Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * Resizable virtual memory filesystem for Linux.
3 *
4 * Copyright (C) 2000 Linus Torvalds.
5 * 2000 Transmeta Corp.
6 * 2000-2001 Christoph Rohland
7 * 2000-2001 SAP AG
8 * 2002 Red Hat Inc.
9 * Copyright (C) 2002-2011 Hugh Dickins.
10 * Copyright (C) 2011 Google Inc.
11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
13 *
14 * Extended attribute support for tmpfs:
15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
17 *
18 * tiny-shmem:
19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
20 *
21 * This file is released under the GPL.
22 */
23
24#include <linux/fs.h>
25#include <linux/init.h>
26#include <linux/vfs.h>
27#include <linux/mount.h>
28#include <linux/ramfs.h>
29#include <linux/pagemap.h>
30#include <linux/file.h>
31#include <linux/fileattr.h>
32#include <linux/mm.h>
33#include <linux/random.h>
34#include <linux/sched/signal.h>
35#include <linux/export.h>
36#include <linux/shmem_fs.h>
37#include <linux/swap.h>
38#include <linux/uio.h>
39#include <linux/hugetlb.h>
40#include <linux/fs_parser.h>
41#include <linux/swapfile.h>
42#include <linux/iversion.h>
43#include "swap.h"
44
45static struct vfsmount *shm_mnt;
46
47#ifdef CONFIG_SHMEM
48/*
49 * This virtual memory filesystem is heavily based on the ramfs. It
50 * extends ramfs by the ability to use swap and honor resource limits
51 * which makes it a completely usable filesystem.
52 */
53
54#include <linux/xattr.h>
55#include <linux/exportfs.h>
56#include <linux/posix_acl.h>
57#include <linux/posix_acl_xattr.h>
58#include <linux/mman.h>
59#include <linux/string.h>
60#include <linux/slab.h>
61#include <linux/backing-dev.h>
62#include <linux/writeback.h>
63#include <linux/pagevec.h>
64#include <linux/percpu_counter.h>
65#include <linux/falloc.h>
66#include <linux/splice.h>
67#include <linux/security.h>
68#include <linux/swapops.h>
69#include <linux/mempolicy.h>
70#include <linux/namei.h>
71#include <linux/ctype.h>
72#include <linux/migrate.h>
73#include <linux/highmem.h>
74#include <linux/seq_file.h>
75#include <linux/magic.h>
76#include <linux/syscalls.h>
77#include <linux/fcntl.h>
78#include <uapi/linux/memfd.h>
79#include <linux/rmap.h>
80#include <linux/uuid.h>
81
82#include <linux/uaccess.h>
83
84#include "internal.h"
85
86#define BLOCKS_PER_PAGE (PAGE_SIZE/512)
87#define VM_ACCT(size) (PAGE_ALIGN(size) >> PAGE_SHIFT)
88
89/* Pretend that each entry is of this size in directory's i_size */
90#define BOGO_DIRENT_SIZE 20
91
92/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
93#define SHORT_SYMLINK_LEN 128
94
95/*
96 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
97 * inode->i_private (with i_rwsem making sure that it has only one user at
98 * a time): we would prefer not to enlarge the shmem inode just for that.
99 */
100struct shmem_falloc {
101 wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
102 pgoff_t start; /* start of range currently being fallocated */
103 pgoff_t next; /* the next page offset to be fallocated */
104 pgoff_t nr_falloced; /* how many new pages have been fallocated */
105 pgoff_t nr_unswapped; /* how often writepage refused to swap out */
106};
107
108struct shmem_options {
109 unsigned long long blocks;
110 unsigned long long inodes;
111 struct mempolicy *mpol;
112 kuid_t uid;
113 kgid_t gid;
114 umode_t mode;
115 bool full_inums;
116 int huge;
117 int seen;
118 bool noswap;
119#define SHMEM_SEEN_BLOCKS 1
120#define SHMEM_SEEN_INODES 2
121#define SHMEM_SEEN_HUGE 4
122#define SHMEM_SEEN_INUMS 8
123#define SHMEM_SEEN_NOSWAP 16
124};
125
126#ifdef CONFIG_TMPFS
127static unsigned long shmem_default_max_blocks(void)
128{
129 return totalram_pages() / 2;
130}
131
132static unsigned long shmem_default_max_inodes(void)
133{
134 unsigned long nr_pages = totalram_pages();
135
136 return min(nr_pages - totalhigh_pages(), nr_pages / 2);
137}
138#endif
139
140static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
141 struct folio **foliop, enum sgp_type sgp,
142 gfp_t gfp, struct vm_area_struct *vma,
143 vm_fault_t *fault_type);
144
145static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
146{
147 return sb->s_fs_info;
148}
149
150/*
151 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
152 * for shared memory and for shared anonymous (/dev/zero) mappings
153 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
154 * consistent with the pre-accounting of private mappings ...
155 */
156static inline int shmem_acct_size(unsigned long flags, loff_t size)
157{
158 return (flags & VM_NORESERVE) ?
159 0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
160}
161
162static inline void shmem_unacct_size(unsigned long flags, loff_t size)
163{
164 if (!(flags & VM_NORESERVE))
165 vm_unacct_memory(VM_ACCT(size));
166}
167
168static inline int shmem_reacct_size(unsigned long flags,
169 loff_t oldsize, loff_t newsize)
170{
171 if (!(flags & VM_NORESERVE)) {
172 if (VM_ACCT(newsize) > VM_ACCT(oldsize))
173 return security_vm_enough_memory_mm(current->mm,
174 VM_ACCT(newsize) - VM_ACCT(oldsize));
175 else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
176 vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
177 }
178 return 0;
179}
180
181/*
182 * ... whereas tmpfs objects are accounted incrementally as
183 * pages are allocated, in order to allow large sparse files.
184 * shmem_get_folio reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
185 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
186 */
187static inline int shmem_acct_block(unsigned long flags, long pages)
188{
189 if (!(flags & VM_NORESERVE))
190 return 0;
191
192 return security_vm_enough_memory_mm(current->mm,
193 pages * VM_ACCT(PAGE_SIZE));
194}
195
196static inline void shmem_unacct_blocks(unsigned long flags, long pages)
197{
198 if (flags & VM_NORESERVE)
199 vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
200}
201
202static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
203{
204 struct shmem_inode_info *info = SHMEM_I(inode);
205 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
206
207 if (shmem_acct_block(info->flags, pages))
208 return false;
209
210 if (sbinfo->max_blocks) {
211 if (percpu_counter_compare(&sbinfo->used_blocks,
212 sbinfo->max_blocks - pages) > 0)
213 goto unacct;
214 percpu_counter_add(&sbinfo->used_blocks, pages);
215 }
216
217 return true;
218
219unacct:
220 shmem_unacct_blocks(info->flags, pages);
221 return false;
222}
223
224static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
225{
226 struct shmem_inode_info *info = SHMEM_I(inode);
227 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
228
229 if (sbinfo->max_blocks)
230 percpu_counter_sub(&sbinfo->used_blocks, pages);
231 shmem_unacct_blocks(info->flags, pages);
232}
233
234static const struct super_operations shmem_ops;
235const struct address_space_operations shmem_aops;
236static const struct file_operations shmem_file_operations;
237static const struct inode_operations shmem_inode_operations;
238static const struct inode_operations shmem_dir_inode_operations;
239static const struct inode_operations shmem_special_inode_operations;
240static const struct vm_operations_struct shmem_vm_ops;
241static const struct vm_operations_struct shmem_anon_vm_ops;
242static struct file_system_type shmem_fs_type;
243
244bool vma_is_anon_shmem(struct vm_area_struct *vma)
245{
246 return vma->vm_ops == &shmem_anon_vm_ops;
247}
248
249bool vma_is_shmem(struct vm_area_struct *vma)
250{
251 return vma_is_anon_shmem(vma) || vma->vm_ops == &shmem_vm_ops;
252}
253
254static LIST_HEAD(shmem_swaplist);
255static DEFINE_MUTEX(shmem_swaplist_mutex);
256
257/*
258 * shmem_reserve_inode() performs bookkeeping to reserve a shmem inode, and
259 * produces a novel ino for the newly allocated inode.
260 *
261 * It may also be called when making a hard link to permit the space needed by
262 * each dentry. However, in that case, no new inode number is needed since that
263 * internally draws from another pool of inode numbers (currently global
264 * get_next_ino()). This case is indicated by passing NULL as inop.
265 */
266#define SHMEM_INO_BATCH 1024
267static int shmem_reserve_inode(struct super_block *sb, ino_t *inop)
268{
269 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
270 ino_t ino;
271
272 if (!(sb->s_flags & SB_KERNMOUNT)) {
273 raw_spin_lock(&sbinfo->stat_lock);
274 if (sbinfo->max_inodes) {
275 if (!sbinfo->free_inodes) {
276 raw_spin_unlock(&sbinfo->stat_lock);
277 return -ENOSPC;
278 }
279 sbinfo->free_inodes--;
280 }
281 if (inop) {
282 ino = sbinfo->next_ino++;
283 if (unlikely(is_zero_ino(ino)))
284 ino = sbinfo->next_ino++;
285 if (unlikely(!sbinfo->full_inums &&
286 ino > UINT_MAX)) {
287 /*
288 * Emulate get_next_ino uint wraparound for
289 * compatibility
290 */
291 if (IS_ENABLED(CONFIG_64BIT))
292 pr_warn("%s: inode number overflow on device %d, consider using inode64 mount option\n",
293 __func__, MINOR(sb->s_dev));
294 sbinfo->next_ino = 1;
295 ino = sbinfo->next_ino++;
296 }
297 *inop = ino;
298 }
299 raw_spin_unlock(&sbinfo->stat_lock);
300 } else if (inop) {
301 /*
302 * __shmem_file_setup, one of our callers, is lock-free: it
303 * doesn't hold stat_lock in shmem_reserve_inode since
304 * max_inodes is always 0, and is called from potentially
305 * unknown contexts. As such, use a per-cpu batched allocator
306 * which doesn't require the per-sb stat_lock unless we are at
307 * the batch boundary.
308 *
309 * We don't need to worry about inode{32,64} since SB_KERNMOUNT
310 * shmem mounts are not exposed to userspace, so we don't need
311 * to worry about things like glibc compatibility.
312 */
313 ino_t *next_ino;
314
315 next_ino = per_cpu_ptr(sbinfo->ino_batch, get_cpu());
316 ino = *next_ino;
317 if (unlikely(ino % SHMEM_INO_BATCH == 0)) {
318 raw_spin_lock(&sbinfo->stat_lock);
319 ino = sbinfo->next_ino;
320 sbinfo->next_ino += SHMEM_INO_BATCH;
321 raw_spin_unlock(&sbinfo->stat_lock);
322 if (unlikely(is_zero_ino(ino)))
323 ino++;
324 }
325 *inop = ino;
326 *next_ino = ++ino;
327 put_cpu();
328 }
329
330 return 0;
331}
332
333static void shmem_free_inode(struct super_block *sb)
334{
335 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
336 if (sbinfo->max_inodes) {
337 raw_spin_lock(&sbinfo->stat_lock);
338 sbinfo->free_inodes++;
339 raw_spin_unlock(&sbinfo->stat_lock);
340 }
341}
342
343/**
344 * shmem_recalc_inode - recalculate the block usage of an inode
345 * @inode: inode to recalc
346 *
347 * We have to calculate the free blocks since the mm can drop
348 * undirtied hole pages behind our back.
349 *
350 * But normally info->alloced == inode->i_mapping->nrpages + info->swapped
351 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
352 *
353 * It has to be called with the spinlock held.
354 */
355static void shmem_recalc_inode(struct inode *inode)
356{
357 struct shmem_inode_info *info = SHMEM_I(inode);
358 long freed;
359
360 freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
361 if (freed > 0) {
362 info->alloced -= freed;
363 inode->i_blocks -= freed * BLOCKS_PER_PAGE;
364 shmem_inode_unacct_blocks(inode, freed);
365 }
366}
367
368bool shmem_charge(struct inode *inode, long pages)
369{
370 struct shmem_inode_info *info = SHMEM_I(inode);
371 unsigned long flags;
372
373 if (!shmem_inode_acct_block(inode, pages))
374 return false;
375
376 /* nrpages adjustment first, then shmem_recalc_inode() when balanced */
377 inode->i_mapping->nrpages += pages;
378
379 spin_lock_irqsave(&info->lock, flags);
380 info->alloced += pages;
381 inode->i_blocks += pages * BLOCKS_PER_PAGE;
382 shmem_recalc_inode(inode);
383 spin_unlock_irqrestore(&info->lock, flags);
384
385 return true;
386}
387
388void shmem_uncharge(struct inode *inode, long pages)
389{
390 struct shmem_inode_info *info = SHMEM_I(inode);
391 unsigned long flags;
392
393 /* nrpages adjustment done by __filemap_remove_folio() or caller */
394
395 spin_lock_irqsave(&info->lock, flags);
396 info->alloced -= pages;
397 inode->i_blocks -= pages * BLOCKS_PER_PAGE;
398 shmem_recalc_inode(inode);
399 spin_unlock_irqrestore(&info->lock, flags);
400
401 shmem_inode_unacct_blocks(inode, pages);
402}
403
404/*
405 * Replace item expected in xarray by a new item, while holding xa_lock.
406 */
407static int shmem_replace_entry(struct address_space *mapping,
408 pgoff_t index, void *expected, void *replacement)
409{
410 XA_STATE(xas, &mapping->i_pages, index);
411 void *item;
412
413 VM_BUG_ON(!expected);
414 VM_BUG_ON(!replacement);
415 item = xas_load(&xas);
416 if (item != expected)
417 return -ENOENT;
418 xas_store(&xas, replacement);
419 return 0;
420}
421
422/*
423 * Sometimes, before we decide whether to proceed or to fail, we must check
424 * that an entry was not already brought back from swap by a racing thread.
425 *
426 * Checking page is not enough: by the time a SwapCache page is locked, it
427 * might be reused, and again be SwapCache, using the same swap as before.
428 */
429static bool shmem_confirm_swap(struct address_space *mapping,
430 pgoff_t index, swp_entry_t swap)
431{
432 return xa_load(&mapping->i_pages, index) == swp_to_radix_entry(swap);
433}
434
435/*
436 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
437 *
438 * SHMEM_HUGE_NEVER:
439 * disables huge pages for the mount;
440 * SHMEM_HUGE_ALWAYS:
441 * enables huge pages for the mount;
442 * SHMEM_HUGE_WITHIN_SIZE:
443 * only allocate huge pages if the page will be fully within i_size,
444 * also respect fadvise()/madvise() hints;
445 * SHMEM_HUGE_ADVISE:
446 * only allocate huge pages if requested with fadvise()/madvise();
447 */
448
449#define SHMEM_HUGE_NEVER 0
450#define SHMEM_HUGE_ALWAYS 1
451#define SHMEM_HUGE_WITHIN_SIZE 2
452#define SHMEM_HUGE_ADVISE 3
453
454/*
455 * Special values.
456 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
457 *
458 * SHMEM_HUGE_DENY:
459 * disables huge on shm_mnt and all mounts, for emergency use;
460 * SHMEM_HUGE_FORCE:
461 * enables huge on shm_mnt and all mounts, w/o needing option, for testing;
462 *
463 */
464#define SHMEM_HUGE_DENY (-1)
465#define SHMEM_HUGE_FORCE (-2)
466
467#ifdef CONFIG_TRANSPARENT_HUGEPAGE
468/* ifdef here to avoid bloating shmem.o when not necessary */
469
470static int shmem_huge __read_mostly = SHMEM_HUGE_NEVER;
471
472bool shmem_is_huge(struct inode *inode, pgoff_t index, bool shmem_huge_force,
473 struct mm_struct *mm, unsigned long vm_flags)
474{
475 loff_t i_size;
476
477 if (!S_ISREG(inode->i_mode))
478 return false;
479 if (mm && ((vm_flags & VM_NOHUGEPAGE) || test_bit(MMF_DISABLE_THP, &mm->flags)))
480 return false;
481 if (shmem_huge == SHMEM_HUGE_DENY)
482 return false;
483 if (shmem_huge_force || shmem_huge == SHMEM_HUGE_FORCE)
484 return true;
485
486 switch (SHMEM_SB(inode->i_sb)->huge) {
487 case SHMEM_HUGE_ALWAYS:
488 return true;
489 case SHMEM_HUGE_WITHIN_SIZE:
490 index = round_up(index + 1, HPAGE_PMD_NR);
491 i_size = round_up(i_size_read(inode), PAGE_SIZE);
492 if (i_size >> PAGE_SHIFT >= index)
493 return true;
494 fallthrough;
495 case SHMEM_HUGE_ADVISE:
496 if (mm && (vm_flags & VM_HUGEPAGE))
497 return true;
498 fallthrough;
499 default:
500 return false;
501 }
502}
503
504#if defined(CONFIG_SYSFS)
505static int shmem_parse_huge(const char *str)
506{
507 if (!strcmp(str, "never"))
508 return SHMEM_HUGE_NEVER;
509 if (!strcmp(str, "always"))
510 return SHMEM_HUGE_ALWAYS;
511 if (!strcmp(str, "within_size"))
512 return SHMEM_HUGE_WITHIN_SIZE;
513 if (!strcmp(str, "advise"))
514 return SHMEM_HUGE_ADVISE;
515 if (!strcmp(str, "deny"))
516 return SHMEM_HUGE_DENY;
517 if (!strcmp(str, "force"))
518 return SHMEM_HUGE_FORCE;
519 return -EINVAL;
520}
521#endif
522
523#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
524static const char *shmem_format_huge(int huge)
525{
526 switch (huge) {
527 case SHMEM_HUGE_NEVER:
528 return "never";
529 case SHMEM_HUGE_ALWAYS:
530 return "always";
531 case SHMEM_HUGE_WITHIN_SIZE:
532 return "within_size";
533 case SHMEM_HUGE_ADVISE:
534 return "advise";
535 case SHMEM_HUGE_DENY:
536 return "deny";
537 case SHMEM_HUGE_FORCE:
538 return "force";
539 default:
540 VM_BUG_ON(1);
541 return "bad_val";
542 }
543}
544#endif
545
546static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
547 struct shrink_control *sc, unsigned long nr_to_split)
548{
549 LIST_HEAD(list), *pos, *next;
550 LIST_HEAD(to_remove);
551 struct inode *inode;
552 struct shmem_inode_info *info;
553 struct folio *folio;
554 unsigned long batch = sc ? sc->nr_to_scan : 128;
555 int split = 0;
556
557 if (list_empty(&sbinfo->shrinklist))
558 return SHRINK_STOP;
559
560 spin_lock(&sbinfo->shrinklist_lock);
561 list_for_each_safe(pos, next, &sbinfo->shrinklist) {
562 info = list_entry(pos, struct shmem_inode_info, shrinklist);
563
564 /* pin the inode */
565 inode = igrab(&info->vfs_inode);
566
567 /* inode is about to be evicted */
568 if (!inode) {
569 list_del_init(&info->shrinklist);
570 goto next;
571 }
572
573 /* Check if there's anything to gain */
574 if (round_up(inode->i_size, PAGE_SIZE) ==
575 round_up(inode->i_size, HPAGE_PMD_SIZE)) {
576 list_move(&info->shrinklist, &to_remove);
577 goto next;
578 }
579
580 list_move(&info->shrinklist, &list);
581next:
582 sbinfo->shrinklist_len--;
583 if (!--batch)
584 break;
585 }
586 spin_unlock(&sbinfo->shrinklist_lock);
587
588 list_for_each_safe(pos, next, &to_remove) {
589 info = list_entry(pos, struct shmem_inode_info, shrinklist);
590 inode = &info->vfs_inode;
591 list_del_init(&info->shrinklist);
592 iput(inode);
593 }
594
595 list_for_each_safe(pos, next, &list) {
596 int ret;
597 pgoff_t index;
598
599 info = list_entry(pos, struct shmem_inode_info, shrinklist);
600 inode = &info->vfs_inode;
601
602 if (nr_to_split && split >= nr_to_split)
603 goto move_back;
604
605 index = (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT;
606 folio = filemap_get_folio(inode->i_mapping, index);
607 if (IS_ERR(folio))
608 goto drop;
609
610 /* No huge page at the end of the file: nothing to split */
611 if (!folio_test_large(folio)) {
612 folio_put(folio);
613 goto drop;
614 }
615
616 /*
617 * Move the inode on the list back to shrinklist if we failed
618 * to lock the page at this time.
619 *
620 * Waiting for the lock may lead to deadlock in the
621 * reclaim path.
622 */
623 if (!folio_trylock(folio)) {
624 folio_put(folio);
625 goto move_back;
626 }
627
628 ret = split_folio(folio);
629 folio_unlock(folio);
630 folio_put(folio);
631
632 /* If split failed move the inode on the list back to shrinklist */
633 if (ret)
634 goto move_back;
635
636 split++;
637drop:
638 list_del_init(&info->shrinklist);
639 goto put;
640move_back:
641 /*
642 * Make sure the inode is either on the global list or deleted
643 * from any local list before iput() since it could be deleted
644 * in another thread once we put the inode (then the local list
645 * is corrupted).
646 */
647 spin_lock(&sbinfo->shrinklist_lock);
648 list_move(&info->shrinklist, &sbinfo->shrinklist);
649 sbinfo->shrinklist_len++;
650 spin_unlock(&sbinfo->shrinklist_lock);
651put:
652 iput(inode);
653 }
654
655 return split;
656}
657
658static long shmem_unused_huge_scan(struct super_block *sb,
659 struct shrink_control *sc)
660{
661 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
662
663 if (!READ_ONCE(sbinfo->shrinklist_len))
664 return SHRINK_STOP;
665
666 return shmem_unused_huge_shrink(sbinfo, sc, 0);
667}
668
669static long shmem_unused_huge_count(struct super_block *sb,
670 struct shrink_control *sc)
671{
672 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
673 return READ_ONCE(sbinfo->shrinklist_len);
674}
675#else /* !CONFIG_TRANSPARENT_HUGEPAGE */
676
677#define shmem_huge SHMEM_HUGE_DENY
678
679bool shmem_is_huge(struct inode *inode, pgoff_t index, bool shmem_huge_force,
680 struct mm_struct *mm, unsigned long vm_flags)
681{
682 return false;
683}
684
685static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
686 struct shrink_control *sc, unsigned long nr_to_split)
687{
688 return 0;
689}
690#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
691
692/*
693 * Like filemap_add_folio, but error if expected item has gone.
694 */
695static int shmem_add_to_page_cache(struct folio *folio,
696 struct address_space *mapping,
697 pgoff_t index, void *expected, gfp_t gfp,
698 struct mm_struct *charge_mm)
699{
700 XA_STATE_ORDER(xas, &mapping->i_pages, index, folio_order(folio));
701 long nr = folio_nr_pages(folio);
702 int error;
703
704 VM_BUG_ON_FOLIO(index != round_down(index, nr), folio);
705 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
706 VM_BUG_ON_FOLIO(!folio_test_swapbacked(folio), folio);
707 VM_BUG_ON(expected && folio_test_large(folio));
708
709 folio_ref_add(folio, nr);
710 folio->mapping = mapping;
711 folio->index = index;
712
713 if (!folio_test_swapcache(folio)) {
714 error = mem_cgroup_charge(folio, charge_mm, gfp);
715 if (error) {
716 if (folio_test_pmd_mappable(folio)) {
717 count_vm_event(THP_FILE_FALLBACK);
718 count_vm_event(THP_FILE_FALLBACK_CHARGE);
719 }
720 goto error;
721 }
722 }
723 folio_throttle_swaprate(folio, gfp);
724
725 do {
726 xas_lock_irq(&xas);
727 if (expected != xas_find_conflict(&xas)) {
728 xas_set_err(&xas, -EEXIST);
729 goto unlock;
730 }
731 if (expected && xas_find_conflict(&xas)) {
732 xas_set_err(&xas, -EEXIST);
733 goto unlock;
734 }
735 xas_store(&xas, folio);
736 if (xas_error(&xas))
737 goto unlock;
738 if (folio_test_pmd_mappable(folio)) {
739 count_vm_event(THP_FILE_ALLOC);
740 __lruvec_stat_mod_folio(folio, NR_SHMEM_THPS, nr);
741 }
742 mapping->nrpages += nr;
743 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, nr);
744 __lruvec_stat_mod_folio(folio, NR_SHMEM, nr);
745unlock:
746 xas_unlock_irq(&xas);
747 } while (xas_nomem(&xas, gfp));
748
749 if (xas_error(&xas)) {
750 error = xas_error(&xas);
751 goto error;
752 }
753
754 return 0;
755error:
756 folio->mapping = NULL;
757 folio_ref_sub(folio, nr);
758 return error;
759}
760
761/*
762 * Like delete_from_page_cache, but substitutes swap for @folio.
763 */
764static void shmem_delete_from_page_cache(struct folio *folio, void *radswap)
765{
766 struct address_space *mapping = folio->mapping;
767 long nr = folio_nr_pages(folio);
768 int error;
769
770 xa_lock_irq(&mapping->i_pages);
771 error = shmem_replace_entry(mapping, folio->index, folio, radswap);
772 folio->mapping = NULL;
773 mapping->nrpages -= nr;
774 __lruvec_stat_mod_folio(folio, NR_FILE_PAGES, -nr);
775 __lruvec_stat_mod_folio(folio, NR_SHMEM, -nr);
776 xa_unlock_irq(&mapping->i_pages);
777 folio_put(folio);
778 BUG_ON(error);
779}
780
781/*
782 * Remove swap entry from page cache, free the swap and its page cache.
783 */
784static int shmem_free_swap(struct address_space *mapping,
785 pgoff_t index, void *radswap)
786{
787 void *old;
788
789 old = xa_cmpxchg_irq(&mapping->i_pages, index, radswap, NULL, 0);
790 if (old != radswap)
791 return -ENOENT;
792 free_swap_and_cache(radix_to_swp_entry(radswap));
793 return 0;
794}
795
796/*
797 * Determine (in bytes) how many of the shmem object's pages mapped by the
798 * given offsets are swapped out.
799 *
800 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
801 * as long as the inode doesn't go away and racy results are not a problem.
802 */
803unsigned long shmem_partial_swap_usage(struct address_space *mapping,
804 pgoff_t start, pgoff_t end)
805{
806 XA_STATE(xas, &mapping->i_pages, start);
807 struct page *page;
808 unsigned long swapped = 0;
809
810 rcu_read_lock();
811 xas_for_each(&xas, page, end - 1) {
812 if (xas_retry(&xas, page))
813 continue;
814 if (xa_is_value(page))
815 swapped++;
816
817 if (need_resched()) {
818 xas_pause(&xas);
819 cond_resched_rcu();
820 }
821 }
822
823 rcu_read_unlock();
824
825 return swapped << PAGE_SHIFT;
826}
827
828/*
829 * Determine (in bytes) how many of the shmem object's pages mapped by the
830 * given vma is swapped out.
831 *
832 * This is safe to call without i_rwsem or the i_pages lock thanks to RCU,
833 * as long as the inode doesn't go away and racy results are not a problem.
834 */
835unsigned long shmem_swap_usage(struct vm_area_struct *vma)
836{
837 struct inode *inode = file_inode(vma->vm_file);
838 struct shmem_inode_info *info = SHMEM_I(inode);
839 struct address_space *mapping = inode->i_mapping;
840 unsigned long swapped;
841
842 /* Be careful as we don't hold info->lock */
843 swapped = READ_ONCE(info->swapped);
844
845 /*
846 * The easier cases are when the shmem object has nothing in swap, or
847 * the vma maps it whole. Then we can simply use the stats that we
848 * already track.
849 */
850 if (!swapped)
851 return 0;
852
853 if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
854 return swapped << PAGE_SHIFT;
855
856 /* Here comes the more involved part */
857 return shmem_partial_swap_usage(mapping, vma->vm_pgoff,
858 vma->vm_pgoff + vma_pages(vma));
859}
860
861/*
862 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
863 */
864void shmem_unlock_mapping(struct address_space *mapping)
865{
866 struct folio_batch fbatch;
867 pgoff_t index = 0;
868
869 folio_batch_init(&fbatch);
870 /*
871 * Minor point, but we might as well stop if someone else SHM_LOCKs it.
872 */
873 while (!mapping_unevictable(mapping) &&
874 filemap_get_folios(mapping, &index, ~0UL, &fbatch)) {
875 check_move_unevictable_folios(&fbatch);
876 folio_batch_release(&fbatch);
877 cond_resched();
878 }
879}
880
881static struct folio *shmem_get_partial_folio(struct inode *inode, pgoff_t index)
882{
883 struct folio *folio;
884
885 /*
886 * At first avoid shmem_get_folio(,,,SGP_READ): that fails
887 * beyond i_size, and reports fallocated folios as holes.
888 */
889 folio = filemap_get_entry(inode->i_mapping, index);
890 if (!folio)
891 return folio;
892 if (!xa_is_value(folio)) {
893 folio_lock(folio);
894 if (folio->mapping == inode->i_mapping)
895 return folio;
896 /* The folio has been swapped out */
897 folio_unlock(folio);
898 folio_put(folio);
899 }
900 /*
901 * But read a folio back from swap if any of it is within i_size
902 * (although in some cases this is just a waste of time).
903 */
904 folio = NULL;
905 shmem_get_folio(inode, index, &folio, SGP_READ);
906 return folio;
907}
908
909/*
910 * Remove range of pages and swap entries from page cache, and free them.
911 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
912 */
913static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
914 bool unfalloc)
915{
916 struct address_space *mapping = inode->i_mapping;
917 struct shmem_inode_info *info = SHMEM_I(inode);
918 pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
919 pgoff_t end = (lend + 1) >> PAGE_SHIFT;
920 struct folio_batch fbatch;
921 pgoff_t indices[PAGEVEC_SIZE];
922 struct folio *folio;
923 bool same_folio;
924 long nr_swaps_freed = 0;
925 pgoff_t index;
926 int i;
927
928 if (lend == -1)
929 end = -1; /* unsigned, so actually very big */
930
931 if (info->fallocend > start && info->fallocend <= end && !unfalloc)
932 info->fallocend = start;
933
934 folio_batch_init(&fbatch);
935 index = start;
936 while (index < end && find_lock_entries(mapping, &index, end - 1,
937 &fbatch, indices)) {
938 for (i = 0; i < folio_batch_count(&fbatch); i++) {
939 folio = fbatch.folios[i];
940
941 if (xa_is_value(folio)) {
942 if (unfalloc)
943 continue;
944 nr_swaps_freed += !shmem_free_swap(mapping,
945 indices[i], folio);
946 continue;
947 }
948
949 if (!unfalloc || !folio_test_uptodate(folio))
950 truncate_inode_folio(mapping, folio);
951 folio_unlock(folio);
952 }
953 folio_batch_remove_exceptionals(&fbatch);
954 folio_batch_release(&fbatch);
955 cond_resched();
956 }
957
958 /*
959 * When undoing a failed fallocate, we want none of the partial folio
960 * zeroing and splitting below, but shall want to truncate the whole
961 * folio when !uptodate indicates that it was added by this fallocate,
962 * even when [lstart, lend] covers only a part of the folio.
963 */
964 if (unfalloc)
965 goto whole_folios;
966
967 same_folio = (lstart >> PAGE_SHIFT) == (lend >> PAGE_SHIFT);
968 folio = shmem_get_partial_folio(inode, lstart >> PAGE_SHIFT);
969 if (folio) {
970 same_folio = lend < folio_pos(folio) + folio_size(folio);
971 folio_mark_dirty(folio);
972 if (!truncate_inode_partial_folio(folio, lstart, lend)) {
973 start = folio->index + folio_nr_pages(folio);
974 if (same_folio)
975 end = folio->index;
976 }
977 folio_unlock(folio);
978 folio_put(folio);
979 folio = NULL;
980 }
981
982 if (!same_folio)
983 folio = shmem_get_partial_folio(inode, lend >> PAGE_SHIFT);
984 if (folio) {
985 folio_mark_dirty(folio);
986 if (!truncate_inode_partial_folio(folio, lstart, lend))
987 end = folio->index;
988 folio_unlock(folio);
989 folio_put(folio);
990 }
991
992whole_folios:
993
994 index = start;
995 while (index < end) {
996 cond_resched();
997
998 if (!find_get_entries(mapping, &index, end - 1, &fbatch,
999 indices)) {
1000 /* If all gone or hole-punch or unfalloc, we're done */
1001 if (index == start || end != -1)
1002 break;
1003 /* But if truncating, restart to make sure all gone */
1004 index = start;
1005 continue;
1006 }
1007 for (i = 0; i < folio_batch_count(&fbatch); i++) {
1008 folio = fbatch.folios[i];
1009
1010 if (xa_is_value(folio)) {
1011 if (unfalloc)
1012 continue;
1013 if (shmem_free_swap(mapping, indices[i], folio)) {
1014 /* Swap was replaced by page: retry */
1015 index = indices[i];
1016 break;
1017 }
1018 nr_swaps_freed++;
1019 continue;
1020 }
1021
1022 folio_lock(folio);
1023
1024 if (!unfalloc || !folio_test_uptodate(folio)) {
1025 if (folio_mapping(folio) != mapping) {
1026 /* Page was replaced by swap: retry */
1027 folio_unlock(folio);
1028 index = indices[i];
1029 break;
1030 }
1031 VM_BUG_ON_FOLIO(folio_test_writeback(folio),
1032 folio);
1033 truncate_inode_folio(mapping, folio);
1034 }
1035 folio_unlock(folio);
1036 }
1037 folio_batch_remove_exceptionals(&fbatch);
1038 folio_batch_release(&fbatch);
1039 }
1040
1041 spin_lock_irq(&info->lock);
1042 info->swapped -= nr_swaps_freed;
1043 shmem_recalc_inode(inode);
1044 spin_unlock_irq(&info->lock);
1045}
1046
1047void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
1048{
1049 shmem_undo_range(inode, lstart, lend, false);
1050 inode->i_ctime = inode->i_mtime = current_time(inode);
1051 inode_inc_iversion(inode);
1052}
1053EXPORT_SYMBOL_GPL(shmem_truncate_range);
1054
1055static int shmem_getattr(struct mnt_idmap *idmap,
1056 const struct path *path, struct kstat *stat,
1057 u32 request_mask, unsigned int query_flags)
1058{
1059 struct inode *inode = path->dentry->d_inode;
1060 struct shmem_inode_info *info = SHMEM_I(inode);
1061
1062 if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1063 spin_lock_irq(&info->lock);
1064 shmem_recalc_inode(inode);
1065 spin_unlock_irq(&info->lock);
1066 }
1067 if (info->fsflags & FS_APPEND_FL)
1068 stat->attributes |= STATX_ATTR_APPEND;
1069 if (info->fsflags & FS_IMMUTABLE_FL)
1070 stat->attributes |= STATX_ATTR_IMMUTABLE;
1071 if (info->fsflags & FS_NODUMP_FL)
1072 stat->attributes |= STATX_ATTR_NODUMP;
1073 stat->attributes_mask |= (STATX_ATTR_APPEND |
1074 STATX_ATTR_IMMUTABLE |
1075 STATX_ATTR_NODUMP);
1076 generic_fillattr(idmap, inode, stat);
1077
1078 if (shmem_is_huge(inode, 0, false, NULL, 0))
1079 stat->blksize = HPAGE_PMD_SIZE;
1080
1081 if (request_mask & STATX_BTIME) {
1082 stat->result_mask |= STATX_BTIME;
1083 stat->btime.tv_sec = info->i_crtime.tv_sec;
1084 stat->btime.tv_nsec = info->i_crtime.tv_nsec;
1085 }
1086
1087 return 0;
1088}
1089
1090static int shmem_setattr(struct mnt_idmap *idmap,
1091 struct dentry *dentry, struct iattr *attr)
1092{
1093 struct inode *inode = d_inode(dentry);
1094 struct shmem_inode_info *info = SHMEM_I(inode);
1095 int error;
1096 bool update_mtime = false;
1097 bool update_ctime = true;
1098
1099 error = setattr_prepare(idmap, dentry, attr);
1100 if (error)
1101 return error;
1102
1103 if ((info->seals & F_SEAL_EXEC) && (attr->ia_valid & ATTR_MODE)) {
1104 if ((inode->i_mode ^ attr->ia_mode) & 0111) {
1105 return -EPERM;
1106 }
1107 }
1108
1109 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1110 loff_t oldsize = inode->i_size;
1111 loff_t newsize = attr->ia_size;
1112
1113 /* protected by i_rwsem */
1114 if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1115 (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1116 return -EPERM;
1117
1118 if (newsize != oldsize) {
1119 error = shmem_reacct_size(SHMEM_I(inode)->flags,
1120 oldsize, newsize);
1121 if (error)
1122 return error;
1123 i_size_write(inode, newsize);
1124 update_mtime = true;
1125 } else {
1126 update_ctime = false;
1127 }
1128 if (newsize <= oldsize) {
1129 loff_t holebegin = round_up(newsize, PAGE_SIZE);
1130 if (oldsize > holebegin)
1131 unmap_mapping_range(inode->i_mapping,
1132 holebegin, 0, 1);
1133 if (info->alloced)
1134 shmem_truncate_range(inode,
1135 newsize, (loff_t)-1);
1136 /* unmap again to remove racily COWed private pages */
1137 if (oldsize > holebegin)
1138 unmap_mapping_range(inode->i_mapping,
1139 holebegin, 0, 1);
1140 }
1141 }
1142
1143 setattr_copy(idmap, inode, attr);
1144 if (attr->ia_valid & ATTR_MODE)
1145 error = posix_acl_chmod(idmap, dentry, inode->i_mode);
1146 if (!error && update_ctime) {
1147 inode->i_ctime = current_time(inode);
1148 if (update_mtime)
1149 inode->i_mtime = inode->i_ctime;
1150 inode_inc_iversion(inode);
1151 }
1152 return error;
1153}
1154
1155static void shmem_evict_inode(struct inode *inode)
1156{
1157 struct shmem_inode_info *info = SHMEM_I(inode);
1158 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1159
1160 if (shmem_mapping(inode->i_mapping)) {
1161 shmem_unacct_size(info->flags, inode->i_size);
1162 inode->i_size = 0;
1163 mapping_set_exiting(inode->i_mapping);
1164 shmem_truncate_range(inode, 0, (loff_t)-1);
1165 if (!list_empty(&info->shrinklist)) {
1166 spin_lock(&sbinfo->shrinklist_lock);
1167 if (!list_empty(&info->shrinklist)) {
1168 list_del_init(&info->shrinklist);
1169 sbinfo->shrinklist_len--;
1170 }
1171 spin_unlock(&sbinfo->shrinklist_lock);
1172 }
1173 while (!list_empty(&info->swaplist)) {
1174 /* Wait while shmem_unuse() is scanning this inode... */
1175 wait_var_event(&info->stop_eviction,
1176 !atomic_read(&info->stop_eviction));
1177 mutex_lock(&shmem_swaplist_mutex);
1178 /* ...but beware of the race if we peeked too early */
1179 if (!atomic_read(&info->stop_eviction))
1180 list_del_init(&info->swaplist);
1181 mutex_unlock(&shmem_swaplist_mutex);
1182 }
1183 }
1184
1185 simple_xattrs_free(&info->xattrs);
1186 WARN_ON(inode->i_blocks);
1187 shmem_free_inode(inode->i_sb);
1188 clear_inode(inode);
1189}
1190
1191static int shmem_find_swap_entries(struct address_space *mapping,
1192 pgoff_t start, struct folio_batch *fbatch,
1193 pgoff_t *indices, unsigned int type)
1194{
1195 XA_STATE(xas, &mapping->i_pages, start);
1196 struct folio *folio;
1197 swp_entry_t entry;
1198
1199 rcu_read_lock();
1200 xas_for_each(&xas, folio, ULONG_MAX) {
1201 if (xas_retry(&xas, folio))
1202 continue;
1203
1204 if (!xa_is_value(folio))
1205 continue;
1206
1207 entry = radix_to_swp_entry(folio);
1208 /*
1209 * swapin error entries can be found in the mapping. But they're
1210 * deliberately ignored here as we've done everything we can do.
1211 */
1212 if (swp_type(entry) != type)
1213 continue;
1214
1215 indices[folio_batch_count(fbatch)] = xas.xa_index;
1216 if (!folio_batch_add(fbatch, folio))
1217 break;
1218
1219 if (need_resched()) {
1220 xas_pause(&xas);
1221 cond_resched_rcu();
1222 }
1223 }
1224 rcu_read_unlock();
1225
1226 return xas.xa_index;
1227}
1228
1229/*
1230 * Move the swapped pages for an inode to page cache. Returns the count
1231 * of pages swapped in, or the error in case of failure.
1232 */
1233static int shmem_unuse_swap_entries(struct inode *inode,
1234 struct folio_batch *fbatch, pgoff_t *indices)
1235{
1236 int i = 0;
1237 int ret = 0;
1238 int error = 0;
1239 struct address_space *mapping = inode->i_mapping;
1240
1241 for (i = 0; i < folio_batch_count(fbatch); i++) {
1242 struct folio *folio = fbatch->folios[i];
1243
1244 if (!xa_is_value(folio))
1245 continue;
1246 error = shmem_swapin_folio(inode, indices[i],
1247 &folio, SGP_CACHE,
1248 mapping_gfp_mask(mapping),
1249 NULL, NULL);
1250 if (error == 0) {
1251 folio_unlock(folio);
1252 folio_put(folio);
1253 ret++;
1254 }
1255 if (error == -ENOMEM)
1256 break;
1257 error = 0;
1258 }
1259 return error ? error : ret;
1260}
1261
1262/*
1263 * If swap found in inode, free it and move page from swapcache to filecache.
1264 */
1265static int shmem_unuse_inode(struct inode *inode, unsigned int type)
1266{
1267 struct address_space *mapping = inode->i_mapping;
1268 pgoff_t start = 0;
1269 struct folio_batch fbatch;
1270 pgoff_t indices[PAGEVEC_SIZE];
1271 int ret = 0;
1272
1273 do {
1274 folio_batch_init(&fbatch);
1275 shmem_find_swap_entries(mapping, start, &fbatch, indices, type);
1276 if (folio_batch_count(&fbatch) == 0) {
1277 ret = 0;
1278 break;
1279 }
1280
1281 ret = shmem_unuse_swap_entries(inode, &fbatch, indices);
1282 if (ret < 0)
1283 break;
1284
1285 start = indices[folio_batch_count(&fbatch) - 1];
1286 } while (true);
1287
1288 return ret;
1289}
1290
1291/*
1292 * Read all the shared memory data that resides in the swap
1293 * device 'type' back into memory, so the swap device can be
1294 * unused.
1295 */
1296int shmem_unuse(unsigned int type)
1297{
1298 struct shmem_inode_info *info, *next;
1299 int error = 0;
1300
1301 if (list_empty(&shmem_swaplist))
1302 return 0;
1303
1304 mutex_lock(&shmem_swaplist_mutex);
1305 list_for_each_entry_safe(info, next, &shmem_swaplist, swaplist) {
1306 if (!info->swapped) {
1307 list_del_init(&info->swaplist);
1308 continue;
1309 }
1310 /*
1311 * Drop the swaplist mutex while searching the inode for swap;
1312 * but before doing so, make sure shmem_evict_inode() will not
1313 * remove placeholder inode from swaplist, nor let it be freed
1314 * (igrab() would protect from unlink, but not from unmount).
1315 */
1316 atomic_inc(&info->stop_eviction);
1317 mutex_unlock(&shmem_swaplist_mutex);
1318
1319 error = shmem_unuse_inode(&info->vfs_inode, type);
1320 cond_resched();
1321
1322 mutex_lock(&shmem_swaplist_mutex);
1323 next = list_next_entry(info, swaplist);
1324 if (!info->swapped)
1325 list_del_init(&info->swaplist);
1326 if (atomic_dec_and_test(&info->stop_eviction))
1327 wake_up_var(&info->stop_eviction);
1328 if (error)
1329 break;
1330 }
1331 mutex_unlock(&shmem_swaplist_mutex);
1332
1333 return error;
1334}
1335
1336/*
1337 * Move the page from the page cache to the swap cache.
1338 */
1339static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1340{
1341 struct folio *folio = page_folio(page);
1342 struct address_space *mapping = folio->mapping;
1343 struct inode *inode = mapping->host;
1344 struct shmem_inode_info *info = SHMEM_I(inode);
1345 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1346 swp_entry_t swap;
1347 pgoff_t index;
1348
1349 /*
1350 * Our capabilities prevent regular writeback or sync from ever calling
1351 * shmem_writepage; but a stacking filesystem might use ->writepage of
1352 * its underlying filesystem, in which case tmpfs should write out to
1353 * swap only in response to memory pressure, and not for the writeback
1354 * threads or sync.
1355 */
1356 if (WARN_ON_ONCE(!wbc->for_reclaim))
1357 goto redirty;
1358
1359 if (WARN_ON_ONCE((info->flags & VM_LOCKED) || sbinfo->noswap))
1360 goto redirty;
1361
1362 if (!total_swap_pages)
1363 goto redirty;
1364
1365 /*
1366 * If /sys/kernel/mm/transparent_hugepage/shmem_enabled is "always" or
1367 * "force", drivers/gpu/drm/i915/gem/i915_gem_shmem.c gets huge pages,
1368 * and its shmem_writeback() needs them to be split when swapping.
1369 */
1370 if (folio_test_large(folio)) {
1371 /* Ensure the subpages are still dirty */
1372 folio_test_set_dirty(folio);
1373 if (split_huge_page(page) < 0)
1374 goto redirty;
1375 folio = page_folio(page);
1376 folio_clear_dirty(folio);
1377 }
1378
1379 index = folio->index;
1380
1381 /*
1382 * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1383 * value into swapfile.c, the only way we can correctly account for a
1384 * fallocated folio arriving here is now to initialize it and write it.
1385 *
1386 * That's okay for a folio already fallocated earlier, but if we have
1387 * not yet completed the fallocation, then (a) we want to keep track
1388 * of this folio in case we have to undo it, and (b) it may not be a
1389 * good idea to continue anyway, once we're pushing into swap. So
1390 * reactivate the folio, and let shmem_fallocate() quit when too many.
1391 */
1392 if (!folio_test_uptodate(folio)) {
1393 if (inode->i_private) {
1394 struct shmem_falloc *shmem_falloc;
1395 spin_lock(&inode->i_lock);
1396 shmem_falloc = inode->i_private;
1397 if (shmem_falloc &&
1398 !shmem_falloc->waitq &&
1399 index >= shmem_falloc->start &&
1400 index < shmem_falloc->next)
1401 shmem_falloc->nr_unswapped++;
1402 else
1403 shmem_falloc = NULL;
1404 spin_unlock(&inode->i_lock);
1405 if (shmem_falloc)
1406 goto redirty;
1407 }
1408 folio_zero_range(folio, 0, folio_size(folio));
1409 flush_dcache_folio(folio);
1410 folio_mark_uptodate(folio);
1411 }
1412
1413 swap = folio_alloc_swap(folio);
1414 if (!swap.val)
1415 goto redirty;
1416
1417 /*
1418 * Add inode to shmem_unuse()'s list of swapped-out inodes,
1419 * if it's not already there. Do it now before the folio is
1420 * moved to swap cache, when its pagelock no longer protects
1421 * the inode from eviction. But don't unlock the mutex until
1422 * we've incremented swapped, because shmem_unuse_inode() will
1423 * prune a !swapped inode from the swaplist under this mutex.
1424 */
1425 mutex_lock(&shmem_swaplist_mutex);
1426 if (list_empty(&info->swaplist))
1427 list_add(&info->swaplist, &shmem_swaplist);
1428
1429 if (add_to_swap_cache(folio, swap,
1430 __GFP_HIGH | __GFP_NOMEMALLOC | __GFP_NOWARN,
1431 NULL) == 0) {
1432 spin_lock_irq(&info->lock);
1433 shmem_recalc_inode(inode);
1434 info->swapped++;
1435 spin_unlock_irq(&info->lock);
1436
1437 swap_shmem_alloc(swap);
1438 shmem_delete_from_page_cache(folio, swp_to_radix_entry(swap));
1439
1440 mutex_unlock(&shmem_swaplist_mutex);
1441 BUG_ON(folio_mapped(folio));
1442 swap_writepage(&folio->page, wbc);
1443 return 0;
1444 }
1445
1446 mutex_unlock(&shmem_swaplist_mutex);
1447 put_swap_folio(folio, swap);
1448redirty:
1449 folio_mark_dirty(folio);
1450 if (wbc->for_reclaim)
1451 return AOP_WRITEPAGE_ACTIVATE; /* Return with folio locked */
1452 folio_unlock(folio);
1453 return 0;
1454}
1455
1456#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1457static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1458{
1459 char buffer[64];
1460
1461 if (!mpol || mpol->mode == MPOL_DEFAULT)
1462 return; /* show nothing */
1463
1464 mpol_to_str(buffer, sizeof(buffer), mpol);
1465
1466 seq_printf(seq, ",mpol=%s", buffer);
1467}
1468
1469static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1470{
1471 struct mempolicy *mpol = NULL;
1472 if (sbinfo->mpol) {
1473 raw_spin_lock(&sbinfo->stat_lock); /* prevent replace/use races */
1474 mpol = sbinfo->mpol;
1475 mpol_get(mpol);
1476 raw_spin_unlock(&sbinfo->stat_lock);
1477 }
1478 return mpol;
1479}
1480#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1481static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1482{
1483}
1484static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1485{
1486 return NULL;
1487}
1488#endif /* CONFIG_NUMA && CONFIG_TMPFS */
1489#ifndef CONFIG_NUMA
1490#define vm_policy vm_private_data
1491#endif
1492
1493static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1494 struct shmem_inode_info *info, pgoff_t index)
1495{
1496 /* Create a pseudo vma that just contains the policy */
1497 vma_init(vma, NULL);
1498 /* Bias interleave by inode number to distribute better across nodes */
1499 vma->vm_pgoff = index + info->vfs_inode.i_ino;
1500 vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1501}
1502
1503static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1504{
1505 /* Drop reference taken by mpol_shared_policy_lookup() */
1506 mpol_cond_put(vma->vm_policy);
1507}
1508
1509static struct folio *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1510 struct shmem_inode_info *info, pgoff_t index)
1511{
1512 struct vm_area_struct pvma;
1513 struct page *page;
1514 struct vm_fault vmf = {
1515 .vma = &pvma,
1516 };
1517
1518 shmem_pseudo_vma_init(&pvma, info, index);
1519 page = swap_cluster_readahead(swap, gfp, &vmf);
1520 shmem_pseudo_vma_destroy(&pvma);
1521
1522 if (!page)
1523 return NULL;
1524 return page_folio(page);
1525}
1526
1527/*
1528 * Make sure huge_gfp is always more limited than limit_gfp.
1529 * Some of the flags set permissions, while others set limitations.
1530 */
1531static gfp_t limit_gfp_mask(gfp_t huge_gfp, gfp_t limit_gfp)
1532{
1533 gfp_t allowflags = __GFP_IO | __GFP_FS | __GFP_RECLAIM;
1534 gfp_t denyflags = __GFP_NOWARN | __GFP_NORETRY;
1535 gfp_t zoneflags = limit_gfp & GFP_ZONEMASK;
1536 gfp_t result = huge_gfp & ~(allowflags | GFP_ZONEMASK);
1537
1538 /* Allow allocations only from the originally specified zones. */
1539 result |= zoneflags;
1540
1541 /*
1542 * Minimize the result gfp by taking the union with the deny flags,
1543 * and the intersection of the allow flags.
1544 */
1545 result |= (limit_gfp & denyflags);
1546 result |= (huge_gfp & limit_gfp) & allowflags;
1547
1548 return result;
1549}
1550
1551static struct folio *shmem_alloc_hugefolio(gfp_t gfp,
1552 struct shmem_inode_info *info, pgoff_t index)
1553{
1554 struct vm_area_struct pvma;
1555 struct address_space *mapping = info->vfs_inode.i_mapping;
1556 pgoff_t hindex;
1557 struct folio *folio;
1558
1559 hindex = round_down(index, HPAGE_PMD_NR);
1560 if (xa_find(&mapping->i_pages, &hindex, hindex + HPAGE_PMD_NR - 1,
1561 XA_PRESENT))
1562 return NULL;
1563
1564 shmem_pseudo_vma_init(&pvma, info, hindex);
1565 folio = vma_alloc_folio(gfp, HPAGE_PMD_ORDER, &pvma, 0, true);
1566 shmem_pseudo_vma_destroy(&pvma);
1567 if (!folio)
1568 count_vm_event(THP_FILE_FALLBACK);
1569 return folio;
1570}
1571
1572static struct folio *shmem_alloc_folio(gfp_t gfp,
1573 struct shmem_inode_info *info, pgoff_t index)
1574{
1575 struct vm_area_struct pvma;
1576 struct folio *folio;
1577
1578 shmem_pseudo_vma_init(&pvma, info, index);
1579 folio = vma_alloc_folio(gfp, 0, &pvma, 0, false);
1580 shmem_pseudo_vma_destroy(&pvma);
1581
1582 return folio;
1583}
1584
1585static struct folio *shmem_alloc_and_acct_folio(gfp_t gfp, struct inode *inode,
1586 pgoff_t index, bool huge)
1587{
1588 struct shmem_inode_info *info = SHMEM_I(inode);
1589 struct folio *folio;
1590 int nr;
1591 int err = -ENOSPC;
1592
1593 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1594 huge = false;
1595 nr = huge ? HPAGE_PMD_NR : 1;
1596
1597 if (!shmem_inode_acct_block(inode, nr))
1598 goto failed;
1599
1600 if (huge)
1601 folio = shmem_alloc_hugefolio(gfp, info, index);
1602 else
1603 folio = shmem_alloc_folio(gfp, info, index);
1604 if (folio) {
1605 __folio_set_locked(folio);
1606 __folio_set_swapbacked(folio);
1607 return folio;
1608 }
1609
1610 err = -ENOMEM;
1611 shmem_inode_unacct_blocks(inode, nr);
1612failed:
1613 return ERR_PTR(err);
1614}
1615
1616/*
1617 * When a page is moved from swapcache to shmem filecache (either by the
1618 * usual swapin of shmem_get_folio_gfp(), or by the less common swapoff of
1619 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1620 * ignorance of the mapping it belongs to. If that mapping has special
1621 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1622 * we may need to copy to a suitable page before moving to filecache.
1623 *
1624 * In a future release, this may well be extended to respect cpuset and
1625 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1626 * but for now it is a simple matter of zone.
1627 */
1628static bool shmem_should_replace_folio(struct folio *folio, gfp_t gfp)
1629{
1630 return folio_zonenum(folio) > gfp_zone(gfp);
1631}
1632
1633static int shmem_replace_folio(struct folio **foliop, gfp_t gfp,
1634 struct shmem_inode_info *info, pgoff_t index)
1635{
1636 struct folio *old, *new;
1637 struct address_space *swap_mapping;
1638 swp_entry_t entry;
1639 pgoff_t swap_index;
1640 int error;
1641
1642 old = *foliop;
1643 entry = folio_swap_entry(old);
1644 swap_index = swp_offset(entry);
1645 swap_mapping = swap_address_space(entry);
1646
1647 /*
1648 * We have arrived here because our zones are constrained, so don't
1649 * limit chance of success by further cpuset and node constraints.
1650 */
1651 gfp &= ~GFP_CONSTRAINT_MASK;
1652 VM_BUG_ON_FOLIO(folio_test_large(old), old);
1653 new = shmem_alloc_folio(gfp, info, index);
1654 if (!new)
1655 return -ENOMEM;
1656
1657 folio_get(new);
1658 folio_copy(new, old);
1659 flush_dcache_folio(new);
1660
1661 __folio_set_locked(new);
1662 __folio_set_swapbacked(new);
1663 folio_mark_uptodate(new);
1664 folio_set_swap_entry(new, entry);
1665 folio_set_swapcache(new);
1666
1667 /*
1668 * Our caller will very soon move newpage out of swapcache, but it's
1669 * a nice clean interface for us to replace oldpage by newpage there.
1670 */
1671 xa_lock_irq(&swap_mapping->i_pages);
1672 error = shmem_replace_entry(swap_mapping, swap_index, old, new);
1673 if (!error) {
1674 mem_cgroup_migrate(old, new);
1675 __lruvec_stat_mod_folio(new, NR_FILE_PAGES, 1);
1676 __lruvec_stat_mod_folio(new, NR_SHMEM, 1);
1677 __lruvec_stat_mod_folio(old, NR_FILE_PAGES, -1);
1678 __lruvec_stat_mod_folio(old, NR_SHMEM, -1);
1679 }
1680 xa_unlock_irq(&swap_mapping->i_pages);
1681
1682 if (unlikely(error)) {
1683 /*
1684 * Is this possible? I think not, now that our callers check
1685 * both PageSwapCache and page_private after getting page lock;
1686 * but be defensive. Reverse old to newpage for clear and free.
1687 */
1688 old = new;
1689 } else {
1690 folio_add_lru(new);
1691 *foliop = new;
1692 }
1693
1694 folio_clear_swapcache(old);
1695 old->private = NULL;
1696
1697 folio_unlock(old);
1698 folio_put_refs(old, 2);
1699 return error;
1700}
1701
1702static void shmem_set_folio_swapin_error(struct inode *inode, pgoff_t index,
1703 struct folio *folio, swp_entry_t swap)
1704{
1705 struct address_space *mapping = inode->i_mapping;
1706 struct shmem_inode_info *info = SHMEM_I(inode);
1707 swp_entry_t swapin_error;
1708 void *old;
1709
1710 swapin_error = make_swapin_error_entry();
1711 old = xa_cmpxchg_irq(&mapping->i_pages, index,
1712 swp_to_radix_entry(swap),
1713 swp_to_radix_entry(swapin_error), 0);
1714 if (old != swp_to_radix_entry(swap))
1715 return;
1716
1717 folio_wait_writeback(folio);
1718 delete_from_swap_cache(folio);
1719 spin_lock_irq(&info->lock);
1720 /*
1721 * Don't treat swapin error folio as alloced. Otherwise inode->i_blocks won't
1722 * be 0 when inode is released and thus trigger WARN_ON(inode->i_blocks) in
1723 * shmem_evict_inode.
1724 */
1725 info->alloced--;
1726 info->swapped--;
1727 shmem_recalc_inode(inode);
1728 spin_unlock_irq(&info->lock);
1729 swap_free(swap);
1730}
1731
1732/*
1733 * Swap in the folio pointed to by *foliop.
1734 * Caller has to make sure that *foliop contains a valid swapped folio.
1735 * Returns 0 and the folio in foliop if success. On failure, returns the
1736 * error code and NULL in *foliop.
1737 */
1738static int shmem_swapin_folio(struct inode *inode, pgoff_t index,
1739 struct folio **foliop, enum sgp_type sgp,
1740 gfp_t gfp, struct vm_area_struct *vma,
1741 vm_fault_t *fault_type)
1742{
1743 struct address_space *mapping = inode->i_mapping;
1744 struct shmem_inode_info *info = SHMEM_I(inode);
1745 struct mm_struct *charge_mm = vma ? vma->vm_mm : NULL;
1746 struct swap_info_struct *si;
1747 struct folio *folio = NULL;
1748 swp_entry_t swap;
1749 int error;
1750
1751 VM_BUG_ON(!*foliop || !xa_is_value(*foliop));
1752 swap = radix_to_swp_entry(*foliop);
1753 *foliop = NULL;
1754
1755 if (is_swapin_error_entry(swap))
1756 return -EIO;
1757
1758 si = get_swap_device(swap);
1759 if (!si) {
1760 if (!shmem_confirm_swap(mapping, index, swap))
1761 return -EEXIST;
1762 else
1763 return -EINVAL;
1764 }
1765
1766 /* Look it up and read it in.. */
1767 folio = swap_cache_get_folio(swap, NULL, 0);
1768 if (!folio) {
1769 /* Or update major stats only when swapin succeeds?? */
1770 if (fault_type) {
1771 *fault_type |= VM_FAULT_MAJOR;
1772 count_vm_event(PGMAJFAULT);
1773 count_memcg_event_mm(charge_mm, PGMAJFAULT);
1774 }
1775 /* Here we actually start the io */
1776 folio = shmem_swapin(swap, gfp, info, index);
1777 if (!folio) {
1778 error = -ENOMEM;
1779 goto failed;
1780 }
1781 }
1782
1783 /* We have to do this with folio locked to prevent races */
1784 folio_lock(folio);
1785 if (!folio_test_swapcache(folio) ||
1786 folio_swap_entry(folio).val != swap.val ||
1787 !shmem_confirm_swap(mapping, index, swap)) {
1788 error = -EEXIST;
1789 goto unlock;
1790 }
1791 if (!folio_test_uptodate(folio)) {
1792 error = -EIO;
1793 goto failed;
1794 }
1795 folio_wait_writeback(folio);
1796
1797 /*
1798 * Some architectures may have to restore extra metadata to the
1799 * folio after reading from swap.
1800 */
1801 arch_swap_restore(swap, folio);
1802
1803 if (shmem_should_replace_folio(folio, gfp)) {
1804 error = shmem_replace_folio(&folio, gfp, info, index);
1805 if (error)
1806 goto failed;
1807 }
1808
1809 error = shmem_add_to_page_cache(folio, mapping, index,
1810 swp_to_radix_entry(swap), gfp,
1811 charge_mm);
1812 if (error)
1813 goto failed;
1814
1815 spin_lock_irq(&info->lock);
1816 info->swapped--;
1817 shmem_recalc_inode(inode);
1818 spin_unlock_irq(&info->lock);
1819
1820 if (sgp == SGP_WRITE)
1821 folio_mark_accessed(folio);
1822
1823 delete_from_swap_cache(folio);
1824 folio_mark_dirty(folio);
1825 swap_free(swap);
1826 put_swap_device(si);
1827
1828 *foliop = folio;
1829 return 0;
1830failed:
1831 if (!shmem_confirm_swap(mapping, index, swap))
1832 error = -EEXIST;
1833 if (error == -EIO)
1834 shmem_set_folio_swapin_error(inode, index, folio, swap);
1835unlock:
1836 if (folio) {
1837 folio_unlock(folio);
1838 folio_put(folio);
1839 }
1840 put_swap_device(si);
1841
1842 return error;
1843}
1844
1845/*
1846 * shmem_get_folio_gfp - find page in cache, or get from swap, or allocate
1847 *
1848 * If we allocate a new one we do not mark it dirty. That's up to the
1849 * vm. If we swap it in we mark it dirty since we also free the swap
1850 * entry since a page cannot live in both the swap and page cache.
1851 *
1852 * vma, vmf, and fault_type are only supplied by shmem_fault:
1853 * otherwise they are NULL.
1854 */
1855static int shmem_get_folio_gfp(struct inode *inode, pgoff_t index,
1856 struct folio **foliop, enum sgp_type sgp, gfp_t gfp,
1857 struct vm_area_struct *vma, struct vm_fault *vmf,
1858 vm_fault_t *fault_type)
1859{
1860 struct address_space *mapping = inode->i_mapping;
1861 struct shmem_inode_info *info = SHMEM_I(inode);
1862 struct shmem_sb_info *sbinfo;
1863 struct mm_struct *charge_mm;
1864 struct folio *folio;
1865 pgoff_t hindex;
1866 gfp_t huge_gfp;
1867 int error;
1868 int once = 0;
1869 int alloced = 0;
1870
1871 if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1872 return -EFBIG;
1873repeat:
1874 if (sgp <= SGP_CACHE &&
1875 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1876 return -EINVAL;
1877 }
1878
1879 sbinfo = SHMEM_SB(inode->i_sb);
1880 charge_mm = vma ? vma->vm_mm : NULL;
1881
1882 folio = filemap_get_entry(mapping, index);
1883 if (folio && vma && userfaultfd_minor(vma)) {
1884 if (!xa_is_value(folio))
1885 folio_put(folio);
1886 *fault_type = handle_userfault(vmf, VM_UFFD_MINOR);
1887 return 0;
1888 }
1889
1890 if (xa_is_value(folio)) {
1891 error = shmem_swapin_folio(inode, index, &folio,
1892 sgp, gfp, vma, fault_type);
1893 if (error == -EEXIST)
1894 goto repeat;
1895
1896 *foliop = folio;
1897 return error;
1898 }
1899
1900 if (folio) {
1901 folio_lock(folio);
1902
1903 /* Has the folio been truncated or swapped out? */
1904 if (unlikely(folio->mapping != mapping)) {
1905 folio_unlock(folio);
1906 folio_put(folio);
1907 goto repeat;
1908 }
1909 if (sgp == SGP_WRITE)
1910 folio_mark_accessed(folio);
1911 if (folio_test_uptodate(folio))
1912 goto out;
1913 /* fallocated folio */
1914 if (sgp != SGP_READ)
1915 goto clear;
1916 folio_unlock(folio);
1917 folio_put(folio);
1918 }
1919
1920 /*
1921 * SGP_READ: succeed on hole, with NULL folio, letting caller zero.
1922 * SGP_NOALLOC: fail on hole, with NULL folio, letting caller fail.
1923 */
1924 *foliop = NULL;
1925 if (sgp == SGP_READ)
1926 return 0;
1927 if (sgp == SGP_NOALLOC)
1928 return -ENOENT;
1929
1930 /*
1931 * Fast cache lookup and swap lookup did not find it: allocate.
1932 */
1933
1934 if (vma && userfaultfd_missing(vma)) {
1935 *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1936 return 0;
1937 }
1938
1939 if (!shmem_is_huge(inode, index, false,
1940 vma ? vma->vm_mm : NULL, vma ? vma->vm_flags : 0))
1941 goto alloc_nohuge;
1942
1943 huge_gfp = vma_thp_gfp_mask(vma);
1944 huge_gfp = limit_gfp_mask(huge_gfp, gfp);
1945 folio = shmem_alloc_and_acct_folio(huge_gfp, inode, index, true);
1946 if (IS_ERR(folio)) {
1947alloc_nohuge:
1948 folio = shmem_alloc_and_acct_folio(gfp, inode, index, false);
1949 }
1950 if (IS_ERR(folio)) {
1951 int retry = 5;
1952
1953 error = PTR_ERR(folio);
1954 folio = NULL;
1955 if (error != -ENOSPC)
1956 goto unlock;
1957 /*
1958 * Try to reclaim some space by splitting a large folio
1959 * beyond i_size on the filesystem.
1960 */
1961 while (retry--) {
1962 int ret;
1963
1964 ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1965 if (ret == SHRINK_STOP)
1966 break;
1967 if (ret)
1968 goto alloc_nohuge;
1969 }
1970 goto unlock;
1971 }
1972
1973 hindex = round_down(index, folio_nr_pages(folio));
1974
1975 if (sgp == SGP_WRITE)
1976 __folio_set_referenced(folio);
1977
1978 error = shmem_add_to_page_cache(folio, mapping, hindex,
1979 NULL, gfp & GFP_RECLAIM_MASK,
1980 charge_mm);
1981 if (error)
1982 goto unacct;
1983 folio_add_lru(folio);
1984
1985 spin_lock_irq(&info->lock);
1986 info->alloced += folio_nr_pages(folio);
1987 inode->i_blocks += (blkcnt_t)BLOCKS_PER_PAGE << folio_order(folio);
1988 shmem_recalc_inode(inode);
1989 spin_unlock_irq(&info->lock);
1990 alloced = true;
1991
1992 if (folio_test_pmd_mappable(folio) &&
1993 DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1994 folio_next_index(folio) - 1) {
1995 /*
1996 * Part of the large folio is beyond i_size: subject
1997 * to shrink under memory pressure.
1998 */
1999 spin_lock(&sbinfo->shrinklist_lock);
2000 /*
2001 * _careful to defend against unlocked access to
2002 * ->shrink_list in shmem_unused_huge_shrink()
2003 */
2004 if (list_empty_careful(&info->shrinklist)) {
2005 list_add_tail(&info->shrinklist,
2006 &sbinfo->shrinklist);
2007 sbinfo->shrinklist_len++;
2008 }
2009 spin_unlock(&sbinfo->shrinklist_lock);
2010 }
2011
2012 /*
2013 * Let SGP_FALLOC use the SGP_WRITE optimization on a new folio.
2014 */
2015 if (sgp == SGP_FALLOC)
2016 sgp = SGP_WRITE;
2017clear:
2018 /*
2019 * Let SGP_WRITE caller clear ends if write does not fill folio;
2020 * but SGP_FALLOC on a folio fallocated earlier must initialize
2021 * it now, lest undo on failure cancel our earlier guarantee.
2022 */
2023 if (sgp != SGP_WRITE && !folio_test_uptodate(folio)) {
2024 long i, n = folio_nr_pages(folio);
2025
2026 for (i = 0; i < n; i++)
2027 clear_highpage(folio_page(folio, i));
2028 flush_dcache_folio(folio);
2029 folio_mark_uptodate(folio);
2030 }
2031
2032 /* Perhaps the file has been truncated since we checked */
2033 if (sgp <= SGP_CACHE &&
2034 ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
2035 if (alloced) {
2036 folio_clear_dirty(folio);
2037 filemap_remove_folio(folio);
2038 spin_lock_irq(&info->lock);
2039 shmem_recalc_inode(inode);
2040 spin_unlock_irq(&info->lock);
2041 }
2042 error = -EINVAL;
2043 goto unlock;
2044 }
2045out:
2046 *foliop = folio;
2047 return 0;
2048
2049 /*
2050 * Error recovery.
2051 */
2052unacct:
2053 shmem_inode_unacct_blocks(inode, folio_nr_pages(folio));
2054
2055 if (folio_test_large(folio)) {
2056 folio_unlock(folio);
2057 folio_put(folio);
2058 goto alloc_nohuge;
2059 }
2060unlock:
2061 if (folio) {
2062 folio_unlock(folio);
2063 folio_put(folio);
2064 }
2065 if (error == -ENOSPC && !once++) {
2066 spin_lock_irq(&info->lock);
2067 shmem_recalc_inode(inode);
2068 spin_unlock_irq(&info->lock);
2069 goto repeat;
2070 }
2071 if (error == -EEXIST)
2072 goto repeat;
2073 return error;
2074}
2075
2076int shmem_get_folio(struct inode *inode, pgoff_t index, struct folio **foliop,
2077 enum sgp_type sgp)
2078{
2079 return shmem_get_folio_gfp(inode, index, foliop, sgp,
2080 mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
2081}
2082
2083/*
2084 * This is like autoremove_wake_function, but it removes the wait queue
2085 * entry unconditionally - even if something else had already woken the
2086 * target.
2087 */
2088static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
2089{
2090 int ret = default_wake_function(wait, mode, sync, key);
2091 list_del_init(&wait->entry);
2092 return ret;
2093}
2094
2095static vm_fault_t shmem_fault(struct vm_fault *vmf)
2096{
2097 struct vm_area_struct *vma = vmf->vma;
2098 struct inode *inode = file_inode(vma->vm_file);
2099 gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
2100 struct folio *folio = NULL;
2101 int err;
2102 vm_fault_t ret = VM_FAULT_LOCKED;
2103
2104 /*
2105 * Trinity finds that probing a hole which tmpfs is punching can
2106 * prevent the hole-punch from ever completing: which in turn
2107 * locks writers out with its hold on i_rwsem. So refrain from
2108 * faulting pages into the hole while it's being punched. Although
2109 * shmem_undo_range() does remove the additions, it may be unable to
2110 * keep up, as each new page needs its own unmap_mapping_range() call,
2111 * and the i_mmap tree grows ever slower to scan if new vmas are added.
2112 *
2113 * It does not matter if we sometimes reach this check just before the
2114 * hole-punch begins, so that one fault then races with the punch:
2115 * we just need to make racing faults a rare case.
2116 *
2117 * The implementation below would be much simpler if we just used a
2118 * standard mutex or completion: but we cannot take i_rwsem in fault,
2119 * and bloating every shmem inode for this unlikely case would be sad.
2120 */
2121 if (unlikely(inode->i_private)) {
2122 struct shmem_falloc *shmem_falloc;
2123
2124 spin_lock(&inode->i_lock);
2125 shmem_falloc = inode->i_private;
2126 if (shmem_falloc &&
2127 shmem_falloc->waitq &&
2128 vmf->pgoff >= shmem_falloc->start &&
2129 vmf->pgoff < shmem_falloc->next) {
2130 struct file *fpin;
2131 wait_queue_head_t *shmem_falloc_waitq;
2132 DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
2133
2134 ret = VM_FAULT_NOPAGE;
2135 fpin = maybe_unlock_mmap_for_io(vmf, NULL);
2136 if (fpin)
2137 ret = VM_FAULT_RETRY;
2138
2139 shmem_falloc_waitq = shmem_falloc->waitq;
2140 prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
2141 TASK_UNINTERRUPTIBLE);
2142 spin_unlock(&inode->i_lock);
2143 schedule();
2144
2145 /*
2146 * shmem_falloc_waitq points into the shmem_fallocate()
2147 * stack of the hole-punching task: shmem_falloc_waitq
2148 * is usually invalid by the time we reach here, but
2149 * finish_wait() does not dereference it in that case;
2150 * though i_lock needed lest racing with wake_up_all().
2151 */
2152 spin_lock(&inode->i_lock);
2153 finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2154 spin_unlock(&inode->i_lock);
2155
2156 if (fpin)
2157 fput(fpin);
2158 return ret;
2159 }
2160 spin_unlock(&inode->i_lock);
2161 }
2162
2163 err = shmem_get_folio_gfp(inode, vmf->pgoff, &folio, SGP_CACHE,
2164 gfp, vma, vmf, &ret);
2165 if (err)
2166 return vmf_error(err);
2167 if (folio)
2168 vmf->page = folio_file_page(folio, vmf->pgoff);
2169 return ret;
2170}
2171
2172unsigned long shmem_get_unmapped_area(struct file *file,
2173 unsigned long uaddr, unsigned long len,
2174 unsigned long pgoff, unsigned long flags)
2175{
2176 unsigned long (*get_area)(struct file *,
2177 unsigned long, unsigned long, unsigned long, unsigned long);
2178 unsigned long addr;
2179 unsigned long offset;
2180 unsigned long inflated_len;
2181 unsigned long inflated_addr;
2182 unsigned long inflated_offset;
2183
2184 if (len > TASK_SIZE)
2185 return -ENOMEM;
2186
2187 get_area = current->mm->get_unmapped_area;
2188 addr = get_area(file, uaddr, len, pgoff, flags);
2189
2190 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
2191 return addr;
2192 if (IS_ERR_VALUE(addr))
2193 return addr;
2194 if (addr & ~PAGE_MASK)
2195 return addr;
2196 if (addr > TASK_SIZE - len)
2197 return addr;
2198
2199 if (shmem_huge == SHMEM_HUGE_DENY)
2200 return addr;
2201 if (len < HPAGE_PMD_SIZE)
2202 return addr;
2203 if (flags & MAP_FIXED)
2204 return addr;
2205 /*
2206 * Our priority is to support MAP_SHARED mapped hugely;
2207 * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2208 * But if caller specified an address hint and we allocated area there
2209 * successfully, respect that as before.
2210 */
2211 if (uaddr == addr)
2212 return addr;
2213
2214 if (shmem_huge != SHMEM_HUGE_FORCE) {
2215 struct super_block *sb;
2216
2217 if (file) {
2218 VM_BUG_ON(file->f_op != &shmem_file_operations);
2219 sb = file_inode(file)->i_sb;
2220 } else {
2221 /*
2222 * Called directly from mm/mmap.c, or drivers/char/mem.c
2223 * for "/dev/zero", to create a shared anonymous object.
2224 */
2225 if (IS_ERR(shm_mnt))
2226 return addr;
2227 sb = shm_mnt->mnt_sb;
2228 }
2229 if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2230 return addr;
2231 }
2232
2233 offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2234 if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2235 return addr;
2236 if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2237 return addr;
2238
2239 inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2240 if (inflated_len > TASK_SIZE)
2241 return addr;
2242 if (inflated_len < len)
2243 return addr;
2244
2245 inflated_addr = get_area(NULL, uaddr, inflated_len, 0, flags);
2246 if (IS_ERR_VALUE(inflated_addr))
2247 return addr;
2248 if (inflated_addr & ~PAGE_MASK)
2249 return addr;
2250
2251 inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2252 inflated_addr += offset - inflated_offset;
2253 if (inflated_offset > offset)
2254 inflated_addr += HPAGE_PMD_SIZE;
2255
2256 if (inflated_addr > TASK_SIZE - len)
2257 return addr;
2258 return inflated_addr;
2259}
2260
2261#ifdef CONFIG_NUMA
2262static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2263{
2264 struct inode *inode = file_inode(vma->vm_file);
2265 return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2266}
2267
2268static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2269 unsigned long addr)
2270{
2271 struct inode *inode = file_inode(vma->vm_file);
2272 pgoff_t index;
2273
2274 index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2275 return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2276}
2277#endif
2278
2279int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
2280{
2281 struct inode *inode = file_inode(file);
2282 struct shmem_inode_info *info = SHMEM_I(inode);
2283 int retval = -ENOMEM;
2284
2285 /*
2286 * What serializes the accesses to info->flags?
2287 * ipc_lock_object() when called from shmctl_do_lock(),
2288 * no serialization needed when called from shm_destroy().
2289 */
2290 if (lock && !(info->flags & VM_LOCKED)) {
2291 if (!user_shm_lock(inode->i_size, ucounts))
2292 goto out_nomem;
2293 info->flags |= VM_LOCKED;
2294 mapping_set_unevictable(file->f_mapping);
2295 }
2296 if (!lock && (info->flags & VM_LOCKED) && ucounts) {
2297 user_shm_unlock(inode->i_size, ucounts);
2298 info->flags &= ~VM_LOCKED;
2299 mapping_clear_unevictable(file->f_mapping);
2300 }
2301 retval = 0;
2302
2303out_nomem:
2304 return retval;
2305}
2306
2307static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2308{
2309 struct inode *inode = file_inode(file);
2310 struct shmem_inode_info *info = SHMEM_I(inode);
2311 int ret;
2312
2313 ret = seal_check_future_write(info->seals, vma);
2314 if (ret)
2315 return ret;
2316
2317 /* arm64 - allow memory tagging on RAM-based files */
2318 vm_flags_set(vma, VM_MTE_ALLOWED);
2319
2320 file_accessed(file);
2321 /* This is anonymous shared memory if it is unlinked at the time of mmap */
2322 if (inode->i_nlink)
2323 vma->vm_ops = &shmem_vm_ops;
2324 else
2325 vma->vm_ops = &shmem_anon_vm_ops;
2326 return 0;
2327}
2328
2329#ifdef CONFIG_TMPFS_XATTR
2330static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2331
2332/*
2333 * chattr's fsflags are unrelated to extended attributes,
2334 * but tmpfs has chosen to enable them under the same config option.
2335 */
2336static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2337{
2338 unsigned int i_flags = 0;
2339
2340 if (fsflags & FS_NOATIME_FL)
2341 i_flags |= S_NOATIME;
2342 if (fsflags & FS_APPEND_FL)
2343 i_flags |= S_APPEND;
2344 if (fsflags & FS_IMMUTABLE_FL)
2345 i_flags |= S_IMMUTABLE;
2346 /*
2347 * But FS_NODUMP_FL does not require any action in i_flags.
2348 */
2349 inode_set_flags(inode, i_flags, S_NOATIME | S_APPEND | S_IMMUTABLE);
2350}
2351#else
2352static void shmem_set_inode_flags(struct inode *inode, unsigned int fsflags)
2353{
2354}
2355#define shmem_initxattrs NULL
2356#endif
2357
2358static struct inode *shmem_get_inode(struct mnt_idmap *idmap, struct super_block *sb,
2359 struct inode *dir, umode_t mode, dev_t dev,
2360 unsigned long flags)
2361{
2362 struct inode *inode;
2363 struct shmem_inode_info *info;
2364 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2365 ino_t ino;
2366
2367 if (shmem_reserve_inode(sb, &ino))
2368 return NULL;
2369
2370 inode = new_inode(sb);
2371 if (inode) {
2372 inode->i_ino = ino;
2373 inode_init_owner(idmap, inode, dir, mode);
2374 inode->i_blocks = 0;
2375 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2376 inode->i_generation = get_random_u32();
2377 info = SHMEM_I(inode);
2378 memset(info, 0, (char *)inode - (char *)info);
2379 spin_lock_init(&info->lock);
2380 atomic_set(&info->stop_eviction, 0);
2381 info->seals = F_SEAL_SEAL;
2382 info->flags = flags & VM_NORESERVE;
2383 info->i_crtime = inode->i_mtime;
2384 info->fsflags = (dir == NULL) ? 0 :
2385 SHMEM_I(dir)->fsflags & SHMEM_FL_INHERITED;
2386 if (info->fsflags)
2387 shmem_set_inode_flags(inode, info->fsflags);
2388 INIT_LIST_HEAD(&info->shrinklist);
2389 INIT_LIST_HEAD(&info->swaplist);
2390 if (sbinfo->noswap)
2391 mapping_set_unevictable(inode->i_mapping);
2392 simple_xattrs_init(&info->xattrs);
2393 cache_no_acl(inode);
2394 mapping_set_large_folios(inode->i_mapping);
2395
2396 switch (mode & S_IFMT) {
2397 default:
2398 inode->i_op = &shmem_special_inode_operations;
2399 init_special_inode(inode, mode, dev);
2400 break;
2401 case S_IFREG:
2402 inode->i_mapping->a_ops = &shmem_aops;
2403 inode->i_op = &shmem_inode_operations;
2404 inode->i_fop = &shmem_file_operations;
2405 mpol_shared_policy_init(&info->policy,
2406 shmem_get_sbmpol(sbinfo));
2407 break;
2408 case S_IFDIR:
2409 inc_nlink(inode);
2410 /* Some things misbehave if size == 0 on a directory */
2411 inode->i_size = 2 * BOGO_DIRENT_SIZE;
2412 inode->i_op = &shmem_dir_inode_operations;
2413 inode->i_fop = &simple_dir_operations;
2414 break;
2415 case S_IFLNK:
2416 /*
2417 * Must not load anything in the rbtree,
2418 * mpol_free_shared_policy will not be called.
2419 */
2420 mpol_shared_policy_init(&info->policy, NULL);
2421 break;
2422 }
2423
2424 lockdep_annotate_inode_mutex_key(inode);
2425 } else
2426 shmem_free_inode(sb);
2427 return inode;
2428}
2429
2430#ifdef CONFIG_USERFAULTFD
2431int shmem_mfill_atomic_pte(pmd_t *dst_pmd,
2432 struct vm_area_struct *dst_vma,
2433 unsigned long dst_addr,
2434 unsigned long src_addr,
2435 uffd_flags_t flags,
2436 struct folio **foliop)
2437{
2438 struct inode *inode = file_inode(dst_vma->vm_file);
2439 struct shmem_inode_info *info = SHMEM_I(inode);
2440 struct address_space *mapping = inode->i_mapping;
2441 gfp_t gfp = mapping_gfp_mask(mapping);
2442 pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2443 void *page_kaddr;
2444 struct folio *folio;
2445 int ret;
2446 pgoff_t max_off;
2447
2448 if (!shmem_inode_acct_block(inode, 1)) {
2449 /*
2450 * We may have got a page, returned -ENOENT triggering a retry,
2451 * and now we find ourselves with -ENOMEM. Release the page, to
2452 * avoid a BUG_ON in our caller.
2453 */
2454 if (unlikely(*foliop)) {
2455 folio_put(*foliop);
2456 *foliop = NULL;
2457 }
2458 return -ENOMEM;
2459 }
2460
2461 if (!*foliop) {
2462 ret = -ENOMEM;
2463 folio = shmem_alloc_folio(gfp, info, pgoff);
2464 if (!folio)
2465 goto out_unacct_blocks;
2466
2467 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_COPY)) {
2468 page_kaddr = kmap_local_folio(folio, 0);
2469 /*
2470 * The read mmap_lock is held here. Despite the
2471 * mmap_lock being read recursive a deadlock is still
2472 * possible if a writer has taken a lock. For example:
2473 *
2474 * process A thread 1 takes read lock on own mmap_lock
2475 * process A thread 2 calls mmap, blocks taking write lock
2476 * process B thread 1 takes page fault, read lock on own mmap lock
2477 * process B thread 2 calls mmap, blocks taking write lock
2478 * process A thread 1 blocks taking read lock on process B
2479 * process B thread 1 blocks taking read lock on process A
2480 *
2481 * Disable page faults to prevent potential deadlock
2482 * and retry the copy outside the mmap_lock.
2483 */
2484 pagefault_disable();
2485 ret = copy_from_user(page_kaddr,
2486 (const void __user *)src_addr,
2487 PAGE_SIZE);
2488 pagefault_enable();
2489 kunmap_local(page_kaddr);
2490
2491 /* fallback to copy_from_user outside mmap_lock */
2492 if (unlikely(ret)) {
2493 *foliop = folio;
2494 ret = -ENOENT;
2495 /* don't free the page */
2496 goto out_unacct_blocks;
2497 }
2498
2499 flush_dcache_folio(folio);
2500 } else { /* ZEROPAGE */
2501 clear_user_highpage(&folio->page, dst_addr);
2502 }
2503 } else {
2504 folio = *foliop;
2505 VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2506 *foliop = NULL;
2507 }
2508
2509 VM_BUG_ON(folio_test_locked(folio));
2510 VM_BUG_ON(folio_test_swapbacked(folio));
2511 __folio_set_locked(folio);
2512 __folio_set_swapbacked(folio);
2513 __folio_mark_uptodate(folio);
2514
2515 ret = -EFAULT;
2516 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2517 if (unlikely(pgoff >= max_off))
2518 goto out_release;
2519
2520 ret = shmem_add_to_page_cache(folio, mapping, pgoff, NULL,
2521 gfp & GFP_RECLAIM_MASK, dst_vma->vm_mm);
2522 if (ret)
2523 goto out_release;
2524
2525 ret = mfill_atomic_install_pte(dst_pmd, dst_vma, dst_addr,
2526 &folio->page, true, flags);
2527 if (ret)
2528 goto out_delete_from_cache;
2529
2530 spin_lock_irq(&info->lock);
2531 info->alloced++;
2532 inode->i_blocks += BLOCKS_PER_PAGE;
2533 shmem_recalc_inode(inode);
2534 spin_unlock_irq(&info->lock);
2535
2536 folio_unlock(folio);
2537 return 0;
2538out_delete_from_cache:
2539 filemap_remove_folio(folio);
2540out_release:
2541 folio_unlock(folio);
2542 folio_put(folio);
2543out_unacct_blocks:
2544 shmem_inode_unacct_blocks(inode, 1);
2545 return ret;
2546}
2547#endif /* CONFIG_USERFAULTFD */
2548
2549#ifdef CONFIG_TMPFS
2550static const struct inode_operations shmem_symlink_inode_operations;
2551static const struct inode_operations shmem_short_symlink_operations;
2552
2553static int
2554shmem_write_begin(struct file *file, struct address_space *mapping,
2555 loff_t pos, unsigned len,
2556 struct page **pagep, void **fsdata)
2557{
2558 struct inode *inode = mapping->host;
2559 struct shmem_inode_info *info = SHMEM_I(inode);
2560 pgoff_t index = pos >> PAGE_SHIFT;
2561 struct folio *folio;
2562 int ret = 0;
2563
2564 /* i_rwsem is held by caller */
2565 if (unlikely(info->seals & (F_SEAL_GROW |
2566 F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))) {
2567 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE))
2568 return -EPERM;
2569 if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2570 return -EPERM;
2571 }
2572
2573 ret = shmem_get_folio(inode, index, &folio, SGP_WRITE);
2574
2575 if (ret)
2576 return ret;
2577
2578 *pagep = folio_file_page(folio, index);
2579 if (PageHWPoison(*pagep)) {
2580 folio_unlock(folio);
2581 folio_put(folio);
2582 *pagep = NULL;
2583 return -EIO;
2584 }
2585
2586 return 0;
2587}
2588
2589static int
2590shmem_write_end(struct file *file, struct address_space *mapping,
2591 loff_t pos, unsigned len, unsigned copied,
2592 struct page *page, void *fsdata)
2593{
2594 struct folio *folio = page_folio(page);
2595 struct inode *inode = mapping->host;
2596
2597 if (pos + copied > inode->i_size)
2598 i_size_write(inode, pos + copied);
2599
2600 if (!folio_test_uptodate(folio)) {
2601 if (copied < folio_size(folio)) {
2602 size_t from = offset_in_folio(folio, pos);
2603 folio_zero_segments(folio, 0, from,
2604 from + copied, folio_size(folio));
2605 }
2606 folio_mark_uptodate(folio);
2607 }
2608 folio_mark_dirty(folio);
2609 folio_unlock(folio);
2610 folio_put(folio);
2611
2612 return copied;
2613}
2614
2615static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2616{
2617 struct file *file = iocb->ki_filp;
2618 struct inode *inode = file_inode(file);
2619 struct address_space *mapping = inode->i_mapping;
2620 pgoff_t index;
2621 unsigned long offset;
2622 int error = 0;
2623 ssize_t retval = 0;
2624 loff_t *ppos = &iocb->ki_pos;
2625
2626 index = *ppos >> PAGE_SHIFT;
2627 offset = *ppos & ~PAGE_MASK;
2628
2629 for (;;) {
2630 struct folio *folio = NULL;
2631 struct page *page = NULL;
2632 pgoff_t end_index;
2633 unsigned long nr, ret;
2634 loff_t i_size = i_size_read(inode);
2635
2636 end_index = i_size >> PAGE_SHIFT;
2637 if (index > end_index)
2638 break;
2639 if (index == end_index) {
2640 nr = i_size & ~PAGE_MASK;
2641 if (nr <= offset)
2642 break;
2643 }
2644
2645 error = shmem_get_folio(inode, index, &folio, SGP_READ);
2646 if (error) {
2647 if (error == -EINVAL)
2648 error = 0;
2649 break;
2650 }
2651 if (folio) {
2652 folio_unlock(folio);
2653
2654 page = folio_file_page(folio, index);
2655 if (PageHWPoison(page)) {
2656 folio_put(folio);
2657 error = -EIO;
2658 break;
2659 }
2660 }
2661
2662 /*
2663 * We must evaluate after, since reads (unlike writes)
2664 * are called without i_rwsem protection against truncate
2665 */
2666 nr = PAGE_SIZE;
2667 i_size = i_size_read(inode);
2668 end_index = i_size >> PAGE_SHIFT;
2669 if (index == end_index) {
2670 nr = i_size & ~PAGE_MASK;
2671 if (nr <= offset) {
2672 if (folio)
2673 folio_put(folio);
2674 break;
2675 }
2676 }
2677 nr -= offset;
2678
2679 if (folio) {
2680 /*
2681 * If users can be writing to this page using arbitrary
2682 * virtual addresses, take care about potential aliasing
2683 * before reading the page on the kernel side.
2684 */
2685 if (mapping_writably_mapped(mapping))
2686 flush_dcache_page(page);
2687 /*
2688 * Mark the page accessed if we read the beginning.
2689 */
2690 if (!offset)
2691 folio_mark_accessed(folio);
2692 /*
2693 * Ok, we have the page, and it's up-to-date, so
2694 * now we can copy it to user space...
2695 */
2696 ret = copy_page_to_iter(page, offset, nr, to);
2697 folio_put(folio);
2698
2699 } else if (user_backed_iter(to)) {
2700 /*
2701 * Copy to user tends to be so well optimized, but
2702 * clear_user() not so much, that it is noticeably
2703 * faster to copy the zero page instead of clearing.
2704 */
2705 ret = copy_page_to_iter(ZERO_PAGE(0), offset, nr, to);
2706 } else {
2707 /*
2708 * But submitting the same page twice in a row to
2709 * splice() - or others? - can result in confusion:
2710 * so don't attempt that optimization on pipes etc.
2711 */
2712 ret = iov_iter_zero(nr, to);
2713 }
2714
2715 retval += ret;
2716 offset += ret;
2717 index += offset >> PAGE_SHIFT;
2718 offset &= ~PAGE_MASK;
2719
2720 if (!iov_iter_count(to))
2721 break;
2722 if (ret < nr) {
2723 error = -EFAULT;
2724 break;
2725 }
2726 cond_resched();
2727 }
2728
2729 *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2730 file_accessed(file);
2731 return retval ? retval : error;
2732}
2733
2734static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2735{
2736 struct address_space *mapping = file->f_mapping;
2737 struct inode *inode = mapping->host;
2738
2739 if (whence != SEEK_DATA && whence != SEEK_HOLE)
2740 return generic_file_llseek_size(file, offset, whence,
2741 MAX_LFS_FILESIZE, i_size_read(inode));
2742 if (offset < 0)
2743 return -ENXIO;
2744
2745 inode_lock(inode);
2746 /* We're holding i_rwsem so we can access i_size directly */
2747 offset = mapping_seek_hole_data(mapping, offset, inode->i_size, whence);
2748 if (offset >= 0)
2749 offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2750 inode_unlock(inode);
2751 return offset;
2752}
2753
2754static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2755 loff_t len)
2756{
2757 struct inode *inode = file_inode(file);
2758 struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2759 struct shmem_inode_info *info = SHMEM_I(inode);
2760 struct shmem_falloc shmem_falloc;
2761 pgoff_t start, index, end, undo_fallocend;
2762 int error;
2763
2764 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2765 return -EOPNOTSUPP;
2766
2767 inode_lock(inode);
2768
2769 if (mode & FALLOC_FL_PUNCH_HOLE) {
2770 struct address_space *mapping = file->f_mapping;
2771 loff_t unmap_start = round_up(offset, PAGE_SIZE);
2772 loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2773 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2774
2775 /* protected by i_rwsem */
2776 if (info->seals & (F_SEAL_WRITE | F_SEAL_FUTURE_WRITE)) {
2777 error = -EPERM;
2778 goto out;
2779 }
2780
2781 shmem_falloc.waitq = &shmem_falloc_waitq;
2782 shmem_falloc.start = (u64)unmap_start >> PAGE_SHIFT;
2783 shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2784 spin_lock(&inode->i_lock);
2785 inode->i_private = &shmem_falloc;
2786 spin_unlock(&inode->i_lock);
2787
2788 if ((u64)unmap_end > (u64)unmap_start)
2789 unmap_mapping_range(mapping, unmap_start,
2790 1 + unmap_end - unmap_start, 0);
2791 shmem_truncate_range(inode, offset, offset + len - 1);
2792 /* No need to unmap again: hole-punching leaves COWed pages */
2793
2794 spin_lock(&inode->i_lock);
2795 inode->i_private = NULL;
2796 wake_up_all(&shmem_falloc_waitq);
2797 WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2798 spin_unlock(&inode->i_lock);
2799 error = 0;
2800 goto out;
2801 }
2802
2803 /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2804 error = inode_newsize_ok(inode, offset + len);
2805 if (error)
2806 goto out;
2807
2808 if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2809 error = -EPERM;
2810 goto out;
2811 }
2812
2813 start = offset >> PAGE_SHIFT;
2814 end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2815 /* Try to avoid a swapstorm if len is impossible to satisfy */
2816 if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2817 error = -ENOSPC;
2818 goto out;
2819 }
2820
2821 shmem_falloc.waitq = NULL;
2822 shmem_falloc.start = start;
2823 shmem_falloc.next = start;
2824 shmem_falloc.nr_falloced = 0;
2825 shmem_falloc.nr_unswapped = 0;
2826 spin_lock(&inode->i_lock);
2827 inode->i_private = &shmem_falloc;
2828 spin_unlock(&inode->i_lock);
2829
2830 /*
2831 * info->fallocend is only relevant when huge pages might be
2832 * involved: to prevent split_huge_page() freeing fallocated
2833 * pages when FALLOC_FL_KEEP_SIZE committed beyond i_size.
2834 */
2835 undo_fallocend = info->fallocend;
2836 if (info->fallocend < end)
2837 info->fallocend = end;
2838
2839 for (index = start; index < end; ) {
2840 struct folio *folio;
2841
2842 /*
2843 * Good, the fallocate(2) manpage permits EINTR: we may have
2844 * been interrupted because we are using up too much memory.
2845 */
2846 if (signal_pending(current))
2847 error = -EINTR;
2848 else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2849 error = -ENOMEM;
2850 else
2851 error = shmem_get_folio(inode, index, &folio,
2852 SGP_FALLOC);
2853 if (error) {
2854 info->fallocend = undo_fallocend;
2855 /* Remove the !uptodate folios we added */
2856 if (index > start) {
2857 shmem_undo_range(inode,
2858 (loff_t)start << PAGE_SHIFT,
2859 ((loff_t)index << PAGE_SHIFT) - 1, true);
2860 }
2861 goto undone;
2862 }
2863
2864 /*
2865 * Here is a more important optimization than it appears:
2866 * a second SGP_FALLOC on the same large folio will clear it,
2867 * making it uptodate and un-undoable if we fail later.
2868 */
2869 index = folio_next_index(folio);
2870 /* Beware 32-bit wraparound */
2871 if (!index)
2872 index--;
2873
2874 /*
2875 * Inform shmem_writepage() how far we have reached.
2876 * No need for lock or barrier: we have the page lock.
2877 */
2878 if (!folio_test_uptodate(folio))
2879 shmem_falloc.nr_falloced += index - shmem_falloc.next;
2880 shmem_falloc.next = index;
2881
2882 /*
2883 * If !uptodate, leave it that way so that freeable folios
2884 * can be recognized if we need to rollback on error later.
2885 * But mark it dirty so that memory pressure will swap rather
2886 * than free the folios we are allocating (and SGP_CACHE folios
2887 * might still be clean: we now need to mark those dirty too).
2888 */
2889 folio_mark_dirty(folio);
2890 folio_unlock(folio);
2891 folio_put(folio);
2892 cond_resched();
2893 }
2894
2895 if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2896 i_size_write(inode, offset + len);
2897undone:
2898 spin_lock(&inode->i_lock);
2899 inode->i_private = NULL;
2900 spin_unlock(&inode->i_lock);
2901out:
2902 if (!error)
2903 file_modified(file);
2904 inode_unlock(inode);
2905 return error;
2906}
2907
2908static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2909{
2910 struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2911
2912 buf->f_type = TMPFS_MAGIC;
2913 buf->f_bsize = PAGE_SIZE;
2914 buf->f_namelen = NAME_MAX;
2915 if (sbinfo->max_blocks) {
2916 buf->f_blocks = sbinfo->max_blocks;
2917 buf->f_bavail =
2918 buf->f_bfree = sbinfo->max_blocks -
2919 percpu_counter_sum(&sbinfo->used_blocks);
2920 }
2921 if (sbinfo->max_inodes) {
2922 buf->f_files = sbinfo->max_inodes;
2923 buf->f_ffree = sbinfo->free_inodes;
2924 }
2925 /* else leave those fields 0 like simple_statfs */
2926
2927 buf->f_fsid = uuid_to_fsid(dentry->d_sb->s_uuid.b);
2928
2929 return 0;
2930}
2931
2932/*
2933 * File creation. Allocate an inode, and we're done..
2934 */
2935static int
2936shmem_mknod(struct mnt_idmap *idmap, struct inode *dir,
2937 struct dentry *dentry, umode_t mode, dev_t dev)
2938{
2939 struct inode *inode;
2940 int error = -ENOSPC;
2941
2942 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, dev, VM_NORESERVE);
2943 if (inode) {
2944 error = simple_acl_create(dir, inode);
2945 if (error)
2946 goto out_iput;
2947 error = security_inode_init_security(inode, dir,
2948 &dentry->d_name,
2949 shmem_initxattrs, NULL);
2950 if (error && error != -EOPNOTSUPP)
2951 goto out_iput;
2952
2953 error = 0;
2954 dir->i_size += BOGO_DIRENT_SIZE;
2955 dir->i_ctime = dir->i_mtime = current_time(dir);
2956 inode_inc_iversion(dir);
2957 d_instantiate(dentry, inode);
2958 dget(dentry); /* Extra count - pin the dentry in core */
2959 }
2960 return error;
2961out_iput:
2962 iput(inode);
2963 return error;
2964}
2965
2966static int
2967shmem_tmpfile(struct mnt_idmap *idmap, struct inode *dir,
2968 struct file *file, umode_t mode)
2969{
2970 struct inode *inode;
2971 int error = -ENOSPC;
2972
2973 inode = shmem_get_inode(idmap, dir->i_sb, dir, mode, 0, VM_NORESERVE);
2974 if (inode) {
2975 error = security_inode_init_security(inode, dir,
2976 NULL,
2977 shmem_initxattrs, NULL);
2978 if (error && error != -EOPNOTSUPP)
2979 goto out_iput;
2980 error = simple_acl_create(dir, inode);
2981 if (error)
2982 goto out_iput;
2983 d_tmpfile(file, inode);
2984 }
2985 return finish_open_simple(file, error);
2986out_iput:
2987 iput(inode);
2988 return error;
2989}
2990
2991static int shmem_mkdir(struct mnt_idmap *idmap, struct inode *dir,
2992 struct dentry *dentry, umode_t mode)
2993{
2994 int error;
2995
2996 error = shmem_mknod(idmap, dir, dentry, mode | S_IFDIR, 0);
2997 if (error)
2998 return error;
2999 inc_nlink(dir);
3000 return 0;
3001}
3002
3003static int shmem_create(struct mnt_idmap *idmap, struct inode *dir,
3004 struct dentry *dentry, umode_t mode, bool excl)
3005{
3006 return shmem_mknod(idmap, dir, dentry, mode | S_IFREG, 0);
3007}
3008
3009/*
3010 * Link a file..
3011 */
3012static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
3013{
3014 struct inode *inode = d_inode(old_dentry);
3015 int ret = 0;
3016
3017 /*
3018 * No ordinary (disk based) filesystem counts links as inodes;
3019 * but each new link needs a new dentry, pinning lowmem, and
3020 * tmpfs dentries cannot be pruned until they are unlinked.
3021 * But if an O_TMPFILE file is linked into the tmpfs, the
3022 * first link must skip that, to get the accounting right.
3023 */
3024 if (inode->i_nlink) {
3025 ret = shmem_reserve_inode(inode->i_sb, NULL);
3026 if (ret)
3027 goto out;
3028 }
3029
3030 dir->i_size += BOGO_DIRENT_SIZE;
3031 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3032 inode_inc_iversion(dir);
3033 inc_nlink(inode);
3034 ihold(inode); /* New dentry reference */
3035 dget(dentry); /* Extra pinning count for the created dentry */
3036 d_instantiate(dentry, inode);
3037out:
3038 return ret;
3039}
3040
3041static int shmem_unlink(struct inode *dir, struct dentry *dentry)
3042{
3043 struct inode *inode = d_inode(dentry);
3044
3045 if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
3046 shmem_free_inode(inode->i_sb);
3047
3048 dir->i_size -= BOGO_DIRENT_SIZE;
3049 inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
3050 inode_inc_iversion(dir);
3051 drop_nlink(inode);
3052 dput(dentry); /* Undo the count from "create" - this does all the work */
3053 return 0;
3054}
3055
3056static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
3057{
3058 if (!simple_empty(dentry))
3059 return -ENOTEMPTY;
3060
3061 drop_nlink(d_inode(dentry));
3062 drop_nlink(dir);
3063 return shmem_unlink(dir, dentry);
3064}
3065
3066static int shmem_whiteout(struct mnt_idmap *idmap,
3067 struct inode *old_dir, struct dentry *old_dentry)
3068{
3069 struct dentry *whiteout;
3070 int error;
3071
3072 whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
3073 if (!whiteout)
3074 return -ENOMEM;
3075
3076 error = shmem_mknod(idmap, old_dir, whiteout,
3077 S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
3078 dput(whiteout);
3079 if (error)
3080 return error;
3081
3082 /*
3083 * Cheat and hash the whiteout while the old dentry is still in
3084 * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
3085 *
3086 * d_lookup() will consistently find one of them at this point,
3087 * not sure which one, but that isn't even important.
3088 */
3089 d_rehash(whiteout);
3090 return 0;
3091}
3092
3093/*
3094 * The VFS layer already does all the dentry stuff for rename,
3095 * we just have to decrement the usage count for the target if
3096 * it exists so that the VFS layer correctly free's it when it
3097 * gets overwritten.
3098 */
3099static int shmem_rename2(struct mnt_idmap *idmap,
3100 struct inode *old_dir, struct dentry *old_dentry,
3101 struct inode *new_dir, struct dentry *new_dentry,
3102 unsigned int flags)
3103{
3104 struct inode *inode = d_inode(old_dentry);
3105 int they_are_dirs = S_ISDIR(inode->i_mode);
3106
3107 if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
3108 return -EINVAL;
3109
3110 if (flags & RENAME_EXCHANGE)
3111 return simple_rename_exchange(old_dir, old_dentry, new_dir, new_dentry);
3112
3113 if (!simple_empty(new_dentry))
3114 return -ENOTEMPTY;
3115
3116 if (flags & RENAME_WHITEOUT) {
3117 int error;
3118
3119 error = shmem_whiteout(idmap, old_dir, old_dentry);
3120 if (error)
3121 return error;
3122 }
3123
3124 if (d_really_is_positive(new_dentry)) {
3125 (void) shmem_unlink(new_dir, new_dentry);
3126 if (they_are_dirs) {
3127 drop_nlink(d_inode(new_dentry));
3128 drop_nlink(old_dir);
3129 }
3130 } else if (they_are_dirs) {
3131 drop_nlink(old_dir);
3132 inc_nlink(new_dir);
3133 }
3134
3135 old_dir->i_size -= BOGO_DIRENT_SIZE;
3136 new_dir->i_size += BOGO_DIRENT_SIZE;
3137 old_dir->i_ctime = old_dir->i_mtime =
3138 new_dir->i_ctime = new_dir->i_mtime =
3139 inode->i_ctime = current_time(old_dir);
3140 inode_inc_iversion(old_dir);
3141 inode_inc_iversion(new_dir);
3142 return 0;
3143}
3144
3145static int shmem_symlink(struct mnt_idmap *idmap, struct inode *dir,
3146 struct dentry *dentry, const char *symname)
3147{
3148 int error;
3149 int len;
3150 struct inode *inode;
3151 struct folio *folio;
3152
3153 len = strlen(symname) + 1;
3154 if (len > PAGE_SIZE)
3155 return -ENAMETOOLONG;
3156
3157 inode = shmem_get_inode(idmap, dir->i_sb, dir, S_IFLNK | 0777, 0,
3158 VM_NORESERVE);
3159 if (!inode)
3160 return -ENOSPC;
3161
3162 error = security_inode_init_security(inode, dir, &dentry->d_name,
3163 shmem_initxattrs, NULL);
3164 if (error && error != -EOPNOTSUPP) {
3165 iput(inode);
3166 return error;
3167 }
3168
3169 inode->i_size = len-1;
3170 if (len <= SHORT_SYMLINK_LEN) {
3171 inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3172 if (!inode->i_link) {
3173 iput(inode);
3174 return -ENOMEM;
3175 }
3176 inode->i_op = &shmem_short_symlink_operations;
3177 } else {
3178 inode_nohighmem(inode);
3179 error = shmem_get_folio(inode, 0, &folio, SGP_WRITE);
3180 if (error) {
3181 iput(inode);
3182 return error;
3183 }
3184 inode->i_mapping->a_ops = &shmem_aops;
3185 inode->i_op = &shmem_symlink_inode_operations;
3186 memcpy(folio_address(folio), symname, len);
3187 folio_mark_uptodate(folio);
3188 folio_mark_dirty(folio);
3189 folio_unlock(folio);
3190 folio_put(folio);
3191 }
3192 dir->i_size += BOGO_DIRENT_SIZE;
3193 dir->i_ctime = dir->i_mtime = current_time(dir);
3194 inode_inc_iversion(dir);
3195 d_instantiate(dentry, inode);
3196 dget(dentry);
3197 return 0;
3198}
3199
3200static void shmem_put_link(void *arg)
3201{
3202 folio_mark_accessed(arg);
3203 folio_put(arg);
3204}
3205
3206static const char *shmem_get_link(struct dentry *dentry,
3207 struct inode *inode,
3208 struct delayed_call *done)
3209{
3210 struct folio *folio = NULL;
3211 int error;
3212
3213 if (!dentry) {
3214 folio = filemap_get_folio(inode->i_mapping, 0);
3215 if (IS_ERR(folio))
3216 return ERR_PTR(-ECHILD);
3217 if (PageHWPoison(folio_page(folio, 0)) ||
3218 !folio_test_uptodate(folio)) {
3219 folio_put(folio);
3220 return ERR_PTR(-ECHILD);
3221 }
3222 } else {
3223 error = shmem_get_folio(inode, 0, &folio, SGP_READ);
3224 if (error)
3225 return ERR_PTR(error);
3226 if (!folio)
3227 return ERR_PTR(-ECHILD);
3228 if (PageHWPoison(folio_page(folio, 0))) {
3229 folio_unlock(folio);
3230 folio_put(folio);
3231 return ERR_PTR(-ECHILD);
3232 }
3233 folio_unlock(folio);
3234 }
3235 set_delayed_call(done, shmem_put_link, folio);
3236 return folio_address(folio);
3237}
3238
3239#ifdef CONFIG_TMPFS_XATTR
3240
3241static int shmem_fileattr_get(struct dentry *dentry, struct fileattr *fa)
3242{
3243 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3244
3245 fileattr_fill_flags(fa, info->fsflags & SHMEM_FL_USER_VISIBLE);
3246
3247 return 0;
3248}
3249
3250static int shmem_fileattr_set(struct mnt_idmap *idmap,
3251 struct dentry *dentry, struct fileattr *fa)
3252{
3253 struct inode *inode = d_inode(dentry);
3254 struct shmem_inode_info *info = SHMEM_I(inode);
3255
3256 if (fileattr_has_fsx(fa))
3257 return -EOPNOTSUPP;
3258 if (fa->flags & ~SHMEM_FL_USER_MODIFIABLE)
3259 return -EOPNOTSUPP;
3260
3261 info->fsflags = (info->fsflags & ~SHMEM_FL_USER_MODIFIABLE) |
3262 (fa->flags & SHMEM_FL_USER_MODIFIABLE);
3263
3264 shmem_set_inode_flags(inode, info->fsflags);
3265 inode->i_ctime = current_time(inode);
3266 inode_inc_iversion(inode);
3267 return 0;
3268}
3269
3270/*
3271 * Superblocks without xattr inode operations may get some security.* xattr
3272 * support from the LSM "for free". As soon as we have any other xattrs
3273 * like ACLs, we also need to implement the security.* handlers at
3274 * filesystem level, though.
3275 */
3276
3277/*
3278 * Callback for security_inode_init_security() for acquiring xattrs.
3279 */
3280static int shmem_initxattrs(struct inode *inode,
3281 const struct xattr *xattr_array,
3282 void *fs_info)
3283{
3284 struct shmem_inode_info *info = SHMEM_I(inode);
3285 const struct xattr *xattr;
3286 struct simple_xattr *new_xattr;
3287 size_t len;
3288
3289 for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3290 new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3291 if (!new_xattr)
3292 return -ENOMEM;
3293
3294 len = strlen(xattr->name) + 1;
3295 new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3296 GFP_KERNEL);
3297 if (!new_xattr->name) {
3298 kvfree(new_xattr);
3299 return -ENOMEM;
3300 }
3301
3302 memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3303 XATTR_SECURITY_PREFIX_LEN);
3304 memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3305 xattr->name, len);
3306
3307 simple_xattr_add(&info->xattrs, new_xattr);
3308 }
3309
3310 return 0;
3311}
3312
3313static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3314 struct dentry *unused, struct inode *inode,
3315 const char *name, void *buffer, size_t size)
3316{
3317 struct shmem_inode_info *info = SHMEM_I(inode);
3318
3319 name = xattr_full_name(handler, name);
3320 return simple_xattr_get(&info->xattrs, name, buffer, size);
3321}
3322
3323static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3324 struct mnt_idmap *idmap,
3325 struct dentry *unused, struct inode *inode,
3326 const char *name, const void *value,
3327 size_t size, int flags)
3328{
3329 struct shmem_inode_info *info = SHMEM_I(inode);
3330 int err;
3331
3332 name = xattr_full_name(handler, name);
3333 err = simple_xattr_set(&info->xattrs, name, value, size, flags, NULL);
3334 if (!err) {
3335 inode->i_ctime = current_time(inode);
3336 inode_inc_iversion(inode);
3337 }
3338 return err;
3339}
3340
3341static const struct xattr_handler shmem_security_xattr_handler = {
3342 .prefix = XATTR_SECURITY_PREFIX,
3343 .get = shmem_xattr_handler_get,
3344 .set = shmem_xattr_handler_set,
3345};
3346
3347static const struct xattr_handler shmem_trusted_xattr_handler = {
3348 .prefix = XATTR_TRUSTED_PREFIX,
3349 .get = shmem_xattr_handler_get,
3350 .set = shmem_xattr_handler_set,
3351};
3352
3353static const struct xattr_handler *shmem_xattr_handlers[] = {
3354 &shmem_security_xattr_handler,
3355 &shmem_trusted_xattr_handler,
3356 NULL
3357};
3358
3359static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3360{
3361 struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3362 return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3363}
3364#endif /* CONFIG_TMPFS_XATTR */
3365
3366static const struct inode_operations shmem_short_symlink_operations = {
3367 .getattr = shmem_getattr,
3368 .get_link = simple_get_link,
3369#ifdef CONFIG_TMPFS_XATTR
3370 .listxattr = shmem_listxattr,
3371#endif
3372};
3373
3374static const struct inode_operations shmem_symlink_inode_operations = {
3375 .getattr = shmem_getattr,
3376 .get_link = shmem_get_link,
3377#ifdef CONFIG_TMPFS_XATTR
3378 .listxattr = shmem_listxattr,
3379#endif
3380};
3381
3382static struct dentry *shmem_get_parent(struct dentry *child)
3383{
3384 return ERR_PTR(-ESTALE);
3385}
3386
3387static int shmem_match(struct inode *ino, void *vfh)
3388{
3389 __u32 *fh = vfh;
3390 __u64 inum = fh[2];
3391 inum = (inum << 32) | fh[1];
3392 return ino->i_ino == inum && fh[0] == ino->i_generation;
3393}
3394
3395/* Find any alias of inode, but prefer a hashed alias */
3396static struct dentry *shmem_find_alias(struct inode *inode)
3397{
3398 struct dentry *alias = d_find_alias(inode);
3399
3400 return alias ?: d_find_any_alias(inode);
3401}
3402
3403
3404static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3405 struct fid *fid, int fh_len, int fh_type)
3406{
3407 struct inode *inode;
3408 struct dentry *dentry = NULL;
3409 u64 inum;
3410
3411 if (fh_len < 3)
3412 return NULL;
3413
3414 inum = fid->raw[2];
3415 inum = (inum << 32) | fid->raw[1];
3416
3417 inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3418 shmem_match, fid->raw);
3419 if (inode) {
3420 dentry = shmem_find_alias(inode);
3421 iput(inode);
3422 }
3423
3424 return dentry;
3425}
3426
3427static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3428 struct inode *parent)
3429{
3430 if (*len < 3) {
3431 *len = 3;
3432 return FILEID_INVALID;
3433 }
3434
3435 if (inode_unhashed(inode)) {
3436 /* Unfortunately insert_inode_hash is not idempotent,
3437 * so as we hash inodes here rather than at creation
3438 * time, we need a lock to ensure we only try
3439 * to do it once
3440 */
3441 static DEFINE_SPINLOCK(lock);
3442 spin_lock(&lock);
3443 if (inode_unhashed(inode))
3444 __insert_inode_hash(inode,
3445 inode->i_ino + inode->i_generation);
3446 spin_unlock(&lock);
3447 }
3448
3449 fh[0] = inode->i_generation;
3450 fh[1] = inode->i_ino;
3451 fh[2] = ((__u64)inode->i_ino) >> 32;
3452
3453 *len = 3;
3454 return 1;
3455}
3456
3457static const struct export_operations shmem_export_ops = {
3458 .get_parent = shmem_get_parent,
3459 .encode_fh = shmem_encode_fh,
3460 .fh_to_dentry = shmem_fh_to_dentry,
3461};
3462
3463enum shmem_param {
3464 Opt_gid,
3465 Opt_huge,
3466 Opt_mode,
3467 Opt_mpol,
3468 Opt_nr_blocks,
3469 Opt_nr_inodes,
3470 Opt_size,
3471 Opt_uid,
3472 Opt_inode32,
3473 Opt_inode64,
3474 Opt_noswap,
3475};
3476
3477static const struct constant_table shmem_param_enums_huge[] = {
3478 {"never", SHMEM_HUGE_NEVER },
3479 {"always", SHMEM_HUGE_ALWAYS },
3480 {"within_size", SHMEM_HUGE_WITHIN_SIZE },
3481 {"advise", SHMEM_HUGE_ADVISE },
3482 {}
3483};
3484
3485const struct fs_parameter_spec shmem_fs_parameters[] = {
3486 fsparam_u32 ("gid", Opt_gid),
3487 fsparam_enum ("huge", Opt_huge, shmem_param_enums_huge),
3488 fsparam_u32oct("mode", Opt_mode),
3489 fsparam_string("mpol", Opt_mpol),
3490 fsparam_string("nr_blocks", Opt_nr_blocks),
3491 fsparam_string("nr_inodes", Opt_nr_inodes),
3492 fsparam_string("size", Opt_size),
3493 fsparam_u32 ("uid", Opt_uid),
3494 fsparam_flag ("inode32", Opt_inode32),
3495 fsparam_flag ("inode64", Opt_inode64),
3496 fsparam_flag ("noswap", Opt_noswap),
3497 {}
3498};
3499
3500static int shmem_parse_one(struct fs_context *fc, struct fs_parameter *param)
3501{
3502 struct shmem_options *ctx = fc->fs_private;
3503 struct fs_parse_result result;
3504 unsigned long long size;
3505 char *rest;
3506 int opt;
3507
3508 opt = fs_parse(fc, shmem_fs_parameters, param, &result);
3509 if (opt < 0)
3510 return opt;
3511
3512 switch (opt) {
3513 case Opt_size:
3514 size = memparse(param->string, &rest);
3515 if (*rest == '%') {
3516 size <<= PAGE_SHIFT;
3517 size *= totalram_pages();
3518 do_div(size, 100);
3519 rest++;
3520 }
3521 if (*rest)
3522 goto bad_value;
3523 ctx->blocks = DIV_ROUND_UP(size, PAGE_SIZE);
3524 ctx->seen |= SHMEM_SEEN_BLOCKS;
3525 break;
3526 case Opt_nr_blocks:
3527 ctx->blocks = memparse(param->string, &rest);
3528 if (*rest || ctx->blocks > S64_MAX)
3529 goto bad_value;
3530 ctx->seen |= SHMEM_SEEN_BLOCKS;
3531 break;
3532 case Opt_nr_inodes:
3533 ctx->inodes = memparse(param->string, &rest);
3534 if (*rest)
3535 goto bad_value;
3536 ctx->seen |= SHMEM_SEEN_INODES;
3537 break;
3538 case Opt_mode:
3539 ctx->mode = result.uint_32 & 07777;
3540 break;
3541 case Opt_uid:
3542 ctx->uid = make_kuid(current_user_ns(), result.uint_32);
3543 if (!uid_valid(ctx->uid))
3544 goto bad_value;
3545 break;
3546 case Opt_gid:
3547 ctx->gid = make_kgid(current_user_ns(), result.uint_32);
3548 if (!gid_valid(ctx->gid))
3549 goto bad_value;
3550 break;
3551 case Opt_huge:
3552 ctx->huge = result.uint_32;
3553 if (ctx->huge != SHMEM_HUGE_NEVER &&
3554 !(IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
3555 has_transparent_hugepage()))
3556 goto unsupported_parameter;
3557 ctx->seen |= SHMEM_SEEN_HUGE;
3558 break;
3559 case Opt_mpol:
3560 if (IS_ENABLED(CONFIG_NUMA)) {
3561 mpol_put(ctx->mpol);
3562 ctx->mpol = NULL;
3563 if (mpol_parse_str(param->string, &ctx->mpol))
3564 goto bad_value;
3565 break;
3566 }
3567 goto unsupported_parameter;
3568 case Opt_inode32:
3569 ctx->full_inums = false;
3570 ctx->seen |= SHMEM_SEEN_INUMS;
3571 break;
3572 case Opt_inode64:
3573 if (sizeof(ino_t) < 8) {
3574 return invalfc(fc,
3575 "Cannot use inode64 with <64bit inums in kernel\n");
3576 }
3577 ctx->full_inums = true;
3578 ctx->seen |= SHMEM_SEEN_INUMS;
3579 break;
3580 case Opt_noswap:
3581 if ((fc->user_ns != &init_user_ns) || !capable(CAP_SYS_ADMIN)) {
3582 return invalfc(fc,
3583 "Turning off swap in unprivileged tmpfs mounts unsupported");
3584 }
3585 ctx->noswap = true;
3586 ctx->seen |= SHMEM_SEEN_NOSWAP;
3587 break;
3588 }
3589 return 0;
3590
3591unsupported_parameter:
3592 return invalfc(fc, "Unsupported parameter '%s'", param->key);
3593bad_value:
3594 return invalfc(fc, "Bad value for '%s'", param->key);
3595}
3596
3597static int shmem_parse_options(struct fs_context *fc, void *data)
3598{
3599 char *options = data;
3600
3601 if (options) {
3602 int err = security_sb_eat_lsm_opts(options, &fc->security);
3603 if (err)
3604 return err;
3605 }
3606
3607 while (options != NULL) {
3608 char *this_char = options;
3609 for (;;) {
3610 /*
3611 * NUL-terminate this option: unfortunately,
3612 * mount options form a comma-separated list,
3613 * but mpol's nodelist may also contain commas.
3614 */
3615 options = strchr(options, ',');
3616 if (options == NULL)
3617 break;
3618 options++;
3619 if (!isdigit(*options)) {
3620 options[-1] = '\0';
3621 break;
3622 }
3623 }
3624 if (*this_char) {
3625 char *value = strchr(this_char, '=');
3626 size_t len = 0;
3627 int err;
3628
3629 if (value) {
3630 *value++ = '\0';
3631 len = strlen(value);
3632 }
3633 err = vfs_parse_fs_string(fc, this_char, value, len);
3634 if (err < 0)
3635 return err;
3636 }
3637 }
3638 return 0;
3639}
3640
3641/*
3642 * Reconfigure a shmem filesystem.
3643 *
3644 * Note that we disallow change from limited->unlimited blocks/inodes while any
3645 * are in use; but we must separately disallow unlimited->limited, because in
3646 * that case we have no record of how much is already in use.
3647 */
3648static int shmem_reconfigure(struct fs_context *fc)
3649{
3650 struct shmem_options *ctx = fc->fs_private;
3651 struct shmem_sb_info *sbinfo = SHMEM_SB(fc->root->d_sb);
3652 unsigned long inodes;
3653 struct mempolicy *mpol = NULL;
3654 const char *err;
3655
3656 raw_spin_lock(&sbinfo->stat_lock);
3657 inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3658
3659 if ((ctx->seen & SHMEM_SEEN_BLOCKS) && ctx->blocks) {
3660 if (!sbinfo->max_blocks) {
3661 err = "Cannot retroactively limit size";
3662 goto out;
3663 }
3664 if (percpu_counter_compare(&sbinfo->used_blocks,
3665 ctx->blocks) > 0) {
3666 err = "Too small a size for current use";
3667 goto out;
3668 }
3669 }
3670 if ((ctx->seen & SHMEM_SEEN_INODES) && ctx->inodes) {
3671 if (!sbinfo->max_inodes) {
3672 err = "Cannot retroactively limit inodes";
3673 goto out;
3674 }
3675 if (ctx->inodes < inodes) {
3676 err = "Too few inodes for current use";
3677 goto out;
3678 }
3679 }
3680
3681 if ((ctx->seen & SHMEM_SEEN_INUMS) && !ctx->full_inums &&
3682 sbinfo->next_ino > UINT_MAX) {
3683 err = "Current inum too high to switch to 32-bit inums";
3684 goto out;
3685 }
3686 if ((ctx->seen & SHMEM_SEEN_NOSWAP) && ctx->noswap && !sbinfo->noswap) {
3687 err = "Cannot disable swap on remount";
3688 goto out;
3689 }
3690 if (!(ctx->seen & SHMEM_SEEN_NOSWAP) && !ctx->noswap && sbinfo->noswap) {
3691 err = "Cannot enable swap on remount if it was disabled on first mount";
3692 goto out;
3693 }
3694
3695 if (ctx->seen & SHMEM_SEEN_HUGE)
3696 sbinfo->huge = ctx->huge;
3697 if (ctx->seen & SHMEM_SEEN_INUMS)
3698 sbinfo->full_inums = ctx->full_inums;
3699 if (ctx->seen & SHMEM_SEEN_BLOCKS)
3700 sbinfo->max_blocks = ctx->blocks;
3701 if (ctx->seen & SHMEM_SEEN_INODES) {
3702 sbinfo->max_inodes = ctx->inodes;
3703 sbinfo->free_inodes = ctx->inodes - inodes;
3704 }
3705
3706 /*
3707 * Preserve previous mempolicy unless mpol remount option was specified.
3708 */
3709 if (ctx->mpol) {
3710 mpol = sbinfo->mpol;
3711 sbinfo->mpol = ctx->mpol; /* transfers initial ref */
3712 ctx->mpol = NULL;
3713 }
3714
3715 if (ctx->noswap)
3716 sbinfo->noswap = true;
3717
3718 raw_spin_unlock(&sbinfo->stat_lock);
3719 mpol_put(mpol);
3720 return 0;
3721out:
3722 raw_spin_unlock(&sbinfo->stat_lock);
3723 return invalfc(fc, "%s", err);
3724}
3725
3726static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3727{
3728 struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3729
3730 if (sbinfo->max_blocks != shmem_default_max_blocks())
3731 seq_printf(seq, ",size=%luk",
3732 sbinfo->max_blocks << (PAGE_SHIFT - 10));
3733 if (sbinfo->max_inodes != shmem_default_max_inodes())
3734 seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3735 if (sbinfo->mode != (0777 | S_ISVTX))
3736 seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3737 if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3738 seq_printf(seq, ",uid=%u",
3739 from_kuid_munged(&init_user_ns, sbinfo->uid));
3740 if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3741 seq_printf(seq, ",gid=%u",
3742 from_kgid_munged(&init_user_ns, sbinfo->gid));
3743
3744 /*
3745 * Showing inode{64,32} might be useful even if it's the system default,
3746 * since then people don't have to resort to checking both here and
3747 * /proc/config.gz to confirm 64-bit inums were successfully applied
3748 * (which may not even exist if IKCONFIG_PROC isn't enabled).
3749 *
3750 * We hide it when inode64 isn't the default and we are using 32-bit
3751 * inodes, since that probably just means the feature isn't even under
3752 * consideration.
3753 *
3754 * As such:
3755 *
3756 * +-----------------+-----------------+
3757 * | TMPFS_INODE64=y | TMPFS_INODE64=n |
3758 * +------------------+-----------------+-----------------+
3759 * | full_inums=true | show | show |
3760 * | full_inums=false | show | hide |
3761 * +------------------+-----------------+-----------------+
3762 *
3763 */
3764 if (IS_ENABLED(CONFIG_TMPFS_INODE64) || sbinfo->full_inums)
3765 seq_printf(seq, ",inode%d", (sbinfo->full_inums ? 64 : 32));
3766#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3767 /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3768 if (sbinfo->huge)
3769 seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3770#endif
3771 shmem_show_mpol(seq, sbinfo->mpol);
3772 if (sbinfo->noswap)
3773 seq_printf(seq, ",noswap");
3774 return 0;
3775}
3776
3777#endif /* CONFIG_TMPFS */
3778
3779static void shmem_put_super(struct super_block *sb)
3780{
3781 struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3782
3783 free_percpu(sbinfo->ino_batch);
3784 percpu_counter_destroy(&sbinfo->used_blocks);
3785 mpol_put(sbinfo->mpol);
3786 kfree(sbinfo);
3787 sb->s_fs_info = NULL;
3788}
3789
3790static int shmem_fill_super(struct super_block *sb, struct fs_context *fc)
3791{
3792 struct shmem_options *ctx = fc->fs_private;
3793 struct inode *inode;
3794 struct shmem_sb_info *sbinfo;
3795
3796 /* Round up to L1_CACHE_BYTES to resist false sharing */
3797 sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3798 L1_CACHE_BYTES), GFP_KERNEL);
3799 if (!sbinfo)
3800 return -ENOMEM;
3801
3802 sb->s_fs_info = sbinfo;
3803
3804#ifdef CONFIG_TMPFS
3805 /*
3806 * Per default we only allow half of the physical ram per
3807 * tmpfs instance, limiting inodes to one per page of lowmem;
3808 * but the internal instance is left unlimited.
3809 */
3810 if (!(sb->s_flags & SB_KERNMOUNT)) {
3811 if (!(ctx->seen & SHMEM_SEEN_BLOCKS))
3812 ctx->blocks = shmem_default_max_blocks();
3813 if (!(ctx->seen & SHMEM_SEEN_INODES))
3814 ctx->inodes = shmem_default_max_inodes();
3815 if (!(ctx->seen & SHMEM_SEEN_INUMS))
3816 ctx->full_inums = IS_ENABLED(CONFIG_TMPFS_INODE64);
3817 sbinfo->noswap = ctx->noswap;
3818 } else {
3819 sb->s_flags |= SB_NOUSER;
3820 }
3821 sb->s_export_op = &shmem_export_ops;
3822 sb->s_flags |= SB_NOSEC | SB_I_VERSION;
3823#else
3824 sb->s_flags |= SB_NOUSER;
3825#endif
3826 sbinfo->max_blocks = ctx->blocks;
3827 sbinfo->free_inodes = sbinfo->max_inodes = ctx->inodes;
3828 if (sb->s_flags & SB_KERNMOUNT) {
3829 sbinfo->ino_batch = alloc_percpu(ino_t);
3830 if (!sbinfo->ino_batch)
3831 goto failed;
3832 }
3833 sbinfo->uid = ctx->uid;
3834 sbinfo->gid = ctx->gid;
3835 sbinfo->full_inums = ctx->full_inums;
3836 sbinfo->mode = ctx->mode;
3837 sbinfo->huge = ctx->huge;
3838 sbinfo->mpol = ctx->mpol;
3839 ctx->mpol = NULL;
3840
3841 raw_spin_lock_init(&sbinfo->stat_lock);
3842 if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3843 goto failed;
3844 spin_lock_init(&sbinfo->shrinklist_lock);
3845 INIT_LIST_HEAD(&sbinfo->shrinklist);
3846
3847 sb->s_maxbytes = MAX_LFS_FILESIZE;
3848 sb->s_blocksize = PAGE_SIZE;
3849 sb->s_blocksize_bits = PAGE_SHIFT;
3850 sb->s_magic = TMPFS_MAGIC;
3851 sb->s_op = &shmem_ops;
3852 sb->s_time_gran = 1;
3853#ifdef CONFIG_TMPFS_XATTR
3854 sb->s_xattr = shmem_xattr_handlers;
3855#endif
3856#ifdef CONFIG_TMPFS_POSIX_ACL
3857 sb->s_flags |= SB_POSIXACL;
3858#endif
3859 uuid_gen(&sb->s_uuid);
3860
3861 inode = shmem_get_inode(&nop_mnt_idmap, sb, NULL, S_IFDIR | sbinfo->mode, 0,
3862 VM_NORESERVE);
3863 if (!inode)
3864 goto failed;
3865 inode->i_uid = sbinfo->uid;
3866 inode->i_gid = sbinfo->gid;
3867 sb->s_root = d_make_root(inode);
3868 if (!sb->s_root)
3869 goto failed;
3870 return 0;
3871
3872failed:
3873 shmem_put_super(sb);
3874 return -ENOMEM;
3875}
3876
3877static int shmem_get_tree(struct fs_context *fc)
3878{
3879 return get_tree_nodev(fc, shmem_fill_super);
3880}
3881
3882static void shmem_free_fc(struct fs_context *fc)
3883{
3884 struct shmem_options *ctx = fc->fs_private;
3885
3886 if (ctx) {
3887 mpol_put(ctx->mpol);
3888 kfree(ctx);
3889 }
3890}
3891
3892static const struct fs_context_operations shmem_fs_context_ops = {
3893 .free = shmem_free_fc,
3894 .get_tree = shmem_get_tree,
3895#ifdef CONFIG_TMPFS
3896 .parse_monolithic = shmem_parse_options,
3897 .parse_param = shmem_parse_one,
3898 .reconfigure = shmem_reconfigure,
3899#endif
3900};
3901
3902static struct kmem_cache *shmem_inode_cachep;
3903
3904static struct inode *shmem_alloc_inode(struct super_block *sb)
3905{
3906 struct shmem_inode_info *info;
3907 info = alloc_inode_sb(sb, shmem_inode_cachep, GFP_KERNEL);
3908 if (!info)
3909 return NULL;
3910 return &info->vfs_inode;
3911}
3912
3913static void shmem_free_in_core_inode(struct inode *inode)
3914{
3915 if (S_ISLNK(inode->i_mode))
3916 kfree(inode->i_link);
3917 kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3918}
3919
3920static void shmem_destroy_inode(struct inode *inode)
3921{
3922 if (S_ISREG(inode->i_mode))
3923 mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3924}
3925
3926static void shmem_init_inode(void *foo)
3927{
3928 struct shmem_inode_info *info = foo;
3929 inode_init_once(&info->vfs_inode);
3930}
3931
3932static void shmem_init_inodecache(void)
3933{
3934 shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3935 sizeof(struct shmem_inode_info),
3936 0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3937}
3938
3939static void shmem_destroy_inodecache(void)
3940{
3941 kmem_cache_destroy(shmem_inode_cachep);
3942}
3943
3944/* Keep the page in page cache instead of truncating it */
3945static int shmem_error_remove_page(struct address_space *mapping,
3946 struct page *page)
3947{
3948 return 0;
3949}
3950
3951const struct address_space_operations shmem_aops = {
3952 .writepage = shmem_writepage,
3953 .dirty_folio = noop_dirty_folio,
3954#ifdef CONFIG_TMPFS
3955 .write_begin = shmem_write_begin,
3956 .write_end = shmem_write_end,
3957#endif
3958#ifdef CONFIG_MIGRATION
3959 .migrate_folio = migrate_folio,
3960#endif
3961 .error_remove_page = shmem_error_remove_page,
3962};
3963EXPORT_SYMBOL(shmem_aops);
3964
3965static const struct file_operations shmem_file_operations = {
3966 .mmap = shmem_mmap,
3967 .open = generic_file_open,
3968 .get_unmapped_area = shmem_get_unmapped_area,
3969#ifdef CONFIG_TMPFS
3970 .llseek = shmem_file_llseek,
3971 .read_iter = shmem_file_read_iter,
3972 .write_iter = generic_file_write_iter,
3973 .fsync = noop_fsync,
3974 .splice_read = generic_file_splice_read,
3975 .splice_write = iter_file_splice_write,
3976 .fallocate = shmem_fallocate,
3977#endif
3978};
3979
3980static const struct inode_operations shmem_inode_operations = {
3981 .getattr = shmem_getattr,
3982 .setattr = shmem_setattr,
3983#ifdef CONFIG_TMPFS_XATTR
3984 .listxattr = shmem_listxattr,
3985 .set_acl = simple_set_acl,
3986 .fileattr_get = shmem_fileattr_get,
3987 .fileattr_set = shmem_fileattr_set,
3988#endif
3989};
3990
3991static const struct inode_operations shmem_dir_inode_operations = {
3992#ifdef CONFIG_TMPFS
3993 .getattr = shmem_getattr,
3994 .create = shmem_create,
3995 .lookup = simple_lookup,
3996 .link = shmem_link,
3997 .unlink = shmem_unlink,
3998 .symlink = shmem_symlink,
3999 .mkdir = shmem_mkdir,
4000 .rmdir = shmem_rmdir,
4001 .mknod = shmem_mknod,
4002 .rename = shmem_rename2,
4003 .tmpfile = shmem_tmpfile,
4004#endif
4005#ifdef CONFIG_TMPFS_XATTR
4006 .listxattr = shmem_listxattr,
4007 .fileattr_get = shmem_fileattr_get,
4008 .fileattr_set = shmem_fileattr_set,
4009#endif
4010#ifdef CONFIG_TMPFS_POSIX_ACL
4011 .setattr = shmem_setattr,
4012 .set_acl = simple_set_acl,
4013#endif
4014};
4015
4016static const struct inode_operations shmem_special_inode_operations = {
4017 .getattr = shmem_getattr,
4018#ifdef CONFIG_TMPFS_XATTR
4019 .listxattr = shmem_listxattr,
4020#endif
4021#ifdef CONFIG_TMPFS_POSIX_ACL
4022 .setattr = shmem_setattr,
4023 .set_acl = simple_set_acl,
4024#endif
4025};
4026
4027static const struct super_operations shmem_ops = {
4028 .alloc_inode = shmem_alloc_inode,
4029 .free_inode = shmem_free_in_core_inode,
4030 .destroy_inode = shmem_destroy_inode,
4031#ifdef CONFIG_TMPFS
4032 .statfs = shmem_statfs,
4033 .show_options = shmem_show_options,
4034#endif
4035 .evict_inode = shmem_evict_inode,
4036 .drop_inode = generic_delete_inode,
4037 .put_super = shmem_put_super,
4038#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4039 .nr_cached_objects = shmem_unused_huge_count,
4040 .free_cached_objects = shmem_unused_huge_scan,
4041#endif
4042};
4043
4044static const struct vm_operations_struct shmem_vm_ops = {
4045 .fault = shmem_fault,
4046 .map_pages = filemap_map_pages,
4047#ifdef CONFIG_NUMA
4048 .set_policy = shmem_set_policy,
4049 .get_policy = shmem_get_policy,
4050#endif
4051};
4052
4053static const struct vm_operations_struct shmem_anon_vm_ops = {
4054 .fault = shmem_fault,
4055 .map_pages = filemap_map_pages,
4056#ifdef CONFIG_NUMA
4057 .set_policy = shmem_set_policy,
4058 .get_policy = shmem_get_policy,
4059#endif
4060};
4061
4062int shmem_init_fs_context(struct fs_context *fc)
4063{
4064 struct shmem_options *ctx;
4065
4066 ctx = kzalloc(sizeof(struct shmem_options), GFP_KERNEL);
4067 if (!ctx)
4068 return -ENOMEM;
4069
4070 ctx->mode = 0777 | S_ISVTX;
4071 ctx->uid = current_fsuid();
4072 ctx->gid = current_fsgid();
4073
4074 fc->fs_private = ctx;
4075 fc->ops = &shmem_fs_context_ops;
4076 return 0;
4077}
4078
4079static struct file_system_type shmem_fs_type = {
4080 .owner = THIS_MODULE,
4081 .name = "tmpfs",
4082 .init_fs_context = shmem_init_fs_context,
4083#ifdef CONFIG_TMPFS
4084 .parameters = shmem_fs_parameters,
4085#endif
4086 .kill_sb = kill_litter_super,
4087#ifdef CONFIG_SHMEM
4088 .fs_flags = FS_USERNS_MOUNT | FS_ALLOW_IDMAP,
4089#else
4090 .fs_flags = FS_USERNS_MOUNT,
4091#endif
4092};
4093
4094void __init shmem_init(void)
4095{
4096 int error;
4097
4098 shmem_init_inodecache();
4099
4100 error = register_filesystem(&shmem_fs_type);
4101 if (error) {
4102 pr_err("Could not register tmpfs\n");
4103 goto out2;
4104 }
4105
4106 shm_mnt = kern_mount(&shmem_fs_type);
4107 if (IS_ERR(shm_mnt)) {
4108 error = PTR_ERR(shm_mnt);
4109 pr_err("Could not kern_mount tmpfs\n");
4110 goto out1;
4111 }
4112
4113#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4114 if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
4115 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4116 else
4117 shmem_huge = SHMEM_HUGE_NEVER; /* just in case it was patched */
4118#endif
4119 return;
4120
4121out1:
4122 unregister_filesystem(&shmem_fs_type);
4123out2:
4124 shmem_destroy_inodecache();
4125 shm_mnt = ERR_PTR(error);
4126}
4127
4128#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && defined(CONFIG_SYSFS)
4129static ssize_t shmem_enabled_show(struct kobject *kobj,
4130 struct kobj_attribute *attr, char *buf)
4131{
4132 static const int values[] = {
4133 SHMEM_HUGE_ALWAYS,
4134 SHMEM_HUGE_WITHIN_SIZE,
4135 SHMEM_HUGE_ADVISE,
4136 SHMEM_HUGE_NEVER,
4137 SHMEM_HUGE_DENY,
4138 SHMEM_HUGE_FORCE,
4139 };
4140 int len = 0;
4141 int i;
4142
4143 for (i = 0; i < ARRAY_SIZE(values); i++) {
4144 len += sysfs_emit_at(buf, len,
4145 shmem_huge == values[i] ? "%s[%s]" : "%s%s",
4146 i ? " " : "",
4147 shmem_format_huge(values[i]));
4148 }
4149
4150 len += sysfs_emit_at(buf, len, "\n");
4151
4152 return len;
4153}
4154
4155static ssize_t shmem_enabled_store(struct kobject *kobj,
4156 struct kobj_attribute *attr, const char *buf, size_t count)
4157{
4158 char tmp[16];
4159 int huge;
4160
4161 if (count + 1 > sizeof(tmp))
4162 return -EINVAL;
4163 memcpy(tmp, buf, count);
4164 tmp[count] = '\0';
4165 if (count && tmp[count - 1] == '\n')
4166 tmp[count - 1] = '\0';
4167
4168 huge = shmem_parse_huge(tmp);
4169 if (huge == -EINVAL)
4170 return -EINVAL;
4171 if (!has_transparent_hugepage() &&
4172 huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
4173 return -EINVAL;
4174
4175 shmem_huge = huge;
4176 if (shmem_huge > SHMEM_HUGE_DENY)
4177 SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
4178 return count;
4179}
4180
4181struct kobj_attribute shmem_enabled_attr = __ATTR_RW(shmem_enabled);
4182#endif /* CONFIG_TRANSPARENT_HUGEPAGE && CONFIG_SYSFS */
4183
4184#else /* !CONFIG_SHMEM */
4185
4186/*
4187 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
4188 *
4189 * This is intended for small system where the benefits of the full
4190 * shmem code (swap-backed and resource-limited) are outweighed by
4191 * their complexity. On systems without swap this code should be
4192 * effectively equivalent, but much lighter weight.
4193 */
4194
4195static struct file_system_type shmem_fs_type = {
4196 .name = "tmpfs",
4197 .init_fs_context = ramfs_init_fs_context,
4198 .parameters = ramfs_fs_parameters,
4199 .kill_sb = kill_litter_super,
4200 .fs_flags = FS_USERNS_MOUNT,
4201};
4202
4203void __init shmem_init(void)
4204{
4205 BUG_ON(register_filesystem(&shmem_fs_type) != 0);
4206
4207 shm_mnt = kern_mount(&shmem_fs_type);
4208 BUG_ON(IS_ERR(shm_mnt));
4209}
4210
4211int shmem_unuse(unsigned int type)
4212{
4213 return 0;
4214}
4215
4216int shmem_lock(struct file *file, int lock, struct ucounts *ucounts)
4217{
4218 return 0;
4219}
4220
4221void shmem_unlock_mapping(struct address_space *mapping)
4222{
4223}
4224
4225#ifdef CONFIG_MMU
4226unsigned long shmem_get_unmapped_area(struct file *file,
4227 unsigned long addr, unsigned long len,
4228 unsigned long pgoff, unsigned long flags)
4229{
4230 return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
4231}
4232#endif
4233
4234void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
4235{
4236 truncate_inode_pages_range(inode->i_mapping, lstart, lend);
4237}
4238EXPORT_SYMBOL_GPL(shmem_truncate_range);
4239
4240#define shmem_vm_ops generic_file_vm_ops
4241#define shmem_anon_vm_ops generic_file_vm_ops
4242#define shmem_file_operations ramfs_file_operations
4243#define shmem_get_inode(idmap, sb, dir, mode, dev, flags) ramfs_get_inode(sb, dir, mode, dev)
4244#define shmem_acct_size(flags, size) 0
4245#define shmem_unacct_size(flags, size) do {} while (0)
4246
4247#endif /* CONFIG_SHMEM */
4248
4249/* common code */
4250
4251static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
4252 unsigned long flags, unsigned int i_flags)
4253{
4254 struct inode *inode;
4255 struct file *res;
4256
4257 if (IS_ERR(mnt))
4258 return ERR_CAST(mnt);
4259
4260 if (size < 0 || size > MAX_LFS_FILESIZE)
4261 return ERR_PTR(-EINVAL);
4262
4263 if (shmem_acct_size(flags, size))
4264 return ERR_PTR(-ENOMEM);
4265
4266 if (is_idmapped_mnt(mnt))
4267 return ERR_PTR(-EINVAL);
4268
4269 inode = shmem_get_inode(&nop_mnt_idmap, mnt->mnt_sb, NULL,
4270 S_IFREG | S_IRWXUGO, 0, flags);
4271 if (unlikely(!inode)) {
4272 shmem_unacct_size(flags, size);
4273 return ERR_PTR(-ENOSPC);
4274 }
4275 inode->i_flags |= i_flags;
4276 inode->i_size = size;
4277 clear_nlink(inode); /* It is unlinked */
4278 res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
4279 if (!IS_ERR(res))
4280 res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
4281 &shmem_file_operations);
4282 if (IS_ERR(res))
4283 iput(inode);
4284 return res;
4285}
4286
4287/**
4288 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
4289 * kernel internal. There will be NO LSM permission checks against the
4290 * underlying inode. So users of this interface must do LSM checks at a
4291 * higher layer. The users are the big_key and shm implementations. LSM
4292 * checks are provided at the key or shm level rather than the inode.
4293 * @name: name for dentry (to be seen in /proc/<pid>/maps
4294 * @size: size to be set for the file
4295 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4296 */
4297struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
4298{
4299 return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
4300}
4301
4302/**
4303 * shmem_file_setup - get an unlinked file living in tmpfs
4304 * @name: name for dentry (to be seen in /proc/<pid>/maps
4305 * @size: size to be set for the file
4306 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4307 */
4308struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
4309{
4310 return __shmem_file_setup(shm_mnt, name, size, flags, 0);
4311}
4312EXPORT_SYMBOL_GPL(shmem_file_setup);
4313
4314/**
4315 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
4316 * @mnt: the tmpfs mount where the file will be created
4317 * @name: name for dentry (to be seen in /proc/<pid>/maps
4318 * @size: size to be set for the file
4319 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
4320 */
4321struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
4322 loff_t size, unsigned long flags)
4323{
4324 return __shmem_file_setup(mnt, name, size, flags, 0);
4325}
4326EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
4327
4328/**
4329 * shmem_zero_setup - setup a shared anonymous mapping
4330 * @vma: the vma to be mmapped is prepared by do_mmap
4331 */
4332int shmem_zero_setup(struct vm_area_struct *vma)
4333{
4334 struct file *file;
4335 loff_t size = vma->vm_end - vma->vm_start;
4336
4337 /*
4338 * Cloning a new file under mmap_lock leads to a lock ordering conflict
4339 * between XFS directory reading and selinux: since this file is only
4340 * accessible to the user through its mapping, use S_PRIVATE flag to
4341 * bypass file security, in the same way as shmem_kernel_file_setup().
4342 */
4343 file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
4344 if (IS_ERR(file))
4345 return PTR_ERR(file);
4346
4347 if (vma->vm_file)
4348 fput(vma->vm_file);
4349 vma->vm_file = file;
4350 vma->vm_ops = &shmem_anon_vm_ops;
4351
4352 return 0;
4353}
4354
4355/**
4356 * shmem_read_folio_gfp - read into page cache, using specified page allocation flags.
4357 * @mapping: the folio's address_space
4358 * @index: the folio index
4359 * @gfp: the page allocator flags to use if allocating
4360 *
4361 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4362 * with any new page allocations done using the specified allocation flags.
4363 * But read_cache_page_gfp() uses the ->read_folio() method: which does not
4364 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4365 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4366 *
4367 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4368 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4369 */
4370struct folio *shmem_read_folio_gfp(struct address_space *mapping,
4371 pgoff_t index, gfp_t gfp)
4372{
4373#ifdef CONFIG_SHMEM
4374 struct inode *inode = mapping->host;
4375 struct folio *folio;
4376 int error;
4377
4378 BUG_ON(!shmem_mapping(mapping));
4379 error = shmem_get_folio_gfp(inode, index, &folio, SGP_CACHE,
4380 gfp, NULL, NULL, NULL);
4381 if (error)
4382 return ERR_PTR(error);
4383
4384 folio_unlock(folio);
4385 return folio;
4386#else
4387 /*
4388 * The tiny !SHMEM case uses ramfs without swap
4389 */
4390 return mapping_read_folio_gfp(mapping, index, gfp);
4391#endif
4392}
4393EXPORT_SYMBOL_GPL(shmem_read_folio_gfp);
4394
4395struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4396 pgoff_t index, gfp_t gfp)
4397{
4398 struct folio *folio = shmem_read_folio_gfp(mapping, index, gfp);
4399 struct page *page;
4400
4401 if (IS_ERR(folio))
4402 return &folio->page;
4403
4404 page = folio_file_page(folio, index);
4405 if (PageHWPoison(page)) {
4406 folio_put(folio);
4407 return ERR_PTR(-EIO);
4408 }
4409
4410 return page;
4411}
4412EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);