Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* memcontrol.c - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 *
10 * Memory thresholds
11 * Copyright (C) 2009 Nokia Corporation
12 * Author: Kirill A. Shutemov
13 *
14 * Kernel Memory Controller
15 * Copyright (C) 2012 Parallels Inc. and Google Inc.
16 * Authors: Glauber Costa and Suleiman Souhlal
17 *
18 * Native page reclaim
19 * Charge lifetime sanitation
20 * Lockless page tracking & accounting
21 * Unified hierarchy configuration model
22 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
23 *
24 * Per memcg lru locking
25 * Copyright (C) 2020 Alibaba, Inc, Alex Shi
26 */
27
28#include <linux/page_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
31#include <linux/pagewalk.h>
32#include <linux/sched/mm.h>
33#include <linux/shmem_fs.h>
34#include <linux/hugetlb.h>
35#include <linux/pagemap.h>
36#include <linux/vm_event_item.h>
37#include <linux/smp.h>
38#include <linux/page-flags.h>
39#include <linux/backing-dev.h>
40#include <linux/bit_spinlock.h>
41#include <linux/rcupdate.h>
42#include <linux/limits.h>
43#include <linux/export.h>
44#include <linux/mutex.h>
45#include <linux/rbtree.h>
46#include <linux/slab.h>
47#include <linux/swap.h>
48#include <linux/swapops.h>
49#include <linux/spinlock.h>
50#include <linux/eventfd.h>
51#include <linux/poll.h>
52#include <linux/sort.h>
53#include <linux/fs.h>
54#include <linux/seq_file.h>
55#include <linux/vmpressure.h>
56#include <linux/memremap.h>
57#include <linux/mm_inline.h>
58#include <linux/swap_cgroup.h>
59#include <linux/cpu.h>
60#include <linux/oom.h>
61#include <linux/lockdep.h>
62#include <linux/file.h>
63#include <linux/resume_user_mode.h>
64#include <linux/psi.h>
65#include <linux/seq_buf.h>
66#include <linux/sched/isolation.h>
67#include "internal.h"
68#include <net/sock.h>
69#include <net/ip.h>
70#include "slab.h"
71#include "swap.h"
72
73#include <linux/uaccess.h>
74
75#include <trace/events/vmscan.h>
76
77struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78EXPORT_SYMBOL(memory_cgrp_subsys);
79
80struct mem_cgroup *root_mem_cgroup __read_mostly;
81
82/* Active memory cgroup to use from an interrupt context */
83DEFINE_PER_CPU(struct mem_cgroup *, int_active_memcg);
84EXPORT_PER_CPU_SYMBOL_GPL(int_active_memcg);
85
86/* Socket memory accounting disabled? */
87static bool cgroup_memory_nosocket __ro_after_init;
88
89/* Kernel memory accounting disabled? */
90static bool cgroup_memory_nokmem __ro_after_init;
91
92/* BPF memory accounting disabled? */
93static bool cgroup_memory_nobpf __ro_after_init;
94
95#ifdef CONFIG_CGROUP_WRITEBACK
96static DECLARE_WAIT_QUEUE_HEAD(memcg_cgwb_frn_waitq);
97#endif
98
99/* Whether legacy memory+swap accounting is active */
100static bool do_memsw_account(void)
101{
102 return !cgroup_subsys_on_dfl(memory_cgrp_subsys);
103}
104
105#define THRESHOLDS_EVENTS_TARGET 128
106#define SOFTLIMIT_EVENTS_TARGET 1024
107
108/*
109 * Cgroups above their limits are maintained in a RB-Tree, independent of
110 * their hierarchy representation
111 */
112
113struct mem_cgroup_tree_per_node {
114 struct rb_root rb_root;
115 struct rb_node *rb_rightmost;
116 spinlock_t lock;
117};
118
119struct mem_cgroup_tree {
120 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
121};
122
123static struct mem_cgroup_tree soft_limit_tree __read_mostly;
124
125/* for OOM */
126struct mem_cgroup_eventfd_list {
127 struct list_head list;
128 struct eventfd_ctx *eventfd;
129};
130
131/*
132 * cgroup_event represents events which userspace want to receive.
133 */
134struct mem_cgroup_event {
135 /*
136 * memcg which the event belongs to.
137 */
138 struct mem_cgroup *memcg;
139 /*
140 * eventfd to signal userspace about the event.
141 */
142 struct eventfd_ctx *eventfd;
143 /*
144 * Each of these stored in a list by the cgroup.
145 */
146 struct list_head list;
147 /*
148 * register_event() callback will be used to add new userspace
149 * waiter for changes related to this event. Use eventfd_signal()
150 * on eventfd to send notification to userspace.
151 */
152 int (*register_event)(struct mem_cgroup *memcg,
153 struct eventfd_ctx *eventfd, const char *args);
154 /*
155 * unregister_event() callback will be called when userspace closes
156 * the eventfd or on cgroup removing. This callback must be set,
157 * if you want provide notification functionality.
158 */
159 void (*unregister_event)(struct mem_cgroup *memcg,
160 struct eventfd_ctx *eventfd);
161 /*
162 * All fields below needed to unregister event when
163 * userspace closes eventfd.
164 */
165 poll_table pt;
166 wait_queue_head_t *wqh;
167 wait_queue_entry_t wait;
168 struct work_struct remove;
169};
170
171static void mem_cgroup_threshold(struct mem_cgroup *memcg);
172static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
173
174/* Stuffs for move charges at task migration. */
175/*
176 * Types of charges to be moved.
177 */
178#define MOVE_ANON 0x1U
179#define MOVE_FILE 0x2U
180#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
181
182/* "mc" and its members are protected by cgroup_mutex */
183static struct move_charge_struct {
184 spinlock_t lock; /* for from, to */
185 struct mm_struct *mm;
186 struct mem_cgroup *from;
187 struct mem_cgroup *to;
188 unsigned long flags;
189 unsigned long precharge;
190 unsigned long moved_charge;
191 unsigned long moved_swap;
192 struct task_struct *moving_task; /* a task moving charges */
193 wait_queue_head_t waitq; /* a waitq for other context */
194} mc = {
195 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
196 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
197};
198
199/*
200 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
201 * limit reclaim to prevent infinite loops, if they ever occur.
202 */
203#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
204#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
205
206/* for encoding cft->private value on file */
207enum res_type {
208 _MEM,
209 _MEMSWAP,
210 _KMEM,
211 _TCP,
212};
213
214#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
215#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
216#define MEMFILE_ATTR(val) ((val) & 0xffff)
217
218/*
219 * Iteration constructs for visiting all cgroups (under a tree). If
220 * loops are exited prematurely (break), mem_cgroup_iter_break() must
221 * be used for reference counting.
222 */
223#define for_each_mem_cgroup_tree(iter, root) \
224 for (iter = mem_cgroup_iter(root, NULL, NULL); \
225 iter != NULL; \
226 iter = mem_cgroup_iter(root, iter, NULL))
227
228#define for_each_mem_cgroup(iter) \
229 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
230 iter != NULL; \
231 iter = mem_cgroup_iter(NULL, iter, NULL))
232
233static inline bool task_is_dying(void)
234{
235 return tsk_is_oom_victim(current) || fatal_signal_pending(current) ||
236 (current->flags & PF_EXITING);
237}
238
239/* Some nice accessors for the vmpressure. */
240struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
241{
242 if (!memcg)
243 memcg = root_mem_cgroup;
244 return &memcg->vmpressure;
245}
246
247struct mem_cgroup *vmpressure_to_memcg(struct vmpressure *vmpr)
248{
249 return container_of(vmpr, struct mem_cgroup, vmpressure);
250}
251
252#ifdef CONFIG_MEMCG_KMEM
253static DEFINE_SPINLOCK(objcg_lock);
254
255bool mem_cgroup_kmem_disabled(void)
256{
257 return cgroup_memory_nokmem;
258}
259
260static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
261 unsigned int nr_pages);
262
263static void obj_cgroup_release(struct percpu_ref *ref)
264{
265 struct obj_cgroup *objcg = container_of(ref, struct obj_cgroup, refcnt);
266 unsigned int nr_bytes;
267 unsigned int nr_pages;
268 unsigned long flags;
269
270 /*
271 * At this point all allocated objects are freed, and
272 * objcg->nr_charged_bytes can't have an arbitrary byte value.
273 * However, it can be PAGE_SIZE or (x * PAGE_SIZE).
274 *
275 * The following sequence can lead to it:
276 * 1) CPU0: objcg == stock->cached_objcg
277 * 2) CPU1: we do a small allocation (e.g. 92 bytes),
278 * PAGE_SIZE bytes are charged
279 * 3) CPU1: a process from another memcg is allocating something,
280 * the stock if flushed,
281 * objcg->nr_charged_bytes = PAGE_SIZE - 92
282 * 5) CPU0: we do release this object,
283 * 92 bytes are added to stock->nr_bytes
284 * 6) CPU0: stock is flushed,
285 * 92 bytes are added to objcg->nr_charged_bytes
286 *
287 * In the result, nr_charged_bytes == PAGE_SIZE.
288 * This page will be uncharged in obj_cgroup_release().
289 */
290 nr_bytes = atomic_read(&objcg->nr_charged_bytes);
291 WARN_ON_ONCE(nr_bytes & (PAGE_SIZE - 1));
292 nr_pages = nr_bytes >> PAGE_SHIFT;
293
294 if (nr_pages)
295 obj_cgroup_uncharge_pages(objcg, nr_pages);
296
297 spin_lock_irqsave(&objcg_lock, flags);
298 list_del(&objcg->list);
299 spin_unlock_irqrestore(&objcg_lock, flags);
300
301 percpu_ref_exit(ref);
302 kfree_rcu(objcg, rcu);
303}
304
305static struct obj_cgroup *obj_cgroup_alloc(void)
306{
307 struct obj_cgroup *objcg;
308 int ret;
309
310 objcg = kzalloc(sizeof(struct obj_cgroup), GFP_KERNEL);
311 if (!objcg)
312 return NULL;
313
314 ret = percpu_ref_init(&objcg->refcnt, obj_cgroup_release, 0,
315 GFP_KERNEL);
316 if (ret) {
317 kfree(objcg);
318 return NULL;
319 }
320 INIT_LIST_HEAD(&objcg->list);
321 return objcg;
322}
323
324static void memcg_reparent_objcgs(struct mem_cgroup *memcg,
325 struct mem_cgroup *parent)
326{
327 struct obj_cgroup *objcg, *iter;
328
329 objcg = rcu_replace_pointer(memcg->objcg, NULL, true);
330
331 spin_lock_irq(&objcg_lock);
332
333 /* 1) Ready to reparent active objcg. */
334 list_add(&objcg->list, &memcg->objcg_list);
335 /* 2) Reparent active objcg and already reparented objcgs to parent. */
336 list_for_each_entry(iter, &memcg->objcg_list, list)
337 WRITE_ONCE(iter->memcg, parent);
338 /* 3) Move already reparented objcgs to the parent's list */
339 list_splice(&memcg->objcg_list, &parent->objcg_list);
340
341 spin_unlock_irq(&objcg_lock);
342
343 percpu_ref_kill(&objcg->refcnt);
344}
345
346/*
347 * A lot of the calls to the cache allocation functions are expected to be
348 * inlined by the compiler. Since the calls to memcg_slab_pre_alloc_hook() are
349 * conditional to this static branch, we'll have to allow modules that does
350 * kmem_cache_alloc and the such to see this symbol as well
351 */
352DEFINE_STATIC_KEY_FALSE(memcg_kmem_online_key);
353EXPORT_SYMBOL(memcg_kmem_online_key);
354
355DEFINE_STATIC_KEY_FALSE(memcg_bpf_enabled_key);
356EXPORT_SYMBOL(memcg_bpf_enabled_key);
357#endif
358
359/**
360 * mem_cgroup_css_from_folio - css of the memcg associated with a folio
361 * @folio: folio of interest
362 *
363 * If memcg is bound to the default hierarchy, css of the memcg associated
364 * with @folio is returned. The returned css remains associated with @folio
365 * until it is released.
366 *
367 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
368 * is returned.
369 */
370struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio)
371{
372 struct mem_cgroup *memcg = folio_memcg(folio);
373
374 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
375 memcg = root_mem_cgroup;
376
377 return &memcg->css;
378}
379
380/**
381 * page_cgroup_ino - return inode number of the memcg a page is charged to
382 * @page: the page
383 *
384 * Look up the closest online ancestor of the memory cgroup @page is charged to
385 * and return its inode number or 0 if @page is not charged to any cgroup. It
386 * is safe to call this function without holding a reference to @page.
387 *
388 * Note, this function is inherently racy, because there is nothing to prevent
389 * the cgroup inode from getting torn down and potentially reallocated a moment
390 * after page_cgroup_ino() returns, so it only should be used by callers that
391 * do not care (such as procfs interfaces).
392 */
393ino_t page_cgroup_ino(struct page *page)
394{
395 struct mem_cgroup *memcg;
396 unsigned long ino = 0;
397
398 rcu_read_lock();
399 /* page_folio() is racy here, but the entire function is racy anyway */
400 memcg = folio_memcg_check(page_folio(page));
401
402 while (memcg && !(memcg->css.flags & CSS_ONLINE))
403 memcg = parent_mem_cgroup(memcg);
404 if (memcg)
405 ino = cgroup_ino(memcg->css.cgroup);
406 rcu_read_unlock();
407 return ino;
408}
409
410static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
411 struct mem_cgroup_tree_per_node *mctz,
412 unsigned long new_usage_in_excess)
413{
414 struct rb_node **p = &mctz->rb_root.rb_node;
415 struct rb_node *parent = NULL;
416 struct mem_cgroup_per_node *mz_node;
417 bool rightmost = true;
418
419 if (mz->on_tree)
420 return;
421
422 mz->usage_in_excess = new_usage_in_excess;
423 if (!mz->usage_in_excess)
424 return;
425 while (*p) {
426 parent = *p;
427 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
428 tree_node);
429 if (mz->usage_in_excess < mz_node->usage_in_excess) {
430 p = &(*p)->rb_left;
431 rightmost = false;
432 } else {
433 p = &(*p)->rb_right;
434 }
435 }
436
437 if (rightmost)
438 mctz->rb_rightmost = &mz->tree_node;
439
440 rb_link_node(&mz->tree_node, parent, p);
441 rb_insert_color(&mz->tree_node, &mctz->rb_root);
442 mz->on_tree = true;
443}
444
445static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
446 struct mem_cgroup_tree_per_node *mctz)
447{
448 if (!mz->on_tree)
449 return;
450
451 if (&mz->tree_node == mctz->rb_rightmost)
452 mctz->rb_rightmost = rb_prev(&mz->tree_node);
453
454 rb_erase(&mz->tree_node, &mctz->rb_root);
455 mz->on_tree = false;
456}
457
458static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
459 struct mem_cgroup_tree_per_node *mctz)
460{
461 unsigned long flags;
462
463 spin_lock_irqsave(&mctz->lock, flags);
464 __mem_cgroup_remove_exceeded(mz, mctz);
465 spin_unlock_irqrestore(&mctz->lock, flags);
466}
467
468static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
469{
470 unsigned long nr_pages = page_counter_read(&memcg->memory);
471 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
472 unsigned long excess = 0;
473
474 if (nr_pages > soft_limit)
475 excess = nr_pages - soft_limit;
476
477 return excess;
478}
479
480static void mem_cgroup_update_tree(struct mem_cgroup *memcg, int nid)
481{
482 unsigned long excess;
483 struct mem_cgroup_per_node *mz;
484 struct mem_cgroup_tree_per_node *mctz;
485
486 if (lru_gen_enabled()) {
487 if (soft_limit_excess(memcg))
488 lru_gen_soft_reclaim(&memcg->nodeinfo[nid]->lruvec);
489 return;
490 }
491
492 mctz = soft_limit_tree.rb_tree_per_node[nid];
493 if (!mctz)
494 return;
495 /*
496 * Necessary to update all ancestors when hierarchy is used.
497 * because their event counter is not touched.
498 */
499 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
500 mz = memcg->nodeinfo[nid];
501 excess = soft_limit_excess(memcg);
502 /*
503 * We have to update the tree if mz is on RB-tree or
504 * mem is over its softlimit.
505 */
506 if (excess || mz->on_tree) {
507 unsigned long flags;
508
509 spin_lock_irqsave(&mctz->lock, flags);
510 /* if on-tree, remove it */
511 if (mz->on_tree)
512 __mem_cgroup_remove_exceeded(mz, mctz);
513 /*
514 * Insert again. mz->usage_in_excess will be updated.
515 * If excess is 0, no tree ops.
516 */
517 __mem_cgroup_insert_exceeded(mz, mctz, excess);
518 spin_unlock_irqrestore(&mctz->lock, flags);
519 }
520 }
521}
522
523static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
524{
525 struct mem_cgroup_tree_per_node *mctz;
526 struct mem_cgroup_per_node *mz;
527 int nid;
528
529 for_each_node(nid) {
530 mz = memcg->nodeinfo[nid];
531 mctz = soft_limit_tree.rb_tree_per_node[nid];
532 if (mctz)
533 mem_cgroup_remove_exceeded(mz, mctz);
534 }
535}
536
537static struct mem_cgroup_per_node *
538__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
539{
540 struct mem_cgroup_per_node *mz;
541
542retry:
543 mz = NULL;
544 if (!mctz->rb_rightmost)
545 goto done; /* Nothing to reclaim from */
546
547 mz = rb_entry(mctz->rb_rightmost,
548 struct mem_cgroup_per_node, tree_node);
549 /*
550 * Remove the node now but someone else can add it back,
551 * we will to add it back at the end of reclaim to its correct
552 * position in the tree.
553 */
554 __mem_cgroup_remove_exceeded(mz, mctz);
555 if (!soft_limit_excess(mz->memcg) ||
556 !css_tryget(&mz->memcg->css))
557 goto retry;
558done:
559 return mz;
560}
561
562static struct mem_cgroup_per_node *
563mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
564{
565 struct mem_cgroup_per_node *mz;
566
567 spin_lock_irq(&mctz->lock);
568 mz = __mem_cgroup_largest_soft_limit_node(mctz);
569 spin_unlock_irq(&mctz->lock);
570 return mz;
571}
572
573/*
574 * memcg and lruvec stats flushing
575 *
576 * Many codepaths leading to stats update or read are performance sensitive and
577 * adding stats flushing in such codepaths is not desirable. So, to optimize the
578 * flushing the kernel does:
579 *
580 * 1) Periodically and asynchronously flush the stats every 2 seconds to not let
581 * rstat update tree grow unbounded.
582 *
583 * 2) Flush the stats synchronously on reader side only when there are more than
584 * (MEMCG_CHARGE_BATCH * nr_cpus) update events. Though this optimization
585 * will let stats be out of sync by atmost (MEMCG_CHARGE_BATCH * nr_cpus) but
586 * only for 2 seconds due to (1).
587 */
588static void flush_memcg_stats_dwork(struct work_struct *w);
589static DECLARE_DEFERRABLE_WORK(stats_flush_dwork, flush_memcg_stats_dwork);
590static DEFINE_PER_CPU(unsigned int, stats_updates);
591static atomic_t stats_flush_ongoing = ATOMIC_INIT(0);
592static atomic_t stats_flush_threshold = ATOMIC_INIT(0);
593static u64 flush_next_time;
594
595#define FLUSH_TIME (2UL*HZ)
596
597/*
598 * Accessors to ensure that preemption is disabled on PREEMPT_RT because it can
599 * not rely on this as part of an acquired spinlock_t lock. These functions are
600 * never used in hardirq context on PREEMPT_RT and therefore disabling preemtion
601 * is sufficient.
602 */
603static void memcg_stats_lock(void)
604{
605 preempt_disable_nested();
606 VM_WARN_ON_IRQS_ENABLED();
607}
608
609static void __memcg_stats_lock(void)
610{
611 preempt_disable_nested();
612}
613
614static void memcg_stats_unlock(void)
615{
616 preempt_enable_nested();
617}
618
619static inline void memcg_rstat_updated(struct mem_cgroup *memcg, int val)
620{
621 unsigned int x;
622
623 if (!val)
624 return;
625
626 cgroup_rstat_updated(memcg->css.cgroup, smp_processor_id());
627
628 x = __this_cpu_add_return(stats_updates, abs(val));
629 if (x > MEMCG_CHARGE_BATCH) {
630 /*
631 * If stats_flush_threshold exceeds the threshold
632 * (>num_online_cpus()), cgroup stats update will be triggered
633 * in __mem_cgroup_flush_stats(). Increasing this var further
634 * is redundant and simply adds overhead in atomic update.
635 */
636 if (atomic_read(&stats_flush_threshold) <= num_online_cpus())
637 atomic_add(x / MEMCG_CHARGE_BATCH, &stats_flush_threshold);
638 __this_cpu_write(stats_updates, 0);
639 }
640}
641
642static void do_flush_stats(bool atomic)
643{
644 /*
645 * We always flush the entire tree, so concurrent flushers can just
646 * skip. This avoids a thundering herd problem on the rstat global lock
647 * from memcg flushers (e.g. reclaim, refault, etc).
648 */
649 if (atomic_read(&stats_flush_ongoing) ||
650 atomic_xchg(&stats_flush_ongoing, 1))
651 return;
652
653 WRITE_ONCE(flush_next_time, jiffies_64 + 2*FLUSH_TIME);
654
655 if (atomic)
656 cgroup_rstat_flush_atomic(root_mem_cgroup->css.cgroup);
657 else
658 cgroup_rstat_flush(root_mem_cgroup->css.cgroup);
659
660 atomic_set(&stats_flush_threshold, 0);
661 atomic_set(&stats_flush_ongoing, 0);
662}
663
664static bool should_flush_stats(void)
665{
666 return atomic_read(&stats_flush_threshold) > num_online_cpus();
667}
668
669void mem_cgroup_flush_stats(void)
670{
671 if (should_flush_stats())
672 do_flush_stats(false);
673}
674
675void mem_cgroup_flush_stats_atomic(void)
676{
677 if (should_flush_stats())
678 do_flush_stats(true);
679}
680
681void mem_cgroup_flush_stats_ratelimited(void)
682{
683 if (time_after64(jiffies_64, READ_ONCE(flush_next_time)))
684 mem_cgroup_flush_stats();
685}
686
687static void flush_memcg_stats_dwork(struct work_struct *w)
688{
689 /*
690 * Always flush here so that flushing in latency-sensitive paths is
691 * as cheap as possible.
692 */
693 do_flush_stats(false);
694 queue_delayed_work(system_unbound_wq, &stats_flush_dwork, FLUSH_TIME);
695}
696
697/* Subset of vm_event_item to report for memcg event stats */
698static const unsigned int memcg_vm_event_stat[] = {
699 PGPGIN,
700 PGPGOUT,
701 PGSCAN_KSWAPD,
702 PGSCAN_DIRECT,
703 PGSCAN_KHUGEPAGED,
704 PGSTEAL_KSWAPD,
705 PGSTEAL_DIRECT,
706 PGSTEAL_KHUGEPAGED,
707 PGFAULT,
708 PGMAJFAULT,
709 PGREFILL,
710 PGACTIVATE,
711 PGDEACTIVATE,
712 PGLAZYFREE,
713 PGLAZYFREED,
714#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
715 ZSWPIN,
716 ZSWPOUT,
717#endif
718#ifdef CONFIG_TRANSPARENT_HUGEPAGE
719 THP_FAULT_ALLOC,
720 THP_COLLAPSE_ALLOC,
721#endif
722};
723
724#define NR_MEMCG_EVENTS ARRAY_SIZE(memcg_vm_event_stat)
725static int mem_cgroup_events_index[NR_VM_EVENT_ITEMS] __read_mostly;
726
727static void init_memcg_events(void)
728{
729 int i;
730
731 for (i = 0; i < NR_MEMCG_EVENTS; ++i)
732 mem_cgroup_events_index[memcg_vm_event_stat[i]] = i + 1;
733}
734
735static inline int memcg_events_index(enum vm_event_item idx)
736{
737 return mem_cgroup_events_index[idx] - 1;
738}
739
740struct memcg_vmstats_percpu {
741 /* Local (CPU and cgroup) page state & events */
742 long state[MEMCG_NR_STAT];
743 unsigned long events[NR_MEMCG_EVENTS];
744
745 /* Delta calculation for lockless upward propagation */
746 long state_prev[MEMCG_NR_STAT];
747 unsigned long events_prev[NR_MEMCG_EVENTS];
748
749 /* Cgroup1: threshold notifications & softlimit tree updates */
750 unsigned long nr_page_events;
751 unsigned long targets[MEM_CGROUP_NTARGETS];
752};
753
754struct memcg_vmstats {
755 /* Aggregated (CPU and subtree) page state & events */
756 long state[MEMCG_NR_STAT];
757 unsigned long events[NR_MEMCG_EVENTS];
758
759 /* Pending child counts during tree propagation */
760 long state_pending[MEMCG_NR_STAT];
761 unsigned long events_pending[NR_MEMCG_EVENTS];
762};
763
764unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
765{
766 long x = READ_ONCE(memcg->vmstats->state[idx]);
767#ifdef CONFIG_SMP
768 if (x < 0)
769 x = 0;
770#endif
771 return x;
772}
773
774/**
775 * __mod_memcg_state - update cgroup memory statistics
776 * @memcg: the memory cgroup
777 * @idx: the stat item - can be enum memcg_stat_item or enum node_stat_item
778 * @val: delta to add to the counter, can be negative
779 */
780void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val)
781{
782 if (mem_cgroup_disabled())
783 return;
784
785 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
786 memcg_rstat_updated(memcg, val);
787}
788
789/* idx can be of type enum memcg_stat_item or node_stat_item. */
790static unsigned long memcg_page_state_local(struct mem_cgroup *memcg, int idx)
791{
792 long x = 0;
793 int cpu;
794
795 for_each_possible_cpu(cpu)
796 x += per_cpu(memcg->vmstats_percpu->state[idx], cpu);
797#ifdef CONFIG_SMP
798 if (x < 0)
799 x = 0;
800#endif
801 return x;
802}
803
804void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
805 int val)
806{
807 struct mem_cgroup_per_node *pn;
808 struct mem_cgroup *memcg;
809
810 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
811 memcg = pn->memcg;
812
813 /*
814 * The caller from rmap relay on disabled preemption becase they never
815 * update their counter from in-interrupt context. For these two
816 * counters we check that the update is never performed from an
817 * interrupt context while other caller need to have disabled interrupt.
818 */
819 __memcg_stats_lock();
820 if (IS_ENABLED(CONFIG_DEBUG_VM)) {
821 switch (idx) {
822 case NR_ANON_MAPPED:
823 case NR_FILE_MAPPED:
824 case NR_ANON_THPS:
825 case NR_SHMEM_PMDMAPPED:
826 case NR_FILE_PMDMAPPED:
827 WARN_ON_ONCE(!in_task());
828 break;
829 default:
830 VM_WARN_ON_IRQS_ENABLED();
831 }
832 }
833
834 /* Update memcg */
835 __this_cpu_add(memcg->vmstats_percpu->state[idx], val);
836
837 /* Update lruvec */
838 __this_cpu_add(pn->lruvec_stats_percpu->state[idx], val);
839
840 memcg_rstat_updated(memcg, val);
841 memcg_stats_unlock();
842}
843
844/**
845 * __mod_lruvec_state - update lruvec memory statistics
846 * @lruvec: the lruvec
847 * @idx: the stat item
848 * @val: delta to add to the counter, can be negative
849 *
850 * The lruvec is the intersection of the NUMA node and a cgroup. This
851 * function updates the all three counters that are affected by a
852 * change of state at this level: per-node, per-cgroup, per-lruvec.
853 */
854void __mod_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
855 int val)
856{
857 /* Update node */
858 __mod_node_page_state(lruvec_pgdat(lruvec), idx, val);
859
860 /* Update memcg and lruvec */
861 if (!mem_cgroup_disabled())
862 __mod_memcg_lruvec_state(lruvec, idx, val);
863}
864
865void __mod_lruvec_page_state(struct page *page, enum node_stat_item idx,
866 int val)
867{
868 struct page *head = compound_head(page); /* rmap on tail pages */
869 struct mem_cgroup *memcg;
870 pg_data_t *pgdat = page_pgdat(page);
871 struct lruvec *lruvec;
872
873 rcu_read_lock();
874 memcg = page_memcg(head);
875 /* Untracked pages have no memcg, no lruvec. Update only the node */
876 if (!memcg) {
877 rcu_read_unlock();
878 __mod_node_page_state(pgdat, idx, val);
879 return;
880 }
881
882 lruvec = mem_cgroup_lruvec(memcg, pgdat);
883 __mod_lruvec_state(lruvec, idx, val);
884 rcu_read_unlock();
885}
886EXPORT_SYMBOL(__mod_lruvec_page_state);
887
888void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val)
889{
890 pg_data_t *pgdat = page_pgdat(virt_to_page(p));
891 struct mem_cgroup *memcg;
892 struct lruvec *lruvec;
893
894 rcu_read_lock();
895 memcg = mem_cgroup_from_slab_obj(p);
896
897 /*
898 * Untracked pages have no memcg, no lruvec. Update only the
899 * node. If we reparent the slab objects to the root memcg,
900 * when we free the slab object, we need to update the per-memcg
901 * vmstats to keep it correct for the root memcg.
902 */
903 if (!memcg) {
904 __mod_node_page_state(pgdat, idx, val);
905 } else {
906 lruvec = mem_cgroup_lruvec(memcg, pgdat);
907 __mod_lruvec_state(lruvec, idx, val);
908 }
909 rcu_read_unlock();
910}
911
912/**
913 * __count_memcg_events - account VM events in a cgroup
914 * @memcg: the memory cgroup
915 * @idx: the event item
916 * @count: the number of events that occurred
917 */
918void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
919 unsigned long count)
920{
921 int index = memcg_events_index(idx);
922
923 if (mem_cgroup_disabled() || index < 0)
924 return;
925
926 memcg_stats_lock();
927 __this_cpu_add(memcg->vmstats_percpu->events[index], count);
928 memcg_rstat_updated(memcg, count);
929 memcg_stats_unlock();
930}
931
932static unsigned long memcg_events(struct mem_cgroup *memcg, int event)
933{
934 int index = memcg_events_index(event);
935
936 if (index < 0)
937 return 0;
938 return READ_ONCE(memcg->vmstats->events[index]);
939}
940
941static unsigned long memcg_events_local(struct mem_cgroup *memcg, int event)
942{
943 long x = 0;
944 int cpu;
945 int index = memcg_events_index(event);
946
947 if (index < 0)
948 return 0;
949
950 for_each_possible_cpu(cpu)
951 x += per_cpu(memcg->vmstats_percpu->events[index], cpu);
952 return x;
953}
954
955static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
956 int nr_pages)
957{
958 /* pagein of a big page is an event. So, ignore page size */
959 if (nr_pages > 0)
960 __count_memcg_events(memcg, PGPGIN, 1);
961 else {
962 __count_memcg_events(memcg, PGPGOUT, 1);
963 nr_pages = -nr_pages; /* for event */
964 }
965
966 __this_cpu_add(memcg->vmstats_percpu->nr_page_events, nr_pages);
967}
968
969static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
970 enum mem_cgroup_events_target target)
971{
972 unsigned long val, next;
973
974 val = __this_cpu_read(memcg->vmstats_percpu->nr_page_events);
975 next = __this_cpu_read(memcg->vmstats_percpu->targets[target]);
976 /* from time_after() in jiffies.h */
977 if ((long)(next - val) < 0) {
978 switch (target) {
979 case MEM_CGROUP_TARGET_THRESH:
980 next = val + THRESHOLDS_EVENTS_TARGET;
981 break;
982 case MEM_CGROUP_TARGET_SOFTLIMIT:
983 next = val + SOFTLIMIT_EVENTS_TARGET;
984 break;
985 default:
986 break;
987 }
988 __this_cpu_write(memcg->vmstats_percpu->targets[target], next);
989 return true;
990 }
991 return false;
992}
993
994/*
995 * Check events in order.
996 *
997 */
998static void memcg_check_events(struct mem_cgroup *memcg, int nid)
999{
1000 if (IS_ENABLED(CONFIG_PREEMPT_RT))
1001 return;
1002
1003 /* threshold event is triggered in finer grain than soft limit */
1004 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1005 MEM_CGROUP_TARGET_THRESH))) {
1006 bool do_softlimit;
1007
1008 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1009 MEM_CGROUP_TARGET_SOFTLIMIT);
1010 mem_cgroup_threshold(memcg);
1011 if (unlikely(do_softlimit))
1012 mem_cgroup_update_tree(memcg, nid);
1013 }
1014}
1015
1016struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
1017{
1018 /*
1019 * mm_update_next_owner() may clear mm->owner to NULL
1020 * if it races with swapoff, page migration, etc.
1021 * So this can be called with p == NULL.
1022 */
1023 if (unlikely(!p))
1024 return NULL;
1025
1026 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
1027}
1028EXPORT_SYMBOL(mem_cgroup_from_task);
1029
1030static __always_inline struct mem_cgroup *active_memcg(void)
1031{
1032 if (!in_task())
1033 return this_cpu_read(int_active_memcg);
1034 else
1035 return current->active_memcg;
1036}
1037
1038/**
1039 * get_mem_cgroup_from_mm: Obtain a reference on given mm_struct's memcg.
1040 * @mm: mm from which memcg should be extracted. It can be NULL.
1041 *
1042 * Obtain a reference on mm->memcg and returns it if successful. If mm
1043 * is NULL, then the memcg is chosen as follows:
1044 * 1) The active memcg, if set.
1045 * 2) current->mm->memcg, if available
1046 * 3) root memcg
1047 * If mem_cgroup is disabled, NULL is returned.
1048 */
1049struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1050{
1051 struct mem_cgroup *memcg;
1052
1053 if (mem_cgroup_disabled())
1054 return NULL;
1055
1056 /*
1057 * Page cache insertions can happen without an
1058 * actual mm context, e.g. during disk probing
1059 * on boot, loopback IO, acct() writes etc.
1060 *
1061 * No need to css_get on root memcg as the reference
1062 * counting is disabled on the root level in the
1063 * cgroup core. See CSS_NO_REF.
1064 */
1065 if (unlikely(!mm)) {
1066 memcg = active_memcg();
1067 if (unlikely(memcg)) {
1068 /* remote memcg must hold a ref */
1069 css_get(&memcg->css);
1070 return memcg;
1071 }
1072 mm = current->mm;
1073 if (unlikely(!mm))
1074 return root_mem_cgroup;
1075 }
1076
1077 rcu_read_lock();
1078 do {
1079 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1080 if (unlikely(!memcg))
1081 memcg = root_mem_cgroup;
1082 } while (!css_tryget(&memcg->css));
1083 rcu_read_unlock();
1084 return memcg;
1085}
1086EXPORT_SYMBOL(get_mem_cgroup_from_mm);
1087
1088static __always_inline bool memcg_kmem_bypass(void)
1089{
1090 /* Allow remote memcg charging from any context. */
1091 if (unlikely(active_memcg()))
1092 return false;
1093
1094 /* Memcg to charge can't be determined. */
1095 if (!in_task() || !current->mm || (current->flags & PF_KTHREAD))
1096 return true;
1097
1098 return false;
1099}
1100
1101/**
1102 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1103 * @root: hierarchy root
1104 * @prev: previously returned memcg, NULL on first invocation
1105 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1106 *
1107 * Returns references to children of the hierarchy below @root, or
1108 * @root itself, or %NULL after a full round-trip.
1109 *
1110 * Caller must pass the return value in @prev on subsequent
1111 * invocations for reference counting, or use mem_cgroup_iter_break()
1112 * to cancel a hierarchy walk before the round-trip is complete.
1113 *
1114 * Reclaimers can specify a node in @reclaim to divide up the memcgs
1115 * in the hierarchy among all concurrent reclaimers operating on the
1116 * same node.
1117 */
1118struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1119 struct mem_cgroup *prev,
1120 struct mem_cgroup_reclaim_cookie *reclaim)
1121{
1122 struct mem_cgroup_reclaim_iter *iter;
1123 struct cgroup_subsys_state *css = NULL;
1124 struct mem_cgroup *memcg = NULL;
1125 struct mem_cgroup *pos = NULL;
1126
1127 if (mem_cgroup_disabled())
1128 return NULL;
1129
1130 if (!root)
1131 root = root_mem_cgroup;
1132
1133 rcu_read_lock();
1134
1135 if (reclaim) {
1136 struct mem_cgroup_per_node *mz;
1137
1138 mz = root->nodeinfo[reclaim->pgdat->node_id];
1139 iter = &mz->iter;
1140
1141 /*
1142 * On start, join the current reclaim iteration cycle.
1143 * Exit when a concurrent walker completes it.
1144 */
1145 if (!prev)
1146 reclaim->generation = iter->generation;
1147 else if (reclaim->generation != iter->generation)
1148 goto out_unlock;
1149
1150 while (1) {
1151 pos = READ_ONCE(iter->position);
1152 if (!pos || css_tryget(&pos->css))
1153 break;
1154 /*
1155 * css reference reached zero, so iter->position will
1156 * be cleared by ->css_released. However, we should not
1157 * rely on this happening soon, because ->css_released
1158 * is called from a work queue, and by busy-waiting we
1159 * might block it. So we clear iter->position right
1160 * away.
1161 */
1162 (void)cmpxchg(&iter->position, pos, NULL);
1163 }
1164 } else if (prev) {
1165 pos = prev;
1166 }
1167
1168 if (pos)
1169 css = &pos->css;
1170
1171 for (;;) {
1172 css = css_next_descendant_pre(css, &root->css);
1173 if (!css) {
1174 /*
1175 * Reclaimers share the hierarchy walk, and a
1176 * new one might jump in right at the end of
1177 * the hierarchy - make sure they see at least
1178 * one group and restart from the beginning.
1179 */
1180 if (!prev)
1181 continue;
1182 break;
1183 }
1184
1185 /*
1186 * Verify the css and acquire a reference. The root
1187 * is provided by the caller, so we know it's alive
1188 * and kicking, and don't take an extra reference.
1189 */
1190 if (css == &root->css || css_tryget(css)) {
1191 memcg = mem_cgroup_from_css(css);
1192 break;
1193 }
1194 }
1195
1196 if (reclaim) {
1197 /*
1198 * The position could have already been updated by a competing
1199 * thread, so check that the value hasn't changed since we read
1200 * it to avoid reclaiming from the same cgroup twice.
1201 */
1202 (void)cmpxchg(&iter->position, pos, memcg);
1203
1204 if (pos)
1205 css_put(&pos->css);
1206
1207 if (!memcg)
1208 iter->generation++;
1209 }
1210
1211out_unlock:
1212 rcu_read_unlock();
1213 if (prev && prev != root)
1214 css_put(&prev->css);
1215
1216 return memcg;
1217}
1218
1219/**
1220 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1221 * @root: hierarchy root
1222 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1223 */
1224void mem_cgroup_iter_break(struct mem_cgroup *root,
1225 struct mem_cgroup *prev)
1226{
1227 if (!root)
1228 root = root_mem_cgroup;
1229 if (prev && prev != root)
1230 css_put(&prev->css);
1231}
1232
1233static void __invalidate_reclaim_iterators(struct mem_cgroup *from,
1234 struct mem_cgroup *dead_memcg)
1235{
1236 struct mem_cgroup_reclaim_iter *iter;
1237 struct mem_cgroup_per_node *mz;
1238 int nid;
1239
1240 for_each_node(nid) {
1241 mz = from->nodeinfo[nid];
1242 iter = &mz->iter;
1243 cmpxchg(&iter->position, dead_memcg, NULL);
1244 }
1245}
1246
1247static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
1248{
1249 struct mem_cgroup *memcg = dead_memcg;
1250 struct mem_cgroup *last;
1251
1252 do {
1253 __invalidate_reclaim_iterators(memcg, dead_memcg);
1254 last = memcg;
1255 } while ((memcg = parent_mem_cgroup(memcg)));
1256
1257 /*
1258 * When cgroup1 non-hierarchy mode is used,
1259 * parent_mem_cgroup() does not walk all the way up to the
1260 * cgroup root (root_mem_cgroup). So we have to handle
1261 * dead_memcg from cgroup root separately.
1262 */
1263 if (!mem_cgroup_is_root(last))
1264 __invalidate_reclaim_iterators(root_mem_cgroup,
1265 dead_memcg);
1266}
1267
1268/**
1269 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
1270 * @memcg: hierarchy root
1271 * @fn: function to call for each task
1272 * @arg: argument passed to @fn
1273 *
1274 * This function iterates over tasks attached to @memcg or to any of its
1275 * descendants and calls @fn for each task. If @fn returns a non-zero
1276 * value, the function breaks the iteration loop and returns the value.
1277 * Otherwise, it will iterate over all tasks and return 0.
1278 *
1279 * This function must not be called for the root memory cgroup.
1280 */
1281int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1282 int (*fn)(struct task_struct *, void *), void *arg)
1283{
1284 struct mem_cgroup *iter;
1285 int ret = 0;
1286
1287 BUG_ON(mem_cgroup_is_root(memcg));
1288
1289 for_each_mem_cgroup_tree(iter, memcg) {
1290 struct css_task_iter it;
1291 struct task_struct *task;
1292
1293 css_task_iter_start(&iter->css, CSS_TASK_ITER_PROCS, &it);
1294 while (!ret && (task = css_task_iter_next(&it)))
1295 ret = fn(task, arg);
1296 css_task_iter_end(&it);
1297 if (ret) {
1298 mem_cgroup_iter_break(memcg, iter);
1299 break;
1300 }
1301 }
1302 return ret;
1303}
1304
1305#ifdef CONFIG_DEBUG_VM
1306void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1307{
1308 struct mem_cgroup *memcg;
1309
1310 if (mem_cgroup_disabled())
1311 return;
1312
1313 memcg = folio_memcg(folio);
1314
1315 if (!memcg)
1316 VM_BUG_ON_FOLIO(!mem_cgroup_is_root(lruvec_memcg(lruvec)), folio);
1317 else
1318 VM_BUG_ON_FOLIO(lruvec_memcg(lruvec) != memcg, folio);
1319}
1320#endif
1321
1322/**
1323 * folio_lruvec_lock - Lock the lruvec for a folio.
1324 * @folio: Pointer to the folio.
1325 *
1326 * These functions are safe to use under any of the following conditions:
1327 * - folio locked
1328 * - folio_test_lru false
1329 * - folio_memcg_lock()
1330 * - folio frozen (refcount of 0)
1331 *
1332 * Return: The lruvec this folio is on with its lock held.
1333 */
1334struct lruvec *folio_lruvec_lock(struct folio *folio)
1335{
1336 struct lruvec *lruvec = folio_lruvec(folio);
1337
1338 spin_lock(&lruvec->lru_lock);
1339 lruvec_memcg_debug(lruvec, folio);
1340
1341 return lruvec;
1342}
1343
1344/**
1345 * folio_lruvec_lock_irq - Lock the lruvec for a folio.
1346 * @folio: Pointer to the folio.
1347 *
1348 * These functions are safe to use under any of the following conditions:
1349 * - folio locked
1350 * - folio_test_lru false
1351 * - folio_memcg_lock()
1352 * - folio frozen (refcount of 0)
1353 *
1354 * Return: The lruvec this folio is on with its lock held and interrupts
1355 * disabled.
1356 */
1357struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1358{
1359 struct lruvec *lruvec = folio_lruvec(folio);
1360
1361 spin_lock_irq(&lruvec->lru_lock);
1362 lruvec_memcg_debug(lruvec, folio);
1363
1364 return lruvec;
1365}
1366
1367/**
1368 * folio_lruvec_lock_irqsave - Lock the lruvec for a folio.
1369 * @folio: Pointer to the folio.
1370 * @flags: Pointer to irqsave flags.
1371 *
1372 * These functions are safe to use under any of the following conditions:
1373 * - folio locked
1374 * - folio_test_lru false
1375 * - folio_memcg_lock()
1376 * - folio frozen (refcount of 0)
1377 *
1378 * Return: The lruvec this folio is on with its lock held and interrupts
1379 * disabled.
1380 */
1381struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1382 unsigned long *flags)
1383{
1384 struct lruvec *lruvec = folio_lruvec(folio);
1385
1386 spin_lock_irqsave(&lruvec->lru_lock, *flags);
1387 lruvec_memcg_debug(lruvec, folio);
1388
1389 return lruvec;
1390}
1391
1392/**
1393 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1394 * @lruvec: mem_cgroup per zone lru vector
1395 * @lru: index of lru list the page is sitting on
1396 * @zid: zone id of the accounted pages
1397 * @nr_pages: positive when adding or negative when removing
1398 *
1399 * This function must be called under lru_lock, just before a page is added
1400 * to or just after a page is removed from an lru list.
1401 */
1402void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1403 int zid, int nr_pages)
1404{
1405 struct mem_cgroup_per_node *mz;
1406 unsigned long *lru_size;
1407 long size;
1408
1409 if (mem_cgroup_disabled())
1410 return;
1411
1412 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1413 lru_size = &mz->lru_zone_size[zid][lru];
1414
1415 if (nr_pages < 0)
1416 *lru_size += nr_pages;
1417
1418 size = *lru_size;
1419 if (WARN_ONCE(size < 0,
1420 "%s(%p, %d, %d): lru_size %ld\n",
1421 __func__, lruvec, lru, nr_pages, size)) {
1422 VM_BUG_ON(1);
1423 *lru_size = 0;
1424 }
1425
1426 if (nr_pages > 0)
1427 *lru_size += nr_pages;
1428}
1429
1430/**
1431 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
1432 * @memcg: the memory cgroup
1433 *
1434 * Returns the maximum amount of memory @mem can be charged with, in
1435 * pages.
1436 */
1437static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
1438{
1439 unsigned long margin = 0;
1440 unsigned long count;
1441 unsigned long limit;
1442
1443 count = page_counter_read(&memcg->memory);
1444 limit = READ_ONCE(memcg->memory.max);
1445 if (count < limit)
1446 margin = limit - count;
1447
1448 if (do_memsw_account()) {
1449 count = page_counter_read(&memcg->memsw);
1450 limit = READ_ONCE(memcg->memsw.max);
1451 if (count < limit)
1452 margin = min(margin, limit - count);
1453 else
1454 margin = 0;
1455 }
1456
1457 return margin;
1458}
1459
1460/*
1461 * A routine for checking "mem" is under move_account() or not.
1462 *
1463 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1464 * moving cgroups. This is for waiting at high-memory pressure
1465 * caused by "move".
1466 */
1467static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
1468{
1469 struct mem_cgroup *from;
1470 struct mem_cgroup *to;
1471 bool ret = false;
1472 /*
1473 * Unlike task_move routines, we access mc.to, mc.from not under
1474 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1475 */
1476 spin_lock(&mc.lock);
1477 from = mc.from;
1478 to = mc.to;
1479 if (!from)
1480 goto unlock;
1481
1482 ret = mem_cgroup_is_descendant(from, memcg) ||
1483 mem_cgroup_is_descendant(to, memcg);
1484unlock:
1485 spin_unlock(&mc.lock);
1486 return ret;
1487}
1488
1489static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
1490{
1491 if (mc.moving_task && current != mc.moving_task) {
1492 if (mem_cgroup_under_move(memcg)) {
1493 DEFINE_WAIT(wait);
1494 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1495 /* moving charge context might have finished. */
1496 if (mc.moving_task)
1497 schedule();
1498 finish_wait(&mc.waitq, &wait);
1499 return true;
1500 }
1501 }
1502 return false;
1503}
1504
1505struct memory_stat {
1506 const char *name;
1507 unsigned int idx;
1508};
1509
1510static const struct memory_stat memory_stats[] = {
1511 { "anon", NR_ANON_MAPPED },
1512 { "file", NR_FILE_PAGES },
1513 { "kernel", MEMCG_KMEM },
1514 { "kernel_stack", NR_KERNEL_STACK_KB },
1515 { "pagetables", NR_PAGETABLE },
1516 { "sec_pagetables", NR_SECONDARY_PAGETABLE },
1517 { "percpu", MEMCG_PERCPU_B },
1518 { "sock", MEMCG_SOCK },
1519 { "vmalloc", MEMCG_VMALLOC },
1520 { "shmem", NR_SHMEM },
1521#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1522 { "zswap", MEMCG_ZSWAP_B },
1523 { "zswapped", MEMCG_ZSWAPPED },
1524#endif
1525 { "file_mapped", NR_FILE_MAPPED },
1526 { "file_dirty", NR_FILE_DIRTY },
1527 { "file_writeback", NR_WRITEBACK },
1528#ifdef CONFIG_SWAP
1529 { "swapcached", NR_SWAPCACHE },
1530#endif
1531#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1532 { "anon_thp", NR_ANON_THPS },
1533 { "file_thp", NR_FILE_THPS },
1534 { "shmem_thp", NR_SHMEM_THPS },
1535#endif
1536 { "inactive_anon", NR_INACTIVE_ANON },
1537 { "active_anon", NR_ACTIVE_ANON },
1538 { "inactive_file", NR_INACTIVE_FILE },
1539 { "active_file", NR_ACTIVE_FILE },
1540 { "unevictable", NR_UNEVICTABLE },
1541 { "slab_reclaimable", NR_SLAB_RECLAIMABLE_B },
1542 { "slab_unreclaimable", NR_SLAB_UNRECLAIMABLE_B },
1543
1544 /* The memory events */
1545 { "workingset_refault_anon", WORKINGSET_REFAULT_ANON },
1546 { "workingset_refault_file", WORKINGSET_REFAULT_FILE },
1547 { "workingset_activate_anon", WORKINGSET_ACTIVATE_ANON },
1548 { "workingset_activate_file", WORKINGSET_ACTIVATE_FILE },
1549 { "workingset_restore_anon", WORKINGSET_RESTORE_ANON },
1550 { "workingset_restore_file", WORKINGSET_RESTORE_FILE },
1551 { "workingset_nodereclaim", WORKINGSET_NODERECLAIM },
1552};
1553
1554/* Translate stat items to the correct unit for memory.stat output */
1555static int memcg_page_state_unit(int item)
1556{
1557 switch (item) {
1558 case MEMCG_PERCPU_B:
1559 case MEMCG_ZSWAP_B:
1560 case NR_SLAB_RECLAIMABLE_B:
1561 case NR_SLAB_UNRECLAIMABLE_B:
1562 case WORKINGSET_REFAULT_ANON:
1563 case WORKINGSET_REFAULT_FILE:
1564 case WORKINGSET_ACTIVATE_ANON:
1565 case WORKINGSET_ACTIVATE_FILE:
1566 case WORKINGSET_RESTORE_ANON:
1567 case WORKINGSET_RESTORE_FILE:
1568 case WORKINGSET_NODERECLAIM:
1569 return 1;
1570 case NR_KERNEL_STACK_KB:
1571 return SZ_1K;
1572 default:
1573 return PAGE_SIZE;
1574 }
1575}
1576
1577static inline unsigned long memcg_page_state_output(struct mem_cgroup *memcg,
1578 int item)
1579{
1580 return memcg_page_state(memcg, item) * memcg_page_state_unit(item);
1581}
1582
1583static void memory_stat_format(struct mem_cgroup *memcg, char *buf, int bufsize)
1584{
1585 struct seq_buf s;
1586 int i;
1587
1588 seq_buf_init(&s, buf, bufsize);
1589
1590 /*
1591 * Provide statistics on the state of the memory subsystem as
1592 * well as cumulative event counters that show past behavior.
1593 *
1594 * This list is ordered following a combination of these gradients:
1595 * 1) generic big picture -> specifics and details
1596 * 2) reflecting userspace activity -> reflecting kernel heuristics
1597 *
1598 * Current memory state:
1599 */
1600 mem_cgroup_flush_stats();
1601
1602 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
1603 u64 size;
1604
1605 size = memcg_page_state_output(memcg, memory_stats[i].idx);
1606 seq_buf_printf(&s, "%s %llu\n", memory_stats[i].name, size);
1607
1608 if (unlikely(memory_stats[i].idx == NR_SLAB_UNRECLAIMABLE_B)) {
1609 size += memcg_page_state_output(memcg,
1610 NR_SLAB_RECLAIMABLE_B);
1611 seq_buf_printf(&s, "slab %llu\n", size);
1612 }
1613 }
1614
1615 /* Accumulated memory events */
1616 seq_buf_printf(&s, "pgscan %lu\n",
1617 memcg_events(memcg, PGSCAN_KSWAPD) +
1618 memcg_events(memcg, PGSCAN_DIRECT) +
1619 memcg_events(memcg, PGSCAN_KHUGEPAGED));
1620 seq_buf_printf(&s, "pgsteal %lu\n",
1621 memcg_events(memcg, PGSTEAL_KSWAPD) +
1622 memcg_events(memcg, PGSTEAL_DIRECT) +
1623 memcg_events(memcg, PGSTEAL_KHUGEPAGED));
1624
1625 for (i = 0; i < ARRAY_SIZE(memcg_vm_event_stat); i++) {
1626 if (memcg_vm_event_stat[i] == PGPGIN ||
1627 memcg_vm_event_stat[i] == PGPGOUT)
1628 continue;
1629
1630 seq_buf_printf(&s, "%s %lu\n",
1631 vm_event_name(memcg_vm_event_stat[i]),
1632 memcg_events(memcg, memcg_vm_event_stat[i]));
1633 }
1634
1635 /* The above should easily fit into one page */
1636 WARN_ON_ONCE(seq_buf_has_overflowed(&s));
1637}
1638
1639#define K(x) ((x) << (PAGE_SHIFT-10))
1640/**
1641 * mem_cgroup_print_oom_context: Print OOM information relevant to
1642 * memory controller.
1643 * @memcg: The memory cgroup that went over limit
1644 * @p: Task that is going to be killed
1645 *
1646 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1647 * enabled
1648 */
1649void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1650{
1651 rcu_read_lock();
1652
1653 if (memcg) {
1654 pr_cont(",oom_memcg=");
1655 pr_cont_cgroup_path(memcg->css.cgroup);
1656 } else
1657 pr_cont(",global_oom");
1658 if (p) {
1659 pr_cont(",task_memcg=");
1660 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1661 }
1662 rcu_read_unlock();
1663}
1664
1665/**
1666 * mem_cgroup_print_oom_meminfo: Print OOM memory information relevant to
1667 * memory controller.
1668 * @memcg: The memory cgroup that went over limit
1669 */
1670void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1671{
1672 /* Use static buffer, for the caller is holding oom_lock. */
1673 static char buf[PAGE_SIZE];
1674
1675 lockdep_assert_held(&oom_lock);
1676
1677 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1678 K((u64)page_counter_read(&memcg->memory)),
1679 K((u64)READ_ONCE(memcg->memory.max)), memcg->memory.failcnt);
1680 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
1681 pr_info("swap: usage %llukB, limit %llukB, failcnt %lu\n",
1682 K((u64)page_counter_read(&memcg->swap)),
1683 K((u64)READ_ONCE(memcg->swap.max)), memcg->swap.failcnt);
1684 else {
1685 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1686 K((u64)page_counter_read(&memcg->memsw)),
1687 K((u64)memcg->memsw.max), memcg->memsw.failcnt);
1688 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1689 K((u64)page_counter_read(&memcg->kmem)),
1690 K((u64)memcg->kmem.max), memcg->kmem.failcnt);
1691 }
1692
1693 pr_info("Memory cgroup stats for ");
1694 pr_cont_cgroup_path(memcg->css.cgroup);
1695 pr_cont(":");
1696 memory_stat_format(memcg, buf, sizeof(buf));
1697 pr_info("%s", buf);
1698}
1699
1700/*
1701 * Return the memory (and swap, if configured) limit for a memcg.
1702 */
1703unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1704{
1705 unsigned long max = READ_ONCE(memcg->memory.max);
1706
1707 if (do_memsw_account()) {
1708 if (mem_cgroup_swappiness(memcg)) {
1709 /* Calculate swap excess capacity from memsw limit */
1710 unsigned long swap = READ_ONCE(memcg->memsw.max) - max;
1711
1712 max += min(swap, (unsigned long)total_swap_pages);
1713 }
1714 } else {
1715 if (mem_cgroup_swappiness(memcg))
1716 max += min(READ_ONCE(memcg->swap.max),
1717 (unsigned long)total_swap_pages);
1718 }
1719 return max;
1720}
1721
1722unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1723{
1724 return page_counter_read(&memcg->memory);
1725}
1726
1727static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1728 int order)
1729{
1730 struct oom_control oc = {
1731 .zonelist = NULL,
1732 .nodemask = NULL,
1733 .memcg = memcg,
1734 .gfp_mask = gfp_mask,
1735 .order = order,
1736 };
1737 bool ret = true;
1738
1739 if (mutex_lock_killable(&oom_lock))
1740 return true;
1741
1742 if (mem_cgroup_margin(memcg) >= (1 << order))
1743 goto unlock;
1744
1745 /*
1746 * A few threads which were not waiting at mutex_lock_killable() can
1747 * fail to bail out. Therefore, check again after holding oom_lock.
1748 */
1749 ret = task_is_dying() || out_of_memory(&oc);
1750
1751unlock:
1752 mutex_unlock(&oom_lock);
1753 return ret;
1754}
1755
1756static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1757 pg_data_t *pgdat,
1758 gfp_t gfp_mask,
1759 unsigned long *total_scanned)
1760{
1761 struct mem_cgroup *victim = NULL;
1762 int total = 0;
1763 int loop = 0;
1764 unsigned long excess;
1765 unsigned long nr_scanned;
1766 struct mem_cgroup_reclaim_cookie reclaim = {
1767 .pgdat = pgdat,
1768 };
1769
1770 excess = soft_limit_excess(root_memcg);
1771
1772 while (1) {
1773 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1774 if (!victim) {
1775 loop++;
1776 if (loop >= 2) {
1777 /*
1778 * If we have not been able to reclaim
1779 * anything, it might because there are
1780 * no reclaimable pages under this hierarchy
1781 */
1782 if (!total)
1783 break;
1784 /*
1785 * We want to do more targeted reclaim.
1786 * excess >> 2 is not to excessive so as to
1787 * reclaim too much, nor too less that we keep
1788 * coming back to reclaim from this cgroup
1789 */
1790 if (total >= (excess >> 2) ||
1791 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1792 break;
1793 }
1794 continue;
1795 }
1796 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
1797 pgdat, &nr_scanned);
1798 *total_scanned += nr_scanned;
1799 if (!soft_limit_excess(root_memcg))
1800 break;
1801 }
1802 mem_cgroup_iter_break(root_memcg, victim);
1803 return total;
1804}
1805
1806#ifdef CONFIG_LOCKDEP
1807static struct lockdep_map memcg_oom_lock_dep_map = {
1808 .name = "memcg_oom_lock",
1809};
1810#endif
1811
1812static DEFINE_SPINLOCK(memcg_oom_lock);
1813
1814/*
1815 * Check OOM-Killer is already running under our hierarchy.
1816 * If someone is running, return false.
1817 */
1818static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
1819{
1820 struct mem_cgroup *iter, *failed = NULL;
1821
1822 spin_lock(&memcg_oom_lock);
1823
1824 for_each_mem_cgroup_tree(iter, memcg) {
1825 if (iter->oom_lock) {
1826 /*
1827 * this subtree of our hierarchy is already locked
1828 * so we cannot give a lock.
1829 */
1830 failed = iter;
1831 mem_cgroup_iter_break(memcg, iter);
1832 break;
1833 } else
1834 iter->oom_lock = true;
1835 }
1836
1837 if (failed) {
1838 /*
1839 * OK, we failed to lock the whole subtree so we have
1840 * to clean up what we set up to the failing subtree
1841 */
1842 for_each_mem_cgroup_tree(iter, memcg) {
1843 if (iter == failed) {
1844 mem_cgroup_iter_break(memcg, iter);
1845 break;
1846 }
1847 iter->oom_lock = false;
1848 }
1849 } else
1850 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
1851
1852 spin_unlock(&memcg_oom_lock);
1853
1854 return !failed;
1855}
1856
1857static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
1858{
1859 struct mem_cgroup *iter;
1860
1861 spin_lock(&memcg_oom_lock);
1862 mutex_release(&memcg_oom_lock_dep_map, _RET_IP_);
1863 for_each_mem_cgroup_tree(iter, memcg)
1864 iter->oom_lock = false;
1865 spin_unlock(&memcg_oom_lock);
1866}
1867
1868static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
1869{
1870 struct mem_cgroup *iter;
1871
1872 spin_lock(&memcg_oom_lock);
1873 for_each_mem_cgroup_tree(iter, memcg)
1874 iter->under_oom++;
1875 spin_unlock(&memcg_oom_lock);
1876}
1877
1878static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
1879{
1880 struct mem_cgroup *iter;
1881
1882 /*
1883 * Be careful about under_oom underflows because a child memcg
1884 * could have been added after mem_cgroup_mark_under_oom.
1885 */
1886 spin_lock(&memcg_oom_lock);
1887 for_each_mem_cgroup_tree(iter, memcg)
1888 if (iter->under_oom > 0)
1889 iter->under_oom--;
1890 spin_unlock(&memcg_oom_lock);
1891}
1892
1893static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1894
1895struct oom_wait_info {
1896 struct mem_cgroup *memcg;
1897 wait_queue_entry_t wait;
1898};
1899
1900static int memcg_oom_wake_function(wait_queue_entry_t *wait,
1901 unsigned mode, int sync, void *arg)
1902{
1903 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1904 struct mem_cgroup *oom_wait_memcg;
1905 struct oom_wait_info *oom_wait_info;
1906
1907 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1908 oom_wait_memcg = oom_wait_info->memcg;
1909
1910 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1911 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
1912 return 0;
1913 return autoremove_wake_function(wait, mode, sync, arg);
1914}
1915
1916static void memcg_oom_recover(struct mem_cgroup *memcg)
1917{
1918 /*
1919 * For the following lockless ->under_oom test, the only required
1920 * guarantee is that it must see the state asserted by an OOM when
1921 * this function is called as a result of userland actions
1922 * triggered by the notification of the OOM. This is trivially
1923 * achieved by invoking mem_cgroup_mark_under_oom() before
1924 * triggering notification.
1925 */
1926 if (memcg && memcg->under_oom)
1927 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
1928}
1929
1930/*
1931 * Returns true if successfully killed one or more processes. Though in some
1932 * corner cases it can return true even without killing any process.
1933 */
1934static bool mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
1935{
1936 bool locked, ret;
1937
1938 if (order > PAGE_ALLOC_COSTLY_ORDER)
1939 return false;
1940
1941 memcg_memory_event(memcg, MEMCG_OOM);
1942
1943 /*
1944 * We are in the middle of the charge context here, so we
1945 * don't want to block when potentially sitting on a callstack
1946 * that holds all kinds of filesystem and mm locks.
1947 *
1948 * cgroup1 allows disabling the OOM killer and waiting for outside
1949 * handling until the charge can succeed; remember the context and put
1950 * the task to sleep at the end of the page fault when all locks are
1951 * released.
1952 *
1953 * On the other hand, in-kernel OOM killer allows for an async victim
1954 * memory reclaim (oom_reaper) and that means that we are not solely
1955 * relying on the oom victim to make a forward progress and we can
1956 * invoke the oom killer here.
1957 *
1958 * Please note that mem_cgroup_out_of_memory might fail to find a
1959 * victim and then we have to bail out from the charge path.
1960 */
1961 if (READ_ONCE(memcg->oom_kill_disable)) {
1962 if (current->in_user_fault) {
1963 css_get(&memcg->css);
1964 current->memcg_in_oom = memcg;
1965 current->memcg_oom_gfp_mask = mask;
1966 current->memcg_oom_order = order;
1967 }
1968 return false;
1969 }
1970
1971 mem_cgroup_mark_under_oom(memcg);
1972
1973 locked = mem_cgroup_oom_trylock(memcg);
1974
1975 if (locked)
1976 mem_cgroup_oom_notify(memcg);
1977
1978 mem_cgroup_unmark_under_oom(memcg);
1979 ret = mem_cgroup_out_of_memory(memcg, mask, order);
1980
1981 if (locked)
1982 mem_cgroup_oom_unlock(memcg);
1983
1984 return ret;
1985}
1986
1987/**
1988 * mem_cgroup_oom_synchronize - complete memcg OOM handling
1989 * @handle: actually kill/wait or just clean up the OOM state
1990 *
1991 * This has to be called at the end of a page fault if the memcg OOM
1992 * handler was enabled.
1993 *
1994 * Memcg supports userspace OOM handling where failed allocations must
1995 * sleep on a waitqueue until the userspace task resolves the
1996 * situation. Sleeping directly in the charge context with all kinds
1997 * of locks held is not a good idea, instead we remember an OOM state
1998 * in the task and mem_cgroup_oom_synchronize() has to be called at
1999 * the end of the page fault to complete the OOM handling.
2000 *
2001 * Returns %true if an ongoing memcg OOM situation was detected and
2002 * completed, %false otherwise.
2003 */
2004bool mem_cgroup_oom_synchronize(bool handle)
2005{
2006 struct mem_cgroup *memcg = current->memcg_in_oom;
2007 struct oom_wait_info owait;
2008 bool locked;
2009
2010 /* OOM is global, do not handle */
2011 if (!memcg)
2012 return false;
2013
2014 if (!handle)
2015 goto cleanup;
2016
2017 owait.memcg = memcg;
2018 owait.wait.flags = 0;
2019 owait.wait.func = memcg_oom_wake_function;
2020 owait.wait.private = current;
2021 INIT_LIST_HEAD(&owait.wait.entry);
2022
2023 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
2024 mem_cgroup_mark_under_oom(memcg);
2025
2026 locked = mem_cgroup_oom_trylock(memcg);
2027
2028 if (locked)
2029 mem_cgroup_oom_notify(memcg);
2030
2031 if (locked && !READ_ONCE(memcg->oom_kill_disable)) {
2032 mem_cgroup_unmark_under_oom(memcg);
2033 finish_wait(&memcg_oom_waitq, &owait.wait);
2034 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
2035 current->memcg_oom_order);
2036 } else {
2037 schedule();
2038 mem_cgroup_unmark_under_oom(memcg);
2039 finish_wait(&memcg_oom_waitq, &owait.wait);
2040 }
2041
2042 if (locked) {
2043 mem_cgroup_oom_unlock(memcg);
2044 /*
2045 * There is no guarantee that an OOM-lock contender
2046 * sees the wakeups triggered by the OOM kill
2047 * uncharges. Wake any sleepers explicitly.
2048 */
2049 memcg_oom_recover(memcg);
2050 }
2051cleanup:
2052 current->memcg_in_oom = NULL;
2053 css_put(&memcg->css);
2054 return true;
2055}
2056
2057/**
2058 * mem_cgroup_get_oom_group - get a memory cgroup to clean up after OOM
2059 * @victim: task to be killed by the OOM killer
2060 * @oom_domain: memcg in case of memcg OOM, NULL in case of system-wide OOM
2061 *
2062 * Returns a pointer to a memory cgroup, which has to be cleaned up
2063 * by killing all belonging OOM-killable tasks.
2064 *
2065 * Caller has to call mem_cgroup_put() on the returned non-NULL memcg.
2066 */
2067struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
2068 struct mem_cgroup *oom_domain)
2069{
2070 struct mem_cgroup *oom_group = NULL;
2071 struct mem_cgroup *memcg;
2072
2073 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2074 return NULL;
2075
2076 if (!oom_domain)
2077 oom_domain = root_mem_cgroup;
2078
2079 rcu_read_lock();
2080
2081 memcg = mem_cgroup_from_task(victim);
2082 if (mem_cgroup_is_root(memcg))
2083 goto out;
2084
2085 /*
2086 * If the victim task has been asynchronously moved to a different
2087 * memory cgroup, we might end up killing tasks outside oom_domain.
2088 * In this case it's better to ignore memory.group.oom.
2089 */
2090 if (unlikely(!mem_cgroup_is_descendant(memcg, oom_domain)))
2091 goto out;
2092
2093 /*
2094 * Traverse the memory cgroup hierarchy from the victim task's
2095 * cgroup up to the OOMing cgroup (or root) to find the
2096 * highest-level memory cgroup with oom.group set.
2097 */
2098 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
2099 if (READ_ONCE(memcg->oom_group))
2100 oom_group = memcg;
2101
2102 if (memcg == oom_domain)
2103 break;
2104 }
2105
2106 if (oom_group)
2107 css_get(&oom_group->css);
2108out:
2109 rcu_read_unlock();
2110
2111 return oom_group;
2112}
2113
2114void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
2115{
2116 pr_info("Tasks in ");
2117 pr_cont_cgroup_path(memcg->css.cgroup);
2118 pr_cont(" are going to be killed due to memory.oom.group set\n");
2119}
2120
2121/**
2122 * folio_memcg_lock - Bind a folio to its memcg.
2123 * @folio: The folio.
2124 *
2125 * This function prevents unlocked LRU folios from being moved to
2126 * another cgroup.
2127 *
2128 * It ensures lifetime of the bound memcg. The caller is responsible
2129 * for the lifetime of the folio.
2130 */
2131void folio_memcg_lock(struct folio *folio)
2132{
2133 struct mem_cgroup *memcg;
2134 unsigned long flags;
2135
2136 /*
2137 * The RCU lock is held throughout the transaction. The fast
2138 * path can get away without acquiring the memcg->move_lock
2139 * because page moving starts with an RCU grace period.
2140 */
2141 rcu_read_lock();
2142
2143 if (mem_cgroup_disabled())
2144 return;
2145again:
2146 memcg = folio_memcg(folio);
2147 if (unlikely(!memcg))
2148 return;
2149
2150#ifdef CONFIG_PROVE_LOCKING
2151 local_irq_save(flags);
2152 might_lock(&memcg->move_lock);
2153 local_irq_restore(flags);
2154#endif
2155
2156 if (atomic_read(&memcg->moving_account) <= 0)
2157 return;
2158
2159 spin_lock_irqsave(&memcg->move_lock, flags);
2160 if (memcg != folio_memcg(folio)) {
2161 spin_unlock_irqrestore(&memcg->move_lock, flags);
2162 goto again;
2163 }
2164
2165 /*
2166 * When charge migration first begins, we can have multiple
2167 * critical sections holding the fast-path RCU lock and one
2168 * holding the slowpath move_lock. Track the task who has the
2169 * move_lock for unlock_page_memcg().
2170 */
2171 memcg->move_lock_task = current;
2172 memcg->move_lock_flags = flags;
2173}
2174
2175void lock_page_memcg(struct page *page)
2176{
2177 folio_memcg_lock(page_folio(page));
2178}
2179
2180static void __folio_memcg_unlock(struct mem_cgroup *memcg)
2181{
2182 if (memcg && memcg->move_lock_task == current) {
2183 unsigned long flags = memcg->move_lock_flags;
2184
2185 memcg->move_lock_task = NULL;
2186 memcg->move_lock_flags = 0;
2187
2188 spin_unlock_irqrestore(&memcg->move_lock, flags);
2189 }
2190
2191 rcu_read_unlock();
2192}
2193
2194/**
2195 * folio_memcg_unlock - Release the binding between a folio and its memcg.
2196 * @folio: The folio.
2197 *
2198 * This releases the binding created by folio_memcg_lock(). This does
2199 * not change the accounting of this folio to its memcg, but it does
2200 * permit others to change it.
2201 */
2202void folio_memcg_unlock(struct folio *folio)
2203{
2204 __folio_memcg_unlock(folio_memcg(folio));
2205}
2206
2207void unlock_page_memcg(struct page *page)
2208{
2209 folio_memcg_unlock(page_folio(page));
2210}
2211
2212struct memcg_stock_pcp {
2213 local_lock_t stock_lock;
2214 struct mem_cgroup *cached; /* this never be root cgroup */
2215 unsigned int nr_pages;
2216
2217#ifdef CONFIG_MEMCG_KMEM
2218 struct obj_cgroup *cached_objcg;
2219 struct pglist_data *cached_pgdat;
2220 unsigned int nr_bytes;
2221 int nr_slab_reclaimable_b;
2222 int nr_slab_unreclaimable_b;
2223#endif
2224
2225 struct work_struct work;
2226 unsigned long flags;
2227#define FLUSHING_CACHED_CHARGE 0
2228};
2229static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock) = {
2230 .stock_lock = INIT_LOCAL_LOCK(stock_lock),
2231};
2232static DEFINE_MUTEX(percpu_charge_mutex);
2233
2234#ifdef CONFIG_MEMCG_KMEM
2235static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock);
2236static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2237 struct mem_cgroup *root_memcg);
2238static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages);
2239
2240#else
2241static inline struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
2242{
2243 return NULL;
2244}
2245static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
2246 struct mem_cgroup *root_memcg)
2247{
2248 return false;
2249}
2250static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
2251{
2252}
2253#endif
2254
2255/**
2256 * consume_stock: Try to consume stocked charge on this cpu.
2257 * @memcg: memcg to consume from.
2258 * @nr_pages: how many pages to charge.
2259 *
2260 * The charges will only happen if @memcg matches the current cpu's memcg
2261 * stock, and at least @nr_pages are available in that stock. Failure to
2262 * service an allocation will refill the stock.
2263 *
2264 * returns true if successful, false otherwise.
2265 */
2266static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2267{
2268 struct memcg_stock_pcp *stock;
2269 unsigned long flags;
2270 bool ret = false;
2271
2272 if (nr_pages > MEMCG_CHARGE_BATCH)
2273 return ret;
2274
2275 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2276
2277 stock = this_cpu_ptr(&memcg_stock);
2278 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
2279 stock->nr_pages -= nr_pages;
2280 ret = true;
2281 }
2282
2283 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2284
2285 return ret;
2286}
2287
2288/*
2289 * Returns stocks cached in percpu and reset cached information.
2290 */
2291static void drain_stock(struct memcg_stock_pcp *stock)
2292{
2293 struct mem_cgroup *old = stock->cached;
2294
2295 if (!old)
2296 return;
2297
2298 if (stock->nr_pages) {
2299 page_counter_uncharge(&old->memory, stock->nr_pages);
2300 if (do_memsw_account())
2301 page_counter_uncharge(&old->memsw, stock->nr_pages);
2302 stock->nr_pages = 0;
2303 }
2304
2305 css_put(&old->css);
2306 stock->cached = NULL;
2307}
2308
2309static void drain_local_stock(struct work_struct *dummy)
2310{
2311 struct memcg_stock_pcp *stock;
2312 struct obj_cgroup *old = NULL;
2313 unsigned long flags;
2314
2315 /*
2316 * The only protection from cpu hotplug (memcg_hotplug_cpu_dead) vs.
2317 * drain_stock races is that we always operate on local CPU stock
2318 * here with IRQ disabled
2319 */
2320 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2321
2322 stock = this_cpu_ptr(&memcg_stock);
2323 old = drain_obj_stock(stock);
2324 drain_stock(stock);
2325 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
2326
2327 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2328 if (old)
2329 obj_cgroup_put(old);
2330}
2331
2332/*
2333 * Cache charges(val) to local per_cpu area.
2334 * This will be consumed by consume_stock() function, later.
2335 */
2336static void __refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2337{
2338 struct memcg_stock_pcp *stock;
2339
2340 stock = this_cpu_ptr(&memcg_stock);
2341 if (stock->cached != memcg) { /* reset if necessary */
2342 drain_stock(stock);
2343 css_get(&memcg->css);
2344 stock->cached = memcg;
2345 }
2346 stock->nr_pages += nr_pages;
2347
2348 if (stock->nr_pages > MEMCG_CHARGE_BATCH)
2349 drain_stock(stock);
2350}
2351
2352static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
2353{
2354 unsigned long flags;
2355
2356 local_lock_irqsave(&memcg_stock.stock_lock, flags);
2357 __refill_stock(memcg, nr_pages);
2358 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
2359}
2360
2361/*
2362 * Drains all per-CPU charge caches for given root_memcg resp. subtree
2363 * of the hierarchy under it.
2364 */
2365static void drain_all_stock(struct mem_cgroup *root_memcg)
2366{
2367 int cpu, curcpu;
2368
2369 /* If someone's already draining, avoid adding running more workers. */
2370 if (!mutex_trylock(&percpu_charge_mutex))
2371 return;
2372 /*
2373 * Notify other cpus that system-wide "drain" is running
2374 * We do not care about races with the cpu hotplug because cpu down
2375 * as well as workers from this path always operate on the local
2376 * per-cpu data. CPU up doesn't touch memcg_stock at all.
2377 */
2378 migrate_disable();
2379 curcpu = smp_processor_id();
2380 for_each_online_cpu(cpu) {
2381 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
2382 struct mem_cgroup *memcg;
2383 bool flush = false;
2384
2385 rcu_read_lock();
2386 memcg = stock->cached;
2387 if (memcg && stock->nr_pages &&
2388 mem_cgroup_is_descendant(memcg, root_memcg))
2389 flush = true;
2390 else if (obj_stock_flush_required(stock, root_memcg))
2391 flush = true;
2392 rcu_read_unlock();
2393
2394 if (flush &&
2395 !test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2396 if (cpu == curcpu)
2397 drain_local_stock(&stock->work);
2398 else if (!cpu_is_isolated(cpu))
2399 schedule_work_on(cpu, &stock->work);
2400 }
2401 }
2402 migrate_enable();
2403 mutex_unlock(&percpu_charge_mutex);
2404}
2405
2406static int memcg_hotplug_cpu_dead(unsigned int cpu)
2407{
2408 struct memcg_stock_pcp *stock;
2409
2410 stock = &per_cpu(memcg_stock, cpu);
2411 drain_stock(stock);
2412
2413 return 0;
2414}
2415
2416static unsigned long reclaim_high(struct mem_cgroup *memcg,
2417 unsigned int nr_pages,
2418 gfp_t gfp_mask)
2419{
2420 unsigned long nr_reclaimed = 0;
2421
2422 do {
2423 unsigned long pflags;
2424
2425 if (page_counter_read(&memcg->memory) <=
2426 READ_ONCE(memcg->memory.high))
2427 continue;
2428
2429 memcg_memory_event(memcg, MEMCG_HIGH);
2430
2431 psi_memstall_enter(&pflags);
2432 nr_reclaimed += try_to_free_mem_cgroup_pages(memcg, nr_pages,
2433 gfp_mask,
2434 MEMCG_RECLAIM_MAY_SWAP);
2435 psi_memstall_leave(&pflags);
2436 } while ((memcg = parent_mem_cgroup(memcg)) &&
2437 !mem_cgroup_is_root(memcg));
2438
2439 return nr_reclaimed;
2440}
2441
2442static void high_work_func(struct work_struct *work)
2443{
2444 struct mem_cgroup *memcg;
2445
2446 memcg = container_of(work, struct mem_cgroup, high_work);
2447 reclaim_high(memcg, MEMCG_CHARGE_BATCH, GFP_KERNEL);
2448}
2449
2450/*
2451 * Clamp the maximum sleep time per allocation batch to 2 seconds. This is
2452 * enough to still cause a significant slowdown in most cases, while still
2453 * allowing diagnostics and tracing to proceed without becoming stuck.
2454 */
2455#define MEMCG_MAX_HIGH_DELAY_JIFFIES (2UL*HZ)
2456
2457/*
2458 * When calculating the delay, we use these either side of the exponentiation to
2459 * maintain precision and scale to a reasonable number of jiffies (see the table
2460 * below.
2461 *
2462 * - MEMCG_DELAY_PRECISION_SHIFT: Extra precision bits while translating the
2463 * overage ratio to a delay.
2464 * - MEMCG_DELAY_SCALING_SHIFT: The number of bits to scale down the
2465 * proposed penalty in order to reduce to a reasonable number of jiffies, and
2466 * to produce a reasonable delay curve.
2467 *
2468 * MEMCG_DELAY_SCALING_SHIFT just happens to be a number that produces a
2469 * reasonable delay curve compared to precision-adjusted overage, not
2470 * penalising heavily at first, but still making sure that growth beyond the
2471 * limit penalises misbehaviour cgroups by slowing them down exponentially. For
2472 * example, with a high of 100 megabytes:
2473 *
2474 * +-------+------------------------+
2475 * | usage | time to allocate in ms |
2476 * +-------+------------------------+
2477 * | 100M | 0 |
2478 * | 101M | 6 |
2479 * | 102M | 25 |
2480 * | 103M | 57 |
2481 * | 104M | 102 |
2482 * | 105M | 159 |
2483 * | 106M | 230 |
2484 * | 107M | 313 |
2485 * | 108M | 409 |
2486 * | 109M | 518 |
2487 * | 110M | 639 |
2488 * | 111M | 774 |
2489 * | 112M | 921 |
2490 * | 113M | 1081 |
2491 * | 114M | 1254 |
2492 * | 115M | 1439 |
2493 * | 116M | 1638 |
2494 * | 117M | 1849 |
2495 * | 118M | 2000 |
2496 * | 119M | 2000 |
2497 * | 120M | 2000 |
2498 * +-------+------------------------+
2499 */
2500 #define MEMCG_DELAY_PRECISION_SHIFT 20
2501 #define MEMCG_DELAY_SCALING_SHIFT 14
2502
2503static u64 calculate_overage(unsigned long usage, unsigned long high)
2504{
2505 u64 overage;
2506
2507 if (usage <= high)
2508 return 0;
2509
2510 /*
2511 * Prevent division by 0 in overage calculation by acting as if
2512 * it was a threshold of 1 page
2513 */
2514 high = max(high, 1UL);
2515
2516 overage = usage - high;
2517 overage <<= MEMCG_DELAY_PRECISION_SHIFT;
2518 return div64_u64(overage, high);
2519}
2520
2521static u64 mem_find_max_overage(struct mem_cgroup *memcg)
2522{
2523 u64 overage, max_overage = 0;
2524
2525 do {
2526 overage = calculate_overage(page_counter_read(&memcg->memory),
2527 READ_ONCE(memcg->memory.high));
2528 max_overage = max(overage, max_overage);
2529 } while ((memcg = parent_mem_cgroup(memcg)) &&
2530 !mem_cgroup_is_root(memcg));
2531
2532 return max_overage;
2533}
2534
2535static u64 swap_find_max_overage(struct mem_cgroup *memcg)
2536{
2537 u64 overage, max_overage = 0;
2538
2539 do {
2540 overage = calculate_overage(page_counter_read(&memcg->swap),
2541 READ_ONCE(memcg->swap.high));
2542 if (overage)
2543 memcg_memory_event(memcg, MEMCG_SWAP_HIGH);
2544 max_overage = max(overage, max_overage);
2545 } while ((memcg = parent_mem_cgroup(memcg)) &&
2546 !mem_cgroup_is_root(memcg));
2547
2548 return max_overage;
2549}
2550
2551/*
2552 * Get the number of jiffies that we should penalise a mischievous cgroup which
2553 * is exceeding its memory.high by checking both it and its ancestors.
2554 */
2555static unsigned long calculate_high_delay(struct mem_cgroup *memcg,
2556 unsigned int nr_pages,
2557 u64 max_overage)
2558{
2559 unsigned long penalty_jiffies;
2560
2561 if (!max_overage)
2562 return 0;
2563
2564 /*
2565 * We use overage compared to memory.high to calculate the number of
2566 * jiffies to sleep (penalty_jiffies). Ideally this value should be
2567 * fairly lenient on small overages, and increasingly harsh when the
2568 * memcg in question makes it clear that it has no intention of stopping
2569 * its crazy behaviour, so we exponentially increase the delay based on
2570 * overage amount.
2571 */
2572 penalty_jiffies = max_overage * max_overage * HZ;
2573 penalty_jiffies >>= MEMCG_DELAY_PRECISION_SHIFT;
2574 penalty_jiffies >>= MEMCG_DELAY_SCALING_SHIFT;
2575
2576 /*
2577 * Factor in the task's own contribution to the overage, such that four
2578 * N-sized allocations are throttled approximately the same as one
2579 * 4N-sized allocation.
2580 *
2581 * MEMCG_CHARGE_BATCH pages is nominal, so work out how much smaller or
2582 * larger the current charge patch is than that.
2583 */
2584 return penalty_jiffies * nr_pages / MEMCG_CHARGE_BATCH;
2585}
2586
2587/*
2588 * Scheduled by try_charge() to be executed from the userland return path
2589 * and reclaims memory over the high limit.
2590 */
2591void mem_cgroup_handle_over_high(void)
2592{
2593 unsigned long penalty_jiffies;
2594 unsigned long pflags;
2595 unsigned long nr_reclaimed;
2596 unsigned int nr_pages = current->memcg_nr_pages_over_high;
2597 int nr_retries = MAX_RECLAIM_RETRIES;
2598 struct mem_cgroup *memcg;
2599 bool in_retry = false;
2600
2601 if (likely(!nr_pages))
2602 return;
2603
2604 memcg = get_mem_cgroup_from_mm(current->mm);
2605 current->memcg_nr_pages_over_high = 0;
2606
2607retry_reclaim:
2608 /*
2609 * The allocating task should reclaim at least the batch size, but for
2610 * subsequent retries we only want to do what's necessary to prevent oom
2611 * or breaching resource isolation.
2612 *
2613 * This is distinct from memory.max or page allocator behaviour because
2614 * memory.high is currently batched, whereas memory.max and the page
2615 * allocator run every time an allocation is made.
2616 */
2617 nr_reclaimed = reclaim_high(memcg,
2618 in_retry ? SWAP_CLUSTER_MAX : nr_pages,
2619 GFP_KERNEL);
2620
2621 /*
2622 * memory.high is breached and reclaim is unable to keep up. Throttle
2623 * allocators proactively to slow down excessive growth.
2624 */
2625 penalty_jiffies = calculate_high_delay(memcg, nr_pages,
2626 mem_find_max_overage(memcg));
2627
2628 penalty_jiffies += calculate_high_delay(memcg, nr_pages,
2629 swap_find_max_overage(memcg));
2630
2631 /*
2632 * Clamp the max delay per usermode return so as to still keep the
2633 * application moving forwards and also permit diagnostics, albeit
2634 * extremely slowly.
2635 */
2636 penalty_jiffies = min(penalty_jiffies, MEMCG_MAX_HIGH_DELAY_JIFFIES);
2637
2638 /*
2639 * Don't sleep if the amount of jiffies this memcg owes us is so low
2640 * that it's not even worth doing, in an attempt to be nice to those who
2641 * go only a small amount over their memory.high value and maybe haven't
2642 * been aggressively reclaimed enough yet.
2643 */
2644 if (penalty_jiffies <= HZ / 100)
2645 goto out;
2646
2647 /*
2648 * If reclaim is making forward progress but we're still over
2649 * memory.high, we want to encourage that rather than doing allocator
2650 * throttling.
2651 */
2652 if (nr_reclaimed || nr_retries--) {
2653 in_retry = true;
2654 goto retry_reclaim;
2655 }
2656
2657 /*
2658 * If we exit early, we're guaranteed to die (since
2659 * schedule_timeout_killable sets TASK_KILLABLE). This means we don't
2660 * need to account for any ill-begotten jiffies to pay them off later.
2661 */
2662 psi_memstall_enter(&pflags);
2663 schedule_timeout_killable(penalty_jiffies);
2664 psi_memstall_leave(&pflags);
2665
2666out:
2667 css_put(&memcg->css);
2668}
2669
2670static int try_charge_memcg(struct mem_cgroup *memcg, gfp_t gfp_mask,
2671 unsigned int nr_pages)
2672{
2673 unsigned int batch = max(MEMCG_CHARGE_BATCH, nr_pages);
2674 int nr_retries = MAX_RECLAIM_RETRIES;
2675 struct mem_cgroup *mem_over_limit;
2676 struct page_counter *counter;
2677 unsigned long nr_reclaimed;
2678 bool passed_oom = false;
2679 unsigned int reclaim_options = MEMCG_RECLAIM_MAY_SWAP;
2680 bool drained = false;
2681 bool raised_max_event = false;
2682 unsigned long pflags;
2683
2684retry:
2685 if (consume_stock(memcg, nr_pages))
2686 return 0;
2687
2688 if (!do_memsw_account() ||
2689 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2690 if (page_counter_try_charge(&memcg->memory, batch, &counter))
2691 goto done_restock;
2692 if (do_memsw_account())
2693 page_counter_uncharge(&memcg->memsw, batch);
2694 mem_over_limit = mem_cgroup_from_counter(counter, memory);
2695 } else {
2696 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
2697 reclaim_options &= ~MEMCG_RECLAIM_MAY_SWAP;
2698 }
2699
2700 if (batch > nr_pages) {
2701 batch = nr_pages;
2702 goto retry;
2703 }
2704
2705 /*
2706 * Prevent unbounded recursion when reclaim operations need to
2707 * allocate memory. This might exceed the limits temporarily,
2708 * but we prefer facilitating memory reclaim and getting back
2709 * under the limit over triggering OOM kills in these cases.
2710 */
2711 if (unlikely(current->flags & PF_MEMALLOC))
2712 goto force;
2713
2714 if (unlikely(task_in_memcg_oom(current)))
2715 goto nomem;
2716
2717 if (!gfpflags_allow_blocking(gfp_mask))
2718 goto nomem;
2719
2720 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2721 raised_max_event = true;
2722
2723 psi_memstall_enter(&pflags);
2724 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2725 gfp_mask, reclaim_options);
2726 psi_memstall_leave(&pflags);
2727
2728 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
2729 goto retry;
2730
2731 if (!drained) {
2732 drain_all_stock(mem_over_limit);
2733 drained = true;
2734 goto retry;
2735 }
2736
2737 if (gfp_mask & __GFP_NORETRY)
2738 goto nomem;
2739 /*
2740 * Even though the limit is exceeded at this point, reclaim
2741 * may have been able to free some pages. Retry the charge
2742 * before killing the task.
2743 *
2744 * Only for regular pages, though: huge pages are rather
2745 * unlikely to succeed so close to the limit, and we fall back
2746 * to regular pages anyway in case of failure.
2747 */
2748 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
2749 goto retry;
2750 /*
2751 * At task move, charge accounts can be doubly counted. So, it's
2752 * better to wait until the end of task_move if something is going on.
2753 */
2754 if (mem_cgroup_wait_acct_move(mem_over_limit))
2755 goto retry;
2756
2757 if (nr_retries--)
2758 goto retry;
2759
2760 if (gfp_mask & __GFP_RETRY_MAYFAIL)
2761 goto nomem;
2762
2763 /* Avoid endless loop for tasks bypassed by the oom killer */
2764 if (passed_oom && task_is_dying())
2765 goto nomem;
2766
2767 /*
2768 * keep retrying as long as the memcg oom killer is able to make
2769 * a forward progress or bypass the charge if the oom killer
2770 * couldn't make any progress.
2771 */
2772 if (mem_cgroup_oom(mem_over_limit, gfp_mask,
2773 get_order(nr_pages * PAGE_SIZE))) {
2774 passed_oom = true;
2775 nr_retries = MAX_RECLAIM_RETRIES;
2776 goto retry;
2777 }
2778nomem:
2779 /*
2780 * Memcg doesn't have a dedicated reserve for atomic
2781 * allocations. But like the global atomic pool, we need to
2782 * put the burden of reclaim on regular allocation requests
2783 * and let these go through as privileged allocations.
2784 */
2785 if (!(gfp_mask & (__GFP_NOFAIL | __GFP_HIGH)))
2786 return -ENOMEM;
2787force:
2788 /*
2789 * If the allocation has to be enforced, don't forget to raise
2790 * a MEMCG_MAX event.
2791 */
2792 if (!raised_max_event)
2793 memcg_memory_event(mem_over_limit, MEMCG_MAX);
2794
2795 /*
2796 * The allocation either can't fail or will lead to more memory
2797 * being freed very soon. Allow memory usage go over the limit
2798 * temporarily by force charging it.
2799 */
2800 page_counter_charge(&memcg->memory, nr_pages);
2801 if (do_memsw_account())
2802 page_counter_charge(&memcg->memsw, nr_pages);
2803
2804 return 0;
2805
2806done_restock:
2807 if (batch > nr_pages)
2808 refill_stock(memcg, batch - nr_pages);
2809
2810 /*
2811 * If the hierarchy is above the normal consumption range, schedule
2812 * reclaim on returning to userland. We can perform reclaim here
2813 * if __GFP_RECLAIM but let's always punt for simplicity and so that
2814 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2815 * not recorded as it most likely matches current's and won't
2816 * change in the meantime. As high limit is checked again before
2817 * reclaim, the cost of mismatch is negligible.
2818 */
2819 do {
2820 bool mem_high, swap_high;
2821
2822 mem_high = page_counter_read(&memcg->memory) >
2823 READ_ONCE(memcg->memory.high);
2824 swap_high = page_counter_read(&memcg->swap) >
2825 READ_ONCE(memcg->swap.high);
2826
2827 /* Don't bother a random interrupted task */
2828 if (!in_task()) {
2829 if (mem_high) {
2830 schedule_work(&memcg->high_work);
2831 break;
2832 }
2833 continue;
2834 }
2835
2836 if (mem_high || swap_high) {
2837 /*
2838 * The allocating tasks in this cgroup will need to do
2839 * reclaim or be throttled to prevent further growth
2840 * of the memory or swap footprints.
2841 *
2842 * Target some best-effort fairness between the tasks,
2843 * and distribute reclaim work and delay penalties
2844 * based on how much each task is actually allocating.
2845 */
2846 current->memcg_nr_pages_over_high += batch;
2847 set_notify_resume(current);
2848 break;
2849 }
2850 } while ((memcg = parent_mem_cgroup(memcg)));
2851
2852 if (current->memcg_nr_pages_over_high > MEMCG_CHARGE_BATCH &&
2853 !(current->flags & PF_MEMALLOC) &&
2854 gfpflags_allow_blocking(gfp_mask)) {
2855 mem_cgroup_handle_over_high();
2856 }
2857 return 0;
2858}
2859
2860static inline int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2861 unsigned int nr_pages)
2862{
2863 if (mem_cgroup_is_root(memcg))
2864 return 0;
2865
2866 return try_charge_memcg(memcg, gfp_mask, nr_pages);
2867}
2868
2869static inline void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
2870{
2871 if (mem_cgroup_is_root(memcg))
2872 return;
2873
2874 page_counter_uncharge(&memcg->memory, nr_pages);
2875 if (do_memsw_account())
2876 page_counter_uncharge(&memcg->memsw, nr_pages);
2877}
2878
2879static void commit_charge(struct folio *folio, struct mem_cgroup *memcg)
2880{
2881 VM_BUG_ON_FOLIO(folio_memcg(folio), folio);
2882 /*
2883 * Any of the following ensures page's memcg stability:
2884 *
2885 * - the page lock
2886 * - LRU isolation
2887 * - lock_page_memcg()
2888 * - exclusive reference
2889 * - mem_cgroup_trylock_pages()
2890 */
2891 folio->memcg_data = (unsigned long)memcg;
2892}
2893
2894#ifdef CONFIG_MEMCG_KMEM
2895/*
2896 * The allocated objcg pointers array is not accounted directly.
2897 * Moreover, it should not come from DMA buffer and is not readily
2898 * reclaimable. So those GFP bits should be masked off.
2899 */
2900#define OBJCGS_CLEAR_MASK (__GFP_DMA | __GFP_RECLAIMABLE | __GFP_ACCOUNT)
2901
2902/*
2903 * mod_objcg_mlstate() may be called with irq enabled, so
2904 * mod_memcg_lruvec_state() should be used.
2905 */
2906static inline void mod_objcg_mlstate(struct obj_cgroup *objcg,
2907 struct pglist_data *pgdat,
2908 enum node_stat_item idx, int nr)
2909{
2910 struct mem_cgroup *memcg;
2911 struct lruvec *lruvec;
2912
2913 rcu_read_lock();
2914 memcg = obj_cgroup_memcg(objcg);
2915 lruvec = mem_cgroup_lruvec(memcg, pgdat);
2916 mod_memcg_lruvec_state(lruvec, idx, nr);
2917 rcu_read_unlock();
2918}
2919
2920int memcg_alloc_slab_cgroups(struct slab *slab, struct kmem_cache *s,
2921 gfp_t gfp, bool new_slab)
2922{
2923 unsigned int objects = objs_per_slab(s, slab);
2924 unsigned long memcg_data;
2925 void *vec;
2926
2927 gfp &= ~OBJCGS_CLEAR_MASK;
2928 vec = kcalloc_node(objects, sizeof(struct obj_cgroup *), gfp,
2929 slab_nid(slab));
2930 if (!vec)
2931 return -ENOMEM;
2932
2933 memcg_data = (unsigned long) vec | MEMCG_DATA_OBJCGS;
2934 if (new_slab) {
2935 /*
2936 * If the slab is brand new and nobody can yet access its
2937 * memcg_data, no synchronization is required and memcg_data can
2938 * be simply assigned.
2939 */
2940 slab->memcg_data = memcg_data;
2941 } else if (cmpxchg(&slab->memcg_data, 0, memcg_data)) {
2942 /*
2943 * If the slab is already in use, somebody can allocate and
2944 * assign obj_cgroups in parallel. In this case the existing
2945 * objcg vector should be reused.
2946 */
2947 kfree(vec);
2948 return 0;
2949 }
2950
2951 kmemleak_not_leak(vec);
2952 return 0;
2953}
2954
2955static __always_inline
2956struct mem_cgroup *mem_cgroup_from_obj_folio(struct folio *folio, void *p)
2957{
2958 /*
2959 * Slab objects are accounted individually, not per-page.
2960 * Memcg membership data for each individual object is saved in
2961 * slab->memcg_data.
2962 */
2963 if (folio_test_slab(folio)) {
2964 struct obj_cgroup **objcgs;
2965 struct slab *slab;
2966 unsigned int off;
2967
2968 slab = folio_slab(folio);
2969 objcgs = slab_objcgs(slab);
2970 if (!objcgs)
2971 return NULL;
2972
2973 off = obj_to_index(slab->slab_cache, slab, p);
2974 if (objcgs[off])
2975 return obj_cgroup_memcg(objcgs[off]);
2976
2977 return NULL;
2978 }
2979
2980 /*
2981 * folio_memcg_check() is used here, because in theory we can encounter
2982 * a folio where the slab flag has been cleared already, but
2983 * slab->memcg_data has not been freed yet
2984 * folio_memcg_check() will guarantee that a proper memory
2985 * cgroup pointer or NULL will be returned.
2986 */
2987 return folio_memcg_check(folio);
2988}
2989
2990/*
2991 * Returns a pointer to the memory cgroup to which the kernel object is charged.
2992 *
2993 * A passed kernel object can be a slab object, vmalloc object or a generic
2994 * kernel page, so different mechanisms for getting the memory cgroup pointer
2995 * should be used.
2996 *
2997 * In certain cases (e.g. kernel stacks or large kmallocs with SLUB) the caller
2998 * can not know for sure how the kernel object is implemented.
2999 * mem_cgroup_from_obj() can be safely used in such cases.
3000 *
3001 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
3002 * cgroup_mutex, etc.
3003 */
3004struct mem_cgroup *mem_cgroup_from_obj(void *p)
3005{
3006 struct folio *folio;
3007
3008 if (mem_cgroup_disabled())
3009 return NULL;
3010
3011 if (unlikely(is_vmalloc_addr(p)))
3012 folio = page_folio(vmalloc_to_page(p));
3013 else
3014 folio = virt_to_folio(p);
3015
3016 return mem_cgroup_from_obj_folio(folio, p);
3017}
3018
3019/*
3020 * Returns a pointer to the memory cgroup to which the kernel object is charged.
3021 * Similar to mem_cgroup_from_obj(), but faster and not suitable for objects,
3022 * allocated using vmalloc().
3023 *
3024 * A passed kernel object must be a slab object or a generic kernel page.
3025 *
3026 * The caller must ensure the memcg lifetime, e.g. by taking rcu_read_lock(),
3027 * cgroup_mutex, etc.
3028 */
3029struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
3030{
3031 if (mem_cgroup_disabled())
3032 return NULL;
3033
3034 return mem_cgroup_from_obj_folio(virt_to_folio(p), p);
3035}
3036
3037static struct obj_cgroup *__get_obj_cgroup_from_memcg(struct mem_cgroup *memcg)
3038{
3039 struct obj_cgroup *objcg = NULL;
3040
3041 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
3042 objcg = rcu_dereference(memcg->objcg);
3043 if (objcg && obj_cgroup_tryget(objcg))
3044 break;
3045 objcg = NULL;
3046 }
3047 return objcg;
3048}
3049
3050__always_inline struct obj_cgroup *get_obj_cgroup_from_current(void)
3051{
3052 struct obj_cgroup *objcg = NULL;
3053 struct mem_cgroup *memcg;
3054
3055 if (memcg_kmem_bypass())
3056 return NULL;
3057
3058 rcu_read_lock();
3059 if (unlikely(active_memcg()))
3060 memcg = active_memcg();
3061 else
3062 memcg = mem_cgroup_from_task(current);
3063 objcg = __get_obj_cgroup_from_memcg(memcg);
3064 rcu_read_unlock();
3065 return objcg;
3066}
3067
3068struct obj_cgroup *get_obj_cgroup_from_page(struct page *page)
3069{
3070 struct obj_cgroup *objcg;
3071
3072 if (!memcg_kmem_online())
3073 return NULL;
3074
3075 if (PageMemcgKmem(page)) {
3076 objcg = __folio_objcg(page_folio(page));
3077 obj_cgroup_get(objcg);
3078 } else {
3079 struct mem_cgroup *memcg;
3080
3081 rcu_read_lock();
3082 memcg = __folio_memcg(page_folio(page));
3083 if (memcg)
3084 objcg = __get_obj_cgroup_from_memcg(memcg);
3085 else
3086 objcg = NULL;
3087 rcu_read_unlock();
3088 }
3089 return objcg;
3090}
3091
3092static void memcg_account_kmem(struct mem_cgroup *memcg, int nr_pages)
3093{
3094 mod_memcg_state(memcg, MEMCG_KMEM, nr_pages);
3095 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
3096 if (nr_pages > 0)
3097 page_counter_charge(&memcg->kmem, nr_pages);
3098 else
3099 page_counter_uncharge(&memcg->kmem, -nr_pages);
3100 }
3101}
3102
3103
3104/*
3105 * obj_cgroup_uncharge_pages: uncharge a number of kernel pages from a objcg
3106 * @objcg: object cgroup to uncharge
3107 * @nr_pages: number of pages to uncharge
3108 */
3109static void obj_cgroup_uncharge_pages(struct obj_cgroup *objcg,
3110 unsigned int nr_pages)
3111{
3112 struct mem_cgroup *memcg;
3113
3114 memcg = get_mem_cgroup_from_objcg(objcg);
3115
3116 memcg_account_kmem(memcg, -nr_pages);
3117 refill_stock(memcg, nr_pages);
3118
3119 css_put(&memcg->css);
3120}
3121
3122/*
3123 * obj_cgroup_charge_pages: charge a number of kernel pages to a objcg
3124 * @objcg: object cgroup to charge
3125 * @gfp: reclaim mode
3126 * @nr_pages: number of pages to charge
3127 *
3128 * Returns 0 on success, an error code on failure.
3129 */
3130static int obj_cgroup_charge_pages(struct obj_cgroup *objcg, gfp_t gfp,
3131 unsigned int nr_pages)
3132{
3133 struct mem_cgroup *memcg;
3134 int ret;
3135
3136 memcg = get_mem_cgroup_from_objcg(objcg);
3137
3138 ret = try_charge_memcg(memcg, gfp, nr_pages);
3139 if (ret)
3140 goto out;
3141
3142 memcg_account_kmem(memcg, nr_pages);
3143out:
3144 css_put(&memcg->css);
3145
3146 return ret;
3147}
3148
3149/**
3150 * __memcg_kmem_charge_page: charge a kmem page to the current memory cgroup
3151 * @page: page to charge
3152 * @gfp: reclaim mode
3153 * @order: allocation order
3154 *
3155 * Returns 0 on success, an error code on failure.
3156 */
3157int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order)
3158{
3159 struct obj_cgroup *objcg;
3160 int ret = 0;
3161
3162 objcg = get_obj_cgroup_from_current();
3163 if (objcg) {
3164 ret = obj_cgroup_charge_pages(objcg, gfp, 1 << order);
3165 if (!ret) {
3166 page->memcg_data = (unsigned long)objcg |
3167 MEMCG_DATA_KMEM;
3168 return 0;
3169 }
3170 obj_cgroup_put(objcg);
3171 }
3172 return ret;
3173}
3174
3175/**
3176 * __memcg_kmem_uncharge_page: uncharge a kmem page
3177 * @page: page to uncharge
3178 * @order: allocation order
3179 */
3180void __memcg_kmem_uncharge_page(struct page *page, int order)
3181{
3182 struct folio *folio = page_folio(page);
3183 struct obj_cgroup *objcg;
3184 unsigned int nr_pages = 1 << order;
3185
3186 if (!folio_memcg_kmem(folio))
3187 return;
3188
3189 objcg = __folio_objcg(folio);
3190 obj_cgroup_uncharge_pages(objcg, nr_pages);
3191 folio->memcg_data = 0;
3192 obj_cgroup_put(objcg);
3193}
3194
3195void mod_objcg_state(struct obj_cgroup *objcg, struct pglist_data *pgdat,
3196 enum node_stat_item idx, int nr)
3197{
3198 struct memcg_stock_pcp *stock;
3199 struct obj_cgroup *old = NULL;
3200 unsigned long flags;
3201 int *bytes;
3202
3203 local_lock_irqsave(&memcg_stock.stock_lock, flags);
3204 stock = this_cpu_ptr(&memcg_stock);
3205
3206 /*
3207 * Save vmstat data in stock and skip vmstat array update unless
3208 * accumulating over a page of vmstat data or when pgdat or idx
3209 * changes.
3210 */
3211 if (stock->cached_objcg != objcg) {
3212 old = drain_obj_stock(stock);
3213 obj_cgroup_get(objcg);
3214 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3215 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3216 stock->cached_objcg = objcg;
3217 stock->cached_pgdat = pgdat;
3218 } else if (stock->cached_pgdat != pgdat) {
3219 /* Flush the existing cached vmstat data */
3220 struct pglist_data *oldpg = stock->cached_pgdat;
3221
3222 if (stock->nr_slab_reclaimable_b) {
3223 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_RECLAIMABLE_B,
3224 stock->nr_slab_reclaimable_b);
3225 stock->nr_slab_reclaimable_b = 0;
3226 }
3227 if (stock->nr_slab_unreclaimable_b) {
3228 mod_objcg_mlstate(objcg, oldpg, NR_SLAB_UNRECLAIMABLE_B,
3229 stock->nr_slab_unreclaimable_b);
3230 stock->nr_slab_unreclaimable_b = 0;
3231 }
3232 stock->cached_pgdat = pgdat;
3233 }
3234
3235 bytes = (idx == NR_SLAB_RECLAIMABLE_B) ? &stock->nr_slab_reclaimable_b
3236 : &stock->nr_slab_unreclaimable_b;
3237 /*
3238 * Even for large object >= PAGE_SIZE, the vmstat data will still be
3239 * cached locally at least once before pushing it out.
3240 */
3241 if (!*bytes) {
3242 *bytes = nr;
3243 nr = 0;
3244 } else {
3245 *bytes += nr;
3246 if (abs(*bytes) > PAGE_SIZE) {
3247 nr = *bytes;
3248 *bytes = 0;
3249 } else {
3250 nr = 0;
3251 }
3252 }
3253 if (nr)
3254 mod_objcg_mlstate(objcg, pgdat, idx, nr);
3255
3256 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3257 if (old)
3258 obj_cgroup_put(old);
3259}
3260
3261static bool consume_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes)
3262{
3263 struct memcg_stock_pcp *stock;
3264 unsigned long flags;
3265 bool ret = false;
3266
3267 local_lock_irqsave(&memcg_stock.stock_lock, flags);
3268
3269 stock = this_cpu_ptr(&memcg_stock);
3270 if (objcg == stock->cached_objcg && stock->nr_bytes >= nr_bytes) {
3271 stock->nr_bytes -= nr_bytes;
3272 ret = true;
3273 }
3274
3275 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3276
3277 return ret;
3278}
3279
3280static struct obj_cgroup *drain_obj_stock(struct memcg_stock_pcp *stock)
3281{
3282 struct obj_cgroup *old = stock->cached_objcg;
3283
3284 if (!old)
3285 return NULL;
3286
3287 if (stock->nr_bytes) {
3288 unsigned int nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3289 unsigned int nr_bytes = stock->nr_bytes & (PAGE_SIZE - 1);
3290
3291 if (nr_pages) {
3292 struct mem_cgroup *memcg;
3293
3294 memcg = get_mem_cgroup_from_objcg(old);
3295
3296 memcg_account_kmem(memcg, -nr_pages);
3297 __refill_stock(memcg, nr_pages);
3298
3299 css_put(&memcg->css);
3300 }
3301
3302 /*
3303 * The leftover is flushed to the centralized per-memcg value.
3304 * On the next attempt to refill obj stock it will be moved
3305 * to a per-cpu stock (probably, on an other CPU), see
3306 * refill_obj_stock().
3307 *
3308 * How often it's flushed is a trade-off between the memory
3309 * limit enforcement accuracy and potential CPU contention,
3310 * so it might be changed in the future.
3311 */
3312 atomic_add(nr_bytes, &old->nr_charged_bytes);
3313 stock->nr_bytes = 0;
3314 }
3315
3316 /*
3317 * Flush the vmstat data in current stock
3318 */
3319 if (stock->nr_slab_reclaimable_b || stock->nr_slab_unreclaimable_b) {
3320 if (stock->nr_slab_reclaimable_b) {
3321 mod_objcg_mlstate(old, stock->cached_pgdat,
3322 NR_SLAB_RECLAIMABLE_B,
3323 stock->nr_slab_reclaimable_b);
3324 stock->nr_slab_reclaimable_b = 0;
3325 }
3326 if (stock->nr_slab_unreclaimable_b) {
3327 mod_objcg_mlstate(old, stock->cached_pgdat,
3328 NR_SLAB_UNRECLAIMABLE_B,
3329 stock->nr_slab_unreclaimable_b);
3330 stock->nr_slab_unreclaimable_b = 0;
3331 }
3332 stock->cached_pgdat = NULL;
3333 }
3334
3335 stock->cached_objcg = NULL;
3336 /*
3337 * The `old' objects needs to be released by the caller via
3338 * obj_cgroup_put() outside of memcg_stock_pcp::stock_lock.
3339 */
3340 return old;
3341}
3342
3343static bool obj_stock_flush_required(struct memcg_stock_pcp *stock,
3344 struct mem_cgroup *root_memcg)
3345{
3346 struct mem_cgroup *memcg;
3347
3348 if (stock->cached_objcg) {
3349 memcg = obj_cgroup_memcg(stock->cached_objcg);
3350 if (memcg && mem_cgroup_is_descendant(memcg, root_memcg))
3351 return true;
3352 }
3353
3354 return false;
3355}
3356
3357static void refill_obj_stock(struct obj_cgroup *objcg, unsigned int nr_bytes,
3358 bool allow_uncharge)
3359{
3360 struct memcg_stock_pcp *stock;
3361 struct obj_cgroup *old = NULL;
3362 unsigned long flags;
3363 unsigned int nr_pages = 0;
3364
3365 local_lock_irqsave(&memcg_stock.stock_lock, flags);
3366
3367 stock = this_cpu_ptr(&memcg_stock);
3368 if (stock->cached_objcg != objcg) { /* reset if necessary */
3369 old = drain_obj_stock(stock);
3370 obj_cgroup_get(objcg);
3371 stock->cached_objcg = objcg;
3372 stock->nr_bytes = atomic_read(&objcg->nr_charged_bytes)
3373 ? atomic_xchg(&objcg->nr_charged_bytes, 0) : 0;
3374 allow_uncharge = true; /* Allow uncharge when objcg changes */
3375 }
3376 stock->nr_bytes += nr_bytes;
3377
3378 if (allow_uncharge && (stock->nr_bytes > PAGE_SIZE)) {
3379 nr_pages = stock->nr_bytes >> PAGE_SHIFT;
3380 stock->nr_bytes &= (PAGE_SIZE - 1);
3381 }
3382
3383 local_unlock_irqrestore(&memcg_stock.stock_lock, flags);
3384 if (old)
3385 obj_cgroup_put(old);
3386
3387 if (nr_pages)
3388 obj_cgroup_uncharge_pages(objcg, nr_pages);
3389}
3390
3391int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size)
3392{
3393 unsigned int nr_pages, nr_bytes;
3394 int ret;
3395
3396 if (consume_obj_stock(objcg, size))
3397 return 0;
3398
3399 /*
3400 * In theory, objcg->nr_charged_bytes can have enough
3401 * pre-charged bytes to satisfy the allocation. However,
3402 * flushing objcg->nr_charged_bytes requires two atomic
3403 * operations, and objcg->nr_charged_bytes can't be big.
3404 * The shared objcg->nr_charged_bytes can also become a
3405 * performance bottleneck if all tasks of the same memcg are
3406 * trying to update it. So it's better to ignore it and try
3407 * grab some new pages. The stock's nr_bytes will be flushed to
3408 * objcg->nr_charged_bytes later on when objcg changes.
3409 *
3410 * The stock's nr_bytes may contain enough pre-charged bytes
3411 * to allow one less page from being charged, but we can't rely
3412 * on the pre-charged bytes not being changed outside of
3413 * consume_obj_stock() or refill_obj_stock(). So ignore those
3414 * pre-charged bytes as well when charging pages. To avoid a
3415 * page uncharge right after a page charge, we set the
3416 * allow_uncharge flag to false when calling refill_obj_stock()
3417 * to temporarily allow the pre-charged bytes to exceed the page
3418 * size limit. The maximum reachable value of the pre-charged
3419 * bytes is (sizeof(object) + PAGE_SIZE - 2) if there is no data
3420 * race.
3421 */
3422 nr_pages = size >> PAGE_SHIFT;
3423 nr_bytes = size & (PAGE_SIZE - 1);
3424
3425 if (nr_bytes)
3426 nr_pages += 1;
3427
3428 ret = obj_cgroup_charge_pages(objcg, gfp, nr_pages);
3429 if (!ret && nr_bytes)
3430 refill_obj_stock(objcg, PAGE_SIZE - nr_bytes, false);
3431
3432 return ret;
3433}
3434
3435void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size)
3436{
3437 refill_obj_stock(objcg, size, true);
3438}
3439
3440#endif /* CONFIG_MEMCG_KMEM */
3441
3442/*
3443 * Because page_memcg(head) is not set on tails, set it now.
3444 */
3445void split_page_memcg(struct page *head, unsigned int nr)
3446{
3447 struct folio *folio = page_folio(head);
3448 struct mem_cgroup *memcg = folio_memcg(folio);
3449 int i;
3450
3451 if (mem_cgroup_disabled() || !memcg)
3452 return;
3453
3454 for (i = 1; i < nr; i++)
3455 folio_page(folio, i)->memcg_data = folio->memcg_data;
3456
3457 if (folio_memcg_kmem(folio))
3458 obj_cgroup_get_many(__folio_objcg(folio), nr - 1);
3459 else
3460 css_get_many(&memcg->css, nr - 1);
3461}
3462
3463#ifdef CONFIG_SWAP
3464/**
3465 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
3466 * @entry: swap entry to be moved
3467 * @from: mem_cgroup which the entry is moved from
3468 * @to: mem_cgroup which the entry is moved to
3469 *
3470 * It succeeds only when the swap_cgroup's record for this entry is the same
3471 * as the mem_cgroup's id of @from.
3472 *
3473 * Returns 0 on success, -EINVAL on failure.
3474 *
3475 * The caller must have charged to @to, IOW, called page_counter_charge() about
3476 * both res and memsw, and called css_get().
3477 */
3478static int mem_cgroup_move_swap_account(swp_entry_t entry,
3479 struct mem_cgroup *from, struct mem_cgroup *to)
3480{
3481 unsigned short old_id, new_id;
3482
3483 old_id = mem_cgroup_id(from);
3484 new_id = mem_cgroup_id(to);
3485
3486 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
3487 mod_memcg_state(from, MEMCG_SWAP, -1);
3488 mod_memcg_state(to, MEMCG_SWAP, 1);
3489 return 0;
3490 }
3491 return -EINVAL;
3492}
3493#else
3494static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
3495 struct mem_cgroup *from, struct mem_cgroup *to)
3496{
3497 return -EINVAL;
3498}
3499#endif
3500
3501static DEFINE_MUTEX(memcg_max_mutex);
3502
3503static int mem_cgroup_resize_max(struct mem_cgroup *memcg,
3504 unsigned long max, bool memsw)
3505{
3506 bool enlarge = false;
3507 bool drained = false;
3508 int ret;
3509 bool limits_invariant;
3510 struct page_counter *counter = memsw ? &memcg->memsw : &memcg->memory;
3511
3512 do {
3513 if (signal_pending(current)) {
3514 ret = -EINTR;
3515 break;
3516 }
3517
3518 mutex_lock(&memcg_max_mutex);
3519 /*
3520 * Make sure that the new limit (memsw or memory limit) doesn't
3521 * break our basic invariant rule memory.max <= memsw.max.
3522 */
3523 limits_invariant = memsw ? max >= READ_ONCE(memcg->memory.max) :
3524 max <= memcg->memsw.max;
3525 if (!limits_invariant) {
3526 mutex_unlock(&memcg_max_mutex);
3527 ret = -EINVAL;
3528 break;
3529 }
3530 if (max > counter->max)
3531 enlarge = true;
3532 ret = page_counter_set_max(counter, max);
3533 mutex_unlock(&memcg_max_mutex);
3534
3535 if (!ret)
3536 break;
3537
3538 if (!drained) {
3539 drain_all_stock(memcg);
3540 drained = true;
3541 continue;
3542 }
3543
3544 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3545 memsw ? 0 : MEMCG_RECLAIM_MAY_SWAP)) {
3546 ret = -EBUSY;
3547 break;
3548 }
3549 } while (true);
3550
3551 if (!ret && enlarge)
3552 memcg_oom_recover(memcg);
3553
3554 return ret;
3555}
3556
3557unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
3558 gfp_t gfp_mask,
3559 unsigned long *total_scanned)
3560{
3561 unsigned long nr_reclaimed = 0;
3562 struct mem_cgroup_per_node *mz, *next_mz = NULL;
3563 unsigned long reclaimed;
3564 int loop = 0;
3565 struct mem_cgroup_tree_per_node *mctz;
3566 unsigned long excess;
3567
3568 if (lru_gen_enabled())
3569 return 0;
3570
3571 if (order > 0)
3572 return 0;
3573
3574 mctz = soft_limit_tree.rb_tree_per_node[pgdat->node_id];
3575
3576 /*
3577 * Do not even bother to check the largest node if the root
3578 * is empty. Do it lockless to prevent lock bouncing. Races
3579 * are acceptable as soft limit is best effort anyway.
3580 */
3581 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
3582 return 0;
3583
3584 /*
3585 * This loop can run a while, specially if mem_cgroup's continuously
3586 * keep exceeding their soft limit and putting the system under
3587 * pressure
3588 */
3589 do {
3590 if (next_mz)
3591 mz = next_mz;
3592 else
3593 mz = mem_cgroup_largest_soft_limit_node(mctz);
3594 if (!mz)
3595 break;
3596
3597 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
3598 gfp_mask, total_scanned);
3599 nr_reclaimed += reclaimed;
3600 spin_lock_irq(&mctz->lock);
3601
3602 /*
3603 * If we failed to reclaim anything from this memory cgroup
3604 * it is time to move on to the next cgroup
3605 */
3606 next_mz = NULL;
3607 if (!reclaimed)
3608 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3609
3610 excess = soft_limit_excess(mz->memcg);
3611 /*
3612 * One school of thought says that we should not add
3613 * back the node to the tree if reclaim returns 0.
3614 * But our reclaim could return 0, simply because due
3615 * to priority we are exposing a smaller subset of
3616 * memory to reclaim from. Consider this as a longer
3617 * term TODO.
3618 */
3619 /* If excess == 0, no tree ops */
3620 __mem_cgroup_insert_exceeded(mz, mctz, excess);
3621 spin_unlock_irq(&mctz->lock);
3622 css_put(&mz->memcg->css);
3623 loop++;
3624 /*
3625 * Could not reclaim anything and there are no more
3626 * mem cgroups to try or we seem to be looping without
3627 * reclaiming anything.
3628 */
3629 if (!nr_reclaimed &&
3630 (next_mz == NULL ||
3631 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3632 break;
3633 } while (!nr_reclaimed);
3634 if (next_mz)
3635 css_put(&next_mz->memcg->css);
3636 return nr_reclaimed;
3637}
3638
3639/*
3640 * Reclaims as many pages from the given memcg as possible.
3641 *
3642 * Caller is responsible for holding css reference for memcg.
3643 */
3644static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3645{
3646 int nr_retries = MAX_RECLAIM_RETRIES;
3647
3648 /* we call try-to-free pages for make this cgroup empty */
3649 lru_add_drain_all();
3650
3651 drain_all_stock(memcg);
3652
3653 /* try to free all pages in this cgroup */
3654 while (nr_retries && page_counter_read(&memcg->memory)) {
3655 if (signal_pending(current))
3656 return -EINTR;
3657
3658 if (!try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL,
3659 MEMCG_RECLAIM_MAY_SWAP))
3660 nr_retries--;
3661 }
3662
3663 return 0;
3664}
3665
3666static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3667 char *buf, size_t nbytes,
3668 loff_t off)
3669{
3670 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3671
3672 if (mem_cgroup_is_root(memcg))
3673 return -EINVAL;
3674 return mem_cgroup_force_empty(memcg) ?: nbytes;
3675}
3676
3677static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3678 struct cftype *cft)
3679{
3680 return 1;
3681}
3682
3683static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3684 struct cftype *cft, u64 val)
3685{
3686 if (val == 1)
3687 return 0;
3688
3689 pr_warn_once("Non-hierarchical mode is deprecated. "
3690 "Please report your usecase to linux-mm@kvack.org if you "
3691 "depend on this functionality.\n");
3692
3693 return -EINVAL;
3694}
3695
3696static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3697{
3698 unsigned long val;
3699
3700 if (mem_cgroup_is_root(memcg)) {
3701 /*
3702 * We can reach here from irq context through:
3703 * uncharge_batch()
3704 * |--memcg_check_events()
3705 * |--mem_cgroup_threshold()
3706 * |--__mem_cgroup_threshold()
3707 * |--mem_cgroup_usage
3708 *
3709 * rstat flushing is an expensive operation that should not be
3710 * done from irq context; use stale stats in this case.
3711 * Arguably, usage threshold events are not reliable on the root
3712 * memcg anyway since its usage is ill-defined.
3713 *
3714 * Additionally, other call paths through memcg_check_events()
3715 * disable irqs, so make sure we are flushing stats atomically.
3716 */
3717 if (in_task())
3718 mem_cgroup_flush_stats_atomic();
3719 val = memcg_page_state(memcg, NR_FILE_PAGES) +
3720 memcg_page_state(memcg, NR_ANON_MAPPED);
3721 if (swap)
3722 val += memcg_page_state(memcg, MEMCG_SWAP);
3723 } else {
3724 if (!swap)
3725 val = page_counter_read(&memcg->memory);
3726 else
3727 val = page_counter_read(&memcg->memsw);
3728 }
3729 return val;
3730}
3731
3732enum {
3733 RES_USAGE,
3734 RES_LIMIT,
3735 RES_MAX_USAGE,
3736 RES_FAILCNT,
3737 RES_SOFT_LIMIT,
3738};
3739
3740static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
3741 struct cftype *cft)
3742{
3743 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3744 struct page_counter *counter;
3745
3746 switch (MEMFILE_TYPE(cft->private)) {
3747 case _MEM:
3748 counter = &memcg->memory;
3749 break;
3750 case _MEMSWAP:
3751 counter = &memcg->memsw;
3752 break;
3753 case _KMEM:
3754 counter = &memcg->kmem;
3755 break;
3756 case _TCP:
3757 counter = &memcg->tcpmem;
3758 break;
3759 default:
3760 BUG();
3761 }
3762
3763 switch (MEMFILE_ATTR(cft->private)) {
3764 case RES_USAGE:
3765 if (counter == &memcg->memory)
3766 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3767 if (counter == &memcg->memsw)
3768 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3769 return (u64)page_counter_read(counter) * PAGE_SIZE;
3770 case RES_LIMIT:
3771 return (u64)counter->max * PAGE_SIZE;
3772 case RES_MAX_USAGE:
3773 return (u64)counter->watermark * PAGE_SIZE;
3774 case RES_FAILCNT:
3775 return counter->failcnt;
3776 case RES_SOFT_LIMIT:
3777 return (u64)READ_ONCE(memcg->soft_limit) * PAGE_SIZE;
3778 default:
3779 BUG();
3780 }
3781}
3782
3783/*
3784 * This function doesn't do anything useful. Its only job is to provide a read
3785 * handler for a file so that cgroup_file_mode() will add read permissions.
3786 */
3787static int mem_cgroup_dummy_seq_show(__always_unused struct seq_file *m,
3788 __always_unused void *v)
3789{
3790 return -EINVAL;
3791}
3792
3793#ifdef CONFIG_MEMCG_KMEM
3794static int memcg_online_kmem(struct mem_cgroup *memcg)
3795{
3796 struct obj_cgroup *objcg;
3797
3798 if (mem_cgroup_kmem_disabled())
3799 return 0;
3800
3801 if (unlikely(mem_cgroup_is_root(memcg)))
3802 return 0;
3803
3804 objcg = obj_cgroup_alloc();
3805 if (!objcg)
3806 return -ENOMEM;
3807
3808 objcg->memcg = memcg;
3809 rcu_assign_pointer(memcg->objcg, objcg);
3810
3811 static_branch_enable(&memcg_kmem_online_key);
3812
3813 memcg->kmemcg_id = memcg->id.id;
3814
3815 return 0;
3816}
3817
3818static void memcg_offline_kmem(struct mem_cgroup *memcg)
3819{
3820 struct mem_cgroup *parent;
3821
3822 if (mem_cgroup_kmem_disabled())
3823 return;
3824
3825 if (unlikely(mem_cgroup_is_root(memcg)))
3826 return;
3827
3828 parent = parent_mem_cgroup(memcg);
3829 if (!parent)
3830 parent = root_mem_cgroup;
3831
3832 memcg_reparent_objcgs(memcg, parent);
3833
3834 /*
3835 * After we have finished memcg_reparent_objcgs(), all list_lrus
3836 * corresponding to this cgroup are guaranteed to remain empty.
3837 * The ordering is imposed by list_lru_node->lock taken by
3838 * memcg_reparent_list_lrus().
3839 */
3840 memcg_reparent_list_lrus(memcg, parent);
3841}
3842#else
3843static int memcg_online_kmem(struct mem_cgroup *memcg)
3844{
3845 return 0;
3846}
3847static void memcg_offline_kmem(struct mem_cgroup *memcg)
3848{
3849}
3850#endif /* CONFIG_MEMCG_KMEM */
3851
3852static int memcg_update_tcp_max(struct mem_cgroup *memcg, unsigned long max)
3853{
3854 int ret;
3855
3856 mutex_lock(&memcg_max_mutex);
3857
3858 ret = page_counter_set_max(&memcg->tcpmem, max);
3859 if (ret)
3860 goto out;
3861
3862 if (!memcg->tcpmem_active) {
3863 /*
3864 * The active flag needs to be written after the static_key
3865 * update. This is what guarantees that the socket activation
3866 * function is the last one to run. See mem_cgroup_sk_alloc()
3867 * for details, and note that we don't mark any socket as
3868 * belonging to this memcg until that flag is up.
3869 *
3870 * We need to do this, because static_keys will span multiple
3871 * sites, but we can't control their order. If we mark a socket
3872 * as accounted, but the accounting functions are not patched in
3873 * yet, we'll lose accounting.
3874 *
3875 * We never race with the readers in mem_cgroup_sk_alloc(),
3876 * because when this value change, the code to process it is not
3877 * patched in yet.
3878 */
3879 static_branch_inc(&memcg_sockets_enabled_key);
3880 memcg->tcpmem_active = true;
3881 }
3882out:
3883 mutex_unlock(&memcg_max_mutex);
3884 return ret;
3885}
3886
3887/*
3888 * The user of this function is...
3889 * RES_LIMIT.
3890 */
3891static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3892 char *buf, size_t nbytes, loff_t off)
3893{
3894 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3895 unsigned long nr_pages;
3896 int ret;
3897
3898 buf = strstrip(buf);
3899 ret = page_counter_memparse(buf, "-1", &nr_pages);
3900 if (ret)
3901 return ret;
3902
3903 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3904 case RES_LIMIT:
3905 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3906 ret = -EINVAL;
3907 break;
3908 }
3909 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3910 case _MEM:
3911 ret = mem_cgroup_resize_max(memcg, nr_pages, false);
3912 break;
3913 case _MEMSWAP:
3914 ret = mem_cgroup_resize_max(memcg, nr_pages, true);
3915 break;
3916 case _KMEM:
3917 /* kmem.limit_in_bytes is deprecated. */
3918 ret = -EOPNOTSUPP;
3919 break;
3920 case _TCP:
3921 ret = memcg_update_tcp_max(memcg, nr_pages);
3922 break;
3923 }
3924 break;
3925 case RES_SOFT_LIMIT:
3926 if (IS_ENABLED(CONFIG_PREEMPT_RT)) {
3927 ret = -EOPNOTSUPP;
3928 } else {
3929 WRITE_ONCE(memcg->soft_limit, nr_pages);
3930 ret = 0;
3931 }
3932 break;
3933 }
3934 return ret ?: nbytes;
3935}
3936
3937static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3938 size_t nbytes, loff_t off)
3939{
3940 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3941 struct page_counter *counter;
3942
3943 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3944 case _MEM:
3945 counter = &memcg->memory;
3946 break;
3947 case _MEMSWAP:
3948 counter = &memcg->memsw;
3949 break;
3950 case _KMEM:
3951 counter = &memcg->kmem;
3952 break;
3953 case _TCP:
3954 counter = &memcg->tcpmem;
3955 break;
3956 default:
3957 BUG();
3958 }
3959
3960 switch (MEMFILE_ATTR(of_cft(of)->private)) {
3961 case RES_MAX_USAGE:
3962 page_counter_reset_watermark(counter);
3963 break;
3964 case RES_FAILCNT:
3965 counter->failcnt = 0;
3966 break;
3967 default:
3968 BUG();
3969 }
3970
3971 return nbytes;
3972}
3973
3974static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
3975 struct cftype *cft)
3976{
3977 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
3978}
3979
3980#ifdef CONFIG_MMU
3981static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
3982 struct cftype *cft, u64 val)
3983{
3984 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3985
3986 pr_warn_once("Cgroup memory moving (move_charge_at_immigrate) is deprecated. "
3987 "Please report your usecase to linux-mm@kvack.org if you "
3988 "depend on this functionality.\n");
3989
3990 if (val & ~MOVE_MASK)
3991 return -EINVAL;
3992
3993 /*
3994 * No kind of locking is needed in here, because ->can_attach() will
3995 * check this value once in the beginning of the process, and then carry
3996 * on with stale data. This means that changes to this value will only
3997 * affect task migrations starting after the change.
3998 */
3999 memcg->move_charge_at_immigrate = val;
4000 return 0;
4001}
4002#else
4003static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
4004 struct cftype *cft, u64 val)
4005{
4006 return -ENOSYS;
4007}
4008#endif
4009
4010#ifdef CONFIG_NUMA
4011
4012#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
4013#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
4014#define LRU_ALL ((1 << NR_LRU_LISTS) - 1)
4015
4016static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
4017 int nid, unsigned int lru_mask, bool tree)
4018{
4019 struct lruvec *lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
4020 unsigned long nr = 0;
4021 enum lru_list lru;
4022
4023 VM_BUG_ON((unsigned)nid >= nr_node_ids);
4024
4025 for_each_lru(lru) {
4026 if (!(BIT(lru) & lru_mask))
4027 continue;
4028 if (tree)
4029 nr += lruvec_page_state(lruvec, NR_LRU_BASE + lru);
4030 else
4031 nr += lruvec_page_state_local(lruvec, NR_LRU_BASE + lru);
4032 }
4033 return nr;
4034}
4035
4036static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
4037 unsigned int lru_mask,
4038 bool tree)
4039{
4040 unsigned long nr = 0;
4041 enum lru_list lru;
4042
4043 for_each_lru(lru) {
4044 if (!(BIT(lru) & lru_mask))
4045 continue;
4046 if (tree)
4047 nr += memcg_page_state(memcg, NR_LRU_BASE + lru);
4048 else
4049 nr += memcg_page_state_local(memcg, NR_LRU_BASE + lru);
4050 }
4051 return nr;
4052}
4053
4054static int memcg_numa_stat_show(struct seq_file *m, void *v)
4055{
4056 struct numa_stat {
4057 const char *name;
4058 unsigned int lru_mask;
4059 };
4060
4061 static const struct numa_stat stats[] = {
4062 { "total", LRU_ALL },
4063 { "file", LRU_ALL_FILE },
4064 { "anon", LRU_ALL_ANON },
4065 { "unevictable", BIT(LRU_UNEVICTABLE) },
4066 };
4067 const struct numa_stat *stat;
4068 int nid;
4069 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4070
4071 mem_cgroup_flush_stats();
4072
4073 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4074 seq_printf(m, "%s=%lu", stat->name,
4075 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4076 false));
4077 for_each_node_state(nid, N_MEMORY)
4078 seq_printf(m, " N%d=%lu", nid,
4079 mem_cgroup_node_nr_lru_pages(memcg, nid,
4080 stat->lru_mask, false));
4081 seq_putc(m, '\n');
4082 }
4083
4084 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
4085
4086 seq_printf(m, "hierarchical_%s=%lu", stat->name,
4087 mem_cgroup_nr_lru_pages(memcg, stat->lru_mask,
4088 true));
4089 for_each_node_state(nid, N_MEMORY)
4090 seq_printf(m, " N%d=%lu", nid,
4091 mem_cgroup_node_nr_lru_pages(memcg, nid,
4092 stat->lru_mask, true));
4093 seq_putc(m, '\n');
4094 }
4095
4096 return 0;
4097}
4098#endif /* CONFIG_NUMA */
4099
4100static const unsigned int memcg1_stats[] = {
4101 NR_FILE_PAGES,
4102 NR_ANON_MAPPED,
4103#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4104 NR_ANON_THPS,
4105#endif
4106 NR_SHMEM,
4107 NR_FILE_MAPPED,
4108 NR_FILE_DIRTY,
4109 NR_WRITEBACK,
4110 WORKINGSET_REFAULT_ANON,
4111 WORKINGSET_REFAULT_FILE,
4112 MEMCG_SWAP,
4113};
4114
4115static const char *const memcg1_stat_names[] = {
4116 "cache",
4117 "rss",
4118#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4119 "rss_huge",
4120#endif
4121 "shmem",
4122 "mapped_file",
4123 "dirty",
4124 "writeback",
4125 "workingset_refault_anon",
4126 "workingset_refault_file",
4127 "swap",
4128};
4129
4130/* Universal VM events cgroup1 shows, original sort order */
4131static const unsigned int memcg1_events[] = {
4132 PGPGIN,
4133 PGPGOUT,
4134 PGFAULT,
4135 PGMAJFAULT,
4136};
4137
4138static int memcg_stat_show(struct seq_file *m, void *v)
4139{
4140 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
4141 unsigned long memory, memsw;
4142 struct mem_cgroup *mi;
4143 unsigned int i;
4144
4145 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
4146
4147 mem_cgroup_flush_stats();
4148
4149 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4150 unsigned long nr;
4151
4152 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4153 continue;
4154 nr = memcg_page_state_local(memcg, memcg1_stats[i]);
4155 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
4156 nr * memcg_page_state_unit(memcg1_stats[i]));
4157 }
4158
4159 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4160 seq_printf(m, "%s %lu\n", vm_event_name(memcg1_events[i]),
4161 memcg_events_local(memcg, memcg1_events[i]));
4162
4163 for (i = 0; i < NR_LRU_LISTS; i++)
4164 seq_printf(m, "%s %lu\n", lru_list_name(i),
4165 memcg_page_state_local(memcg, NR_LRU_BASE + i) *
4166 PAGE_SIZE);
4167
4168 /* Hierarchical information */
4169 memory = memsw = PAGE_COUNTER_MAX;
4170 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
4171 memory = min(memory, READ_ONCE(mi->memory.max));
4172 memsw = min(memsw, READ_ONCE(mi->memsw.max));
4173 }
4174 seq_printf(m, "hierarchical_memory_limit %llu\n",
4175 (u64)memory * PAGE_SIZE);
4176 if (do_memsw_account())
4177 seq_printf(m, "hierarchical_memsw_limit %llu\n",
4178 (u64)memsw * PAGE_SIZE);
4179
4180 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
4181 unsigned long nr;
4182
4183 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
4184 continue;
4185 nr = memcg_page_state(memcg, memcg1_stats[i]);
4186 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i],
4187 (u64)nr * memcg_page_state_unit(memcg1_stats[i]));
4188 }
4189
4190 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
4191 seq_printf(m, "total_%s %llu\n",
4192 vm_event_name(memcg1_events[i]),
4193 (u64)memcg_events(memcg, memcg1_events[i]));
4194
4195 for (i = 0; i < NR_LRU_LISTS; i++)
4196 seq_printf(m, "total_%s %llu\n", lru_list_name(i),
4197 (u64)memcg_page_state(memcg, NR_LRU_BASE + i) *
4198 PAGE_SIZE);
4199
4200#ifdef CONFIG_DEBUG_VM
4201 {
4202 pg_data_t *pgdat;
4203 struct mem_cgroup_per_node *mz;
4204 unsigned long anon_cost = 0;
4205 unsigned long file_cost = 0;
4206
4207 for_each_online_pgdat(pgdat) {
4208 mz = memcg->nodeinfo[pgdat->node_id];
4209
4210 anon_cost += mz->lruvec.anon_cost;
4211 file_cost += mz->lruvec.file_cost;
4212 }
4213 seq_printf(m, "anon_cost %lu\n", anon_cost);
4214 seq_printf(m, "file_cost %lu\n", file_cost);
4215 }
4216#endif
4217
4218 return 0;
4219}
4220
4221static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
4222 struct cftype *cft)
4223{
4224 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4225
4226 return mem_cgroup_swappiness(memcg);
4227}
4228
4229static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
4230 struct cftype *cft, u64 val)
4231{
4232 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4233
4234 if (val > 200)
4235 return -EINVAL;
4236
4237 if (!mem_cgroup_is_root(memcg))
4238 WRITE_ONCE(memcg->swappiness, val);
4239 else
4240 WRITE_ONCE(vm_swappiness, val);
4241
4242 return 0;
4243}
4244
4245static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
4246{
4247 struct mem_cgroup_threshold_ary *t;
4248 unsigned long usage;
4249 int i;
4250
4251 rcu_read_lock();
4252 if (!swap)
4253 t = rcu_dereference(memcg->thresholds.primary);
4254 else
4255 t = rcu_dereference(memcg->memsw_thresholds.primary);
4256
4257 if (!t)
4258 goto unlock;
4259
4260 usage = mem_cgroup_usage(memcg, swap);
4261
4262 /*
4263 * current_threshold points to threshold just below or equal to usage.
4264 * If it's not true, a threshold was crossed after last
4265 * call of __mem_cgroup_threshold().
4266 */
4267 i = t->current_threshold;
4268
4269 /*
4270 * Iterate backward over array of thresholds starting from
4271 * current_threshold and check if a threshold is crossed.
4272 * If none of thresholds below usage is crossed, we read
4273 * only one element of the array here.
4274 */
4275 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
4276 eventfd_signal(t->entries[i].eventfd, 1);
4277
4278 /* i = current_threshold + 1 */
4279 i++;
4280
4281 /*
4282 * Iterate forward over array of thresholds starting from
4283 * current_threshold+1 and check if a threshold is crossed.
4284 * If none of thresholds above usage is crossed, we read
4285 * only one element of the array here.
4286 */
4287 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
4288 eventfd_signal(t->entries[i].eventfd, 1);
4289
4290 /* Update current_threshold */
4291 t->current_threshold = i - 1;
4292unlock:
4293 rcu_read_unlock();
4294}
4295
4296static void mem_cgroup_threshold(struct mem_cgroup *memcg)
4297{
4298 while (memcg) {
4299 __mem_cgroup_threshold(memcg, false);
4300 if (do_memsw_account())
4301 __mem_cgroup_threshold(memcg, true);
4302
4303 memcg = parent_mem_cgroup(memcg);
4304 }
4305}
4306
4307static int compare_thresholds(const void *a, const void *b)
4308{
4309 const struct mem_cgroup_threshold *_a = a;
4310 const struct mem_cgroup_threshold *_b = b;
4311
4312 if (_a->threshold > _b->threshold)
4313 return 1;
4314
4315 if (_a->threshold < _b->threshold)
4316 return -1;
4317
4318 return 0;
4319}
4320
4321static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
4322{
4323 struct mem_cgroup_eventfd_list *ev;
4324
4325 spin_lock(&memcg_oom_lock);
4326
4327 list_for_each_entry(ev, &memcg->oom_notify, list)
4328 eventfd_signal(ev->eventfd, 1);
4329
4330 spin_unlock(&memcg_oom_lock);
4331 return 0;
4332}
4333
4334static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
4335{
4336 struct mem_cgroup *iter;
4337
4338 for_each_mem_cgroup_tree(iter, memcg)
4339 mem_cgroup_oom_notify_cb(iter);
4340}
4341
4342static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4343 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
4344{
4345 struct mem_cgroup_thresholds *thresholds;
4346 struct mem_cgroup_threshold_ary *new;
4347 unsigned long threshold;
4348 unsigned long usage;
4349 int i, size, ret;
4350
4351 ret = page_counter_memparse(args, "-1", &threshold);
4352 if (ret)
4353 return ret;
4354
4355 mutex_lock(&memcg->thresholds_lock);
4356
4357 if (type == _MEM) {
4358 thresholds = &memcg->thresholds;
4359 usage = mem_cgroup_usage(memcg, false);
4360 } else if (type == _MEMSWAP) {
4361 thresholds = &memcg->memsw_thresholds;
4362 usage = mem_cgroup_usage(memcg, true);
4363 } else
4364 BUG();
4365
4366 /* Check if a threshold crossed before adding a new one */
4367 if (thresholds->primary)
4368 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4369
4370 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
4371
4372 /* Allocate memory for new array of thresholds */
4373 new = kmalloc(struct_size(new, entries, size), GFP_KERNEL);
4374 if (!new) {
4375 ret = -ENOMEM;
4376 goto unlock;
4377 }
4378 new->size = size;
4379
4380 /* Copy thresholds (if any) to new array */
4381 if (thresholds->primary)
4382 memcpy(new->entries, thresholds->primary->entries,
4383 flex_array_size(new, entries, size - 1));
4384
4385 /* Add new threshold */
4386 new->entries[size - 1].eventfd = eventfd;
4387 new->entries[size - 1].threshold = threshold;
4388
4389 /* Sort thresholds. Registering of new threshold isn't time-critical */
4390 sort(new->entries, size, sizeof(*new->entries),
4391 compare_thresholds, NULL);
4392
4393 /* Find current threshold */
4394 new->current_threshold = -1;
4395 for (i = 0; i < size; i++) {
4396 if (new->entries[i].threshold <= usage) {
4397 /*
4398 * new->current_threshold will not be used until
4399 * rcu_assign_pointer(), so it's safe to increment
4400 * it here.
4401 */
4402 ++new->current_threshold;
4403 } else
4404 break;
4405 }
4406
4407 /* Free old spare buffer and save old primary buffer as spare */
4408 kfree(thresholds->spare);
4409 thresholds->spare = thresholds->primary;
4410
4411 rcu_assign_pointer(thresholds->primary, new);
4412
4413 /* To be sure that nobody uses thresholds */
4414 synchronize_rcu();
4415
4416unlock:
4417 mutex_unlock(&memcg->thresholds_lock);
4418
4419 return ret;
4420}
4421
4422static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
4423 struct eventfd_ctx *eventfd, const char *args)
4424{
4425 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
4426}
4427
4428static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
4429 struct eventfd_ctx *eventfd, const char *args)
4430{
4431 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
4432}
4433
4434static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4435 struct eventfd_ctx *eventfd, enum res_type type)
4436{
4437 struct mem_cgroup_thresholds *thresholds;
4438 struct mem_cgroup_threshold_ary *new;
4439 unsigned long usage;
4440 int i, j, size, entries;
4441
4442 mutex_lock(&memcg->thresholds_lock);
4443
4444 if (type == _MEM) {
4445 thresholds = &memcg->thresholds;
4446 usage = mem_cgroup_usage(memcg, false);
4447 } else if (type == _MEMSWAP) {
4448 thresholds = &memcg->memsw_thresholds;
4449 usage = mem_cgroup_usage(memcg, true);
4450 } else
4451 BUG();
4452
4453 if (!thresholds->primary)
4454 goto unlock;
4455
4456 /* Check if a threshold crossed before removing */
4457 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
4458
4459 /* Calculate new number of threshold */
4460 size = entries = 0;
4461 for (i = 0; i < thresholds->primary->size; i++) {
4462 if (thresholds->primary->entries[i].eventfd != eventfd)
4463 size++;
4464 else
4465 entries++;
4466 }
4467
4468 new = thresholds->spare;
4469
4470 /* If no items related to eventfd have been cleared, nothing to do */
4471 if (!entries)
4472 goto unlock;
4473
4474 /* Set thresholds array to NULL if we don't have thresholds */
4475 if (!size) {
4476 kfree(new);
4477 new = NULL;
4478 goto swap_buffers;
4479 }
4480
4481 new->size = size;
4482
4483 /* Copy thresholds and find current threshold */
4484 new->current_threshold = -1;
4485 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
4486 if (thresholds->primary->entries[i].eventfd == eventfd)
4487 continue;
4488
4489 new->entries[j] = thresholds->primary->entries[i];
4490 if (new->entries[j].threshold <= usage) {
4491 /*
4492 * new->current_threshold will not be used
4493 * until rcu_assign_pointer(), so it's safe to increment
4494 * it here.
4495 */
4496 ++new->current_threshold;
4497 }
4498 j++;
4499 }
4500
4501swap_buffers:
4502 /* Swap primary and spare array */
4503 thresholds->spare = thresholds->primary;
4504
4505 rcu_assign_pointer(thresholds->primary, new);
4506
4507 /* To be sure that nobody uses thresholds */
4508 synchronize_rcu();
4509
4510 /* If all events are unregistered, free the spare array */
4511 if (!new) {
4512 kfree(thresholds->spare);
4513 thresholds->spare = NULL;
4514 }
4515unlock:
4516 mutex_unlock(&memcg->thresholds_lock);
4517}
4518
4519static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4520 struct eventfd_ctx *eventfd)
4521{
4522 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
4523}
4524
4525static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
4526 struct eventfd_ctx *eventfd)
4527{
4528 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
4529}
4530
4531static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
4532 struct eventfd_ctx *eventfd, const char *args)
4533{
4534 struct mem_cgroup_eventfd_list *event;
4535
4536 event = kmalloc(sizeof(*event), GFP_KERNEL);
4537 if (!event)
4538 return -ENOMEM;
4539
4540 spin_lock(&memcg_oom_lock);
4541
4542 event->eventfd = eventfd;
4543 list_add(&event->list, &memcg->oom_notify);
4544
4545 /* already in OOM ? */
4546 if (memcg->under_oom)
4547 eventfd_signal(eventfd, 1);
4548 spin_unlock(&memcg_oom_lock);
4549
4550 return 0;
4551}
4552
4553static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
4554 struct eventfd_ctx *eventfd)
4555{
4556 struct mem_cgroup_eventfd_list *ev, *tmp;
4557
4558 spin_lock(&memcg_oom_lock);
4559
4560 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
4561 if (ev->eventfd == eventfd) {
4562 list_del(&ev->list);
4563 kfree(ev);
4564 }
4565 }
4566
4567 spin_unlock(&memcg_oom_lock);
4568}
4569
4570static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
4571{
4572 struct mem_cgroup *memcg = mem_cgroup_from_seq(sf);
4573
4574 seq_printf(sf, "oom_kill_disable %d\n", READ_ONCE(memcg->oom_kill_disable));
4575 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
4576 seq_printf(sf, "oom_kill %lu\n",
4577 atomic_long_read(&memcg->memory_events[MEMCG_OOM_KILL]));
4578 return 0;
4579}
4580
4581static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
4582 struct cftype *cft, u64 val)
4583{
4584 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4585
4586 /* cannot set to root cgroup and only 0 and 1 are allowed */
4587 if (mem_cgroup_is_root(memcg) || !((val == 0) || (val == 1)))
4588 return -EINVAL;
4589
4590 WRITE_ONCE(memcg->oom_kill_disable, val);
4591 if (!val)
4592 memcg_oom_recover(memcg);
4593
4594 return 0;
4595}
4596
4597#ifdef CONFIG_CGROUP_WRITEBACK
4598
4599#include <trace/events/writeback.h>
4600
4601static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4602{
4603 return wb_domain_init(&memcg->cgwb_domain, gfp);
4604}
4605
4606static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4607{
4608 wb_domain_exit(&memcg->cgwb_domain);
4609}
4610
4611static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4612{
4613 wb_domain_size_changed(&memcg->cgwb_domain);
4614}
4615
4616struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
4617{
4618 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4619
4620 if (!memcg->css.parent)
4621 return NULL;
4622
4623 return &memcg->cgwb_domain;
4624}
4625
4626/**
4627 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
4628 * @wb: bdi_writeback in question
4629 * @pfilepages: out parameter for number of file pages
4630 * @pheadroom: out parameter for number of allocatable pages according to memcg
4631 * @pdirty: out parameter for number of dirty pages
4632 * @pwriteback: out parameter for number of pages under writeback
4633 *
4634 * Determine the numbers of file, headroom, dirty, and writeback pages in
4635 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
4636 * is a bit more involved.
4637 *
4638 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
4639 * headroom is calculated as the lowest headroom of itself and the
4640 * ancestors. Note that this doesn't consider the actual amount of
4641 * available memory in the system. The caller should further cap
4642 * *@pheadroom accordingly.
4643 */
4644void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
4645 unsigned long *pheadroom, unsigned long *pdirty,
4646 unsigned long *pwriteback)
4647{
4648 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4649 struct mem_cgroup *parent;
4650
4651 /*
4652 * wb_writeback() takes a spinlock and calls
4653 * wb_over_bg_thresh()->mem_cgroup_wb_stats(). Do not sleep.
4654 */
4655 mem_cgroup_flush_stats_atomic();
4656
4657 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
4658 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
4659 *pfilepages = memcg_page_state(memcg, NR_INACTIVE_FILE) +
4660 memcg_page_state(memcg, NR_ACTIVE_FILE);
4661
4662 *pheadroom = PAGE_COUNTER_MAX;
4663 while ((parent = parent_mem_cgroup(memcg))) {
4664 unsigned long ceiling = min(READ_ONCE(memcg->memory.max),
4665 READ_ONCE(memcg->memory.high));
4666 unsigned long used = page_counter_read(&memcg->memory);
4667
4668 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
4669 memcg = parent;
4670 }
4671}
4672
4673/*
4674 * Foreign dirty flushing
4675 *
4676 * There's an inherent mismatch between memcg and writeback. The former
4677 * tracks ownership per-page while the latter per-inode. This was a
4678 * deliberate design decision because honoring per-page ownership in the
4679 * writeback path is complicated, may lead to higher CPU and IO overheads
4680 * and deemed unnecessary given that write-sharing an inode across
4681 * different cgroups isn't a common use-case.
4682 *
4683 * Combined with inode majority-writer ownership switching, this works well
4684 * enough in most cases but there are some pathological cases. For
4685 * example, let's say there are two cgroups A and B which keep writing to
4686 * different but confined parts of the same inode. B owns the inode and
4687 * A's memory is limited far below B's. A's dirty ratio can rise enough to
4688 * trigger balance_dirty_pages() sleeps but B's can be low enough to avoid
4689 * triggering background writeback. A will be slowed down without a way to
4690 * make writeback of the dirty pages happen.
4691 *
4692 * Conditions like the above can lead to a cgroup getting repeatedly and
4693 * severely throttled after making some progress after each
4694 * dirty_expire_interval while the underlying IO device is almost
4695 * completely idle.
4696 *
4697 * Solving this problem completely requires matching the ownership tracking
4698 * granularities between memcg and writeback in either direction. However,
4699 * the more egregious behaviors can be avoided by simply remembering the
4700 * most recent foreign dirtying events and initiating remote flushes on
4701 * them when local writeback isn't enough to keep the memory clean enough.
4702 *
4703 * The following two functions implement such mechanism. When a foreign
4704 * page - a page whose memcg and writeback ownerships don't match - is
4705 * dirtied, mem_cgroup_track_foreign_dirty() records the inode owning
4706 * bdi_writeback on the page owning memcg. When balance_dirty_pages()
4707 * decides that the memcg needs to sleep due to high dirty ratio, it calls
4708 * mem_cgroup_flush_foreign() which queues writeback on the recorded
4709 * foreign bdi_writebacks which haven't expired. Both the numbers of
4710 * recorded bdi_writebacks and concurrent in-flight foreign writebacks are
4711 * limited to MEMCG_CGWB_FRN_CNT.
4712 *
4713 * The mechanism only remembers IDs and doesn't hold any object references.
4714 * As being wrong occasionally doesn't matter, updates and accesses to the
4715 * records are lockless and racy.
4716 */
4717void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
4718 struct bdi_writeback *wb)
4719{
4720 struct mem_cgroup *memcg = folio_memcg(folio);
4721 struct memcg_cgwb_frn *frn;
4722 u64 now = get_jiffies_64();
4723 u64 oldest_at = now;
4724 int oldest = -1;
4725 int i;
4726
4727 trace_track_foreign_dirty(folio, wb);
4728
4729 /*
4730 * Pick the slot to use. If there is already a slot for @wb, keep
4731 * using it. If not replace the oldest one which isn't being
4732 * written out.
4733 */
4734 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4735 frn = &memcg->cgwb_frn[i];
4736 if (frn->bdi_id == wb->bdi->id &&
4737 frn->memcg_id == wb->memcg_css->id)
4738 break;
4739 if (time_before64(frn->at, oldest_at) &&
4740 atomic_read(&frn->done.cnt) == 1) {
4741 oldest = i;
4742 oldest_at = frn->at;
4743 }
4744 }
4745
4746 if (i < MEMCG_CGWB_FRN_CNT) {
4747 /*
4748 * Re-using an existing one. Update timestamp lazily to
4749 * avoid making the cacheline hot. We want them to be
4750 * reasonably up-to-date and significantly shorter than
4751 * dirty_expire_interval as that's what expires the record.
4752 * Use the shorter of 1s and dirty_expire_interval / 8.
4753 */
4754 unsigned long update_intv =
4755 min_t(unsigned long, HZ,
4756 msecs_to_jiffies(dirty_expire_interval * 10) / 8);
4757
4758 if (time_before64(frn->at, now - update_intv))
4759 frn->at = now;
4760 } else if (oldest >= 0) {
4761 /* replace the oldest free one */
4762 frn = &memcg->cgwb_frn[oldest];
4763 frn->bdi_id = wb->bdi->id;
4764 frn->memcg_id = wb->memcg_css->id;
4765 frn->at = now;
4766 }
4767}
4768
4769/* issue foreign writeback flushes for recorded foreign dirtying events */
4770void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
4771{
4772 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
4773 unsigned long intv = msecs_to_jiffies(dirty_expire_interval * 10);
4774 u64 now = jiffies_64;
4775 int i;
4776
4777 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++) {
4778 struct memcg_cgwb_frn *frn = &memcg->cgwb_frn[i];
4779
4780 /*
4781 * If the record is older than dirty_expire_interval,
4782 * writeback on it has already started. No need to kick it
4783 * off again. Also, don't start a new one if there's
4784 * already one in flight.
4785 */
4786 if (time_after64(frn->at, now - intv) &&
4787 atomic_read(&frn->done.cnt) == 1) {
4788 frn->at = 0;
4789 trace_flush_foreign(wb, frn->bdi_id, frn->memcg_id);
4790 cgroup_writeback_by_id(frn->bdi_id, frn->memcg_id,
4791 WB_REASON_FOREIGN_FLUSH,
4792 &frn->done);
4793 }
4794 }
4795}
4796
4797#else /* CONFIG_CGROUP_WRITEBACK */
4798
4799static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
4800{
4801 return 0;
4802}
4803
4804static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
4805{
4806}
4807
4808static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
4809{
4810}
4811
4812#endif /* CONFIG_CGROUP_WRITEBACK */
4813
4814/*
4815 * DO NOT USE IN NEW FILES.
4816 *
4817 * "cgroup.event_control" implementation.
4818 *
4819 * This is way over-engineered. It tries to support fully configurable
4820 * events for each user. Such level of flexibility is completely
4821 * unnecessary especially in the light of the planned unified hierarchy.
4822 *
4823 * Please deprecate this and replace with something simpler if at all
4824 * possible.
4825 */
4826
4827/*
4828 * Unregister event and free resources.
4829 *
4830 * Gets called from workqueue.
4831 */
4832static void memcg_event_remove(struct work_struct *work)
4833{
4834 struct mem_cgroup_event *event =
4835 container_of(work, struct mem_cgroup_event, remove);
4836 struct mem_cgroup *memcg = event->memcg;
4837
4838 remove_wait_queue(event->wqh, &event->wait);
4839
4840 event->unregister_event(memcg, event->eventfd);
4841
4842 /* Notify userspace the event is going away. */
4843 eventfd_signal(event->eventfd, 1);
4844
4845 eventfd_ctx_put(event->eventfd);
4846 kfree(event);
4847 css_put(&memcg->css);
4848}
4849
4850/*
4851 * Gets called on EPOLLHUP on eventfd when user closes it.
4852 *
4853 * Called with wqh->lock held and interrupts disabled.
4854 */
4855static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
4856 int sync, void *key)
4857{
4858 struct mem_cgroup_event *event =
4859 container_of(wait, struct mem_cgroup_event, wait);
4860 struct mem_cgroup *memcg = event->memcg;
4861 __poll_t flags = key_to_poll(key);
4862
4863 if (flags & EPOLLHUP) {
4864 /*
4865 * If the event has been detached at cgroup removal, we
4866 * can simply return knowing the other side will cleanup
4867 * for us.
4868 *
4869 * We can't race against event freeing since the other
4870 * side will require wqh->lock via remove_wait_queue(),
4871 * which we hold.
4872 */
4873 spin_lock(&memcg->event_list_lock);
4874 if (!list_empty(&event->list)) {
4875 list_del_init(&event->list);
4876 /*
4877 * We are in atomic context, but cgroup_event_remove()
4878 * may sleep, so we have to call it in workqueue.
4879 */
4880 schedule_work(&event->remove);
4881 }
4882 spin_unlock(&memcg->event_list_lock);
4883 }
4884
4885 return 0;
4886}
4887
4888static void memcg_event_ptable_queue_proc(struct file *file,
4889 wait_queue_head_t *wqh, poll_table *pt)
4890{
4891 struct mem_cgroup_event *event =
4892 container_of(pt, struct mem_cgroup_event, pt);
4893
4894 event->wqh = wqh;
4895 add_wait_queue(wqh, &event->wait);
4896}
4897
4898/*
4899 * DO NOT USE IN NEW FILES.
4900 *
4901 * Parse input and register new cgroup event handler.
4902 *
4903 * Input must be in format '<event_fd> <control_fd> <args>'.
4904 * Interpretation of args is defined by control file implementation.
4905 */
4906static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4907 char *buf, size_t nbytes, loff_t off)
4908{
4909 struct cgroup_subsys_state *css = of_css(of);
4910 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4911 struct mem_cgroup_event *event;
4912 struct cgroup_subsys_state *cfile_css;
4913 unsigned int efd, cfd;
4914 struct fd efile;
4915 struct fd cfile;
4916 struct dentry *cdentry;
4917 const char *name;
4918 char *endp;
4919 int ret;
4920
4921 if (IS_ENABLED(CONFIG_PREEMPT_RT))
4922 return -EOPNOTSUPP;
4923
4924 buf = strstrip(buf);
4925
4926 efd = simple_strtoul(buf, &endp, 10);
4927 if (*endp != ' ')
4928 return -EINVAL;
4929 buf = endp + 1;
4930
4931 cfd = simple_strtoul(buf, &endp, 10);
4932 if ((*endp != ' ') && (*endp != '\0'))
4933 return -EINVAL;
4934 buf = endp + 1;
4935
4936 event = kzalloc(sizeof(*event), GFP_KERNEL);
4937 if (!event)
4938 return -ENOMEM;
4939
4940 event->memcg = memcg;
4941 INIT_LIST_HEAD(&event->list);
4942 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4943 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4944 INIT_WORK(&event->remove, memcg_event_remove);
4945
4946 efile = fdget(efd);
4947 if (!efile.file) {
4948 ret = -EBADF;
4949 goto out_kfree;
4950 }
4951
4952 event->eventfd = eventfd_ctx_fileget(efile.file);
4953 if (IS_ERR(event->eventfd)) {
4954 ret = PTR_ERR(event->eventfd);
4955 goto out_put_efile;
4956 }
4957
4958 cfile = fdget(cfd);
4959 if (!cfile.file) {
4960 ret = -EBADF;
4961 goto out_put_eventfd;
4962 }
4963
4964 /* the process need read permission on control file */
4965 /* AV: shouldn't we check that it's been opened for read instead? */
4966 ret = file_permission(cfile.file, MAY_READ);
4967 if (ret < 0)
4968 goto out_put_cfile;
4969
4970 /*
4971 * The control file must be a regular cgroup1 file. As a regular cgroup
4972 * file can't be renamed, it's safe to access its name afterwards.
4973 */
4974 cdentry = cfile.file->f_path.dentry;
4975 if (cdentry->d_sb->s_type != &cgroup_fs_type || !d_is_reg(cdentry)) {
4976 ret = -EINVAL;
4977 goto out_put_cfile;
4978 }
4979
4980 /*
4981 * Determine the event callbacks and set them in @event. This used
4982 * to be done via struct cftype but cgroup core no longer knows
4983 * about these events. The following is crude but the whole thing
4984 * is for compatibility anyway.
4985 *
4986 * DO NOT ADD NEW FILES.
4987 */
4988 name = cdentry->d_name.name;
4989
4990 if (!strcmp(name, "memory.usage_in_bytes")) {
4991 event->register_event = mem_cgroup_usage_register_event;
4992 event->unregister_event = mem_cgroup_usage_unregister_event;
4993 } else if (!strcmp(name, "memory.oom_control")) {
4994 event->register_event = mem_cgroup_oom_register_event;
4995 event->unregister_event = mem_cgroup_oom_unregister_event;
4996 } else if (!strcmp(name, "memory.pressure_level")) {
4997 event->register_event = vmpressure_register_event;
4998 event->unregister_event = vmpressure_unregister_event;
4999 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
5000 event->register_event = memsw_cgroup_usage_register_event;
5001 event->unregister_event = memsw_cgroup_usage_unregister_event;
5002 } else {
5003 ret = -EINVAL;
5004 goto out_put_cfile;
5005 }
5006
5007 /*
5008 * Verify @cfile should belong to @css. Also, remaining events are
5009 * automatically removed on cgroup destruction but the removal is
5010 * asynchronous, so take an extra ref on @css.
5011 */
5012 cfile_css = css_tryget_online_from_dir(cdentry->d_parent,
5013 &memory_cgrp_subsys);
5014 ret = -EINVAL;
5015 if (IS_ERR(cfile_css))
5016 goto out_put_cfile;
5017 if (cfile_css != css) {
5018 css_put(cfile_css);
5019 goto out_put_cfile;
5020 }
5021
5022 ret = event->register_event(memcg, event->eventfd, buf);
5023 if (ret)
5024 goto out_put_css;
5025
5026 vfs_poll(efile.file, &event->pt);
5027
5028 spin_lock_irq(&memcg->event_list_lock);
5029 list_add(&event->list, &memcg->event_list);
5030 spin_unlock_irq(&memcg->event_list_lock);
5031
5032 fdput(cfile);
5033 fdput(efile);
5034
5035 return nbytes;
5036
5037out_put_css:
5038 css_put(css);
5039out_put_cfile:
5040 fdput(cfile);
5041out_put_eventfd:
5042 eventfd_ctx_put(event->eventfd);
5043out_put_efile:
5044 fdput(efile);
5045out_kfree:
5046 kfree(event);
5047
5048 return ret;
5049}
5050
5051#if defined(CONFIG_MEMCG_KMEM) && (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5052static int mem_cgroup_slab_show(struct seq_file *m, void *p)
5053{
5054 /*
5055 * Deprecated.
5056 * Please, take a look at tools/cgroup/memcg_slabinfo.py .
5057 */
5058 return 0;
5059}
5060#endif
5061
5062static struct cftype mem_cgroup_legacy_files[] = {
5063 {
5064 .name = "usage_in_bytes",
5065 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
5066 .read_u64 = mem_cgroup_read_u64,
5067 },
5068 {
5069 .name = "max_usage_in_bytes",
5070 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
5071 .write = mem_cgroup_reset,
5072 .read_u64 = mem_cgroup_read_u64,
5073 },
5074 {
5075 .name = "limit_in_bytes",
5076 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
5077 .write = mem_cgroup_write,
5078 .read_u64 = mem_cgroup_read_u64,
5079 },
5080 {
5081 .name = "soft_limit_in_bytes",
5082 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5083 .write = mem_cgroup_write,
5084 .read_u64 = mem_cgroup_read_u64,
5085 },
5086 {
5087 .name = "failcnt",
5088 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
5089 .write = mem_cgroup_reset,
5090 .read_u64 = mem_cgroup_read_u64,
5091 },
5092 {
5093 .name = "stat",
5094 .seq_show = memcg_stat_show,
5095 },
5096 {
5097 .name = "force_empty",
5098 .write = mem_cgroup_force_empty_write,
5099 },
5100 {
5101 .name = "use_hierarchy",
5102 .write_u64 = mem_cgroup_hierarchy_write,
5103 .read_u64 = mem_cgroup_hierarchy_read,
5104 },
5105 {
5106 .name = "cgroup.event_control", /* XXX: for compat */
5107 .write = memcg_write_event_control,
5108 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
5109 },
5110 {
5111 .name = "swappiness",
5112 .read_u64 = mem_cgroup_swappiness_read,
5113 .write_u64 = mem_cgroup_swappiness_write,
5114 },
5115 {
5116 .name = "move_charge_at_immigrate",
5117 .read_u64 = mem_cgroup_move_charge_read,
5118 .write_u64 = mem_cgroup_move_charge_write,
5119 },
5120 {
5121 .name = "oom_control",
5122 .seq_show = mem_cgroup_oom_control_read,
5123 .write_u64 = mem_cgroup_oom_control_write,
5124 },
5125 {
5126 .name = "pressure_level",
5127 .seq_show = mem_cgroup_dummy_seq_show,
5128 },
5129#ifdef CONFIG_NUMA
5130 {
5131 .name = "numa_stat",
5132 .seq_show = memcg_numa_stat_show,
5133 },
5134#endif
5135 {
5136 .name = "kmem.limit_in_bytes",
5137 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
5138 .write = mem_cgroup_write,
5139 .read_u64 = mem_cgroup_read_u64,
5140 },
5141 {
5142 .name = "kmem.usage_in_bytes",
5143 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
5144 .read_u64 = mem_cgroup_read_u64,
5145 },
5146 {
5147 .name = "kmem.failcnt",
5148 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
5149 .write = mem_cgroup_reset,
5150 .read_u64 = mem_cgroup_read_u64,
5151 },
5152 {
5153 .name = "kmem.max_usage_in_bytes",
5154 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
5155 .write = mem_cgroup_reset,
5156 .read_u64 = mem_cgroup_read_u64,
5157 },
5158#if defined(CONFIG_MEMCG_KMEM) && \
5159 (defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG))
5160 {
5161 .name = "kmem.slabinfo",
5162 .seq_show = mem_cgroup_slab_show,
5163 },
5164#endif
5165 {
5166 .name = "kmem.tcp.limit_in_bytes",
5167 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
5168 .write = mem_cgroup_write,
5169 .read_u64 = mem_cgroup_read_u64,
5170 },
5171 {
5172 .name = "kmem.tcp.usage_in_bytes",
5173 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
5174 .read_u64 = mem_cgroup_read_u64,
5175 },
5176 {
5177 .name = "kmem.tcp.failcnt",
5178 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
5179 .write = mem_cgroup_reset,
5180 .read_u64 = mem_cgroup_read_u64,
5181 },
5182 {
5183 .name = "kmem.tcp.max_usage_in_bytes",
5184 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
5185 .write = mem_cgroup_reset,
5186 .read_u64 = mem_cgroup_read_u64,
5187 },
5188 { }, /* terminate */
5189};
5190
5191/*
5192 * Private memory cgroup IDR
5193 *
5194 * Swap-out records and page cache shadow entries need to store memcg
5195 * references in constrained space, so we maintain an ID space that is
5196 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
5197 * memory-controlled cgroups to 64k.
5198 *
5199 * However, there usually are many references to the offline CSS after
5200 * the cgroup has been destroyed, such as page cache or reclaimable
5201 * slab objects, that don't need to hang on to the ID. We want to keep
5202 * those dead CSS from occupying IDs, or we might quickly exhaust the
5203 * relatively small ID space and prevent the creation of new cgroups
5204 * even when there are much fewer than 64k cgroups - possibly none.
5205 *
5206 * Maintain a private 16-bit ID space for memcg, and allow the ID to
5207 * be freed and recycled when it's no longer needed, which is usually
5208 * when the CSS is offlined.
5209 *
5210 * The only exception to that are records of swapped out tmpfs/shmem
5211 * pages that need to be attributed to live ancestors on swapin. But
5212 * those references are manageable from userspace.
5213 */
5214
5215static DEFINE_IDR(mem_cgroup_idr);
5216
5217static void mem_cgroup_id_remove(struct mem_cgroup *memcg)
5218{
5219 if (memcg->id.id > 0) {
5220 idr_remove(&mem_cgroup_idr, memcg->id.id);
5221 memcg->id.id = 0;
5222 }
5223}
5224
5225static void __maybe_unused mem_cgroup_id_get_many(struct mem_cgroup *memcg,
5226 unsigned int n)
5227{
5228 refcount_add(n, &memcg->id.ref);
5229}
5230
5231static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
5232{
5233 if (refcount_sub_and_test(n, &memcg->id.ref)) {
5234 mem_cgroup_id_remove(memcg);
5235
5236 /* Memcg ID pins CSS */
5237 css_put(&memcg->css);
5238 }
5239}
5240
5241static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
5242{
5243 mem_cgroup_id_put_many(memcg, 1);
5244}
5245
5246/**
5247 * mem_cgroup_from_id - look up a memcg from a memcg id
5248 * @id: the memcg id to look up
5249 *
5250 * Caller must hold rcu_read_lock().
5251 */
5252struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
5253{
5254 WARN_ON_ONCE(!rcu_read_lock_held());
5255 return idr_find(&mem_cgroup_idr, id);
5256}
5257
5258#ifdef CONFIG_SHRINKER_DEBUG
5259struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
5260{
5261 struct cgroup *cgrp;
5262 struct cgroup_subsys_state *css;
5263 struct mem_cgroup *memcg;
5264
5265 cgrp = cgroup_get_from_id(ino);
5266 if (IS_ERR(cgrp))
5267 return ERR_CAST(cgrp);
5268
5269 css = cgroup_get_e_css(cgrp, &memory_cgrp_subsys);
5270 if (css)
5271 memcg = container_of(css, struct mem_cgroup, css);
5272 else
5273 memcg = ERR_PTR(-ENOENT);
5274
5275 cgroup_put(cgrp);
5276
5277 return memcg;
5278}
5279#endif
5280
5281static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5282{
5283 struct mem_cgroup_per_node *pn;
5284
5285 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, node);
5286 if (!pn)
5287 return 1;
5288
5289 pn->lruvec_stats_percpu = alloc_percpu_gfp(struct lruvec_stats_percpu,
5290 GFP_KERNEL_ACCOUNT);
5291 if (!pn->lruvec_stats_percpu) {
5292 kfree(pn);
5293 return 1;
5294 }
5295
5296 lruvec_init(&pn->lruvec);
5297 pn->memcg = memcg;
5298
5299 memcg->nodeinfo[node] = pn;
5300 return 0;
5301}
5302
5303static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
5304{
5305 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
5306
5307 if (!pn)
5308 return;
5309
5310 free_percpu(pn->lruvec_stats_percpu);
5311 kfree(pn);
5312}
5313
5314static void __mem_cgroup_free(struct mem_cgroup *memcg)
5315{
5316 int node;
5317
5318 for_each_node(node)
5319 free_mem_cgroup_per_node_info(memcg, node);
5320 kfree(memcg->vmstats);
5321 free_percpu(memcg->vmstats_percpu);
5322 kfree(memcg);
5323}
5324
5325static void mem_cgroup_free(struct mem_cgroup *memcg)
5326{
5327 lru_gen_exit_memcg(memcg);
5328 memcg_wb_domain_exit(memcg);
5329 __mem_cgroup_free(memcg);
5330}
5331
5332static struct mem_cgroup *mem_cgroup_alloc(void)
5333{
5334 struct mem_cgroup *memcg;
5335 int node;
5336 int __maybe_unused i;
5337 long error = -ENOMEM;
5338
5339 memcg = kzalloc(struct_size(memcg, nodeinfo, nr_node_ids), GFP_KERNEL);
5340 if (!memcg)
5341 return ERR_PTR(error);
5342
5343 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
5344 1, MEM_CGROUP_ID_MAX + 1, GFP_KERNEL);
5345 if (memcg->id.id < 0) {
5346 error = memcg->id.id;
5347 goto fail;
5348 }
5349
5350 memcg->vmstats = kzalloc(sizeof(struct memcg_vmstats), GFP_KERNEL);
5351 if (!memcg->vmstats)
5352 goto fail;
5353
5354 memcg->vmstats_percpu = alloc_percpu_gfp(struct memcg_vmstats_percpu,
5355 GFP_KERNEL_ACCOUNT);
5356 if (!memcg->vmstats_percpu)
5357 goto fail;
5358
5359 for_each_node(node)
5360 if (alloc_mem_cgroup_per_node_info(memcg, node))
5361 goto fail;
5362
5363 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
5364 goto fail;
5365
5366 INIT_WORK(&memcg->high_work, high_work_func);
5367 INIT_LIST_HEAD(&memcg->oom_notify);
5368 mutex_init(&memcg->thresholds_lock);
5369 spin_lock_init(&memcg->move_lock);
5370 vmpressure_init(&memcg->vmpressure);
5371 INIT_LIST_HEAD(&memcg->event_list);
5372 spin_lock_init(&memcg->event_list_lock);
5373 memcg->socket_pressure = jiffies;
5374#ifdef CONFIG_MEMCG_KMEM
5375 memcg->kmemcg_id = -1;
5376 INIT_LIST_HEAD(&memcg->objcg_list);
5377#endif
5378#ifdef CONFIG_CGROUP_WRITEBACK
5379 INIT_LIST_HEAD(&memcg->cgwb_list);
5380 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5381 memcg->cgwb_frn[i].done =
5382 __WB_COMPLETION_INIT(&memcg_cgwb_frn_waitq);
5383#endif
5384#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5385 spin_lock_init(&memcg->deferred_split_queue.split_queue_lock);
5386 INIT_LIST_HEAD(&memcg->deferred_split_queue.split_queue);
5387 memcg->deferred_split_queue.split_queue_len = 0;
5388#endif
5389 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
5390 lru_gen_init_memcg(memcg);
5391 return memcg;
5392fail:
5393 mem_cgroup_id_remove(memcg);
5394 __mem_cgroup_free(memcg);
5395 return ERR_PTR(error);
5396}
5397
5398static struct cgroup_subsys_state * __ref
5399mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
5400{
5401 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
5402 struct mem_cgroup *memcg, *old_memcg;
5403
5404 old_memcg = set_active_memcg(parent);
5405 memcg = mem_cgroup_alloc();
5406 set_active_memcg(old_memcg);
5407 if (IS_ERR(memcg))
5408 return ERR_CAST(memcg);
5409
5410 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5411 WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
5412#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
5413 memcg->zswap_max = PAGE_COUNTER_MAX;
5414#endif
5415 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5416 if (parent) {
5417 WRITE_ONCE(memcg->swappiness, mem_cgroup_swappiness(parent));
5418 WRITE_ONCE(memcg->oom_kill_disable, READ_ONCE(parent->oom_kill_disable));
5419
5420 page_counter_init(&memcg->memory, &parent->memory);
5421 page_counter_init(&memcg->swap, &parent->swap);
5422 page_counter_init(&memcg->kmem, &parent->kmem);
5423 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
5424 } else {
5425 init_memcg_events();
5426 page_counter_init(&memcg->memory, NULL);
5427 page_counter_init(&memcg->swap, NULL);
5428 page_counter_init(&memcg->kmem, NULL);
5429 page_counter_init(&memcg->tcpmem, NULL);
5430
5431 root_mem_cgroup = memcg;
5432 return &memcg->css;
5433 }
5434
5435 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5436 static_branch_inc(&memcg_sockets_enabled_key);
5437
5438#if defined(CONFIG_MEMCG_KMEM)
5439 if (!cgroup_memory_nobpf)
5440 static_branch_inc(&memcg_bpf_enabled_key);
5441#endif
5442
5443 return &memcg->css;
5444}
5445
5446static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
5447{
5448 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5449
5450 if (memcg_online_kmem(memcg))
5451 goto remove_id;
5452
5453 /*
5454 * A memcg must be visible for expand_shrinker_info()
5455 * by the time the maps are allocated. So, we allocate maps
5456 * here, when for_each_mem_cgroup() can't skip it.
5457 */
5458 if (alloc_shrinker_info(memcg))
5459 goto offline_kmem;
5460
5461 /* Online state pins memcg ID, memcg ID pins CSS */
5462 refcount_set(&memcg->id.ref, 1);
5463 css_get(css);
5464
5465 if (unlikely(mem_cgroup_is_root(memcg)))
5466 queue_delayed_work(system_unbound_wq, &stats_flush_dwork,
5467 2UL*HZ);
5468 lru_gen_online_memcg(memcg);
5469 return 0;
5470offline_kmem:
5471 memcg_offline_kmem(memcg);
5472remove_id:
5473 mem_cgroup_id_remove(memcg);
5474 return -ENOMEM;
5475}
5476
5477static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
5478{
5479 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5480 struct mem_cgroup_event *event, *tmp;
5481
5482 /*
5483 * Unregister events and notify userspace.
5484 * Notify userspace about cgroup removing only after rmdir of cgroup
5485 * directory to avoid race between userspace and kernelspace.
5486 */
5487 spin_lock_irq(&memcg->event_list_lock);
5488 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
5489 list_del_init(&event->list);
5490 schedule_work(&event->remove);
5491 }
5492 spin_unlock_irq(&memcg->event_list_lock);
5493
5494 page_counter_set_min(&memcg->memory, 0);
5495 page_counter_set_low(&memcg->memory, 0);
5496
5497 memcg_offline_kmem(memcg);
5498 reparent_shrinker_deferred(memcg);
5499 wb_memcg_offline(memcg);
5500 lru_gen_offline_memcg(memcg);
5501
5502 drain_all_stock(memcg);
5503
5504 mem_cgroup_id_put(memcg);
5505}
5506
5507static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
5508{
5509 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5510
5511 invalidate_reclaim_iterators(memcg);
5512 lru_gen_release_memcg(memcg);
5513}
5514
5515static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
5516{
5517 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5518 int __maybe_unused i;
5519
5520#ifdef CONFIG_CGROUP_WRITEBACK
5521 for (i = 0; i < MEMCG_CGWB_FRN_CNT; i++)
5522 wb_wait_for_completion(&memcg->cgwb_frn[i].done);
5523#endif
5524 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
5525 static_branch_dec(&memcg_sockets_enabled_key);
5526
5527 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
5528 static_branch_dec(&memcg_sockets_enabled_key);
5529
5530#if defined(CONFIG_MEMCG_KMEM)
5531 if (!cgroup_memory_nobpf)
5532 static_branch_dec(&memcg_bpf_enabled_key);
5533#endif
5534
5535 vmpressure_cleanup(&memcg->vmpressure);
5536 cancel_work_sync(&memcg->high_work);
5537 mem_cgroup_remove_from_trees(memcg);
5538 free_shrinker_info(memcg);
5539 mem_cgroup_free(memcg);
5540}
5541
5542/**
5543 * mem_cgroup_css_reset - reset the states of a mem_cgroup
5544 * @css: the target css
5545 *
5546 * Reset the states of the mem_cgroup associated with @css. This is
5547 * invoked when the userland requests disabling on the default hierarchy
5548 * but the memcg is pinned through dependency. The memcg should stop
5549 * applying policies and should revert to the vanilla state as it may be
5550 * made visible again.
5551 *
5552 * The current implementation only resets the essential configurations.
5553 * This needs to be expanded to cover all the visible parts.
5554 */
5555static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
5556{
5557 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5558
5559 page_counter_set_max(&memcg->memory, PAGE_COUNTER_MAX);
5560 page_counter_set_max(&memcg->swap, PAGE_COUNTER_MAX);
5561 page_counter_set_max(&memcg->kmem, PAGE_COUNTER_MAX);
5562 page_counter_set_max(&memcg->tcpmem, PAGE_COUNTER_MAX);
5563 page_counter_set_min(&memcg->memory, 0);
5564 page_counter_set_low(&memcg->memory, 0);
5565 page_counter_set_high(&memcg->memory, PAGE_COUNTER_MAX);
5566 WRITE_ONCE(memcg->soft_limit, PAGE_COUNTER_MAX);
5567 page_counter_set_high(&memcg->swap, PAGE_COUNTER_MAX);
5568 memcg_wb_domain_size_changed(memcg);
5569}
5570
5571static void mem_cgroup_css_rstat_flush(struct cgroup_subsys_state *css, int cpu)
5572{
5573 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5574 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5575 struct memcg_vmstats_percpu *statc;
5576 long delta, v;
5577 int i, nid;
5578
5579 statc = per_cpu_ptr(memcg->vmstats_percpu, cpu);
5580
5581 for (i = 0; i < MEMCG_NR_STAT; i++) {
5582 /*
5583 * Collect the aggregated propagation counts of groups
5584 * below us. We're in a per-cpu loop here and this is
5585 * a global counter, so the first cycle will get them.
5586 */
5587 delta = memcg->vmstats->state_pending[i];
5588 if (delta)
5589 memcg->vmstats->state_pending[i] = 0;
5590
5591 /* Add CPU changes on this level since the last flush */
5592 v = READ_ONCE(statc->state[i]);
5593 if (v != statc->state_prev[i]) {
5594 delta += v - statc->state_prev[i];
5595 statc->state_prev[i] = v;
5596 }
5597
5598 if (!delta)
5599 continue;
5600
5601 /* Aggregate counts on this level and propagate upwards */
5602 memcg->vmstats->state[i] += delta;
5603 if (parent)
5604 parent->vmstats->state_pending[i] += delta;
5605 }
5606
5607 for (i = 0; i < NR_MEMCG_EVENTS; i++) {
5608 delta = memcg->vmstats->events_pending[i];
5609 if (delta)
5610 memcg->vmstats->events_pending[i] = 0;
5611
5612 v = READ_ONCE(statc->events[i]);
5613 if (v != statc->events_prev[i]) {
5614 delta += v - statc->events_prev[i];
5615 statc->events_prev[i] = v;
5616 }
5617
5618 if (!delta)
5619 continue;
5620
5621 memcg->vmstats->events[i] += delta;
5622 if (parent)
5623 parent->vmstats->events_pending[i] += delta;
5624 }
5625
5626 for_each_node_state(nid, N_MEMORY) {
5627 struct mem_cgroup_per_node *pn = memcg->nodeinfo[nid];
5628 struct mem_cgroup_per_node *ppn = NULL;
5629 struct lruvec_stats_percpu *lstatc;
5630
5631 if (parent)
5632 ppn = parent->nodeinfo[nid];
5633
5634 lstatc = per_cpu_ptr(pn->lruvec_stats_percpu, cpu);
5635
5636 for (i = 0; i < NR_VM_NODE_STAT_ITEMS; i++) {
5637 delta = pn->lruvec_stats.state_pending[i];
5638 if (delta)
5639 pn->lruvec_stats.state_pending[i] = 0;
5640
5641 v = READ_ONCE(lstatc->state[i]);
5642 if (v != lstatc->state_prev[i]) {
5643 delta += v - lstatc->state_prev[i];
5644 lstatc->state_prev[i] = v;
5645 }
5646
5647 if (!delta)
5648 continue;
5649
5650 pn->lruvec_stats.state[i] += delta;
5651 if (ppn)
5652 ppn->lruvec_stats.state_pending[i] += delta;
5653 }
5654 }
5655}
5656
5657#ifdef CONFIG_MMU
5658/* Handlers for move charge at task migration. */
5659static int mem_cgroup_do_precharge(unsigned long count)
5660{
5661 int ret;
5662
5663 /* Try a single bulk charge without reclaim first, kswapd may wake */
5664 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
5665 if (!ret) {
5666 mc.precharge += count;
5667 return ret;
5668 }
5669
5670 /* Try charges one by one with reclaim, but do not retry */
5671 while (count--) {
5672 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
5673 if (ret)
5674 return ret;
5675 mc.precharge++;
5676 cond_resched();
5677 }
5678 return 0;
5679}
5680
5681union mc_target {
5682 struct page *page;
5683 swp_entry_t ent;
5684};
5685
5686enum mc_target_type {
5687 MC_TARGET_NONE = 0,
5688 MC_TARGET_PAGE,
5689 MC_TARGET_SWAP,
5690 MC_TARGET_DEVICE,
5691};
5692
5693static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
5694 unsigned long addr, pte_t ptent)
5695{
5696 struct page *page = vm_normal_page(vma, addr, ptent);
5697
5698 if (!page || !page_mapped(page))
5699 return NULL;
5700 if (PageAnon(page)) {
5701 if (!(mc.flags & MOVE_ANON))
5702 return NULL;
5703 } else {
5704 if (!(mc.flags & MOVE_FILE))
5705 return NULL;
5706 }
5707 if (!get_page_unless_zero(page))
5708 return NULL;
5709
5710 return page;
5711}
5712
5713#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
5714static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5715 pte_t ptent, swp_entry_t *entry)
5716{
5717 struct page *page = NULL;
5718 swp_entry_t ent = pte_to_swp_entry(ptent);
5719
5720 if (!(mc.flags & MOVE_ANON))
5721 return NULL;
5722
5723 /*
5724 * Handle device private pages that are not accessible by the CPU, but
5725 * stored as special swap entries in the page table.
5726 */
5727 if (is_device_private_entry(ent)) {
5728 page = pfn_swap_entry_to_page(ent);
5729 if (!get_page_unless_zero(page))
5730 return NULL;
5731 return page;
5732 }
5733
5734 if (non_swap_entry(ent))
5735 return NULL;
5736
5737 /*
5738 * Because swap_cache_get_folio() updates some statistics counter,
5739 * we call find_get_page() with swapper_space directly.
5740 */
5741 page = find_get_page(swap_address_space(ent), swp_offset(ent));
5742 entry->val = ent.val;
5743
5744 return page;
5745}
5746#else
5747static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
5748 pte_t ptent, swp_entry_t *entry)
5749{
5750 return NULL;
5751}
5752#endif
5753
5754static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
5755 unsigned long addr, pte_t ptent)
5756{
5757 unsigned long index;
5758 struct folio *folio;
5759
5760 if (!vma->vm_file) /* anonymous vma */
5761 return NULL;
5762 if (!(mc.flags & MOVE_FILE))
5763 return NULL;
5764
5765 /* folio is moved even if it's not RSS of this task(page-faulted). */
5766 /* shmem/tmpfs may report page out on swap: account for that too. */
5767 index = linear_page_index(vma, addr);
5768 folio = filemap_get_incore_folio(vma->vm_file->f_mapping, index);
5769 if (IS_ERR(folio))
5770 return NULL;
5771 return folio_file_page(folio, index);
5772}
5773
5774/**
5775 * mem_cgroup_move_account - move account of the page
5776 * @page: the page
5777 * @compound: charge the page as compound or small page
5778 * @from: mem_cgroup which the page is moved from.
5779 * @to: mem_cgroup which the page is moved to. @from != @to.
5780 *
5781 * The page must be locked and not on the LRU.
5782 *
5783 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
5784 * from old cgroup.
5785 */
5786static int mem_cgroup_move_account(struct page *page,
5787 bool compound,
5788 struct mem_cgroup *from,
5789 struct mem_cgroup *to)
5790{
5791 struct folio *folio = page_folio(page);
5792 struct lruvec *from_vec, *to_vec;
5793 struct pglist_data *pgdat;
5794 unsigned int nr_pages = compound ? folio_nr_pages(folio) : 1;
5795 int nid, ret;
5796
5797 VM_BUG_ON(from == to);
5798 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
5799 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
5800 VM_BUG_ON(compound && !folio_test_large(folio));
5801
5802 ret = -EINVAL;
5803 if (folio_memcg(folio) != from)
5804 goto out;
5805
5806 pgdat = folio_pgdat(folio);
5807 from_vec = mem_cgroup_lruvec(from, pgdat);
5808 to_vec = mem_cgroup_lruvec(to, pgdat);
5809
5810 folio_memcg_lock(folio);
5811
5812 if (folio_test_anon(folio)) {
5813 if (folio_mapped(folio)) {
5814 __mod_lruvec_state(from_vec, NR_ANON_MAPPED, -nr_pages);
5815 __mod_lruvec_state(to_vec, NR_ANON_MAPPED, nr_pages);
5816 if (folio_test_transhuge(folio)) {
5817 __mod_lruvec_state(from_vec, NR_ANON_THPS,
5818 -nr_pages);
5819 __mod_lruvec_state(to_vec, NR_ANON_THPS,
5820 nr_pages);
5821 }
5822 }
5823 } else {
5824 __mod_lruvec_state(from_vec, NR_FILE_PAGES, -nr_pages);
5825 __mod_lruvec_state(to_vec, NR_FILE_PAGES, nr_pages);
5826
5827 if (folio_test_swapbacked(folio)) {
5828 __mod_lruvec_state(from_vec, NR_SHMEM, -nr_pages);
5829 __mod_lruvec_state(to_vec, NR_SHMEM, nr_pages);
5830 }
5831
5832 if (folio_mapped(folio)) {
5833 __mod_lruvec_state(from_vec, NR_FILE_MAPPED, -nr_pages);
5834 __mod_lruvec_state(to_vec, NR_FILE_MAPPED, nr_pages);
5835 }
5836
5837 if (folio_test_dirty(folio)) {
5838 struct address_space *mapping = folio_mapping(folio);
5839
5840 if (mapping_can_writeback(mapping)) {
5841 __mod_lruvec_state(from_vec, NR_FILE_DIRTY,
5842 -nr_pages);
5843 __mod_lruvec_state(to_vec, NR_FILE_DIRTY,
5844 nr_pages);
5845 }
5846 }
5847 }
5848
5849#ifdef CONFIG_SWAP
5850 if (folio_test_swapcache(folio)) {
5851 __mod_lruvec_state(from_vec, NR_SWAPCACHE, -nr_pages);
5852 __mod_lruvec_state(to_vec, NR_SWAPCACHE, nr_pages);
5853 }
5854#endif
5855 if (folio_test_writeback(folio)) {
5856 __mod_lruvec_state(from_vec, NR_WRITEBACK, -nr_pages);
5857 __mod_lruvec_state(to_vec, NR_WRITEBACK, nr_pages);
5858 }
5859
5860 /*
5861 * All state has been migrated, let's switch to the new memcg.
5862 *
5863 * It is safe to change page's memcg here because the page
5864 * is referenced, charged, isolated, and locked: we can't race
5865 * with (un)charging, migration, LRU putback, or anything else
5866 * that would rely on a stable page's memory cgroup.
5867 *
5868 * Note that lock_page_memcg is a memcg lock, not a page lock,
5869 * to save space. As soon as we switch page's memory cgroup to a
5870 * new memcg that isn't locked, the above state can change
5871 * concurrently again. Make sure we're truly done with it.
5872 */
5873 smp_mb();
5874
5875 css_get(&to->css);
5876 css_put(&from->css);
5877
5878 folio->memcg_data = (unsigned long)to;
5879
5880 __folio_memcg_unlock(from);
5881
5882 ret = 0;
5883 nid = folio_nid(folio);
5884
5885 local_irq_disable();
5886 mem_cgroup_charge_statistics(to, nr_pages);
5887 memcg_check_events(to, nid);
5888 mem_cgroup_charge_statistics(from, -nr_pages);
5889 memcg_check_events(from, nid);
5890 local_irq_enable();
5891out:
5892 return ret;
5893}
5894
5895/**
5896 * get_mctgt_type - get target type of moving charge
5897 * @vma: the vma the pte to be checked belongs
5898 * @addr: the address corresponding to the pte to be checked
5899 * @ptent: the pte to be checked
5900 * @target: the pointer the target page or swap ent will be stored(can be NULL)
5901 *
5902 * Returns
5903 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
5904 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
5905 * move charge. if @target is not NULL, the page is stored in target->page
5906 * with extra refcnt got(Callers should handle it).
5907 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
5908 * target for charge migration. if @target is not NULL, the entry is stored
5909 * in target->ent.
5910 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is device memory and
5911 * thus not on the lru.
5912 * For now we such page is charge like a regular page would be as for all
5913 * intent and purposes it is just special memory taking the place of a
5914 * regular page.
5915 *
5916 * See Documentations/vm/hmm.txt and include/linux/hmm.h
5917 *
5918 * Called with pte lock held.
5919 */
5920
5921static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
5922 unsigned long addr, pte_t ptent, union mc_target *target)
5923{
5924 struct page *page = NULL;
5925 enum mc_target_type ret = MC_TARGET_NONE;
5926 swp_entry_t ent = { .val = 0 };
5927
5928 if (pte_present(ptent))
5929 page = mc_handle_present_pte(vma, addr, ptent);
5930 else if (pte_none_mostly(ptent))
5931 /*
5932 * PTE markers should be treated as a none pte here, separated
5933 * from other swap handling below.
5934 */
5935 page = mc_handle_file_pte(vma, addr, ptent);
5936 else if (is_swap_pte(ptent))
5937 page = mc_handle_swap_pte(vma, ptent, &ent);
5938
5939 if (target && page) {
5940 if (!trylock_page(page)) {
5941 put_page(page);
5942 return ret;
5943 }
5944 /*
5945 * page_mapped() must be stable during the move. This
5946 * pte is locked, so if it's present, the page cannot
5947 * become unmapped. If it isn't, we have only partial
5948 * control over the mapped state: the page lock will
5949 * prevent new faults against pagecache and swapcache,
5950 * so an unmapped page cannot become mapped. However,
5951 * if the page is already mapped elsewhere, it can
5952 * unmap, and there is nothing we can do about it.
5953 * Alas, skip moving the page in this case.
5954 */
5955 if (!pte_present(ptent) && page_mapped(page)) {
5956 unlock_page(page);
5957 put_page(page);
5958 return ret;
5959 }
5960 }
5961
5962 if (!page && !ent.val)
5963 return ret;
5964 if (page) {
5965 /*
5966 * Do only loose check w/o serialization.
5967 * mem_cgroup_move_account() checks the page is valid or
5968 * not under LRU exclusion.
5969 */
5970 if (page_memcg(page) == mc.from) {
5971 ret = MC_TARGET_PAGE;
5972 if (is_device_private_page(page) ||
5973 is_device_coherent_page(page))
5974 ret = MC_TARGET_DEVICE;
5975 if (target)
5976 target->page = page;
5977 }
5978 if (!ret || !target) {
5979 if (target)
5980 unlock_page(page);
5981 put_page(page);
5982 }
5983 }
5984 /*
5985 * There is a swap entry and a page doesn't exist or isn't charged.
5986 * But we cannot move a tail-page in a THP.
5987 */
5988 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
5989 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
5990 ret = MC_TARGET_SWAP;
5991 if (target)
5992 target->ent = ent;
5993 }
5994 return ret;
5995}
5996
5997#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5998/*
5999 * We don't consider PMD mapped swapping or file mapped pages because THP does
6000 * not support them for now.
6001 * Caller should make sure that pmd_trans_huge(pmd) is true.
6002 */
6003static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6004 unsigned long addr, pmd_t pmd, union mc_target *target)
6005{
6006 struct page *page = NULL;
6007 enum mc_target_type ret = MC_TARGET_NONE;
6008
6009 if (unlikely(is_swap_pmd(pmd))) {
6010 VM_BUG_ON(thp_migration_supported() &&
6011 !is_pmd_migration_entry(pmd));
6012 return ret;
6013 }
6014 page = pmd_page(pmd);
6015 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
6016 if (!(mc.flags & MOVE_ANON))
6017 return ret;
6018 if (page_memcg(page) == mc.from) {
6019 ret = MC_TARGET_PAGE;
6020 if (target) {
6021 get_page(page);
6022 if (!trylock_page(page)) {
6023 put_page(page);
6024 return MC_TARGET_NONE;
6025 }
6026 target->page = page;
6027 }
6028 }
6029 return ret;
6030}
6031#else
6032static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6033 unsigned long addr, pmd_t pmd, union mc_target *target)
6034{
6035 return MC_TARGET_NONE;
6036}
6037#endif
6038
6039static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6040 unsigned long addr, unsigned long end,
6041 struct mm_walk *walk)
6042{
6043 struct vm_area_struct *vma = walk->vma;
6044 pte_t *pte;
6045 spinlock_t *ptl;
6046
6047 ptl = pmd_trans_huge_lock(pmd, vma);
6048 if (ptl) {
6049 /*
6050 * Note their can not be MC_TARGET_DEVICE for now as we do not
6051 * support transparent huge page with MEMORY_DEVICE_PRIVATE but
6052 * this might change.
6053 */
6054 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6055 mc.precharge += HPAGE_PMD_NR;
6056 spin_unlock(ptl);
6057 return 0;
6058 }
6059
6060 if (pmd_trans_unstable(pmd))
6061 return 0;
6062 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6063 for (; addr != end; pte++, addr += PAGE_SIZE)
6064 if (get_mctgt_type(vma, addr, *pte, NULL))
6065 mc.precharge++; /* increment precharge temporarily */
6066 pte_unmap_unlock(pte - 1, ptl);
6067 cond_resched();
6068
6069 return 0;
6070}
6071
6072static const struct mm_walk_ops precharge_walk_ops = {
6073 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6074};
6075
6076static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6077{
6078 unsigned long precharge;
6079
6080 mmap_read_lock(mm);
6081 walk_page_range(mm, 0, ULONG_MAX, &precharge_walk_ops, NULL);
6082 mmap_read_unlock(mm);
6083
6084 precharge = mc.precharge;
6085 mc.precharge = 0;
6086
6087 return precharge;
6088}
6089
6090static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6091{
6092 unsigned long precharge = mem_cgroup_count_precharge(mm);
6093
6094 VM_BUG_ON(mc.moving_task);
6095 mc.moving_task = current;
6096 return mem_cgroup_do_precharge(precharge);
6097}
6098
6099/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6100static void __mem_cgroup_clear_mc(void)
6101{
6102 struct mem_cgroup *from = mc.from;
6103 struct mem_cgroup *to = mc.to;
6104
6105 /* we must uncharge all the leftover precharges from mc.to */
6106 if (mc.precharge) {
6107 cancel_charge(mc.to, mc.precharge);
6108 mc.precharge = 0;
6109 }
6110 /*
6111 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6112 * we must uncharge here.
6113 */
6114 if (mc.moved_charge) {
6115 cancel_charge(mc.from, mc.moved_charge);
6116 mc.moved_charge = 0;
6117 }
6118 /* we must fixup refcnts and charges */
6119 if (mc.moved_swap) {
6120 /* uncharge swap account from the old cgroup */
6121 if (!mem_cgroup_is_root(mc.from))
6122 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
6123
6124 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
6125
6126 /*
6127 * we charged both to->memory and to->memsw, so we
6128 * should uncharge to->memory.
6129 */
6130 if (!mem_cgroup_is_root(mc.to))
6131 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
6132
6133 mc.moved_swap = 0;
6134 }
6135 memcg_oom_recover(from);
6136 memcg_oom_recover(to);
6137 wake_up_all(&mc.waitq);
6138}
6139
6140static void mem_cgroup_clear_mc(void)
6141{
6142 struct mm_struct *mm = mc.mm;
6143
6144 /*
6145 * we must clear moving_task before waking up waiters at the end of
6146 * task migration.
6147 */
6148 mc.moving_task = NULL;
6149 __mem_cgroup_clear_mc();
6150 spin_lock(&mc.lock);
6151 mc.from = NULL;
6152 mc.to = NULL;
6153 mc.mm = NULL;
6154 spin_unlock(&mc.lock);
6155
6156 mmput(mm);
6157}
6158
6159static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6160{
6161 struct cgroup_subsys_state *css;
6162 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
6163 struct mem_cgroup *from;
6164 struct task_struct *leader, *p;
6165 struct mm_struct *mm;
6166 unsigned long move_flags;
6167 int ret = 0;
6168
6169 /* charge immigration isn't supported on the default hierarchy */
6170 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
6171 return 0;
6172
6173 /*
6174 * Multi-process migrations only happen on the default hierarchy
6175 * where charge immigration is not used. Perform charge
6176 * immigration if @tset contains a leader and whine if there are
6177 * multiple.
6178 */
6179 p = NULL;
6180 cgroup_taskset_for_each_leader(leader, css, tset) {
6181 WARN_ON_ONCE(p);
6182 p = leader;
6183 memcg = mem_cgroup_from_css(css);
6184 }
6185 if (!p)
6186 return 0;
6187
6188 /*
6189 * We are now committed to this value whatever it is. Changes in this
6190 * tunable will only affect upcoming migrations, not the current one.
6191 * So we need to save it, and keep it going.
6192 */
6193 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
6194 if (!move_flags)
6195 return 0;
6196
6197 from = mem_cgroup_from_task(p);
6198
6199 VM_BUG_ON(from == memcg);
6200
6201 mm = get_task_mm(p);
6202 if (!mm)
6203 return 0;
6204 /* We move charges only when we move a owner of the mm */
6205 if (mm->owner == p) {
6206 VM_BUG_ON(mc.from);
6207 VM_BUG_ON(mc.to);
6208 VM_BUG_ON(mc.precharge);
6209 VM_BUG_ON(mc.moved_charge);
6210 VM_BUG_ON(mc.moved_swap);
6211
6212 spin_lock(&mc.lock);
6213 mc.mm = mm;
6214 mc.from = from;
6215 mc.to = memcg;
6216 mc.flags = move_flags;
6217 spin_unlock(&mc.lock);
6218 /* We set mc.moving_task later */
6219
6220 ret = mem_cgroup_precharge_mc(mm);
6221 if (ret)
6222 mem_cgroup_clear_mc();
6223 } else {
6224 mmput(mm);
6225 }
6226 return ret;
6227}
6228
6229static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6230{
6231 if (mc.to)
6232 mem_cgroup_clear_mc();
6233}
6234
6235static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6236 unsigned long addr, unsigned long end,
6237 struct mm_walk *walk)
6238{
6239 int ret = 0;
6240 struct vm_area_struct *vma = walk->vma;
6241 pte_t *pte;
6242 spinlock_t *ptl;
6243 enum mc_target_type target_type;
6244 union mc_target target;
6245 struct page *page;
6246
6247 ptl = pmd_trans_huge_lock(pmd, vma);
6248 if (ptl) {
6249 if (mc.precharge < HPAGE_PMD_NR) {
6250 spin_unlock(ptl);
6251 return 0;
6252 }
6253 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6254 if (target_type == MC_TARGET_PAGE) {
6255 page = target.page;
6256 if (isolate_lru_page(page)) {
6257 if (!mem_cgroup_move_account(page, true,
6258 mc.from, mc.to)) {
6259 mc.precharge -= HPAGE_PMD_NR;
6260 mc.moved_charge += HPAGE_PMD_NR;
6261 }
6262 putback_lru_page(page);
6263 }
6264 unlock_page(page);
6265 put_page(page);
6266 } else if (target_type == MC_TARGET_DEVICE) {
6267 page = target.page;
6268 if (!mem_cgroup_move_account(page, true,
6269 mc.from, mc.to)) {
6270 mc.precharge -= HPAGE_PMD_NR;
6271 mc.moved_charge += HPAGE_PMD_NR;
6272 }
6273 unlock_page(page);
6274 put_page(page);
6275 }
6276 spin_unlock(ptl);
6277 return 0;
6278 }
6279
6280 if (pmd_trans_unstable(pmd))
6281 return 0;
6282retry:
6283 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6284 for (; addr != end; addr += PAGE_SIZE) {
6285 pte_t ptent = *(pte++);
6286 bool device = false;
6287 swp_entry_t ent;
6288
6289 if (!mc.precharge)
6290 break;
6291
6292 switch (get_mctgt_type(vma, addr, ptent, &target)) {
6293 case MC_TARGET_DEVICE:
6294 device = true;
6295 fallthrough;
6296 case MC_TARGET_PAGE:
6297 page = target.page;
6298 /*
6299 * We can have a part of the split pmd here. Moving it
6300 * can be done but it would be too convoluted so simply
6301 * ignore such a partial THP and keep it in original
6302 * memcg. There should be somebody mapping the head.
6303 */
6304 if (PageTransCompound(page))
6305 goto put;
6306 if (!device && !isolate_lru_page(page))
6307 goto put;
6308 if (!mem_cgroup_move_account(page, false,
6309 mc.from, mc.to)) {
6310 mc.precharge--;
6311 /* we uncharge from mc.from later. */
6312 mc.moved_charge++;
6313 }
6314 if (!device)
6315 putback_lru_page(page);
6316put: /* get_mctgt_type() gets & locks the page */
6317 unlock_page(page);
6318 put_page(page);
6319 break;
6320 case MC_TARGET_SWAP:
6321 ent = target.ent;
6322 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
6323 mc.precharge--;
6324 mem_cgroup_id_get_many(mc.to, 1);
6325 /* we fixup other refcnts and charges later. */
6326 mc.moved_swap++;
6327 }
6328 break;
6329 default:
6330 break;
6331 }
6332 }
6333 pte_unmap_unlock(pte - 1, ptl);
6334 cond_resched();
6335
6336 if (addr != end) {
6337 /*
6338 * We have consumed all precharges we got in can_attach().
6339 * We try charge one by one, but don't do any additional
6340 * charges to mc.to if we have failed in charge once in attach()
6341 * phase.
6342 */
6343 ret = mem_cgroup_do_precharge(1);
6344 if (!ret)
6345 goto retry;
6346 }
6347
6348 return ret;
6349}
6350
6351static const struct mm_walk_ops charge_walk_ops = {
6352 .pmd_entry = mem_cgroup_move_charge_pte_range,
6353};
6354
6355static void mem_cgroup_move_charge(void)
6356{
6357 lru_add_drain_all();
6358 /*
6359 * Signal lock_page_memcg() to take the memcg's move_lock
6360 * while we're moving its pages to another memcg. Then wait
6361 * for already started RCU-only updates to finish.
6362 */
6363 atomic_inc(&mc.from->moving_account);
6364 synchronize_rcu();
6365retry:
6366 if (unlikely(!mmap_read_trylock(mc.mm))) {
6367 /*
6368 * Someone who are holding the mmap_lock might be waiting in
6369 * waitq. So we cancel all extra charges, wake up all waiters,
6370 * and retry. Because we cancel precharges, we might not be able
6371 * to move enough charges, but moving charge is a best-effort
6372 * feature anyway, so it wouldn't be a big problem.
6373 */
6374 __mem_cgroup_clear_mc();
6375 cond_resched();
6376 goto retry;
6377 }
6378 /*
6379 * When we have consumed all precharges and failed in doing
6380 * additional charge, the page walk just aborts.
6381 */
6382 walk_page_range(mc.mm, 0, ULONG_MAX, &charge_walk_ops, NULL);
6383 mmap_read_unlock(mc.mm);
6384 atomic_dec(&mc.from->moving_account);
6385}
6386
6387static void mem_cgroup_move_task(void)
6388{
6389 if (mc.to) {
6390 mem_cgroup_move_charge();
6391 mem_cgroup_clear_mc();
6392 }
6393}
6394#else /* !CONFIG_MMU */
6395static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
6396{
6397 return 0;
6398}
6399static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
6400{
6401}
6402static void mem_cgroup_move_task(void)
6403{
6404}
6405#endif
6406
6407#ifdef CONFIG_LRU_GEN
6408static void mem_cgroup_attach(struct cgroup_taskset *tset)
6409{
6410 struct task_struct *task;
6411 struct cgroup_subsys_state *css;
6412
6413 /* find the first leader if there is any */
6414 cgroup_taskset_for_each_leader(task, css, tset)
6415 break;
6416
6417 if (!task)
6418 return;
6419
6420 task_lock(task);
6421 if (task->mm && READ_ONCE(task->mm->owner) == task)
6422 lru_gen_migrate_mm(task->mm);
6423 task_unlock(task);
6424}
6425#else
6426static void mem_cgroup_attach(struct cgroup_taskset *tset)
6427{
6428}
6429#endif /* CONFIG_LRU_GEN */
6430
6431static int seq_puts_memcg_tunable(struct seq_file *m, unsigned long value)
6432{
6433 if (value == PAGE_COUNTER_MAX)
6434 seq_puts(m, "max\n");
6435 else
6436 seq_printf(m, "%llu\n", (u64)value * PAGE_SIZE);
6437
6438 return 0;
6439}
6440
6441static u64 memory_current_read(struct cgroup_subsys_state *css,
6442 struct cftype *cft)
6443{
6444 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6445
6446 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
6447}
6448
6449static u64 memory_peak_read(struct cgroup_subsys_state *css,
6450 struct cftype *cft)
6451{
6452 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6453
6454 return (u64)memcg->memory.watermark * PAGE_SIZE;
6455}
6456
6457static int memory_min_show(struct seq_file *m, void *v)
6458{
6459 return seq_puts_memcg_tunable(m,
6460 READ_ONCE(mem_cgroup_from_seq(m)->memory.min));
6461}
6462
6463static ssize_t memory_min_write(struct kernfs_open_file *of,
6464 char *buf, size_t nbytes, loff_t off)
6465{
6466 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6467 unsigned long min;
6468 int err;
6469
6470 buf = strstrip(buf);
6471 err = page_counter_memparse(buf, "max", &min);
6472 if (err)
6473 return err;
6474
6475 page_counter_set_min(&memcg->memory, min);
6476
6477 return nbytes;
6478}
6479
6480static int memory_low_show(struct seq_file *m, void *v)
6481{
6482 return seq_puts_memcg_tunable(m,
6483 READ_ONCE(mem_cgroup_from_seq(m)->memory.low));
6484}
6485
6486static ssize_t memory_low_write(struct kernfs_open_file *of,
6487 char *buf, size_t nbytes, loff_t off)
6488{
6489 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6490 unsigned long low;
6491 int err;
6492
6493 buf = strstrip(buf);
6494 err = page_counter_memparse(buf, "max", &low);
6495 if (err)
6496 return err;
6497
6498 page_counter_set_low(&memcg->memory, low);
6499
6500 return nbytes;
6501}
6502
6503static int memory_high_show(struct seq_file *m, void *v)
6504{
6505 return seq_puts_memcg_tunable(m,
6506 READ_ONCE(mem_cgroup_from_seq(m)->memory.high));
6507}
6508
6509static ssize_t memory_high_write(struct kernfs_open_file *of,
6510 char *buf, size_t nbytes, loff_t off)
6511{
6512 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6513 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6514 bool drained = false;
6515 unsigned long high;
6516 int err;
6517
6518 buf = strstrip(buf);
6519 err = page_counter_memparse(buf, "max", &high);
6520 if (err)
6521 return err;
6522
6523 page_counter_set_high(&memcg->memory, high);
6524
6525 for (;;) {
6526 unsigned long nr_pages = page_counter_read(&memcg->memory);
6527 unsigned long reclaimed;
6528
6529 if (nr_pages <= high)
6530 break;
6531
6532 if (signal_pending(current))
6533 break;
6534
6535 if (!drained) {
6536 drain_all_stock(memcg);
6537 drained = true;
6538 continue;
6539 }
6540
6541 reclaimed = try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
6542 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP);
6543
6544 if (!reclaimed && !nr_retries--)
6545 break;
6546 }
6547
6548 memcg_wb_domain_size_changed(memcg);
6549 return nbytes;
6550}
6551
6552static int memory_max_show(struct seq_file *m, void *v)
6553{
6554 return seq_puts_memcg_tunable(m,
6555 READ_ONCE(mem_cgroup_from_seq(m)->memory.max));
6556}
6557
6558static ssize_t memory_max_write(struct kernfs_open_file *of,
6559 char *buf, size_t nbytes, loff_t off)
6560{
6561 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6562 unsigned int nr_reclaims = MAX_RECLAIM_RETRIES;
6563 bool drained = false;
6564 unsigned long max;
6565 int err;
6566
6567 buf = strstrip(buf);
6568 err = page_counter_memparse(buf, "max", &max);
6569 if (err)
6570 return err;
6571
6572 xchg(&memcg->memory.max, max);
6573
6574 for (;;) {
6575 unsigned long nr_pages = page_counter_read(&memcg->memory);
6576
6577 if (nr_pages <= max)
6578 break;
6579
6580 if (signal_pending(current))
6581 break;
6582
6583 if (!drained) {
6584 drain_all_stock(memcg);
6585 drained = true;
6586 continue;
6587 }
6588
6589 if (nr_reclaims) {
6590 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
6591 GFP_KERNEL, MEMCG_RECLAIM_MAY_SWAP))
6592 nr_reclaims--;
6593 continue;
6594 }
6595
6596 memcg_memory_event(memcg, MEMCG_OOM);
6597 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
6598 break;
6599 }
6600
6601 memcg_wb_domain_size_changed(memcg);
6602 return nbytes;
6603}
6604
6605static void __memory_events_show(struct seq_file *m, atomic_long_t *events)
6606{
6607 seq_printf(m, "low %lu\n", atomic_long_read(&events[MEMCG_LOW]));
6608 seq_printf(m, "high %lu\n", atomic_long_read(&events[MEMCG_HIGH]));
6609 seq_printf(m, "max %lu\n", atomic_long_read(&events[MEMCG_MAX]));
6610 seq_printf(m, "oom %lu\n", atomic_long_read(&events[MEMCG_OOM]));
6611 seq_printf(m, "oom_kill %lu\n",
6612 atomic_long_read(&events[MEMCG_OOM_KILL]));
6613 seq_printf(m, "oom_group_kill %lu\n",
6614 atomic_long_read(&events[MEMCG_OOM_GROUP_KILL]));
6615}
6616
6617static int memory_events_show(struct seq_file *m, void *v)
6618{
6619 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6620
6621 __memory_events_show(m, memcg->memory_events);
6622 return 0;
6623}
6624
6625static int memory_events_local_show(struct seq_file *m, void *v)
6626{
6627 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6628
6629 __memory_events_show(m, memcg->memory_events_local);
6630 return 0;
6631}
6632
6633static int memory_stat_show(struct seq_file *m, void *v)
6634{
6635 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6636 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
6637
6638 if (!buf)
6639 return -ENOMEM;
6640 memory_stat_format(memcg, buf, PAGE_SIZE);
6641 seq_puts(m, buf);
6642 kfree(buf);
6643 return 0;
6644}
6645
6646#ifdef CONFIG_NUMA
6647static inline unsigned long lruvec_page_state_output(struct lruvec *lruvec,
6648 int item)
6649{
6650 return lruvec_page_state(lruvec, item) * memcg_page_state_unit(item);
6651}
6652
6653static int memory_numa_stat_show(struct seq_file *m, void *v)
6654{
6655 int i;
6656 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6657
6658 mem_cgroup_flush_stats();
6659
6660 for (i = 0; i < ARRAY_SIZE(memory_stats); i++) {
6661 int nid;
6662
6663 if (memory_stats[i].idx >= NR_VM_NODE_STAT_ITEMS)
6664 continue;
6665
6666 seq_printf(m, "%s", memory_stats[i].name);
6667 for_each_node_state(nid, N_MEMORY) {
6668 u64 size;
6669 struct lruvec *lruvec;
6670
6671 lruvec = mem_cgroup_lruvec(memcg, NODE_DATA(nid));
6672 size = lruvec_page_state_output(lruvec,
6673 memory_stats[i].idx);
6674 seq_printf(m, " N%d=%llu", nid, size);
6675 }
6676 seq_putc(m, '\n');
6677 }
6678
6679 return 0;
6680}
6681#endif
6682
6683static int memory_oom_group_show(struct seq_file *m, void *v)
6684{
6685 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
6686
6687 seq_printf(m, "%d\n", READ_ONCE(memcg->oom_group));
6688
6689 return 0;
6690}
6691
6692static ssize_t memory_oom_group_write(struct kernfs_open_file *of,
6693 char *buf, size_t nbytes, loff_t off)
6694{
6695 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6696 int ret, oom_group;
6697
6698 buf = strstrip(buf);
6699 if (!buf)
6700 return -EINVAL;
6701
6702 ret = kstrtoint(buf, 0, &oom_group);
6703 if (ret)
6704 return ret;
6705
6706 if (oom_group != 0 && oom_group != 1)
6707 return -EINVAL;
6708
6709 WRITE_ONCE(memcg->oom_group, oom_group);
6710
6711 return nbytes;
6712}
6713
6714static ssize_t memory_reclaim(struct kernfs_open_file *of, char *buf,
6715 size_t nbytes, loff_t off)
6716{
6717 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6718 unsigned int nr_retries = MAX_RECLAIM_RETRIES;
6719 unsigned long nr_to_reclaim, nr_reclaimed = 0;
6720 unsigned int reclaim_options;
6721 int err;
6722
6723 buf = strstrip(buf);
6724 err = page_counter_memparse(buf, "", &nr_to_reclaim);
6725 if (err)
6726 return err;
6727
6728 reclaim_options = MEMCG_RECLAIM_MAY_SWAP | MEMCG_RECLAIM_PROACTIVE;
6729 while (nr_reclaimed < nr_to_reclaim) {
6730 unsigned long reclaimed;
6731
6732 if (signal_pending(current))
6733 return -EINTR;
6734
6735 /*
6736 * This is the final attempt, drain percpu lru caches in the
6737 * hope of introducing more evictable pages for
6738 * try_to_free_mem_cgroup_pages().
6739 */
6740 if (!nr_retries)
6741 lru_add_drain_all();
6742
6743 reclaimed = try_to_free_mem_cgroup_pages(memcg,
6744 nr_to_reclaim - nr_reclaimed,
6745 GFP_KERNEL, reclaim_options);
6746
6747 if (!reclaimed && !nr_retries--)
6748 return -EAGAIN;
6749
6750 nr_reclaimed += reclaimed;
6751 }
6752
6753 return nbytes;
6754}
6755
6756static struct cftype memory_files[] = {
6757 {
6758 .name = "current",
6759 .flags = CFTYPE_NOT_ON_ROOT,
6760 .read_u64 = memory_current_read,
6761 },
6762 {
6763 .name = "peak",
6764 .flags = CFTYPE_NOT_ON_ROOT,
6765 .read_u64 = memory_peak_read,
6766 },
6767 {
6768 .name = "min",
6769 .flags = CFTYPE_NOT_ON_ROOT,
6770 .seq_show = memory_min_show,
6771 .write = memory_min_write,
6772 },
6773 {
6774 .name = "low",
6775 .flags = CFTYPE_NOT_ON_ROOT,
6776 .seq_show = memory_low_show,
6777 .write = memory_low_write,
6778 },
6779 {
6780 .name = "high",
6781 .flags = CFTYPE_NOT_ON_ROOT,
6782 .seq_show = memory_high_show,
6783 .write = memory_high_write,
6784 },
6785 {
6786 .name = "max",
6787 .flags = CFTYPE_NOT_ON_ROOT,
6788 .seq_show = memory_max_show,
6789 .write = memory_max_write,
6790 },
6791 {
6792 .name = "events",
6793 .flags = CFTYPE_NOT_ON_ROOT,
6794 .file_offset = offsetof(struct mem_cgroup, events_file),
6795 .seq_show = memory_events_show,
6796 },
6797 {
6798 .name = "events.local",
6799 .flags = CFTYPE_NOT_ON_ROOT,
6800 .file_offset = offsetof(struct mem_cgroup, events_local_file),
6801 .seq_show = memory_events_local_show,
6802 },
6803 {
6804 .name = "stat",
6805 .seq_show = memory_stat_show,
6806 },
6807#ifdef CONFIG_NUMA
6808 {
6809 .name = "numa_stat",
6810 .seq_show = memory_numa_stat_show,
6811 },
6812#endif
6813 {
6814 .name = "oom.group",
6815 .flags = CFTYPE_NOT_ON_ROOT | CFTYPE_NS_DELEGATABLE,
6816 .seq_show = memory_oom_group_show,
6817 .write = memory_oom_group_write,
6818 },
6819 {
6820 .name = "reclaim",
6821 .flags = CFTYPE_NS_DELEGATABLE,
6822 .write = memory_reclaim,
6823 },
6824 { } /* terminate */
6825};
6826
6827struct cgroup_subsys memory_cgrp_subsys = {
6828 .css_alloc = mem_cgroup_css_alloc,
6829 .css_online = mem_cgroup_css_online,
6830 .css_offline = mem_cgroup_css_offline,
6831 .css_released = mem_cgroup_css_released,
6832 .css_free = mem_cgroup_css_free,
6833 .css_reset = mem_cgroup_css_reset,
6834 .css_rstat_flush = mem_cgroup_css_rstat_flush,
6835 .can_attach = mem_cgroup_can_attach,
6836 .attach = mem_cgroup_attach,
6837 .cancel_attach = mem_cgroup_cancel_attach,
6838 .post_attach = mem_cgroup_move_task,
6839 .dfl_cftypes = memory_files,
6840 .legacy_cftypes = mem_cgroup_legacy_files,
6841 .early_init = 0,
6842};
6843
6844/*
6845 * This function calculates an individual cgroup's effective
6846 * protection which is derived from its own memory.min/low, its
6847 * parent's and siblings' settings, as well as the actual memory
6848 * distribution in the tree.
6849 *
6850 * The following rules apply to the effective protection values:
6851 *
6852 * 1. At the first level of reclaim, effective protection is equal to
6853 * the declared protection in memory.min and memory.low.
6854 *
6855 * 2. To enable safe delegation of the protection configuration, at
6856 * subsequent levels the effective protection is capped to the
6857 * parent's effective protection.
6858 *
6859 * 3. To make complex and dynamic subtrees easier to configure, the
6860 * user is allowed to overcommit the declared protection at a given
6861 * level. If that is the case, the parent's effective protection is
6862 * distributed to the children in proportion to how much protection
6863 * they have declared and how much of it they are utilizing.
6864 *
6865 * This makes distribution proportional, but also work-conserving:
6866 * if one cgroup claims much more protection than it uses memory,
6867 * the unused remainder is available to its siblings.
6868 *
6869 * 4. Conversely, when the declared protection is undercommitted at a
6870 * given level, the distribution of the larger parental protection
6871 * budget is NOT proportional. A cgroup's protection from a sibling
6872 * is capped to its own memory.min/low setting.
6873 *
6874 * 5. However, to allow protecting recursive subtrees from each other
6875 * without having to declare each individual cgroup's fixed share
6876 * of the ancestor's claim to protection, any unutilized -
6877 * "floating" - protection from up the tree is distributed in
6878 * proportion to each cgroup's *usage*. This makes the protection
6879 * neutral wrt sibling cgroups and lets them compete freely over
6880 * the shared parental protection budget, but it protects the
6881 * subtree as a whole from neighboring subtrees.
6882 *
6883 * Note that 4. and 5. are not in conflict: 4. is about protecting
6884 * against immediate siblings whereas 5. is about protecting against
6885 * neighboring subtrees.
6886 */
6887static unsigned long effective_protection(unsigned long usage,
6888 unsigned long parent_usage,
6889 unsigned long setting,
6890 unsigned long parent_effective,
6891 unsigned long siblings_protected)
6892{
6893 unsigned long protected;
6894 unsigned long ep;
6895
6896 protected = min(usage, setting);
6897 /*
6898 * If all cgroups at this level combined claim and use more
6899 * protection then what the parent affords them, distribute
6900 * shares in proportion to utilization.
6901 *
6902 * We are using actual utilization rather than the statically
6903 * claimed protection in order to be work-conserving: claimed
6904 * but unused protection is available to siblings that would
6905 * otherwise get a smaller chunk than what they claimed.
6906 */
6907 if (siblings_protected > parent_effective)
6908 return protected * parent_effective / siblings_protected;
6909
6910 /*
6911 * Ok, utilized protection of all children is within what the
6912 * parent affords them, so we know whatever this child claims
6913 * and utilizes is effectively protected.
6914 *
6915 * If there is unprotected usage beyond this value, reclaim
6916 * will apply pressure in proportion to that amount.
6917 *
6918 * If there is unutilized protection, the cgroup will be fully
6919 * shielded from reclaim, but we do return a smaller value for
6920 * protection than what the group could enjoy in theory. This
6921 * is okay. With the overcommit distribution above, effective
6922 * protection is always dependent on how memory is actually
6923 * consumed among the siblings anyway.
6924 */
6925 ep = protected;
6926
6927 /*
6928 * If the children aren't claiming (all of) the protection
6929 * afforded to them by the parent, distribute the remainder in
6930 * proportion to the (unprotected) memory of each cgroup. That
6931 * way, cgroups that aren't explicitly prioritized wrt each
6932 * other compete freely over the allowance, but they are
6933 * collectively protected from neighboring trees.
6934 *
6935 * We're using unprotected memory for the weight so that if
6936 * some cgroups DO claim explicit protection, we don't protect
6937 * the same bytes twice.
6938 *
6939 * Check both usage and parent_usage against the respective
6940 * protected values. One should imply the other, but they
6941 * aren't read atomically - make sure the division is sane.
6942 */
6943 if (!(cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_RECURSIVE_PROT))
6944 return ep;
6945 if (parent_effective > siblings_protected &&
6946 parent_usage > siblings_protected &&
6947 usage > protected) {
6948 unsigned long unclaimed;
6949
6950 unclaimed = parent_effective - siblings_protected;
6951 unclaimed *= usage - protected;
6952 unclaimed /= parent_usage - siblings_protected;
6953
6954 ep += unclaimed;
6955 }
6956
6957 return ep;
6958}
6959
6960/**
6961 * mem_cgroup_calculate_protection - check if memory consumption is in the normal range
6962 * @root: the top ancestor of the sub-tree being checked
6963 * @memcg: the memory cgroup to check
6964 *
6965 * WARNING: This function is not stateless! It can only be used as part
6966 * of a top-down tree iteration, not for isolated queries.
6967 */
6968void mem_cgroup_calculate_protection(struct mem_cgroup *root,
6969 struct mem_cgroup *memcg)
6970{
6971 unsigned long usage, parent_usage;
6972 struct mem_cgroup *parent;
6973
6974 if (mem_cgroup_disabled())
6975 return;
6976
6977 if (!root)
6978 root = root_mem_cgroup;
6979
6980 /*
6981 * Effective values of the reclaim targets are ignored so they
6982 * can be stale. Have a look at mem_cgroup_protection for more
6983 * details.
6984 * TODO: calculation should be more robust so that we do not need
6985 * that special casing.
6986 */
6987 if (memcg == root)
6988 return;
6989
6990 usage = page_counter_read(&memcg->memory);
6991 if (!usage)
6992 return;
6993
6994 parent = parent_mem_cgroup(memcg);
6995
6996 if (parent == root) {
6997 memcg->memory.emin = READ_ONCE(memcg->memory.min);
6998 memcg->memory.elow = READ_ONCE(memcg->memory.low);
6999 return;
7000 }
7001
7002 parent_usage = page_counter_read(&parent->memory);
7003
7004 WRITE_ONCE(memcg->memory.emin, effective_protection(usage, parent_usage,
7005 READ_ONCE(memcg->memory.min),
7006 READ_ONCE(parent->memory.emin),
7007 atomic_long_read(&parent->memory.children_min_usage)));
7008
7009 WRITE_ONCE(memcg->memory.elow, effective_protection(usage, parent_usage,
7010 READ_ONCE(memcg->memory.low),
7011 READ_ONCE(parent->memory.elow),
7012 atomic_long_read(&parent->memory.children_low_usage)));
7013}
7014
7015static int charge_memcg(struct folio *folio, struct mem_cgroup *memcg,
7016 gfp_t gfp)
7017{
7018 long nr_pages = folio_nr_pages(folio);
7019 int ret;
7020
7021 ret = try_charge(memcg, gfp, nr_pages);
7022 if (ret)
7023 goto out;
7024
7025 css_get(&memcg->css);
7026 commit_charge(folio, memcg);
7027
7028 local_irq_disable();
7029 mem_cgroup_charge_statistics(memcg, nr_pages);
7030 memcg_check_events(memcg, folio_nid(folio));
7031 local_irq_enable();
7032out:
7033 return ret;
7034}
7035
7036int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp)
7037{
7038 struct mem_cgroup *memcg;
7039 int ret;
7040
7041 memcg = get_mem_cgroup_from_mm(mm);
7042 ret = charge_memcg(folio, memcg, gfp);
7043 css_put(&memcg->css);
7044
7045 return ret;
7046}
7047
7048/**
7049 * mem_cgroup_swapin_charge_folio - Charge a newly allocated folio for swapin.
7050 * @folio: folio to charge.
7051 * @mm: mm context of the victim
7052 * @gfp: reclaim mode
7053 * @entry: swap entry for which the folio is allocated
7054 *
7055 * This function charges a folio allocated for swapin. Please call this before
7056 * adding the folio to the swapcache.
7057 *
7058 * Returns 0 on success. Otherwise, an error code is returned.
7059 */
7060int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
7061 gfp_t gfp, swp_entry_t entry)
7062{
7063 struct mem_cgroup *memcg;
7064 unsigned short id;
7065 int ret;
7066
7067 if (mem_cgroup_disabled())
7068 return 0;
7069
7070 id = lookup_swap_cgroup_id(entry);
7071 rcu_read_lock();
7072 memcg = mem_cgroup_from_id(id);
7073 if (!memcg || !css_tryget_online(&memcg->css))
7074 memcg = get_mem_cgroup_from_mm(mm);
7075 rcu_read_unlock();
7076
7077 ret = charge_memcg(folio, memcg, gfp);
7078
7079 css_put(&memcg->css);
7080 return ret;
7081}
7082
7083/*
7084 * mem_cgroup_swapin_uncharge_swap - uncharge swap slot
7085 * @entry: swap entry for which the page is charged
7086 *
7087 * Call this function after successfully adding the charged page to swapcache.
7088 *
7089 * Note: This function assumes the page for which swap slot is being uncharged
7090 * is order 0 page.
7091 */
7092void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
7093{
7094 /*
7095 * Cgroup1's unified memory+swap counter has been charged with the
7096 * new swapcache page, finish the transfer by uncharging the swap
7097 * slot. The swap slot would also get uncharged when it dies, but
7098 * it can stick around indefinitely and we'd count the page twice
7099 * the entire time.
7100 *
7101 * Cgroup2 has separate resource counters for memory and swap,
7102 * so this is a non-issue here. Memory and swap charge lifetimes
7103 * correspond 1:1 to page and swap slot lifetimes: we charge the
7104 * page to memory here, and uncharge swap when the slot is freed.
7105 */
7106 if (!mem_cgroup_disabled() && do_memsw_account()) {
7107 /*
7108 * The swap entry might not get freed for a long time,
7109 * let's not wait for it. The page already received a
7110 * memory+swap charge, drop the swap entry duplicate.
7111 */
7112 mem_cgroup_uncharge_swap(entry, 1);
7113 }
7114}
7115
7116struct uncharge_gather {
7117 struct mem_cgroup *memcg;
7118 unsigned long nr_memory;
7119 unsigned long pgpgout;
7120 unsigned long nr_kmem;
7121 int nid;
7122};
7123
7124static inline void uncharge_gather_clear(struct uncharge_gather *ug)
7125{
7126 memset(ug, 0, sizeof(*ug));
7127}
7128
7129static void uncharge_batch(const struct uncharge_gather *ug)
7130{
7131 unsigned long flags;
7132
7133 if (ug->nr_memory) {
7134 page_counter_uncharge(&ug->memcg->memory, ug->nr_memory);
7135 if (do_memsw_account())
7136 page_counter_uncharge(&ug->memcg->memsw, ug->nr_memory);
7137 if (ug->nr_kmem)
7138 memcg_account_kmem(ug->memcg, -ug->nr_kmem);
7139 memcg_oom_recover(ug->memcg);
7140 }
7141
7142 local_irq_save(flags);
7143 __count_memcg_events(ug->memcg, PGPGOUT, ug->pgpgout);
7144 __this_cpu_add(ug->memcg->vmstats_percpu->nr_page_events, ug->nr_memory);
7145 memcg_check_events(ug->memcg, ug->nid);
7146 local_irq_restore(flags);
7147
7148 /* drop reference from uncharge_folio */
7149 css_put(&ug->memcg->css);
7150}
7151
7152static void uncharge_folio(struct folio *folio, struct uncharge_gather *ug)
7153{
7154 long nr_pages;
7155 struct mem_cgroup *memcg;
7156 struct obj_cgroup *objcg;
7157
7158 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7159
7160 /*
7161 * Nobody should be changing or seriously looking at
7162 * folio memcg or objcg at this point, we have fully
7163 * exclusive access to the folio.
7164 */
7165 if (folio_memcg_kmem(folio)) {
7166 objcg = __folio_objcg(folio);
7167 /*
7168 * This get matches the put at the end of the function and
7169 * kmem pages do not hold memcg references anymore.
7170 */
7171 memcg = get_mem_cgroup_from_objcg(objcg);
7172 } else {
7173 memcg = __folio_memcg(folio);
7174 }
7175
7176 if (!memcg)
7177 return;
7178
7179 if (ug->memcg != memcg) {
7180 if (ug->memcg) {
7181 uncharge_batch(ug);
7182 uncharge_gather_clear(ug);
7183 }
7184 ug->memcg = memcg;
7185 ug->nid = folio_nid(folio);
7186
7187 /* pairs with css_put in uncharge_batch */
7188 css_get(&memcg->css);
7189 }
7190
7191 nr_pages = folio_nr_pages(folio);
7192
7193 if (folio_memcg_kmem(folio)) {
7194 ug->nr_memory += nr_pages;
7195 ug->nr_kmem += nr_pages;
7196
7197 folio->memcg_data = 0;
7198 obj_cgroup_put(objcg);
7199 } else {
7200 /* LRU pages aren't accounted at the root level */
7201 if (!mem_cgroup_is_root(memcg))
7202 ug->nr_memory += nr_pages;
7203 ug->pgpgout++;
7204
7205 folio->memcg_data = 0;
7206 }
7207
7208 css_put(&memcg->css);
7209}
7210
7211void __mem_cgroup_uncharge(struct folio *folio)
7212{
7213 struct uncharge_gather ug;
7214
7215 /* Don't touch folio->lru of any random page, pre-check: */
7216 if (!folio_memcg(folio))
7217 return;
7218
7219 uncharge_gather_clear(&ug);
7220 uncharge_folio(folio, &ug);
7221 uncharge_batch(&ug);
7222}
7223
7224/**
7225 * __mem_cgroup_uncharge_list - uncharge a list of page
7226 * @page_list: list of pages to uncharge
7227 *
7228 * Uncharge a list of pages previously charged with
7229 * __mem_cgroup_charge().
7230 */
7231void __mem_cgroup_uncharge_list(struct list_head *page_list)
7232{
7233 struct uncharge_gather ug;
7234 struct folio *folio;
7235
7236 uncharge_gather_clear(&ug);
7237 list_for_each_entry(folio, page_list, lru)
7238 uncharge_folio(folio, &ug);
7239 if (ug.memcg)
7240 uncharge_batch(&ug);
7241}
7242
7243/**
7244 * mem_cgroup_migrate - Charge a folio's replacement.
7245 * @old: Currently circulating folio.
7246 * @new: Replacement folio.
7247 *
7248 * Charge @new as a replacement folio for @old. @old will
7249 * be uncharged upon free.
7250 *
7251 * Both folios must be locked, @new->mapping must be set up.
7252 */
7253void mem_cgroup_migrate(struct folio *old, struct folio *new)
7254{
7255 struct mem_cgroup *memcg;
7256 long nr_pages = folio_nr_pages(new);
7257 unsigned long flags;
7258
7259 VM_BUG_ON_FOLIO(!folio_test_locked(old), old);
7260 VM_BUG_ON_FOLIO(!folio_test_locked(new), new);
7261 VM_BUG_ON_FOLIO(folio_test_anon(old) != folio_test_anon(new), new);
7262 VM_BUG_ON_FOLIO(folio_nr_pages(old) != nr_pages, new);
7263
7264 if (mem_cgroup_disabled())
7265 return;
7266
7267 /* Page cache replacement: new folio already charged? */
7268 if (folio_memcg(new))
7269 return;
7270
7271 memcg = folio_memcg(old);
7272 VM_WARN_ON_ONCE_FOLIO(!memcg, old);
7273 if (!memcg)
7274 return;
7275
7276 /* Force-charge the new page. The old one will be freed soon */
7277 if (!mem_cgroup_is_root(memcg)) {
7278 page_counter_charge(&memcg->memory, nr_pages);
7279 if (do_memsw_account())
7280 page_counter_charge(&memcg->memsw, nr_pages);
7281 }
7282
7283 css_get(&memcg->css);
7284 commit_charge(new, memcg);
7285
7286 local_irq_save(flags);
7287 mem_cgroup_charge_statistics(memcg, nr_pages);
7288 memcg_check_events(memcg, folio_nid(new));
7289 local_irq_restore(flags);
7290}
7291
7292DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
7293EXPORT_SYMBOL(memcg_sockets_enabled_key);
7294
7295void mem_cgroup_sk_alloc(struct sock *sk)
7296{
7297 struct mem_cgroup *memcg;
7298
7299 if (!mem_cgroup_sockets_enabled)
7300 return;
7301
7302 /* Do not associate the sock with unrelated interrupted task's memcg. */
7303 if (!in_task())
7304 return;
7305
7306 rcu_read_lock();
7307 memcg = mem_cgroup_from_task(current);
7308 if (mem_cgroup_is_root(memcg))
7309 goto out;
7310 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
7311 goto out;
7312 if (css_tryget(&memcg->css))
7313 sk->sk_memcg = memcg;
7314out:
7315 rcu_read_unlock();
7316}
7317
7318void mem_cgroup_sk_free(struct sock *sk)
7319{
7320 if (sk->sk_memcg)
7321 css_put(&sk->sk_memcg->css);
7322}
7323
7324/**
7325 * mem_cgroup_charge_skmem - charge socket memory
7326 * @memcg: memcg to charge
7327 * @nr_pages: number of pages to charge
7328 * @gfp_mask: reclaim mode
7329 *
7330 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
7331 * @memcg's configured limit, %false if it doesn't.
7332 */
7333bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
7334 gfp_t gfp_mask)
7335{
7336 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7337 struct page_counter *fail;
7338
7339 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
7340 memcg->tcpmem_pressure = 0;
7341 return true;
7342 }
7343 memcg->tcpmem_pressure = 1;
7344 if (gfp_mask & __GFP_NOFAIL) {
7345 page_counter_charge(&memcg->tcpmem, nr_pages);
7346 return true;
7347 }
7348 return false;
7349 }
7350
7351 if (try_charge(memcg, gfp_mask, nr_pages) == 0) {
7352 mod_memcg_state(memcg, MEMCG_SOCK, nr_pages);
7353 return true;
7354 }
7355
7356 return false;
7357}
7358
7359/**
7360 * mem_cgroup_uncharge_skmem - uncharge socket memory
7361 * @memcg: memcg to uncharge
7362 * @nr_pages: number of pages to uncharge
7363 */
7364void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
7365{
7366 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
7367 page_counter_uncharge(&memcg->tcpmem, nr_pages);
7368 return;
7369 }
7370
7371 mod_memcg_state(memcg, MEMCG_SOCK, -nr_pages);
7372
7373 refill_stock(memcg, nr_pages);
7374}
7375
7376static int __init cgroup_memory(char *s)
7377{
7378 char *token;
7379
7380 while ((token = strsep(&s, ",")) != NULL) {
7381 if (!*token)
7382 continue;
7383 if (!strcmp(token, "nosocket"))
7384 cgroup_memory_nosocket = true;
7385 if (!strcmp(token, "nokmem"))
7386 cgroup_memory_nokmem = true;
7387 if (!strcmp(token, "nobpf"))
7388 cgroup_memory_nobpf = true;
7389 }
7390 return 1;
7391}
7392__setup("cgroup.memory=", cgroup_memory);
7393
7394/*
7395 * subsys_initcall() for memory controller.
7396 *
7397 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
7398 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
7399 * basically everything that doesn't depend on a specific mem_cgroup structure
7400 * should be initialized from here.
7401 */
7402static int __init mem_cgroup_init(void)
7403{
7404 int cpu, node;
7405
7406 /*
7407 * Currently s32 type (can refer to struct batched_lruvec_stat) is
7408 * used for per-memcg-per-cpu caching of per-node statistics. In order
7409 * to work fine, we should make sure that the overfill threshold can't
7410 * exceed S32_MAX / PAGE_SIZE.
7411 */
7412 BUILD_BUG_ON(MEMCG_CHARGE_BATCH > S32_MAX / PAGE_SIZE);
7413
7414 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
7415 memcg_hotplug_cpu_dead);
7416
7417 for_each_possible_cpu(cpu)
7418 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
7419 drain_local_stock);
7420
7421 for_each_node(node) {
7422 struct mem_cgroup_tree_per_node *rtpn;
7423
7424 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
7425 node_online(node) ? node : NUMA_NO_NODE);
7426
7427 rtpn->rb_root = RB_ROOT;
7428 rtpn->rb_rightmost = NULL;
7429 spin_lock_init(&rtpn->lock);
7430 soft_limit_tree.rb_tree_per_node[node] = rtpn;
7431 }
7432
7433 return 0;
7434}
7435subsys_initcall(mem_cgroup_init);
7436
7437#ifdef CONFIG_SWAP
7438static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
7439{
7440 while (!refcount_inc_not_zero(&memcg->id.ref)) {
7441 /*
7442 * The root cgroup cannot be destroyed, so it's refcount must
7443 * always be >= 1.
7444 */
7445 if (WARN_ON_ONCE(mem_cgroup_is_root(memcg))) {
7446 VM_BUG_ON(1);
7447 break;
7448 }
7449 memcg = parent_mem_cgroup(memcg);
7450 if (!memcg)
7451 memcg = root_mem_cgroup;
7452 }
7453 return memcg;
7454}
7455
7456/**
7457 * mem_cgroup_swapout - transfer a memsw charge to swap
7458 * @folio: folio whose memsw charge to transfer
7459 * @entry: swap entry to move the charge to
7460 *
7461 * Transfer the memsw charge of @folio to @entry.
7462 */
7463void mem_cgroup_swapout(struct folio *folio, swp_entry_t entry)
7464{
7465 struct mem_cgroup *memcg, *swap_memcg;
7466 unsigned int nr_entries;
7467 unsigned short oldid;
7468
7469 VM_BUG_ON_FOLIO(folio_test_lru(folio), folio);
7470 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
7471
7472 if (mem_cgroup_disabled())
7473 return;
7474
7475 if (!do_memsw_account())
7476 return;
7477
7478 memcg = folio_memcg(folio);
7479
7480 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7481 if (!memcg)
7482 return;
7483
7484 /*
7485 * In case the memcg owning these pages has been offlined and doesn't
7486 * have an ID allocated to it anymore, charge the closest online
7487 * ancestor for the swap instead and transfer the memory+swap charge.
7488 */
7489 swap_memcg = mem_cgroup_id_get_online(memcg);
7490 nr_entries = folio_nr_pages(folio);
7491 /* Get references for the tail pages, too */
7492 if (nr_entries > 1)
7493 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
7494 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
7495 nr_entries);
7496 VM_BUG_ON_FOLIO(oldid, folio);
7497 mod_memcg_state(swap_memcg, MEMCG_SWAP, nr_entries);
7498
7499 folio->memcg_data = 0;
7500
7501 if (!mem_cgroup_is_root(memcg))
7502 page_counter_uncharge(&memcg->memory, nr_entries);
7503
7504 if (memcg != swap_memcg) {
7505 if (!mem_cgroup_is_root(swap_memcg))
7506 page_counter_charge(&swap_memcg->memsw, nr_entries);
7507 page_counter_uncharge(&memcg->memsw, nr_entries);
7508 }
7509
7510 /*
7511 * Interrupts should be disabled here because the caller holds the
7512 * i_pages lock which is taken with interrupts-off. It is
7513 * important here to have the interrupts disabled because it is the
7514 * only synchronisation we have for updating the per-CPU variables.
7515 */
7516 memcg_stats_lock();
7517 mem_cgroup_charge_statistics(memcg, -nr_entries);
7518 memcg_stats_unlock();
7519 memcg_check_events(memcg, folio_nid(folio));
7520
7521 css_put(&memcg->css);
7522}
7523
7524/**
7525 * __mem_cgroup_try_charge_swap - try charging swap space for a folio
7526 * @folio: folio being added to swap
7527 * @entry: swap entry to charge
7528 *
7529 * Try to charge @folio's memcg for the swap space at @entry.
7530 *
7531 * Returns 0 on success, -ENOMEM on failure.
7532 */
7533int __mem_cgroup_try_charge_swap(struct folio *folio, swp_entry_t entry)
7534{
7535 unsigned int nr_pages = folio_nr_pages(folio);
7536 struct page_counter *counter;
7537 struct mem_cgroup *memcg;
7538 unsigned short oldid;
7539
7540 if (do_memsw_account())
7541 return 0;
7542
7543 memcg = folio_memcg(folio);
7544
7545 VM_WARN_ON_ONCE_FOLIO(!memcg, folio);
7546 if (!memcg)
7547 return 0;
7548
7549 if (!entry.val) {
7550 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7551 return 0;
7552 }
7553
7554 memcg = mem_cgroup_id_get_online(memcg);
7555
7556 if (!mem_cgroup_is_root(memcg) &&
7557 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
7558 memcg_memory_event(memcg, MEMCG_SWAP_MAX);
7559 memcg_memory_event(memcg, MEMCG_SWAP_FAIL);
7560 mem_cgroup_id_put(memcg);
7561 return -ENOMEM;
7562 }
7563
7564 /* Get references for the tail pages, too */
7565 if (nr_pages > 1)
7566 mem_cgroup_id_get_many(memcg, nr_pages - 1);
7567 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
7568 VM_BUG_ON_FOLIO(oldid, folio);
7569 mod_memcg_state(memcg, MEMCG_SWAP, nr_pages);
7570
7571 return 0;
7572}
7573
7574/**
7575 * __mem_cgroup_uncharge_swap - uncharge swap space
7576 * @entry: swap entry to uncharge
7577 * @nr_pages: the amount of swap space to uncharge
7578 */
7579void __mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
7580{
7581 struct mem_cgroup *memcg;
7582 unsigned short id;
7583
7584 if (mem_cgroup_disabled())
7585 return;
7586
7587 id = swap_cgroup_record(entry, 0, nr_pages);
7588 rcu_read_lock();
7589 memcg = mem_cgroup_from_id(id);
7590 if (memcg) {
7591 if (!mem_cgroup_is_root(memcg)) {
7592 if (do_memsw_account())
7593 page_counter_uncharge(&memcg->memsw, nr_pages);
7594 else
7595 page_counter_uncharge(&memcg->swap, nr_pages);
7596 }
7597 mod_memcg_state(memcg, MEMCG_SWAP, -nr_pages);
7598 mem_cgroup_id_put_many(memcg, nr_pages);
7599 }
7600 rcu_read_unlock();
7601}
7602
7603long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
7604{
7605 long nr_swap_pages = get_nr_swap_pages();
7606
7607 if (mem_cgroup_disabled() || do_memsw_account())
7608 return nr_swap_pages;
7609 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg))
7610 nr_swap_pages = min_t(long, nr_swap_pages,
7611 READ_ONCE(memcg->swap.max) -
7612 page_counter_read(&memcg->swap));
7613 return nr_swap_pages;
7614}
7615
7616bool mem_cgroup_swap_full(struct folio *folio)
7617{
7618 struct mem_cgroup *memcg;
7619
7620 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
7621
7622 if (vm_swap_full())
7623 return true;
7624 if (do_memsw_account())
7625 return false;
7626
7627 memcg = folio_memcg(folio);
7628 if (!memcg)
7629 return false;
7630
7631 for (; !mem_cgroup_is_root(memcg); memcg = parent_mem_cgroup(memcg)) {
7632 unsigned long usage = page_counter_read(&memcg->swap);
7633
7634 if (usage * 2 >= READ_ONCE(memcg->swap.high) ||
7635 usage * 2 >= READ_ONCE(memcg->swap.max))
7636 return true;
7637 }
7638
7639 return false;
7640}
7641
7642static int __init setup_swap_account(char *s)
7643{
7644 pr_warn_once("The swapaccount= commandline option is deprecated. "
7645 "Please report your usecase to linux-mm@kvack.org if you "
7646 "depend on this functionality.\n");
7647 return 1;
7648}
7649__setup("swapaccount=", setup_swap_account);
7650
7651static u64 swap_current_read(struct cgroup_subsys_state *css,
7652 struct cftype *cft)
7653{
7654 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7655
7656 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
7657}
7658
7659static int swap_high_show(struct seq_file *m, void *v)
7660{
7661 return seq_puts_memcg_tunable(m,
7662 READ_ONCE(mem_cgroup_from_seq(m)->swap.high));
7663}
7664
7665static ssize_t swap_high_write(struct kernfs_open_file *of,
7666 char *buf, size_t nbytes, loff_t off)
7667{
7668 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7669 unsigned long high;
7670 int err;
7671
7672 buf = strstrip(buf);
7673 err = page_counter_memparse(buf, "max", &high);
7674 if (err)
7675 return err;
7676
7677 page_counter_set_high(&memcg->swap, high);
7678
7679 return nbytes;
7680}
7681
7682static int swap_max_show(struct seq_file *m, void *v)
7683{
7684 return seq_puts_memcg_tunable(m,
7685 READ_ONCE(mem_cgroup_from_seq(m)->swap.max));
7686}
7687
7688static ssize_t swap_max_write(struct kernfs_open_file *of,
7689 char *buf, size_t nbytes, loff_t off)
7690{
7691 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7692 unsigned long max;
7693 int err;
7694
7695 buf = strstrip(buf);
7696 err = page_counter_memparse(buf, "max", &max);
7697 if (err)
7698 return err;
7699
7700 xchg(&memcg->swap.max, max);
7701
7702 return nbytes;
7703}
7704
7705static int swap_events_show(struct seq_file *m, void *v)
7706{
7707 struct mem_cgroup *memcg = mem_cgroup_from_seq(m);
7708
7709 seq_printf(m, "high %lu\n",
7710 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_HIGH]));
7711 seq_printf(m, "max %lu\n",
7712 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_MAX]));
7713 seq_printf(m, "fail %lu\n",
7714 atomic_long_read(&memcg->memory_events[MEMCG_SWAP_FAIL]));
7715
7716 return 0;
7717}
7718
7719static struct cftype swap_files[] = {
7720 {
7721 .name = "swap.current",
7722 .flags = CFTYPE_NOT_ON_ROOT,
7723 .read_u64 = swap_current_read,
7724 },
7725 {
7726 .name = "swap.high",
7727 .flags = CFTYPE_NOT_ON_ROOT,
7728 .seq_show = swap_high_show,
7729 .write = swap_high_write,
7730 },
7731 {
7732 .name = "swap.max",
7733 .flags = CFTYPE_NOT_ON_ROOT,
7734 .seq_show = swap_max_show,
7735 .write = swap_max_write,
7736 },
7737 {
7738 .name = "swap.events",
7739 .flags = CFTYPE_NOT_ON_ROOT,
7740 .file_offset = offsetof(struct mem_cgroup, swap_events_file),
7741 .seq_show = swap_events_show,
7742 },
7743 { } /* terminate */
7744};
7745
7746static struct cftype memsw_files[] = {
7747 {
7748 .name = "memsw.usage_in_bytes",
7749 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
7750 .read_u64 = mem_cgroup_read_u64,
7751 },
7752 {
7753 .name = "memsw.max_usage_in_bytes",
7754 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
7755 .write = mem_cgroup_reset,
7756 .read_u64 = mem_cgroup_read_u64,
7757 },
7758 {
7759 .name = "memsw.limit_in_bytes",
7760 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
7761 .write = mem_cgroup_write,
7762 .read_u64 = mem_cgroup_read_u64,
7763 },
7764 {
7765 .name = "memsw.failcnt",
7766 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
7767 .write = mem_cgroup_reset,
7768 .read_u64 = mem_cgroup_read_u64,
7769 },
7770 { }, /* terminate */
7771};
7772
7773#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7774/**
7775 * obj_cgroup_may_zswap - check if this cgroup can zswap
7776 * @objcg: the object cgroup
7777 *
7778 * Check if the hierarchical zswap limit has been reached.
7779 *
7780 * This doesn't check for specific headroom, and it is not atomic
7781 * either. But with zswap, the size of the allocation is only known
7782 * once compression has occured, and this optimistic pre-check avoids
7783 * spending cycles on compression when there is already no room left
7784 * or zswap is disabled altogether somewhere in the hierarchy.
7785 */
7786bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
7787{
7788 struct mem_cgroup *memcg, *original_memcg;
7789 bool ret = true;
7790
7791 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7792 return true;
7793
7794 original_memcg = get_mem_cgroup_from_objcg(objcg);
7795 for (memcg = original_memcg; !mem_cgroup_is_root(memcg);
7796 memcg = parent_mem_cgroup(memcg)) {
7797 unsigned long max = READ_ONCE(memcg->zswap_max);
7798 unsigned long pages;
7799
7800 if (max == PAGE_COUNTER_MAX)
7801 continue;
7802 if (max == 0) {
7803 ret = false;
7804 break;
7805 }
7806
7807 cgroup_rstat_flush(memcg->css.cgroup);
7808 pages = memcg_page_state(memcg, MEMCG_ZSWAP_B) / PAGE_SIZE;
7809 if (pages < max)
7810 continue;
7811 ret = false;
7812 break;
7813 }
7814 mem_cgroup_put(original_memcg);
7815 return ret;
7816}
7817
7818/**
7819 * obj_cgroup_charge_zswap - charge compression backend memory
7820 * @objcg: the object cgroup
7821 * @size: size of compressed object
7822 *
7823 * This forces the charge after obj_cgroup_may_swap() allowed
7824 * compression and storage in zwap for this cgroup to go ahead.
7825 */
7826void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size)
7827{
7828 struct mem_cgroup *memcg;
7829
7830 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7831 return;
7832
7833 VM_WARN_ON_ONCE(!(current->flags & PF_MEMALLOC));
7834
7835 /* PF_MEMALLOC context, charging must succeed */
7836 if (obj_cgroup_charge(objcg, GFP_KERNEL, size))
7837 VM_WARN_ON_ONCE(1);
7838
7839 rcu_read_lock();
7840 memcg = obj_cgroup_memcg(objcg);
7841 mod_memcg_state(memcg, MEMCG_ZSWAP_B, size);
7842 mod_memcg_state(memcg, MEMCG_ZSWAPPED, 1);
7843 rcu_read_unlock();
7844}
7845
7846/**
7847 * obj_cgroup_uncharge_zswap - uncharge compression backend memory
7848 * @objcg: the object cgroup
7849 * @size: size of compressed object
7850 *
7851 * Uncharges zswap memory on page in.
7852 */
7853void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size)
7854{
7855 struct mem_cgroup *memcg;
7856
7857 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
7858 return;
7859
7860 obj_cgroup_uncharge(objcg, size);
7861
7862 rcu_read_lock();
7863 memcg = obj_cgroup_memcg(objcg);
7864 mod_memcg_state(memcg, MEMCG_ZSWAP_B, -size);
7865 mod_memcg_state(memcg, MEMCG_ZSWAPPED, -1);
7866 rcu_read_unlock();
7867}
7868
7869static u64 zswap_current_read(struct cgroup_subsys_state *css,
7870 struct cftype *cft)
7871{
7872 cgroup_rstat_flush(css->cgroup);
7873 return memcg_page_state(mem_cgroup_from_css(css), MEMCG_ZSWAP_B);
7874}
7875
7876static int zswap_max_show(struct seq_file *m, void *v)
7877{
7878 return seq_puts_memcg_tunable(m,
7879 READ_ONCE(mem_cgroup_from_seq(m)->zswap_max));
7880}
7881
7882static ssize_t zswap_max_write(struct kernfs_open_file *of,
7883 char *buf, size_t nbytes, loff_t off)
7884{
7885 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
7886 unsigned long max;
7887 int err;
7888
7889 buf = strstrip(buf);
7890 err = page_counter_memparse(buf, "max", &max);
7891 if (err)
7892 return err;
7893
7894 xchg(&memcg->zswap_max, max);
7895
7896 return nbytes;
7897}
7898
7899static struct cftype zswap_files[] = {
7900 {
7901 .name = "zswap.current",
7902 .flags = CFTYPE_NOT_ON_ROOT,
7903 .read_u64 = zswap_current_read,
7904 },
7905 {
7906 .name = "zswap.max",
7907 .flags = CFTYPE_NOT_ON_ROOT,
7908 .seq_show = zswap_max_show,
7909 .write = zswap_max_write,
7910 },
7911 { } /* terminate */
7912};
7913#endif /* CONFIG_MEMCG_KMEM && CONFIG_ZSWAP */
7914
7915static int __init mem_cgroup_swap_init(void)
7916{
7917 if (mem_cgroup_disabled())
7918 return 0;
7919
7920 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, swap_files));
7921 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys, memsw_files));
7922#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
7923 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys, zswap_files));
7924#endif
7925 return 0;
7926}
7927subsys_initcall(mem_cgroup_swap_init);
7928
7929#endif /* CONFIG_SWAP */