Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * mm/truncate.c - code for taking down pages from address_spaces
4 *
5 * Copyright (C) 2002, Linus Torvalds
6 *
7 * 10Sep2002 Andrew Morton
8 * Initial version.
9 */
10
11#include <linux/kernel.h>
12#include <linux/backing-dev.h>
13#include <linux/dax.h>
14#include <linux/gfp.h>
15#include <linux/mm.h>
16#include <linux/swap.h>
17#include <linux/export.h>
18#include <linux/pagemap.h>
19#include <linux/highmem.h>
20#include <linux/pagevec.h>
21#include <linux/task_io_accounting_ops.h>
22#include <linux/buffer_head.h> /* grr. try_to_release_page */
23#include <linux/shmem_fs.h>
24#include <linux/rmap.h>
25#include "internal.h"
26
27/*
28 * Regular page slots are stabilized by the page lock even without the tree
29 * itself locked. These unlocked entries need verification under the tree
30 * lock.
31 */
32static inline void __clear_shadow_entry(struct address_space *mapping,
33 pgoff_t index, void *entry)
34{
35 XA_STATE(xas, &mapping->i_pages, index);
36
37 xas_set_update(&xas, workingset_update_node);
38 if (xas_load(&xas) != entry)
39 return;
40 xas_store(&xas, NULL);
41}
42
43static void clear_shadow_entry(struct address_space *mapping, pgoff_t index,
44 void *entry)
45{
46 spin_lock(&mapping->host->i_lock);
47 xa_lock_irq(&mapping->i_pages);
48 __clear_shadow_entry(mapping, index, entry);
49 xa_unlock_irq(&mapping->i_pages);
50 if (mapping_shrinkable(mapping))
51 inode_add_lru(mapping->host);
52 spin_unlock(&mapping->host->i_lock);
53}
54
55/*
56 * Unconditionally remove exceptional entries. Usually called from truncate
57 * path. Note that the folio_batch may be altered by this function by removing
58 * exceptional entries similar to what folio_batch_remove_exceptionals() does.
59 */
60static void truncate_folio_batch_exceptionals(struct address_space *mapping,
61 struct folio_batch *fbatch, pgoff_t *indices)
62{
63 int i, j;
64 bool dax;
65
66 /* Handled by shmem itself */
67 if (shmem_mapping(mapping))
68 return;
69
70 for (j = 0; j < folio_batch_count(fbatch); j++)
71 if (xa_is_value(fbatch->folios[j]))
72 break;
73
74 if (j == folio_batch_count(fbatch))
75 return;
76
77 dax = dax_mapping(mapping);
78 if (!dax) {
79 spin_lock(&mapping->host->i_lock);
80 xa_lock_irq(&mapping->i_pages);
81 }
82
83 for (i = j; i < folio_batch_count(fbatch); i++) {
84 struct folio *folio = fbatch->folios[i];
85 pgoff_t index = indices[i];
86
87 if (!xa_is_value(folio)) {
88 fbatch->folios[j++] = folio;
89 continue;
90 }
91
92 if (unlikely(dax)) {
93 dax_delete_mapping_entry(mapping, index);
94 continue;
95 }
96
97 __clear_shadow_entry(mapping, index, folio);
98 }
99
100 if (!dax) {
101 xa_unlock_irq(&mapping->i_pages);
102 if (mapping_shrinkable(mapping))
103 inode_add_lru(mapping->host);
104 spin_unlock(&mapping->host->i_lock);
105 }
106 fbatch->nr = j;
107}
108
109/*
110 * Invalidate exceptional entry if easily possible. This handles exceptional
111 * entries for invalidate_inode_pages().
112 */
113static int invalidate_exceptional_entry(struct address_space *mapping,
114 pgoff_t index, void *entry)
115{
116 /* Handled by shmem itself, or for DAX we do nothing. */
117 if (shmem_mapping(mapping) || dax_mapping(mapping))
118 return 1;
119 clear_shadow_entry(mapping, index, entry);
120 return 1;
121}
122
123/*
124 * Invalidate exceptional entry if clean. This handles exceptional entries for
125 * invalidate_inode_pages2() so for DAX it evicts only clean entries.
126 */
127static int invalidate_exceptional_entry2(struct address_space *mapping,
128 pgoff_t index, void *entry)
129{
130 /* Handled by shmem itself */
131 if (shmem_mapping(mapping))
132 return 1;
133 if (dax_mapping(mapping))
134 return dax_invalidate_mapping_entry_sync(mapping, index);
135 clear_shadow_entry(mapping, index, entry);
136 return 1;
137}
138
139/**
140 * folio_invalidate - Invalidate part or all of a folio.
141 * @folio: The folio which is affected.
142 * @offset: start of the range to invalidate
143 * @length: length of the range to invalidate
144 *
145 * folio_invalidate() is called when all or part of the folio has become
146 * invalidated by a truncate operation.
147 *
148 * folio_invalidate() does not have to release all buffers, but it must
149 * ensure that no dirty buffer is left outside @offset and that no I/O
150 * is underway against any of the blocks which are outside the truncation
151 * point. Because the caller is about to free (and possibly reuse) those
152 * blocks on-disk.
153 */
154void folio_invalidate(struct folio *folio, size_t offset, size_t length)
155{
156 const struct address_space_operations *aops = folio->mapping->a_ops;
157
158 if (aops->invalidate_folio)
159 aops->invalidate_folio(folio, offset, length);
160}
161EXPORT_SYMBOL_GPL(folio_invalidate);
162
163/*
164 * If truncate cannot remove the fs-private metadata from the page, the page
165 * becomes orphaned. It will be left on the LRU and may even be mapped into
166 * user pagetables if we're racing with filemap_fault().
167 *
168 * We need to bail out if page->mapping is no longer equal to the original
169 * mapping. This happens a) when the VM reclaimed the page while we waited on
170 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
171 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
172 */
173static void truncate_cleanup_folio(struct folio *folio)
174{
175 if (folio_mapped(folio))
176 unmap_mapping_folio(folio);
177
178 if (folio_has_private(folio))
179 folio_invalidate(folio, 0, folio_size(folio));
180
181 /*
182 * Some filesystems seem to re-dirty the page even after
183 * the VM has canceled the dirty bit (eg ext3 journaling).
184 * Hence dirty accounting check is placed after invalidation.
185 */
186 folio_cancel_dirty(folio);
187 folio_clear_mappedtodisk(folio);
188}
189
190int truncate_inode_folio(struct address_space *mapping, struct folio *folio)
191{
192 if (folio->mapping != mapping)
193 return -EIO;
194
195 truncate_cleanup_folio(folio);
196 filemap_remove_folio(folio);
197 return 0;
198}
199
200/*
201 * Handle partial folios. The folio may be entirely within the
202 * range if a split has raced with us. If not, we zero the part of the
203 * folio that's within the [start, end] range, and then split the folio if
204 * it's large. split_page_range() will discard pages which now lie beyond
205 * i_size, and we rely on the caller to discard pages which lie within a
206 * newly created hole.
207 *
208 * Returns false if splitting failed so the caller can avoid
209 * discarding the entire folio which is stubbornly unsplit.
210 */
211bool truncate_inode_partial_folio(struct folio *folio, loff_t start, loff_t end)
212{
213 loff_t pos = folio_pos(folio);
214 unsigned int offset, length;
215
216 if (pos < start)
217 offset = start - pos;
218 else
219 offset = 0;
220 length = folio_size(folio);
221 if (pos + length <= (u64)end)
222 length = length - offset;
223 else
224 length = end + 1 - pos - offset;
225
226 folio_wait_writeback(folio);
227 if (length == folio_size(folio)) {
228 truncate_inode_folio(folio->mapping, folio);
229 return true;
230 }
231
232 /*
233 * We may be zeroing pages we're about to discard, but it avoids
234 * doing a complex calculation here, and then doing the zeroing
235 * anyway if the page split fails.
236 */
237 folio_zero_range(folio, offset, length);
238
239 if (folio_has_private(folio))
240 folio_invalidate(folio, offset, length);
241 if (!folio_test_large(folio))
242 return true;
243 if (split_folio(folio) == 0)
244 return true;
245 if (folio_test_dirty(folio))
246 return false;
247 truncate_inode_folio(folio->mapping, folio);
248 return true;
249}
250
251/*
252 * Used to get rid of pages on hardware memory corruption.
253 */
254int generic_error_remove_page(struct address_space *mapping, struct page *page)
255{
256 VM_BUG_ON_PAGE(PageTail(page), page);
257
258 if (!mapping)
259 return -EINVAL;
260 /*
261 * Only punch for normal data pages for now.
262 * Handling other types like directories would need more auditing.
263 */
264 if (!S_ISREG(mapping->host->i_mode))
265 return -EIO;
266 return truncate_inode_folio(mapping, page_folio(page));
267}
268EXPORT_SYMBOL(generic_error_remove_page);
269
270static long mapping_evict_folio(struct address_space *mapping,
271 struct folio *folio)
272{
273 if (folio_test_dirty(folio) || folio_test_writeback(folio))
274 return 0;
275 /* The refcount will be elevated if any page in the folio is mapped */
276 if (folio_ref_count(folio) >
277 folio_nr_pages(folio) + folio_has_private(folio) + 1)
278 return 0;
279 if (folio_has_private(folio) && !filemap_release_folio(folio, 0))
280 return 0;
281
282 return remove_mapping(mapping, folio);
283}
284
285/**
286 * invalidate_inode_page() - Remove an unused page from the pagecache.
287 * @page: The page to remove.
288 *
289 * Safely invalidate one page from its pagecache mapping.
290 * It only drops clean, unused pages.
291 *
292 * Context: Page must be locked.
293 * Return: The number of pages successfully removed.
294 */
295long invalidate_inode_page(struct page *page)
296{
297 struct folio *folio = page_folio(page);
298 struct address_space *mapping = folio_mapping(folio);
299
300 /* The page may have been truncated before it was locked */
301 if (!mapping)
302 return 0;
303 return mapping_evict_folio(mapping, folio);
304}
305
306/**
307 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
308 * @mapping: mapping to truncate
309 * @lstart: offset from which to truncate
310 * @lend: offset to which to truncate (inclusive)
311 *
312 * Truncate the page cache, removing the pages that are between
313 * specified offsets (and zeroing out partial pages
314 * if lstart or lend + 1 is not page aligned).
315 *
316 * Truncate takes two passes - the first pass is nonblocking. It will not
317 * block on page locks and it will not block on writeback. The second pass
318 * will wait. This is to prevent as much IO as possible in the affected region.
319 * The first pass will remove most pages, so the search cost of the second pass
320 * is low.
321 *
322 * We pass down the cache-hot hint to the page freeing code. Even if the
323 * mapping is large, it is probably the case that the final pages are the most
324 * recently touched, and freeing happens in ascending file offset order.
325 *
326 * Note that since ->invalidate_folio() accepts range to invalidate
327 * truncate_inode_pages_range is able to handle cases where lend + 1 is not
328 * page aligned properly.
329 */
330void truncate_inode_pages_range(struct address_space *mapping,
331 loff_t lstart, loff_t lend)
332{
333 pgoff_t start; /* inclusive */
334 pgoff_t end; /* exclusive */
335 struct folio_batch fbatch;
336 pgoff_t indices[PAGEVEC_SIZE];
337 pgoff_t index;
338 int i;
339 struct folio *folio;
340 bool same_folio;
341
342 if (mapping_empty(mapping))
343 return;
344
345 /*
346 * 'start' and 'end' always covers the range of pages to be fully
347 * truncated. Partial pages are covered with 'partial_start' at the
348 * start of the range and 'partial_end' at the end of the range.
349 * Note that 'end' is exclusive while 'lend' is inclusive.
350 */
351 start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
352 if (lend == -1)
353 /*
354 * lend == -1 indicates end-of-file so we have to set 'end'
355 * to the highest possible pgoff_t and since the type is
356 * unsigned we're using -1.
357 */
358 end = -1;
359 else
360 end = (lend + 1) >> PAGE_SHIFT;
361
362 folio_batch_init(&fbatch);
363 index = start;
364 while (index < end && find_lock_entries(mapping, &index, end - 1,
365 &fbatch, indices)) {
366 truncate_folio_batch_exceptionals(mapping, &fbatch, indices);
367 for (i = 0; i < folio_batch_count(&fbatch); i++)
368 truncate_cleanup_folio(fbatch.folios[i]);
369 delete_from_page_cache_batch(mapping, &fbatch);
370 for (i = 0; i < folio_batch_count(&fbatch); i++)
371 folio_unlock(fbatch.folios[i]);
372 folio_batch_release(&fbatch);
373 cond_resched();
374 }
375
376 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
377 folio = __filemap_get_folio(mapping, lstart >> PAGE_SHIFT, FGP_LOCK, 0);
378 if (!IS_ERR(folio)) {
379 same_folio = lend < folio_pos(folio) + folio_size(folio);
380 if (!truncate_inode_partial_folio(folio, lstart, lend)) {
381 start = folio->index + folio_nr_pages(folio);
382 if (same_folio)
383 end = folio->index;
384 }
385 folio_unlock(folio);
386 folio_put(folio);
387 folio = NULL;
388 }
389
390 if (!same_folio) {
391 folio = __filemap_get_folio(mapping, lend >> PAGE_SHIFT,
392 FGP_LOCK, 0);
393 if (!IS_ERR(folio)) {
394 if (!truncate_inode_partial_folio(folio, lstart, lend))
395 end = folio->index;
396 folio_unlock(folio);
397 folio_put(folio);
398 }
399 }
400
401 index = start;
402 while (index < end) {
403 cond_resched();
404 if (!find_get_entries(mapping, &index, end - 1, &fbatch,
405 indices)) {
406 /* If all gone from start onwards, we're done */
407 if (index == start)
408 break;
409 /* Otherwise restart to make sure all gone */
410 index = start;
411 continue;
412 }
413
414 for (i = 0; i < folio_batch_count(&fbatch); i++) {
415 struct folio *folio = fbatch.folios[i];
416
417 /* We rely upon deletion not changing page->index */
418
419 if (xa_is_value(folio))
420 continue;
421
422 folio_lock(folio);
423 VM_BUG_ON_FOLIO(!folio_contains(folio, indices[i]), folio);
424 folio_wait_writeback(folio);
425 truncate_inode_folio(mapping, folio);
426 folio_unlock(folio);
427 }
428 truncate_folio_batch_exceptionals(mapping, &fbatch, indices);
429 folio_batch_release(&fbatch);
430 }
431}
432EXPORT_SYMBOL(truncate_inode_pages_range);
433
434/**
435 * truncate_inode_pages - truncate *all* the pages from an offset
436 * @mapping: mapping to truncate
437 * @lstart: offset from which to truncate
438 *
439 * Called under (and serialised by) inode->i_rwsem and
440 * mapping->invalidate_lock.
441 *
442 * Note: When this function returns, there can be a page in the process of
443 * deletion (inside __filemap_remove_folio()) in the specified range. Thus
444 * mapping->nrpages can be non-zero when this function returns even after
445 * truncation of the whole mapping.
446 */
447void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
448{
449 truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
450}
451EXPORT_SYMBOL(truncate_inode_pages);
452
453/**
454 * truncate_inode_pages_final - truncate *all* pages before inode dies
455 * @mapping: mapping to truncate
456 *
457 * Called under (and serialized by) inode->i_rwsem.
458 *
459 * Filesystems have to use this in the .evict_inode path to inform the
460 * VM that this is the final truncate and the inode is going away.
461 */
462void truncate_inode_pages_final(struct address_space *mapping)
463{
464 /*
465 * Page reclaim can not participate in regular inode lifetime
466 * management (can't call iput()) and thus can race with the
467 * inode teardown. Tell it when the address space is exiting,
468 * so that it does not install eviction information after the
469 * final truncate has begun.
470 */
471 mapping_set_exiting(mapping);
472
473 if (!mapping_empty(mapping)) {
474 /*
475 * As truncation uses a lockless tree lookup, cycle
476 * the tree lock to make sure any ongoing tree
477 * modification that does not see AS_EXITING is
478 * completed before starting the final truncate.
479 */
480 xa_lock_irq(&mapping->i_pages);
481 xa_unlock_irq(&mapping->i_pages);
482 }
483
484 truncate_inode_pages(mapping, 0);
485}
486EXPORT_SYMBOL(truncate_inode_pages_final);
487
488/**
489 * invalidate_mapping_pagevec - Invalidate all the unlocked pages of one inode
490 * @mapping: the address_space which holds the pages to invalidate
491 * @start: the offset 'from' which to invalidate
492 * @end: the offset 'to' which to invalidate (inclusive)
493 * @nr_pagevec: invalidate failed page number for caller
494 *
495 * This helper is similar to invalidate_mapping_pages(), except that it accounts
496 * for pages that are likely on a pagevec and counts them in @nr_pagevec, which
497 * will be used by the caller.
498 */
499unsigned long invalidate_mapping_pagevec(struct address_space *mapping,
500 pgoff_t start, pgoff_t end, unsigned long *nr_pagevec)
501{
502 pgoff_t indices[PAGEVEC_SIZE];
503 struct folio_batch fbatch;
504 pgoff_t index = start;
505 unsigned long ret;
506 unsigned long count = 0;
507 int i;
508
509 folio_batch_init(&fbatch);
510 while (find_lock_entries(mapping, &index, end, &fbatch, indices)) {
511 for (i = 0; i < folio_batch_count(&fbatch); i++) {
512 struct folio *folio = fbatch.folios[i];
513
514 /* We rely upon deletion not changing folio->index */
515
516 if (xa_is_value(folio)) {
517 count += invalidate_exceptional_entry(mapping,
518 indices[i], folio);
519 continue;
520 }
521
522 ret = mapping_evict_folio(mapping, folio);
523 folio_unlock(folio);
524 /*
525 * Invalidation is a hint that the folio is no longer
526 * of interest and try to speed up its reclaim.
527 */
528 if (!ret) {
529 deactivate_file_folio(folio);
530 /* It is likely on the pagevec of a remote CPU */
531 if (nr_pagevec)
532 (*nr_pagevec)++;
533 }
534 count += ret;
535 }
536 folio_batch_remove_exceptionals(&fbatch);
537 folio_batch_release(&fbatch);
538 cond_resched();
539 }
540 return count;
541}
542
543/**
544 * invalidate_mapping_pages - Invalidate all clean, unlocked cache of one inode
545 * @mapping: the address_space which holds the cache to invalidate
546 * @start: the offset 'from' which to invalidate
547 * @end: the offset 'to' which to invalidate (inclusive)
548 *
549 * This function removes pages that are clean, unmapped and unlocked,
550 * as well as shadow entries. It will not block on IO activity.
551 *
552 * If you want to remove all the pages of one inode, regardless of
553 * their use and writeback state, use truncate_inode_pages().
554 *
555 * Return: the number of the cache entries that were invalidated
556 */
557unsigned long invalidate_mapping_pages(struct address_space *mapping,
558 pgoff_t start, pgoff_t end)
559{
560 return invalidate_mapping_pagevec(mapping, start, end, NULL);
561}
562EXPORT_SYMBOL(invalidate_mapping_pages);
563
564/*
565 * This is like invalidate_inode_page(), except it ignores the page's
566 * refcount. We do this because invalidate_inode_pages2() needs stronger
567 * invalidation guarantees, and cannot afford to leave pages behind because
568 * shrink_page_list() has a temp ref on them, or because they're transiently
569 * sitting in the folio_add_lru() pagevecs.
570 */
571static int invalidate_complete_folio2(struct address_space *mapping,
572 struct folio *folio)
573{
574 if (folio->mapping != mapping)
575 return 0;
576
577 if (folio_has_private(folio) &&
578 !filemap_release_folio(folio, GFP_KERNEL))
579 return 0;
580
581 spin_lock(&mapping->host->i_lock);
582 xa_lock_irq(&mapping->i_pages);
583 if (folio_test_dirty(folio))
584 goto failed;
585
586 BUG_ON(folio_has_private(folio));
587 __filemap_remove_folio(folio, NULL);
588 xa_unlock_irq(&mapping->i_pages);
589 if (mapping_shrinkable(mapping))
590 inode_add_lru(mapping->host);
591 spin_unlock(&mapping->host->i_lock);
592
593 filemap_free_folio(mapping, folio);
594 return 1;
595failed:
596 xa_unlock_irq(&mapping->i_pages);
597 spin_unlock(&mapping->host->i_lock);
598 return 0;
599}
600
601static int folio_launder(struct address_space *mapping, struct folio *folio)
602{
603 if (!folio_test_dirty(folio))
604 return 0;
605 if (folio->mapping != mapping || mapping->a_ops->launder_folio == NULL)
606 return 0;
607 return mapping->a_ops->launder_folio(folio);
608}
609
610/**
611 * invalidate_inode_pages2_range - remove range of pages from an address_space
612 * @mapping: the address_space
613 * @start: the page offset 'from' which to invalidate
614 * @end: the page offset 'to' which to invalidate (inclusive)
615 *
616 * Any pages which are found to be mapped into pagetables are unmapped prior to
617 * invalidation.
618 *
619 * Return: -EBUSY if any pages could not be invalidated.
620 */
621int invalidate_inode_pages2_range(struct address_space *mapping,
622 pgoff_t start, pgoff_t end)
623{
624 pgoff_t indices[PAGEVEC_SIZE];
625 struct folio_batch fbatch;
626 pgoff_t index;
627 int i;
628 int ret = 0;
629 int ret2 = 0;
630 int did_range_unmap = 0;
631
632 if (mapping_empty(mapping))
633 return 0;
634
635 folio_batch_init(&fbatch);
636 index = start;
637 while (find_get_entries(mapping, &index, end, &fbatch, indices)) {
638 for (i = 0; i < folio_batch_count(&fbatch); i++) {
639 struct folio *folio = fbatch.folios[i];
640
641 /* We rely upon deletion not changing folio->index */
642
643 if (xa_is_value(folio)) {
644 if (!invalidate_exceptional_entry2(mapping,
645 indices[i], folio))
646 ret = -EBUSY;
647 continue;
648 }
649
650 if (!did_range_unmap && folio_mapped(folio)) {
651 /*
652 * If folio is mapped, before taking its lock,
653 * zap the rest of the file in one hit.
654 */
655 unmap_mapping_pages(mapping, indices[i],
656 (1 + end - indices[i]), false);
657 did_range_unmap = 1;
658 }
659
660 folio_lock(folio);
661 VM_BUG_ON_FOLIO(!folio_contains(folio, indices[i]), folio);
662 if (folio->mapping != mapping) {
663 folio_unlock(folio);
664 continue;
665 }
666 folio_wait_writeback(folio);
667
668 if (folio_mapped(folio))
669 unmap_mapping_folio(folio);
670 BUG_ON(folio_mapped(folio));
671
672 ret2 = folio_launder(mapping, folio);
673 if (ret2 == 0) {
674 if (!invalidate_complete_folio2(mapping, folio))
675 ret2 = -EBUSY;
676 }
677 if (ret2 < 0)
678 ret = ret2;
679 folio_unlock(folio);
680 }
681 folio_batch_remove_exceptionals(&fbatch);
682 folio_batch_release(&fbatch);
683 cond_resched();
684 }
685 /*
686 * For DAX we invalidate page tables after invalidating page cache. We
687 * could invalidate page tables while invalidating each entry however
688 * that would be expensive. And doing range unmapping before doesn't
689 * work as we have no cheap way to find whether page cache entry didn't
690 * get remapped later.
691 */
692 if (dax_mapping(mapping)) {
693 unmap_mapping_pages(mapping, start, end - start + 1, false);
694 }
695 return ret;
696}
697EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
698
699/**
700 * invalidate_inode_pages2 - remove all pages from an address_space
701 * @mapping: the address_space
702 *
703 * Any pages which are found to be mapped into pagetables are unmapped prior to
704 * invalidation.
705 *
706 * Return: -EBUSY if any pages could not be invalidated.
707 */
708int invalidate_inode_pages2(struct address_space *mapping)
709{
710 return invalidate_inode_pages2_range(mapping, 0, -1);
711}
712EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
713
714/**
715 * truncate_pagecache - unmap and remove pagecache that has been truncated
716 * @inode: inode
717 * @newsize: new file size
718 *
719 * inode's new i_size must already be written before truncate_pagecache
720 * is called.
721 *
722 * This function should typically be called before the filesystem
723 * releases resources associated with the freed range (eg. deallocates
724 * blocks). This way, pagecache will always stay logically coherent
725 * with on-disk format, and the filesystem would not have to deal with
726 * situations such as writepage being called for a page that has already
727 * had its underlying blocks deallocated.
728 */
729void truncate_pagecache(struct inode *inode, loff_t newsize)
730{
731 struct address_space *mapping = inode->i_mapping;
732 loff_t holebegin = round_up(newsize, PAGE_SIZE);
733
734 /*
735 * unmap_mapping_range is called twice, first simply for
736 * efficiency so that truncate_inode_pages does fewer
737 * single-page unmaps. However after this first call, and
738 * before truncate_inode_pages finishes, it is possible for
739 * private pages to be COWed, which remain after
740 * truncate_inode_pages finishes, hence the second
741 * unmap_mapping_range call must be made for correctness.
742 */
743 unmap_mapping_range(mapping, holebegin, 0, 1);
744 truncate_inode_pages(mapping, newsize);
745 unmap_mapping_range(mapping, holebegin, 0, 1);
746}
747EXPORT_SYMBOL(truncate_pagecache);
748
749/**
750 * truncate_setsize - update inode and pagecache for a new file size
751 * @inode: inode
752 * @newsize: new file size
753 *
754 * truncate_setsize updates i_size and performs pagecache truncation (if
755 * necessary) to @newsize. It will be typically be called from the filesystem's
756 * setattr function when ATTR_SIZE is passed in.
757 *
758 * Must be called with a lock serializing truncates and writes (generally
759 * i_rwsem but e.g. xfs uses a different lock) and before all filesystem
760 * specific block truncation has been performed.
761 */
762void truncate_setsize(struct inode *inode, loff_t newsize)
763{
764 loff_t oldsize = inode->i_size;
765
766 i_size_write(inode, newsize);
767 if (newsize > oldsize)
768 pagecache_isize_extended(inode, oldsize, newsize);
769 truncate_pagecache(inode, newsize);
770}
771EXPORT_SYMBOL(truncate_setsize);
772
773/**
774 * pagecache_isize_extended - update pagecache after extension of i_size
775 * @inode: inode for which i_size was extended
776 * @from: original inode size
777 * @to: new inode size
778 *
779 * Handle extension of inode size either caused by extending truncate or by
780 * write starting after current i_size. We mark the page straddling current
781 * i_size RO so that page_mkwrite() is called on the nearest write access to
782 * the page. This way filesystem can be sure that page_mkwrite() is called on
783 * the page before user writes to the page via mmap after the i_size has been
784 * changed.
785 *
786 * The function must be called after i_size is updated so that page fault
787 * coming after we unlock the page will already see the new i_size.
788 * The function must be called while we still hold i_rwsem - this not only
789 * makes sure i_size is stable but also that userspace cannot observe new
790 * i_size value before we are prepared to store mmap writes at new inode size.
791 */
792void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
793{
794 int bsize = i_blocksize(inode);
795 loff_t rounded_from;
796 struct page *page;
797 pgoff_t index;
798
799 WARN_ON(to > inode->i_size);
800
801 if (from >= to || bsize == PAGE_SIZE)
802 return;
803 /* Page straddling @from will not have any hole block created? */
804 rounded_from = round_up(from, bsize);
805 if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1)))
806 return;
807
808 index = from >> PAGE_SHIFT;
809 page = find_lock_page(inode->i_mapping, index);
810 /* Page not cached? Nothing to do */
811 if (!page)
812 return;
813 /*
814 * See clear_page_dirty_for_io() for details why set_page_dirty()
815 * is needed.
816 */
817 if (page_mkclean(page))
818 set_page_dirty(page);
819 unlock_page(page);
820 put_page(page);
821}
822EXPORT_SYMBOL(pagecache_isize_extended);
823
824/**
825 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
826 * @inode: inode
827 * @lstart: offset of beginning of hole
828 * @lend: offset of last byte of hole
829 *
830 * This function should typically be called before the filesystem
831 * releases resources associated with the freed range (eg. deallocates
832 * blocks). This way, pagecache will always stay logically coherent
833 * with on-disk format, and the filesystem would not have to deal with
834 * situations such as writepage being called for a page that has already
835 * had its underlying blocks deallocated.
836 */
837void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
838{
839 struct address_space *mapping = inode->i_mapping;
840 loff_t unmap_start = round_up(lstart, PAGE_SIZE);
841 loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
842 /*
843 * This rounding is currently just for example: unmap_mapping_range
844 * expands its hole outwards, whereas we want it to contract the hole
845 * inwards. However, existing callers of truncate_pagecache_range are
846 * doing their own page rounding first. Note that unmap_mapping_range
847 * allows holelen 0 for all, and we allow lend -1 for end of file.
848 */
849
850 /*
851 * Unlike in truncate_pagecache, unmap_mapping_range is called only
852 * once (before truncating pagecache), and without "even_cows" flag:
853 * hole-punching should not remove private COWed pages from the hole.
854 */
855 if ((u64)unmap_end > (u64)unmap_start)
856 unmap_mapping_range(mapping, unmap_start,
857 1 + unmap_end - unmap_start, 0);
858 truncate_inode_pages_range(mapping, lstart, lend);
859}
860EXPORT_SYMBOL(truncate_pagecache_range);