tx_path))) {
3371 int err;
3372
3373 /* We're going to init ->check field in TCP or UDP header */
3374 err = skb_cow_head(skb, 0);
3375 if (err < 0)
3376 return ERR_PTR(err);
3377 }
3378
3379 /* Only report GSO partial support if it will enable us to
3380 * support segmentation on this frame without needing additional
3381 * work.
3382 */
3383 if (features & NETIF_F_GSO_PARTIAL) {
3384 netdev_features_t partial_features = NETIF_F_GSO_ROBUST;
3385 struct net_device *dev = skb->dev;
3386
3387 partial_features |= dev->features & dev->gso_partial_features;
3388 if (!skb_gso_ok(skb, features | partial_features))
3389 features &= ~NETIF_F_GSO_PARTIAL;
3390 }
3391
3392 BUILD_BUG_ON(SKB_GSO_CB_OFFSET +
3393 sizeof(*SKB_GSO_CB(skb)) > sizeof(skb->cb));
3394
3395 SKB_GSO_CB(skb)->mac_offset = skb_headroom(skb);
3396 SKB_GSO_CB(skb)->encap_level = 0;
3397
3398 skb_reset_mac_header(skb);
3399 skb_reset_mac_len(skb);
3400
3401 segs = skb_mac_gso_segment(skb, features);
3402
3403 if (segs != skb && unlikely(skb_needs_check(skb, tx_path) && !IS_ERR(segs)))
3404 skb_warn_bad_offload(skb);
3405
3406 return segs;
3407}
3408EXPORT_SYMBOL(__skb_gso_segment);
3409
3410/* Take action when hardware reception checksum errors are detected. */
3411#ifdef CONFIG_BUG
3412static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3413{
3414 netdev_err(dev, "hw csum failure\n");
3415 skb_dump(KERN_ERR, skb, true);
3416 dump_stack();
3417}
3418
3419void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3420{
3421 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3422}
3423EXPORT_SYMBOL(netdev_rx_csum_fault);
3424#endif
3425
3426/* XXX: check that highmem exists at all on the given machine. */
3427static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3428{
3429#ifdef CONFIG_HIGHMEM
3430 int i;
3431
3432 if (!(dev->features & NETIF_F_HIGHDMA)) {
3433 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3434 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3435
3436 if (PageHighMem(skb_frag_page(frag)))
3437 return 1;
3438 }
3439 }
3440#endif
3441 return 0;
3442}
3443
3444/* If MPLS offload request, verify we are testing hardware MPLS features
3445 * instead of standard features for the netdev.
3446 */
3447#if IS_ENABLED(CONFIG_NET_MPLS_GSO)
3448static netdev_features_t net_mpls_features(struct sk_buff *skb,
3449 netdev_features_t features,
3450 __be16 type)
3451{
3452 if (eth_p_mpls(type))
3453 features &= skb->dev->mpls_features;
3454
3455 return features;
3456}
3457#else
3458static netdev_features_t net_mpls_features(struct sk_buff *skb,
3459 netdev_features_t features,
3460 __be16 type)
3461{
3462 return features;
3463}
3464#endif
3465
3466static netdev_features_t harmonize_features(struct sk_buff *skb,
3467 netdev_features_t features)
3468{
3469 __be16 type;
3470
3471 type = skb_network_protocol(skb, NULL);
3472 features = net_mpls_features(skb, features, type);
3473
3474 if (skb->ip_summed != CHECKSUM_NONE &&
3475 !can_checksum_protocol(features, type)) {
3476 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3477 }
3478 if (illegal_highdma(skb->dev, skb))
3479 features &= ~NETIF_F_SG;
3480
3481 return features;
3482}
3483
3484netdev_features_t passthru_features_check(struct sk_buff *skb,
3485 struct net_device *dev,
3486 netdev_features_t features)
3487{
3488 return features;
3489}
3490EXPORT_SYMBOL(passthru_features_check);
3491
3492static netdev_features_t dflt_features_check(struct sk_buff *skb,
3493 struct net_device *dev,
3494 netdev_features_t features)
3495{
3496 return vlan_features_check(skb, features);
3497}
3498
3499static netdev_features_t gso_features_check(const struct sk_buff *skb,
3500 struct net_device *dev,
3501 netdev_features_t features)
3502{
3503 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3504
3505 if (gso_segs > READ_ONCE(dev->gso_max_segs))
3506 return features & ~NETIF_F_GSO_MASK;
3507
3508 if (!skb_shinfo(skb)->gso_type) {
3509 skb_warn_bad_offload(skb);
3510 return features & ~NETIF_F_GSO_MASK;
3511 }
3512
3513 /* Support for GSO partial features requires software
3514 * intervention before we can actually process the packets
3515 * so we need to strip support for any partial features now
3516 * and we can pull them back in after we have partially
3517 * segmented the frame.
3518 */
3519 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3520 features &= ~dev->gso_partial_features;
3521
3522 /* Make sure to clear the IPv4 ID mangling feature if the
3523 * IPv4 header has the potential to be fragmented.
3524 */
3525 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3526 struct iphdr *iph = skb->encapsulation ?
3527 inner_ip_hdr(skb) : ip_hdr(skb);
3528
3529 if (!(iph->frag_off & htons(IP_DF)))
3530 features &= ~NETIF_F_TSO_MANGLEID;
3531 }
3532
3533 return features;
3534}
3535
3536netdev_features_t netif_skb_features(struct sk_buff *skb)
3537{
3538 struct net_device *dev = skb->dev;
3539 netdev_features_t features = dev->features;
3540
3541 if (skb_is_gso(skb))
3542 features = gso_features_check(skb, dev, features);
3543
3544 /* If encapsulation offload request, verify we are testing
3545 * hardware encapsulation features instead of standard
3546 * features for the netdev
3547 */
3548 if (skb->encapsulation)
3549 features &= dev->hw_enc_features;
3550
3551 if (skb_vlan_tagged(skb))
3552 features = netdev_intersect_features(features,
3553 dev->vlan_features |
3554 NETIF_F_HW_VLAN_CTAG_TX |
3555 NETIF_F_HW_VLAN_STAG_TX);
3556
3557 if (dev->netdev_ops->ndo_features_check)
3558 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3559 features);
3560 else
3561 features &= dflt_features_check(skb, dev, features);
3562
3563 return harmonize_features(skb, features);
3564}
3565EXPORT_SYMBOL(netif_skb_features);
3566
3567static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3568 struct netdev_queue *txq, bool more)
3569{
3570 unsigned int len;
3571 int rc;
3572
3573 if (dev_nit_active(dev))
3574 dev_queue_xmit_nit(skb, dev);
3575
3576 len = skb->len;
3577 trace_net_dev_start_xmit(skb, dev);
3578 rc = netdev_start_xmit(skb, dev, txq, more);
3579 trace_net_dev_xmit(skb, rc, dev, len);
3580
3581 return rc;
3582}
3583
3584struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3585 struct netdev_queue *txq, int *ret)
3586{
3587 struct sk_buff *skb = first;
3588 int rc = NETDEV_TX_OK;
3589
3590 while (skb) {
3591 struct sk_buff *next = skb->next;
3592
3593 skb_mark_not_on_list(skb);
3594 rc = xmit_one(skb, dev, txq, next != NULL);
3595 if (unlikely(!dev_xmit_complete(rc))) {
3596 skb->next = next;
3597 goto out;
3598 }
3599
3600 skb = next;
3601 if (netif_tx_queue_stopped(txq) && skb) {
3602 rc = NETDEV_TX_BUSY;
3603 break;
3604 }
3605 }
3606
3607out:
3608 *ret = rc;
3609 return skb;
3610}
3611
3612static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3613 netdev_features_t features)
3614{
3615 if (skb_vlan_tag_present(skb) &&
3616 !vlan_hw_offload_capable(features, skb->vlan_proto))
3617 skb = __vlan_hwaccel_push_inside(skb);
3618 return skb;
3619}
3620
3621int skb_csum_hwoffload_help(struct sk_buff *skb,
3622 const netdev_features_t features)
3623{
3624 if (unlikely(skb_csum_is_sctp(skb)))
3625 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3626 skb_crc32c_csum_help(skb);
3627
3628 if (features & NETIF_F_HW_CSUM)
3629 return 0;
3630
3631 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3632 switch (skb->csum_offset) {
3633 case offsetof(struct tcphdr, check):
3634 case offsetof(struct udphdr, check):
3635 return 0;
3636 }
3637 }
3638
3639 return skb_checksum_help(skb);
3640}
3641EXPORT_SYMBOL(skb_csum_hwoffload_help);
3642
3643static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3644{
3645 netdev_features_t features;
3646
3647 features = netif_skb_features(skb);
3648 skb = validate_xmit_vlan(skb, features);
3649 if (unlikely(!skb))
3650 goto out_null;
3651
3652 skb = sk_validate_xmit_skb(skb, dev);
3653 if (unlikely(!skb))
3654 goto out_null;
3655
3656 if (netif_needs_gso(skb, features)) {
3657 struct sk_buff *segs;
3658
3659 segs = skb_gso_segment(skb, features);
3660 if (IS_ERR(segs)) {
3661 goto out_kfree_skb;
3662 } else if (segs) {
3663 consume_skb(skb);
3664 skb = segs;
3665 }
3666 } else {
3667 if (skb_needs_linearize(skb, features) &&
3668 __skb_linearize(skb))
3669 goto out_kfree_skb;
3670
3671 /* If packet is not checksummed and device does not
3672 * support checksumming for this protocol, complete
3673 * checksumming here.
3674 */
3675 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3676 if (skb->encapsulation)
3677 skb_set_inner_transport_header(skb,
3678 skb_checksum_start_offset(skb));
3679 else
3680 skb_set_transport_header(skb,
3681 skb_checksum_start_offset(skb));
3682 if (skb_csum_hwoffload_help(skb, features))
3683 goto out_kfree_skb;
3684 }
3685 }
3686
3687 skb = validate_xmit_xfrm(skb, features, again);
3688
3689 return skb;
3690
3691out_kfree_skb:
3692 kfree_skb(skb);
3693out_null:
3694 dev_core_stats_tx_dropped_inc(dev);
3695 return NULL;
3696}
3697
3698struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3699{
3700 struct sk_buff *next, *head = NULL, *tail;
3701
3702 for (; skb != NULL; skb = next) {
3703 next = skb->next;
3704 skb_mark_not_on_list(skb);
3705
3706 /* in case skb wont be segmented, point to itself */
3707 skb->prev = skb;
3708
3709 skb = validate_xmit_skb(skb, dev, again);
3710 if (!skb)
3711 continue;
3712
3713 if (!head)
3714 head = skb;
3715 else
3716 tail->next = skb;
3717 /* If skb was segmented, skb->prev points to
3718 * the last segment. If not, it still contains skb.
3719 */
3720 tail = skb->prev;
3721 }
3722 return head;
3723}
3724EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3725
3726static void qdisc_pkt_len_init(struct sk_buff *skb)
3727{
3728 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3729
3730 qdisc_skb_cb(skb)->pkt_len = skb->len;
3731
3732 /* To get more precise estimation of bytes sent on wire,
3733 * we add to pkt_len the headers size of all segments
3734 */
3735 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3736 u16 gso_segs = shinfo->gso_segs;
3737 unsigned int hdr_len;
3738
3739 /* mac layer + network layer */
3740 hdr_len = skb_transport_offset(skb);
3741
3742 /* + transport layer */
3743 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3744 const struct tcphdr *th;
3745 struct tcphdr _tcphdr;
3746
3747 th = skb_header_pointer(skb, hdr_len,
3748 sizeof(_tcphdr), &_tcphdr);
3749 if (likely(th))
3750 hdr_len += __tcp_hdrlen(th);
3751 } else {
3752 struct udphdr _udphdr;
3753
3754 if (skb_header_pointer(skb, hdr_len,
3755 sizeof(_udphdr), &_udphdr))
3756 hdr_len += sizeof(struct udphdr);
3757 }
3758
3759 if (shinfo->gso_type & SKB_GSO_DODGY)
3760 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3761 shinfo->gso_size);
3762
3763 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3764 }
3765}
3766
3767static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3768 struct sk_buff **to_free,
3769 struct netdev_queue *txq)
3770{
3771 int rc;
3772
3773 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3774 if (rc == NET_XMIT_SUCCESS)
3775 trace_qdisc_enqueue(q, txq, skb);
3776 return rc;
3777}
3778
3779static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3780 struct net_device *dev,
3781 struct netdev_queue *txq)
3782{
3783 spinlock_t *root_lock = qdisc_lock(q);
3784 struct sk_buff *to_free = NULL;
3785 bool contended;
3786 int rc;
3787
3788 qdisc_calculate_pkt_len(skb, q);
3789
3790 if (q->flags & TCQ_F_NOLOCK) {
3791 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3792 qdisc_run_begin(q)) {
3793 /* Retest nolock_qdisc_is_empty() within the protection
3794 * of q->seqlock to protect from racing with requeuing.
3795 */
3796 if (unlikely(!nolock_qdisc_is_empty(q))) {
3797 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3798 __qdisc_run(q);
3799 qdisc_run_end(q);
3800
3801 goto no_lock_out;
3802 }
3803
3804 qdisc_bstats_cpu_update(q, skb);
3805 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3806 !nolock_qdisc_is_empty(q))
3807 __qdisc_run(q);
3808
3809 qdisc_run_end(q);
3810 return NET_XMIT_SUCCESS;
3811 }
3812
3813 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3814 qdisc_run(q);
3815
3816no_lock_out:
3817 if (unlikely(to_free))
3818 kfree_skb_list_reason(to_free,
3819 SKB_DROP_REASON_QDISC_DROP);
3820 return rc;
3821 }
3822
3823 /*
3824 * Heuristic to force contended enqueues to serialize on a
3825 * separate lock before trying to get qdisc main lock.
3826 * This permits qdisc->running owner to get the lock more
3827 * often and dequeue packets faster.
3828 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3829 * and then other tasks will only enqueue packets. The packets will be
3830 * sent after the qdisc owner is scheduled again. To prevent this
3831 * scenario the task always serialize on the lock.
3832 */
3833 contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3834 if (unlikely(contended))
3835 spin_lock(&q->busylock);
3836
3837 spin_lock(root_lock);
3838 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3839 __qdisc_drop(skb, &to_free);
3840 rc = NET_XMIT_DROP;
3841 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3842 qdisc_run_begin(q)) {
3843 /*
3844 * This is a work-conserving queue; there are no old skbs
3845 * waiting to be sent out; and the qdisc is not running -
3846 * xmit the skb directly.
3847 */
3848
3849 qdisc_bstats_update(q, skb);
3850
3851 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3852 if (unlikely(contended)) {
3853 spin_unlock(&q->busylock);
3854 contended = false;
3855 }
3856 __qdisc_run(q);
3857 }
3858
3859 qdisc_run_end(q);
3860 rc = NET_XMIT_SUCCESS;
3861 } else {
3862 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3863 if (qdisc_run_begin(q)) {
3864 if (unlikely(contended)) {
3865 spin_unlock(&q->busylock);
3866 contended = false;
3867 }
3868 __qdisc_run(q);
3869 qdisc_run_end(q);
3870 }
3871 }
3872 spin_unlock(root_lock);
3873 if (unlikely(to_free))
3874 kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
3875 if (unlikely(contended))
3876 spin_unlock(&q->busylock);
3877 return rc;
3878}
3879
3880#if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
3881static void skb_update_prio(struct sk_buff *skb)
3882{
3883 const struct netprio_map *map;
3884 const struct sock *sk;
3885 unsigned int prioidx;
3886
3887 if (skb->priority)
3888 return;
3889 map = rcu_dereference_bh(skb->dev->priomap);
3890 if (!map)
3891 return;
3892 sk = skb_to_full_sk(skb);
3893 if (!sk)
3894 return;
3895
3896 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3897
3898 if (prioidx < map->priomap_len)
3899 skb->priority = map->priomap[prioidx];
3900}
3901#else
3902#define skb_update_prio(skb)
3903#endif
3904
3905/**
3906 * dev_loopback_xmit - loop back @skb
3907 * @net: network namespace this loopback is happening in
3908 * @sk: sk needed to be a netfilter okfn
3909 * @skb: buffer to transmit
3910 */
3911int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3912{
3913 skb_reset_mac_header(skb);
3914 __skb_pull(skb, skb_network_offset(skb));
3915 skb->pkt_type = PACKET_LOOPBACK;
3916 if (skb->ip_summed == CHECKSUM_NONE)
3917 skb->ip_summed = CHECKSUM_UNNECESSARY;
3918 DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3919 skb_dst_force(skb);
3920 netif_rx(skb);
3921 return 0;
3922}
3923EXPORT_SYMBOL(dev_loopback_xmit);
3924
3925#ifdef CONFIG_NET_EGRESS
3926static struct sk_buff *
3927sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
3928{
3929#ifdef CONFIG_NET_CLS_ACT
3930 struct mini_Qdisc *miniq = rcu_dereference_bh(dev->miniq_egress);
3931 struct tcf_result cl_res;
3932
3933 if (!miniq)
3934 return skb;
3935
3936 /* qdisc_skb_cb(skb)->pkt_len was already set by the caller. */
3937 tc_skb_cb(skb)->mru = 0;
3938 tc_skb_cb(skb)->post_ct = false;
3939 mini_qdisc_bstats_cpu_update(miniq, skb);
3940
3941 switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
3942 case TC_ACT_OK:
3943 case TC_ACT_RECLASSIFY:
3944 skb->tc_index = TC_H_MIN(cl_res.classid);
3945 break;
3946 case TC_ACT_SHOT:
3947 mini_qdisc_qstats_cpu_drop(miniq);
3948 *ret = NET_XMIT_DROP;
3949 kfree_skb_reason(skb, SKB_DROP_REASON_TC_EGRESS);
3950 return NULL;
3951 case TC_ACT_STOLEN:
3952 case TC_ACT_QUEUED:
3953 case TC_ACT_TRAP:
3954 *ret = NET_XMIT_SUCCESS;
3955 consume_skb(skb);
3956 return NULL;
3957 case TC_ACT_REDIRECT:
3958 /* No need to push/pop skb's mac_header here on egress! */
3959 skb_do_redirect(skb);
3960 *ret = NET_XMIT_SUCCESS;
3961 return NULL;
3962 default:
3963 break;
3964 }
3965#endif /* CONFIG_NET_CLS_ACT */
3966
3967 return skb;
3968}
3969
3970static struct netdev_queue *
3971netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3972{
3973 int qm = skb_get_queue_mapping(skb);
3974
3975 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3976}
3977
3978static bool netdev_xmit_txqueue_skipped(void)
3979{
3980 return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3981}
3982
3983void netdev_xmit_skip_txqueue(bool skip)
3984{
3985 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3986}
3987EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3988#endif /* CONFIG_NET_EGRESS */
3989
3990#ifdef CONFIG_XPS
3991static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
3992 struct xps_dev_maps *dev_maps, unsigned int tci)
3993{
3994 int tc = netdev_get_prio_tc_map(dev, skb->priority);
3995 struct xps_map *map;
3996 int queue_index = -1;
3997
3998 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
3999 return queue_index;
4000
4001 tci *= dev_maps->num_tc;
4002 tci += tc;
4003
4004 map = rcu_dereference(dev_maps->attr_map[tci]);
4005 if (map) {
4006 if (map->len == 1)
4007 queue_index = map->queues[0];
4008 else
4009 queue_index = map->queues[reciprocal_scale(
4010 skb_get_hash(skb), map->len)];
4011 if (unlikely(queue_index >= dev->real_num_tx_queues))
4012 queue_index = -1;
4013 }
4014 return queue_index;
4015}
4016#endif
4017
4018static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4019 struct sk_buff *skb)
4020{
4021#ifdef CONFIG_XPS
4022 struct xps_dev_maps *dev_maps;
4023 struct sock *sk = skb->sk;
4024 int queue_index = -1;
4025
4026 if (!static_key_false(&xps_needed))
4027 return -1;
4028
4029 rcu_read_lock();
4030 if (!static_key_false(&xps_rxqs_needed))
4031 goto get_cpus_map;
4032
4033 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4034 if (dev_maps) {
4035 int tci = sk_rx_queue_get(sk);
4036
4037 if (tci >= 0)
4038 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4039 tci);
4040 }
4041
4042get_cpus_map:
4043 if (queue_index < 0) {
4044 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4045 if (dev_maps) {
4046 unsigned int tci = skb->sender_cpu - 1;
4047
4048 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4049 tci);
4050 }
4051 }
4052 rcu_read_unlock();
4053
4054 return queue_index;
4055#else
4056 return -1;
4057#endif
4058}
4059
4060u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4061 struct net_device *sb_dev)
4062{
4063 return 0;
4064}
4065EXPORT_SYMBOL(dev_pick_tx_zero);
4066
4067u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4068 struct net_device *sb_dev)
4069{
4070 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4071}
4072EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4073
4074u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4075 struct net_device *sb_dev)
4076{
4077 struct sock *sk = skb->sk;
4078 int queue_index = sk_tx_queue_get(sk);
4079
4080 sb_dev = sb_dev ? : dev;
4081
4082 if (queue_index < 0 || skb->ooo_okay ||
4083 queue_index >= dev->real_num_tx_queues) {
4084 int new_index = get_xps_queue(dev, sb_dev, skb);
4085
4086 if (new_index < 0)
4087 new_index = skb_tx_hash(dev, sb_dev, skb);
4088
4089 if (queue_index != new_index && sk &&
4090 sk_fullsock(sk) &&
4091 rcu_access_pointer(sk->sk_dst_cache))
4092 sk_tx_queue_set(sk, new_index);
4093
4094 queue_index = new_index;
4095 }
4096
4097 return queue_index;
4098}
4099EXPORT_SYMBOL(netdev_pick_tx);
4100
4101struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4102 struct sk_buff *skb,
4103 struct net_device *sb_dev)
4104{
4105 int queue_index = 0;
4106
4107#ifdef CONFIG_XPS
4108 u32 sender_cpu = skb->sender_cpu - 1;
4109
4110 if (sender_cpu >= (u32)NR_CPUS)
4111 skb->sender_cpu = raw_smp_processor_id() + 1;
4112#endif
4113
4114 if (dev->real_num_tx_queues != 1) {
4115 const struct net_device_ops *ops = dev->netdev_ops;
4116
4117 if (ops->ndo_select_queue)
4118 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4119 else
4120 queue_index = netdev_pick_tx(dev, skb, sb_dev);
4121
4122 queue_index = netdev_cap_txqueue(dev, queue_index);
4123 }
4124
4125 skb_set_queue_mapping(skb, queue_index);
4126 return netdev_get_tx_queue(dev, queue_index);
4127}
4128
4129/**
4130 * __dev_queue_xmit() - transmit a buffer
4131 * @skb: buffer to transmit
4132 * @sb_dev: suboordinate device used for L2 forwarding offload
4133 *
4134 * Queue a buffer for transmission to a network device. The caller must
4135 * have set the device and priority and built the buffer before calling
4136 * this function. The function can be called from an interrupt.
4137 *
4138 * When calling this method, interrupts MUST be enabled. This is because
4139 * the BH enable code must have IRQs enabled so that it will not deadlock.
4140 *
4141 * Regardless of the return value, the skb is consumed, so it is currently
4142 * difficult to retry a send to this method. (You can bump the ref count
4143 * before sending to hold a reference for retry if you are careful.)
4144 *
4145 * Return:
4146 * * 0 - buffer successfully transmitted
4147 * * positive qdisc return code - NET_XMIT_DROP etc.
4148 * * negative errno - other errors
4149 */
4150int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4151{
4152 struct net_device *dev = skb->dev;
4153 struct netdev_queue *txq = NULL;
4154 struct Qdisc *q;
4155 int rc = -ENOMEM;
4156 bool again = false;
4157
4158 skb_reset_mac_header(skb);
4159 skb_assert_len(skb);
4160
4161 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4162 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4163
4164 /* Disable soft irqs for various locks below. Also
4165 * stops preemption for RCU.
4166 */
4167 rcu_read_lock_bh();
4168
4169 skb_update_prio(skb);
4170
4171 qdisc_pkt_len_init(skb);
4172#ifdef CONFIG_NET_CLS_ACT
4173 skb->tc_at_ingress = 0;
4174#endif
4175#ifdef CONFIG_NET_EGRESS
4176 if (static_branch_unlikely(&egress_needed_key)) {
4177 if (nf_hook_egress_active()) {
4178 skb = nf_hook_egress(skb, &rc, dev);
4179 if (!skb)
4180 goto out;
4181 }
4182
4183 netdev_xmit_skip_txqueue(false);
4184
4185 nf_skip_egress(skb, true);
4186 skb = sch_handle_egress(skb, &rc, dev);
4187 if (!skb)
4188 goto out;
4189 nf_skip_egress(skb, false);
4190
4191 if (netdev_xmit_txqueue_skipped())
4192 txq = netdev_tx_queue_mapping(dev, skb);
4193 }
4194#endif
4195 /* If device/qdisc don't need skb->dst, release it right now while
4196 * its hot in this cpu cache.
4197 */
4198 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4199 skb_dst_drop(skb);
4200 else
4201 skb_dst_force(skb);
4202
4203 if (!txq)
4204 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4205
4206 q = rcu_dereference_bh(txq->qdisc);
4207
4208 trace_net_dev_queue(skb);
4209 if (q->enqueue) {
4210 rc = __dev_xmit_skb(skb, q, dev, txq);
4211 goto out;
4212 }
4213
4214 /* The device has no queue. Common case for software devices:
4215 * loopback, all the sorts of tunnels...
4216
4217 * Really, it is unlikely that netif_tx_lock protection is necessary
4218 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4219 * counters.)
4220 * However, it is possible, that they rely on protection
4221 * made by us here.
4222
4223 * Check this and shot the lock. It is not prone from deadlocks.
4224 *Either shot noqueue qdisc, it is even simpler 8)
4225 */
4226 if (dev->flags & IFF_UP) {
4227 int cpu = smp_processor_id(); /* ok because BHs are off */
4228
4229 /* Other cpus might concurrently change txq->xmit_lock_owner
4230 * to -1 or to their cpu id, but not to our id.
4231 */
4232 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4233 if (dev_xmit_recursion())
4234 goto recursion_alert;
4235
4236 skb = validate_xmit_skb(skb, dev, &again);
4237 if (!skb)
4238 goto out;
4239
4240 HARD_TX_LOCK(dev, txq, cpu);
4241
4242 if (!netif_xmit_stopped(txq)) {
4243 dev_xmit_recursion_inc();
4244 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4245 dev_xmit_recursion_dec();
4246 if (dev_xmit_complete(rc)) {
4247 HARD_TX_UNLOCK(dev, txq);
4248 goto out;
4249 }
4250 }
4251 HARD_TX_UNLOCK(dev, txq);
4252 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4253 dev->name);
4254 } else {
4255 /* Recursion is detected! It is possible,
4256 * unfortunately
4257 */
4258recursion_alert:
4259 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4260 dev->name);
4261 }
4262 }
4263
4264 rc = -ENETDOWN;
4265 rcu_read_unlock_bh();
4266
4267 dev_core_stats_tx_dropped_inc(dev);
4268 kfree_skb_list(skb);
4269 return rc;
4270out:
4271 rcu_read_unlock_bh();
4272 return rc;
4273}
4274EXPORT_SYMBOL(__dev_queue_xmit);
4275
4276int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4277{
4278 struct net_device *dev = skb->dev;
4279 struct sk_buff *orig_skb = skb;
4280 struct netdev_queue *txq;
4281 int ret = NETDEV_TX_BUSY;
4282 bool again = false;
4283
4284 if (unlikely(!netif_running(dev) ||
4285 !netif_carrier_ok(dev)))
4286 goto drop;
4287
4288 skb = validate_xmit_skb_list(skb, dev, &again);
4289 if (skb != orig_skb)
4290 goto drop;
4291
4292 skb_set_queue_mapping(skb, queue_id);
4293 txq = skb_get_tx_queue(dev, skb);
4294
4295 local_bh_disable();
4296
4297 dev_xmit_recursion_inc();
4298 HARD_TX_LOCK(dev, txq, smp_processor_id());
4299 if (!netif_xmit_frozen_or_drv_stopped(txq))
4300 ret = netdev_start_xmit(skb, dev, txq, false);
4301 HARD_TX_UNLOCK(dev, txq);
4302 dev_xmit_recursion_dec();
4303
4304 local_bh_enable();
4305 return ret;
4306drop:
4307 dev_core_stats_tx_dropped_inc(dev);
4308 kfree_skb_list(skb);
4309 return NET_XMIT_DROP;
4310}
4311EXPORT_SYMBOL(__dev_direct_xmit);
4312
4313/*************************************************************************
4314 * Receiver routines
4315 *************************************************************************/
4316
4317int netdev_max_backlog __read_mostly = 1000;
4318EXPORT_SYMBOL(netdev_max_backlog);
4319
4320int netdev_tstamp_prequeue __read_mostly = 1;
4321unsigned int sysctl_skb_defer_max __read_mostly = 64;
4322int netdev_budget __read_mostly = 300;
4323/* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4324unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4325int weight_p __read_mostly = 64; /* old backlog weight */
4326int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4327int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4328int dev_rx_weight __read_mostly = 64;
4329int dev_tx_weight __read_mostly = 64;
4330
4331/* Called with irq disabled */
4332static inline void ____napi_schedule(struct softnet_data *sd,
4333 struct napi_struct *napi)
4334{
4335 struct task_struct *thread;
4336
4337 lockdep_assert_irqs_disabled();
4338
4339 if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4340 /* Paired with smp_mb__before_atomic() in
4341 * napi_enable()/dev_set_threaded().
4342 * Use READ_ONCE() to guarantee a complete
4343 * read on napi->thread. Only call
4344 * wake_up_process() when it's not NULL.
4345 */
4346 thread = READ_ONCE(napi->thread);
4347 if (thread) {
4348 /* Avoid doing set_bit() if the thread is in
4349 * INTERRUPTIBLE state, cause napi_thread_wait()
4350 * makes sure to proceed with napi polling
4351 * if the thread is explicitly woken from here.
4352 */
4353 if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4354 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4355 wake_up_process(thread);
4356 return;
4357 }
4358 }
4359
4360 list_add_tail(&napi->poll_list, &sd->poll_list);
4361 WRITE_ONCE(napi->list_owner, smp_processor_id());
4362 /* If not called from net_rx_action()
4363 * we have to raise NET_RX_SOFTIRQ.
4364 */
4365 if (!sd->in_net_rx_action)
4366 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4367}
4368
4369#ifdef CONFIG_RPS
4370
4371/* One global table that all flow-based protocols share. */
4372struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4373EXPORT_SYMBOL(rps_sock_flow_table);
4374u32 rps_cpu_mask __read_mostly;
4375EXPORT_SYMBOL(rps_cpu_mask);
4376
4377struct static_key_false rps_needed __read_mostly;
4378EXPORT_SYMBOL(rps_needed);
4379struct static_key_false rfs_needed __read_mostly;
4380EXPORT_SYMBOL(rfs_needed);
4381
4382static struct rps_dev_flow *
4383set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4384 struct rps_dev_flow *rflow, u16 next_cpu)
4385{
4386 if (next_cpu < nr_cpu_ids) {
4387#ifdef CONFIG_RFS_ACCEL
4388 struct netdev_rx_queue *rxqueue;
4389 struct rps_dev_flow_table *flow_table;
4390 struct rps_dev_flow *old_rflow;
4391 u32 flow_id;
4392 u16 rxq_index;
4393 int rc;
4394
4395 /* Should we steer this flow to a different hardware queue? */
4396 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4397 !(dev->features & NETIF_F_NTUPLE))
4398 goto out;
4399 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4400 if (rxq_index == skb_get_rx_queue(skb))
4401 goto out;
4402
4403 rxqueue = dev->_rx + rxq_index;
4404 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4405 if (!flow_table)
4406 goto out;
4407 flow_id = skb_get_hash(skb) & flow_table->mask;
4408 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4409 rxq_index, flow_id);
4410 if (rc < 0)
4411 goto out;
4412 old_rflow = rflow;
4413 rflow = &flow_table->flows[flow_id];
4414 rflow->filter = rc;
4415 if (old_rflow->filter == rflow->filter)
4416 old_rflow->filter = RPS_NO_FILTER;
4417 out:
4418#endif
4419 rflow->last_qtail =
4420 per_cpu(softnet_data, next_cpu).input_queue_head;
4421 }
4422
4423 rflow->cpu = next_cpu;
4424 return rflow;
4425}
4426
4427/*
4428 * get_rps_cpu is called from netif_receive_skb and returns the target
4429 * CPU from the RPS map of the receiving queue for a given skb.
4430 * rcu_read_lock must be held on entry.
4431 */
4432static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4433 struct rps_dev_flow **rflowp)
4434{
4435 const struct rps_sock_flow_table *sock_flow_table;
4436 struct netdev_rx_queue *rxqueue = dev->_rx;
4437 struct rps_dev_flow_table *flow_table;
4438 struct rps_map *map;
4439 int cpu = -1;
4440 u32 tcpu;
4441 u32 hash;
4442
4443 if (skb_rx_queue_recorded(skb)) {
4444 u16 index = skb_get_rx_queue(skb);
4445
4446 if (unlikely(index >= dev->real_num_rx_queues)) {
4447 WARN_ONCE(dev->real_num_rx_queues > 1,
4448 "%s received packet on queue %u, but number "
4449 "of RX queues is %u\n",
4450 dev->name, index, dev->real_num_rx_queues);
4451 goto done;
4452 }
4453 rxqueue += index;
4454 }
4455
4456 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4457
4458 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4459 map = rcu_dereference(rxqueue->rps_map);
4460 if (!flow_table && !map)
4461 goto done;
4462
4463 skb_reset_network_header(skb);
4464 hash = skb_get_hash(skb);
4465 if (!hash)
4466 goto done;
4467
4468 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4469 if (flow_table && sock_flow_table) {
4470 struct rps_dev_flow *rflow;
4471 u32 next_cpu;
4472 u32 ident;
4473
4474 /* First check into global flow table if there is a match.
4475 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4476 */
4477 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4478 if ((ident ^ hash) & ~rps_cpu_mask)
4479 goto try_rps;
4480
4481 next_cpu = ident & rps_cpu_mask;
4482
4483 /* OK, now we know there is a match,
4484 * we can look at the local (per receive queue) flow table
4485 */
4486 rflow = &flow_table->flows[hash & flow_table->mask];
4487 tcpu = rflow->cpu;
4488
4489 /*
4490 * If the desired CPU (where last recvmsg was done) is
4491 * different from current CPU (one in the rx-queue flow
4492 * table entry), switch if one of the following holds:
4493 * - Current CPU is unset (>= nr_cpu_ids).
4494 * - Current CPU is offline.
4495 * - The current CPU's queue tail has advanced beyond the
4496 * last packet that was enqueued using this table entry.
4497 * This guarantees that all previous packets for the flow
4498 * have been dequeued, thus preserving in order delivery.
4499 */
4500 if (unlikely(tcpu != next_cpu) &&
4501 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4502 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4503 rflow->last_qtail)) >= 0)) {
4504 tcpu = next_cpu;
4505 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4506 }
4507
4508 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4509 *rflowp = rflow;
4510 cpu = tcpu;
4511 goto done;
4512 }
4513 }
4514
4515try_rps:
4516
4517 if (map) {
4518 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4519 if (cpu_online(tcpu)) {
4520 cpu = tcpu;
4521 goto done;
4522 }
4523 }
4524
4525done:
4526 return cpu;
4527}
4528
4529#ifdef CONFIG_RFS_ACCEL
4530
4531/**
4532 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4533 * @dev: Device on which the filter was set
4534 * @rxq_index: RX queue index
4535 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4536 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4537 *
4538 * Drivers that implement ndo_rx_flow_steer() should periodically call
4539 * this function for each installed filter and remove the filters for
4540 * which it returns %true.
4541 */
4542bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4543 u32 flow_id, u16 filter_id)
4544{
4545 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4546 struct rps_dev_flow_table *flow_table;
4547 struct rps_dev_flow *rflow;
4548 bool expire = true;
4549 unsigned int cpu;
4550
4551 rcu_read_lock();
4552 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4553 if (flow_table && flow_id <= flow_table->mask) {
4554 rflow = &flow_table->flows[flow_id];
4555 cpu = READ_ONCE(rflow->cpu);
4556 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4557 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4558 rflow->last_qtail) <
4559 (int)(10 * flow_table->mask)))
4560 expire = false;
4561 }
4562 rcu_read_unlock();
4563 return expire;
4564}
4565EXPORT_SYMBOL(rps_may_expire_flow);
4566
4567#endif /* CONFIG_RFS_ACCEL */
4568
4569/* Called from hardirq (IPI) context */
4570static void rps_trigger_softirq(void *data)
4571{
4572 struct softnet_data *sd = data;
4573
4574 ____napi_schedule(sd, &sd->backlog);
4575 sd->received_rps++;
4576}
4577
4578#endif /* CONFIG_RPS */
4579
4580/* Called from hardirq (IPI) context */
4581static void trigger_rx_softirq(void *data)
4582{
4583 struct softnet_data *sd = data;
4584
4585 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4586 smp_store_release(&sd->defer_ipi_scheduled, 0);
4587}
4588
4589/*
4590 * After we queued a packet into sd->input_pkt_queue,
4591 * we need to make sure this queue is serviced soon.
4592 *
4593 * - If this is another cpu queue, link it to our rps_ipi_list,
4594 * and make sure we will process rps_ipi_list from net_rx_action().
4595 *
4596 * - If this is our own queue, NAPI schedule our backlog.
4597 * Note that this also raises NET_RX_SOFTIRQ.
4598 */
4599static void napi_schedule_rps(struct softnet_data *sd)
4600{
4601 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4602
4603#ifdef CONFIG_RPS
4604 if (sd != mysd) {
4605 sd->rps_ipi_next = mysd->rps_ipi_list;
4606 mysd->rps_ipi_list = sd;
4607
4608 /* If not called from net_rx_action() or napi_threaded_poll()
4609 * we have to raise NET_RX_SOFTIRQ.
4610 */
4611 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4612 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4613 return;
4614 }
4615#endif /* CONFIG_RPS */
4616 __napi_schedule_irqoff(&mysd->backlog);
4617}
4618
4619#ifdef CONFIG_NET_FLOW_LIMIT
4620int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4621#endif
4622
4623static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4624{
4625#ifdef CONFIG_NET_FLOW_LIMIT
4626 struct sd_flow_limit *fl;
4627 struct softnet_data *sd;
4628 unsigned int old_flow, new_flow;
4629
4630 if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4631 return false;
4632
4633 sd = this_cpu_ptr(&softnet_data);
4634
4635 rcu_read_lock();
4636 fl = rcu_dereference(sd->flow_limit);
4637 if (fl) {
4638 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4639 old_flow = fl->history[fl->history_head];
4640 fl->history[fl->history_head] = new_flow;
4641
4642 fl->history_head++;
4643 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4644
4645 if (likely(fl->buckets[old_flow]))
4646 fl->buckets[old_flow]--;
4647
4648 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4649 fl->count++;
4650 rcu_read_unlock();
4651 return true;
4652 }
4653 }
4654 rcu_read_unlock();
4655#endif
4656 return false;
4657}
4658
4659/*
4660 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4661 * queue (may be a remote CPU queue).
4662 */
4663static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4664 unsigned int *qtail)
4665{
4666 enum skb_drop_reason reason;
4667 struct softnet_data *sd;
4668 unsigned long flags;
4669 unsigned int qlen;
4670
4671 reason = SKB_DROP_REASON_NOT_SPECIFIED;
4672 sd = &per_cpu(softnet_data, cpu);
4673
4674 rps_lock_irqsave(sd, &flags);
4675 if (!netif_running(skb->dev))
4676 goto drop;
4677 qlen = skb_queue_len(&sd->input_pkt_queue);
4678 if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4679 if (qlen) {
4680enqueue:
4681 __skb_queue_tail(&sd->input_pkt_queue, skb);
4682 input_queue_tail_incr_save(sd, qtail);
4683 rps_unlock_irq_restore(sd, &flags);
4684 return NET_RX_SUCCESS;
4685 }
4686
4687 /* Schedule NAPI for backlog device
4688 * We can use non atomic operation since we own the queue lock
4689 */
4690 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4691 napi_schedule_rps(sd);
4692 goto enqueue;
4693 }
4694 reason = SKB_DROP_REASON_CPU_BACKLOG;
4695
4696drop:
4697 sd->dropped++;
4698 rps_unlock_irq_restore(sd, &flags);
4699
4700 dev_core_stats_rx_dropped_inc(skb->dev);
4701 kfree_skb_reason(skb, reason);
4702 return NET_RX_DROP;
4703}
4704
4705static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4706{
4707 struct net_device *dev = skb->dev;
4708 struct netdev_rx_queue *rxqueue;
4709
4710 rxqueue = dev->_rx;
4711
4712 if (skb_rx_queue_recorded(skb)) {
4713 u16 index = skb_get_rx_queue(skb);
4714
4715 if (unlikely(index >= dev->real_num_rx_queues)) {
4716 WARN_ONCE(dev->real_num_rx_queues > 1,
4717 "%s received packet on queue %u, but number "
4718 "of RX queues is %u\n",
4719 dev->name, index, dev->real_num_rx_queues);
4720
4721 return rxqueue; /* Return first rxqueue */
4722 }
4723 rxqueue += index;
4724 }
4725 return rxqueue;
4726}
4727
4728u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4729 struct bpf_prog *xdp_prog)
4730{
4731 void *orig_data, *orig_data_end, *hard_start;
4732 struct netdev_rx_queue *rxqueue;
4733 bool orig_bcast, orig_host;
4734 u32 mac_len, frame_sz;
4735 __be16 orig_eth_type;
4736 struct ethhdr *eth;
4737 u32 metalen, act;
4738 int off;
4739
4740 /* The XDP program wants to see the packet starting at the MAC
4741 * header.
4742 */
4743 mac_len = skb->data - skb_mac_header(skb);
4744 hard_start = skb->data - skb_headroom(skb);
4745
4746 /* SKB "head" area always have tailroom for skb_shared_info */
4747 frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4748 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4749
4750 rxqueue = netif_get_rxqueue(skb);
4751 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4752 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4753 skb_headlen(skb) + mac_len, true);
4754
4755 orig_data_end = xdp->data_end;
4756 orig_data = xdp->data;
4757 eth = (struct ethhdr *)xdp->data;
4758 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4759 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4760 orig_eth_type = eth->h_proto;
4761
4762 act = bpf_prog_run_xdp(xdp_prog, xdp);
4763
4764 /* check if bpf_xdp_adjust_head was used */
4765 off = xdp->data - orig_data;
4766 if (off) {
4767 if (off > 0)
4768 __skb_pull(skb, off);
4769 else if (off < 0)
4770 __skb_push(skb, -off);
4771
4772 skb->mac_header += off;
4773 skb_reset_network_header(skb);
4774 }
4775
4776 /* check if bpf_xdp_adjust_tail was used */
4777 off = xdp->data_end - orig_data_end;
4778 if (off != 0) {
4779 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4780 skb->len += off; /* positive on grow, negative on shrink */
4781 }
4782
4783 /* check if XDP changed eth hdr such SKB needs update */
4784 eth = (struct ethhdr *)xdp->data;
4785 if ((orig_eth_type != eth->h_proto) ||
4786 (orig_host != ether_addr_equal_64bits(eth->h_dest,
4787 skb->dev->dev_addr)) ||
4788 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4789 __skb_push(skb, ETH_HLEN);
4790 skb->pkt_type = PACKET_HOST;
4791 skb->protocol = eth_type_trans(skb, skb->dev);
4792 }
4793
4794 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4795 * before calling us again on redirect path. We do not call do_redirect
4796 * as we leave that up to the caller.
4797 *
4798 * Caller is responsible for managing lifetime of skb (i.e. calling
4799 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4800 */
4801 switch (act) {
4802 case XDP_REDIRECT:
4803 case XDP_TX:
4804 __skb_push(skb, mac_len);
4805 break;
4806 case XDP_PASS:
4807 metalen = xdp->data - xdp->data_meta;
4808 if (metalen)
4809 skb_metadata_set(skb, metalen);
4810 break;
4811 }
4812
4813 return act;
4814}
4815
4816static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4817 struct xdp_buff *xdp,
4818 struct bpf_prog *xdp_prog)
4819{
4820 u32 act = XDP_DROP;
4821
4822 /* Reinjected packets coming from act_mirred or similar should
4823 * not get XDP generic processing.
4824 */
4825 if (skb_is_redirected(skb))
4826 return XDP_PASS;
4827
4828 /* XDP packets must be linear and must have sufficient headroom
4829 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4830 * native XDP provides, thus we need to do it here as well.
4831 */
4832 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4833 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4834 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4835 int troom = skb->tail + skb->data_len - skb->end;
4836
4837 /* In case we have to go down the path and also linearize,
4838 * then lets do the pskb_expand_head() work just once here.
4839 */
4840 if (pskb_expand_head(skb,
4841 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4842 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4843 goto do_drop;
4844 if (skb_linearize(skb))
4845 goto do_drop;
4846 }
4847
4848 act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4849 switch (act) {
4850 case XDP_REDIRECT:
4851 case XDP_TX:
4852 case XDP_PASS:
4853 break;
4854 default:
4855 bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4856 fallthrough;
4857 case XDP_ABORTED:
4858 trace_xdp_exception(skb->dev, xdp_prog, act);
4859 fallthrough;
4860 case XDP_DROP:
4861 do_drop:
4862 kfree_skb(skb);
4863 break;
4864 }
4865
4866 return act;
4867}
4868
4869/* When doing generic XDP we have to bypass the qdisc layer and the
4870 * network taps in order to match in-driver-XDP behavior. This also means
4871 * that XDP packets are able to starve other packets going through a qdisc,
4872 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
4873 * queues, so they do not have this starvation issue.
4874 */
4875void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
4876{
4877 struct net_device *dev = skb->dev;
4878 struct netdev_queue *txq;
4879 bool free_skb = true;
4880 int cpu, rc;
4881
4882 txq = netdev_core_pick_tx(dev, skb, NULL);
4883 cpu = smp_processor_id();
4884 HARD_TX_LOCK(dev, txq, cpu);
4885 if (!netif_xmit_frozen_or_drv_stopped(txq)) {
4886 rc = netdev_start_xmit(skb, dev, txq, 0);
4887 if (dev_xmit_complete(rc))
4888 free_skb = false;
4889 }
4890 HARD_TX_UNLOCK(dev, txq);
4891 if (free_skb) {
4892 trace_xdp_exception(dev, xdp_prog, XDP_TX);
4893 dev_core_stats_tx_dropped_inc(dev);
4894 kfree_skb(skb);
4895 }
4896}
4897
4898static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
4899
4900int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
4901{
4902 if (xdp_prog) {
4903 struct xdp_buff xdp;
4904 u32 act;
4905 int err;
4906
4907 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
4908 if (act != XDP_PASS) {
4909 switch (act) {
4910 case XDP_REDIRECT:
4911 err = xdp_do_generic_redirect(skb->dev, skb,
4912 &xdp, xdp_prog);
4913 if (err)
4914 goto out_redir;
4915 break;
4916 case XDP_TX:
4917 generic_xdp_tx(skb, xdp_prog);
4918 break;
4919 }
4920 return XDP_DROP;
4921 }
4922 }
4923 return XDP_PASS;
4924out_redir:
4925 kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
4926 return XDP_DROP;
4927}
4928EXPORT_SYMBOL_GPL(do_xdp_generic);
4929
4930static int netif_rx_internal(struct sk_buff *skb)
4931{
4932 int ret;
4933
4934 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
4935
4936 trace_netif_rx(skb);
4937
4938#ifdef CONFIG_RPS
4939 if (static_branch_unlikely(&rps_needed)) {
4940 struct rps_dev_flow voidflow, *rflow = &voidflow;
4941 int cpu;
4942
4943 rcu_read_lock();
4944
4945 cpu = get_rps_cpu(skb->dev, skb, &rflow);
4946 if (cpu < 0)
4947 cpu = smp_processor_id();
4948
4949 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
4950
4951 rcu_read_unlock();
4952 } else
4953#endif
4954 {
4955 unsigned int qtail;
4956
4957 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
4958 }
4959 return ret;
4960}
4961
4962/**
4963 * __netif_rx - Slightly optimized version of netif_rx
4964 * @skb: buffer to post
4965 *
4966 * This behaves as netif_rx except that it does not disable bottom halves.
4967 * As a result this function may only be invoked from the interrupt context
4968 * (either hard or soft interrupt).
4969 */
4970int __netif_rx(struct sk_buff *skb)
4971{
4972 int ret;
4973
4974 lockdep_assert_once(hardirq_count() | softirq_count());
4975
4976 trace_netif_rx_entry(skb);
4977 ret = netif_rx_internal(skb);
4978 trace_netif_rx_exit(ret);
4979 return ret;
4980}
4981EXPORT_SYMBOL(__netif_rx);
4982
4983/**
4984 * netif_rx - post buffer to the network code
4985 * @skb: buffer to post
4986 *
4987 * This function receives a packet from a device driver and queues it for
4988 * the upper (protocol) levels to process via the backlog NAPI device. It
4989 * always succeeds. The buffer may be dropped during processing for
4990 * congestion control or by the protocol layers.
4991 * The network buffer is passed via the backlog NAPI device. Modern NIC
4992 * driver should use NAPI and GRO.
4993 * This function can used from interrupt and from process context. The
4994 * caller from process context must not disable interrupts before invoking
4995 * this function.
4996 *
4997 * return values:
4998 * NET_RX_SUCCESS (no congestion)
4999 * NET_RX_DROP (packet was dropped)
5000 *
5001 */
5002int netif_rx(struct sk_buff *skb)
5003{
5004 bool need_bh_off = !(hardirq_count() | softirq_count());
5005 int ret;
5006
5007 if (need_bh_off)
5008 local_bh_disable();
5009 trace_netif_rx_entry(skb);
5010 ret = netif_rx_internal(skb);
5011 trace_netif_rx_exit(ret);
5012 if (need_bh_off)
5013 local_bh_enable();
5014 return ret;
5015}
5016EXPORT_SYMBOL(netif_rx);
5017
5018static __latent_entropy void net_tx_action(struct softirq_action *h)
5019{
5020 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5021
5022 if (sd->completion_queue) {
5023 struct sk_buff *clist;
5024
5025 local_irq_disable();
5026 clist = sd->completion_queue;
5027 sd->completion_queue = NULL;
5028 local_irq_enable();
5029
5030 while (clist) {
5031 struct sk_buff *skb = clist;
5032
5033 clist = clist->next;
5034
5035 WARN_ON(refcount_read(&skb->users));
5036 if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5037 trace_consume_skb(skb, net_tx_action);
5038 else
5039 trace_kfree_skb(skb, net_tx_action,
5040 get_kfree_skb_cb(skb)->reason);
5041
5042 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5043 __kfree_skb(skb);
5044 else
5045 __napi_kfree_skb(skb,
5046 get_kfree_skb_cb(skb)->reason);
5047 }
5048 }
5049
5050 if (sd->output_queue) {
5051 struct Qdisc *head;
5052
5053 local_irq_disable();
5054 head = sd->output_queue;
5055 sd->output_queue = NULL;
5056 sd->output_queue_tailp = &sd->output_queue;
5057 local_irq_enable();
5058
5059 rcu_read_lock();
5060
5061 while (head) {
5062 struct Qdisc *q = head;
5063 spinlock_t *root_lock = NULL;
5064
5065 head = head->next_sched;
5066
5067 /* We need to make sure head->next_sched is read
5068 * before clearing __QDISC_STATE_SCHED
5069 */
5070 smp_mb__before_atomic();
5071
5072 if (!(q->flags & TCQ_F_NOLOCK)) {
5073 root_lock = qdisc_lock(q);
5074 spin_lock(root_lock);
5075 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5076 &q->state))) {
5077 /* There is a synchronize_net() between
5078 * STATE_DEACTIVATED flag being set and
5079 * qdisc_reset()/some_qdisc_is_busy() in
5080 * dev_deactivate(), so we can safely bail out
5081 * early here to avoid data race between
5082 * qdisc_deactivate() and some_qdisc_is_busy()
5083 * for lockless qdisc.
5084 */
5085 clear_bit(__QDISC_STATE_SCHED, &q->state);
5086 continue;
5087 }
5088
5089 clear_bit(__QDISC_STATE_SCHED, &q->state);
5090 qdisc_run(q);
5091 if (root_lock)
5092 spin_unlock(root_lock);
5093 }
5094
5095 rcu_read_unlock();
5096 }
5097
5098 xfrm_dev_backlog(sd);
5099}
5100
5101#if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5102/* This hook is defined here for ATM LANE */
5103int (*br_fdb_test_addr_hook)(struct net_device *dev,
5104 unsigned char *addr) __read_mostly;
5105EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5106#endif
5107
5108static inline struct sk_buff *
5109sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
5110 struct net_device *orig_dev, bool *another)
5111{
5112#ifdef CONFIG_NET_CLS_ACT
5113 struct mini_Qdisc *miniq = rcu_dereference_bh(skb->dev->miniq_ingress);
5114 struct tcf_result cl_res;
5115
5116 /* If there's at least one ingress present somewhere (so
5117 * we get here via enabled static key), remaining devices
5118 * that are not configured with an ingress qdisc will bail
5119 * out here.
5120 */
5121 if (!miniq)
5122 return skb;
5123
5124 if (*pt_prev) {
5125 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5126 *pt_prev = NULL;
5127 }
5128
5129 qdisc_skb_cb(skb)->pkt_len = skb->len;
5130 tc_skb_cb(skb)->mru = 0;
5131 tc_skb_cb(skb)->post_ct = false;
5132 skb->tc_at_ingress = 1;
5133 mini_qdisc_bstats_cpu_update(miniq, skb);
5134
5135 switch (tcf_classify(skb, miniq->block, miniq->filter_list, &cl_res, false)) {
5136 case TC_ACT_OK:
5137 case TC_ACT_RECLASSIFY:
5138 skb->tc_index = TC_H_MIN(cl_res.classid);
5139 break;
5140 case TC_ACT_SHOT:
5141 mini_qdisc_qstats_cpu_drop(miniq);
5142 kfree_skb_reason(skb, SKB_DROP_REASON_TC_INGRESS);
5143 *ret = NET_RX_DROP;
5144 return NULL;
5145 case TC_ACT_STOLEN:
5146 case TC_ACT_QUEUED:
5147 case TC_ACT_TRAP:
5148 consume_skb(skb);
5149 *ret = NET_RX_SUCCESS;
5150 return NULL;
5151 case TC_ACT_REDIRECT:
5152 /* skb_mac_header check was done by cls/act_bpf, so
5153 * we can safely push the L2 header back before
5154 * redirecting to another netdev
5155 */
5156 __skb_push(skb, skb->mac_len);
5157 if (skb_do_redirect(skb) == -EAGAIN) {
5158 __skb_pull(skb, skb->mac_len);
5159 *another = true;
5160 break;
5161 }
5162 *ret = NET_RX_SUCCESS;
5163 return NULL;
5164 case TC_ACT_CONSUMED:
5165 *ret = NET_RX_SUCCESS;
5166 return NULL;
5167 default:
5168 break;
5169 }
5170#endif /* CONFIG_NET_CLS_ACT */
5171 return skb;
5172}
5173
5174/**
5175 * netdev_is_rx_handler_busy - check if receive handler is registered
5176 * @dev: device to check
5177 *
5178 * Check if a receive handler is already registered for a given device.
5179 * Return true if there one.
5180 *
5181 * The caller must hold the rtnl_mutex.
5182 */
5183bool netdev_is_rx_handler_busy(struct net_device *dev)
5184{
5185 ASSERT_RTNL();
5186 return dev && rtnl_dereference(dev->rx_handler);
5187}
5188EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5189
5190/**
5191 * netdev_rx_handler_register - register receive handler
5192 * @dev: device to register a handler for
5193 * @rx_handler: receive handler to register
5194 * @rx_handler_data: data pointer that is used by rx handler
5195 *
5196 * Register a receive handler for a device. This handler will then be
5197 * called from __netif_receive_skb. A negative errno code is returned
5198 * on a failure.
5199 *
5200 * The caller must hold the rtnl_mutex.
5201 *
5202 * For a general description of rx_handler, see enum rx_handler_result.
5203 */
5204int netdev_rx_handler_register(struct net_device *dev,
5205 rx_handler_func_t *rx_handler,
5206 void *rx_handler_data)
5207{
5208 if (netdev_is_rx_handler_busy(dev))
5209 return -EBUSY;
5210
5211 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5212 return -EINVAL;
5213
5214 /* Note: rx_handler_data must be set before rx_handler */
5215 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5216 rcu_assign_pointer(dev->rx_handler, rx_handler);
5217
5218 return 0;
5219}
5220EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5221
5222/**
5223 * netdev_rx_handler_unregister - unregister receive handler
5224 * @dev: device to unregister a handler from
5225 *
5226 * Unregister a receive handler from a device.
5227 *
5228 * The caller must hold the rtnl_mutex.
5229 */
5230void netdev_rx_handler_unregister(struct net_device *dev)
5231{
5232
5233 ASSERT_RTNL();
5234 RCU_INIT_POINTER(dev->rx_handler, NULL);
5235 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5236 * section has a guarantee to see a non NULL rx_handler_data
5237 * as well.
5238 */
5239 synchronize_net();
5240 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5241}
5242EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5243
5244/*
5245 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5246 * the special handling of PFMEMALLOC skbs.
5247 */
5248static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5249{
5250 switch (skb->protocol) {
5251 case htons(ETH_P_ARP):
5252 case htons(ETH_P_IP):
5253 case htons(ETH_P_IPV6):
5254 case htons(ETH_P_8021Q):
5255 case htons(ETH_P_8021AD):
5256 return true;
5257 default:
5258 return false;
5259 }
5260}
5261
5262static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5263 int *ret, struct net_device *orig_dev)
5264{
5265 if (nf_hook_ingress_active(skb)) {
5266 int ingress_retval;
5267
5268 if (*pt_prev) {
5269 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5270 *pt_prev = NULL;
5271 }
5272
5273 rcu_read_lock();
5274 ingress_retval = nf_hook_ingress(skb);
5275 rcu_read_unlock();
5276 return ingress_retval;
5277 }
5278 return 0;
5279}
5280
5281static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5282 struct packet_type **ppt_prev)
5283{
5284 struct packet_type *ptype, *pt_prev;
5285 rx_handler_func_t *rx_handler;
5286 struct sk_buff *skb = *pskb;
5287 struct net_device *orig_dev;
5288 bool deliver_exact = false;
5289 int ret = NET_RX_DROP;
5290 __be16 type;
5291
5292 net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5293
5294 trace_netif_receive_skb(skb);
5295
5296 orig_dev = skb->dev;
5297
5298 skb_reset_network_header(skb);
5299 if (!skb_transport_header_was_set(skb))
5300 skb_reset_transport_header(skb);
5301 skb_reset_mac_len(skb);
5302
5303 pt_prev = NULL;
5304
5305another_round:
5306 skb->skb_iif = skb->dev->ifindex;
5307
5308 __this_cpu_inc(softnet_data.processed);
5309
5310 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5311 int ret2;
5312
5313 migrate_disable();
5314 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5315 migrate_enable();
5316
5317 if (ret2 != XDP_PASS) {
5318 ret = NET_RX_DROP;
5319 goto out;
5320 }
5321 }
5322
5323 if (eth_type_vlan(skb->protocol)) {
5324 skb = skb_vlan_untag(skb);
5325 if (unlikely(!skb))
5326 goto out;
5327 }
5328
5329 if (skb_skip_tc_classify(skb))
5330 goto skip_classify;
5331
5332 if (pfmemalloc)
5333 goto skip_taps;
5334
5335 list_for_each_entry_rcu(ptype, &ptype_all, list) {
5336 if (pt_prev)
5337 ret = deliver_skb(skb, pt_prev, orig_dev);
5338 pt_prev = ptype;
5339 }
5340
5341 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5342 if (pt_prev)
5343 ret = deliver_skb(skb, pt_prev, orig_dev);
5344 pt_prev = ptype;
5345 }
5346
5347skip_taps:
5348#ifdef CONFIG_NET_INGRESS
5349 if (static_branch_unlikely(&ingress_needed_key)) {
5350 bool another = false;
5351
5352 nf_skip_egress(skb, true);
5353 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5354 &another);
5355 if (another)
5356 goto another_round;
5357 if (!skb)
5358 goto out;
5359
5360 nf_skip_egress(skb, false);
5361 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5362 goto out;
5363 }
5364#endif
5365 skb_reset_redirect(skb);
5366skip_classify:
5367 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5368 goto drop;
5369
5370 if (skb_vlan_tag_present(skb)) {
5371 if (pt_prev) {
5372 ret = deliver_skb(skb, pt_prev, orig_dev);
5373 pt_prev = NULL;
5374 }
5375 if (vlan_do_receive(&skb))
5376 goto another_round;
5377 else if (unlikely(!skb))
5378 goto out;
5379 }
5380
5381 rx_handler = rcu_dereference(skb->dev->rx_handler);
5382 if (rx_handler) {
5383 if (pt_prev) {
5384 ret = deliver_skb(skb, pt_prev, orig_dev);
5385 pt_prev = NULL;
5386 }
5387 switch (rx_handler(&skb)) {
5388 case RX_HANDLER_CONSUMED:
5389 ret = NET_RX_SUCCESS;
5390 goto out;
5391 case RX_HANDLER_ANOTHER:
5392 goto another_round;
5393 case RX_HANDLER_EXACT:
5394 deliver_exact = true;
5395 break;
5396 case RX_HANDLER_PASS:
5397 break;
5398 default:
5399 BUG();
5400 }
5401 }
5402
5403 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5404check_vlan_id:
5405 if (skb_vlan_tag_get_id(skb)) {
5406 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5407 * find vlan device.
5408 */
5409 skb->pkt_type = PACKET_OTHERHOST;
5410 } else if (eth_type_vlan(skb->protocol)) {
5411 /* Outer header is 802.1P with vlan 0, inner header is
5412 * 802.1Q or 802.1AD and vlan_do_receive() above could
5413 * not find vlan dev for vlan id 0.
5414 */
5415 __vlan_hwaccel_clear_tag(skb);
5416 skb = skb_vlan_untag(skb);
5417 if (unlikely(!skb))
5418 goto out;
5419 if (vlan_do_receive(&skb))
5420 /* After stripping off 802.1P header with vlan 0
5421 * vlan dev is found for inner header.
5422 */
5423 goto another_round;
5424 else if (unlikely(!skb))
5425 goto out;
5426 else
5427 /* We have stripped outer 802.1P vlan 0 header.
5428 * But could not find vlan dev.
5429 * check again for vlan id to set OTHERHOST.
5430 */
5431 goto check_vlan_id;
5432 }
5433 /* Note: we might in the future use prio bits
5434 * and set skb->priority like in vlan_do_receive()
5435 * For the time being, just ignore Priority Code Point
5436 */
5437 __vlan_hwaccel_clear_tag(skb);
5438 }
5439
5440 type = skb->protocol;
5441
5442 /* deliver only exact match when indicated */
5443 if (likely(!deliver_exact)) {
5444 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5445 &ptype_base[ntohs(type) &
5446 PTYPE_HASH_MASK]);
5447 }
5448
5449 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5450 &orig_dev->ptype_specific);
5451
5452 if (unlikely(skb->dev != orig_dev)) {
5453 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5454 &skb->dev->ptype_specific);
5455 }
5456
5457 if (pt_prev) {
5458 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5459 goto drop;
5460 *ppt_prev = pt_prev;
5461 } else {
5462drop:
5463 if (!deliver_exact)
5464 dev_core_stats_rx_dropped_inc(skb->dev);
5465 else
5466 dev_core_stats_rx_nohandler_inc(skb->dev);
5467 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5468 /* Jamal, now you will not able to escape explaining
5469 * me how you were going to use this. :-)
5470 */
5471 ret = NET_RX_DROP;
5472 }
5473
5474out:
5475 /* The invariant here is that if *ppt_prev is not NULL
5476 * then skb should also be non-NULL.
5477 *
5478 * Apparently *ppt_prev assignment above holds this invariant due to
5479 * skb dereferencing near it.
5480 */
5481 *pskb = skb;
5482 return ret;
5483}
5484
5485static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5486{
5487 struct net_device *orig_dev = skb->dev;
5488 struct packet_type *pt_prev = NULL;
5489 int ret;
5490
5491 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5492 if (pt_prev)
5493 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5494 skb->dev, pt_prev, orig_dev);
5495 return ret;
5496}
5497
5498/**
5499 * netif_receive_skb_core - special purpose version of netif_receive_skb
5500 * @skb: buffer to process
5501 *
5502 * More direct receive version of netif_receive_skb(). It should
5503 * only be used by callers that have a need to skip RPS and Generic XDP.
5504 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5505 *
5506 * This function may only be called from softirq context and interrupts
5507 * should be enabled.
5508 *
5509 * Return values (usually ignored):
5510 * NET_RX_SUCCESS: no congestion
5511 * NET_RX_DROP: packet was dropped
5512 */
5513int netif_receive_skb_core(struct sk_buff *skb)
5514{
5515 int ret;
5516
5517 rcu_read_lock();
5518 ret = __netif_receive_skb_one_core(skb, false);
5519 rcu_read_unlock();
5520
5521 return ret;
5522}
5523EXPORT_SYMBOL(netif_receive_skb_core);
5524
5525static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5526 struct packet_type *pt_prev,
5527 struct net_device *orig_dev)
5528{
5529 struct sk_buff *skb, *next;
5530
5531 if (!pt_prev)
5532 return;
5533 if (list_empty(head))
5534 return;
5535 if (pt_prev->list_func != NULL)
5536 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5537 ip_list_rcv, head, pt_prev, orig_dev);
5538 else
5539 list_for_each_entry_safe(skb, next, head, list) {
5540 skb_list_del_init(skb);
5541 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5542 }
5543}
5544
5545static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5546{
5547 /* Fast-path assumptions:
5548 * - There is no RX handler.
5549 * - Only one packet_type matches.
5550 * If either of these fails, we will end up doing some per-packet
5551 * processing in-line, then handling the 'last ptype' for the whole
5552 * sublist. This can't cause out-of-order delivery to any single ptype,
5553 * because the 'last ptype' must be constant across the sublist, and all
5554 * other ptypes are handled per-packet.
5555 */
5556 /* Current (common) ptype of sublist */
5557 struct packet_type *pt_curr = NULL;
5558 /* Current (common) orig_dev of sublist */
5559 struct net_device *od_curr = NULL;
5560 struct list_head sublist;
5561 struct sk_buff *skb, *next;
5562
5563 INIT_LIST_HEAD(&sublist);
5564 list_for_each_entry_safe(skb, next, head, list) {
5565 struct net_device *orig_dev = skb->dev;
5566 struct packet_type *pt_prev = NULL;
5567
5568 skb_list_del_init(skb);
5569 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5570 if (!pt_prev)
5571 continue;
5572 if (pt_curr != pt_prev || od_curr != orig_dev) {
5573 /* dispatch old sublist */
5574 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5575 /* start new sublist */
5576 INIT_LIST_HEAD(&sublist);
5577 pt_curr = pt_prev;
5578 od_curr = orig_dev;
5579 }
5580 list_add_tail(&skb->list, &sublist);
5581 }
5582
5583 /* dispatch final sublist */
5584 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5585}
5586
5587static int __netif_receive_skb(struct sk_buff *skb)
5588{
5589 int ret;
5590
5591 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5592 unsigned int noreclaim_flag;
5593
5594 /*
5595 * PFMEMALLOC skbs are special, they should
5596 * - be delivered to SOCK_MEMALLOC sockets only
5597 * - stay away from userspace
5598 * - have bounded memory usage
5599 *
5600 * Use PF_MEMALLOC as this saves us from propagating the allocation
5601 * context down to all allocation sites.
5602 */
5603 noreclaim_flag = memalloc_noreclaim_save();
5604 ret = __netif_receive_skb_one_core(skb, true);
5605 memalloc_noreclaim_restore(noreclaim_flag);
5606 } else
5607 ret = __netif_receive_skb_one_core(skb, false);
5608
5609 return ret;
5610}
5611
5612static void __netif_receive_skb_list(struct list_head *head)
5613{
5614 unsigned long noreclaim_flag = 0;
5615 struct sk_buff *skb, *next;
5616 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5617
5618 list_for_each_entry_safe(skb, next, head, list) {
5619 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5620 struct list_head sublist;
5621
5622 /* Handle the previous sublist */
5623 list_cut_before(&sublist, head, &skb->list);
5624 if (!list_empty(&sublist))
5625 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5626 pfmemalloc = !pfmemalloc;
5627 /* See comments in __netif_receive_skb */
5628 if (pfmemalloc)
5629 noreclaim_flag = memalloc_noreclaim_save();
5630 else
5631 memalloc_noreclaim_restore(noreclaim_flag);
5632 }
5633 }
5634 /* Handle the remaining sublist */
5635 if (!list_empty(head))
5636 __netif_receive_skb_list_core(head, pfmemalloc);
5637 /* Restore pflags */
5638 if (pfmemalloc)
5639 memalloc_noreclaim_restore(noreclaim_flag);
5640}
5641
5642static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5643{
5644 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5645 struct bpf_prog *new = xdp->prog;
5646 int ret = 0;
5647
5648 switch (xdp->command) {
5649 case XDP_SETUP_PROG:
5650 rcu_assign_pointer(dev->xdp_prog, new);
5651 if (old)
5652 bpf_prog_put(old);
5653
5654 if (old && !new) {
5655 static_branch_dec(&generic_xdp_needed_key);
5656 } else if (new && !old) {
5657 static_branch_inc(&generic_xdp_needed_key);
5658 dev_disable_lro(dev);
5659 dev_disable_gro_hw(dev);
5660 }
5661 break;
5662
5663 default:
5664 ret = -EINVAL;
5665 break;
5666 }
5667
5668 return ret;
5669}
5670
5671static int netif_receive_skb_internal(struct sk_buff *skb)
5672{
5673 int ret;
5674
5675 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5676
5677 if (skb_defer_rx_timestamp(skb))
5678 return NET_RX_SUCCESS;
5679
5680 rcu_read_lock();
5681#ifdef CONFIG_RPS
5682 if (static_branch_unlikely(&rps_needed)) {
5683 struct rps_dev_flow voidflow, *rflow = &voidflow;
5684 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5685
5686 if (cpu >= 0) {
5687 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5688 rcu_read_unlock();
5689 return ret;
5690 }
5691 }
5692#endif
5693 ret = __netif_receive_skb(skb);
5694 rcu_read_unlock();
5695 return ret;
5696}
5697
5698void netif_receive_skb_list_internal(struct list_head *head)
5699{
5700 struct sk_buff *skb, *next;
5701 struct list_head sublist;
5702
5703 INIT_LIST_HEAD(&sublist);
5704 list_for_each_entry_safe(skb, next, head, list) {
5705 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5706 skb_list_del_init(skb);
5707 if (!skb_defer_rx_timestamp(skb))
5708 list_add_tail(&skb->list, &sublist);
5709 }
5710 list_splice_init(&sublist, head);
5711
5712 rcu_read_lock();
5713#ifdef CONFIG_RPS
5714 if (static_branch_unlikely(&rps_needed)) {
5715 list_for_each_entry_safe(skb, next, head, list) {
5716 struct rps_dev_flow voidflow, *rflow = &voidflow;
5717 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5718
5719 if (cpu >= 0) {
5720 /* Will be handled, remove from list */
5721 skb_list_del_init(skb);
5722 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5723 }
5724 }
5725 }
5726#endif
5727 __netif_receive_skb_list(head);
5728 rcu_read_unlock();
5729}
5730
5731/**
5732 * netif_receive_skb - process receive buffer from network
5733 * @skb: buffer to process
5734 *
5735 * netif_receive_skb() is the main receive data processing function.
5736 * It always succeeds. The buffer may be dropped during processing
5737 * for congestion control or by the protocol layers.
5738 *
5739 * This function may only be called from softirq context and interrupts
5740 * should be enabled.
5741 *
5742 * Return values (usually ignored):
5743 * NET_RX_SUCCESS: no congestion
5744 * NET_RX_DROP: packet was dropped
5745 */
5746int netif_receive_skb(struct sk_buff *skb)
5747{
5748 int ret;
5749
5750 trace_netif_receive_skb_entry(skb);
5751
5752 ret = netif_receive_skb_internal(skb);
5753 trace_netif_receive_skb_exit(ret);
5754
5755 return ret;
5756}
5757EXPORT_SYMBOL(netif_receive_skb);
5758
5759/**
5760 * netif_receive_skb_list - process many receive buffers from network
5761 * @head: list of skbs to process.
5762 *
5763 * Since return value of netif_receive_skb() is normally ignored, and
5764 * wouldn't be meaningful for a list, this function returns void.
5765 *
5766 * This function may only be called from softirq context and interrupts
5767 * should be enabled.
5768 */
5769void netif_receive_skb_list(struct list_head *head)
5770{
5771 struct sk_buff *skb;
5772
5773 if (list_empty(head))
5774 return;
5775 if (trace_netif_receive_skb_list_entry_enabled()) {
5776 list_for_each_entry(skb, head, list)
5777 trace_netif_receive_skb_list_entry(skb);
5778 }
5779 netif_receive_skb_list_internal(head);
5780 trace_netif_receive_skb_list_exit(0);
5781}
5782EXPORT_SYMBOL(netif_receive_skb_list);
5783
5784static DEFINE_PER_CPU(struct work_struct, flush_works);
5785
5786/* Network device is going away, flush any packets still pending */
5787static void flush_backlog(struct work_struct *work)
5788{
5789 struct sk_buff *skb, *tmp;
5790 struct softnet_data *sd;
5791
5792 local_bh_disable();
5793 sd = this_cpu_ptr(&softnet_data);
5794
5795 rps_lock_irq_disable(sd);
5796 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5797 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5798 __skb_unlink(skb, &sd->input_pkt_queue);
5799 dev_kfree_skb_irq(skb);
5800 input_queue_head_incr(sd);
5801 }
5802 }
5803 rps_unlock_irq_enable(sd);
5804
5805 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5806 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5807 __skb_unlink(skb, &sd->process_queue);
5808 kfree_skb(skb);
5809 input_queue_head_incr(sd);
5810 }
5811 }
5812 local_bh_enable();
5813}
5814
5815static bool flush_required(int cpu)
5816{
5817#if IS_ENABLED(CONFIG_RPS)
5818 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5819 bool do_flush;
5820
5821 rps_lock_irq_disable(sd);
5822
5823 /* as insertion into process_queue happens with the rps lock held,
5824 * process_queue access may race only with dequeue
5825 */
5826 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5827 !skb_queue_empty_lockless(&sd->process_queue);
5828 rps_unlock_irq_enable(sd);
5829
5830 return do_flush;
5831#endif
5832 /* without RPS we can't safely check input_pkt_queue: during a
5833 * concurrent remote skb_queue_splice() we can detect as empty both
5834 * input_pkt_queue and process_queue even if the latter could end-up
5835 * containing a lot of packets.
5836 */
5837 return true;
5838}
5839
5840static void flush_all_backlogs(void)
5841{
5842 static cpumask_t flush_cpus;
5843 unsigned int cpu;
5844
5845 /* since we are under rtnl lock protection we can use static data
5846 * for the cpumask and avoid allocating on stack the possibly
5847 * large mask
5848 */
5849 ASSERT_RTNL();
5850
5851 cpus_read_lock();
5852
5853 cpumask_clear(&flush_cpus);
5854 for_each_online_cpu(cpu) {
5855 if (flush_required(cpu)) {
5856 queue_work_on(cpu, system_highpri_wq,
5857 per_cpu_ptr(&flush_works, cpu));
5858 cpumask_set_cpu(cpu, &flush_cpus);
5859 }
5860 }
5861
5862 /* we can have in flight packet[s] on the cpus we are not flushing,
5863 * synchronize_net() in unregister_netdevice_many() will take care of
5864 * them
5865 */
5866 for_each_cpu(cpu, &flush_cpus)
5867 flush_work(per_cpu_ptr(&flush_works, cpu));
5868
5869 cpus_read_unlock();
5870}
5871
5872static void net_rps_send_ipi(struct softnet_data *remsd)
5873{
5874#ifdef CONFIG_RPS
5875 while (remsd) {
5876 struct softnet_data *next = remsd->rps_ipi_next;
5877
5878 if (cpu_online(remsd->cpu))
5879 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5880 remsd = next;
5881 }
5882#endif
5883}
5884
5885/*
5886 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5887 * Note: called with local irq disabled, but exits with local irq enabled.
5888 */
5889static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5890{
5891#ifdef CONFIG_RPS
5892 struct softnet_data *remsd = sd->rps_ipi_list;
5893
5894 if (remsd) {
5895 sd->rps_ipi_list = NULL;
5896
5897 local_irq_enable();
5898
5899 /* Send pending IPI's to kick RPS processing on remote cpus. */
5900 net_rps_send_ipi(remsd);
5901 } else
5902#endif
5903 local_irq_enable();
5904}
5905
5906static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5907{
5908#ifdef CONFIG_RPS
5909 return sd->rps_ipi_list != NULL;
5910#else
5911 return false;
5912#endif
5913}
5914
5915static int process_backlog(struct napi_struct *napi, int quota)
5916{
5917 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5918 bool again = true;
5919 int work = 0;
5920
5921 /* Check if we have pending ipi, its better to send them now,
5922 * not waiting net_rx_action() end.
5923 */
5924 if (sd_has_rps_ipi_waiting(sd)) {
5925 local_irq_disable();
5926 net_rps_action_and_irq_enable(sd);
5927 }
5928
5929 napi->weight = READ_ONCE(dev_rx_weight);
5930 while (again) {
5931 struct sk_buff *skb;
5932
5933 while ((skb = __skb_dequeue(&sd->process_queue))) {
5934 rcu_read_lock();
5935 __netif_receive_skb(skb);
5936 rcu_read_unlock();
5937 input_queue_head_incr(sd);
5938 if (++work >= quota)
5939 return work;
5940
5941 }
5942
5943 rps_lock_irq_disable(sd);
5944 if (skb_queue_empty(&sd->input_pkt_queue)) {
5945 /*
5946 * Inline a custom version of __napi_complete().
5947 * only current cpu owns and manipulates this napi,
5948 * and NAPI_STATE_SCHED is the only possible flag set
5949 * on backlog.
5950 * We can use a plain write instead of clear_bit(),
5951 * and we dont need an smp_mb() memory barrier.
5952 */
5953 napi->state = 0;
5954 again = false;
5955 } else {
5956 skb_queue_splice_tail_init(&sd->input_pkt_queue,
5957 &sd->process_queue);
5958 }
5959 rps_unlock_irq_enable(sd);
5960 }
5961
5962 return work;
5963}
5964
5965/**
5966 * __napi_schedule - schedule for receive
5967 * @n: entry to schedule
5968 *
5969 * The entry's receive function will be scheduled to run.
5970 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
5971 */
5972void __napi_schedule(struct napi_struct *n)
5973{
5974 unsigned long flags;
5975
5976 local_irq_save(flags);
5977 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
5978 local_irq_restore(flags);
5979}
5980EXPORT_SYMBOL(__napi_schedule);
5981
5982/**
5983 * napi_schedule_prep - check if napi can be scheduled
5984 * @n: napi context
5985 *
5986 * Test if NAPI routine is already running, and if not mark
5987 * it as running. This is used as a condition variable to
5988 * insure only one NAPI poll instance runs. We also make
5989 * sure there is no pending NAPI disable.
5990 */
5991bool napi_schedule_prep(struct napi_struct *n)
5992{
5993 unsigned long new, val = READ_ONCE(n->state);
5994
5995 do {
5996 if (unlikely(val & NAPIF_STATE_DISABLE))
5997 return false;
5998 new = val | NAPIF_STATE_SCHED;
5999
6000 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6001 * This was suggested by Alexander Duyck, as compiler
6002 * emits better code than :
6003 * if (val & NAPIF_STATE_SCHED)
6004 * new |= NAPIF_STATE_MISSED;
6005 */
6006 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6007 NAPIF_STATE_MISSED;
6008 } while (!try_cmpxchg(&n->state, &val, new));
6009
6010 return !(val & NAPIF_STATE_SCHED);
6011}
6012EXPORT_SYMBOL(napi_schedule_prep);
6013
6014/**
6015 * __napi_schedule_irqoff - schedule for receive
6016 * @n: entry to schedule
6017 *
6018 * Variant of __napi_schedule() assuming hard irqs are masked.
6019 *
6020 * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6021 * because the interrupt disabled assumption might not be true
6022 * due to force-threaded interrupts and spinlock substitution.
6023 */
6024void __napi_schedule_irqoff(struct napi_struct *n)
6025{
6026 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6027 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6028 else
6029 __napi_schedule(n);
6030}
6031EXPORT_SYMBOL(__napi_schedule_irqoff);
6032
6033bool napi_complete_done(struct napi_struct *n, int work_done)
6034{
6035 unsigned long flags, val, new, timeout = 0;
6036 bool ret = true;
6037
6038 /*
6039 * 1) Don't let napi dequeue from the cpu poll list
6040 * just in case its running on a different cpu.
6041 * 2) If we are busy polling, do nothing here, we have
6042 * the guarantee we will be called later.
6043 */
6044 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6045 NAPIF_STATE_IN_BUSY_POLL)))
6046 return false;
6047
6048 if (work_done) {
6049 if (n->gro_bitmask)
6050 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6051 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6052 }
6053 if (n->defer_hard_irqs_count > 0) {
6054 n->defer_hard_irqs_count--;
6055 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6056 if (timeout)
6057 ret = false;
6058 }
6059 if (n->gro_bitmask) {
6060 /* When the NAPI instance uses a timeout and keeps postponing
6061 * it, we need to bound somehow the time packets are kept in
6062 * the GRO layer
6063 */
6064 napi_gro_flush(n, !!timeout);
6065 }
6066
6067 gro_normal_list(n);
6068
6069 if (unlikely(!list_empty(&n->poll_list))) {
6070 /* If n->poll_list is not empty, we need to mask irqs */
6071 local_irq_save(flags);
6072 list_del_init(&n->poll_list);
6073 local_irq_restore(flags);
6074 }
6075 WRITE_ONCE(n->list_owner, -1);
6076
6077 val = READ_ONCE(n->state);
6078 do {
6079 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6080
6081 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6082 NAPIF_STATE_SCHED_THREADED |
6083 NAPIF_STATE_PREFER_BUSY_POLL);
6084
6085 /* If STATE_MISSED was set, leave STATE_SCHED set,
6086 * because we will call napi->poll() one more time.
6087 * This C code was suggested by Alexander Duyck to help gcc.
6088 */
6089 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6090 NAPIF_STATE_SCHED;
6091 } while (!try_cmpxchg(&n->state, &val, new));
6092
6093 if (unlikely(val & NAPIF_STATE_MISSED)) {
6094 __napi_schedule(n);
6095 return false;
6096 }
6097
6098 if (timeout)
6099 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6100 HRTIMER_MODE_REL_PINNED);
6101 return ret;
6102}
6103EXPORT_SYMBOL(napi_complete_done);
6104
6105/* must be called under rcu_read_lock(), as we dont take a reference */
6106static struct napi_struct *napi_by_id(unsigned int napi_id)
6107{
6108 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6109 struct napi_struct *napi;
6110
6111 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6112 if (napi->napi_id == napi_id)
6113 return napi;
6114
6115 return NULL;
6116}
6117
6118#if defined(CONFIG_NET_RX_BUSY_POLL)
6119
6120static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6121{
6122 if (!skip_schedule) {
6123 gro_normal_list(napi);
6124 __napi_schedule(napi);
6125 return;
6126 }
6127
6128 if (napi->gro_bitmask) {
6129 /* flush too old packets
6130 * If HZ < 1000, flush all packets.
6131 */
6132 napi_gro_flush(napi, HZ >= 1000);
6133 }
6134
6135 gro_normal_list(napi);
6136 clear_bit(NAPI_STATE_SCHED, &napi->state);
6137}
6138
6139static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6140 u16 budget)
6141{
6142 bool skip_schedule = false;
6143 unsigned long timeout;
6144 int rc;
6145
6146 /* Busy polling means there is a high chance device driver hard irq
6147 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6148 * set in napi_schedule_prep().
6149 * Since we are about to call napi->poll() once more, we can safely
6150 * clear NAPI_STATE_MISSED.
6151 *
6152 * Note: x86 could use a single "lock and ..." instruction
6153 * to perform these two clear_bit()
6154 */
6155 clear_bit(NAPI_STATE_MISSED, &napi->state);
6156 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6157
6158 local_bh_disable();
6159
6160 if (prefer_busy_poll) {
6161 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6162 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6163 if (napi->defer_hard_irqs_count && timeout) {
6164 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6165 skip_schedule = true;
6166 }
6167 }
6168
6169 /* All we really want here is to re-enable device interrupts.
6170 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6171 */
6172 rc = napi->poll(napi, budget);
6173 /* We can't gro_normal_list() here, because napi->poll() might have
6174 * rearmed the napi (napi_complete_done()) in which case it could
6175 * already be running on another CPU.
6176 */
6177 trace_napi_poll(napi, rc, budget);
6178 netpoll_poll_unlock(have_poll_lock);
6179 if (rc == budget)
6180 __busy_poll_stop(napi, skip_schedule);
6181 local_bh_enable();
6182}
6183
6184void napi_busy_loop(unsigned int napi_id,
6185 bool (*loop_end)(void *, unsigned long),
6186 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6187{
6188 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6189 int (*napi_poll)(struct napi_struct *napi, int budget);
6190 void *have_poll_lock = NULL;
6191 struct napi_struct *napi;
6192
6193restart:
6194 napi_poll = NULL;
6195
6196 rcu_read_lock();
6197
6198 napi = napi_by_id(napi_id);
6199 if (!napi)
6200 goto out;
6201
6202 preempt_disable();
6203 for (;;) {
6204 int work = 0;
6205
6206 local_bh_disable();
6207 if (!napi_poll) {
6208 unsigned long val = READ_ONCE(napi->state);
6209
6210 /* If multiple threads are competing for this napi,
6211 * we avoid dirtying napi->state as much as we can.
6212 */
6213 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6214 NAPIF_STATE_IN_BUSY_POLL)) {
6215 if (prefer_busy_poll)
6216 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6217 goto count;
6218 }
6219 if (cmpxchg(&napi->state, val,
6220 val | NAPIF_STATE_IN_BUSY_POLL |
6221 NAPIF_STATE_SCHED) != val) {
6222 if (prefer_busy_poll)
6223 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6224 goto count;
6225 }
6226 have_poll_lock = netpoll_poll_lock(napi);
6227 napi_poll = napi->poll;
6228 }
6229 work = napi_poll(napi, budget);
6230 trace_napi_poll(napi, work, budget);
6231 gro_normal_list(napi);
6232count:
6233 if (work > 0)
6234 __NET_ADD_STATS(dev_net(napi->dev),
6235 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6236 local_bh_enable();
6237
6238 if (!loop_end || loop_end(loop_end_arg, start_time))
6239 break;
6240
6241 if (unlikely(need_resched())) {
6242 if (napi_poll)
6243 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6244 preempt_enable();
6245 rcu_read_unlock();
6246 cond_resched();
6247 if (loop_end(loop_end_arg, start_time))
6248 return;
6249 goto restart;
6250 }
6251 cpu_relax();
6252 }
6253 if (napi_poll)
6254 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6255 preempt_enable();
6256out:
6257 rcu_read_unlock();
6258}
6259EXPORT_SYMBOL(napi_busy_loop);
6260
6261#endif /* CONFIG_NET_RX_BUSY_POLL */
6262
6263static void napi_hash_add(struct napi_struct *napi)
6264{
6265 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6266 return;
6267
6268 spin_lock(&napi_hash_lock);
6269
6270 /* 0..NR_CPUS range is reserved for sender_cpu use */
6271 do {
6272 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6273 napi_gen_id = MIN_NAPI_ID;
6274 } while (napi_by_id(napi_gen_id));
6275 napi->napi_id = napi_gen_id;
6276
6277 hlist_add_head_rcu(&napi->napi_hash_node,
6278 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6279
6280 spin_unlock(&napi_hash_lock);
6281}
6282
6283/* Warning : caller is responsible to make sure rcu grace period
6284 * is respected before freeing memory containing @napi
6285 */
6286static void napi_hash_del(struct napi_struct *napi)
6287{
6288 spin_lock(&napi_hash_lock);
6289
6290 hlist_del_init_rcu(&napi->napi_hash_node);
6291
6292 spin_unlock(&napi_hash_lock);
6293}
6294
6295static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6296{
6297 struct napi_struct *napi;
6298
6299 napi = container_of(timer, struct napi_struct, timer);
6300
6301 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6302 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6303 */
6304 if (!napi_disable_pending(napi) &&
6305 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6306 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6307 __napi_schedule_irqoff(napi);
6308 }
6309
6310 return HRTIMER_NORESTART;
6311}
6312
6313static void init_gro_hash(struct napi_struct *napi)
6314{
6315 int i;
6316
6317 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6318 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6319 napi->gro_hash[i].count = 0;
6320 }
6321 napi->gro_bitmask = 0;
6322}
6323
6324int dev_set_threaded(struct net_device *dev, bool threaded)
6325{
6326 struct napi_struct *napi;
6327 int err = 0;
6328
6329 if (dev->threaded == threaded)
6330 return 0;
6331
6332 if (threaded) {
6333 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6334 if (!napi->thread) {
6335 err = napi_kthread_create(napi);
6336 if (err) {
6337 threaded = false;
6338 break;
6339 }
6340 }
6341 }
6342 }
6343
6344 dev->threaded = threaded;
6345
6346 /* Make sure kthread is created before THREADED bit
6347 * is set.
6348 */
6349 smp_mb__before_atomic();
6350
6351 /* Setting/unsetting threaded mode on a napi might not immediately
6352 * take effect, if the current napi instance is actively being
6353 * polled. In this case, the switch between threaded mode and
6354 * softirq mode will happen in the next round of napi_schedule().
6355 * This should not cause hiccups/stalls to the live traffic.
6356 */
6357 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6358 if (threaded)
6359 set_bit(NAPI_STATE_THREADED, &napi->state);
6360 else
6361 clear_bit(NAPI_STATE_THREADED, &napi->state);
6362 }
6363
6364 return err;
6365}
6366EXPORT_SYMBOL(dev_set_threaded);
6367
6368void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6369 int (*poll)(struct napi_struct *, int), int weight)
6370{
6371 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6372 return;
6373
6374 INIT_LIST_HEAD(&napi->poll_list);
6375 INIT_HLIST_NODE(&napi->napi_hash_node);
6376 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6377 napi->timer.function = napi_watchdog;
6378 init_gro_hash(napi);
6379 napi->skb = NULL;
6380 INIT_LIST_HEAD(&napi->rx_list);
6381 napi->rx_count = 0;
6382 napi->poll = poll;
6383 if (weight > NAPI_POLL_WEIGHT)
6384 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6385 weight);
6386 napi->weight = weight;
6387 napi->dev = dev;
6388#ifdef CONFIG_NETPOLL
6389 napi->poll_owner = -1;
6390#endif
6391 napi->list_owner = -1;
6392 set_bit(NAPI_STATE_SCHED, &napi->state);
6393 set_bit(NAPI_STATE_NPSVC, &napi->state);
6394 list_add_rcu(&napi->dev_list, &dev->napi_list);
6395 napi_hash_add(napi);
6396 napi_get_frags_check(napi);
6397 /* Create kthread for this napi if dev->threaded is set.
6398 * Clear dev->threaded if kthread creation failed so that
6399 * threaded mode will not be enabled in napi_enable().
6400 */
6401 if (dev->threaded && napi_kthread_create(napi))
6402 dev->threaded = 0;
6403}
6404EXPORT_SYMBOL(netif_napi_add_weight);
6405
6406void napi_disable(struct napi_struct *n)
6407{
6408 unsigned long val, new;
6409
6410 might_sleep();
6411 set_bit(NAPI_STATE_DISABLE, &n->state);
6412
6413 val = READ_ONCE(n->state);
6414 do {
6415 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6416 usleep_range(20, 200);
6417 val = READ_ONCE(n->state);
6418 }
6419
6420 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6421 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6422 } while (!try_cmpxchg(&n->state, &val, new));
6423
6424 hrtimer_cancel(&n->timer);
6425
6426 clear_bit(NAPI_STATE_DISABLE, &n->state);
6427}
6428EXPORT_SYMBOL(napi_disable);
6429
6430/**
6431 * napi_enable - enable NAPI scheduling
6432 * @n: NAPI context
6433 *
6434 * Resume NAPI from being scheduled on this context.
6435 * Must be paired with napi_disable.
6436 */
6437void napi_enable(struct napi_struct *n)
6438{
6439 unsigned long new, val = READ_ONCE(n->state);
6440
6441 do {
6442 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6443
6444 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6445 if (n->dev->threaded && n->thread)
6446 new |= NAPIF_STATE_THREADED;
6447 } while (!try_cmpxchg(&n->state, &val, new));
6448}
6449EXPORT_SYMBOL(napi_enable);
6450
6451static void flush_gro_hash(struct napi_struct *napi)
6452{
6453 int i;
6454
6455 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6456 struct sk_buff *skb, *n;
6457
6458 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6459 kfree_skb(skb);
6460 napi->gro_hash[i].count = 0;
6461 }
6462}
6463
6464/* Must be called in process context */
6465void __netif_napi_del(struct napi_struct *napi)
6466{
6467 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6468 return;
6469
6470 napi_hash_del(napi);
6471 list_del_rcu(&napi->dev_list);
6472 napi_free_frags(napi);
6473
6474 flush_gro_hash(napi);
6475 napi->gro_bitmask = 0;
6476
6477 if (napi->thread) {
6478 kthread_stop(napi->thread);
6479 napi->thread = NULL;
6480 }
6481}
6482EXPORT_SYMBOL(__netif_napi_del);
6483
6484static int __napi_poll(struct napi_struct *n, bool *repoll)
6485{
6486 int work, weight;
6487
6488 weight = n->weight;
6489
6490 /* This NAPI_STATE_SCHED test is for avoiding a race
6491 * with netpoll's poll_napi(). Only the entity which
6492 * obtains the lock and sees NAPI_STATE_SCHED set will
6493 * actually make the ->poll() call. Therefore we avoid
6494 * accidentally calling ->poll() when NAPI is not scheduled.
6495 */
6496 work = 0;
6497 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6498 work = n->poll(n, weight);
6499 trace_napi_poll(n, work, weight);
6500 }
6501
6502 if (unlikely(work > weight))
6503 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6504 n->poll, work, weight);
6505
6506 if (likely(work < weight))
6507 return work;
6508
6509 /* Drivers must not modify the NAPI state if they
6510 * consume the entire weight. In such cases this code
6511 * still "owns" the NAPI instance and therefore can
6512 * move the instance around on the list at-will.
6513 */
6514 if (unlikely(napi_disable_pending(n))) {
6515 napi_complete(n);
6516 return work;
6517 }
6518
6519 /* The NAPI context has more processing work, but busy-polling
6520 * is preferred. Exit early.
6521 */
6522 if (napi_prefer_busy_poll(n)) {
6523 if (napi_complete_done(n, work)) {
6524 /* If timeout is not set, we need to make sure
6525 * that the NAPI is re-scheduled.
6526 */
6527 napi_schedule(n);
6528 }
6529 return work;
6530 }
6531
6532 if (n->gro_bitmask) {
6533 /* flush too old packets
6534 * If HZ < 1000, flush all packets.
6535 */
6536 napi_gro_flush(n, HZ >= 1000);
6537 }
6538
6539 gro_normal_list(n);
6540
6541 /* Some drivers may have called napi_schedule
6542 * prior to exhausting their budget.
6543 */
6544 if (unlikely(!list_empty(&n->poll_list))) {
6545 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6546 n->dev ? n->dev->name : "backlog");
6547 return work;
6548 }
6549
6550 *repoll = true;
6551
6552 return work;
6553}
6554
6555static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6556{
6557 bool do_repoll = false;
6558 void *have;
6559 int work;
6560
6561 list_del_init(&n->poll_list);
6562
6563 have = netpoll_poll_lock(n);
6564
6565 work = __napi_poll(n, &do_repoll);
6566
6567 if (do_repoll)
6568 list_add_tail(&n->poll_list, repoll);
6569
6570 netpoll_poll_unlock(have);
6571
6572 return work;
6573}
6574
6575static int napi_thread_wait(struct napi_struct *napi)
6576{
6577 bool woken = false;
6578
6579 set_current_state(TASK_INTERRUPTIBLE);
6580
6581 while (!kthread_should_stop()) {
6582 /* Testing SCHED_THREADED bit here to make sure the current
6583 * kthread owns this napi and could poll on this napi.
6584 * Testing SCHED bit is not enough because SCHED bit might be
6585 * set by some other busy poll thread or by napi_disable().
6586 */
6587 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6588 WARN_ON(!list_empty(&napi->poll_list));
6589 __set_current_state(TASK_RUNNING);
6590 return 0;
6591 }
6592
6593 schedule();
6594 /* woken being true indicates this thread owns this napi. */
6595 woken = true;
6596 set_current_state(TASK_INTERRUPTIBLE);
6597 }
6598 __set_current_state(TASK_RUNNING);
6599
6600 return -1;
6601}
6602
6603static void skb_defer_free_flush(struct softnet_data *sd)
6604{
6605 struct sk_buff *skb, *next;
6606
6607 /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6608 if (!READ_ONCE(sd->defer_list))
6609 return;
6610
6611 spin_lock(&sd->defer_lock);
6612 skb = sd->defer_list;
6613 sd->defer_list = NULL;
6614 sd->defer_count = 0;
6615 spin_unlock(&sd->defer_lock);
6616
6617 while (skb != NULL) {
6618 next = skb->next;
6619 napi_consume_skb(skb, 1);
6620 skb = next;
6621 }
6622}
6623
6624static int napi_threaded_poll(void *data)
6625{
6626 struct napi_struct *napi = data;
6627 struct softnet_data *sd;
6628 void *have;
6629
6630 while (!napi_thread_wait(napi)) {
6631 for (;;) {
6632 bool repoll = false;
6633
6634 local_bh_disable();
6635 sd = this_cpu_ptr(&softnet_data);
6636 sd->in_napi_threaded_poll = true;
6637
6638 have = netpoll_poll_lock(napi);
6639 __napi_poll(napi, &repoll);
6640 netpoll_poll_unlock(have);
6641
6642 sd->in_napi_threaded_poll = false;
6643 barrier();
6644
6645 if (sd_has_rps_ipi_waiting(sd)) {
6646 local_irq_disable();
6647 net_rps_action_and_irq_enable(sd);
6648 }
6649 skb_defer_free_flush(sd);
6650 local_bh_enable();
6651
6652 if (!repoll)
6653 break;
6654
6655 cond_resched();
6656 }
6657 }
6658 return 0;
6659}
6660
6661static __latent_entropy void net_rx_action(struct softirq_action *h)
6662{
6663 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6664 unsigned long time_limit = jiffies +
6665 usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6666 int budget = READ_ONCE(netdev_budget);
6667 LIST_HEAD(list);
6668 LIST_HEAD(repoll);
6669
6670start:
6671 sd->in_net_rx_action = true;
6672 local_irq_disable();
6673 list_splice_init(&sd->poll_list, &list);
6674 local_irq_enable();
6675
6676 for (;;) {
6677 struct napi_struct *n;
6678
6679 skb_defer_free_flush(sd);
6680
6681 if (list_empty(&list)) {
6682 if (list_empty(&repoll)) {
6683 sd->in_net_rx_action = false;
6684 barrier();
6685 /* We need to check if ____napi_schedule()
6686 * had refilled poll_list while
6687 * sd->in_net_rx_action was true.
6688 */
6689 if (!list_empty(&sd->poll_list))
6690 goto start;
6691 if (!sd_has_rps_ipi_waiting(sd))
6692 goto end;
6693 }
6694 break;
6695 }
6696
6697 n = list_first_entry(&list, struct napi_struct, poll_list);
6698 budget -= napi_poll(n, &repoll);
6699
6700 /* If softirq window is exhausted then punt.
6701 * Allow this to run for 2 jiffies since which will allow
6702 * an average latency of 1.5/HZ.
6703 */
6704 if (unlikely(budget <= 0 ||
6705 time_after_eq(jiffies, time_limit))) {
6706 sd->time_squeeze++;
6707 break;
6708 }
6709 }
6710
6711 local_irq_disable();
6712
6713 list_splice_tail_init(&sd->poll_list, &list);
6714 list_splice_tail(&repoll, &list);
6715 list_splice(&list, &sd->poll_list);
6716 if (!list_empty(&sd->poll_list))
6717 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6718 else
6719 sd->in_net_rx_action = false;
6720
6721 net_rps_action_and_irq_enable(sd);
6722end:;
6723}
6724
6725struct netdev_adjacent {
6726 struct net_device *dev;
6727 netdevice_tracker dev_tracker;
6728
6729 /* upper master flag, there can only be one master device per list */
6730 bool master;
6731
6732 /* lookup ignore flag */
6733 bool ignore;
6734
6735 /* counter for the number of times this device was added to us */
6736 u16 ref_nr;
6737
6738 /* private field for the users */
6739 void *private;
6740
6741 struct list_head list;
6742 struct rcu_head rcu;
6743};
6744
6745static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6746 struct list_head *adj_list)
6747{
6748 struct netdev_adjacent *adj;
6749
6750 list_for_each_entry(adj, adj_list, list) {
6751 if (adj->dev == adj_dev)
6752 return adj;
6753 }
6754 return NULL;
6755}
6756
6757static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6758 struct netdev_nested_priv *priv)
6759{
6760 struct net_device *dev = (struct net_device *)priv->data;
6761
6762 return upper_dev == dev;
6763}
6764
6765/**
6766 * netdev_has_upper_dev - Check if device is linked to an upper device
6767 * @dev: device
6768 * @upper_dev: upper device to check
6769 *
6770 * Find out if a device is linked to specified upper device and return true
6771 * in case it is. Note that this checks only immediate upper device,
6772 * not through a complete stack of devices. The caller must hold the RTNL lock.
6773 */
6774bool netdev_has_upper_dev(struct net_device *dev,
6775 struct net_device *upper_dev)
6776{
6777 struct netdev_nested_priv priv = {
6778 .data = (void *)upper_dev,
6779 };
6780
6781 ASSERT_RTNL();
6782
6783 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6784 &priv);
6785}
6786EXPORT_SYMBOL(netdev_has_upper_dev);
6787
6788/**
6789 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6790 * @dev: device
6791 * @upper_dev: upper device to check
6792 *
6793 * Find out if a device is linked to specified upper device and return true
6794 * in case it is. Note that this checks the entire upper device chain.
6795 * The caller must hold rcu lock.
6796 */
6797
6798bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6799 struct net_device *upper_dev)
6800{
6801 struct netdev_nested_priv priv = {
6802 .data = (void *)upper_dev,
6803 };
6804
6805 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6806 &priv);
6807}
6808EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6809
6810/**
6811 * netdev_has_any_upper_dev - Check if device is linked to some device
6812 * @dev: device
6813 *
6814 * Find out if a device is linked to an upper device and return true in case
6815 * it is. The caller must hold the RTNL lock.
6816 */
6817bool netdev_has_any_upper_dev(struct net_device *dev)
6818{
6819 ASSERT_RTNL();
6820
6821 return !list_empty(&dev->adj_list.upper);
6822}
6823EXPORT_SYMBOL(netdev_has_any_upper_dev);
6824
6825/**
6826 * netdev_master_upper_dev_get - Get master upper device
6827 * @dev: device
6828 *
6829 * Find a master upper device and return pointer to it or NULL in case
6830 * it's not there. The caller must hold the RTNL lock.
6831 */
6832struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6833{
6834 struct netdev_adjacent *upper;
6835
6836 ASSERT_RTNL();
6837
6838 if (list_empty(&dev->adj_list.upper))
6839 return NULL;
6840
6841 upper = list_first_entry(&dev->adj_list.upper,
6842 struct netdev_adjacent, list);
6843 if (likely(upper->master))
6844 return upper->dev;
6845 return NULL;
6846}
6847EXPORT_SYMBOL(netdev_master_upper_dev_get);
6848
6849static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6850{
6851 struct netdev_adjacent *upper;
6852
6853 ASSERT_RTNL();
6854
6855 if (list_empty(&dev->adj_list.upper))
6856 return NULL;
6857
6858 upper = list_first_entry(&dev->adj_list.upper,
6859 struct netdev_adjacent, list);
6860 if (likely(upper->master) && !upper->ignore)
6861 return upper->dev;
6862 return NULL;
6863}
6864
6865/**
6866 * netdev_has_any_lower_dev - Check if device is linked to some device
6867 * @dev: device
6868 *
6869 * Find out if a device is linked to a lower device and return true in case
6870 * it is. The caller must hold the RTNL lock.
6871 */
6872static bool netdev_has_any_lower_dev(struct net_device *dev)
6873{
6874 ASSERT_RTNL();
6875
6876 return !list_empty(&dev->adj_list.lower);
6877}
6878
6879void *netdev_adjacent_get_private(struct list_head *adj_list)
6880{
6881 struct netdev_adjacent *adj;
6882
6883 adj = list_entry(adj_list, struct netdev_adjacent, list);
6884
6885 return adj->private;
6886}
6887EXPORT_SYMBOL(netdev_adjacent_get_private);
6888
6889/**
6890 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6891 * @dev: device
6892 * @iter: list_head ** of the current position
6893 *
6894 * Gets the next device from the dev's upper list, starting from iter
6895 * position. The caller must hold RCU read lock.
6896 */
6897struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6898 struct list_head **iter)
6899{
6900 struct netdev_adjacent *upper;
6901
6902 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6903
6904 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6905
6906 if (&upper->list == &dev->adj_list.upper)
6907 return NULL;
6908
6909 *iter = &upper->list;
6910
6911 return upper->dev;
6912}
6913EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6914
6915static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6916 struct list_head **iter,
6917 bool *ignore)
6918{
6919 struct netdev_adjacent *upper;
6920
6921 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6922
6923 if (&upper->list == &dev->adj_list.upper)
6924 return NULL;
6925
6926 *iter = &upper->list;
6927 *ignore = upper->ignore;
6928
6929 return upper->dev;
6930}
6931
6932static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6933 struct list_head **iter)
6934{
6935 struct netdev_adjacent *upper;
6936
6937 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6938
6939 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6940
6941 if (&upper->list == &dev->adj_list.upper)
6942 return NULL;
6943
6944 *iter = &upper->list;
6945
6946 return upper->dev;
6947}
6948
6949static int __netdev_walk_all_upper_dev(struct net_device *dev,
6950 int (*fn)(struct net_device *dev,
6951 struct netdev_nested_priv *priv),
6952 struct netdev_nested_priv *priv)
6953{
6954 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
6955 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
6956 int ret, cur = 0;
6957 bool ignore;
6958
6959 now = dev;
6960 iter = &dev->adj_list.upper;
6961
6962 while (1) {
6963 if (now != dev) {
6964 ret = fn(now, priv);
6965 if (ret)
6966 return ret;
6967 }
6968
6969 next = NULL;
6970 while (1) {
6971 udev = __netdev_next_upper_dev(now, &iter, &ignore);
6972 if (!udev)
6973 break;
6974 if (ignore)
6975 continue;
6976
6977 next = udev;
6978 niter = &udev->adj_list.upper;
6979 dev_stack[cur] = now;
6980 iter_stack[cur++] = iter;
6981 break;
6982 }
6983
6984 if (!next) {
6985 if (!cur)
6986 return 0;
6987 next = dev_stack[--cur];
6988 niter = iter_stack[cur];
6989 }
6990
6991 now = next;
6992 iter = niter;
6993 }
6994
6995 return 0;
6996}
6997
6998int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
6999 int (*fn)(struct net_device *dev,
7000 struct netdev_nested_priv *priv),
7001 struct netdev_nested_priv *priv)
7002{
7003 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7004 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7005 int ret, cur = 0;
7006
7007 now = dev;
7008 iter = &dev->adj_list.upper;
7009
7010 while (1) {
7011 if (now != dev) {
7012 ret = fn(now, priv);
7013 if (ret)
7014 return ret;
7015 }
7016
7017 next = NULL;
7018 while (1) {
7019 udev = netdev_next_upper_dev_rcu(now, &iter);
7020 if (!udev)
7021 break;
7022
7023 next = udev;
7024 niter = &udev->adj_list.upper;
7025 dev_stack[cur] = now;
7026 iter_stack[cur++] = iter;
7027 break;
7028 }
7029
7030 if (!next) {
7031 if (!cur)
7032 return 0;
7033 next = dev_stack[--cur];
7034 niter = iter_stack[cur];
7035 }
7036
7037 now = next;
7038 iter = niter;
7039 }
7040
7041 return 0;
7042}
7043EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7044
7045static bool __netdev_has_upper_dev(struct net_device *dev,
7046 struct net_device *upper_dev)
7047{
7048 struct netdev_nested_priv priv = {
7049 .flags = 0,
7050 .data = (void *)upper_dev,
7051 };
7052
7053 ASSERT_RTNL();
7054
7055 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7056 &priv);
7057}
7058
7059/**
7060 * netdev_lower_get_next_private - Get the next ->private from the
7061 * lower neighbour list
7062 * @dev: device
7063 * @iter: list_head ** of the current position
7064 *
7065 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7066 * list, starting from iter position. The caller must hold either hold the
7067 * RTNL lock or its own locking that guarantees that the neighbour lower
7068 * list will remain unchanged.
7069 */
7070void *netdev_lower_get_next_private(struct net_device *dev,
7071 struct list_head **iter)
7072{
7073 struct netdev_adjacent *lower;
7074
7075 lower = list_entry(*iter, struct netdev_adjacent, list);
7076
7077 if (&lower->list == &dev->adj_list.lower)
7078 return NULL;
7079
7080 *iter = lower->list.next;
7081
7082 return lower->private;
7083}
7084EXPORT_SYMBOL(netdev_lower_get_next_private);
7085
7086/**
7087 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7088 * lower neighbour list, RCU
7089 * variant
7090 * @dev: device
7091 * @iter: list_head ** of the current position
7092 *
7093 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7094 * list, starting from iter position. The caller must hold RCU read lock.
7095 */
7096void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7097 struct list_head **iter)
7098{
7099 struct netdev_adjacent *lower;
7100
7101 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7102
7103 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7104
7105 if (&lower->list == &dev->adj_list.lower)
7106 return NULL;
7107
7108 *iter = &lower->list;
7109
7110 return lower->private;
7111}
7112EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7113
7114/**
7115 * netdev_lower_get_next - Get the next device from the lower neighbour
7116 * list
7117 * @dev: device
7118 * @iter: list_head ** of the current position
7119 *
7120 * Gets the next netdev_adjacent from the dev's lower neighbour
7121 * list, starting from iter position. The caller must hold RTNL lock or
7122 * its own locking that guarantees that the neighbour lower
7123 * list will remain unchanged.
7124 */
7125void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7126{
7127 struct netdev_adjacent *lower;
7128
7129 lower = list_entry(*iter, struct netdev_adjacent, list);
7130
7131 if (&lower->list == &dev->adj_list.lower)
7132 return NULL;
7133
7134 *iter = lower->list.next;
7135
7136 return lower->dev;
7137}
7138EXPORT_SYMBOL(netdev_lower_get_next);
7139
7140static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7141 struct list_head **iter)
7142{
7143 struct netdev_adjacent *lower;
7144
7145 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7146
7147 if (&lower->list == &dev->adj_list.lower)
7148 return NULL;
7149
7150 *iter = &lower->list;
7151
7152 return lower->dev;
7153}
7154
7155static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7156 struct list_head **iter,
7157 bool *ignore)
7158{
7159 struct netdev_adjacent *lower;
7160
7161 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7162
7163 if (&lower->list == &dev->adj_list.lower)
7164 return NULL;
7165
7166 *iter = &lower->list;
7167 *ignore = lower->ignore;
7168
7169 return lower->dev;
7170}
7171
7172int netdev_walk_all_lower_dev(struct net_device *dev,
7173 int (*fn)(struct net_device *dev,
7174 struct netdev_nested_priv *priv),
7175 struct netdev_nested_priv *priv)
7176{
7177 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7178 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7179 int ret, cur = 0;
7180
7181 now = dev;
7182 iter = &dev->adj_list.lower;
7183
7184 while (1) {
7185 if (now != dev) {
7186 ret = fn(now, priv);
7187 if (ret)
7188 return ret;
7189 }
7190
7191 next = NULL;
7192 while (1) {
7193 ldev = netdev_next_lower_dev(now, &iter);
7194 if (!ldev)
7195 break;
7196
7197 next = ldev;
7198 niter = &ldev->adj_list.lower;
7199 dev_stack[cur] = now;
7200 iter_stack[cur++] = iter;
7201 break;
7202 }
7203
7204 if (!next) {
7205 if (!cur)
7206 return 0;
7207 next = dev_stack[--cur];
7208 niter = iter_stack[cur];
7209 }
7210
7211 now = next;
7212 iter = niter;
7213 }
7214
7215 return 0;
7216}
7217EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7218
7219static int __netdev_walk_all_lower_dev(struct net_device *dev,
7220 int (*fn)(struct net_device *dev,
7221 struct netdev_nested_priv *priv),
7222 struct netdev_nested_priv *priv)
7223{
7224 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7225 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7226 int ret, cur = 0;
7227 bool ignore;
7228
7229 now = dev;
7230 iter = &dev->adj_list.lower;
7231
7232 while (1) {
7233 if (now != dev) {
7234 ret = fn(now, priv);
7235 if (ret)
7236 return ret;
7237 }
7238
7239 next = NULL;
7240 while (1) {
7241 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7242 if (!ldev)
7243 break;
7244 if (ignore)
7245 continue;
7246
7247 next = ldev;
7248 niter = &ldev->adj_list.lower;
7249 dev_stack[cur] = now;
7250 iter_stack[cur++] = iter;
7251 break;
7252 }
7253
7254 if (!next) {
7255 if (!cur)
7256 return 0;
7257 next = dev_stack[--cur];
7258 niter = iter_stack[cur];
7259 }
7260
7261 now = next;
7262 iter = niter;
7263 }
7264
7265 return 0;
7266}
7267
7268struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7269 struct list_head **iter)
7270{
7271 struct netdev_adjacent *lower;
7272
7273 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7274 if (&lower->list == &dev->adj_list.lower)
7275 return NULL;
7276
7277 *iter = &lower->list;
7278
7279 return lower->dev;
7280}
7281EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7282
7283static u8 __netdev_upper_depth(struct net_device *dev)
7284{
7285 struct net_device *udev;
7286 struct list_head *iter;
7287 u8 max_depth = 0;
7288 bool ignore;
7289
7290 for (iter = &dev->adj_list.upper,
7291 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7292 udev;
7293 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7294 if (ignore)
7295 continue;
7296 if (max_depth < udev->upper_level)
7297 max_depth = udev->upper_level;
7298 }
7299
7300 return max_depth;
7301}
7302
7303static u8 __netdev_lower_depth(struct net_device *dev)
7304{
7305 struct net_device *ldev;
7306 struct list_head *iter;
7307 u8 max_depth = 0;
7308 bool ignore;
7309
7310 for (iter = &dev->adj_list.lower,
7311 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7312 ldev;
7313 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7314 if (ignore)
7315 continue;
7316 if (max_depth < ldev->lower_level)
7317 max_depth = ldev->lower_level;
7318 }
7319
7320 return max_depth;
7321}
7322
7323static int __netdev_update_upper_level(struct net_device *dev,
7324 struct netdev_nested_priv *__unused)
7325{
7326 dev->upper_level = __netdev_upper_depth(dev) + 1;
7327 return 0;
7328}
7329
7330#ifdef CONFIG_LOCKDEP
7331static LIST_HEAD(net_unlink_list);
7332
7333static void net_unlink_todo(struct net_device *dev)
7334{
7335 if (list_empty(&dev->unlink_list))
7336 list_add_tail(&dev->unlink_list, &net_unlink_list);
7337}
7338#endif
7339
7340static int __netdev_update_lower_level(struct net_device *dev,
7341 struct netdev_nested_priv *priv)
7342{
7343 dev->lower_level = __netdev_lower_depth(dev) + 1;
7344
7345#ifdef CONFIG_LOCKDEP
7346 if (!priv)
7347 return 0;
7348
7349 if (priv->flags & NESTED_SYNC_IMM)
7350 dev->nested_level = dev->lower_level - 1;
7351 if (priv->flags & NESTED_SYNC_TODO)
7352 net_unlink_todo(dev);
7353#endif
7354 return 0;
7355}
7356
7357int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7358 int (*fn)(struct net_device *dev,
7359 struct netdev_nested_priv *priv),
7360 struct netdev_nested_priv *priv)
7361{
7362 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7363 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7364 int ret, cur = 0;
7365
7366 now = dev;
7367 iter = &dev->adj_list.lower;
7368
7369 while (1) {
7370 if (now != dev) {
7371 ret = fn(now, priv);
7372 if (ret)
7373 return ret;
7374 }
7375
7376 next = NULL;
7377 while (1) {
7378 ldev = netdev_next_lower_dev_rcu(now, &iter);
7379 if (!ldev)
7380 break;
7381
7382 next = ldev;
7383 niter = &ldev->adj_list.lower;
7384 dev_stack[cur] = now;
7385 iter_stack[cur++] = iter;
7386 break;
7387 }
7388
7389 if (!next) {
7390 if (!cur)
7391 return 0;
7392 next = dev_stack[--cur];
7393 niter = iter_stack[cur];
7394 }
7395
7396 now = next;
7397 iter = niter;
7398 }
7399
7400 return 0;
7401}
7402EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7403
7404/**
7405 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7406 * lower neighbour list, RCU
7407 * variant
7408 * @dev: device
7409 *
7410 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7411 * list. The caller must hold RCU read lock.
7412 */
7413void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7414{
7415 struct netdev_adjacent *lower;
7416
7417 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7418 struct netdev_adjacent, list);
7419 if (lower)
7420 return lower->private;
7421 return NULL;
7422}
7423EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7424
7425/**
7426 * netdev_master_upper_dev_get_rcu - Get master upper device
7427 * @dev: device
7428 *
7429 * Find a master upper device and return pointer to it or NULL in case
7430 * it's not there. The caller must hold the RCU read lock.
7431 */
7432struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7433{
7434 struct netdev_adjacent *upper;
7435
7436 upper = list_first_or_null_rcu(&dev->adj_list.upper,
7437 struct netdev_adjacent, list);
7438 if (upper && likely(upper->master))
7439 return upper->dev;
7440 return NULL;
7441}
7442EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7443
7444static int netdev_adjacent_sysfs_add(struct net_device *dev,
7445 struct net_device *adj_dev,
7446 struct list_head *dev_list)
7447{
7448 char linkname[IFNAMSIZ+7];
7449
7450 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7451 "upper_%s" : "lower_%s", adj_dev->name);
7452 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7453 linkname);
7454}
7455static void netdev_adjacent_sysfs_del(struct net_device *dev,
7456 char *name,
7457 struct list_head *dev_list)
7458{
7459 char linkname[IFNAMSIZ+7];
7460
7461 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7462 "upper_%s" : "lower_%s", name);
7463 sysfs_remove_link(&(dev->dev.kobj), linkname);
7464}
7465
7466static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7467 struct net_device *adj_dev,
7468 struct list_head *dev_list)
7469{
7470 return (dev_list == &dev->adj_list.upper ||
7471 dev_list == &dev->adj_list.lower) &&
7472 net_eq(dev_net(dev), dev_net(adj_dev));
7473}
7474
7475static int __netdev_adjacent_dev_insert(struct net_device *dev,
7476 struct net_device *adj_dev,
7477 struct list_head *dev_list,
7478 void *private, bool master)
7479{
7480 struct netdev_adjacent *adj;
7481 int ret;
7482
7483 adj = __netdev_find_adj(adj_dev, dev_list);
7484
7485 if (adj) {
7486 adj->ref_nr += 1;
7487 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7488 dev->name, adj_dev->name, adj->ref_nr);
7489
7490 return 0;
7491 }
7492
7493 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7494 if (!adj)
7495 return -ENOMEM;
7496
7497 adj->dev = adj_dev;
7498 adj->master = master;
7499 adj->ref_nr = 1;
7500 adj->private = private;
7501 adj->ignore = false;
7502 netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7503
7504 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7505 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7506
7507 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7508 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7509 if (ret)
7510 goto free_adj;
7511 }
7512
7513 /* Ensure that master link is always the first item in list. */
7514 if (master) {
7515 ret = sysfs_create_link(&(dev->dev.kobj),
7516 &(adj_dev->dev.kobj), "master");
7517 if (ret)
7518 goto remove_symlinks;
7519
7520 list_add_rcu(&adj->list, dev_list);
7521 } else {
7522 list_add_tail_rcu(&adj->list, dev_list);
7523 }
7524
7525 return 0;
7526
7527remove_symlinks:
7528 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7529 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7530free_adj:
7531 netdev_put(adj_dev, &adj->dev_tracker);
7532 kfree(adj);
7533
7534 return ret;
7535}
7536
7537static void __netdev_adjacent_dev_remove(struct net_device *dev,
7538 struct net_device *adj_dev,
7539 u16 ref_nr,
7540 struct list_head *dev_list)
7541{
7542 struct netdev_adjacent *adj;
7543
7544 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7545 dev->name, adj_dev->name, ref_nr);
7546
7547 adj = __netdev_find_adj(adj_dev, dev_list);
7548
7549 if (!adj) {
7550 pr_err("Adjacency does not exist for device %s from %s\n",
7551 dev->name, adj_dev->name);
7552 WARN_ON(1);
7553 return;
7554 }
7555
7556 if (adj->ref_nr > ref_nr) {
7557 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7558 dev->name, adj_dev->name, ref_nr,
7559 adj->ref_nr - ref_nr);
7560 adj->ref_nr -= ref_nr;
7561 return;
7562 }
7563
7564 if (adj->master)
7565 sysfs_remove_link(&(dev->dev.kobj), "master");
7566
7567 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7568 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7569
7570 list_del_rcu(&adj->list);
7571 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7572 adj_dev->name, dev->name, adj_dev->name);
7573 netdev_put(adj_dev, &adj->dev_tracker);
7574 kfree_rcu(adj, rcu);
7575}
7576
7577static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7578 struct net_device *upper_dev,
7579 struct list_head *up_list,
7580 struct list_head *down_list,
7581 void *private, bool master)
7582{
7583 int ret;
7584
7585 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7586 private, master);
7587 if (ret)
7588 return ret;
7589
7590 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7591 private, false);
7592 if (ret) {
7593 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7594 return ret;
7595 }
7596
7597 return 0;
7598}
7599
7600static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7601 struct net_device *upper_dev,
7602 u16 ref_nr,
7603 struct list_head *up_list,
7604 struct list_head *down_list)
7605{
7606 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7607 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7608}
7609
7610static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7611 struct net_device *upper_dev,
7612 void *private, bool master)
7613{
7614 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7615 &dev->adj_list.upper,
7616 &upper_dev->adj_list.lower,
7617 private, master);
7618}
7619
7620static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7621 struct net_device *upper_dev)
7622{
7623 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7624 &dev->adj_list.upper,
7625 &upper_dev->adj_list.lower);
7626}
7627
7628static int __netdev_upper_dev_link(struct net_device *dev,
7629 struct net_device *upper_dev, bool master,
7630 void *upper_priv, void *upper_info,
7631 struct netdev_nested_priv *priv,
7632 struct netlink_ext_ack *extack)
7633{
7634 struct netdev_notifier_changeupper_info changeupper_info = {
7635 .info = {
7636 .dev = dev,
7637 .extack = extack,
7638 },
7639 .upper_dev = upper_dev,
7640 .master = master,
7641 .linking = true,
7642 .upper_info = upper_info,
7643 };
7644 struct net_device *master_dev;
7645 int ret = 0;
7646
7647 ASSERT_RTNL();
7648
7649 if (dev == upper_dev)
7650 return -EBUSY;
7651
7652 /* To prevent loops, check if dev is not upper device to upper_dev. */
7653 if (__netdev_has_upper_dev(upper_dev, dev))
7654 return -EBUSY;
7655
7656 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7657 return -EMLINK;
7658
7659 if (!master) {
7660 if (__netdev_has_upper_dev(dev, upper_dev))
7661 return -EEXIST;
7662 } else {
7663 master_dev = __netdev_master_upper_dev_get(dev);
7664 if (master_dev)
7665 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7666 }
7667
7668 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7669 &changeupper_info.info);
7670 ret = notifier_to_errno(ret);
7671 if (ret)
7672 return ret;
7673
7674 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7675 master);
7676 if (ret)
7677 return ret;
7678
7679 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7680 &changeupper_info.info);
7681 ret = notifier_to_errno(ret);
7682 if (ret)
7683 goto rollback;
7684
7685 __netdev_update_upper_level(dev, NULL);
7686 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7687
7688 __netdev_update_lower_level(upper_dev, priv);
7689 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7690 priv);
7691
7692 return 0;
7693
7694rollback:
7695 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7696
7697 return ret;
7698}
7699
7700/**
7701 * netdev_upper_dev_link - Add a link to the upper device
7702 * @dev: device
7703 * @upper_dev: new upper device
7704 * @extack: netlink extended ack
7705 *
7706 * Adds a link to device which is upper to this one. The caller must hold
7707 * the RTNL lock. On a failure a negative errno code is returned.
7708 * On success the reference counts are adjusted and the function
7709 * returns zero.
7710 */
7711int netdev_upper_dev_link(struct net_device *dev,
7712 struct net_device *upper_dev,
7713 struct netlink_ext_ack *extack)
7714{
7715 struct netdev_nested_priv priv = {
7716 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7717 .data = NULL,
7718 };
7719
7720 return __netdev_upper_dev_link(dev, upper_dev, false,
7721 NULL, NULL, &priv, extack);
7722}
7723EXPORT_SYMBOL(netdev_upper_dev_link);
7724
7725/**
7726 * netdev_master_upper_dev_link - Add a master link to the upper device
7727 * @dev: device
7728 * @upper_dev: new upper device
7729 * @upper_priv: upper device private
7730 * @upper_info: upper info to be passed down via notifier
7731 * @extack: netlink extended ack
7732 *
7733 * Adds a link to device which is upper to this one. In this case, only
7734 * one master upper device can be linked, although other non-master devices
7735 * might be linked as well. The caller must hold the RTNL lock.
7736 * On a failure a negative errno code is returned. On success the reference
7737 * counts are adjusted and the function returns zero.
7738 */
7739int netdev_master_upper_dev_link(struct net_device *dev,
7740 struct net_device *upper_dev,
7741 void *upper_priv, void *upper_info,
7742 struct netlink_ext_ack *extack)
7743{
7744 struct netdev_nested_priv priv = {
7745 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7746 .data = NULL,
7747 };
7748
7749 return __netdev_upper_dev_link(dev, upper_dev, true,
7750 upper_priv, upper_info, &priv, extack);
7751}
7752EXPORT_SYMBOL(netdev_master_upper_dev_link);
7753
7754static void __netdev_upper_dev_unlink(struct net_device *dev,
7755 struct net_device *upper_dev,
7756 struct netdev_nested_priv *priv)
7757{
7758 struct netdev_notifier_changeupper_info changeupper_info = {
7759 .info = {
7760 .dev = dev,
7761 },
7762 .upper_dev = upper_dev,
7763 .linking = false,
7764 };
7765
7766 ASSERT_RTNL();
7767
7768 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7769
7770 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7771 &changeupper_info.info);
7772
7773 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7774
7775 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7776 &changeupper_info.info);
7777
7778 __netdev_update_upper_level(dev, NULL);
7779 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7780
7781 __netdev_update_lower_level(upper_dev, priv);
7782 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7783 priv);
7784}
7785
7786/**
7787 * netdev_upper_dev_unlink - Removes a link to upper device
7788 * @dev: device
7789 * @upper_dev: new upper device
7790 *
7791 * Removes a link to device which is upper to this one. The caller must hold
7792 * the RTNL lock.
7793 */
7794void netdev_upper_dev_unlink(struct net_device *dev,
7795 struct net_device *upper_dev)
7796{
7797 struct netdev_nested_priv priv = {
7798 .flags = NESTED_SYNC_TODO,
7799 .data = NULL,
7800 };
7801
7802 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
7803}
7804EXPORT_SYMBOL(netdev_upper_dev_unlink);
7805
7806static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7807 struct net_device *lower_dev,
7808 bool val)
7809{
7810 struct netdev_adjacent *adj;
7811
7812 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7813 if (adj)
7814 adj->ignore = val;
7815
7816 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7817 if (adj)
7818 adj->ignore = val;
7819}
7820
7821static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7822 struct net_device *lower_dev)
7823{
7824 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7825}
7826
7827static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7828 struct net_device *lower_dev)
7829{
7830 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7831}
7832
7833int netdev_adjacent_change_prepare(struct net_device *old_dev,
7834 struct net_device *new_dev,
7835 struct net_device *dev,
7836 struct netlink_ext_ack *extack)
7837{
7838 struct netdev_nested_priv priv = {
7839 .flags = 0,
7840 .data = NULL,
7841 };
7842 int err;
7843
7844 if (!new_dev)
7845 return 0;
7846
7847 if (old_dev && new_dev != old_dev)
7848 netdev_adjacent_dev_disable(dev, old_dev);
7849 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7850 extack);
7851 if (err) {
7852 if (old_dev && new_dev != old_dev)
7853 netdev_adjacent_dev_enable(dev, old_dev);
7854 return err;
7855 }
7856
7857 return 0;
7858}
7859EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7860
7861void netdev_adjacent_change_commit(struct net_device *old_dev,
7862 struct net_device *new_dev,
7863 struct net_device *dev)
7864{
7865 struct netdev_nested_priv priv = {
7866 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7867 .data = NULL,
7868 };
7869
7870 if (!new_dev || !old_dev)
7871 return;
7872
7873 if (new_dev == old_dev)
7874 return;
7875
7876 netdev_adjacent_dev_enable(dev, old_dev);
7877 __netdev_upper_dev_unlink(old_dev, dev, &priv);
7878}
7879EXPORT_SYMBOL(netdev_adjacent_change_commit);
7880
7881void netdev_adjacent_change_abort(struct net_device *old_dev,
7882 struct net_device *new_dev,
7883 struct net_device *dev)
7884{
7885 struct netdev_nested_priv priv = {
7886 .flags = 0,
7887 .data = NULL,
7888 };
7889
7890 if (!new_dev)
7891 return;
7892
7893 if (old_dev && new_dev != old_dev)
7894 netdev_adjacent_dev_enable(dev, old_dev);
7895
7896 __netdev_upper_dev_unlink(new_dev, dev, &priv);
7897}
7898EXPORT_SYMBOL(netdev_adjacent_change_abort);
7899
7900/**
7901 * netdev_bonding_info_change - Dispatch event about slave change
7902 * @dev: device
7903 * @bonding_info: info to dispatch
7904 *
7905 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7906 * The caller must hold the RTNL lock.
7907 */
7908void netdev_bonding_info_change(struct net_device *dev,
7909 struct netdev_bonding_info *bonding_info)
7910{
7911 struct netdev_notifier_bonding_info info = {
7912 .info.dev = dev,
7913 };
7914
7915 memcpy(&info.bonding_info, bonding_info,
7916 sizeof(struct netdev_bonding_info));
7917 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7918 &info.info);
7919}
7920EXPORT_SYMBOL(netdev_bonding_info_change);
7921
7922static int netdev_offload_xstats_enable_l3(struct net_device *dev,
7923 struct netlink_ext_ack *extack)
7924{
7925 struct netdev_notifier_offload_xstats_info info = {
7926 .info.dev = dev,
7927 .info.extack = extack,
7928 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7929 };
7930 int err;
7931 int rc;
7932
7933 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
7934 GFP_KERNEL);
7935 if (!dev->offload_xstats_l3)
7936 return -ENOMEM;
7937
7938 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
7939 NETDEV_OFFLOAD_XSTATS_DISABLE,
7940 &info.info);
7941 err = notifier_to_errno(rc);
7942 if (err)
7943 goto free_stats;
7944
7945 return 0;
7946
7947free_stats:
7948 kfree(dev->offload_xstats_l3);
7949 dev->offload_xstats_l3 = NULL;
7950 return err;
7951}
7952
7953int netdev_offload_xstats_enable(struct net_device *dev,
7954 enum netdev_offload_xstats_type type,
7955 struct netlink_ext_ack *extack)
7956{
7957 ASSERT_RTNL();
7958
7959 if (netdev_offload_xstats_enabled(dev, type))
7960 return -EALREADY;
7961
7962 switch (type) {
7963 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7964 return netdev_offload_xstats_enable_l3(dev, extack);
7965 }
7966
7967 WARN_ON(1);
7968 return -EINVAL;
7969}
7970EXPORT_SYMBOL(netdev_offload_xstats_enable);
7971
7972static void netdev_offload_xstats_disable_l3(struct net_device *dev)
7973{
7974 struct netdev_notifier_offload_xstats_info info = {
7975 .info.dev = dev,
7976 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7977 };
7978
7979 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
7980 &info.info);
7981 kfree(dev->offload_xstats_l3);
7982 dev->offload_xstats_l3 = NULL;
7983}
7984
7985int netdev_offload_xstats_disable(struct net_device *dev,
7986 enum netdev_offload_xstats_type type)
7987{
7988 ASSERT_RTNL();
7989
7990 if (!netdev_offload_xstats_enabled(dev, type))
7991 return -EALREADY;
7992
7993 switch (type) {
7994 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
7995 netdev_offload_xstats_disable_l3(dev);
7996 return 0;
7997 }
7998
7999 WARN_ON(1);
8000 return -EINVAL;
8001}
8002EXPORT_SYMBOL(netdev_offload_xstats_disable);
8003
8004static void netdev_offload_xstats_disable_all(struct net_device *dev)
8005{
8006 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8007}
8008
8009static struct rtnl_hw_stats64 *
8010netdev_offload_xstats_get_ptr(const struct net_device *dev,
8011 enum netdev_offload_xstats_type type)
8012{
8013 switch (type) {
8014 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8015 return dev->offload_xstats_l3;
8016 }
8017
8018 WARN_ON(1);
8019 return NULL;
8020}
8021
8022bool netdev_offload_xstats_enabled(const struct net_device *dev,
8023 enum netdev_offload_xstats_type type)
8024{
8025 ASSERT_RTNL();
8026
8027 return netdev_offload_xstats_get_ptr(dev, type);
8028}
8029EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8030
8031struct netdev_notifier_offload_xstats_ru {
8032 bool used;
8033};
8034
8035struct netdev_notifier_offload_xstats_rd {
8036 struct rtnl_hw_stats64 stats;
8037 bool used;
8038};
8039
8040static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8041 const struct rtnl_hw_stats64 *src)
8042{
8043 dest->rx_packets += src->rx_packets;
8044 dest->tx_packets += src->tx_packets;
8045 dest->rx_bytes += src->rx_bytes;
8046 dest->tx_bytes += src->tx_bytes;
8047 dest->rx_errors += src->rx_errors;
8048 dest->tx_errors += src->tx_errors;
8049 dest->rx_dropped += src->rx_dropped;
8050 dest->tx_dropped += src->tx_dropped;
8051 dest->multicast += src->multicast;
8052}
8053
8054static int netdev_offload_xstats_get_used(struct net_device *dev,
8055 enum netdev_offload_xstats_type type,
8056 bool *p_used,
8057 struct netlink_ext_ack *extack)
8058{
8059 struct netdev_notifier_offload_xstats_ru report_used = {};
8060 struct netdev_notifier_offload_xstats_info info = {
8061 .info.dev = dev,
8062 .info.extack = extack,
8063 .type = type,
8064 .report_used = &report_used,
8065 };
8066 int rc;
8067
8068 WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8069 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8070 &info.info);
8071 *p_used = report_used.used;
8072 return notifier_to_errno(rc);
8073}
8074
8075static int netdev_offload_xstats_get_stats(struct net_device *dev,
8076 enum netdev_offload_xstats_type type,
8077 struct rtnl_hw_stats64 *p_stats,
8078 bool *p_used,
8079 struct netlink_ext_ack *extack)
8080{
8081 struct netdev_notifier_offload_xstats_rd report_delta = {};
8082 struct netdev_notifier_offload_xstats_info info = {
8083 .info.dev = dev,
8084 .info.extack = extack,
8085 .type = type,
8086 .report_delta = &report_delta,
8087 };
8088 struct rtnl_hw_stats64 *stats;
8089 int rc;
8090
8091 stats = netdev_offload_xstats_get_ptr(dev, type);
8092 if (WARN_ON(!stats))
8093 return -EINVAL;
8094
8095 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8096 &info.info);
8097
8098 /* Cache whatever we got, even if there was an error, otherwise the
8099 * successful stats retrievals would get lost.
8100 */
8101 netdev_hw_stats64_add(stats, &report_delta.stats);
8102
8103 if (p_stats)
8104 *p_stats = *stats;
8105 *p_used = report_delta.used;
8106
8107 return notifier_to_errno(rc);
8108}
8109
8110int netdev_offload_xstats_get(struct net_device *dev,
8111 enum netdev_offload_xstats_type type,
8112 struct rtnl_hw_stats64 *p_stats, bool *p_used,
8113 struct netlink_ext_ack *extack)
8114{
8115 ASSERT_RTNL();
8116
8117 if (p_stats)
8118 return netdev_offload_xstats_get_stats(dev, type, p_stats,
8119 p_used, extack);
8120 else
8121 return netdev_offload_xstats_get_used(dev, type, p_used,
8122 extack);
8123}
8124EXPORT_SYMBOL(netdev_offload_xstats_get);
8125
8126void
8127netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8128 const struct rtnl_hw_stats64 *stats)
8129{
8130 report_delta->used = true;
8131 netdev_hw_stats64_add(&report_delta->stats, stats);
8132}
8133EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8134
8135void
8136netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8137{
8138 report_used->used = true;
8139}
8140EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8141
8142void netdev_offload_xstats_push_delta(struct net_device *dev,
8143 enum netdev_offload_xstats_type type,
8144 const struct rtnl_hw_stats64 *p_stats)
8145{
8146 struct rtnl_hw_stats64 *stats;
8147
8148 ASSERT_RTNL();
8149
8150 stats = netdev_offload_xstats_get_ptr(dev, type);
8151 if (WARN_ON(!stats))
8152 return;
8153
8154 netdev_hw_stats64_add(stats, p_stats);
8155}
8156EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8157
8158/**
8159 * netdev_get_xmit_slave - Get the xmit slave of master device
8160 * @dev: device
8161 * @skb: The packet
8162 * @all_slaves: assume all the slaves are active
8163 *
8164 * The reference counters are not incremented so the caller must be
8165 * careful with locks. The caller must hold RCU lock.
8166 * %NULL is returned if no slave is found.
8167 */
8168
8169struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8170 struct sk_buff *skb,
8171 bool all_slaves)
8172{
8173 const struct net_device_ops *ops = dev->netdev_ops;
8174
8175 if (!ops->ndo_get_xmit_slave)
8176 return NULL;
8177 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8178}
8179EXPORT_SYMBOL(netdev_get_xmit_slave);
8180
8181static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8182 struct sock *sk)
8183{
8184 const struct net_device_ops *ops = dev->netdev_ops;
8185
8186 if (!ops->ndo_sk_get_lower_dev)
8187 return NULL;
8188 return ops->ndo_sk_get_lower_dev(dev, sk);
8189}
8190
8191/**
8192 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8193 * @dev: device
8194 * @sk: the socket
8195 *
8196 * %NULL is returned if no lower device is found.
8197 */
8198
8199struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8200 struct sock *sk)
8201{
8202 struct net_device *lower;
8203
8204 lower = netdev_sk_get_lower_dev(dev, sk);
8205 while (lower) {
8206 dev = lower;
8207 lower = netdev_sk_get_lower_dev(dev, sk);
8208 }
8209
8210 return dev;
8211}
8212EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8213
8214static void netdev_adjacent_add_links(struct net_device *dev)
8215{
8216 struct netdev_adjacent *iter;
8217
8218 struct net *net = dev_net(dev);
8219
8220 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8221 if (!net_eq(net, dev_net(iter->dev)))
8222 continue;
8223 netdev_adjacent_sysfs_add(iter->dev, dev,
8224 &iter->dev->adj_list.lower);
8225 netdev_adjacent_sysfs_add(dev, iter->dev,
8226 &dev->adj_list.upper);
8227 }
8228
8229 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8230 if (!net_eq(net, dev_net(iter->dev)))
8231 continue;
8232 netdev_adjacent_sysfs_add(iter->dev, dev,
8233 &iter->dev->adj_list.upper);
8234 netdev_adjacent_sysfs_add(dev, iter->dev,
8235 &dev->adj_list.lower);
8236 }
8237}
8238
8239static void netdev_adjacent_del_links(struct net_device *dev)
8240{
8241 struct netdev_adjacent *iter;
8242
8243 struct net *net = dev_net(dev);
8244
8245 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8246 if (!net_eq(net, dev_net(iter->dev)))
8247 continue;
8248 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8249 &iter->dev->adj_list.lower);
8250 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8251 &dev->adj_list.upper);
8252 }
8253
8254 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8255 if (!net_eq(net, dev_net(iter->dev)))
8256 continue;
8257 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8258 &iter->dev->adj_list.upper);
8259 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8260 &dev->adj_list.lower);
8261 }
8262}
8263
8264void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8265{
8266 struct netdev_adjacent *iter;
8267
8268 struct net *net = dev_net(dev);
8269
8270 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8271 if (!net_eq(net, dev_net(iter->dev)))
8272 continue;
8273 netdev_adjacent_sysfs_del(iter->dev, oldname,
8274 &iter->dev->adj_list.lower);
8275 netdev_adjacent_sysfs_add(iter->dev, dev,
8276 &iter->dev->adj_list.lower);
8277 }
8278
8279 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8280 if (!net_eq(net, dev_net(iter->dev)))
8281 continue;
8282 netdev_adjacent_sysfs_del(iter->dev, oldname,
8283 &iter->dev->adj_list.upper);
8284 netdev_adjacent_sysfs_add(iter->dev, dev,
8285 &iter->dev->adj_list.upper);
8286 }
8287}
8288
8289void *netdev_lower_dev_get_private(struct net_device *dev,
8290 struct net_device *lower_dev)
8291{
8292 struct netdev_adjacent *lower;
8293
8294 if (!lower_dev)
8295 return NULL;
8296 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8297 if (!lower)
8298 return NULL;
8299
8300 return lower->private;
8301}
8302EXPORT_SYMBOL(netdev_lower_dev_get_private);
8303
8304
8305/**
8306 * netdev_lower_state_changed - Dispatch event about lower device state change
8307 * @lower_dev: device
8308 * @lower_state_info: state to dispatch
8309 *
8310 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8311 * The caller must hold the RTNL lock.
8312 */
8313void netdev_lower_state_changed(struct net_device *lower_dev,
8314 void *lower_state_info)
8315{
8316 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8317 .info.dev = lower_dev,
8318 };
8319
8320 ASSERT_RTNL();
8321 changelowerstate_info.lower_state_info = lower_state_info;
8322 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8323 &changelowerstate_info.info);
8324}
8325EXPORT_SYMBOL(netdev_lower_state_changed);
8326
8327static void dev_change_rx_flags(struct net_device *dev, int flags)
8328{
8329 const struct net_device_ops *ops = dev->netdev_ops;
8330
8331 if (ops->ndo_change_rx_flags)
8332 ops->ndo_change_rx_flags(dev, flags);
8333}
8334
8335static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8336{
8337 unsigned int old_flags = dev->flags;
8338 kuid_t uid;
8339 kgid_t gid;
8340
8341 ASSERT_RTNL();
8342
8343 dev->flags |= IFF_PROMISC;
8344 dev->promiscuity += inc;
8345 if (dev->promiscuity == 0) {
8346 /*
8347 * Avoid overflow.
8348 * If inc causes overflow, untouch promisc and return error.
8349 */
8350 if (inc < 0)
8351 dev->flags &= ~IFF_PROMISC;
8352 else {
8353 dev->promiscuity -= inc;
8354 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8355 return -EOVERFLOW;
8356 }
8357 }
8358 if (dev->flags != old_flags) {
8359 netdev_info(dev, "%s promiscuous mode\n",
8360 dev->flags & IFF_PROMISC ? "entered" : "left");
8361 if (audit_enabled) {
8362 current_uid_gid(&uid, &gid);
8363 audit_log(audit_context(), GFP_ATOMIC,
8364 AUDIT_ANOM_PROMISCUOUS,
8365 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8366 dev->name, (dev->flags & IFF_PROMISC),
8367 (old_flags & IFF_PROMISC),
8368 from_kuid(&init_user_ns, audit_get_loginuid(current)),
8369 from_kuid(&init_user_ns, uid),
8370 from_kgid(&init_user_ns, gid),
8371 audit_get_sessionid(current));
8372 }
8373
8374 dev_change_rx_flags(dev, IFF_PROMISC);
8375 }
8376 if (notify)
8377 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8378 return 0;
8379}
8380
8381/**
8382 * dev_set_promiscuity - update promiscuity count on a device
8383 * @dev: device
8384 * @inc: modifier
8385 *
8386 * Add or remove promiscuity from a device. While the count in the device
8387 * remains above zero the interface remains promiscuous. Once it hits zero
8388 * the device reverts back to normal filtering operation. A negative inc
8389 * value is used to drop promiscuity on the device.
8390 * Return 0 if successful or a negative errno code on error.
8391 */
8392int dev_set_promiscuity(struct net_device *dev, int inc)
8393{
8394 unsigned int old_flags = dev->flags;
8395 int err;
8396
8397 err = __dev_set_promiscuity(dev, inc, true);
8398 if (err < 0)
8399 return err;
8400 if (dev->flags != old_flags)
8401 dev_set_rx_mode(dev);
8402 return err;
8403}
8404EXPORT_SYMBOL(dev_set_promiscuity);
8405
8406static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8407{
8408 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8409
8410 ASSERT_RTNL();
8411
8412 dev->flags |= IFF_ALLMULTI;
8413 dev->allmulti += inc;
8414 if (dev->allmulti == 0) {
8415 /*
8416 * Avoid overflow.
8417 * If inc causes overflow, untouch allmulti and return error.
8418 */
8419 if (inc < 0)
8420 dev->flags &= ~IFF_ALLMULTI;
8421 else {
8422 dev->allmulti -= inc;
8423 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8424 return -EOVERFLOW;
8425 }
8426 }
8427 if (dev->flags ^ old_flags) {
8428 netdev_info(dev, "%s allmulticast mode\n",
8429 dev->flags & IFF_ALLMULTI ? "entered" : "left");
8430 dev_change_rx_flags(dev, IFF_ALLMULTI);
8431 dev_set_rx_mode(dev);
8432 if (notify)
8433 __dev_notify_flags(dev, old_flags,
8434 dev->gflags ^ old_gflags, 0, NULL);
8435 }
8436 return 0;
8437}
8438
8439/**
8440 * dev_set_allmulti - update allmulti count on a device
8441 * @dev: device
8442 * @inc: modifier
8443 *
8444 * Add or remove reception of all multicast frames to a device. While the
8445 * count in the device remains above zero the interface remains listening
8446 * to all interfaces. Once it hits zero the device reverts back to normal
8447 * filtering operation. A negative @inc value is used to drop the counter
8448 * when releasing a resource needing all multicasts.
8449 * Return 0 if successful or a negative errno code on error.
8450 */
8451
8452int dev_set_allmulti(struct net_device *dev, int inc)
8453{
8454 return __dev_set_allmulti(dev, inc, true);
8455}
8456EXPORT_SYMBOL(dev_set_allmulti);
8457
8458/*
8459 * Upload unicast and multicast address lists to device and
8460 * configure RX filtering. When the device doesn't support unicast
8461 * filtering it is put in promiscuous mode while unicast addresses
8462 * are present.
8463 */
8464void __dev_set_rx_mode(struct net_device *dev)
8465{
8466 const struct net_device_ops *ops = dev->netdev_ops;
8467
8468 /* dev_open will call this function so the list will stay sane. */
8469 if (!(dev->flags&IFF_UP))
8470 return;
8471
8472 if (!netif_device_present(dev))
8473 return;
8474
8475 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8476 /* Unicast addresses changes may only happen under the rtnl,
8477 * therefore calling __dev_set_promiscuity here is safe.
8478 */
8479 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8480 __dev_set_promiscuity(dev, 1, false);
8481 dev->uc_promisc = true;
8482 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8483 __dev_set_promiscuity(dev, -1, false);
8484 dev->uc_promisc = false;
8485 }
8486 }
8487
8488 if (ops->ndo_set_rx_mode)
8489 ops->ndo_set_rx_mode(dev);
8490}
8491
8492void dev_set_rx_mode(struct net_device *dev)
8493{
8494 netif_addr_lock_bh(dev);
8495 __dev_set_rx_mode(dev);
8496 netif_addr_unlock_bh(dev);
8497}
8498
8499/**
8500 * dev_get_flags - get flags reported to userspace
8501 * @dev: device
8502 *
8503 * Get the combination of flag bits exported through APIs to userspace.
8504 */
8505unsigned int dev_get_flags(const struct net_device *dev)
8506{
8507 unsigned int flags;
8508
8509 flags = (dev->flags & ~(IFF_PROMISC |
8510 IFF_ALLMULTI |
8511 IFF_RUNNING |
8512 IFF_LOWER_UP |
8513 IFF_DORMANT)) |
8514 (dev->gflags & (IFF_PROMISC |
8515 IFF_ALLMULTI));
8516
8517 if (netif_running(dev)) {
8518 if (netif_oper_up(dev))
8519 flags |= IFF_RUNNING;
8520 if (netif_carrier_ok(dev))
8521 flags |= IFF_LOWER_UP;
8522 if (netif_dormant(dev))
8523 flags |= IFF_DORMANT;
8524 }
8525
8526 return flags;
8527}
8528EXPORT_SYMBOL(dev_get_flags);
8529
8530int __dev_change_flags(struct net_device *dev, unsigned int flags,
8531 struct netlink_ext_ack *extack)
8532{
8533 unsigned int old_flags = dev->flags;
8534 int ret;
8535
8536 ASSERT_RTNL();
8537
8538 /*
8539 * Set the flags on our device.
8540 */
8541
8542 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8543 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8544 IFF_AUTOMEDIA)) |
8545 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8546 IFF_ALLMULTI));
8547
8548 /*
8549 * Load in the correct multicast list now the flags have changed.
8550 */
8551
8552 if ((old_flags ^ flags) & IFF_MULTICAST)
8553 dev_change_rx_flags(dev, IFF_MULTICAST);
8554
8555 dev_set_rx_mode(dev);
8556
8557 /*
8558 * Have we downed the interface. We handle IFF_UP ourselves
8559 * according to user attempts to set it, rather than blindly
8560 * setting it.
8561 */
8562
8563 ret = 0;
8564 if ((old_flags ^ flags) & IFF_UP) {
8565 if (old_flags & IFF_UP)
8566 __dev_close(dev);
8567 else
8568 ret = __dev_open(dev, extack);
8569 }
8570
8571 if ((flags ^ dev->gflags) & IFF_PROMISC) {
8572 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8573 unsigned int old_flags = dev->flags;
8574
8575 dev->gflags ^= IFF_PROMISC;
8576
8577 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8578 if (dev->flags != old_flags)
8579 dev_set_rx_mode(dev);
8580 }
8581
8582 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8583 * is important. Some (broken) drivers set IFF_PROMISC, when
8584 * IFF_ALLMULTI is requested not asking us and not reporting.
8585 */
8586 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8587 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8588
8589 dev->gflags ^= IFF_ALLMULTI;
8590 __dev_set_allmulti(dev, inc, false);
8591 }
8592
8593 return ret;
8594}
8595
8596void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8597 unsigned int gchanges, u32 portid,
8598 const struct nlmsghdr *nlh)
8599{
8600 unsigned int changes = dev->flags ^ old_flags;
8601
8602 if (gchanges)
8603 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8604
8605 if (changes & IFF_UP) {
8606 if (dev->flags & IFF_UP)
8607 call_netdevice_notifiers(NETDEV_UP, dev);
8608 else
8609 call_netdevice_notifiers(NETDEV_DOWN, dev);
8610 }
8611
8612 if (dev->flags & IFF_UP &&
8613 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8614 struct netdev_notifier_change_info change_info = {
8615 .info = {
8616 .dev = dev,
8617 },
8618 .flags_changed = changes,
8619 };
8620
8621 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8622 }
8623}
8624
8625/**
8626 * dev_change_flags - change device settings
8627 * @dev: device
8628 * @flags: device state flags
8629 * @extack: netlink extended ack
8630 *
8631 * Change settings on device based state flags. The flags are
8632 * in the userspace exported format.
8633 */
8634int dev_change_flags(struct net_device *dev, unsigned int flags,
8635 struct netlink_ext_ack *extack)
8636{
8637 int ret;
8638 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8639
8640 ret = __dev_change_flags(dev, flags, extack);
8641 if (ret < 0)
8642 return ret;
8643
8644 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8645 __dev_notify_flags(dev, old_flags, changes, 0, NULL);
8646 return ret;
8647}
8648EXPORT_SYMBOL(dev_change_flags);
8649
8650int __dev_set_mtu(struct net_device *dev, int new_mtu)
8651{
8652 const struct net_device_ops *ops = dev->netdev_ops;
8653
8654 if (ops->ndo_change_mtu)
8655 return ops->ndo_change_mtu(dev, new_mtu);
8656
8657 /* Pairs with all the lockless reads of dev->mtu in the stack */
8658 WRITE_ONCE(dev->mtu, new_mtu);
8659 return 0;
8660}
8661EXPORT_SYMBOL(__dev_set_mtu);
8662
8663int dev_validate_mtu(struct net_device *dev, int new_mtu,
8664 struct netlink_ext_ack *extack)
8665{
8666 /* MTU must be positive, and in range */
8667 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8668 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8669 return -EINVAL;
8670 }
8671
8672 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8673 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8674 return -EINVAL;
8675 }
8676 return 0;
8677}
8678
8679/**
8680 * dev_set_mtu_ext - Change maximum transfer unit
8681 * @dev: device
8682 * @new_mtu: new transfer unit
8683 * @extack: netlink extended ack
8684 *
8685 * Change the maximum transfer size of the network device.
8686 */
8687int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8688 struct netlink_ext_ack *extack)
8689{
8690 int err, orig_mtu;
8691
8692 if (new_mtu == dev->mtu)
8693 return 0;
8694
8695 err = dev_validate_mtu(dev, new_mtu, extack);
8696 if (err)
8697 return err;
8698
8699 if (!netif_device_present(dev))
8700 return -ENODEV;
8701
8702 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8703 err = notifier_to_errno(err);
8704 if (err)
8705 return err;
8706
8707 orig_mtu = dev->mtu;
8708 err = __dev_set_mtu(dev, new_mtu);
8709
8710 if (!err) {
8711 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8712 orig_mtu);
8713 err = notifier_to_errno(err);
8714 if (err) {
8715 /* setting mtu back and notifying everyone again,
8716 * so that they have a chance to revert changes.
8717 */
8718 __dev_set_mtu(dev, orig_mtu);
8719 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8720 new_mtu);
8721 }
8722 }
8723 return err;
8724}
8725
8726int dev_set_mtu(struct net_device *dev, int new_mtu)
8727{
8728 struct netlink_ext_ack extack;
8729 int err;
8730
8731 memset(&extack, 0, sizeof(extack));
8732 err = dev_set_mtu_ext(dev, new_mtu, &extack);
8733 if (err && extack._msg)
8734 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8735 return err;
8736}
8737EXPORT_SYMBOL(dev_set_mtu);
8738
8739/**
8740 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8741 * @dev: device
8742 * @new_len: new tx queue length
8743 */
8744int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8745{
8746 unsigned int orig_len = dev->tx_queue_len;
8747 int res;
8748
8749 if (new_len != (unsigned int)new_len)
8750 return -ERANGE;
8751
8752 if (new_len != orig_len) {
8753 dev->tx_queue_len = new_len;
8754 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8755 res = notifier_to_errno(res);
8756 if (res)
8757 goto err_rollback;
8758 res = dev_qdisc_change_tx_queue_len(dev);
8759 if (res)
8760 goto err_rollback;
8761 }
8762
8763 return 0;
8764
8765err_rollback:
8766 netdev_err(dev, "refused to change device tx_queue_len\n");
8767 dev->tx_queue_len = orig_len;
8768 return res;
8769}
8770
8771/**
8772 * dev_set_group - Change group this device belongs to
8773 * @dev: device
8774 * @new_group: group this device should belong to
8775 */
8776void dev_set_group(struct net_device *dev, int new_group)
8777{
8778 dev->group = new_group;
8779}
8780
8781/**
8782 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8783 * @dev: device
8784 * @addr: new address
8785 * @extack: netlink extended ack
8786 */
8787int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8788 struct netlink_ext_ack *extack)
8789{
8790 struct netdev_notifier_pre_changeaddr_info info = {
8791 .info.dev = dev,
8792 .info.extack = extack,
8793 .dev_addr = addr,
8794 };
8795 int rc;
8796
8797 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8798 return notifier_to_errno(rc);
8799}
8800EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8801
8802/**
8803 * dev_set_mac_address - Change Media Access Control Address
8804 * @dev: device
8805 * @sa: new address
8806 * @extack: netlink extended ack
8807 *
8808 * Change the hardware (MAC) address of the device
8809 */
8810int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8811 struct netlink_ext_ack *extack)
8812{
8813 const struct net_device_ops *ops = dev->netdev_ops;
8814 int err;
8815
8816 if (!ops->ndo_set_mac_address)
8817 return -EOPNOTSUPP;
8818 if (sa->sa_family != dev->type)
8819 return -EINVAL;
8820 if (!netif_device_present(dev))
8821 return -ENODEV;
8822 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8823 if (err)
8824 return err;
8825 err = ops->ndo_set_mac_address(dev, sa);
8826 if (err)
8827 return err;
8828 dev->addr_assign_type = NET_ADDR_SET;
8829 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8830 add_device_randomness(dev->dev_addr, dev->addr_len);
8831 return 0;
8832}
8833EXPORT_SYMBOL(dev_set_mac_address);
8834
8835static DECLARE_RWSEM(dev_addr_sem);
8836
8837int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8838 struct netlink_ext_ack *extack)
8839{
8840 int ret;
8841
8842 down_write(&dev_addr_sem);
8843 ret = dev_set_mac_address(dev, sa, extack);
8844 up_write(&dev_addr_sem);
8845 return ret;
8846}
8847EXPORT_SYMBOL(dev_set_mac_address_user);
8848
8849int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8850{
8851 size_t size = sizeof(sa->sa_data_min);
8852 struct net_device *dev;
8853 int ret = 0;
8854
8855 down_read(&dev_addr_sem);
8856 rcu_read_lock();
8857
8858 dev = dev_get_by_name_rcu(net, dev_name);
8859 if (!dev) {
8860 ret = -ENODEV;
8861 goto unlock;
8862 }
8863 if (!dev->addr_len)
8864 memset(sa->sa_data, 0, size);
8865 else
8866 memcpy(sa->sa_data, dev->dev_addr,
8867 min_t(size_t, size, dev->addr_len));
8868 sa->sa_family = dev->type;
8869
8870unlock:
8871 rcu_read_unlock();
8872 up_read(&dev_addr_sem);
8873 return ret;
8874}
8875EXPORT_SYMBOL(dev_get_mac_address);
8876
8877/**
8878 * dev_change_carrier - Change device carrier
8879 * @dev: device
8880 * @new_carrier: new value
8881 *
8882 * Change device carrier
8883 */
8884int dev_change_carrier(struct net_device *dev, bool new_carrier)
8885{
8886 const struct net_device_ops *ops = dev->netdev_ops;
8887
8888 if (!ops->ndo_change_carrier)
8889 return -EOPNOTSUPP;
8890 if (!netif_device_present(dev))
8891 return -ENODEV;
8892 return ops->ndo_change_carrier(dev, new_carrier);
8893}
8894
8895/**
8896 * dev_get_phys_port_id - Get device physical port ID
8897 * @dev: device
8898 * @ppid: port ID
8899 *
8900 * Get device physical port ID
8901 */
8902int dev_get_phys_port_id(struct net_device *dev,
8903 struct netdev_phys_item_id *ppid)
8904{
8905 const struct net_device_ops *ops = dev->netdev_ops;
8906
8907 if (!ops->ndo_get_phys_port_id)
8908 return -EOPNOTSUPP;
8909 return ops->ndo_get_phys_port_id(dev, ppid);
8910}
8911
8912/**
8913 * dev_get_phys_port_name - Get device physical port name
8914 * @dev: device
8915 * @name: port name
8916 * @len: limit of bytes to copy to name
8917 *
8918 * Get device physical port name
8919 */
8920int dev_get_phys_port_name(struct net_device *dev,
8921 char *name, size_t len)
8922{
8923 const struct net_device_ops *ops = dev->netdev_ops;
8924 int err;
8925
8926 if (ops->ndo_get_phys_port_name) {
8927 err = ops->ndo_get_phys_port_name(dev, name, len);
8928 if (err != -EOPNOTSUPP)
8929 return err;
8930 }
8931 return devlink_compat_phys_port_name_get(dev, name, len);
8932}
8933
8934/**
8935 * dev_get_port_parent_id - Get the device's port parent identifier
8936 * @dev: network device
8937 * @ppid: pointer to a storage for the port's parent identifier
8938 * @recurse: allow/disallow recursion to lower devices
8939 *
8940 * Get the devices's port parent identifier
8941 */
8942int dev_get_port_parent_id(struct net_device *dev,
8943 struct netdev_phys_item_id *ppid,
8944 bool recurse)
8945{
8946 const struct net_device_ops *ops = dev->netdev_ops;
8947 struct netdev_phys_item_id first = { };
8948 struct net_device *lower_dev;
8949 struct list_head *iter;
8950 int err;
8951
8952 if (ops->ndo_get_port_parent_id) {
8953 err = ops->ndo_get_port_parent_id(dev, ppid);
8954 if (err != -EOPNOTSUPP)
8955 return err;
8956 }
8957
8958 err = devlink_compat_switch_id_get(dev, ppid);
8959 if (!recurse || err != -EOPNOTSUPP)
8960 return err;
8961
8962 netdev_for_each_lower_dev(dev, lower_dev, iter) {
8963 err = dev_get_port_parent_id(lower_dev, ppid, true);
8964 if (err)
8965 break;
8966 if (!first.id_len)
8967 first = *ppid;
8968 else if (memcmp(&first, ppid, sizeof(*ppid)))
8969 return -EOPNOTSUPP;
8970 }
8971
8972 return err;
8973}
8974EXPORT_SYMBOL(dev_get_port_parent_id);
8975
8976/**
8977 * netdev_port_same_parent_id - Indicate if two network devices have
8978 * the same port parent identifier
8979 * @a: first network device
8980 * @b: second network device
8981 */
8982bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
8983{
8984 struct netdev_phys_item_id a_id = { };
8985 struct netdev_phys_item_id b_id = { };
8986
8987 if (dev_get_port_parent_id(a, &a_id, true) ||
8988 dev_get_port_parent_id(b, &b_id, true))
8989 return false;
8990
8991 return netdev_phys_item_id_same(&a_id, &b_id);
8992}
8993EXPORT_SYMBOL(netdev_port_same_parent_id);
8994
8995/**
8996 * dev_change_proto_down - set carrier according to proto_down.
8997 *
8998 * @dev: device
8999 * @proto_down: new value
9000 */
9001int dev_change_proto_down(struct net_device *dev, bool proto_down)
9002{
9003 if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
9004 return -EOPNOTSUPP;
9005 if (!netif_device_present(dev))
9006 return -ENODEV;
9007 if (proto_down)
9008 netif_carrier_off(dev);
9009 else
9010 netif_carrier_on(dev);
9011 dev->proto_down = proto_down;
9012 return 0;
9013}
9014
9015/**
9016 * dev_change_proto_down_reason - proto down reason
9017 *
9018 * @dev: device
9019 * @mask: proto down mask
9020 * @value: proto down value
9021 */
9022void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9023 u32 value)
9024{
9025 int b;
9026
9027 if (!mask) {
9028 dev->proto_down_reason = value;
9029 } else {
9030 for_each_set_bit(b, &mask, 32) {
9031 if (value & (1 << b))
9032 dev->proto_down_reason |= BIT(b);
9033 else
9034 dev->proto_down_reason &= ~BIT(b);
9035 }
9036 }
9037}
9038
9039struct bpf_xdp_link {
9040 struct bpf_link link;
9041 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9042 int flags;
9043};
9044
9045static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9046{
9047 if (flags & XDP_FLAGS_HW_MODE)
9048 return XDP_MODE_HW;
9049 if (flags & XDP_FLAGS_DRV_MODE)
9050 return XDP_MODE_DRV;
9051 if (flags & XDP_FLAGS_SKB_MODE)
9052 return XDP_MODE_SKB;
9053 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9054}
9055
9056static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9057{
9058 switch (mode) {
9059 case XDP_MODE_SKB:
9060 return generic_xdp_install;
9061 case XDP_MODE_DRV:
9062 case XDP_MODE_HW:
9063 return dev->netdev_ops->ndo_bpf;
9064 default:
9065 return NULL;
9066 }
9067}
9068
9069static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9070 enum bpf_xdp_mode mode)
9071{
9072 return dev->xdp_state[mode].link;
9073}
9074
9075static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9076 enum bpf_xdp_mode mode)
9077{
9078 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9079
9080 if (link)
9081 return link->link.prog;
9082 return dev->xdp_state[mode].prog;
9083}
9084
9085u8 dev_xdp_prog_count(struct net_device *dev)
9086{
9087 u8 count = 0;
9088 int i;
9089
9090 for (i = 0; i < __MAX_XDP_MODE; i++)
9091 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9092 count++;
9093 return count;
9094}
9095EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9096
9097u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9098{
9099 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9100
9101 return prog ? prog->aux->id : 0;
9102}
9103
9104static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9105 struct bpf_xdp_link *link)
9106{
9107 dev->xdp_state[mode].link = link;
9108 dev->xdp_state[mode].prog = NULL;
9109}
9110
9111static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9112 struct bpf_prog *prog)
9113{
9114 dev->xdp_state[mode].link = NULL;
9115 dev->xdp_state[mode].prog = prog;
9116}
9117
9118static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9119 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9120 u32 flags, struct bpf_prog *prog)
9121{
9122 struct netdev_bpf xdp;
9123 int err;
9124
9125 memset(&xdp, 0, sizeof(xdp));
9126 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9127 xdp.extack = extack;
9128 xdp.flags = flags;
9129 xdp.prog = prog;
9130
9131 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9132 * "moved" into driver), so they don't increment it on their own, but
9133 * they do decrement refcnt when program is detached or replaced.
9134 * Given net_device also owns link/prog, we need to bump refcnt here
9135 * to prevent drivers from underflowing it.
9136 */
9137 if (prog)
9138 bpf_prog_inc(prog);
9139 err = bpf_op(dev, &xdp);
9140 if (err) {
9141 if (prog)
9142 bpf_prog_put(prog);
9143 return err;
9144 }
9145
9146 if (mode != XDP_MODE_HW)
9147 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9148
9149 return 0;
9150}
9151
9152static void dev_xdp_uninstall(struct net_device *dev)
9153{
9154 struct bpf_xdp_link *link;
9155 struct bpf_prog *prog;
9156 enum bpf_xdp_mode mode;
9157 bpf_op_t bpf_op;
9158
9159 ASSERT_RTNL();
9160
9161 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9162 prog = dev_xdp_prog(dev, mode);
9163 if (!prog)
9164 continue;
9165
9166 bpf_op = dev_xdp_bpf_op(dev, mode);
9167 if (!bpf_op)
9168 continue;
9169
9170 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9171
9172 /* auto-detach link from net device */
9173 link = dev_xdp_link(dev, mode);
9174 if (link)
9175 link->dev = NULL;
9176 else
9177 bpf_prog_put(prog);
9178
9179 dev_xdp_set_link(dev, mode, NULL);
9180 }
9181}
9182
9183static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9184 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9185 struct bpf_prog *old_prog, u32 flags)
9186{
9187 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9188 struct bpf_prog *cur_prog;
9189 struct net_device *upper;
9190 struct list_head *iter;
9191 enum bpf_xdp_mode mode;
9192 bpf_op_t bpf_op;
9193 int err;
9194
9195 ASSERT_RTNL();
9196
9197 /* either link or prog attachment, never both */
9198 if (link && (new_prog || old_prog))
9199 return -EINVAL;
9200 /* link supports only XDP mode flags */
9201 if (link && (flags & ~XDP_FLAGS_MODES)) {
9202 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9203 return -EINVAL;
9204 }
9205 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9206 if (num_modes > 1) {
9207 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9208 return -EINVAL;
9209 }
9210 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9211 if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9212 NL_SET_ERR_MSG(extack,
9213 "More than one program loaded, unset mode is ambiguous");
9214 return -EINVAL;
9215 }
9216 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9217 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9218 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9219 return -EINVAL;
9220 }
9221
9222 mode = dev_xdp_mode(dev, flags);
9223 /* can't replace attached link */
9224 if (dev_xdp_link(dev, mode)) {
9225 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9226 return -EBUSY;
9227 }
9228
9229 /* don't allow if an upper device already has a program */
9230 netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9231 if (dev_xdp_prog_count(upper) > 0) {
9232 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9233 return -EEXIST;
9234 }
9235 }
9236
9237 cur_prog = dev_xdp_prog(dev, mode);
9238 /* can't replace attached prog with link */
9239 if (link && cur_prog) {
9240 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9241 return -EBUSY;
9242 }
9243 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9244 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9245 return -EEXIST;
9246 }
9247
9248 /* put effective new program into new_prog */
9249 if (link)
9250 new_prog = link->link.prog;
9251
9252 if (new_prog) {
9253 bool offload = mode == XDP_MODE_HW;
9254 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9255 ? XDP_MODE_DRV : XDP_MODE_SKB;
9256
9257 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9258 NL_SET_ERR_MSG(extack, "XDP program already attached");
9259 return -EBUSY;
9260 }
9261 if (!offload && dev_xdp_prog(dev, other_mode)) {
9262 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9263 return -EEXIST;
9264 }
9265 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9266 NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9267 return -EINVAL;
9268 }
9269 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9270 NL_SET_ERR_MSG(extack, "Program bound to different device");
9271 return -EINVAL;
9272 }
9273 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9274 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9275 return -EINVAL;
9276 }
9277 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9278 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9279 return -EINVAL;
9280 }
9281 }
9282
9283 /* don't call drivers if the effective program didn't change */
9284 if (new_prog != cur_prog) {
9285 bpf_op = dev_xdp_bpf_op(dev, mode);
9286 if (!bpf_op) {
9287 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9288 return -EOPNOTSUPP;
9289 }
9290
9291 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9292 if (err)
9293 return err;
9294 }
9295
9296 if (link)
9297 dev_xdp_set_link(dev, mode, link);
9298 else
9299 dev_xdp_set_prog(dev, mode, new_prog);
9300 if (cur_prog)
9301 bpf_prog_put(cur_prog);
9302
9303 return 0;
9304}
9305
9306static int dev_xdp_attach_link(struct net_device *dev,
9307 struct netlink_ext_ack *extack,
9308 struct bpf_xdp_link *link)
9309{
9310 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9311}
9312
9313static int dev_xdp_detach_link(struct net_device *dev,
9314 struct netlink_ext_ack *extack,
9315 struct bpf_xdp_link *link)
9316{
9317 enum bpf_xdp_mode mode;
9318 bpf_op_t bpf_op;
9319
9320 ASSERT_RTNL();
9321
9322 mode = dev_xdp_mode(dev, link->flags);
9323 if (dev_xdp_link(dev, mode) != link)
9324 return -EINVAL;
9325
9326 bpf_op = dev_xdp_bpf_op(dev, mode);
9327 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9328 dev_xdp_set_link(dev, mode, NULL);
9329 return 0;
9330}
9331
9332static void bpf_xdp_link_release(struct bpf_link *link)
9333{
9334 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9335
9336 rtnl_lock();
9337
9338 /* if racing with net_device's tear down, xdp_link->dev might be
9339 * already NULL, in which case link was already auto-detached
9340 */
9341 if (xdp_link->dev) {
9342 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9343 xdp_link->dev = NULL;
9344 }
9345
9346 rtnl_unlock();
9347}
9348
9349static int bpf_xdp_link_detach(struct bpf_link *link)
9350{
9351 bpf_xdp_link_release(link);
9352 return 0;
9353}
9354
9355static void bpf_xdp_link_dealloc(struct bpf_link *link)
9356{
9357 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9358
9359 kfree(xdp_link);
9360}
9361
9362static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9363 struct seq_file *seq)
9364{
9365 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9366 u32 ifindex = 0;
9367
9368 rtnl_lock();
9369 if (xdp_link->dev)
9370 ifindex = xdp_link->dev->ifindex;
9371 rtnl_unlock();
9372
9373 seq_printf(seq, "ifindex:\t%u\n", ifindex);
9374}
9375
9376static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9377 struct bpf_link_info *info)
9378{
9379 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9380 u32 ifindex = 0;
9381
9382 rtnl_lock();
9383 if (xdp_link->dev)
9384 ifindex = xdp_link->dev->ifindex;
9385 rtnl_unlock();
9386
9387 info->xdp.ifindex = ifindex;
9388 return 0;
9389}
9390
9391static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9392 struct bpf_prog *old_prog)
9393{
9394 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9395 enum bpf_xdp_mode mode;
9396 bpf_op_t bpf_op;
9397 int err = 0;
9398
9399 rtnl_lock();
9400
9401 /* link might have been auto-released already, so fail */
9402 if (!xdp_link->dev) {
9403 err = -ENOLINK;
9404 goto out_unlock;
9405 }
9406
9407 if (old_prog && link->prog != old_prog) {
9408 err = -EPERM;
9409 goto out_unlock;
9410 }
9411 old_prog = link->prog;
9412 if (old_prog->type != new_prog->type ||
9413 old_prog->expected_attach_type != new_prog->expected_attach_type) {
9414 err = -EINVAL;
9415 goto out_unlock;
9416 }
9417
9418 if (old_prog == new_prog) {
9419 /* no-op, don't disturb drivers */
9420 bpf_prog_put(new_prog);
9421 goto out_unlock;
9422 }
9423
9424 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9425 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9426 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9427 xdp_link->flags, new_prog);
9428 if (err)
9429 goto out_unlock;
9430
9431 old_prog = xchg(&link->prog, new_prog);
9432 bpf_prog_put(old_prog);
9433
9434out_unlock:
9435 rtnl_unlock();
9436 return err;
9437}
9438
9439static const struct bpf_link_ops bpf_xdp_link_lops = {
9440 .release = bpf_xdp_link_release,
9441 .dealloc = bpf_xdp_link_dealloc,
9442 .detach = bpf_xdp_link_detach,
9443 .show_fdinfo = bpf_xdp_link_show_fdinfo,
9444 .fill_link_info = bpf_xdp_link_fill_link_info,
9445 .update_prog = bpf_xdp_link_update,
9446};
9447
9448int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9449{
9450 struct net *net = current->nsproxy->net_ns;
9451 struct bpf_link_primer link_primer;
9452 struct bpf_xdp_link *link;
9453 struct net_device *dev;
9454 int err, fd;
9455
9456 rtnl_lock();
9457 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9458 if (!dev) {
9459 rtnl_unlock();
9460 return -EINVAL;
9461 }
9462
9463 link = kzalloc(sizeof(*link), GFP_USER);
9464 if (!link) {
9465 err = -ENOMEM;
9466 goto unlock;
9467 }
9468
9469 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9470 link->dev = dev;
9471 link->flags = attr->link_create.flags;
9472
9473 err = bpf_link_prime(&link->link, &link_primer);
9474 if (err) {
9475 kfree(link);
9476 goto unlock;
9477 }
9478
9479 err = dev_xdp_attach_link(dev, NULL, link);
9480 rtnl_unlock();
9481
9482 if (err) {
9483 link->dev = NULL;
9484 bpf_link_cleanup(&link_primer);
9485 goto out_put_dev;
9486 }
9487
9488 fd = bpf_link_settle(&link_primer);
9489 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9490 dev_put(dev);
9491 return fd;
9492
9493unlock:
9494 rtnl_unlock();
9495
9496out_put_dev:
9497 dev_put(dev);
9498 return err;
9499}
9500
9501/**
9502 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
9503 * @dev: device
9504 * @extack: netlink extended ack
9505 * @fd: new program fd or negative value to clear
9506 * @expected_fd: old program fd that userspace expects to replace or clear
9507 * @flags: xdp-related flags
9508 *
9509 * Set or clear a bpf program for a device
9510 */
9511int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9512 int fd, int expected_fd, u32 flags)
9513{
9514 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9515 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9516 int err;
9517
9518 ASSERT_RTNL();
9519
9520 if (fd >= 0) {
9521 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9522 mode != XDP_MODE_SKB);
9523 if (IS_ERR(new_prog))
9524 return PTR_ERR(new_prog);
9525 }
9526
9527 if (expected_fd >= 0) {
9528 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9529 mode != XDP_MODE_SKB);
9530 if (IS_ERR(old_prog)) {
9531 err = PTR_ERR(old_prog);
9532 old_prog = NULL;
9533 goto err_out;
9534 }
9535 }
9536
9537 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9538
9539err_out:
9540 if (err && new_prog)
9541 bpf_prog_put(new_prog);
9542 if (old_prog)
9543 bpf_prog_put(old_prog);
9544 return err;
9545}
9546
9547/**
9548 * dev_new_index - allocate an ifindex
9549 * @net: the applicable net namespace
9550 *
9551 * Returns a suitable unique value for a new device interface
9552 * number. The caller must hold the rtnl semaphore or the
9553 * dev_base_lock to be sure it remains unique.
9554 */
9555static int dev_new_index(struct net *net)
9556{
9557 int ifindex = net->ifindex;
9558
9559 for (;;) {
9560 if (++ifindex <= 0)
9561 ifindex = 1;
9562 if (!__dev_get_by_index(net, ifindex))
9563 return net->ifindex = ifindex;
9564 }
9565}
9566
9567/* Delayed registration/unregisteration */
9568LIST_HEAD(net_todo_list);
9569DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9570
9571static void net_set_todo(struct net_device *dev)
9572{
9573 list_add_tail(&dev->todo_list, &net_todo_list);
9574 atomic_inc(&dev_net(dev)->dev_unreg_count);
9575}
9576
9577static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9578 struct net_device *upper, netdev_features_t features)
9579{
9580 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9581 netdev_features_t feature;
9582 int feature_bit;
9583
9584 for_each_netdev_feature(upper_disables, feature_bit) {
9585 feature = __NETIF_F_BIT(feature_bit);
9586 if (!(upper->wanted_features & feature)
9587 && (features & feature)) {
9588 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9589 &feature, upper->name);
9590 features &= ~feature;
9591 }
9592 }
9593
9594 return features;
9595}
9596
9597static void netdev_sync_lower_features(struct net_device *upper,
9598 struct net_device *lower, netdev_features_t features)
9599{
9600 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9601 netdev_features_t feature;
9602 int feature_bit;
9603
9604 for_each_netdev_feature(upper_disables, feature_bit) {
9605 feature = __NETIF_F_BIT(feature_bit);
9606 if (!(features & feature) && (lower->features & feature)) {
9607 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9608 &feature, lower->name);
9609 lower->wanted_features &= ~feature;
9610 __netdev_update_features(lower);
9611
9612 if (unlikely(lower->features & feature))
9613 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9614 &feature, lower->name);
9615 else
9616 netdev_features_change(lower);
9617 }
9618 }
9619}
9620
9621static netdev_features_t netdev_fix_features(struct net_device *dev,
9622 netdev_features_t features)
9623{
9624 /* Fix illegal checksum combinations */
9625 if ((features & NETIF_F_HW_CSUM) &&
9626 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9627 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9628 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9629 }
9630
9631 /* TSO requires that SG is present as well. */
9632 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9633 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9634 features &= ~NETIF_F_ALL_TSO;
9635 }
9636
9637 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9638 !(features & NETIF_F_IP_CSUM)) {
9639 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9640 features &= ~NETIF_F_TSO;
9641 features &= ~NETIF_F_TSO_ECN;
9642 }
9643
9644 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9645 !(features & NETIF_F_IPV6_CSUM)) {
9646 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9647 features &= ~NETIF_F_TSO6;
9648 }
9649
9650 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9651 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9652 features &= ~NETIF_F_TSO_MANGLEID;
9653
9654 /* TSO ECN requires that TSO is present as well. */
9655 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9656 features &= ~NETIF_F_TSO_ECN;
9657
9658 /* Software GSO depends on SG. */
9659 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9660 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9661 features &= ~NETIF_F_GSO;
9662 }
9663
9664 /* GSO partial features require GSO partial be set */
9665 if ((features & dev->gso_partial_features) &&
9666 !(features & NETIF_F_GSO_PARTIAL)) {
9667 netdev_dbg(dev,
9668 "Dropping partially supported GSO features since no GSO partial.\n");
9669 features &= ~dev->gso_partial_features;
9670 }
9671
9672 if (!(features & NETIF_F_RXCSUM)) {
9673 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9674 * successfully merged by hardware must also have the
9675 * checksum verified by hardware. If the user does not
9676 * want to enable RXCSUM, logically, we should disable GRO_HW.
9677 */
9678 if (features & NETIF_F_GRO_HW) {
9679 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9680 features &= ~NETIF_F_GRO_HW;
9681 }
9682 }
9683
9684 /* LRO/HW-GRO features cannot be combined with RX-FCS */
9685 if (features & NETIF_F_RXFCS) {
9686 if (features & NETIF_F_LRO) {
9687 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9688 features &= ~NETIF_F_LRO;
9689 }
9690
9691 if (features & NETIF_F_GRO_HW) {
9692 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9693 features &= ~NETIF_F_GRO_HW;
9694 }
9695 }
9696
9697 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9698 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9699 features &= ~NETIF_F_LRO;
9700 }
9701
9702 if (features & NETIF_F_HW_TLS_TX) {
9703 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9704 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9705 bool hw_csum = features & NETIF_F_HW_CSUM;
9706
9707 if (!ip_csum && !hw_csum) {
9708 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9709 features &= ~NETIF_F_HW_TLS_TX;
9710 }
9711 }
9712
9713 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9714 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9715 features &= ~NETIF_F_HW_TLS_RX;
9716 }
9717
9718 return features;
9719}
9720
9721int __netdev_update_features(struct net_device *dev)
9722{
9723 struct net_device *upper, *lower;
9724 netdev_features_t features;
9725 struct list_head *iter;
9726 int err = -1;
9727
9728 ASSERT_RTNL();
9729
9730 features = netdev_get_wanted_features(dev);
9731
9732 if (dev->netdev_ops->ndo_fix_features)
9733 features = dev->netdev_ops->ndo_fix_features(dev, features);
9734
9735 /* driver might be less strict about feature dependencies */
9736 features = netdev_fix_features(dev, features);
9737
9738 /* some features can't be enabled if they're off on an upper device */
9739 netdev_for_each_upper_dev_rcu(dev, upper, iter)
9740 features = netdev_sync_upper_features(dev, upper, features);
9741
9742 if (dev->features == features)
9743 goto sync_lower;
9744
9745 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9746 &dev->features, &features);
9747
9748 if (dev->netdev_ops->ndo_set_features)
9749 err = dev->netdev_ops->ndo_set_features(dev, features);
9750 else
9751 err = 0;
9752
9753 if (unlikely(err < 0)) {
9754 netdev_err(dev,
9755 "set_features() failed (%d); wanted %pNF, left %pNF\n",
9756 err, &features, &dev->features);
9757 /* return non-0 since some features might have changed and
9758 * it's better to fire a spurious notification than miss it
9759 */
9760 return -1;
9761 }
9762
9763sync_lower:
9764 /* some features must be disabled on lower devices when disabled
9765 * on an upper device (think: bonding master or bridge)
9766 */
9767 netdev_for_each_lower_dev(dev, lower, iter)
9768 netdev_sync_lower_features(dev, lower, features);
9769
9770 if (!err) {
9771 netdev_features_t diff = features ^ dev->features;
9772
9773 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9774 /* udp_tunnel_{get,drop}_rx_info both need
9775 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9776 * device, or they won't do anything.
9777 * Thus we need to update dev->features
9778 * *before* calling udp_tunnel_get_rx_info,
9779 * but *after* calling udp_tunnel_drop_rx_info.
9780 */
9781 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9782 dev->features = features;
9783 udp_tunnel_get_rx_info(dev);
9784 } else {
9785 udp_tunnel_drop_rx_info(dev);
9786 }
9787 }
9788
9789 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9790 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9791 dev->features = features;
9792 err |= vlan_get_rx_ctag_filter_info(dev);
9793 } else {
9794 vlan_drop_rx_ctag_filter_info(dev);
9795 }
9796 }
9797
9798 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9799 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9800 dev->features = features;
9801 err |= vlan_get_rx_stag_filter_info(dev);
9802 } else {
9803 vlan_drop_rx_stag_filter_info(dev);
9804 }
9805 }
9806
9807 dev->features = features;
9808 }
9809
9810 return err < 0 ? 0 : 1;
9811}
9812
9813/**
9814 * netdev_update_features - recalculate device features
9815 * @dev: the device to check
9816 *
9817 * Recalculate dev->features set and send notifications if it
9818 * has changed. Should be called after driver or hardware dependent
9819 * conditions might have changed that influence the features.
9820 */
9821void netdev_update_features(struct net_device *dev)
9822{
9823 if (__netdev_update_features(dev))
9824 netdev_features_change(dev);
9825}
9826EXPORT_SYMBOL(netdev_update_features);
9827
9828/**
9829 * netdev_change_features - recalculate device features
9830 * @dev: the device to check
9831 *
9832 * Recalculate dev->features set and send notifications even
9833 * if they have not changed. Should be called instead of
9834 * netdev_update_features() if also dev->vlan_features might
9835 * have changed to allow the changes to be propagated to stacked
9836 * VLAN devices.
9837 */
9838void netdev_change_features(struct net_device *dev)
9839{
9840 __netdev_update_features(dev);
9841 netdev_features_change(dev);
9842}
9843EXPORT_SYMBOL(netdev_change_features);
9844
9845/**
9846 * netif_stacked_transfer_operstate - transfer operstate
9847 * @rootdev: the root or lower level device to transfer state from
9848 * @dev: the device to transfer operstate to
9849 *
9850 * Transfer operational state from root to device. This is normally
9851 * called when a stacking relationship exists between the root
9852 * device and the device(a leaf device).
9853 */
9854void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9855 struct net_device *dev)
9856{
9857 if (rootdev->operstate == IF_OPER_DORMANT)
9858 netif_dormant_on(dev);
9859 else
9860 netif_dormant_off(dev);
9861
9862 if (rootdev->operstate == IF_OPER_TESTING)
9863 netif_testing_on(dev);
9864 else
9865 netif_testing_off(dev);
9866
9867 if (netif_carrier_ok(rootdev))
9868 netif_carrier_on(dev);
9869 else
9870 netif_carrier_off(dev);
9871}
9872EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9873
9874static int netif_alloc_rx_queues(struct net_device *dev)
9875{
9876 unsigned int i, count = dev->num_rx_queues;
9877 struct netdev_rx_queue *rx;
9878 size_t sz = count * sizeof(*rx);
9879 int err = 0;
9880
9881 BUG_ON(count < 1);
9882
9883 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9884 if (!rx)
9885 return -ENOMEM;
9886
9887 dev->_rx = rx;
9888
9889 for (i = 0; i < count; i++) {
9890 rx[i].dev = dev;
9891
9892 /* XDP RX-queue setup */
9893 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9894 if (err < 0)
9895 goto err_rxq_info;
9896 }
9897 return 0;
9898
9899err_rxq_info:
9900 /* Rollback successful reg's and free other resources */
9901 while (i--)
9902 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9903 kvfree(dev->_rx);
9904 dev->_rx = NULL;
9905 return err;
9906}
9907
9908static void netif_free_rx_queues(struct net_device *dev)
9909{
9910 unsigned int i, count = dev->num_rx_queues;
9911
9912 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9913 if (!dev->_rx)
9914 return;
9915
9916 for (i = 0; i < count; i++)
9917 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
9918
9919 kvfree(dev->_rx);
9920}
9921
9922static void netdev_init_one_queue(struct net_device *dev,
9923 struct netdev_queue *queue, void *_unused)
9924{
9925 /* Initialize queue lock */
9926 spin_lock_init(&queue->_xmit_lock);
9927 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
9928 queue->xmit_lock_owner = -1;
9929 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
9930 queue->dev = dev;
9931#ifdef CONFIG_BQL
9932 dql_init(&queue->dql, HZ);
9933#endif
9934}
9935
9936static void netif_free_tx_queues(struct net_device *dev)
9937{
9938 kvfree(dev->_tx);
9939}
9940
9941static int netif_alloc_netdev_queues(struct net_device *dev)
9942{
9943 unsigned int count = dev->num_tx_queues;
9944 struct netdev_queue *tx;
9945 size_t sz = count * sizeof(*tx);
9946
9947 if (count < 1 || count > 0xffff)
9948 return -EINVAL;
9949
9950 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9951 if (!tx)
9952 return -ENOMEM;
9953
9954 dev->_tx = tx;
9955
9956 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
9957 spin_lock_init(&dev->tx_global_lock);
9958
9959 return 0;
9960}
9961
9962void netif_tx_stop_all_queues(struct net_device *dev)
9963{
9964 unsigned int i;
9965
9966 for (i = 0; i < dev->num_tx_queues; i++) {
9967 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
9968
9969 netif_tx_stop_queue(txq);
9970 }
9971}
9972EXPORT_SYMBOL(netif_tx_stop_all_queues);
9973
9974/**
9975 * register_netdevice() - register a network device
9976 * @dev: device to register
9977 *
9978 * Take a prepared network device structure and make it externally accessible.
9979 * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
9980 * Callers must hold the rtnl lock - you may want register_netdev()
9981 * instead of this.
9982 */
9983int register_netdevice(struct net_device *dev)
9984{
9985 int ret;
9986 struct net *net = dev_net(dev);
9987
9988 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
9989 NETDEV_FEATURE_COUNT);
9990 BUG_ON(dev_boot_phase);
9991 ASSERT_RTNL();
9992
9993 might_sleep();
9994
9995 /* When net_device's are persistent, this will be fatal. */
9996 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
9997 BUG_ON(!net);
9998
9999 ret = ethtool_check_ops(dev->ethtool_ops);
10000 if (ret)
10001 return ret;
10002
10003 spin_lock_init(&dev->addr_list_lock);
10004 netdev_set_addr_lockdep_class(dev);
10005
10006 ret = dev_get_valid_name(net, dev, dev->name);
10007 if (ret < 0)
10008 goto out;
10009
10010 ret = -ENOMEM;
10011 dev->name_node = netdev_name_node_head_alloc(dev);
10012 if (!dev->name_node)
10013 goto out;
10014
10015 /* Init, if this function is available */
10016 if (dev->netdev_ops->ndo_init) {
10017 ret = dev->netdev_ops->ndo_init(dev);
10018 if (ret) {
10019 if (ret > 0)
10020 ret = -EIO;
10021 goto err_free_name;
10022 }
10023 }
10024
10025 if (((dev->hw_features | dev->features) &
10026 NETIF_F_HW_VLAN_CTAG_FILTER) &&
10027 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10028 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10029 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10030 ret = -EINVAL;
10031 goto err_uninit;
10032 }
10033
10034 ret = -EBUSY;
10035 if (!dev->ifindex)
10036 dev->ifindex = dev_new_index(net);
10037 else if (__dev_get_by_index(net, dev->ifindex))
10038 goto err_uninit;
10039
10040 /* Transfer changeable features to wanted_features and enable
10041 * software offloads (GSO and GRO).
10042 */
10043 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10044 dev->features |= NETIF_F_SOFT_FEATURES;
10045
10046 if (dev->udp_tunnel_nic_info) {
10047 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10048 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10049 }
10050
10051 dev->wanted_features = dev->features & dev->hw_features;
10052
10053 if (!(dev->flags & IFF_LOOPBACK))
10054 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10055
10056 /* If IPv4 TCP segmentation offload is supported we should also
10057 * allow the device to enable segmenting the frame with the option
10058 * of ignoring a static IP ID value. This doesn't enable the
10059 * feature itself but allows the user to enable it later.
10060 */
10061 if (dev->hw_features & NETIF_F_TSO)
10062 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10063 if (dev->vlan_features & NETIF_F_TSO)
10064 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10065 if (dev->mpls_features & NETIF_F_TSO)
10066 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10067 if (dev->hw_enc_features & NETIF_F_TSO)
10068 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10069
10070 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10071 */
10072 dev->vlan_features |= NETIF_F_HIGHDMA;
10073
10074 /* Make NETIF_F_SG inheritable to tunnel devices.
10075 */
10076 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10077
10078 /* Make NETIF_F_SG inheritable to MPLS.
10079 */
10080 dev->mpls_features |= NETIF_F_SG;
10081
10082 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10083 ret = notifier_to_errno(ret);
10084 if (ret)
10085 goto err_uninit;
10086
10087 ret = netdev_register_kobject(dev);
10088 write_lock(&dev_base_lock);
10089 dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10090 write_unlock(&dev_base_lock);
10091 if (ret)
10092 goto err_uninit_notify;
10093
10094 __netdev_update_features(dev);
10095
10096 /*
10097 * Default initial state at registry is that the
10098 * device is present.
10099 */
10100
10101 set_bit(__LINK_STATE_PRESENT, &dev->state);
10102
10103 linkwatch_init_dev(dev);
10104
10105 dev_init_scheduler(dev);
10106
10107 netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10108 list_netdevice(dev);
10109
10110 add_device_randomness(dev->dev_addr, dev->addr_len);
10111
10112 /* If the device has permanent device address, driver should
10113 * set dev_addr and also addr_assign_type should be set to
10114 * NET_ADDR_PERM (default value).
10115 */
10116 if (dev->addr_assign_type == NET_ADDR_PERM)
10117 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10118
10119 /* Notify protocols, that a new device appeared. */
10120 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10121 ret = notifier_to_errno(ret);
10122 if (ret) {
10123 /* Expect explicit free_netdev() on failure */
10124 dev->needs_free_netdev = false;
10125 unregister_netdevice_queue(dev, NULL);
10126 goto out;
10127 }
10128 /*
10129 * Prevent userspace races by waiting until the network
10130 * device is fully setup before sending notifications.
10131 */
10132 if (!dev->rtnl_link_ops ||
10133 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10134 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10135
10136out:
10137 return ret;
10138
10139err_uninit_notify:
10140 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10141err_uninit:
10142 if (dev->netdev_ops->ndo_uninit)
10143 dev->netdev_ops->ndo_uninit(dev);
10144 if (dev->priv_destructor)
10145 dev->priv_destructor(dev);
10146err_free_name:
10147 netdev_name_node_free(dev->name_node);
10148 goto out;
10149}
10150EXPORT_SYMBOL(register_netdevice);
10151
10152/**
10153 * init_dummy_netdev - init a dummy network device for NAPI
10154 * @dev: device to init
10155 *
10156 * This takes a network device structure and initialize the minimum
10157 * amount of fields so it can be used to schedule NAPI polls without
10158 * registering a full blown interface. This is to be used by drivers
10159 * that need to tie several hardware interfaces to a single NAPI
10160 * poll scheduler due to HW limitations.
10161 */
10162int init_dummy_netdev(struct net_device *dev)
10163{
10164 /* Clear everything. Note we don't initialize spinlocks
10165 * are they aren't supposed to be taken by any of the
10166 * NAPI code and this dummy netdev is supposed to be
10167 * only ever used for NAPI polls
10168 */
10169 memset(dev, 0, sizeof(struct net_device));
10170
10171 /* make sure we BUG if trying to hit standard
10172 * register/unregister code path
10173 */
10174 dev->reg_state = NETREG_DUMMY;
10175
10176 /* NAPI wants this */
10177 INIT_LIST_HEAD(&dev->napi_list);
10178
10179 /* a dummy interface is started by default */
10180 set_bit(__LINK_STATE_PRESENT, &dev->state);
10181 set_bit(__LINK_STATE_START, &dev->state);
10182
10183 /* napi_busy_loop stats accounting wants this */
10184 dev_net_set(dev, &init_net);
10185
10186 /* Note : We dont allocate pcpu_refcnt for dummy devices,
10187 * because users of this 'device' dont need to change
10188 * its refcount.
10189 */
10190
10191 return 0;
10192}
10193EXPORT_SYMBOL_GPL(init_dummy_netdev);
10194
10195
10196/**
10197 * register_netdev - register a network device
10198 * @dev: device to register
10199 *
10200 * Take a completed network device structure and add it to the kernel
10201 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10202 * chain. 0 is returned on success. A negative errno code is returned
10203 * on a failure to set up the device, or if the name is a duplicate.
10204 *
10205 * This is a wrapper around register_netdevice that takes the rtnl semaphore
10206 * and expands the device name if you passed a format string to
10207 * alloc_netdev.
10208 */
10209int register_netdev(struct net_device *dev)
10210{
10211 int err;
10212
10213 if (rtnl_lock_killable())
10214 return -EINTR;
10215 err = register_netdevice(dev);
10216 rtnl_unlock();
10217 return err;
10218}
10219EXPORT_SYMBOL(register_netdev);
10220
10221int netdev_refcnt_read(const struct net_device *dev)
10222{
10223#ifdef CONFIG_PCPU_DEV_REFCNT
10224 int i, refcnt = 0;
10225
10226 for_each_possible_cpu(i)
10227 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10228 return refcnt;
10229#else
10230 return refcount_read(&dev->dev_refcnt);
10231#endif
10232}
10233EXPORT_SYMBOL(netdev_refcnt_read);
10234
10235int netdev_unregister_timeout_secs __read_mostly = 10;
10236
10237#define WAIT_REFS_MIN_MSECS 1
10238#define WAIT_REFS_MAX_MSECS 250
10239/**
10240 * netdev_wait_allrefs_any - wait until all references are gone.
10241 * @list: list of net_devices to wait on
10242 *
10243 * This is called when unregistering network devices.
10244 *
10245 * Any protocol or device that holds a reference should register
10246 * for netdevice notification, and cleanup and put back the
10247 * reference if they receive an UNREGISTER event.
10248 * We can get stuck here if buggy protocols don't correctly
10249 * call dev_put.
10250 */
10251static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10252{
10253 unsigned long rebroadcast_time, warning_time;
10254 struct net_device *dev;
10255 int wait = 0;
10256
10257 rebroadcast_time = warning_time = jiffies;
10258
10259 list_for_each_entry(dev, list, todo_list)
10260 if (netdev_refcnt_read(dev) == 1)
10261 return dev;
10262
10263 while (true) {
10264 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10265 rtnl_lock();
10266
10267 /* Rebroadcast unregister notification */
10268 list_for_each_entry(dev, list, todo_list)
10269 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10270
10271 __rtnl_unlock();
10272 rcu_barrier();
10273 rtnl_lock();
10274
10275 list_for_each_entry(dev, list, todo_list)
10276 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10277 &dev->state)) {
10278 /* We must not have linkwatch events
10279 * pending on unregister. If this
10280 * happens, we simply run the queue
10281 * unscheduled, resulting in a noop
10282 * for this device.
10283 */
10284 linkwatch_run_queue();
10285 break;
10286 }
10287
10288 __rtnl_unlock();
10289
10290 rebroadcast_time = jiffies;
10291 }
10292
10293 if (!wait) {
10294 rcu_barrier();
10295 wait = WAIT_REFS_MIN_MSECS;
10296 } else {
10297 msleep(wait);
10298 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10299 }
10300
10301 list_for_each_entry(dev, list, todo_list)
10302 if (netdev_refcnt_read(dev) == 1)
10303 return dev;
10304
10305 if (time_after(jiffies, warning_time +
10306 READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10307 list_for_each_entry(dev, list, todo_list) {
10308 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10309 dev->name, netdev_refcnt_read(dev));
10310 ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10311 }
10312
10313 warning_time = jiffies;
10314 }
10315 }
10316}
10317
10318/* The sequence is:
10319 *
10320 * rtnl_lock();
10321 * ...
10322 * register_netdevice(x1);
10323 * register_netdevice(x2);
10324 * ...
10325 * unregister_netdevice(y1);
10326 * unregister_netdevice(y2);
10327 * ...
10328 * rtnl_unlock();
10329 * free_netdev(y1);
10330 * free_netdev(y2);
10331 *
10332 * We are invoked by rtnl_unlock().
10333 * This allows us to deal with problems:
10334 * 1) We can delete sysfs objects which invoke hotplug
10335 * without deadlocking with linkwatch via keventd.
10336 * 2) Since we run with the RTNL semaphore not held, we can sleep
10337 * safely in order to wait for the netdev refcnt to drop to zero.
10338 *
10339 * We must not return until all unregister events added during
10340 * the interval the lock was held have been completed.
10341 */
10342void netdev_run_todo(void)
10343{
10344 struct net_device *dev, *tmp;
10345 struct list_head list;
10346#ifdef CONFIG_LOCKDEP
10347 struct list_head unlink_list;
10348
10349 list_replace_init(&net_unlink_list, &unlink_list);
10350
10351 while (!list_empty(&unlink_list)) {
10352 struct net_device *dev = list_first_entry(&unlink_list,
10353 struct net_device,
10354 unlink_list);
10355 list_del_init(&dev->unlink_list);
10356 dev->nested_level = dev->lower_level - 1;
10357 }
10358#endif
10359
10360 /* Snapshot list, allow later requests */
10361 list_replace_init(&net_todo_list, &list);
10362
10363 __rtnl_unlock();
10364
10365 /* Wait for rcu callbacks to finish before next phase */
10366 if (!list_empty(&list))
10367 rcu_barrier();
10368
10369 list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10370 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10371 netdev_WARN(dev, "run_todo but not unregistering\n");
10372 list_del(&dev->todo_list);
10373 continue;
10374 }
10375
10376 write_lock(&dev_base_lock);
10377 dev->reg_state = NETREG_UNREGISTERED;
10378 write_unlock(&dev_base_lock);
10379 linkwatch_forget_dev(dev);
10380 }
10381
10382 while (!list_empty(&list)) {
10383 dev = netdev_wait_allrefs_any(&list);
10384 list_del(&dev->todo_list);
10385
10386 /* paranoia */
10387 BUG_ON(netdev_refcnt_read(dev) != 1);
10388 BUG_ON(!list_empty(&dev->ptype_all));
10389 BUG_ON(!list_empty(&dev->ptype_specific));
10390 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10391 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10392
10393 if (dev->priv_destructor)
10394 dev->priv_destructor(dev);
10395 if (dev->needs_free_netdev)
10396 free_netdev(dev);
10397
10398 if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10399 wake_up(&netdev_unregistering_wq);
10400
10401 /* Free network device */
10402 kobject_put(&dev->dev.kobj);
10403 }
10404}
10405
10406/* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10407 * all the same fields in the same order as net_device_stats, with only
10408 * the type differing, but rtnl_link_stats64 may have additional fields
10409 * at the end for newer counters.
10410 */
10411void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10412 const struct net_device_stats *netdev_stats)
10413{
10414 size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10415 const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10416 u64 *dst = (u64 *)stats64;
10417
10418 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10419 for (i = 0; i < n; i++)
10420 dst[i] = (unsigned long)atomic_long_read(&src[i]);
10421 /* zero out counters that only exist in rtnl_link_stats64 */
10422 memset((char *)stats64 + n * sizeof(u64), 0,
10423 sizeof(*stats64) - n * sizeof(u64));
10424}
10425EXPORT_SYMBOL(netdev_stats_to_stats64);
10426
10427struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev)
10428{
10429 struct net_device_core_stats __percpu *p;
10430
10431 p = alloc_percpu_gfp(struct net_device_core_stats,
10432 GFP_ATOMIC | __GFP_NOWARN);
10433
10434 if (p && cmpxchg(&dev->core_stats, NULL, p))
10435 free_percpu(p);
10436
10437 /* This READ_ONCE() pairs with the cmpxchg() above */
10438 return READ_ONCE(dev->core_stats);
10439}
10440EXPORT_SYMBOL(netdev_core_stats_alloc);
10441
10442/**
10443 * dev_get_stats - get network device statistics
10444 * @dev: device to get statistics from
10445 * @storage: place to store stats
10446 *
10447 * Get network statistics from device. Return @storage.
10448 * The device driver may provide its own method by setting
10449 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10450 * otherwise the internal statistics structure is used.
10451 */
10452struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10453 struct rtnl_link_stats64 *storage)
10454{
10455 const struct net_device_ops *ops = dev->netdev_ops;
10456 const struct net_device_core_stats __percpu *p;
10457
10458 if (ops->ndo_get_stats64) {
10459 memset(storage, 0, sizeof(*storage));
10460 ops->ndo_get_stats64(dev, storage);
10461 } else if (ops->ndo_get_stats) {
10462 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10463 } else {
10464 netdev_stats_to_stats64(storage, &dev->stats);
10465 }
10466
10467 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10468 p = READ_ONCE(dev->core_stats);
10469 if (p) {
10470 const struct net_device_core_stats *core_stats;
10471 int i;
10472
10473 for_each_possible_cpu(i) {
10474 core_stats = per_cpu_ptr(p, i);
10475 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10476 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10477 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10478 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10479 }
10480 }
10481 return storage;
10482}
10483EXPORT_SYMBOL(dev_get_stats);
10484
10485/**
10486 * dev_fetch_sw_netstats - get per-cpu network device statistics
10487 * @s: place to store stats
10488 * @netstats: per-cpu network stats to read from
10489 *
10490 * Read per-cpu network statistics and populate the related fields in @s.
10491 */
10492void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10493 const struct pcpu_sw_netstats __percpu *netstats)
10494{
10495 int cpu;
10496
10497 for_each_possible_cpu(cpu) {
10498 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10499 const struct pcpu_sw_netstats *stats;
10500 unsigned int start;
10501
10502 stats = per_cpu_ptr(netstats, cpu);
10503 do {
10504 start = u64_stats_fetch_begin(&stats->syncp);
10505 rx_packets = u64_stats_read(&stats->rx_packets);
10506 rx_bytes = u64_stats_read(&stats->rx_bytes);
10507 tx_packets = u64_stats_read(&stats->tx_packets);
10508 tx_bytes = u64_stats_read(&stats->tx_bytes);
10509 } while (u64_stats_fetch_retry(&stats->syncp, start));
10510
10511 s->rx_packets += rx_packets;
10512 s->rx_bytes += rx_bytes;
10513 s->tx_packets += tx_packets;
10514 s->tx_bytes += tx_bytes;
10515 }
10516}
10517EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10518
10519/**
10520 * dev_get_tstats64 - ndo_get_stats64 implementation
10521 * @dev: device to get statistics from
10522 * @s: place to store stats
10523 *
10524 * Populate @s from dev->stats and dev->tstats. Can be used as
10525 * ndo_get_stats64() callback.
10526 */
10527void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10528{
10529 netdev_stats_to_stats64(s, &dev->stats);
10530 dev_fetch_sw_netstats(s, dev->tstats);
10531}
10532EXPORT_SYMBOL_GPL(dev_get_tstats64);
10533
10534struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10535{
10536 struct netdev_queue *queue = dev_ingress_queue(dev);
10537
10538#ifdef CONFIG_NET_CLS_ACT
10539 if (queue)
10540 return queue;
10541 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10542 if (!queue)
10543 return NULL;
10544 netdev_init_one_queue(dev, queue, NULL);
10545 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10546 RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
10547 rcu_assign_pointer(dev->ingress_queue, queue);
10548#endif
10549 return queue;
10550}
10551
10552static const struct ethtool_ops default_ethtool_ops;
10553
10554void netdev_set_default_ethtool_ops(struct net_device *dev,
10555 const struct ethtool_ops *ops)
10556{
10557 if (dev->ethtool_ops == &default_ethtool_ops)
10558 dev->ethtool_ops = ops;
10559}
10560EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10561
10562/**
10563 * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
10564 * @dev: netdev to enable the IRQ coalescing on
10565 *
10566 * Sets a conservative default for SW IRQ coalescing. Users can use
10567 * sysfs attributes to override the default values.
10568 */
10569void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
10570{
10571 WARN_ON(dev->reg_state == NETREG_REGISTERED);
10572
10573 dev->gro_flush_timeout = 20000;
10574 dev->napi_defer_hard_irqs = 1;
10575}
10576EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
10577
10578void netdev_freemem(struct net_device *dev)
10579{
10580 char *addr = (char *)dev - dev->padded;
10581
10582 kvfree(addr);
10583}
10584
10585/**
10586 * alloc_netdev_mqs - allocate network device
10587 * @sizeof_priv: size of private data to allocate space for
10588 * @name: device name format string
10589 * @name_assign_type: origin of device name
10590 * @setup: callback to initialize device
10591 * @txqs: the number of TX subqueues to allocate
10592 * @rxqs: the number of RX subqueues to allocate
10593 *
10594 * Allocates a struct net_device with private data area for driver use
10595 * and performs basic initialization. Also allocates subqueue structs
10596 * for each queue on the device.
10597 */
10598struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10599 unsigned char name_assign_type,
10600 void (*setup)(struct net_device *),
10601 unsigned int txqs, unsigned int rxqs)
10602{
10603 struct net_device *dev;
10604 unsigned int alloc_size;
10605 struct net_device *p;
10606
10607 BUG_ON(strlen(name) >= sizeof(dev->name));
10608
10609 if (txqs < 1) {
10610 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10611 return NULL;
10612 }
10613
10614 if (rxqs < 1) {
10615 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10616 return NULL;
10617 }
10618
10619 alloc_size = sizeof(struct net_device);
10620 if (sizeof_priv) {
10621 /* ensure 32-byte alignment of private area */
10622 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10623 alloc_size += sizeof_priv;
10624 }
10625 /* ensure 32-byte alignment of whole construct */
10626 alloc_size += NETDEV_ALIGN - 1;
10627
10628 p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10629 if (!p)
10630 return NULL;
10631
10632 dev = PTR_ALIGN(p, NETDEV_ALIGN);
10633 dev->padded = (char *)dev - (char *)p;
10634
10635 ref_tracker_dir_init(&dev->refcnt_tracker, 128);
10636#ifdef CONFIG_PCPU_DEV_REFCNT
10637 dev->pcpu_refcnt = alloc_percpu(int);
10638 if (!dev->pcpu_refcnt)
10639 goto free_dev;
10640 __dev_hold(dev);
10641#else
10642 refcount_set(&dev->dev_refcnt, 1);
10643#endif
10644
10645 if (dev_addr_init(dev))
10646 goto free_pcpu;
10647
10648 dev_mc_init(dev);
10649 dev_uc_init(dev);
10650
10651 dev_net_set(dev, &init_net);
10652
10653 dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10654 dev->gso_max_segs = GSO_MAX_SEGS;
10655 dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10656 dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
10657 dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
10658 dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10659 dev->tso_max_segs = TSO_MAX_SEGS;
10660 dev->upper_level = 1;
10661 dev->lower_level = 1;
10662#ifdef CONFIG_LOCKDEP
10663 dev->nested_level = 0;
10664 INIT_LIST_HEAD(&dev->unlink_list);
10665#endif
10666
10667 INIT_LIST_HEAD(&dev->napi_list);
10668 INIT_LIST_HEAD(&dev->unreg_list);
10669 INIT_LIST_HEAD(&dev->close_list);
10670 INIT_LIST_HEAD(&dev->link_watch_list);
10671 INIT_LIST_HEAD(&dev->adj_list.upper);
10672 INIT_LIST_HEAD(&dev->adj_list.lower);
10673 INIT_LIST_HEAD(&dev->ptype_all);
10674 INIT_LIST_HEAD(&dev->ptype_specific);
10675 INIT_LIST_HEAD(&dev->net_notifier_list);
10676#ifdef CONFIG_NET_SCHED
10677 hash_init(dev->qdisc_hash);
10678#endif
10679 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10680 setup(dev);
10681
10682 if (!dev->tx_queue_len) {
10683 dev->priv_flags |= IFF_NO_QUEUE;
10684 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10685 }
10686
10687 dev->num_tx_queues = txqs;
10688 dev->real_num_tx_queues = txqs;
10689 if (netif_alloc_netdev_queues(dev))
10690 goto free_all;
10691
10692 dev->num_rx_queues = rxqs;
10693 dev->real_num_rx_queues = rxqs;
10694 if (netif_alloc_rx_queues(dev))
10695 goto free_all;
10696
10697 strcpy(dev->name, name);
10698 dev->name_assign_type = name_assign_type;
10699 dev->group = INIT_NETDEV_GROUP;
10700 if (!dev->ethtool_ops)
10701 dev->ethtool_ops = &default_ethtool_ops;
10702
10703 nf_hook_netdev_init(dev);
10704
10705 return dev;
10706
10707free_all:
10708 free_netdev(dev);
10709 return NULL;
10710
10711free_pcpu:
10712#ifdef CONFIG_PCPU_DEV_REFCNT
10713 free_percpu(dev->pcpu_refcnt);
10714free_dev:
10715#endif
10716 netdev_freemem(dev);
10717 return NULL;
10718}
10719EXPORT_SYMBOL(alloc_netdev_mqs);
10720
10721/**
10722 * free_netdev - free network device
10723 * @dev: device
10724 *
10725 * This function does the last stage of destroying an allocated device
10726 * interface. The reference to the device object is released. If this
10727 * is the last reference then it will be freed.Must be called in process
10728 * context.
10729 */
10730void free_netdev(struct net_device *dev)
10731{
10732 struct napi_struct *p, *n;
10733
10734 might_sleep();
10735
10736 /* When called immediately after register_netdevice() failed the unwind
10737 * handling may still be dismantling the device. Handle that case by
10738 * deferring the free.
10739 */
10740 if (dev->reg_state == NETREG_UNREGISTERING) {
10741 ASSERT_RTNL();
10742 dev->needs_free_netdev = true;
10743 return;
10744 }
10745
10746 netif_free_tx_queues(dev);
10747 netif_free_rx_queues(dev);
10748
10749 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10750
10751 /* Flush device addresses */
10752 dev_addr_flush(dev);
10753
10754 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10755 netif_napi_del(p);
10756
10757 ref_tracker_dir_exit(&dev->refcnt_tracker);
10758#ifdef CONFIG_PCPU_DEV_REFCNT
10759 free_percpu(dev->pcpu_refcnt);
10760 dev->pcpu_refcnt = NULL;
10761#endif
10762 free_percpu(dev->core_stats);
10763 dev->core_stats = NULL;
10764 free_percpu(dev->xdp_bulkq);
10765 dev->xdp_bulkq = NULL;
10766
10767 /* Compatibility with error handling in drivers */
10768 if (dev->reg_state == NETREG_UNINITIALIZED) {
10769 netdev_freemem(dev);
10770 return;
10771 }
10772
10773 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10774 dev->reg_state = NETREG_RELEASED;
10775
10776 /* will free via device release */
10777 put_device(&dev->dev);
10778}
10779EXPORT_SYMBOL(free_netdev);
10780
10781/**
10782 * synchronize_net - Synchronize with packet receive processing
10783 *
10784 * Wait for packets currently being received to be done.
10785 * Does not block later packets from starting.
10786 */
10787void synchronize_net(void)
10788{
10789 might_sleep();
10790 if (rtnl_is_locked())
10791 synchronize_rcu_expedited();
10792 else
10793 synchronize_rcu();
10794}
10795EXPORT_SYMBOL(synchronize_net);
10796
10797/**
10798 * unregister_netdevice_queue - remove device from the kernel
10799 * @dev: device
10800 * @head: list
10801 *
10802 * This function shuts down a device interface and removes it
10803 * from the kernel tables.
10804 * If head not NULL, device is queued to be unregistered later.
10805 *
10806 * Callers must hold the rtnl semaphore. You may want
10807 * unregister_netdev() instead of this.
10808 */
10809
10810void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10811{
10812 ASSERT_RTNL();
10813
10814 if (head) {
10815 list_move_tail(&dev->unreg_list, head);
10816 } else {
10817 LIST_HEAD(single);
10818
10819 list_add(&dev->unreg_list, &single);
10820 unregister_netdevice_many(&single);
10821 }
10822}
10823EXPORT_SYMBOL(unregister_netdevice_queue);
10824
10825void unregister_netdevice_many_notify(struct list_head *head,
10826 u32 portid, const struct nlmsghdr *nlh)
10827{
10828 struct net_device *dev, *tmp;
10829 LIST_HEAD(close_head);
10830
10831 BUG_ON(dev_boot_phase);
10832 ASSERT_RTNL();
10833
10834 if (list_empty(head))
10835 return;
10836
10837 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10838 /* Some devices call without registering
10839 * for initialization unwind. Remove those
10840 * devices and proceed with the remaining.
10841 */
10842 if (dev->reg_state == NETREG_UNINITIALIZED) {
10843 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10844 dev->name, dev);
10845
10846 WARN_ON(1);
10847 list_del(&dev->unreg_list);
10848 continue;
10849 }
10850 dev->dismantle = true;
10851 BUG_ON(dev->reg_state != NETREG_REGISTERED);
10852 }
10853
10854 /* If device is running, close it first. */
10855 list_for_each_entry(dev, head, unreg_list)
10856 list_add_tail(&dev->close_list, &close_head);
10857 dev_close_many(&close_head, true);
10858
10859 list_for_each_entry(dev, head, unreg_list) {
10860 /* And unlink it from device chain. */
10861 write_lock(&dev_base_lock);
10862 unlist_netdevice(dev, false);
10863 dev->reg_state = NETREG_UNREGISTERING;
10864 write_unlock(&dev_base_lock);
10865 }
10866 flush_all_backlogs();
10867
10868 synchronize_net();
10869
10870 list_for_each_entry(dev, head, unreg_list) {
10871 struct sk_buff *skb = NULL;
10872
10873 /* Shutdown queueing discipline. */
10874 dev_shutdown(dev);
10875
10876 dev_xdp_uninstall(dev);
10877 bpf_dev_bound_netdev_unregister(dev);
10878
10879 netdev_offload_xstats_disable_all(dev);
10880
10881 /* Notify protocols, that we are about to destroy
10882 * this device. They should clean all the things.
10883 */
10884 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10885
10886 if (!dev->rtnl_link_ops ||
10887 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10888 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
10889 GFP_KERNEL, NULL, 0,
10890 portid, nlh);
10891
10892 /*
10893 * Flush the unicast and multicast chains
10894 */
10895 dev_uc_flush(dev);
10896 dev_mc_flush(dev);
10897
10898 netdev_name_node_alt_flush(dev);
10899 netdev_name_node_free(dev->name_node);
10900
10901 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10902
10903 if (dev->netdev_ops->ndo_uninit)
10904 dev->netdev_ops->ndo_uninit(dev);
10905
10906 if (skb)
10907 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
10908
10909 /* Notifier chain MUST detach us all upper devices. */
10910 WARN_ON(netdev_has_any_upper_dev(dev));
10911 WARN_ON(netdev_has_any_lower_dev(dev));
10912
10913 /* Remove entries from kobject tree */
10914 netdev_unregister_kobject(dev);
10915#ifdef CONFIG_XPS
10916 /* Remove XPS queueing entries */
10917 netif_reset_xps_queues_gt(dev, 0);
10918#endif
10919 }
10920
10921 synchronize_net();
10922
10923 list_for_each_entry(dev, head, unreg_list) {
10924 netdev_put(dev, &dev->dev_registered_tracker);
10925 net_set_todo(dev);
10926 }
10927
10928 list_del(head);
10929}
10930
10931/**
10932 * unregister_netdevice_many - unregister many devices
10933 * @head: list of devices
10934 *
10935 * Note: As most callers use a stack allocated list_head,
10936 * we force a list_del() to make sure stack wont be corrupted later.
10937 */
10938void unregister_netdevice_many(struct list_head *head)
10939{
10940 unregister_netdevice_many_notify(head, 0, NULL);
10941}
10942EXPORT_SYMBOL(unregister_netdevice_many);
10943
10944/**
10945 * unregister_netdev - remove device from the kernel
10946 * @dev: device
10947 *
10948 * This function shuts down a device interface and removes it
10949 * from the kernel tables.
10950 *
10951 * This is just a wrapper for unregister_netdevice that takes
10952 * the rtnl semaphore. In general you want to use this and not
10953 * unregister_netdevice.
10954 */
10955void unregister_netdev(struct net_device *dev)
10956{
10957 rtnl_lock();
10958 unregister_netdevice(dev);
10959 rtnl_unlock();
10960}
10961EXPORT_SYMBOL(unregister_netdev);
10962
10963/**
10964 * __dev_change_net_namespace - move device to different nethost namespace
10965 * @dev: device
10966 * @net: network namespace
10967 * @pat: If not NULL name pattern to try if the current device name
10968 * is already taken in the destination network namespace.
10969 * @new_ifindex: If not zero, specifies device index in the target
10970 * namespace.
10971 *
10972 * This function shuts down a device interface and moves it
10973 * to a new network namespace. On success 0 is returned, on
10974 * a failure a netagive errno code is returned.
10975 *
10976 * Callers must hold the rtnl semaphore.
10977 */
10978
10979int __dev_change_net_namespace(struct net_device *dev, struct net *net,
10980 const char *pat, int new_ifindex)
10981{
10982 struct net *net_old = dev_net(dev);
10983 int err, new_nsid;
10984
10985 ASSERT_RTNL();
10986
10987 /* Don't allow namespace local devices to be moved. */
10988 err = -EINVAL;
10989 if (dev->features & NETIF_F_NETNS_LOCAL)
10990 goto out;
10991
10992 /* Ensure the device has been registrered */
10993 if (dev->reg_state != NETREG_REGISTERED)
10994 goto out;
10995
10996 /* Get out if there is nothing todo */
10997 err = 0;
10998 if (net_eq(net_old, net))
10999 goto out;
11000
11001 /* Pick the destination device name, and ensure
11002 * we can use it in the destination network namespace.
11003 */
11004 err = -EEXIST;
11005 if (netdev_name_in_use(net, dev->name)) {
11006 /* We get here if we can't use the current device name */
11007 if (!pat)
11008 goto out;
11009 err = dev_get_valid_name(net, dev, pat);
11010 if (err < 0)
11011 goto out;
11012 }
11013
11014 /* Check that new_ifindex isn't used yet. */
11015 err = -EBUSY;
11016 if (new_ifindex && __dev_get_by_index(net, new_ifindex))
11017 goto out;
11018
11019 /*
11020 * And now a mini version of register_netdevice unregister_netdevice.
11021 */
11022
11023 /* If device is running close it first. */
11024 dev_close(dev);
11025
11026 /* And unlink it from device chain */
11027 unlist_netdevice(dev, true);
11028
11029 synchronize_net();
11030
11031 /* Shutdown queueing discipline. */
11032 dev_shutdown(dev);
11033
11034 /* Notify protocols, that we are about to destroy
11035 * this device. They should clean all the things.
11036 *
11037 * Note that dev->reg_state stays at NETREG_REGISTERED.
11038 * This is wanted because this way 8021q and macvlan know
11039 * the device is just moving and can keep their slaves up.
11040 */
11041 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11042 rcu_barrier();
11043
11044 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11045 /* If there is an ifindex conflict assign a new one */
11046 if (!new_ifindex) {
11047 if (__dev_get_by_index(net, dev->ifindex))
11048 new_ifindex = dev_new_index(net);
11049 else
11050 new_ifindex = dev->ifindex;
11051 }
11052
11053 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11054 new_ifindex);
11055
11056 /*
11057 * Flush the unicast and multicast chains
11058 */
11059 dev_uc_flush(dev);
11060 dev_mc_flush(dev);
11061
11062 /* Send a netdev-removed uevent to the old namespace */
11063 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11064 netdev_adjacent_del_links(dev);
11065
11066 /* Move per-net netdevice notifiers that are following the netdevice */
11067 move_netdevice_notifiers_dev_net(dev, net);
11068
11069 /* Actually switch the network namespace */
11070 dev_net_set(dev, net);
11071 dev->ifindex = new_ifindex;
11072
11073 /* Send a netdev-add uevent to the new namespace */
11074 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11075 netdev_adjacent_add_links(dev);
11076
11077 /* Fixup kobjects */
11078 err = device_rename(&dev->dev, dev->name);
11079 WARN_ON(err);
11080
11081 /* Adapt owner in case owning user namespace of target network
11082 * namespace is different from the original one.
11083 */
11084 err = netdev_change_owner(dev, net_old, net);
11085 WARN_ON(err);
11086
11087 /* Add the device back in the hashes */
11088 list_netdevice(dev);
11089
11090 /* Notify protocols, that a new device appeared. */
11091 call_netdevice_notifiers(NETDEV_REGISTER, dev);
11092
11093 /*
11094 * Prevent userspace races by waiting until the network
11095 * device is fully setup before sending notifications.
11096 */
11097 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11098
11099 synchronize_net();
11100 err = 0;
11101out:
11102 return err;
11103}
11104EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11105
11106static int dev_cpu_dead(unsigned int oldcpu)
11107{
11108 struct sk_buff **list_skb;
11109 struct sk_buff *skb;
11110 unsigned int cpu;
11111 struct softnet_data *sd, *oldsd, *remsd = NULL;
11112
11113 local_irq_disable();
11114 cpu = smp_processor_id();
11115 sd = &per_cpu(softnet_data, cpu);
11116 oldsd = &per_cpu(softnet_data, oldcpu);
11117
11118 /* Find end of our completion_queue. */
11119 list_skb = &sd->completion_queue;
11120 while (*list_skb)
11121 list_skb = &(*list_skb)->next;
11122 /* Append completion queue from offline CPU. */
11123 *list_skb = oldsd->completion_queue;
11124 oldsd->completion_queue = NULL;
11125
11126 /* Append output queue from offline CPU. */
11127 if (oldsd->output_queue) {
11128 *sd->output_queue_tailp = oldsd->output_queue;
11129 sd->output_queue_tailp = oldsd->output_queue_tailp;
11130 oldsd->output_queue = NULL;
11131 oldsd->output_queue_tailp = &oldsd->output_queue;
11132 }
11133 /* Append NAPI poll list from offline CPU, with one exception :
11134 * process_backlog() must be called by cpu owning percpu backlog.
11135 * We properly handle process_queue & input_pkt_queue later.
11136 */
11137 while (!list_empty(&oldsd->poll_list)) {
11138 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11139 struct napi_struct,
11140 poll_list);
11141
11142 list_del_init(&napi->poll_list);
11143 if (napi->poll == process_backlog)
11144 napi->state = 0;
11145 else
11146 ____napi_schedule(sd, napi);
11147 }
11148
11149 raise_softirq_irqoff(NET_TX_SOFTIRQ);
11150 local_irq_enable();
11151
11152#ifdef CONFIG_RPS
11153 remsd = oldsd->rps_ipi_list;
11154 oldsd->rps_ipi_list = NULL;
11155#endif
11156 /* send out pending IPI's on offline CPU */
11157 net_rps_send_ipi(remsd);
11158
11159 /* Process offline CPU's input_pkt_queue */
11160 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11161 netif_rx(skb);
11162 input_queue_head_incr(oldsd);
11163 }
11164 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11165 netif_rx(skb);
11166 input_queue_head_incr(oldsd);
11167 }
11168
11169 return 0;
11170}
11171
11172/**
11173 * netdev_increment_features - increment feature set by one
11174 * @all: current feature set
11175 * @one: new feature set
11176 * @mask: mask feature set
11177 *
11178 * Computes a new feature set after adding a device with feature set
11179 * @one to the master device with current feature set @all. Will not
11180 * enable anything that is off in @mask. Returns the new feature set.
11181 */
11182netdev_features_t netdev_increment_features(netdev_features_t all,
11183 netdev_features_t one, netdev_features_t mask)
11184{
11185 if (mask & NETIF_F_HW_CSUM)
11186 mask |= NETIF_F_CSUM_MASK;
11187 mask |= NETIF_F_VLAN_CHALLENGED;
11188
11189 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11190 all &= one | ~NETIF_F_ALL_FOR_ALL;
11191
11192 /* If one device supports hw checksumming, set for all. */
11193 if (all & NETIF_F_HW_CSUM)
11194 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11195
11196 return all;
11197}
11198EXPORT_SYMBOL(netdev_increment_features);
11199
11200static struct hlist_head * __net_init netdev_create_hash(void)
11201{
11202 int i;
11203 struct hlist_head *hash;
11204
11205 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11206 if (hash != NULL)
11207 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11208 INIT_HLIST_HEAD(&hash[i]);
11209
11210 return hash;
11211}
11212
11213/* Initialize per network namespace state */
11214static int __net_init netdev_init(struct net *net)
11215{
11216 BUILD_BUG_ON(GRO_HASH_BUCKETS >
11217 8 * sizeof_field(struct napi_struct, gro_bitmask));
11218
11219 INIT_LIST_HEAD(&net->dev_base_head);
11220
11221 net->dev_name_head = netdev_create_hash();
11222 if (net->dev_name_head == NULL)
11223 goto err_name;
11224
11225 net->dev_index_head = netdev_create_hash();
11226 if (net->dev_index_head == NULL)
11227 goto err_idx;
11228
11229 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11230
11231 return 0;
11232
11233err_idx:
11234 kfree(net->dev_name_head);
11235err_name:
11236 return -ENOMEM;
11237}
11238
11239/**
11240 * netdev_drivername - network driver for the device
11241 * @dev: network device
11242 *
11243 * Determine network driver for device.
11244 */
11245const char *netdev_drivername(const struct net_device *dev)
11246{
11247 const struct device_driver *driver;
11248 const struct device *parent;
11249 const char *empty = "";
11250
11251 parent = dev->dev.parent;
11252 if (!parent)
11253 return empty;
11254
11255 driver = parent->driver;
11256 if (driver && driver->name)
11257 return driver->name;
11258 return empty;
11259}
11260
11261static void __netdev_printk(const char *level, const struct net_device *dev,
11262 struct va_format *vaf)
11263{
11264 if (dev && dev->dev.parent) {
11265 dev_printk_emit(level[1] - '0',
11266 dev->dev.parent,
11267 "%s %s %s%s: %pV",
11268 dev_driver_string(dev->dev.parent),
11269 dev_name(dev->dev.parent),
11270 netdev_name(dev), netdev_reg_state(dev),
11271 vaf);
11272 } else if (dev) {
11273 printk("%s%s%s: %pV",
11274 level, netdev_name(dev), netdev_reg_state(dev), vaf);
11275 } else {
11276 printk("%s(NULL net_device): %pV", level, vaf);
11277 }
11278}
11279
11280void netdev_printk(const char *level, const struct net_device *dev,
11281 const char *format, ...)
11282{
11283 struct va_format vaf;
11284 va_list args;
11285
11286 va_start(args, format);
11287
11288 vaf.fmt = format;
11289 vaf.va = &args;
11290
11291 __netdev_printk(level, dev, &vaf);
11292
11293 va_end(args);
11294}
11295EXPORT_SYMBOL(netdev_printk);
11296
11297#define define_netdev_printk_level(func, level) \
11298void func(const struct net_device *dev, const char *fmt, ...) \
11299{ \
11300 struct va_format vaf; \
11301 va_list args; \
11302 \
11303 va_start(args, fmt); \
11304 \
11305 vaf.fmt = fmt; \
11306 vaf.va = &args; \
11307 \
11308 __netdev_printk(level, dev, &vaf); \
11309 \
11310 va_end(args); \
11311} \
11312EXPORT_SYMBOL(func);
11313
11314define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11315define_netdev_printk_level(netdev_alert, KERN_ALERT);
11316define_netdev_printk_level(netdev_crit, KERN_CRIT);
11317define_netdev_printk_level(netdev_err, KERN_ERR);
11318define_netdev_printk_level(netdev_warn, KERN_WARNING);
11319define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11320define_netdev_printk_level(netdev_info, KERN_INFO);
11321
11322static void __net_exit netdev_exit(struct net *net)
11323{
11324 kfree(net->dev_name_head);
11325 kfree(net->dev_index_head);
11326 if (net != &init_net)
11327 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11328}
11329
11330static struct pernet_operations __net_initdata netdev_net_ops = {
11331 .init = netdev_init,
11332 .exit = netdev_exit,
11333};
11334
11335static void __net_exit default_device_exit_net(struct net *net)
11336{
11337 struct net_device *dev, *aux;
11338 /*
11339 * Push all migratable network devices back to the
11340 * initial network namespace
11341 */
11342 ASSERT_RTNL();
11343 for_each_netdev_safe(net, dev, aux) {
11344 int err;
11345 char fb_name[IFNAMSIZ];
11346
11347 /* Ignore unmoveable devices (i.e. loopback) */
11348 if (dev->features & NETIF_F_NETNS_LOCAL)
11349 continue;
11350
11351 /* Leave virtual devices for the generic cleanup */
11352 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11353 continue;
11354
11355 /* Push remaining network devices to init_net */
11356 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11357 if (netdev_name_in_use(&init_net, fb_name))
11358 snprintf(fb_name, IFNAMSIZ, "dev%%d");
11359 err = dev_change_net_namespace(dev, &init_net, fb_name);
11360 if (err) {
11361 pr_emerg("%s: failed to move %s to init_net: %d\n",
11362 __func__, dev->name, err);
11363 BUG();
11364 }
11365 }
11366}
11367
11368static void __net_exit default_device_exit_batch(struct list_head *net_list)
11369{
11370 /* At exit all network devices most be removed from a network
11371 * namespace. Do this in the reverse order of registration.
11372 * Do this across as many network namespaces as possible to
11373 * improve batching efficiency.
11374 */
11375 struct net_device *dev;
11376 struct net *net;
11377 LIST_HEAD(dev_kill_list);
11378
11379 rtnl_lock();
11380 list_for_each_entry(net, net_list, exit_list) {
11381 default_device_exit_net(net);
11382 cond_resched();
11383 }
11384
11385 list_for_each_entry(net, net_list, exit_list) {
11386 for_each_netdev_reverse(net, dev) {
11387 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11388 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11389 else
11390 unregister_netdevice_queue(dev, &dev_kill_list);
11391 }
11392 }
11393 unregister_netdevice_many(&dev_kill_list);
11394 rtnl_unlock();
11395}
11396
11397static struct pernet_operations __net_initdata default_device_ops = {
11398 .exit_batch = default_device_exit_batch,
11399};
11400
11401/*
11402 * Initialize the DEV module. At boot time this walks the device list and
11403 * unhooks any devices that fail to initialise (normally hardware not
11404 * present) and leaves us with a valid list of present and active devices.
11405 *
11406 */
11407
11408/*
11409 * This is called single threaded during boot, so no need
11410 * to take the rtnl semaphore.
11411 */
11412static int __init net_dev_init(void)
11413{
11414 int i, rc = -ENOMEM;
11415
11416 BUG_ON(!dev_boot_phase);
11417
11418 if (dev_proc_init())
11419 goto out;
11420
11421 if (netdev_kobject_init())
11422 goto out;
11423
11424 INIT_LIST_HEAD(&ptype_all);
11425 for (i = 0; i < PTYPE_HASH_SIZE; i++)
11426 INIT_LIST_HEAD(&ptype_base[i]);
11427
11428 if (register_pernet_subsys(&netdev_net_ops))
11429 goto out;
11430
11431 /*
11432 * Initialise the packet receive queues.
11433 */
11434
11435 for_each_possible_cpu(i) {
11436 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11437 struct softnet_data *sd = &per_cpu(softnet_data, i);
11438
11439 INIT_WORK(flush, flush_backlog);
11440
11441 skb_queue_head_init(&sd->input_pkt_queue);
11442 skb_queue_head_init(&sd->process_queue);
11443#ifdef CONFIG_XFRM_OFFLOAD
11444 skb_queue_head_init(&sd->xfrm_backlog);
11445#endif
11446 INIT_LIST_HEAD(&sd->poll_list);
11447 sd->output_queue_tailp = &sd->output_queue;
11448#ifdef CONFIG_RPS
11449 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11450 sd->cpu = i;
11451#endif
11452 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11453 spin_lock_init(&sd->defer_lock);
11454
11455 init_gro_hash(&sd->backlog);
11456 sd->backlog.poll = process_backlog;
11457 sd->backlog.weight = weight_p;
11458 }
11459
11460 dev_boot_phase = 0;
11461
11462 /* The loopback device is special if any other network devices
11463 * is present in a network namespace the loopback device must
11464 * be present. Since we now dynamically allocate and free the
11465 * loopback device ensure this invariant is maintained by
11466 * keeping the loopback device as the first device on the
11467 * list of network devices. Ensuring the loopback devices
11468 * is the first device that appears and the last network device
11469 * that disappears.
11470 */
11471 if (register_pernet_device(&loopback_net_ops))
11472 goto out;
11473
11474 if (register_pernet_device(&default_device_ops))
11475 goto out;
11476
11477 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11478 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11479
11480 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11481 NULL, dev_cpu_dead);
11482 WARN_ON(rc < 0);
11483 rc = 0;
11484out:
11485 return rc;
11486}
11487
11488subsys_initcall(net_dev_init);