Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
5 */
6#include <linux/list.h>
7#include <linux/init.h>
8#include <linux/mm.h>
9#include <linux/seq_file.h>
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
12#include <linux/mmu_notifier.h>
13#include <linux/nodemask.h>
14#include <linux/pagemap.h>
15#include <linux/mempolicy.h>
16#include <linux/compiler.h>
17#include <linux/cpuset.h>
18#include <linux/mutex.h>
19#include <linux/memblock.h>
20#include <linux/sysfs.h>
21#include <linux/slab.h>
22#include <linux/sched/mm.h>
23#include <linux/mmdebug.h>
24#include <linux/sched/signal.h>
25#include <linux/rmap.h>
26#include <linux/string_helpers.h>
27#include <linux/swap.h>
28#include <linux/swapops.h>
29#include <linux/jhash.h>
30#include <linux/numa.h>
31#include <linux/llist.h>
32#include <linux/cma.h>
33#include <linux/migrate.h>
34#include <linux/nospec.h>
35#include <linux/delayacct.h>
36#include <linux/memory.h>
37
38#include <asm/page.h>
39#include <asm/pgalloc.h>
40#include <asm/tlb.h>
41
42#include <linux/io.h>
43#include <linux/hugetlb.h>
44#include <linux/hugetlb_cgroup.h>
45#include <linux/node.h>
46#include <linux/page_owner.h>
47#include "internal.h"
48#include "hugetlb_vmemmap.h"
49
50int hugetlb_max_hstate __read_mostly;
51unsigned int default_hstate_idx;
52struct hstate hstates[HUGE_MAX_HSTATE];
53
54#ifdef CONFIG_CMA
55static struct cma *hugetlb_cma[MAX_NUMNODES];
56static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
57static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
58{
59 return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
60 1 << order);
61}
62#else
63static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
64{
65 return false;
66}
67#endif
68static unsigned long hugetlb_cma_size __initdata;
69
70__initdata LIST_HEAD(huge_boot_pages);
71
72/* for command line parsing */
73static struct hstate * __initdata parsed_hstate;
74static unsigned long __initdata default_hstate_max_huge_pages;
75static bool __initdata parsed_valid_hugepagesz = true;
76static bool __initdata parsed_default_hugepagesz;
77static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
78
79/*
80 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
81 * free_huge_pages, and surplus_huge_pages.
82 */
83DEFINE_SPINLOCK(hugetlb_lock);
84
85/*
86 * Serializes faults on the same logical page. This is used to
87 * prevent spurious OOMs when the hugepage pool is fully utilized.
88 */
89static int num_fault_mutexes;
90struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
91
92/* Forward declaration */
93static int hugetlb_acct_memory(struct hstate *h, long delta);
94static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
95static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
96static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
97static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
98 unsigned long start, unsigned long end);
99
100static inline bool subpool_is_free(struct hugepage_subpool *spool)
101{
102 if (spool->count)
103 return false;
104 if (spool->max_hpages != -1)
105 return spool->used_hpages == 0;
106 if (spool->min_hpages != -1)
107 return spool->rsv_hpages == spool->min_hpages;
108
109 return true;
110}
111
112static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
113 unsigned long irq_flags)
114{
115 spin_unlock_irqrestore(&spool->lock, irq_flags);
116
117 /* If no pages are used, and no other handles to the subpool
118 * remain, give up any reservations based on minimum size and
119 * free the subpool */
120 if (subpool_is_free(spool)) {
121 if (spool->min_hpages != -1)
122 hugetlb_acct_memory(spool->hstate,
123 -spool->min_hpages);
124 kfree(spool);
125 }
126}
127
128struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
129 long min_hpages)
130{
131 struct hugepage_subpool *spool;
132
133 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
134 if (!spool)
135 return NULL;
136
137 spin_lock_init(&spool->lock);
138 spool->count = 1;
139 spool->max_hpages = max_hpages;
140 spool->hstate = h;
141 spool->min_hpages = min_hpages;
142
143 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
144 kfree(spool);
145 return NULL;
146 }
147 spool->rsv_hpages = min_hpages;
148
149 return spool;
150}
151
152void hugepage_put_subpool(struct hugepage_subpool *spool)
153{
154 unsigned long flags;
155
156 spin_lock_irqsave(&spool->lock, flags);
157 BUG_ON(!spool->count);
158 spool->count--;
159 unlock_or_release_subpool(spool, flags);
160}
161
162/*
163 * Subpool accounting for allocating and reserving pages.
164 * Return -ENOMEM if there are not enough resources to satisfy the
165 * request. Otherwise, return the number of pages by which the
166 * global pools must be adjusted (upward). The returned value may
167 * only be different than the passed value (delta) in the case where
168 * a subpool minimum size must be maintained.
169 */
170static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
171 long delta)
172{
173 long ret = delta;
174
175 if (!spool)
176 return ret;
177
178 spin_lock_irq(&spool->lock);
179
180 if (spool->max_hpages != -1) { /* maximum size accounting */
181 if ((spool->used_hpages + delta) <= spool->max_hpages)
182 spool->used_hpages += delta;
183 else {
184 ret = -ENOMEM;
185 goto unlock_ret;
186 }
187 }
188
189 /* minimum size accounting */
190 if (spool->min_hpages != -1 && spool->rsv_hpages) {
191 if (delta > spool->rsv_hpages) {
192 /*
193 * Asking for more reserves than those already taken on
194 * behalf of subpool. Return difference.
195 */
196 ret = delta - spool->rsv_hpages;
197 spool->rsv_hpages = 0;
198 } else {
199 ret = 0; /* reserves already accounted for */
200 spool->rsv_hpages -= delta;
201 }
202 }
203
204unlock_ret:
205 spin_unlock_irq(&spool->lock);
206 return ret;
207}
208
209/*
210 * Subpool accounting for freeing and unreserving pages.
211 * Return the number of global page reservations that must be dropped.
212 * The return value may only be different than the passed value (delta)
213 * in the case where a subpool minimum size must be maintained.
214 */
215static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
216 long delta)
217{
218 long ret = delta;
219 unsigned long flags;
220
221 if (!spool)
222 return delta;
223
224 spin_lock_irqsave(&spool->lock, flags);
225
226 if (spool->max_hpages != -1) /* maximum size accounting */
227 spool->used_hpages -= delta;
228
229 /* minimum size accounting */
230 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
231 if (spool->rsv_hpages + delta <= spool->min_hpages)
232 ret = 0;
233 else
234 ret = spool->rsv_hpages + delta - spool->min_hpages;
235
236 spool->rsv_hpages += delta;
237 if (spool->rsv_hpages > spool->min_hpages)
238 spool->rsv_hpages = spool->min_hpages;
239 }
240
241 /*
242 * If hugetlbfs_put_super couldn't free spool due to an outstanding
243 * quota reference, free it now.
244 */
245 unlock_or_release_subpool(spool, flags);
246
247 return ret;
248}
249
250static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
251{
252 return HUGETLBFS_SB(inode->i_sb)->spool;
253}
254
255static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
256{
257 return subpool_inode(file_inode(vma->vm_file));
258}
259
260/*
261 * hugetlb vma_lock helper routines
262 */
263void hugetlb_vma_lock_read(struct vm_area_struct *vma)
264{
265 if (__vma_shareable_lock(vma)) {
266 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
267
268 down_read(&vma_lock->rw_sema);
269 }
270}
271
272void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
273{
274 if (__vma_shareable_lock(vma)) {
275 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
276
277 up_read(&vma_lock->rw_sema);
278 }
279}
280
281void hugetlb_vma_lock_write(struct vm_area_struct *vma)
282{
283 if (__vma_shareable_lock(vma)) {
284 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
285
286 down_write(&vma_lock->rw_sema);
287 }
288}
289
290void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
291{
292 if (__vma_shareable_lock(vma)) {
293 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
294
295 up_write(&vma_lock->rw_sema);
296 }
297}
298
299int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
300{
301 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
302
303 if (!__vma_shareable_lock(vma))
304 return 1;
305
306 return down_write_trylock(&vma_lock->rw_sema);
307}
308
309void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
310{
311 if (__vma_shareable_lock(vma)) {
312 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
313
314 lockdep_assert_held(&vma_lock->rw_sema);
315 }
316}
317
318void hugetlb_vma_lock_release(struct kref *kref)
319{
320 struct hugetlb_vma_lock *vma_lock = container_of(kref,
321 struct hugetlb_vma_lock, refs);
322
323 kfree(vma_lock);
324}
325
326static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
327{
328 struct vm_area_struct *vma = vma_lock->vma;
329
330 /*
331 * vma_lock structure may or not be released as a result of put,
332 * it certainly will no longer be attached to vma so clear pointer.
333 * Semaphore synchronizes access to vma_lock->vma field.
334 */
335 vma_lock->vma = NULL;
336 vma->vm_private_data = NULL;
337 up_write(&vma_lock->rw_sema);
338 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
339}
340
341static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
342{
343 if (__vma_shareable_lock(vma)) {
344 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
345
346 __hugetlb_vma_unlock_write_put(vma_lock);
347 }
348}
349
350static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
351{
352 /*
353 * Only present in sharable vmas.
354 */
355 if (!vma || !__vma_shareable_lock(vma))
356 return;
357
358 if (vma->vm_private_data) {
359 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
360
361 down_write(&vma_lock->rw_sema);
362 __hugetlb_vma_unlock_write_put(vma_lock);
363 }
364}
365
366static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
367{
368 struct hugetlb_vma_lock *vma_lock;
369
370 /* Only establish in (flags) sharable vmas */
371 if (!vma || !(vma->vm_flags & VM_MAYSHARE))
372 return;
373
374 /* Should never get here with non-NULL vm_private_data */
375 if (vma->vm_private_data)
376 return;
377
378 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
379 if (!vma_lock) {
380 /*
381 * If we can not allocate structure, then vma can not
382 * participate in pmd sharing. This is only a possible
383 * performance enhancement and memory saving issue.
384 * However, the lock is also used to synchronize page
385 * faults with truncation. If the lock is not present,
386 * unlikely races could leave pages in a file past i_size
387 * until the file is removed. Warn in the unlikely case of
388 * allocation failure.
389 */
390 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
391 return;
392 }
393
394 kref_init(&vma_lock->refs);
395 init_rwsem(&vma_lock->rw_sema);
396 vma_lock->vma = vma;
397 vma->vm_private_data = vma_lock;
398}
399
400/* Helper that removes a struct file_region from the resv_map cache and returns
401 * it for use.
402 */
403static struct file_region *
404get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
405{
406 struct file_region *nrg;
407
408 VM_BUG_ON(resv->region_cache_count <= 0);
409
410 resv->region_cache_count--;
411 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
412 list_del(&nrg->link);
413
414 nrg->from = from;
415 nrg->to = to;
416
417 return nrg;
418}
419
420static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
421 struct file_region *rg)
422{
423#ifdef CONFIG_CGROUP_HUGETLB
424 nrg->reservation_counter = rg->reservation_counter;
425 nrg->css = rg->css;
426 if (rg->css)
427 css_get(rg->css);
428#endif
429}
430
431/* Helper that records hugetlb_cgroup uncharge info. */
432static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
433 struct hstate *h,
434 struct resv_map *resv,
435 struct file_region *nrg)
436{
437#ifdef CONFIG_CGROUP_HUGETLB
438 if (h_cg) {
439 nrg->reservation_counter =
440 &h_cg->rsvd_hugepage[hstate_index(h)];
441 nrg->css = &h_cg->css;
442 /*
443 * The caller will hold exactly one h_cg->css reference for the
444 * whole contiguous reservation region. But this area might be
445 * scattered when there are already some file_regions reside in
446 * it. As a result, many file_regions may share only one css
447 * reference. In order to ensure that one file_region must hold
448 * exactly one h_cg->css reference, we should do css_get for
449 * each file_region and leave the reference held by caller
450 * untouched.
451 */
452 css_get(&h_cg->css);
453 if (!resv->pages_per_hpage)
454 resv->pages_per_hpage = pages_per_huge_page(h);
455 /* pages_per_hpage should be the same for all entries in
456 * a resv_map.
457 */
458 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
459 } else {
460 nrg->reservation_counter = NULL;
461 nrg->css = NULL;
462 }
463#endif
464}
465
466static void put_uncharge_info(struct file_region *rg)
467{
468#ifdef CONFIG_CGROUP_HUGETLB
469 if (rg->css)
470 css_put(rg->css);
471#endif
472}
473
474static bool has_same_uncharge_info(struct file_region *rg,
475 struct file_region *org)
476{
477#ifdef CONFIG_CGROUP_HUGETLB
478 return rg->reservation_counter == org->reservation_counter &&
479 rg->css == org->css;
480
481#else
482 return true;
483#endif
484}
485
486static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
487{
488 struct file_region *nrg, *prg;
489
490 prg = list_prev_entry(rg, link);
491 if (&prg->link != &resv->regions && prg->to == rg->from &&
492 has_same_uncharge_info(prg, rg)) {
493 prg->to = rg->to;
494
495 list_del(&rg->link);
496 put_uncharge_info(rg);
497 kfree(rg);
498
499 rg = prg;
500 }
501
502 nrg = list_next_entry(rg, link);
503 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
504 has_same_uncharge_info(nrg, rg)) {
505 nrg->from = rg->from;
506
507 list_del(&rg->link);
508 put_uncharge_info(rg);
509 kfree(rg);
510 }
511}
512
513static inline long
514hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
515 long to, struct hstate *h, struct hugetlb_cgroup *cg,
516 long *regions_needed)
517{
518 struct file_region *nrg;
519
520 if (!regions_needed) {
521 nrg = get_file_region_entry_from_cache(map, from, to);
522 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
523 list_add(&nrg->link, rg);
524 coalesce_file_region(map, nrg);
525 } else
526 *regions_needed += 1;
527
528 return to - from;
529}
530
531/*
532 * Must be called with resv->lock held.
533 *
534 * Calling this with regions_needed != NULL will count the number of pages
535 * to be added but will not modify the linked list. And regions_needed will
536 * indicate the number of file_regions needed in the cache to carry out to add
537 * the regions for this range.
538 */
539static long add_reservation_in_range(struct resv_map *resv, long f, long t,
540 struct hugetlb_cgroup *h_cg,
541 struct hstate *h, long *regions_needed)
542{
543 long add = 0;
544 struct list_head *head = &resv->regions;
545 long last_accounted_offset = f;
546 struct file_region *iter, *trg = NULL;
547 struct list_head *rg = NULL;
548
549 if (regions_needed)
550 *regions_needed = 0;
551
552 /* In this loop, we essentially handle an entry for the range
553 * [last_accounted_offset, iter->from), at every iteration, with some
554 * bounds checking.
555 */
556 list_for_each_entry_safe(iter, trg, head, link) {
557 /* Skip irrelevant regions that start before our range. */
558 if (iter->from < f) {
559 /* If this region ends after the last accounted offset,
560 * then we need to update last_accounted_offset.
561 */
562 if (iter->to > last_accounted_offset)
563 last_accounted_offset = iter->to;
564 continue;
565 }
566
567 /* When we find a region that starts beyond our range, we've
568 * finished.
569 */
570 if (iter->from >= t) {
571 rg = iter->link.prev;
572 break;
573 }
574
575 /* Add an entry for last_accounted_offset -> iter->from, and
576 * update last_accounted_offset.
577 */
578 if (iter->from > last_accounted_offset)
579 add += hugetlb_resv_map_add(resv, iter->link.prev,
580 last_accounted_offset,
581 iter->from, h, h_cg,
582 regions_needed);
583
584 last_accounted_offset = iter->to;
585 }
586
587 /* Handle the case where our range extends beyond
588 * last_accounted_offset.
589 */
590 if (!rg)
591 rg = head->prev;
592 if (last_accounted_offset < t)
593 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
594 t, h, h_cg, regions_needed);
595
596 return add;
597}
598
599/* Must be called with resv->lock acquired. Will drop lock to allocate entries.
600 */
601static int allocate_file_region_entries(struct resv_map *resv,
602 int regions_needed)
603 __must_hold(&resv->lock)
604{
605 LIST_HEAD(allocated_regions);
606 int to_allocate = 0, i = 0;
607 struct file_region *trg = NULL, *rg = NULL;
608
609 VM_BUG_ON(regions_needed < 0);
610
611 /*
612 * Check for sufficient descriptors in the cache to accommodate
613 * the number of in progress add operations plus regions_needed.
614 *
615 * This is a while loop because when we drop the lock, some other call
616 * to region_add or region_del may have consumed some region_entries,
617 * so we keep looping here until we finally have enough entries for
618 * (adds_in_progress + regions_needed).
619 */
620 while (resv->region_cache_count <
621 (resv->adds_in_progress + regions_needed)) {
622 to_allocate = resv->adds_in_progress + regions_needed -
623 resv->region_cache_count;
624
625 /* At this point, we should have enough entries in the cache
626 * for all the existing adds_in_progress. We should only be
627 * needing to allocate for regions_needed.
628 */
629 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
630
631 spin_unlock(&resv->lock);
632 for (i = 0; i < to_allocate; i++) {
633 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
634 if (!trg)
635 goto out_of_memory;
636 list_add(&trg->link, &allocated_regions);
637 }
638
639 spin_lock(&resv->lock);
640
641 list_splice(&allocated_regions, &resv->region_cache);
642 resv->region_cache_count += to_allocate;
643 }
644
645 return 0;
646
647out_of_memory:
648 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
649 list_del(&rg->link);
650 kfree(rg);
651 }
652 return -ENOMEM;
653}
654
655/*
656 * Add the huge page range represented by [f, t) to the reserve
657 * map. Regions will be taken from the cache to fill in this range.
658 * Sufficient regions should exist in the cache due to the previous
659 * call to region_chg with the same range, but in some cases the cache will not
660 * have sufficient entries due to races with other code doing region_add or
661 * region_del. The extra needed entries will be allocated.
662 *
663 * regions_needed is the out value provided by a previous call to region_chg.
664 *
665 * Return the number of new huge pages added to the map. This number is greater
666 * than or equal to zero. If file_region entries needed to be allocated for
667 * this operation and we were not able to allocate, it returns -ENOMEM.
668 * region_add of regions of length 1 never allocate file_regions and cannot
669 * fail; region_chg will always allocate at least 1 entry and a region_add for
670 * 1 page will only require at most 1 entry.
671 */
672static long region_add(struct resv_map *resv, long f, long t,
673 long in_regions_needed, struct hstate *h,
674 struct hugetlb_cgroup *h_cg)
675{
676 long add = 0, actual_regions_needed = 0;
677
678 spin_lock(&resv->lock);
679retry:
680
681 /* Count how many regions are actually needed to execute this add. */
682 add_reservation_in_range(resv, f, t, NULL, NULL,
683 &actual_regions_needed);
684
685 /*
686 * Check for sufficient descriptors in the cache to accommodate
687 * this add operation. Note that actual_regions_needed may be greater
688 * than in_regions_needed, as the resv_map may have been modified since
689 * the region_chg call. In this case, we need to make sure that we
690 * allocate extra entries, such that we have enough for all the
691 * existing adds_in_progress, plus the excess needed for this
692 * operation.
693 */
694 if (actual_regions_needed > in_regions_needed &&
695 resv->region_cache_count <
696 resv->adds_in_progress +
697 (actual_regions_needed - in_regions_needed)) {
698 /* region_add operation of range 1 should never need to
699 * allocate file_region entries.
700 */
701 VM_BUG_ON(t - f <= 1);
702
703 if (allocate_file_region_entries(
704 resv, actual_regions_needed - in_regions_needed)) {
705 return -ENOMEM;
706 }
707
708 goto retry;
709 }
710
711 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
712
713 resv->adds_in_progress -= in_regions_needed;
714
715 spin_unlock(&resv->lock);
716 return add;
717}
718
719/*
720 * Examine the existing reserve map and determine how many
721 * huge pages in the specified range [f, t) are NOT currently
722 * represented. This routine is called before a subsequent
723 * call to region_add that will actually modify the reserve
724 * map to add the specified range [f, t). region_chg does
725 * not change the number of huge pages represented by the
726 * map. A number of new file_region structures is added to the cache as a
727 * placeholder, for the subsequent region_add call to use. At least 1
728 * file_region structure is added.
729 *
730 * out_regions_needed is the number of regions added to the
731 * resv->adds_in_progress. This value needs to be provided to a follow up call
732 * to region_add or region_abort for proper accounting.
733 *
734 * Returns the number of huge pages that need to be added to the existing
735 * reservation map for the range [f, t). This number is greater or equal to
736 * zero. -ENOMEM is returned if a new file_region structure or cache entry
737 * is needed and can not be allocated.
738 */
739static long region_chg(struct resv_map *resv, long f, long t,
740 long *out_regions_needed)
741{
742 long chg = 0;
743
744 spin_lock(&resv->lock);
745
746 /* Count how many hugepages in this range are NOT represented. */
747 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
748 out_regions_needed);
749
750 if (*out_regions_needed == 0)
751 *out_regions_needed = 1;
752
753 if (allocate_file_region_entries(resv, *out_regions_needed))
754 return -ENOMEM;
755
756 resv->adds_in_progress += *out_regions_needed;
757
758 spin_unlock(&resv->lock);
759 return chg;
760}
761
762/*
763 * Abort the in progress add operation. The adds_in_progress field
764 * of the resv_map keeps track of the operations in progress between
765 * calls to region_chg and region_add. Operations are sometimes
766 * aborted after the call to region_chg. In such cases, region_abort
767 * is called to decrement the adds_in_progress counter. regions_needed
768 * is the value returned by the region_chg call, it is used to decrement
769 * the adds_in_progress counter.
770 *
771 * NOTE: The range arguments [f, t) are not needed or used in this
772 * routine. They are kept to make reading the calling code easier as
773 * arguments will match the associated region_chg call.
774 */
775static void region_abort(struct resv_map *resv, long f, long t,
776 long regions_needed)
777{
778 spin_lock(&resv->lock);
779 VM_BUG_ON(!resv->region_cache_count);
780 resv->adds_in_progress -= regions_needed;
781 spin_unlock(&resv->lock);
782}
783
784/*
785 * Delete the specified range [f, t) from the reserve map. If the
786 * t parameter is LONG_MAX, this indicates that ALL regions after f
787 * should be deleted. Locate the regions which intersect [f, t)
788 * and either trim, delete or split the existing regions.
789 *
790 * Returns the number of huge pages deleted from the reserve map.
791 * In the normal case, the return value is zero or more. In the
792 * case where a region must be split, a new region descriptor must
793 * be allocated. If the allocation fails, -ENOMEM will be returned.
794 * NOTE: If the parameter t == LONG_MAX, then we will never split
795 * a region and possibly return -ENOMEM. Callers specifying
796 * t == LONG_MAX do not need to check for -ENOMEM error.
797 */
798static long region_del(struct resv_map *resv, long f, long t)
799{
800 struct list_head *head = &resv->regions;
801 struct file_region *rg, *trg;
802 struct file_region *nrg = NULL;
803 long del = 0;
804
805retry:
806 spin_lock(&resv->lock);
807 list_for_each_entry_safe(rg, trg, head, link) {
808 /*
809 * Skip regions before the range to be deleted. file_region
810 * ranges are normally of the form [from, to). However, there
811 * may be a "placeholder" entry in the map which is of the form
812 * (from, to) with from == to. Check for placeholder entries
813 * at the beginning of the range to be deleted.
814 */
815 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
816 continue;
817
818 if (rg->from >= t)
819 break;
820
821 if (f > rg->from && t < rg->to) { /* Must split region */
822 /*
823 * Check for an entry in the cache before dropping
824 * lock and attempting allocation.
825 */
826 if (!nrg &&
827 resv->region_cache_count > resv->adds_in_progress) {
828 nrg = list_first_entry(&resv->region_cache,
829 struct file_region,
830 link);
831 list_del(&nrg->link);
832 resv->region_cache_count--;
833 }
834
835 if (!nrg) {
836 spin_unlock(&resv->lock);
837 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
838 if (!nrg)
839 return -ENOMEM;
840 goto retry;
841 }
842
843 del += t - f;
844 hugetlb_cgroup_uncharge_file_region(
845 resv, rg, t - f, false);
846
847 /* New entry for end of split region */
848 nrg->from = t;
849 nrg->to = rg->to;
850
851 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
852
853 INIT_LIST_HEAD(&nrg->link);
854
855 /* Original entry is trimmed */
856 rg->to = f;
857
858 list_add(&nrg->link, &rg->link);
859 nrg = NULL;
860 break;
861 }
862
863 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
864 del += rg->to - rg->from;
865 hugetlb_cgroup_uncharge_file_region(resv, rg,
866 rg->to - rg->from, true);
867 list_del(&rg->link);
868 kfree(rg);
869 continue;
870 }
871
872 if (f <= rg->from) { /* Trim beginning of region */
873 hugetlb_cgroup_uncharge_file_region(resv, rg,
874 t - rg->from, false);
875
876 del += t - rg->from;
877 rg->from = t;
878 } else { /* Trim end of region */
879 hugetlb_cgroup_uncharge_file_region(resv, rg,
880 rg->to - f, false);
881
882 del += rg->to - f;
883 rg->to = f;
884 }
885 }
886
887 spin_unlock(&resv->lock);
888 kfree(nrg);
889 return del;
890}
891
892/*
893 * A rare out of memory error was encountered which prevented removal of
894 * the reserve map region for a page. The huge page itself was free'ed
895 * and removed from the page cache. This routine will adjust the subpool
896 * usage count, and the global reserve count if needed. By incrementing
897 * these counts, the reserve map entry which could not be deleted will
898 * appear as a "reserved" entry instead of simply dangling with incorrect
899 * counts.
900 */
901void hugetlb_fix_reserve_counts(struct inode *inode)
902{
903 struct hugepage_subpool *spool = subpool_inode(inode);
904 long rsv_adjust;
905 bool reserved = false;
906
907 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
908 if (rsv_adjust > 0) {
909 struct hstate *h = hstate_inode(inode);
910
911 if (!hugetlb_acct_memory(h, 1))
912 reserved = true;
913 } else if (!rsv_adjust) {
914 reserved = true;
915 }
916
917 if (!reserved)
918 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
919}
920
921/*
922 * Count and return the number of huge pages in the reserve map
923 * that intersect with the range [f, t).
924 */
925static long region_count(struct resv_map *resv, long f, long t)
926{
927 struct list_head *head = &resv->regions;
928 struct file_region *rg;
929 long chg = 0;
930
931 spin_lock(&resv->lock);
932 /* Locate each segment we overlap with, and count that overlap. */
933 list_for_each_entry(rg, head, link) {
934 long seg_from;
935 long seg_to;
936
937 if (rg->to <= f)
938 continue;
939 if (rg->from >= t)
940 break;
941
942 seg_from = max(rg->from, f);
943 seg_to = min(rg->to, t);
944
945 chg += seg_to - seg_from;
946 }
947 spin_unlock(&resv->lock);
948
949 return chg;
950}
951
952/*
953 * Convert the address within this vma to the page offset within
954 * the mapping, in pagecache page units; huge pages here.
955 */
956static pgoff_t vma_hugecache_offset(struct hstate *h,
957 struct vm_area_struct *vma, unsigned long address)
958{
959 return ((address - vma->vm_start) >> huge_page_shift(h)) +
960 (vma->vm_pgoff >> huge_page_order(h));
961}
962
963pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
964 unsigned long address)
965{
966 return vma_hugecache_offset(hstate_vma(vma), vma, address);
967}
968EXPORT_SYMBOL_GPL(linear_hugepage_index);
969
970/*
971 * Return the size of the pages allocated when backing a VMA. In the majority
972 * cases this will be same size as used by the page table entries.
973 */
974unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
975{
976 if (vma->vm_ops && vma->vm_ops->pagesize)
977 return vma->vm_ops->pagesize(vma);
978 return PAGE_SIZE;
979}
980EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
981
982/*
983 * Return the page size being used by the MMU to back a VMA. In the majority
984 * of cases, the page size used by the kernel matches the MMU size. On
985 * architectures where it differs, an architecture-specific 'strong'
986 * version of this symbol is required.
987 */
988__weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
989{
990 return vma_kernel_pagesize(vma);
991}
992
993/*
994 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
995 * bits of the reservation map pointer, which are always clear due to
996 * alignment.
997 */
998#define HPAGE_RESV_OWNER (1UL << 0)
999#define HPAGE_RESV_UNMAPPED (1UL << 1)
1000#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1001
1002/*
1003 * These helpers are used to track how many pages are reserved for
1004 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1005 * is guaranteed to have their future faults succeed.
1006 *
1007 * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1008 * the reserve counters are updated with the hugetlb_lock held. It is safe
1009 * to reset the VMA at fork() time as it is not in use yet and there is no
1010 * chance of the global counters getting corrupted as a result of the values.
1011 *
1012 * The private mapping reservation is represented in a subtly different
1013 * manner to a shared mapping. A shared mapping has a region map associated
1014 * with the underlying file, this region map represents the backing file
1015 * pages which have ever had a reservation assigned which this persists even
1016 * after the page is instantiated. A private mapping has a region map
1017 * associated with the original mmap which is attached to all VMAs which
1018 * reference it, this region map represents those offsets which have consumed
1019 * reservation ie. where pages have been instantiated.
1020 */
1021static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1022{
1023 return (unsigned long)vma->vm_private_data;
1024}
1025
1026static void set_vma_private_data(struct vm_area_struct *vma,
1027 unsigned long value)
1028{
1029 vma->vm_private_data = (void *)value;
1030}
1031
1032static void
1033resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1034 struct hugetlb_cgroup *h_cg,
1035 struct hstate *h)
1036{
1037#ifdef CONFIG_CGROUP_HUGETLB
1038 if (!h_cg || !h) {
1039 resv_map->reservation_counter = NULL;
1040 resv_map->pages_per_hpage = 0;
1041 resv_map->css = NULL;
1042 } else {
1043 resv_map->reservation_counter =
1044 &h_cg->rsvd_hugepage[hstate_index(h)];
1045 resv_map->pages_per_hpage = pages_per_huge_page(h);
1046 resv_map->css = &h_cg->css;
1047 }
1048#endif
1049}
1050
1051struct resv_map *resv_map_alloc(void)
1052{
1053 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1054 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1055
1056 if (!resv_map || !rg) {
1057 kfree(resv_map);
1058 kfree(rg);
1059 return NULL;
1060 }
1061
1062 kref_init(&resv_map->refs);
1063 spin_lock_init(&resv_map->lock);
1064 INIT_LIST_HEAD(&resv_map->regions);
1065
1066 resv_map->adds_in_progress = 0;
1067 /*
1068 * Initialize these to 0. On shared mappings, 0's here indicate these
1069 * fields don't do cgroup accounting. On private mappings, these will be
1070 * re-initialized to the proper values, to indicate that hugetlb cgroup
1071 * reservations are to be un-charged from here.
1072 */
1073 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1074
1075 INIT_LIST_HEAD(&resv_map->region_cache);
1076 list_add(&rg->link, &resv_map->region_cache);
1077 resv_map->region_cache_count = 1;
1078
1079 return resv_map;
1080}
1081
1082void resv_map_release(struct kref *ref)
1083{
1084 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1085 struct list_head *head = &resv_map->region_cache;
1086 struct file_region *rg, *trg;
1087
1088 /* Clear out any active regions before we release the map. */
1089 region_del(resv_map, 0, LONG_MAX);
1090
1091 /* ... and any entries left in the cache */
1092 list_for_each_entry_safe(rg, trg, head, link) {
1093 list_del(&rg->link);
1094 kfree(rg);
1095 }
1096
1097 VM_BUG_ON(resv_map->adds_in_progress);
1098
1099 kfree(resv_map);
1100}
1101
1102static inline struct resv_map *inode_resv_map(struct inode *inode)
1103{
1104 /*
1105 * At inode evict time, i_mapping may not point to the original
1106 * address space within the inode. This original address space
1107 * contains the pointer to the resv_map. So, always use the
1108 * address space embedded within the inode.
1109 * The VERY common case is inode->mapping == &inode->i_data but,
1110 * this may not be true for device special inodes.
1111 */
1112 return (struct resv_map *)(&inode->i_data)->private_data;
1113}
1114
1115static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1116{
1117 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1118 if (vma->vm_flags & VM_MAYSHARE) {
1119 struct address_space *mapping = vma->vm_file->f_mapping;
1120 struct inode *inode = mapping->host;
1121
1122 return inode_resv_map(inode);
1123
1124 } else {
1125 return (struct resv_map *)(get_vma_private_data(vma) &
1126 ~HPAGE_RESV_MASK);
1127 }
1128}
1129
1130static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1131{
1132 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1133 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1134
1135 set_vma_private_data(vma, (get_vma_private_data(vma) &
1136 HPAGE_RESV_MASK) | (unsigned long)map);
1137}
1138
1139static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1140{
1141 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1142 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1143
1144 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1145}
1146
1147static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1148{
1149 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1150
1151 return (get_vma_private_data(vma) & flag) != 0;
1152}
1153
1154void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1155{
1156 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1157 /*
1158 * Clear vm_private_data
1159 * - For shared mappings this is a per-vma semaphore that may be
1160 * allocated in a subsequent call to hugetlb_vm_op_open.
1161 * Before clearing, make sure pointer is not associated with vma
1162 * as this will leak the structure. This is the case when called
1163 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1164 * been called to allocate a new structure.
1165 * - For MAP_PRIVATE mappings, this is the reserve map which does
1166 * not apply to children. Faults generated by the children are
1167 * not guaranteed to succeed, even if read-only.
1168 */
1169 if (vma->vm_flags & VM_MAYSHARE) {
1170 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1171
1172 if (vma_lock && vma_lock->vma != vma)
1173 vma->vm_private_data = NULL;
1174 } else
1175 vma->vm_private_data = NULL;
1176}
1177
1178/*
1179 * Reset and decrement one ref on hugepage private reservation.
1180 * Called with mm->mmap_lock writer semaphore held.
1181 * This function should be only used by move_vma() and operate on
1182 * same sized vma. It should never come here with last ref on the
1183 * reservation.
1184 */
1185void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1186{
1187 /*
1188 * Clear the old hugetlb private page reservation.
1189 * It has already been transferred to new_vma.
1190 *
1191 * During a mremap() operation of a hugetlb vma we call move_vma()
1192 * which copies vma into new_vma and unmaps vma. After the copy
1193 * operation both new_vma and vma share a reference to the resv_map
1194 * struct, and at that point vma is about to be unmapped. We don't
1195 * want to return the reservation to the pool at unmap of vma because
1196 * the reservation still lives on in new_vma, so simply decrement the
1197 * ref here and remove the resv_map reference from this vma.
1198 */
1199 struct resv_map *reservations = vma_resv_map(vma);
1200
1201 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1202 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1203 kref_put(&reservations->refs, resv_map_release);
1204 }
1205
1206 hugetlb_dup_vma_private(vma);
1207}
1208
1209/* Returns true if the VMA has associated reserve pages */
1210static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1211{
1212 if (vma->vm_flags & VM_NORESERVE) {
1213 /*
1214 * This address is already reserved by other process(chg == 0),
1215 * so, we should decrement reserved count. Without decrementing,
1216 * reserve count remains after releasing inode, because this
1217 * allocated page will go into page cache and is regarded as
1218 * coming from reserved pool in releasing step. Currently, we
1219 * don't have any other solution to deal with this situation
1220 * properly, so add work-around here.
1221 */
1222 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1223 return true;
1224 else
1225 return false;
1226 }
1227
1228 /* Shared mappings always use reserves */
1229 if (vma->vm_flags & VM_MAYSHARE) {
1230 /*
1231 * We know VM_NORESERVE is not set. Therefore, there SHOULD
1232 * be a region map for all pages. The only situation where
1233 * there is no region map is if a hole was punched via
1234 * fallocate. In this case, there really are no reserves to
1235 * use. This situation is indicated if chg != 0.
1236 */
1237 if (chg)
1238 return false;
1239 else
1240 return true;
1241 }
1242
1243 /*
1244 * Only the process that called mmap() has reserves for
1245 * private mappings.
1246 */
1247 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1248 /*
1249 * Like the shared case above, a hole punch or truncate
1250 * could have been performed on the private mapping.
1251 * Examine the value of chg to determine if reserves
1252 * actually exist or were previously consumed.
1253 * Very Subtle - The value of chg comes from a previous
1254 * call to vma_needs_reserves(). The reserve map for
1255 * private mappings has different (opposite) semantics
1256 * than that of shared mappings. vma_needs_reserves()
1257 * has already taken this difference in semantics into
1258 * account. Therefore, the meaning of chg is the same
1259 * as in the shared case above. Code could easily be
1260 * combined, but keeping it separate draws attention to
1261 * subtle differences.
1262 */
1263 if (chg)
1264 return false;
1265 else
1266 return true;
1267 }
1268
1269 return false;
1270}
1271
1272static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1273{
1274 int nid = folio_nid(folio);
1275
1276 lockdep_assert_held(&hugetlb_lock);
1277 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1278
1279 list_move(&folio->lru, &h->hugepage_freelists[nid]);
1280 h->free_huge_pages++;
1281 h->free_huge_pages_node[nid]++;
1282 folio_set_hugetlb_freed(folio);
1283}
1284
1285static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1286 int nid)
1287{
1288 struct folio *folio;
1289 bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1290
1291 lockdep_assert_held(&hugetlb_lock);
1292 list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1293 if (pin && !folio_is_longterm_pinnable(folio))
1294 continue;
1295
1296 if (folio_test_hwpoison(folio))
1297 continue;
1298
1299 list_move(&folio->lru, &h->hugepage_activelist);
1300 folio_ref_unfreeze(folio, 1);
1301 folio_clear_hugetlb_freed(folio);
1302 h->free_huge_pages--;
1303 h->free_huge_pages_node[nid]--;
1304 return folio;
1305 }
1306
1307 return NULL;
1308}
1309
1310static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1311 int nid, nodemask_t *nmask)
1312{
1313 unsigned int cpuset_mems_cookie;
1314 struct zonelist *zonelist;
1315 struct zone *zone;
1316 struct zoneref *z;
1317 int node = NUMA_NO_NODE;
1318
1319 zonelist = node_zonelist(nid, gfp_mask);
1320
1321retry_cpuset:
1322 cpuset_mems_cookie = read_mems_allowed_begin();
1323 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1324 struct folio *folio;
1325
1326 if (!cpuset_zone_allowed(zone, gfp_mask))
1327 continue;
1328 /*
1329 * no need to ask again on the same node. Pool is node rather than
1330 * zone aware
1331 */
1332 if (zone_to_nid(zone) == node)
1333 continue;
1334 node = zone_to_nid(zone);
1335
1336 folio = dequeue_hugetlb_folio_node_exact(h, node);
1337 if (folio)
1338 return folio;
1339 }
1340 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1341 goto retry_cpuset;
1342
1343 return NULL;
1344}
1345
1346static unsigned long available_huge_pages(struct hstate *h)
1347{
1348 return h->free_huge_pages - h->resv_huge_pages;
1349}
1350
1351static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1352 struct vm_area_struct *vma,
1353 unsigned long address, int avoid_reserve,
1354 long chg)
1355{
1356 struct folio *folio = NULL;
1357 struct mempolicy *mpol;
1358 gfp_t gfp_mask;
1359 nodemask_t *nodemask;
1360 int nid;
1361
1362 /*
1363 * A child process with MAP_PRIVATE mappings created by their parent
1364 * have no page reserves. This check ensures that reservations are
1365 * not "stolen". The child may still get SIGKILLed
1366 */
1367 if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1368 goto err;
1369
1370 /* If reserves cannot be used, ensure enough pages are in the pool */
1371 if (avoid_reserve && !available_huge_pages(h))
1372 goto err;
1373
1374 gfp_mask = htlb_alloc_mask(h);
1375 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1376
1377 if (mpol_is_preferred_many(mpol)) {
1378 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1379 nid, nodemask);
1380
1381 /* Fallback to all nodes if page==NULL */
1382 nodemask = NULL;
1383 }
1384
1385 if (!folio)
1386 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1387 nid, nodemask);
1388
1389 if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) {
1390 folio_set_hugetlb_restore_reserve(folio);
1391 h->resv_huge_pages--;
1392 }
1393
1394 mpol_cond_put(mpol);
1395 return folio;
1396
1397err:
1398 return NULL;
1399}
1400
1401/*
1402 * common helper functions for hstate_next_node_to_{alloc|free}.
1403 * We may have allocated or freed a huge page based on a different
1404 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1405 * be outside of *nodes_allowed. Ensure that we use an allowed
1406 * node for alloc or free.
1407 */
1408static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1409{
1410 nid = next_node_in(nid, *nodes_allowed);
1411 VM_BUG_ON(nid >= MAX_NUMNODES);
1412
1413 return nid;
1414}
1415
1416static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1417{
1418 if (!node_isset(nid, *nodes_allowed))
1419 nid = next_node_allowed(nid, nodes_allowed);
1420 return nid;
1421}
1422
1423/*
1424 * returns the previously saved node ["this node"] from which to
1425 * allocate a persistent huge page for the pool and advance the
1426 * next node from which to allocate, handling wrap at end of node
1427 * mask.
1428 */
1429static int hstate_next_node_to_alloc(struct hstate *h,
1430 nodemask_t *nodes_allowed)
1431{
1432 int nid;
1433
1434 VM_BUG_ON(!nodes_allowed);
1435
1436 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1437 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1438
1439 return nid;
1440}
1441
1442/*
1443 * helper for remove_pool_huge_page() - return the previously saved
1444 * node ["this node"] from which to free a huge page. Advance the
1445 * next node id whether or not we find a free huge page to free so
1446 * that the next attempt to free addresses the next node.
1447 */
1448static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1449{
1450 int nid;
1451
1452 VM_BUG_ON(!nodes_allowed);
1453
1454 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1455 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1456
1457 return nid;
1458}
1459
1460#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1461 for (nr_nodes = nodes_weight(*mask); \
1462 nr_nodes > 0 && \
1463 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1464 nr_nodes--)
1465
1466#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1467 for (nr_nodes = nodes_weight(*mask); \
1468 nr_nodes > 0 && \
1469 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1470 nr_nodes--)
1471
1472/* used to demote non-gigantic_huge pages as well */
1473static void __destroy_compound_gigantic_folio(struct folio *folio,
1474 unsigned int order, bool demote)
1475{
1476 int i;
1477 int nr_pages = 1 << order;
1478 struct page *p;
1479
1480 atomic_set(&folio->_entire_mapcount, 0);
1481 atomic_set(&folio->_nr_pages_mapped, 0);
1482 atomic_set(&folio->_pincount, 0);
1483
1484 for (i = 1; i < nr_pages; i++) {
1485 p = folio_page(folio, i);
1486 p->mapping = NULL;
1487 clear_compound_head(p);
1488 if (!demote)
1489 set_page_refcounted(p);
1490 }
1491
1492 folio_set_order(folio, 0);
1493 __folio_clear_head(folio);
1494}
1495
1496static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1497 unsigned int order)
1498{
1499 __destroy_compound_gigantic_folio(folio, order, true);
1500}
1501
1502#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1503static void destroy_compound_gigantic_folio(struct folio *folio,
1504 unsigned int order)
1505{
1506 __destroy_compound_gigantic_folio(folio, order, false);
1507}
1508
1509static void free_gigantic_folio(struct folio *folio, unsigned int order)
1510{
1511 /*
1512 * If the page isn't allocated using the cma allocator,
1513 * cma_release() returns false.
1514 */
1515#ifdef CONFIG_CMA
1516 int nid = folio_nid(folio);
1517
1518 if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1519 return;
1520#endif
1521
1522 free_contig_range(folio_pfn(folio), 1 << order);
1523}
1524
1525#ifdef CONFIG_CONTIG_ALLOC
1526static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1527 int nid, nodemask_t *nodemask)
1528{
1529 struct page *page;
1530 unsigned long nr_pages = pages_per_huge_page(h);
1531 if (nid == NUMA_NO_NODE)
1532 nid = numa_mem_id();
1533
1534#ifdef CONFIG_CMA
1535 {
1536 int node;
1537
1538 if (hugetlb_cma[nid]) {
1539 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1540 huge_page_order(h), true);
1541 if (page)
1542 return page_folio(page);
1543 }
1544
1545 if (!(gfp_mask & __GFP_THISNODE)) {
1546 for_each_node_mask(node, *nodemask) {
1547 if (node == nid || !hugetlb_cma[node])
1548 continue;
1549
1550 page = cma_alloc(hugetlb_cma[node], nr_pages,
1551 huge_page_order(h), true);
1552 if (page)
1553 return page_folio(page);
1554 }
1555 }
1556 }
1557#endif
1558
1559 page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1560 return page ? page_folio(page) : NULL;
1561}
1562
1563#else /* !CONFIG_CONTIG_ALLOC */
1564static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1565 int nid, nodemask_t *nodemask)
1566{
1567 return NULL;
1568}
1569#endif /* CONFIG_CONTIG_ALLOC */
1570
1571#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1572static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1573 int nid, nodemask_t *nodemask)
1574{
1575 return NULL;
1576}
1577static inline void free_gigantic_folio(struct folio *folio,
1578 unsigned int order) { }
1579static inline void destroy_compound_gigantic_folio(struct folio *folio,
1580 unsigned int order) { }
1581#endif
1582
1583/*
1584 * Remove hugetlb folio from lists, and update dtor so that the folio appears
1585 * as just a compound page.
1586 *
1587 * A reference is held on the folio, except in the case of demote.
1588 *
1589 * Must be called with hugetlb lock held.
1590 */
1591static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1592 bool adjust_surplus,
1593 bool demote)
1594{
1595 int nid = folio_nid(folio);
1596
1597 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1598 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1599
1600 lockdep_assert_held(&hugetlb_lock);
1601 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1602 return;
1603
1604 list_del(&folio->lru);
1605
1606 if (folio_test_hugetlb_freed(folio)) {
1607 h->free_huge_pages--;
1608 h->free_huge_pages_node[nid]--;
1609 }
1610 if (adjust_surplus) {
1611 h->surplus_huge_pages--;
1612 h->surplus_huge_pages_node[nid]--;
1613 }
1614
1615 /*
1616 * Very subtle
1617 *
1618 * For non-gigantic pages set the destructor to the normal compound
1619 * page dtor. This is needed in case someone takes an additional
1620 * temporary ref to the page, and freeing is delayed until they drop
1621 * their reference.
1622 *
1623 * For gigantic pages set the destructor to the null dtor. This
1624 * destructor will never be called. Before freeing the gigantic
1625 * page destroy_compound_gigantic_folio will turn the folio into a
1626 * simple group of pages. After this the destructor does not
1627 * apply.
1628 *
1629 * This handles the case where more than one ref is held when and
1630 * after update_and_free_hugetlb_folio is called.
1631 *
1632 * In the case of demote we do not ref count the page as it will soon
1633 * be turned into a page of smaller size.
1634 */
1635 if (!demote)
1636 folio_ref_unfreeze(folio, 1);
1637 if (hstate_is_gigantic(h))
1638 folio_set_compound_dtor(folio, NULL_COMPOUND_DTOR);
1639 else
1640 folio_set_compound_dtor(folio, COMPOUND_PAGE_DTOR);
1641
1642 h->nr_huge_pages--;
1643 h->nr_huge_pages_node[nid]--;
1644}
1645
1646static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1647 bool adjust_surplus)
1648{
1649 __remove_hugetlb_folio(h, folio, adjust_surplus, false);
1650}
1651
1652static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
1653 bool adjust_surplus)
1654{
1655 __remove_hugetlb_folio(h, folio, adjust_surplus, true);
1656}
1657
1658static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1659 bool adjust_surplus)
1660{
1661 int zeroed;
1662 int nid = folio_nid(folio);
1663
1664 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1665
1666 lockdep_assert_held(&hugetlb_lock);
1667
1668 INIT_LIST_HEAD(&folio->lru);
1669 h->nr_huge_pages++;
1670 h->nr_huge_pages_node[nid]++;
1671
1672 if (adjust_surplus) {
1673 h->surplus_huge_pages++;
1674 h->surplus_huge_pages_node[nid]++;
1675 }
1676
1677 folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
1678 folio_change_private(folio, NULL);
1679 /*
1680 * We have to set hugetlb_vmemmap_optimized again as above
1681 * folio_change_private(folio, NULL) cleared it.
1682 */
1683 folio_set_hugetlb_vmemmap_optimized(folio);
1684
1685 /*
1686 * This folio is about to be managed by the hugetlb allocator and
1687 * should have no users. Drop our reference, and check for others
1688 * just in case.
1689 */
1690 zeroed = folio_put_testzero(folio);
1691 if (unlikely(!zeroed))
1692 /*
1693 * It is VERY unlikely soneone else has taken a ref on
1694 * the page. In this case, we simply return as the
1695 * hugetlb destructor (free_huge_page) will be called
1696 * when this other ref is dropped.
1697 */
1698 return;
1699
1700 arch_clear_hugepage_flags(&folio->page);
1701 enqueue_hugetlb_folio(h, folio);
1702}
1703
1704static void __update_and_free_hugetlb_folio(struct hstate *h,
1705 struct folio *folio)
1706{
1707 int i;
1708 struct page *subpage;
1709
1710 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1711 return;
1712
1713 /*
1714 * If we don't know which subpages are hwpoisoned, we can't free
1715 * the hugepage, so it's leaked intentionally.
1716 */
1717 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1718 return;
1719
1720 if (hugetlb_vmemmap_restore(h, &folio->page)) {
1721 spin_lock_irq(&hugetlb_lock);
1722 /*
1723 * If we cannot allocate vmemmap pages, just refuse to free the
1724 * page and put the page back on the hugetlb free list and treat
1725 * as a surplus page.
1726 */
1727 add_hugetlb_folio(h, folio, true);
1728 spin_unlock_irq(&hugetlb_lock);
1729 return;
1730 }
1731
1732 /*
1733 * Move PageHWPoison flag from head page to the raw error pages,
1734 * which makes any healthy subpages reusable.
1735 */
1736 if (unlikely(folio_test_hwpoison(folio)))
1737 folio_clear_hugetlb_hwpoison(folio);
1738
1739 for (i = 0; i < pages_per_huge_page(h); i++) {
1740 subpage = folio_page(folio, i);
1741 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1742 1 << PG_referenced | 1 << PG_dirty |
1743 1 << PG_active | 1 << PG_private |
1744 1 << PG_writeback);
1745 }
1746
1747 /*
1748 * Non-gigantic pages demoted from CMA allocated gigantic pages
1749 * need to be given back to CMA in free_gigantic_folio.
1750 */
1751 if (hstate_is_gigantic(h) ||
1752 hugetlb_cma_folio(folio, huge_page_order(h))) {
1753 destroy_compound_gigantic_folio(folio, huge_page_order(h));
1754 free_gigantic_folio(folio, huge_page_order(h));
1755 } else {
1756 __free_pages(&folio->page, huge_page_order(h));
1757 }
1758}
1759
1760/*
1761 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1762 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1763 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1764 * the vmemmap pages.
1765 *
1766 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1767 * freed and frees them one-by-one. As the page->mapping pointer is going
1768 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1769 * structure of a lockless linked list of huge pages to be freed.
1770 */
1771static LLIST_HEAD(hpage_freelist);
1772
1773static void free_hpage_workfn(struct work_struct *work)
1774{
1775 struct llist_node *node;
1776
1777 node = llist_del_all(&hpage_freelist);
1778
1779 while (node) {
1780 struct page *page;
1781 struct hstate *h;
1782
1783 page = container_of((struct address_space **)node,
1784 struct page, mapping);
1785 node = node->next;
1786 page->mapping = NULL;
1787 /*
1788 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1789 * is going to trigger because a previous call to
1790 * remove_hugetlb_folio() will call folio_set_compound_dtor
1791 * (folio, NULL_COMPOUND_DTOR), so do not use page_hstate()
1792 * directly.
1793 */
1794 h = size_to_hstate(page_size(page));
1795
1796 __update_and_free_hugetlb_folio(h, page_folio(page));
1797
1798 cond_resched();
1799 }
1800}
1801static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1802
1803static inline void flush_free_hpage_work(struct hstate *h)
1804{
1805 if (hugetlb_vmemmap_optimizable(h))
1806 flush_work(&free_hpage_work);
1807}
1808
1809static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1810 bool atomic)
1811{
1812 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1813 __update_and_free_hugetlb_folio(h, folio);
1814 return;
1815 }
1816
1817 /*
1818 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1819 *
1820 * Only call schedule_work() if hpage_freelist is previously
1821 * empty. Otherwise, schedule_work() had been called but the workfn
1822 * hasn't retrieved the list yet.
1823 */
1824 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1825 schedule_work(&free_hpage_work);
1826}
1827
1828static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1829{
1830 struct page *page, *t_page;
1831 struct folio *folio;
1832
1833 list_for_each_entry_safe(page, t_page, list, lru) {
1834 folio = page_folio(page);
1835 update_and_free_hugetlb_folio(h, folio, false);
1836 cond_resched();
1837 }
1838}
1839
1840struct hstate *size_to_hstate(unsigned long size)
1841{
1842 struct hstate *h;
1843
1844 for_each_hstate(h) {
1845 if (huge_page_size(h) == size)
1846 return h;
1847 }
1848 return NULL;
1849}
1850
1851void free_huge_page(struct page *page)
1852{
1853 /*
1854 * Can't pass hstate in here because it is called from the
1855 * compound page destructor.
1856 */
1857 struct folio *folio = page_folio(page);
1858 struct hstate *h = folio_hstate(folio);
1859 int nid = folio_nid(folio);
1860 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1861 bool restore_reserve;
1862 unsigned long flags;
1863
1864 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1865 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1866
1867 hugetlb_set_folio_subpool(folio, NULL);
1868 if (folio_test_anon(folio))
1869 __ClearPageAnonExclusive(&folio->page);
1870 folio->mapping = NULL;
1871 restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1872 folio_clear_hugetlb_restore_reserve(folio);
1873
1874 /*
1875 * If HPageRestoreReserve was set on page, page allocation consumed a
1876 * reservation. If the page was associated with a subpool, there
1877 * would have been a page reserved in the subpool before allocation
1878 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1879 * reservation, do not call hugepage_subpool_put_pages() as this will
1880 * remove the reserved page from the subpool.
1881 */
1882 if (!restore_reserve) {
1883 /*
1884 * A return code of zero implies that the subpool will be
1885 * under its minimum size if the reservation is not restored
1886 * after page is free. Therefore, force restore_reserve
1887 * operation.
1888 */
1889 if (hugepage_subpool_put_pages(spool, 1) == 0)
1890 restore_reserve = true;
1891 }
1892
1893 spin_lock_irqsave(&hugetlb_lock, flags);
1894 folio_clear_hugetlb_migratable(folio);
1895 hugetlb_cgroup_uncharge_folio(hstate_index(h),
1896 pages_per_huge_page(h), folio);
1897 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1898 pages_per_huge_page(h), folio);
1899 if (restore_reserve)
1900 h->resv_huge_pages++;
1901
1902 if (folio_test_hugetlb_temporary(folio)) {
1903 remove_hugetlb_folio(h, folio, false);
1904 spin_unlock_irqrestore(&hugetlb_lock, flags);
1905 update_and_free_hugetlb_folio(h, folio, true);
1906 } else if (h->surplus_huge_pages_node[nid]) {
1907 /* remove the page from active list */
1908 remove_hugetlb_folio(h, folio, true);
1909 spin_unlock_irqrestore(&hugetlb_lock, flags);
1910 update_and_free_hugetlb_folio(h, folio, true);
1911 } else {
1912 arch_clear_hugepage_flags(page);
1913 enqueue_hugetlb_folio(h, folio);
1914 spin_unlock_irqrestore(&hugetlb_lock, flags);
1915 }
1916}
1917
1918/*
1919 * Must be called with the hugetlb lock held
1920 */
1921static void __prep_account_new_huge_page(struct hstate *h, int nid)
1922{
1923 lockdep_assert_held(&hugetlb_lock);
1924 h->nr_huge_pages++;
1925 h->nr_huge_pages_node[nid]++;
1926}
1927
1928static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1929{
1930 hugetlb_vmemmap_optimize(h, &folio->page);
1931 INIT_LIST_HEAD(&folio->lru);
1932 folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
1933 hugetlb_set_folio_subpool(folio, NULL);
1934 set_hugetlb_cgroup(folio, NULL);
1935 set_hugetlb_cgroup_rsvd(folio, NULL);
1936}
1937
1938static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
1939{
1940 __prep_new_hugetlb_folio(h, folio);
1941 spin_lock_irq(&hugetlb_lock);
1942 __prep_account_new_huge_page(h, nid);
1943 spin_unlock_irq(&hugetlb_lock);
1944}
1945
1946static bool __prep_compound_gigantic_folio(struct folio *folio,
1947 unsigned int order, bool demote)
1948{
1949 int i, j;
1950 int nr_pages = 1 << order;
1951 struct page *p;
1952
1953 __folio_clear_reserved(folio);
1954 __folio_set_head(folio);
1955 /* we rely on prep_new_hugetlb_folio to set the destructor */
1956 folio_set_order(folio, order);
1957 for (i = 0; i < nr_pages; i++) {
1958 p = folio_page(folio, i);
1959
1960 /*
1961 * For gigantic hugepages allocated through bootmem at
1962 * boot, it's safer to be consistent with the not-gigantic
1963 * hugepages and clear the PG_reserved bit from all tail pages
1964 * too. Otherwise drivers using get_user_pages() to access tail
1965 * pages may get the reference counting wrong if they see
1966 * PG_reserved set on a tail page (despite the head page not
1967 * having PG_reserved set). Enforcing this consistency between
1968 * head and tail pages allows drivers to optimize away a check
1969 * on the head page when they need know if put_page() is needed
1970 * after get_user_pages().
1971 */
1972 if (i != 0) /* head page cleared above */
1973 __ClearPageReserved(p);
1974 /*
1975 * Subtle and very unlikely
1976 *
1977 * Gigantic 'page allocators' such as memblock or cma will
1978 * return a set of pages with each page ref counted. We need
1979 * to turn this set of pages into a compound page with tail
1980 * page ref counts set to zero. Code such as speculative page
1981 * cache adding could take a ref on a 'to be' tail page.
1982 * We need to respect any increased ref count, and only set
1983 * the ref count to zero if count is currently 1. If count
1984 * is not 1, we return an error. An error return indicates
1985 * the set of pages can not be converted to a gigantic page.
1986 * The caller who allocated the pages should then discard the
1987 * pages using the appropriate free interface.
1988 *
1989 * In the case of demote, the ref count will be zero.
1990 */
1991 if (!demote) {
1992 if (!page_ref_freeze(p, 1)) {
1993 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1994 goto out_error;
1995 }
1996 } else {
1997 VM_BUG_ON_PAGE(page_count(p), p);
1998 }
1999 if (i != 0)
2000 set_compound_head(p, &folio->page);
2001 }
2002 atomic_set(&folio->_entire_mapcount, -1);
2003 atomic_set(&folio->_nr_pages_mapped, 0);
2004 atomic_set(&folio->_pincount, 0);
2005 return true;
2006
2007out_error:
2008 /* undo page modifications made above */
2009 for (j = 0; j < i; j++) {
2010 p = folio_page(folio, j);
2011 if (j != 0)
2012 clear_compound_head(p);
2013 set_page_refcounted(p);
2014 }
2015 /* need to clear PG_reserved on remaining tail pages */
2016 for (; j < nr_pages; j++) {
2017 p = folio_page(folio, j);
2018 __ClearPageReserved(p);
2019 }
2020 folio_set_order(folio, 0);
2021 __folio_clear_head(folio);
2022 return false;
2023}
2024
2025static bool prep_compound_gigantic_folio(struct folio *folio,
2026 unsigned int order)
2027{
2028 return __prep_compound_gigantic_folio(folio, order, false);
2029}
2030
2031static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
2032 unsigned int order)
2033{
2034 return __prep_compound_gigantic_folio(folio, order, true);
2035}
2036
2037/*
2038 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
2039 * transparent huge pages. See the PageTransHuge() documentation for more
2040 * details.
2041 */
2042int PageHuge(struct page *page)
2043{
2044 struct folio *folio;
2045
2046 if (!PageCompound(page))
2047 return 0;
2048 folio = page_folio(page);
2049 return folio->_folio_dtor == HUGETLB_PAGE_DTOR;
2050}
2051EXPORT_SYMBOL_GPL(PageHuge);
2052
2053/**
2054 * folio_test_hugetlb - Determine if the folio belongs to hugetlbfs
2055 * @folio: The folio to test.
2056 *
2057 * Context: Any context. Caller should have a reference on the folio to
2058 * prevent it from being turned into a tail page.
2059 * Return: True for hugetlbfs folios, false for anon folios or folios
2060 * belonging to other filesystems.
2061 */
2062bool folio_test_hugetlb(struct folio *folio)
2063{
2064 if (!folio_test_large(folio))
2065 return false;
2066
2067 return folio->_folio_dtor == HUGETLB_PAGE_DTOR;
2068}
2069EXPORT_SYMBOL_GPL(folio_test_hugetlb);
2070
2071/*
2072 * Find and lock address space (mapping) in write mode.
2073 *
2074 * Upon entry, the page is locked which means that page_mapping() is
2075 * stable. Due to locking order, we can only trylock_write. If we can
2076 * not get the lock, simply return NULL to caller.
2077 */
2078struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
2079{
2080 struct address_space *mapping = page_mapping(hpage);
2081
2082 if (!mapping)
2083 return mapping;
2084
2085 if (i_mmap_trylock_write(mapping))
2086 return mapping;
2087
2088 return NULL;
2089}
2090
2091pgoff_t hugetlb_basepage_index(struct page *page)
2092{
2093 struct page *page_head = compound_head(page);
2094 pgoff_t index = page_index(page_head);
2095 unsigned long compound_idx;
2096
2097 if (compound_order(page_head) > MAX_ORDER)
2098 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
2099 else
2100 compound_idx = page - page_head;
2101
2102 return (index << compound_order(page_head)) + compound_idx;
2103}
2104
2105static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2106 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2107 nodemask_t *node_alloc_noretry)
2108{
2109 int order = huge_page_order(h);
2110 struct page *page;
2111 bool alloc_try_hard = true;
2112 bool retry = true;
2113
2114 /*
2115 * By default we always try hard to allocate the page with
2116 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
2117 * a loop (to adjust global huge page counts) and previous allocation
2118 * failed, do not continue to try hard on the same node. Use the
2119 * node_alloc_noretry bitmap to manage this state information.
2120 */
2121 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2122 alloc_try_hard = false;
2123 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2124 if (alloc_try_hard)
2125 gfp_mask |= __GFP_RETRY_MAYFAIL;
2126 if (nid == NUMA_NO_NODE)
2127 nid = numa_mem_id();
2128retry:
2129 page = __alloc_pages(gfp_mask, order, nid, nmask);
2130
2131 /* Freeze head page */
2132 if (page && !page_ref_freeze(page, 1)) {
2133 __free_pages(page, order);
2134 if (retry) { /* retry once */
2135 retry = false;
2136 goto retry;
2137 }
2138 /* WOW! twice in a row. */
2139 pr_warn("HugeTLB head page unexpected inflated ref count\n");
2140 page = NULL;
2141 }
2142
2143 /*
2144 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
2145 * indicates an overall state change. Clear bit so that we resume
2146 * normal 'try hard' allocations.
2147 */
2148 if (node_alloc_noretry && page && !alloc_try_hard)
2149 node_clear(nid, *node_alloc_noretry);
2150
2151 /*
2152 * If we tried hard to get a page but failed, set bit so that
2153 * subsequent attempts will not try as hard until there is an
2154 * overall state change.
2155 */
2156 if (node_alloc_noretry && !page && alloc_try_hard)
2157 node_set(nid, *node_alloc_noretry);
2158
2159 if (!page) {
2160 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2161 return NULL;
2162 }
2163
2164 __count_vm_event(HTLB_BUDDY_PGALLOC);
2165 return page_folio(page);
2166}
2167
2168/*
2169 * Common helper to allocate a fresh hugetlb page. All specific allocators
2170 * should use this function to get new hugetlb pages
2171 *
2172 * Note that returned page is 'frozen': ref count of head page and all tail
2173 * pages is zero.
2174 */
2175static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2176 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2177 nodemask_t *node_alloc_noretry)
2178{
2179 struct folio *folio;
2180 bool retry = false;
2181
2182retry:
2183 if (hstate_is_gigantic(h))
2184 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2185 else
2186 folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2187 nid, nmask, node_alloc_noretry);
2188 if (!folio)
2189 return NULL;
2190 if (hstate_is_gigantic(h)) {
2191 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2192 /*
2193 * Rare failure to convert pages to compound page.
2194 * Free pages and try again - ONCE!
2195 */
2196 free_gigantic_folio(folio, huge_page_order(h));
2197 if (!retry) {
2198 retry = true;
2199 goto retry;
2200 }
2201 return NULL;
2202 }
2203 }
2204 prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2205
2206 return folio;
2207}
2208
2209/*
2210 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2211 * manner.
2212 */
2213static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2214 nodemask_t *node_alloc_noretry)
2215{
2216 struct folio *folio;
2217 int nr_nodes, node;
2218 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2219
2220 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2221 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2222 nodes_allowed, node_alloc_noretry);
2223 if (folio) {
2224 free_huge_page(&folio->page); /* free it into the hugepage allocator */
2225 return 1;
2226 }
2227 }
2228
2229 return 0;
2230}
2231
2232/*
2233 * Remove huge page from pool from next node to free. Attempt to keep
2234 * persistent huge pages more or less balanced over allowed nodes.
2235 * This routine only 'removes' the hugetlb page. The caller must make
2236 * an additional call to free the page to low level allocators.
2237 * Called with hugetlb_lock locked.
2238 */
2239static struct page *remove_pool_huge_page(struct hstate *h,
2240 nodemask_t *nodes_allowed,
2241 bool acct_surplus)
2242{
2243 int nr_nodes, node;
2244 struct page *page = NULL;
2245 struct folio *folio;
2246
2247 lockdep_assert_held(&hugetlb_lock);
2248 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2249 /*
2250 * If we're returning unused surplus pages, only examine
2251 * nodes with surplus pages.
2252 */
2253 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2254 !list_empty(&h->hugepage_freelists[node])) {
2255 page = list_entry(h->hugepage_freelists[node].next,
2256 struct page, lru);
2257 folio = page_folio(page);
2258 remove_hugetlb_folio(h, folio, acct_surplus);
2259 break;
2260 }
2261 }
2262
2263 return page;
2264}
2265
2266/*
2267 * Dissolve a given free hugepage into free buddy pages. This function does
2268 * nothing for in-use hugepages and non-hugepages.
2269 * This function returns values like below:
2270 *
2271 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2272 * when the system is under memory pressure and the feature of
2273 * freeing unused vmemmap pages associated with each hugetlb page
2274 * is enabled.
2275 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
2276 * (allocated or reserved.)
2277 * 0: successfully dissolved free hugepages or the page is not a
2278 * hugepage (considered as already dissolved)
2279 */
2280int dissolve_free_huge_page(struct page *page)
2281{
2282 int rc = -EBUSY;
2283 struct folio *folio = page_folio(page);
2284
2285retry:
2286 /* Not to disrupt normal path by vainly holding hugetlb_lock */
2287 if (!folio_test_hugetlb(folio))
2288 return 0;
2289
2290 spin_lock_irq(&hugetlb_lock);
2291 if (!folio_test_hugetlb(folio)) {
2292 rc = 0;
2293 goto out;
2294 }
2295
2296 if (!folio_ref_count(folio)) {
2297 struct hstate *h = folio_hstate(folio);
2298 if (!available_huge_pages(h))
2299 goto out;
2300
2301 /*
2302 * We should make sure that the page is already on the free list
2303 * when it is dissolved.
2304 */
2305 if (unlikely(!folio_test_hugetlb_freed(folio))) {
2306 spin_unlock_irq(&hugetlb_lock);
2307 cond_resched();
2308
2309 /*
2310 * Theoretically, we should return -EBUSY when we
2311 * encounter this race. In fact, we have a chance
2312 * to successfully dissolve the page if we do a
2313 * retry. Because the race window is quite small.
2314 * If we seize this opportunity, it is an optimization
2315 * for increasing the success rate of dissolving page.
2316 */
2317 goto retry;
2318 }
2319
2320 remove_hugetlb_folio(h, folio, false);
2321 h->max_huge_pages--;
2322 spin_unlock_irq(&hugetlb_lock);
2323
2324 /*
2325 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2326 * before freeing the page. update_and_free_hugtlb_folio will fail to
2327 * free the page if it can not allocate required vmemmap. We
2328 * need to adjust max_huge_pages if the page is not freed.
2329 * Attempt to allocate vmemmmap here so that we can take
2330 * appropriate action on failure.
2331 */
2332 rc = hugetlb_vmemmap_restore(h, &folio->page);
2333 if (!rc) {
2334 update_and_free_hugetlb_folio(h, folio, false);
2335 } else {
2336 spin_lock_irq(&hugetlb_lock);
2337 add_hugetlb_folio(h, folio, false);
2338 h->max_huge_pages++;
2339 spin_unlock_irq(&hugetlb_lock);
2340 }
2341
2342 return rc;
2343 }
2344out:
2345 spin_unlock_irq(&hugetlb_lock);
2346 return rc;
2347}
2348
2349/*
2350 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2351 * make specified memory blocks removable from the system.
2352 * Note that this will dissolve a free gigantic hugepage completely, if any
2353 * part of it lies within the given range.
2354 * Also note that if dissolve_free_huge_page() returns with an error, all
2355 * free hugepages that were dissolved before that error are lost.
2356 */
2357int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2358{
2359 unsigned long pfn;
2360 struct page *page;
2361 int rc = 0;
2362 unsigned int order;
2363 struct hstate *h;
2364
2365 if (!hugepages_supported())
2366 return rc;
2367
2368 order = huge_page_order(&default_hstate);
2369 for_each_hstate(h)
2370 order = min(order, huge_page_order(h));
2371
2372 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2373 page = pfn_to_page(pfn);
2374 rc = dissolve_free_huge_page(page);
2375 if (rc)
2376 break;
2377 }
2378
2379 return rc;
2380}
2381
2382/*
2383 * Allocates a fresh surplus page from the page allocator.
2384 */
2385static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2386 gfp_t gfp_mask, int nid, nodemask_t *nmask)
2387{
2388 struct folio *folio = NULL;
2389
2390 if (hstate_is_gigantic(h))
2391 return NULL;
2392
2393 spin_lock_irq(&hugetlb_lock);
2394 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2395 goto out_unlock;
2396 spin_unlock_irq(&hugetlb_lock);
2397
2398 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2399 if (!folio)
2400 return NULL;
2401
2402 spin_lock_irq(&hugetlb_lock);
2403 /*
2404 * We could have raced with the pool size change.
2405 * Double check that and simply deallocate the new page
2406 * if we would end up overcommiting the surpluses. Abuse
2407 * temporary page to workaround the nasty free_huge_page
2408 * codeflow
2409 */
2410 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2411 folio_set_hugetlb_temporary(folio);
2412 spin_unlock_irq(&hugetlb_lock);
2413 free_huge_page(&folio->page);
2414 return NULL;
2415 }
2416
2417 h->surplus_huge_pages++;
2418 h->surplus_huge_pages_node[folio_nid(folio)]++;
2419
2420out_unlock:
2421 spin_unlock_irq(&hugetlb_lock);
2422
2423 return folio;
2424}
2425
2426static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2427 int nid, nodemask_t *nmask)
2428{
2429 struct folio *folio;
2430
2431 if (hstate_is_gigantic(h))
2432 return NULL;
2433
2434 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2435 if (!folio)
2436 return NULL;
2437
2438 /* fresh huge pages are frozen */
2439 folio_ref_unfreeze(folio, 1);
2440 /*
2441 * We do not account these pages as surplus because they are only
2442 * temporary and will be released properly on the last reference
2443 */
2444 folio_set_hugetlb_temporary(folio);
2445
2446 return folio;
2447}
2448
2449/*
2450 * Use the VMA's mpolicy to allocate a huge page from the buddy.
2451 */
2452static
2453struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2454 struct vm_area_struct *vma, unsigned long addr)
2455{
2456 struct folio *folio = NULL;
2457 struct mempolicy *mpol;
2458 gfp_t gfp_mask = htlb_alloc_mask(h);
2459 int nid;
2460 nodemask_t *nodemask;
2461
2462 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2463 if (mpol_is_preferred_many(mpol)) {
2464 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2465
2466 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2467 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2468
2469 /* Fallback to all nodes if page==NULL */
2470 nodemask = NULL;
2471 }
2472
2473 if (!folio)
2474 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2475 mpol_cond_put(mpol);
2476 return folio;
2477}
2478
2479/* folio migration callback function */
2480struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2481 nodemask_t *nmask, gfp_t gfp_mask)
2482{
2483 spin_lock_irq(&hugetlb_lock);
2484 if (available_huge_pages(h)) {
2485 struct folio *folio;
2486
2487 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2488 preferred_nid, nmask);
2489 if (folio) {
2490 spin_unlock_irq(&hugetlb_lock);
2491 return folio;
2492 }
2493 }
2494 spin_unlock_irq(&hugetlb_lock);
2495
2496 return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2497}
2498
2499/* mempolicy aware migration callback */
2500struct folio *alloc_hugetlb_folio_vma(struct hstate *h, struct vm_area_struct *vma,
2501 unsigned long address)
2502{
2503 struct mempolicy *mpol;
2504 nodemask_t *nodemask;
2505 struct folio *folio;
2506 gfp_t gfp_mask;
2507 int node;
2508
2509 gfp_mask = htlb_alloc_mask(h);
2510 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2511 folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask);
2512 mpol_cond_put(mpol);
2513
2514 return folio;
2515}
2516
2517/*
2518 * Increase the hugetlb pool such that it can accommodate a reservation
2519 * of size 'delta'.
2520 */
2521static int gather_surplus_pages(struct hstate *h, long delta)
2522 __must_hold(&hugetlb_lock)
2523{
2524 LIST_HEAD(surplus_list);
2525 struct folio *folio;
2526 struct page *page, *tmp;
2527 int ret;
2528 long i;
2529 long needed, allocated;
2530 bool alloc_ok = true;
2531
2532 lockdep_assert_held(&hugetlb_lock);
2533 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2534 if (needed <= 0) {
2535 h->resv_huge_pages += delta;
2536 return 0;
2537 }
2538
2539 allocated = 0;
2540
2541 ret = -ENOMEM;
2542retry:
2543 spin_unlock_irq(&hugetlb_lock);
2544 for (i = 0; i < needed; i++) {
2545 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2546 NUMA_NO_NODE, NULL);
2547 if (!folio) {
2548 alloc_ok = false;
2549 break;
2550 }
2551 list_add(&folio->lru, &surplus_list);
2552 cond_resched();
2553 }
2554 allocated += i;
2555
2556 /*
2557 * After retaking hugetlb_lock, we need to recalculate 'needed'
2558 * because either resv_huge_pages or free_huge_pages may have changed.
2559 */
2560 spin_lock_irq(&hugetlb_lock);
2561 needed = (h->resv_huge_pages + delta) -
2562 (h->free_huge_pages + allocated);
2563 if (needed > 0) {
2564 if (alloc_ok)
2565 goto retry;
2566 /*
2567 * We were not able to allocate enough pages to
2568 * satisfy the entire reservation so we free what
2569 * we've allocated so far.
2570 */
2571 goto free;
2572 }
2573 /*
2574 * The surplus_list now contains _at_least_ the number of extra pages
2575 * needed to accommodate the reservation. Add the appropriate number
2576 * of pages to the hugetlb pool and free the extras back to the buddy
2577 * allocator. Commit the entire reservation here to prevent another
2578 * process from stealing the pages as they are added to the pool but
2579 * before they are reserved.
2580 */
2581 needed += allocated;
2582 h->resv_huge_pages += delta;
2583 ret = 0;
2584
2585 /* Free the needed pages to the hugetlb pool */
2586 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2587 if ((--needed) < 0)
2588 break;
2589 /* Add the page to the hugetlb allocator */
2590 enqueue_hugetlb_folio(h, page_folio(page));
2591 }
2592free:
2593 spin_unlock_irq(&hugetlb_lock);
2594
2595 /*
2596 * Free unnecessary surplus pages to the buddy allocator.
2597 * Pages have no ref count, call free_huge_page directly.
2598 */
2599 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2600 free_huge_page(page);
2601 spin_lock_irq(&hugetlb_lock);
2602
2603 return ret;
2604}
2605
2606/*
2607 * This routine has two main purposes:
2608 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2609 * in unused_resv_pages. This corresponds to the prior adjustments made
2610 * to the associated reservation map.
2611 * 2) Free any unused surplus pages that may have been allocated to satisfy
2612 * the reservation. As many as unused_resv_pages may be freed.
2613 */
2614static void return_unused_surplus_pages(struct hstate *h,
2615 unsigned long unused_resv_pages)
2616{
2617 unsigned long nr_pages;
2618 struct page *page;
2619 LIST_HEAD(page_list);
2620
2621 lockdep_assert_held(&hugetlb_lock);
2622 /* Uncommit the reservation */
2623 h->resv_huge_pages -= unused_resv_pages;
2624
2625 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2626 goto out;
2627
2628 /*
2629 * Part (or even all) of the reservation could have been backed
2630 * by pre-allocated pages. Only free surplus pages.
2631 */
2632 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2633
2634 /*
2635 * We want to release as many surplus pages as possible, spread
2636 * evenly across all nodes with memory. Iterate across these nodes
2637 * until we can no longer free unreserved surplus pages. This occurs
2638 * when the nodes with surplus pages have no free pages.
2639 * remove_pool_huge_page() will balance the freed pages across the
2640 * on-line nodes with memory and will handle the hstate accounting.
2641 */
2642 while (nr_pages--) {
2643 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2644 if (!page)
2645 goto out;
2646
2647 list_add(&page->lru, &page_list);
2648 }
2649
2650out:
2651 spin_unlock_irq(&hugetlb_lock);
2652 update_and_free_pages_bulk(h, &page_list);
2653 spin_lock_irq(&hugetlb_lock);
2654}
2655
2656
2657/*
2658 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2659 * are used by the huge page allocation routines to manage reservations.
2660 *
2661 * vma_needs_reservation is called to determine if the huge page at addr
2662 * within the vma has an associated reservation. If a reservation is
2663 * needed, the value 1 is returned. The caller is then responsible for
2664 * managing the global reservation and subpool usage counts. After
2665 * the huge page has been allocated, vma_commit_reservation is called
2666 * to add the page to the reservation map. If the page allocation fails,
2667 * the reservation must be ended instead of committed. vma_end_reservation
2668 * is called in such cases.
2669 *
2670 * In the normal case, vma_commit_reservation returns the same value
2671 * as the preceding vma_needs_reservation call. The only time this
2672 * is not the case is if a reserve map was changed between calls. It
2673 * is the responsibility of the caller to notice the difference and
2674 * take appropriate action.
2675 *
2676 * vma_add_reservation is used in error paths where a reservation must
2677 * be restored when a newly allocated huge page must be freed. It is
2678 * to be called after calling vma_needs_reservation to determine if a
2679 * reservation exists.
2680 *
2681 * vma_del_reservation is used in error paths where an entry in the reserve
2682 * map was created during huge page allocation and must be removed. It is to
2683 * be called after calling vma_needs_reservation to determine if a reservation
2684 * exists.
2685 */
2686enum vma_resv_mode {
2687 VMA_NEEDS_RESV,
2688 VMA_COMMIT_RESV,
2689 VMA_END_RESV,
2690 VMA_ADD_RESV,
2691 VMA_DEL_RESV,
2692};
2693static long __vma_reservation_common(struct hstate *h,
2694 struct vm_area_struct *vma, unsigned long addr,
2695 enum vma_resv_mode mode)
2696{
2697 struct resv_map *resv;
2698 pgoff_t idx;
2699 long ret;
2700 long dummy_out_regions_needed;
2701
2702 resv = vma_resv_map(vma);
2703 if (!resv)
2704 return 1;
2705
2706 idx = vma_hugecache_offset(h, vma, addr);
2707 switch (mode) {
2708 case VMA_NEEDS_RESV:
2709 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2710 /* We assume that vma_reservation_* routines always operate on
2711 * 1 page, and that adding to resv map a 1 page entry can only
2712 * ever require 1 region.
2713 */
2714 VM_BUG_ON(dummy_out_regions_needed != 1);
2715 break;
2716 case VMA_COMMIT_RESV:
2717 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2718 /* region_add calls of range 1 should never fail. */
2719 VM_BUG_ON(ret < 0);
2720 break;
2721 case VMA_END_RESV:
2722 region_abort(resv, idx, idx + 1, 1);
2723 ret = 0;
2724 break;
2725 case VMA_ADD_RESV:
2726 if (vma->vm_flags & VM_MAYSHARE) {
2727 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2728 /* region_add calls of range 1 should never fail. */
2729 VM_BUG_ON(ret < 0);
2730 } else {
2731 region_abort(resv, idx, idx + 1, 1);
2732 ret = region_del(resv, idx, idx + 1);
2733 }
2734 break;
2735 case VMA_DEL_RESV:
2736 if (vma->vm_flags & VM_MAYSHARE) {
2737 region_abort(resv, idx, idx + 1, 1);
2738 ret = region_del(resv, idx, idx + 1);
2739 } else {
2740 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2741 /* region_add calls of range 1 should never fail. */
2742 VM_BUG_ON(ret < 0);
2743 }
2744 break;
2745 default:
2746 BUG();
2747 }
2748
2749 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2750 return ret;
2751 /*
2752 * We know private mapping must have HPAGE_RESV_OWNER set.
2753 *
2754 * In most cases, reserves always exist for private mappings.
2755 * However, a file associated with mapping could have been
2756 * hole punched or truncated after reserves were consumed.
2757 * As subsequent fault on such a range will not use reserves.
2758 * Subtle - The reserve map for private mappings has the
2759 * opposite meaning than that of shared mappings. If NO
2760 * entry is in the reserve map, it means a reservation exists.
2761 * If an entry exists in the reserve map, it means the
2762 * reservation has already been consumed. As a result, the
2763 * return value of this routine is the opposite of the
2764 * value returned from reserve map manipulation routines above.
2765 */
2766 if (ret > 0)
2767 return 0;
2768 if (ret == 0)
2769 return 1;
2770 return ret;
2771}
2772
2773static long vma_needs_reservation(struct hstate *h,
2774 struct vm_area_struct *vma, unsigned long addr)
2775{
2776 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2777}
2778
2779static long vma_commit_reservation(struct hstate *h,
2780 struct vm_area_struct *vma, unsigned long addr)
2781{
2782 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2783}
2784
2785static void vma_end_reservation(struct hstate *h,
2786 struct vm_area_struct *vma, unsigned long addr)
2787{
2788 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2789}
2790
2791static long vma_add_reservation(struct hstate *h,
2792 struct vm_area_struct *vma, unsigned long addr)
2793{
2794 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2795}
2796
2797static long vma_del_reservation(struct hstate *h,
2798 struct vm_area_struct *vma, unsigned long addr)
2799{
2800 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2801}
2802
2803/*
2804 * This routine is called to restore reservation information on error paths.
2805 * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2806 * and the hugetlb mutex should remain held when calling this routine.
2807 *
2808 * It handles two specific cases:
2809 * 1) A reservation was in place and the folio consumed the reservation.
2810 * hugetlb_restore_reserve is set in the folio.
2811 * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2812 * not set. However, alloc_hugetlb_folio always updates the reserve map.
2813 *
2814 * In case 1, free_huge_page later in the error path will increment the
2815 * global reserve count. But, free_huge_page does not have enough context
2816 * to adjust the reservation map. This case deals primarily with private
2817 * mappings. Adjust the reserve map here to be consistent with global
2818 * reserve count adjustments to be made by free_huge_page. Make sure the
2819 * reserve map indicates there is a reservation present.
2820 *
2821 * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2822 */
2823void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2824 unsigned long address, struct folio *folio)
2825{
2826 long rc = vma_needs_reservation(h, vma, address);
2827
2828 if (folio_test_hugetlb_restore_reserve(folio)) {
2829 if (unlikely(rc < 0))
2830 /*
2831 * Rare out of memory condition in reserve map
2832 * manipulation. Clear hugetlb_restore_reserve so
2833 * that global reserve count will not be incremented
2834 * by free_huge_page. This will make it appear
2835 * as though the reservation for this folio was
2836 * consumed. This may prevent the task from
2837 * faulting in the folio at a later time. This
2838 * is better than inconsistent global huge page
2839 * accounting of reserve counts.
2840 */
2841 folio_clear_hugetlb_restore_reserve(folio);
2842 else if (rc)
2843 (void)vma_add_reservation(h, vma, address);
2844 else
2845 vma_end_reservation(h, vma, address);
2846 } else {
2847 if (!rc) {
2848 /*
2849 * This indicates there is an entry in the reserve map
2850 * not added by alloc_hugetlb_folio. We know it was added
2851 * before the alloc_hugetlb_folio call, otherwise
2852 * hugetlb_restore_reserve would be set on the folio.
2853 * Remove the entry so that a subsequent allocation
2854 * does not consume a reservation.
2855 */
2856 rc = vma_del_reservation(h, vma, address);
2857 if (rc < 0)
2858 /*
2859 * VERY rare out of memory condition. Since
2860 * we can not delete the entry, set
2861 * hugetlb_restore_reserve so that the reserve
2862 * count will be incremented when the folio
2863 * is freed. This reserve will be consumed
2864 * on a subsequent allocation.
2865 */
2866 folio_set_hugetlb_restore_reserve(folio);
2867 } else if (rc < 0) {
2868 /*
2869 * Rare out of memory condition from
2870 * vma_needs_reservation call. Memory allocation is
2871 * only attempted if a new entry is needed. Therefore,
2872 * this implies there is not an entry in the
2873 * reserve map.
2874 *
2875 * For shared mappings, no entry in the map indicates
2876 * no reservation. We are done.
2877 */
2878 if (!(vma->vm_flags & VM_MAYSHARE))
2879 /*
2880 * For private mappings, no entry indicates
2881 * a reservation is present. Since we can
2882 * not add an entry, set hugetlb_restore_reserve
2883 * on the folio so reserve count will be
2884 * incremented when freed. This reserve will
2885 * be consumed on a subsequent allocation.
2886 */
2887 folio_set_hugetlb_restore_reserve(folio);
2888 } else
2889 /*
2890 * No reservation present, do nothing
2891 */
2892 vma_end_reservation(h, vma, address);
2893 }
2894}
2895
2896/*
2897 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2898 * the old one
2899 * @h: struct hstate old page belongs to
2900 * @old_folio: Old folio to dissolve
2901 * @list: List to isolate the page in case we need to
2902 * Returns 0 on success, otherwise negated error.
2903 */
2904static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2905 struct folio *old_folio, struct list_head *list)
2906{
2907 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2908 int nid = folio_nid(old_folio);
2909 struct folio *new_folio;
2910 int ret = 0;
2911
2912 /*
2913 * Before dissolving the folio, we need to allocate a new one for the
2914 * pool to remain stable. Here, we allocate the folio and 'prep' it
2915 * by doing everything but actually updating counters and adding to
2916 * the pool. This simplifies and let us do most of the processing
2917 * under the lock.
2918 */
2919 new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL);
2920 if (!new_folio)
2921 return -ENOMEM;
2922 __prep_new_hugetlb_folio(h, new_folio);
2923
2924retry:
2925 spin_lock_irq(&hugetlb_lock);
2926 if (!folio_test_hugetlb(old_folio)) {
2927 /*
2928 * Freed from under us. Drop new_folio too.
2929 */
2930 goto free_new;
2931 } else if (folio_ref_count(old_folio)) {
2932 bool isolated;
2933
2934 /*
2935 * Someone has grabbed the folio, try to isolate it here.
2936 * Fail with -EBUSY if not possible.
2937 */
2938 spin_unlock_irq(&hugetlb_lock);
2939 isolated = isolate_hugetlb(old_folio, list);
2940 ret = isolated ? 0 : -EBUSY;
2941 spin_lock_irq(&hugetlb_lock);
2942 goto free_new;
2943 } else if (!folio_test_hugetlb_freed(old_folio)) {
2944 /*
2945 * Folio's refcount is 0 but it has not been enqueued in the
2946 * freelist yet. Race window is small, so we can succeed here if
2947 * we retry.
2948 */
2949 spin_unlock_irq(&hugetlb_lock);
2950 cond_resched();
2951 goto retry;
2952 } else {
2953 /*
2954 * Ok, old_folio is still a genuine free hugepage. Remove it from
2955 * the freelist and decrease the counters. These will be
2956 * incremented again when calling __prep_account_new_huge_page()
2957 * and enqueue_hugetlb_folio() for new_folio. The counters will
2958 * remain stable since this happens under the lock.
2959 */
2960 remove_hugetlb_folio(h, old_folio, false);
2961
2962 /*
2963 * Ref count on new_folio is already zero as it was dropped
2964 * earlier. It can be directly added to the pool free list.
2965 */
2966 __prep_account_new_huge_page(h, nid);
2967 enqueue_hugetlb_folio(h, new_folio);
2968
2969 /*
2970 * Folio has been replaced, we can safely free the old one.
2971 */
2972 spin_unlock_irq(&hugetlb_lock);
2973 update_and_free_hugetlb_folio(h, old_folio, false);
2974 }
2975
2976 return ret;
2977
2978free_new:
2979 spin_unlock_irq(&hugetlb_lock);
2980 /* Folio has a zero ref count, but needs a ref to be freed */
2981 folio_ref_unfreeze(new_folio, 1);
2982 update_and_free_hugetlb_folio(h, new_folio, false);
2983
2984 return ret;
2985}
2986
2987int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2988{
2989 struct hstate *h;
2990 struct folio *folio = page_folio(page);
2991 int ret = -EBUSY;
2992
2993 /*
2994 * The page might have been dissolved from under our feet, so make sure
2995 * to carefully check the state under the lock.
2996 * Return success when racing as if we dissolved the page ourselves.
2997 */
2998 spin_lock_irq(&hugetlb_lock);
2999 if (folio_test_hugetlb(folio)) {
3000 h = folio_hstate(folio);
3001 } else {
3002 spin_unlock_irq(&hugetlb_lock);
3003 return 0;
3004 }
3005 spin_unlock_irq(&hugetlb_lock);
3006
3007 /*
3008 * Fence off gigantic pages as there is a cyclic dependency between
3009 * alloc_contig_range and them. Return -ENOMEM as this has the effect
3010 * of bailing out right away without further retrying.
3011 */
3012 if (hstate_is_gigantic(h))
3013 return -ENOMEM;
3014
3015 if (folio_ref_count(folio) && isolate_hugetlb(folio, list))
3016 ret = 0;
3017 else if (!folio_ref_count(folio))
3018 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
3019
3020 return ret;
3021}
3022
3023struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
3024 unsigned long addr, int avoid_reserve)
3025{
3026 struct hugepage_subpool *spool = subpool_vma(vma);
3027 struct hstate *h = hstate_vma(vma);
3028 struct folio *folio;
3029 long map_chg, map_commit;
3030 long gbl_chg;
3031 int ret, idx;
3032 struct hugetlb_cgroup *h_cg = NULL;
3033 bool deferred_reserve;
3034
3035 idx = hstate_index(h);
3036 /*
3037 * Examine the region/reserve map to determine if the process
3038 * has a reservation for the page to be allocated. A return
3039 * code of zero indicates a reservation exists (no change).
3040 */
3041 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3042 if (map_chg < 0)
3043 return ERR_PTR(-ENOMEM);
3044
3045 /*
3046 * Processes that did not create the mapping will have no
3047 * reserves as indicated by the region/reserve map. Check
3048 * that the allocation will not exceed the subpool limit.
3049 * Allocations for MAP_NORESERVE mappings also need to be
3050 * checked against any subpool limit.
3051 */
3052 if (map_chg || avoid_reserve) {
3053 gbl_chg = hugepage_subpool_get_pages(spool, 1);
3054 if (gbl_chg < 0) {
3055 vma_end_reservation(h, vma, addr);
3056 return ERR_PTR(-ENOSPC);
3057 }
3058
3059 /*
3060 * Even though there was no reservation in the region/reserve
3061 * map, there could be reservations associated with the
3062 * subpool that can be used. This would be indicated if the
3063 * return value of hugepage_subpool_get_pages() is zero.
3064 * However, if avoid_reserve is specified we still avoid even
3065 * the subpool reservations.
3066 */
3067 if (avoid_reserve)
3068 gbl_chg = 1;
3069 }
3070
3071 /* If this allocation is not consuming a reservation, charge it now.
3072 */
3073 deferred_reserve = map_chg || avoid_reserve;
3074 if (deferred_reserve) {
3075 ret = hugetlb_cgroup_charge_cgroup_rsvd(
3076 idx, pages_per_huge_page(h), &h_cg);
3077 if (ret)
3078 goto out_subpool_put;
3079 }
3080
3081 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3082 if (ret)
3083 goto out_uncharge_cgroup_reservation;
3084
3085 spin_lock_irq(&hugetlb_lock);
3086 /*
3087 * glb_chg is passed to indicate whether or not a page must be taken
3088 * from the global free pool (global change). gbl_chg == 0 indicates
3089 * a reservation exists for the allocation.
3090 */
3091 folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg);
3092 if (!folio) {
3093 spin_unlock_irq(&hugetlb_lock);
3094 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3095 if (!folio)
3096 goto out_uncharge_cgroup;
3097 spin_lock_irq(&hugetlb_lock);
3098 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3099 folio_set_hugetlb_restore_reserve(folio);
3100 h->resv_huge_pages--;
3101 }
3102 list_add(&folio->lru, &h->hugepage_activelist);
3103 folio_ref_unfreeze(folio, 1);
3104 /* Fall through */
3105 }
3106
3107 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3108 /* If allocation is not consuming a reservation, also store the
3109 * hugetlb_cgroup pointer on the page.
3110 */
3111 if (deferred_reserve) {
3112 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3113 h_cg, folio);
3114 }
3115
3116 spin_unlock_irq(&hugetlb_lock);
3117
3118 hugetlb_set_folio_subpool(folio, spool);
3119
3120 map_commit = vma_commit_reservation(h, vma, addr);
3121 if (unlikely(map_chg > map_commit)) {
3122 /*
3123 * The page was added to the reservation map between
3124 * vma_needs_reservation and vma_commit_reservation.
3125 * This indicates a race with hugetlb_reserve_pages.
3126 * Adjust for the subpool count incremented above AND
3127 * in hugetlb_reserve_pages for the same page. Also,
3128 * the reservation count added in hugetlb_reserve_pages
3129 * no longer applies.
3130 */
3131 long rsv_adjust;
3132
3133 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3134 hugetlb_acct_memory(h, -rsv_adjust);
3135 if (deferred_reserve)
3136 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3137 pages_per_huge_page(h), folio);
3138 }
3139 return folio;
3140
3141out_uncharge_cgroup:
3142 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3143out_uncharge_cgroup_reservation:
3144 if (deferred_reserve)
3145 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3146 h_cg);
3147out_subpool_put:
3148 if (map_chg || avoid_reserve)
3149 hugepage_subpool_put_pages(spool, 1);
3150 vma_end_reservation(h, vma, addr);
3151 return ERR_PTR(-ENOSPC);
3152}
3153
3154int alloc_bootmem_huge_page(struct hstate *h, int nid)
3155 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3156int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3157{
3158 struct huge_bootmem_page *m = NULL; /* initialize for clang */
3159 int nr_nodes, node;
3160
3161 /* do node specific alloc */
3162 if (nid != NUMA_NO_NODE) {
3163 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3164 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3165 if (!m)
3166 return 0;
3167 goto found;
3168 }
3169 /* allocate from next node when distributing huge pages */
3170 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3171 m = memblock_alloc_try_nid_raw(
3172 huge_page_size(h), huge_page_size(h),
3173 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3174 /*
3175 * Use the beginning of the huge page to store the
3176 * huge_bootmem_page struct (until gather_bootmem
3177 * puts them into the mem_map).
3178 */
3179 if (!m)
3180 return 0;
3181 goto found;
3182 }
3183
3184found:
3185 /* Put them into a private list first because mem_map is not up yet */
3186 INIT_LIST_HEAD(&m->list);
3187 list_add(&m->list, &huge_boot_pages);
3188 m->hstate = h;
3189 return 1;
3190}
3191
3192/*
3193 * Put bootmem huge pages into the standard lists after mem_map is up.
3194 * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3195 */
3196static void __init gather_bootmem_prealloc(void)
3197{
3198 struct huge_bootmem_page *m;
3199
3200 list_for_each_entry(m, &huge_boot_pages, list) {
3201 struct page *page = virt_to_page(m);
3202 struct folio *folio = page_folio(page);
3203 struct hstate *h = m->hstate;
3204
3205 VM_BUG_ON(!hstate_is_gigantic(h));
3206 WARN_ON(folio_ref_count(folio) != 1);
3207 if (prep_compound_gigantic_folio(folio, huge_page_order(h))) {
3208 WARN_ON(folio_test_reserved(folio));
3209 prep_new_hugetlb_folio(h, folio, folio_nid(folio));
3210 free_huge_page(page); /* add to the hugepage allocator */
3211 } else {
3212 /* VERY unlikely inflated ref count on a tail page */
3213 free_gigantic_folio(folio, huge_page_order(h));
3214 }
3215
3216 /*
3217 * We need to restore the 'stolen' pages to totalram_pages
3218 * in order to fix confusing memory reports from free(1) and
3219 * other side-effects, like CommitLimit going negative.
3220 */
3221 adjust_managed_page_count(page, pages_per_huge_page(h));
3222 cond_resched();
3223 }
3224}
3225static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3226{
3227 unsigned long i;
3228 char buf[32];
3229
3230 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3231 if (hstate_is_gigantic(h)) {
3232 if (!alloc_bootmem_huge_page(h, nid))
3233 break;
3234 } else {
3235 struct folio *folio;
3236 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3237
3238 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3239 &node_states[N_MEMORY], NULL);
3240 if (!folio)
3241 break;
3242 free_huge_page(&folio->page); /* free it into the hugepage allocator */
3243 }
3244 cond_resched();
3245 }
3246 if (i == h->max_huge_pages_node[nid])
3247 return;
3248
3249 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3250 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n",
3251 h->max_huge_pages_node[nid], buf, nid, i);
3252 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3253 h->max_huge_pages_node[nid] = i;
3254}
3255
3256static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3257{
3258 unsigned long i;
3259 nodemask_t *node_alloc_noretry;
3260 bool node_specific_alloc = false;
3261
3262 /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3263 if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3264 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3265 return;
3266 }
3267
3268 /* do node specific alloc */
3269 for_each_online_node(i) {
3270 if (h->max_huge_pages_node[i] > 0) {
3271 hugetlb_hstate_alloc_pages_onenode(h, i);
3272 node_specific_alloc = true;
3273 }
3274 }
3275
3276 if (node_specific_alloc)
3277 return;
3278
3279 /* below will do all node balanced alloc */
3280 if (!hstate_is_gigantic(h)) {
3281 /*
3282 * Bit mask controlling how hard we retry per-node allocations.
3283 * Ignore errors as lower level routines can deal with
3284 * node_alloc_noretry == NULL. If this kmalloc fails at boot
3285 * time, we are likely in bigger trouble.
3286 */
3287 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3288 GFP_KERNEL);
3289 } else {
3290 /* allocations done at boot time */
3291 node_alloc_noretry = NULL;
3292 }
3293
3294 /* bit mask controlling how hard we retry per-node allocations */
3295 if (node_alloc_noretry)
3296 nodes_clear(*node_alloc_noretry);
3297
3298 for (i = 0; i < h->max_huge_pages; ++i) {
3299 if (hstate_is_gigantic(h)) {
3300 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3301 break;
3302 } else if (!alloc_pool_huge_page(h,
3303 &node_states[N_MEMORY],
3304 node_alloc_noretry))
3305 break;
3306 cond_resched();
3307 }
3308 if (i < h->max_huge_pages) {
3309 char buf[32];
3310
3311 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3312 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
3313 h->max_huge_pages, buf, i);
3314 h->max_huge_pages = i;
3315 }
3316 kfree(node_alloc_noretry);
3317}
3318
3319static void __init hugetlb_init_hstates(void)
3320{
3321 struct hstate *h, *h2;
3322
3323 for_each_hstate(h) {
3324 /* oversize hugepages were init'ed in early boot */
3325 if (!hstate_is_gigantic(h))
3326 hugetlb_hstate_alloc_pages(h);
3327
3328 /*
3329 * Set demote order for each hstate. Note that
3330 * h->demote_order is initially 0.
3331 * - We can not demote gigantic pages if runtime freeing
3332 * is not supported, so skip this.
3333 * - If CMA allocation is possible, we can not demote
3334 * HUGETLB_PAGE_ORDER or smaller size pages.
3335 */
3336 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3337 continue;
3338 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3339 continue;
3340 for_each_hstate(h2) {
3341 if (h2 == h)
3342 continue;
3343 if (h2->order < h->order &&
3344 h2->order > h->demote_order)
3345 h->demote_order = h2->order;
3346 }
3347 }
3348}
3349
3350static void __init report_hugepages(void)
3351{
3352 struct hstate *h;
3353
3354 for_each_hstate(h) {
3355 char buf[32];
3356
3357 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3358 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3359 buf, h->free_huge_pages);
3360 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3361 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3362 }
3363}
3364
3365#ifdef CONFIG_HIGHMEM
3366static void try_to_free_low(struct hstate *h, unsigned long count,
3367 nodemask_t *nodes_allowed)
3368{
3369 int i;
3370 LIST_HEAD(page_list);
3371
3372 lockdep_assert_held(&hugetlb_lock);
3373 if (hstate_is_gigantic(h))
3374 return;
3375
3376 /*
3377 * Collect pages to be freed on a list, and free after dropping lock
3378 */
3379 for_each_node_mask(i, *nodes_allowed) {
3380 struct page *page, *next;
3381 struct list_head *freel = &h->hugepage_freelists[i];
3382 list_for_each_entry_safe(page, next, freel, lru) {
3383 if (count >= h->nr_huge_pages)
3384 goto out;
3385 if (PageHighMem(page))
3386 continue;
3387 remove_hugetlb_folio(h, page_folio(page), false);
3388 list_add(&page->lru, &page_list);
3389 }
3390 }
3391
3392out:
3393 spin_unlock_irq(&hugetlb_lock);
3394 update_and_free_pages_bulk(h, &page_list);
3395 spin_lock_irq(&hugetlb_lock);
3396}
3397#else
3398static inline void try_to_free_low(struct hstate *h, unsigned long count,
3399 nodemask_t *nodes_allowed)
3400{
3401}
3402#endif
3403
3404/*
3405 * Increment or decrement surplus_huge_pages. Keep node-specific counters
3406 * balanced by operating on them in a round-robin fashion.
3407 * Returns 1 if an adjustment was made.
3408 */
3409static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3410 int delta)
3411{
3412 int nr_nodes, node;
3413
3414 lockdep_assert_held(&hugetlb_lock);
3415 VM_BUG_ON(delta != -1 && delta != 1);
3416
3417 if (delta < 0) {
3418 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3419 if (h->surplus_huge_pages_node[node])
3420 goto found;
3421 }
3422 } else {
3423 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3424 if (h->surplus_huge_pages_node[node] <
3425 h->nr_huge_pages_node[node])
3426 goto found;
3427 }
3428 }
3429 return 0;
3430
3431found:
3432 h->surplus_huge_pages += delta;
3433 h->surplus_huge_pages_node[node] += delta;
3434 return 1;
3435}
3436
3437#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3438static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3439 nodemask_t *nodes_allowed)
3440{
3441 unsigned long min_count, ret;
3442 struct page *page;
3443 LIST_HEAD(page_list);
3444 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3445
3446 /*
3447 * Bit mask controlling how hard we retry per-node allocations.
3448 * If we can not allocate the bit mask, do not attempt to allocate
3449 * the requested huge pages.
3450 */
3451 if (node_alloc_noretry)
3452 nodes_clear(*node_alloc_noretry);
3453 else
3454 return -ENOMEM;
3455
3456 /*
3457 * resize_lock mutex prevents concurrent adjustments to number of
3458 * pages in hstate via the proc/sysfs interfaces.
3459 */
3460 mutex_lock(&h->resize_lock);
3461 flush_free_hpage_work(h);
3462 spin_lock_irq(&hugetlb_lock);
3463
3464 /*
3465 * Check for a node specific request.
3466 * Changing node specific huge page count may require a corresponding
3467 * change to the global count. In any case, the passed node mask
3468 * (nodes_allowed) will restrict alloc/free to the specified node.
3469 */
3470 if (nid != NUMA_NO_NODE) {
3471 unsigned long old_count = count;
3472
3473 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3474 /*
3475 * User may have specified a large count value which caused the
3476 * above calculation to overflow. In this case, they wanted
3477 * to allocate as many huge pages as possible. Set count to
3478 * largest possible value to align with their intention.
3479 */
3480 if (count < old_count)
3481 count = ULONG_MAX;
3482 }
3483
3484 /*
3485 * Gigantic pages runtime allocation depend on the capability for large
3486 * page range allocation.
3487 * If the system does not provide this feature, return an error when
3488 * the user tries to allocate gigantic pages but let the user free the
3489 * boottime allocated gigantic pages.
3490 */
3491 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3492 if (count > persistent_huge_pages(h)) {
3493 spin_unlock_irq(&hugetlb_lock);
3494 mutex_unlock(&h->resize_lock);
3495 NODEMASK_FREE(node_alloc_noretry);
3496 return -EINVAL;
3497 }
3498 /* Fall through to decrease pool */
3499 }
3500
3501 /*
3502 * Increase the pool size
3503 * First take pages out of surplus state. Then make up the
3504 * remaining difference by allocating fresh huge pages.
3505 *
3506 * We might race with alloc_surplus_hugetlb_folio() here and be unable
3507 * to convert a surplus huge page to a normal huge page. That is
3508 * not critical, though, it just means the overall size of the
3509 * pool might be one hugepage larger than it needs to be, but
3510 * within all the constraints specified by the sysctls.
3511 */
3512 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3513 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3514 break;
3515 }
3516
3517 while (count > persistent_huge_pages(h)) {
3518 /*
3519 * If this allocation races such that we no longer need the
3520 * page, free_huge_page will handle it by freeing the page
3521 * and reducing the surplus.
3522 */
3523 spin_unlock_irq(&hugetlb_lock);
3524
3525 /* yield cpu to avoid soft lockup */
3526 cond_resched();
3527
3528 ret = alloc_pool_huge_page(h, nodes_allowed,
3529 node_alloc_noretry);
3530 spin_lock_irq(&hugetlb_lock);
3531 if (!ret)
3532 goto out;
3533
3534 /* Bail for signals. Probably ctrl-c from user */
3535 if (signal_pending(current))
3536 goto out;
3537 }
3538
3539 /*
3540 * Decrease the pool size
3541 * First return free pages to the buddy allocator (being careful
3542 * to keep enough around to satisfy reservations). Then place
3543 * pages into surplus state as needed so the pool will shrink
3544 * to the desired size as pages become free.
3545 *
3546 * By placing pages into the surplus state independent of the
3547 * overcommit value, we are allowing the surplus pool size to
3548 * exceed overcommit. There are few sane options here. Since
3549 * alloc_surplus_hugetlb_folio() is checking the global counter,
3550 * though, we'll note that we're not allowed to exceed surplus
3551 * and won't grow the pool anywhere else. Not until one of the
3552 * sysctls are changed, or the surplus pages go out of use.
3553 */
3554 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3555 min_count = max(count, min_count);
3556 try_to_free_low(h, min_count, nodes_allowed);
3557
3558 /*
3559 * Collect pages to be removed on list without dropping lock
3560 */
3561 while (min_count < persistent_huge_pages(h)) {
3562 page = remove_pool_huge_page(h, nodes_allowed, 0);
3563 if (!page)
3564 break;
3565
3566 list_add(&page->lru, &page_list);
3567 }
3568 /* free the pages after dropping lock */
3569 spin_unlock_irq(&hugetlb_lock);
3570 update_and_free_pages_bulk(h, &page_list);
3571 flush_free_hpage_work(h);
3572 spin_lock_irq(&hugetlb_lock);
3573
3574 while (count < persistent_huge_pages(h)) {
3575 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3576 break;
3577 }
3578out:
3579 h->max_huge_pages = persistent_huge_pages(h);
3580 spin_unlock_irq(&hugetlb_lock);
3581 mutex_unlock(&h->resize_lock);
3582
3583 NODEMASK_FREE(node_alloc_noretry);
3584
3585 return 0;
3586}
3587
3588static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio)
3589{
3590 int i, nid = folio_nid(folio);
3591 struct hstate *target_hstate;
3592 struct page *subpage;
3593 struct folio *inner_folio;
3594 int rc = 0;
3595
3596 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3597
3598 remove_hugetlb_folio_for_demote(h, folio, false);
3599 spin_unlock_irq(&hugetlb_lock);
3600
3601 rc = hugetlb_vmemmap_restore(h, &folio->page);
3602 if (rc) {
3603 /* Allocation of vmemmmap failed, we can not demote folio */
3604 spin_lock_irq(&hugetlb_lock);
3605 folio_ref_unfreeze(folio, 1);
3606 add_hugetlb_folio(h, folio, false);
3607 return rc;
3608 }
3609
3610 /*
3611 * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3612 * sizes as it will not ref count folios.
3613 */
3614 destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
3615
3616 /*
3617 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3618 * Without the mutex, pages added to target hstate could be marked
3619 * as surplus.
3620 *
3621 * Note that we already hold h->resize_lock. To prevent deadlock,
3622 * use the convention of always taking larger size hstate mutex first.
3623 */
3624 mutex_lock(&target_hstate->resize_lock);
3625 for (i = 0; i < pages_per_huge_page(h);
3626 i += pages_per_huge_page(target_hstate)) {
3627 subpage = folio_page(folio, i);
3628 inner_folio = page_folio(subpage);
3629 if (hstate_is_gigantic(target_hstate))
3630 prep_compound_gigantic_folio_for_demote(inner_folio,
3631 target_hstate->order);
3632 else
3633 prep_compound_page(subpage, target_hstate->order);
3634 folio_change_private(inner_folio, NULL);
3635 prep_new_hugetlb_folio(target_hstate, inner_folio, nid);
3636 free_huge_page(subpage);
3637 }
3638 mutex_unlock(&target_hstate->resize_lock);
3639
3640 spin_lock_irq(&hugetlb_lock);
3641
3642 /*
3643 * Not absolutely necessary, but for consistency update max_huge_pages
3644 * based on pool changes for the demoted page.
3645 */
3646 h->max_huge_pages--;
3647 target_hstate->max_huge_pages +=
3648 pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3649
3650 return rc;
3651}
3652
3653static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3654 __must_hold(&hugetlb_lock)
3655{
3656 int nr_nodes, node;
3657 struct folio *folio;
3658
3659 lockdep_assert_held(&hugetlb_lock);
3660
3661 /* We should never get here if no demote order */
3662 if (!h->demote_order) {
3663 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3664 return -EINVAL; /* internal error */
3665 }
3666
3667 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3668 list_for_each_entry(folio, &h->hugepage_freelists[node], lru) {
3669 if (folio_test_hwpoison(folio))
3670 continue;
3671 return demote_free_hugetlb_folio(h, folio);
3672 }
3673 }
3674
3675 /*
3676 * Only way to get here is if all pages on free lists are poisoned.
3677 * Return -EBUSY so that caller will not retry.
3678 */
3679 return -EBUSY;
3680}
3681
3682#define HSTATE_ATTR_RO(_name) \
3683 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3684
3685#define HSTATE_ATTR_WO(_name) \
3686 static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3687
3688#define HSTATE_ATTR(_name) \
3689 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3690
3691static struct kobject *hugepages_kobj;
3692static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3693
3694static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3695
3696static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3697{
3698 int i;
3699
3700 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3701 if (hstate_kobjs[i] == kobj) {
3702 if (nidp)
3703 *nidp = NUMA_NO_NODE;
3704 return &hstates[i];
3705 }
3706
3707 return kobj_to_node_hstate(kobj, nidp);
3708}
3709
3710static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3711 struct kobj_attribute *attr, char *buf)
3712{
3713 struct hstate *h;
3714 unsigned long nr_huge_pages;
3715 int nid;
3716
3717 h = kobj_to_hstate(kobj, &nid);
3718 if (nid == NUMA_NO_NODE)
3719 nr_huge_pages = h->nr_huge_pages;
3720 else
3721 nr_huge_pages = h->nr_huge_pages_node[nid];
3722
3723 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3724}
3725
3726static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3727 struct hstate *h, int nid,
3728 unsigned long count, size_t len)
3729{
3730 int err;
3731 nodemask_t nodes_allowed, *n_mask;
3732
3733 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3734 return -EINVAL;
3735
3736 if (nid == NUMA_NO_NODE) {
3737 /*
3738 * global hstate attribute
3739 */
3740 if (!(obey_mempolicy &&
3741 init_nodemask_of_mempolicy(&nodes_allowed)))
3742 n_mask = &node_states[N_MEMORY];
3743 else
3744 n_mask = &nodes_allowed;
3745 } else {
3746 /*
3747 * Node specific request. count adjustment happens in
3748 * set_max_huge_pages() after acquiring hugetlb_lock.
3749 */
3750 init_nodemask_of_node(&nodes_allowed, nid);
3751 n_mask = &nodes_allowed;
3752 }
3753
3754 err = set_max_huge_pages(h, count, nid, n_mask);
3755
3756 return err ? err : len;
3757}
3758
3759static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3760 struct kobject *kobj, const char *buf,
3761 size_t len)
3762{
3763 struct hstate *h;
3764 unsigned long count;
3765 int nid;
3766 int err;
3767
3768 err = kstrtoul(buf, 10, &count);
3769 if (err)
3770 return err;
3771
3772 h = kobj_to_hstate(kobj, &nid);
3773 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3774}
3775
3776static ssize_t nr_hugepages_show(struct kobject *kobj,
3777 struct kobj_attribute *attr, char *buf)
3778{
3779 return nr_hugepages_show_common(kobj, attr, buf);
3780}
3781
3782static ssize_t nr_hugepages_store(struct kobject *kobj,
3783 struct kobj_attribute *attr, const char *buf, size_t len)
3784{
3785 return nr_hugepages_store_common(false, kobj, buf, len);
3786}
3787HSTATE_ATTR(nr_hugepages);
3788
3789#ifdef CONFIG_NUMA
3790
3791/*
3792 * hstate attribute for optionally mempolicy-based constraint on persistent
3793 * huge page alloc/free.
3794 */
3795static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3796 struct kobj_attribute *attr,
3797 char *buf)
3798{
3799 return nr_hugepages_show_common(kobj, attr, buf);
3800}
3801
3802static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3803 struct kobj_attribute *attr, const char *buf, size_t len)
3804{
3805 return nr_hugepages_store_common(true, kobj, buf, len);
3806}
3807HSTATE_ATTR(nr_hugepages_mempolicy);
3808#endif
3809
3810
3811static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3812 struct kobj_attribute *attr, char *buf)
3813{
3814 struct hstate *h = kobj_to_hstate(kobj, NULL);
3815 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3816}
3817
3818static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3819 struct kobj_attribute *attr, const char *buf, size_t count)
3820{
3821 int err;
3822 unsigned long input;
3823 struct hstate *h = kobj_to_hstate(kobj, NULL);
3824
3825 if (hstate_is_gigantic(h))
3826 return -EINVAL;
3827
3828 err = kstrtoul(buf, 10, &input);
3829 if (err)
3830 return err;
3831
3832 spin_lock_irq(&hugetlb_lock);
3833 h->nr_overcommit_huge_pages = input;
3834 spin_unlock_irq(&hugetlb_lock);
3835
3836 return count;
3837}
3838HSTATE_ATTR(nr_overcommit_hugepages);
3839
3840static ssize_t free_hugepages_show(struct kobject *kobj,
3841 struct kobj_attribute *attr, char *buf)
3842{
3843 struct hstate *h;
3844 unsigned long free_huge_pages;
3845 int nid;
3846
3847 h = kobj_to_hstate(kobj, &nid);
3848 if (nid == NUMA_NO_NODE)
3849 free_huge_pages = h->free_huge_pages;
3850 else
3851 free_huge_pages = h->free_huge_pages_node[nid];
3852
3853 return sysfs_emit(buf, "%lu\n", free_huge_pages);
3854}
3855HSTATE_ATTR_RO(free_hugepages);
3856
3857static ssize_t resv_hugepages_show(struct kobject *kobj,
3858 struct kobj_attribute *attr, char *buf)
3859{
3860 struct hstate *h = kobj_to_hstate(kobj, NULL);
3861 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3862}
3863HSTATE_ATTR_RO(resv_hugepages);
3864
3865static ssize_t surplus_hugepages_show(struct kobject *kobj,
3866 struct kobj_attribute *attr, char *buf)
3867{
3868 struct hstate *h;
3869 unsigned long surplus_huge_pages;
3870 int nid;
3871
3872 h = kobj_to_hstate(kobj, &nid);
3873 if (nid == NUMA_NO_NODE)
3874 surplus_huge_pages = h->surplus_huge_pages;
3875 else
3876 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3877
3878 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3879}
3880HSTATE_ATTR_RO(surplus_hugepages);
3881
3882static ssize_t demote_store(struct kobject *kobj,
3883 struct kobj_attribute *attr, const char *buf, size_t len)
3884{
3885 unsigned long nr_demote;
3886 unsigned long nr_available;
3887 nodemask_t nodes_allowed, *n_mask;
3888 struct hstate *h;
3889 int err;
3890 int nid;
3891
3892 err = kstrtoul(buf, 10, &nr_demote);
3893 if (err)
3894 return err;
3895 h = kobj_to_hstate(kobj, &nid);
3896
3897 if (nid != NUMA_NO_NODE) {
3898 init_nodemask_of_node(&nodes_allowed, nid);
3899 n_mask = &nodes_allowed;
3900 } else {
3901 n_mask = &node_states[N_MEMORY];
3902 }
3903
3904 /* Synchronize with other sysfs operations modifying huge pages */
3905 mutex_lock(&h->resize_lock);
3906 spin_lock_irq(&hugetlb_lock);
3907
3908 while (nr_demote) {
3909 /*
3910 * Check for available pages to demote each time thorough the
3911 * loop as demote_pool_huge_page will drop hugetlb_lock.
3912 */
3913 if (nid != NUMA_NO_NODE)
3914 nr_available = h->free_huge_pages_node[nid];
3915 else
3916 nr_available = h->free_huge_pages;
3917 nr_available -= h->resv_huge_pages;
3918 if (!nr_available)
3919 break;
3920
3921 err = demote_pool_huge_page(h, n_mask);
3922 if (err)
3923 break;
3924
3925 nr_demote--;
3926 }
3927
3928 spin_unlock_irq(&hugetlb_lock);
3929 mutex_unlock(&h->resize_lock);
3930
3931 if (err)
3932 return err;
3933 return len;
3934}
3935HSTATE_ATTR_WO(demote);
3936
3937static ssize_t demote_size_show(struct kobject *kobj,
3938 struct kobj_attribute *attr, char *buf)
3939{
3940 struct hstate *h = kobj_to_hstate(kobj, NULL);
3941 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3942
3943 return sysfs_emit(buf, "%lukB\n", demote_size);
3944}
3945
3946static ssize_t demote_size_store(struct kobject *kobj,
3947 struct kobj_attribute *attr,
3948 const char *buf, size_t count)
3949{
3950 struct hstate *h, *demote_hstate;
3951 unsigned long demote_size;
3952 unsigned int demote_order;
3953
3954 demote_size = (unsigned long)memparse(buf, NULL);
3955
3956 demote_hstate = size_to_hstate(demote_size);
3957 if (!demote_hstate)
3958 return -EINVAL;
3959 demote_order = demote_hstate->order;
3960 if (demote_order < HUGETLB_PAGE_ORDER)
3961 return -EINVAL;
3962
3963 /* demote order must be smaller than hstate order */
3964 h = kobj_to_hstate(kobj, NULL);
3965 if (demote_order >= h->order)
3966 return -EINVAL;
3967
3968 /* resize_lock synchronizes access to demote size and writes */
3969 mutex_lock(&h->resize_lock);
3970 h->demote_order = demote_order;
3971 mutex_unlock(&h->resize_lock);
3972
3973 return count;
3974}
3975HSTATE_ATTR(demote_size);
3976
3977static struct attribute *hstate_attrs[] = {
3978 &nr_hugepages_attr.attr,
3979 &nr_overcommit_hugepages_attr.attr,
3980 &free_hugepages_attr.attr,
3981 &resv_hugepages_attr.attr,
3982 &surplus_hugepages_attr.attr,
3983#ifdef CONFIG_NUMA
3984 &nr_hugepages_mempolicy_attr.attr,
3985#endif
3986 NULL,
3987};
3988
3989static const struct attribute_group hstate_attr_group = {
3990 .attrs = hstate_attrs,
3991};
3992
3993static struct attribute *hstate_demote_attrs[] = {
3994 &demote_size_attr.attr,
3995 &demote_attr.attr,
3996 NULL,
3997};
3998
3999static const struct attribute_group hstate_demote_attr_group = {
4000 .attrs = hstate_demote_attrs,
4001};
4002
4003static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4004 struct kobject **hstate_kobjs,
4005 const struct attribute_group *hstate_attr_group)
4006{
4007 int retval;
4008 int hi = hstate_index(h);
4009
4010 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4011 if (!hstate_kobjs[hi])
4012 return -ENOMEM;
4013
4014 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4015 if (retval) {
4016 kobject_put(hstate_kobjs[hi]);
4017 hstate_kobjs[hi] = NULL;
4018 return retval;
4019 }
4020
4021 if (h->demote_order) {
4022 retval = sysfs_create_group(hstate_kobjs[hi],
4023 &hstate_demote_attr_group);
4024 if (retval) {
4025 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4026 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4027 kobject_put(hstate_kobjs[hi]);
4028 hstate_kobjs[hi] = NULL;
4029 return retval;
4030 }
4031 }
4032
4033 return 0;
4034}
4035
4036#ifdef CONFIG_NUMA
4037static bool hugetlb_sysfs_initialized __ro_after_init;
4038
4039/*
4040 * node_hstate/s - associate per node hstate attributes, via their kobjects,
4041 * with node devices in node_devices[] using a parallel array. The array
4042 * index of a node device or _hstate == node id.
4043 * This is here to avoid any static dependency of the node device driver, in
4044 * the base kernel, on the hugetlb module.
4045 */
4046struct node_hstate {
4047 struct kobject *hugepages_kobj;
4048 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
4049};
4050static struct node_hstate node_hstates[MAX_NUMNODES];
4051
4052/*
4053 * A subset of global hstate attributes for node devices
4054 */
4055static struct attribute *per_node_hstate_attrs[] = {
4056 &nr_hugepages_attr.attr,
4057 &free_hugepages_attr.attr,
4058 &surplus_hugepages_attr.attr,
4059 NULL,
4060};
4061
4062static const struct attribute_group per_node_hstate_attr_group = {
4063 .attrs = per_node_hstate_attrs,
4064};
4065
4066/*
4067 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4068 * Returns node id via non-NULL nidp.
4069 */
4070static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4071{
4072 int nid;
4073
4074 for (nid = 0; nid < nr_node_ids; nid++) {
4075 struct node_hstate *nhs = &node_hstates[nid];
4076 int i;
4077 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4078 if (nhs->hstate_kobjs[i] == kobj) {
4079 if (nidp)
4080 *nidp = nid;
4081 return &hstates[i];
4082 }
4083 }
4084
4085 BUG();
4086 return NULL;
4087}
4088
4089/*
4090 * Unregister hstate attributes from a single node device.
4091 * No-op if no hstate attributes attached.
4092 */
4093void hugetlb_unregister_node(struct node *node)
4094{
4095 struct hstate *h;
4096 struct node_hstate *nhs = &node_hstates[node->dev.id];
4097
4098 if (!nhs->hugepages_kobj)
4099 return; /* no hstate attributes */
4100
4101 for_each_hstate(h) {
4102 int idx = hstate_index(h);
4103 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4104
4105 if (!hstate_kobj)
4106 continue;
4107 if (h->demote_order)
4108 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4109 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4110 kobject_put(hstate_kobj);
4111 nhs->hstate_kobjs[idx] = NULL;
4112 }
4113
4114 kobject_put(nhs->hugepages_kobj);
4115 nhs->hugepages_kobj = NULL;
4116}
4117
4118
4119/*
4120 * Register hstate attributes for a single node device.
4121 * No-op if attributes already registered.
4122 */
4123void hugetlb_register_node(struct node *node)
4124{
4125 struct hstate *h;
4126 struct node_hstate *nhs = &node_hstates[node->dev.id];
4127 int err;
4128
4129 if (!hugetlb_sysfs_initialized)
4130 return;
4131
4132 if (nhs->hugepages_kobj)
4133 return; /* already allocated */
4134
4135 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4136 &node->dev.kobj);
4137 if (!nhs->hugepages_kobj)
4138 return;
4139
4140 for_each_hstate(h) {
4141 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4142 nhs->hstate_kobjs,
4143 &per_node_hstate_attr_group);
4144 if (err) {
4145 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4146 h->name, node->dev.id);
4147 hugetlb_unregister_node(node);
4148 break;
4149 }
4150 }
4151}
4152
4153/*
4154 * hugetlb init time: register hstate attributes for all registered node
4155 * devices of nodes that have memory. All on-line nodes should have
4156 * registered their associated device by this time.
4157 */
4158static void __init hugetlb_register_all_nodes(void)
4159{
4160 int nid;
4161
4162 for_each_online_node(nid)
4163 hugetlb_register_node(node_devices[nid]);
4164}
4165#else /* !CONFIG_NUMA */
4166
4167static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4168{
4169 BUG();
4170 if (nidp)
4171 *nidp = -1;
4172 return NULL;
4173}
4174
4175static void hugetlb_register_all_nodes(void) { }
4176
4177#endif
4178
4179#ifdef CONFIG_CMA
4180static void __init hugetlb_cma_check(void);
4181#else
4182static inline __init void hugetlb_cma_check(void)
4183{
4184}
4185#endif
4186
4187static void __init hugetlb_sysfs_init(void)
4188{
4189 struct hstate *h;
4190 int err;
4191
4192 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4193 if (!hugepages_kobj)
4194 return;
4195
4196 for_each_hstate(h) {
4197 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4198 hstate_kobjs, &hstate_attr_group);
4199 if (err)
4200 pr_err("HugeTLB: Unable to add hstate %s", h->name);
4201 }
4202
4203#ifdef CONFIG_NUMA
4204 hugetlb_sysfs_initialized = true;
4205#endif
4206 hugetlb_register_all_nodes();
4207}
4208
4209#ifdef CONFIG_SYSCTL
4210static void hugetlb_sysctl_init(void);
4211#else
4212static inline void hugetlb_sysctl_init(void) { }
4213#endif
4214
4215static int __init hugetlb_init(void)
4216{
4217 int i;
4218
4219 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4220 __NR_HPAGEFLAGS);
4221
4222 if (!hugepages_supported()) {
4223 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4224 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4225 return 0;
4226 }
4227
4228 /*
4229 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
4230 * architectures depend on setup being done here.
4231 */
4232 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4233 if (!parsed_default_hugepagesz) {
4234 /*
4235 * If we did not parse a default huge page size, set
4236 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4237 * number of huge pages for this default size was implicitly
4238 * specified, set that here as well.
4239 * Note that the implicit setting will overwrite an explicit
4240 * setting. A warning will be printed in this case.
4241 */
4242 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4243 if (default_hstate_max_huge_pages) {
4244 if (default_hstate.max_huge_pages) {
4245 char buf[32];
4246
4247 string_get_size(huge_page_size(&default_hstate),
4248 1, STRING_UNITS_2, buf, 32);
4249 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4250 default_hstate.max_huge_pages, buf);
4251 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4252 default_hstate_max_huge_pages);
4253 }
4254 default_hstate.max_huge_pages =
4255 default_hstate_max_huge_pages;
4256
4257 for_each_online_node(i)
4258 default_hstate.max_huge_pages_node[i] =
4259 default_hugepages_in_node[i];
4260 }
4261 }
4262
4263 hugetlb_cma_check();
4264 hugetlb_init_hstates();
4265 gather_bootmem_prealloc();
4266 report_hugepages();
4267
4268 hugetlb_sysfs_init();
4269 hugetlb_cgroup_file_init();
4270 hugetlb_sysctl_init();
4271
4272#ifdef CONFIG_SMP
4273 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4274#else
4275 num_fault_mutexes = 1;
4276#endif
4277 hugetlb_fault_mutex_table =
4278 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4279 GFP_KERNEL);
4280 BUG_ON(!hugetlb_fault_mutex_table);
4281
4282 for (i = 0; i < num_fault_mutexes; i++)
4283 mutex_init(&hugetlb_fault_mutex_table[i]);
4284 return 0;
4285}
4286subsys_initcall(hugetlb_init);
4287
4288/* Overwritten by architectures with more huge page sizes */
4289bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4290{
4291 return size == HPAGE_SIZE;
4292}
4293
4294void __init hugetlb_add_hstate(unsigned int order)
4295{
4296 struct hstate *h;
4297 unsigned long i;
4298
4299 if (size_to_hstate(PAGE_SIZE << order)) {
4300 return;
4301 }
4302 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4303 BUG_ON(order == 0);
4304 h = &hstates[hugetlb_max_hstate++];
4305 mutex_init(&h->resize_lock);
4306 h->order = order;
4307 h->mask = ~(huge_page_size(h) - 1);
4308 for (i = 0; i < MAX_NUMNODES; ++i)
4309 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4310 INIT_LIST_HEAD(&h->hugepage_activelist);
4311 h->next_nid_to_alloc = first_memory_node;
4312 h->next_nid_to_free = first_memory_node;
4313 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4314 huge_page_size(h)/SZ_1K);
4315
4316 parsed_hstate = h;
4317}
4318
4319bool __init __weak hugetlb_node_alloc_supported(void)
4320{
4321 return true;
4322}
4323
4324static void __init hugepages_clear_pages_in_node(void)
4325{
4326 if (!hugetlb_max_hstate) {
4327 default_hstate_max_huge_pages = 0;
4328 memset(default_hugepages_in_node, 0,
4329 sizeof(default_hugepages_in_node));
4330 } else {
4331 parsed_hstate->max_huge_pages = 0;
4332 memset(parsed_hstate->max_huge_pages_node, 0,
4333 sizeof(parsed_hstate->max_huge_pages_node));
4334 }
4335}
4336
4337/*
4338 * hugepages command line processing
4339 * hugepages normally follows a valid hugepagsz or default_hugepagsz
4340 * specification. If not, ignore the hugepages value. hugepages can also
4341 * be the first huge page command line option in which case it implicitly
4342 * specifies the number of huge pages for the default size.
4343 */
4344static int __init hugepages_setup(char *s)
4345{
4346 unsigned long *mhp;
4347 static unsigned long *last_mhp;
4348 int node = NUMA_NO_NODE;
4349 int count;
4350 unsigned long tmp;
4351 char *p = s;
4352
4353 if (!parsed_valid_hugepagesz) {
4354 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4355 parsed_valid_hugepagesz = true;
4356 return 1;
4357 }
4358
4359 /*
4360 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4361 * yet, so this hugepages= parameter goes to the "default hstate".
4362 * Otherwise, it goes with the previously parsed hugepagesz or
4363 * default_hugepagesz.
4364 */
4365 else if (!hugetlb_max_hstate)
4366 mhp = &default_hstate_max_huge_pages;
4367 else
4368 mhp = &parsed_hstate->max_huge_pages;
4369
4370 if (mhp == last_mhp) {
4371 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4372 return 1;
4373 }
4374
4375 while (*p) {
4376 count = 0;
4377 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4378 goto invalid;
4379 /* Parameter is node format */
4380 if (p[count] == ':') {
4381 if (!hugetlb_node_alloc_supported()) {
4382 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4383 return 1;
4384 }
4385 if (tmp >= MAX_NUMNODES || !node_online(tmp))
4386 goto invalid;
4387 node = array_index_nospec(tmp, MAX_NUMNODES);
4388 p += count + 1;
4389 /* Parse hugepages */
4390 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4391 goto invalid;
4392 if (!hugetlb_max_hstate)
4393 default_hugepages_in_node[node] = tmp;
4394 else
4395 parsed_hstate->max_huge_pages_node[node] = tmp;
4396 *mhp += tmp;
4397 /* Go to parse next node*/
4398 if (p[count] == ',')
4399 p += count + 1;
4400 else
4401 break;
4402 } else {
4403 if (p != s)
4404 goto invalid;
4405 *mhp = tmp;
4406 break;
4407 }
4408 }
4409
4410 /*
4411 * Global state is always initialized later in hugetlb_init.
4412 * But we need to allocate gigantic hstates here early to still
4413 * use the bootmem allocator.
4414 */
4415 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4416 hugetlb_hstate_alloc_pages(parsed_hstate);
4417
4418 last_mhp = mhp;
4419
4420 return 1;
4421
4422invalid:
4423 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4424 hugepages_clear_pages_in_node();
4425 return 1;
4426}
4427__setup("hugepages=", hugepages_setup);
4428
4429/*
4430 * hugepagesz command line processing
4431 * A specific huge page size can only be specified once with hugepagesz.
4432 * hugepagesz is followed by hugepages on the command line. The global
4433 * variable 'parsed_valid_hugepagesz' is used to determine if prior
4434 * hugepagesz argument was valid.
4435 */
4436static int __init hugepagesz_setup(char *s)
4437{
4438 unsigned long size;
4439 struct hstate *h;
4440
4441 parsed_valid_hugepagesz = false;
4442 size = (unsigned long)memparse(s, NULL);
4443
4444 if (!arch_hugetlb_valid_size(size)) {
4445 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4446 return 1;
4447 }
4448
4449 h = size_to_hstate(size);
4450 if (h) {
4451 /*
4452 * hstate for this size already exists. This is normally
4453 * an error, but is allowed if the existing hstate is the
4454 * default hstate. More specifically, it is only allowed if
4455 * the number of huge pages for the default hstate was not
4456 * previously specified.
4457 */
4458 if (!parsed_default_hugepagesz || h != &default_hstate ||
4459 default_hstate.max_huge_pages) {
4460 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4461 return 1;
4462 }
4463
4464 /*
4465 * No need to call hugetlb_add_hstate() as hstate already
4466 * exists. But, do set parsed_hstate so that a following
4467 * hugepages= parameter will be applied to this hstate.
4468 */
4469 parsed_hstate = h;
4470 parsed_valid_hugepagesz = true;
4471 return 1;
4472 }
4473
4474 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4475 parsed_valid_hugepagesz = true;
4476 return 1;
4477}
4478__setup("hugepagesz=", hugepagesz_setup);
4479
4480/*
4481 * default_hugepagesz command line input
4482 * Only one instance of default_hugepagesz allowed on command line.
4483 */
4484static int __init default_hugepagesz_setup(char *s)
4485{
4486 unsigned long size;
4487 int i;
4488
4489 parsed_valid_hugepagesz = false;
4490 if (parsed_default_hugepagesz) {
4491 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4492 return 1;
4493 }
4494
4495 size = (unsigned long)memparse(s, NULL);
4496
4497 if (!arch_hugetlb_valid_size(size)) {
4498 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4499 return 1;
4500 }
4501
4502 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4503 parsed_valid_hugepagesz = true;
4504 parsed_default_hugepagesz = true;
4505 default_hstate_idx = hstate_index(size_to_hstate(size));
4506
4507 /*
4508 * The number of default huge pages (for this size) could have been
4509 * specified as the first hugetlb parameter: hugepages=X. If so,
4510 * then default_hstate_max_huge_pages is set. If the default huge
4511 * page size is gigantic (> MAX_ORDER), then the pages must be
4512 * allocated here from bootmem allocator.
4513 */
4514 if (default_hstate_max_huge_pages) {
4515 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4516 for_each_online_node(i)
4517 default_hstate.max_huge_pages_node[i] =
4518 default_hugepages_in_node[i];
4519 if (hstate_is_gigantic(&default_hstate))
4520 hugetlb_hstate_alloc_pages(&default_hstate);
4521 default_hstate_max_huge_pages = 0;
4522 }
4523
4524 return 1;
4525}
4526__setup("default_hugepagesz=", default_hugepagesz_setup);
4527
4528static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4529{
4530#ifdef CONFIG_NUMA
4531 struct mempolicy *mpol = get_task_policy(current);
4532
4533 /*
4534 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4535 * (from policy_nodemask) specifically for hugetlb case
4536 */
4537 if (mpol->mode == MPOL_BIND &&
4538 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
4539 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4540 return &mpol->nodes;
4541#endif
4542 return NULL;
4543}
4544
4545static unsigned int allowed_mems_nr(struct hstate *h)
4546{
4547 int node;
4548 unsigned int nr = 0;
4549 nodemask_t *mbind_nodemask;
4550 unsigned int *array = h->free_huge_pages_node;
4551 gfp_t gfp_mask = htlb_alloc_mask(h);
4552
4553 mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4554 for_each_node_mask(node, cpuset_current_mems_allowed) {
4555 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4556 nr += array[node];
4557 }
4558
4559 return nr;
4560}
4561
4562#ifdef CONFIG_SYSCTL
4563static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4564 void *buffer, size_t *length,
4565 loff_t *ppos, unsigned long *out)
4566{
4567 struct ctl_table dup_table;
4568
4569 /*
4570 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4571 * can duplicate the @table and alter the duplicate of it.
4572 */
4573 dup_table = *table;
4574 dup_table.data = out;
4575
4576 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4577}
4578
4579static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4580 struct ctl_table *table, int write,
4581 void *buffer, size_t *length, loff_t *ppos)
4582{
4583 struct hstate *h = &default_hstate;
4584 unsigned long tmp = h->max_huge_pages;
4585 int ret;
4586
4587 if (!hugepages_supported())
4588 return -EOPNOTSUPP;
4589
4590 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4591 &tmp);
4592 if (ret)
4593 goto out;
4594
4595 if (write)
4596 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4597 NUMA_NO_NODE, tmp, *length);
4598out:
4599 return ret;
4600}
4601
4602static int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4603 void *buffer, size_t *length, loff_t *ppos)
4604{
4605
4606 return hugetlb_sysctl_handler_common(false, table, write,
4607 buffer, length, ppos);
4608}
4609
4610#ifdef CONFIG_NUMA
4611static int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4612 void *buffer, size_t *length, loff_t *ppos)
4613{
4614 return hugetlb_sysctl_handler_common(true, table, write,
4615 buffer, length, ppos);
4616}
4617#endif /* CONFIG_NUMA */
4618
4619static int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4620 void *buffer, size_t *length, loff_t *ppos)
4621{
4622 struct hstate *h = &default_hstate;
4623 unsigned long tmp;
4624 int ret;
4625
4626 if (!hugepages_supported())
4627 return -EOPNOTSUPP;
4628
4629 tmp = h->nr_overcommit_huge_pages;
4630
4631 if (write && hstate_is_gigantic(h))
4632 return -EINVAL;
4633
4634 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4635 &tmp);
4636 if (ret)
4637 goto out;
4638
4639 if (write) {
4640 spin_lock_irq(&hugetlb_lock);
4641 h->nr_overcommit_huge_pages = tmp;
4642 spin_unlock_irq(&hugetlb_lock);
4643 }
4644out:
4645 return ret;
4646}
4647
4648static struct ctl_table hugetlb_table[] = {
4649 {
4650 .procname = "nr_hugepages",
4651 .data = NULL,
4652 .maxlen = sizeof(unsigned long),
4653 .mode = 0644,
4654 .proc_handler = hugetlb_sysctl_handler,
4655 },
4656#ifdef CONFIG_NUMA
4657 {
4658 .procname = "nr_hugepages_mempolicy",
4659 .data = NULL,
4660 .maxlen = sizeof(unsigned long),
4661 .mode = 0644,
4662 .proc_handler = &hugetlb_mempolicy_sysctl_handler,
4663 },
4664#endif
4665 {
4666 .procname = "hugetlb_shm_group",
4667 .data = &sysctl_hugetlb_shm_group,
4668 .maxlen = sizeof(gid_t),
4669 .mode = 0644,
4670 .proc_handler = proc_dointvec,
4671 },
4672 {
4673 .procname = "nr_overcommit_hugepages",
4674 .data = NULL,
4675 .maxlen = sizeof(unsigned long),
4676 .mode = 0644,
4677 .proc_handler = hugetlb_overcommit_handler,
4678 },
4679 { }
4680};
4681
4682static void hugetlb_sysctl_init(void)
4683{
4684 register_sysctl_init("vm", hugetlb_table);
4685}
4686#endif /* CONFIG_SYSCTL */
4687
4688void hugetlb_report_meminfo(struct seq_file *m)
4689{
4690 struct hstate *h;
4691 unsigned long total = 0;
4692
4693 if (!hugepages_supported())
4694 return;
4695
4696 for_each_hstate(h) {
4697 unsigned long count = h->nr_huge_pages;
4698
4699 total += huge_page_size(h) * count;
4700
4701 if (h == &default_hstate)
4702 seq_printf(m,
4703 "HugePages_Total: %5lu\n"
4704 "HugePages_Free: %5lu\n"
4705 "HugePages_Rsvd: %5lu\n"
4706 "HugePages_Surp: %5lu\n"
4707 "Hugepagesize: %8lu kB\n",
4708 count,
4709 h->free_huge_pages,
4710 h->resv_huge_pages,
4711 h->surplus_huge_pages,
4712 huge_page_size(h) / SZ_1K);
4713 }
4714
4715 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
4716}
4717
4718int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4719{
4720 struct hstate *h = &default_hstate;
4721
4722 if (!hugepages_supported())
4723 return 0;
4724
4725 return sysfs_emit_at(buf, len,
4726 "Node %d HugePages_Total: %5u\n"
4727 "Node %d HugePages_Free: %5u\n"
4728 "Node %d HugePages_Surp: %5u\n",
4729 nid, h->nr_huge_pages_node[nid],
4730 nid, h->free_huge_pages_node[nid],
4731 nid, h->surplus_huge_pages_node[nid]);
4732}
4733
4734void hugetlb_show_meminfo_node(int nid)
4735{
4736 struct hstate *h;
4737
4738 if (!hugepages_supported())
4739 return;
4740
4741 for_each_hstate(h)
4742 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4743 nid,
4744 h->nr_huge_pages_node[nid],
4745 h->free_huge_pages_node[nid],
4746 h->surplus_huge_pages_node[nid],
4747 huge_page_size(h) / SZ_1K);
4748}
4749
4750void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4751{
4752 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4753 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4754}
4755
4756/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4757unsigned long hugetlb_total_pages(void)
4758{
4759 struct hstate *h;
4760 unsigned long nr_total_pages = 0;
4761
4762 for_each_hstate(h)
4763 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4764 return nr_total_pages;
4765}
4766
4767static int hugetlb_acct_memory(struct hstate *h, long delta)
4768{
4769 int ret = -ENOMEM;
4770
4771 if (!delta)
4772 return 0;
4773
4774 spin_lock_irq(&hugetlb_lock);
4775 /*
4776 * When cpuset is configured, it breaks the strict hugetlb page
4777 * reservation as the accounting is done on a global variable. Such
4778 * reservation is completely rubbish in the presence of cpuset because
4779 * the reservation is not checked against page availability for the
4780 * current cpuset. Application can still potentially OOM'ed by kernel
4781 * with lack of free htlb page in cpuset that the task is in.
4782 * Attempt to enforce strict accounting with cpuset is almost
4783 * impossible (or too ugly) because cpuset is too fluid that
4784 * task or memory node can be dynamically moved between cpusets.
4785 *
4786 * The change of semantics for shared hugetlb mapping with cpuset is
4787 * undesirable. However, in order to preserve some of the semantics,
4788 * we fall back to check against current free page availability as
4789 * a best attempt and hopefully to minimize the impact of changing
4790 * semantics that cpuset has.
4791 *
4792 * Apart from cpuset, we also have memory policy mechanism that
4793 * also determines from which node the kernel will allocate memory
4794 * in a NUMA system. So similar to cpuset, we also should consider
4795 * the memory policy of the current task. Similar to the description
4796 * above.
4797 */
4798 if (delta > 0) {
4799 if (gather_surplus_pages(h, delta) < 0)
4800 goto out;
4801
4802 if (delta > allowed_mems_nr(h)) {
4803 return_unused_surplus_pages(h, delta);
4804 goto out;
4805 }
4806 }
4807
4808 ret = 0;
4809 if (delta < 0)
4810 return_unused_surplus_pages(h, (unsigned long) -delta);
4811
4812out:
4813 spin_unlock_irq(&hugetlb_lock);
4814 return ret;
4815}
4816
4817static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4818{
4819 struct resv_map *resv = vma_resv_map(vma);
4820
4821 /*
4822 * HPAGE_RESV_OWNER indicates a private mapping.
4823 * This new VMA should share its siblings reservation map if present.
4824 * The VMA will only ever have a valid reservation map pointer where
4825 * it is being copied for another still existing VMA. As that VMA
4826 * has a reference to the reservation map it cannot disappear until
4827 * after this open call completes. It is therefore safe to take a
4828 * new reference here without additional locking.
4829 */
4830 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4831 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4832 kref_get(&resv->refs);
4833 }
4834
4835 /*
4836 * vma_lock structure for sharable mappings is vma specific.
4837 * Clear old pointer (if copied via vm_area_dup) and allocate
4838 * new structure. Before clearing, make sure vma_lock is not
4839 * for this vma.
4840 */
4841 if (vma->vm_flags & VM_MAYSHARE) {
4842 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
4843
4844 if (vma_lock) {
4845 if (vma_lock->vma != vma) {
4846 vma->vm_private_data = NULL;
4847 hugetlb_vma_lock_alloc(vma);
4848 } else
4849 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
4850 } else
4851 hugetlb_vma_lock_alloc(vma);
4852 }
4853}
4854
4855static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4856{
4857 struct hstate *h = hstate_vma(vma);
4858 struct resv_map *resv;
4859 struct hugepage_subpool *spool = subpool_vma(vma);
4860 unsigned long reserve, start, end;
4861 long gbl_reserve;
4862
4863 hugetlb_vma_lock_free(vma);
4864
4865 resv = vma_resv_map(vma);
4866 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4867 return;
4868
4869 start = vma_hugecache_offset(h, vma, vma->vm_start);
4870 end = vma_hugecache_offset(h, vma, vma->vm_end);
4871
4872 reserve = (end - start) - region_count(resv, start, end);
4873 hugetlb_cgroup_uncharge_counter(resv, start, end);
4874 if (reserve) {
4875 /*
4876 * Decrement reserve counts. The global reserve count may be
4877 * adjusted if the subpool has a minimum size.
4878 */
4879 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4880 hugetlb_acct_memory(h, -gbl_reserve);
4881 }
4882
4883 kref_put(&resv->refs, resv_map_release);
4884}
4885
4886static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4887{
4888 if (addr & ~(huge_page_mask(hstate_vma(vma))))
4889 return -EINVAL;
4890
4891 /*
4892 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
4893 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
4894 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
4895 */
4896 if (addr & ~PUD_MASK) {
4897 /*
4898 * hugetlb_vm_op_split is called right before we attempt to
4899 * split the VMA. We will need to unshare PMDs in the old and
4900 * new VMAs, so let's unshare before we split.
4901 */
4902 unsigned long floor = addr & PUD_MASK;
4903 unsigned long ceil = floor + PUD_SIZE;
4904
4905 if (floor >= vma->vm_start && ceil <= vma->vm_end)
4906 hugetlb_unshare_pmds(vma, floor, ceil);
4907 }
4908
4909 return 0;
4910}
4911
4912static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4913{
4914 return huge_page_size(hstate_vma(vma));
4915}
4916
4917/*
4918 * We cannot handle pagefaults against hugetlb pages at all. They cause
4919 * handle_mm_fault() to try to instantiate regular-sized pages in the
4920 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
4921 * this far.
4922 */
4923static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4924{
4925 BUG();
4926 return 0;
4927}
4928
4929/*
4930 * When a new function is introduced to vm_operations_struct and added
4931 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4932 * This is because under System V memory model, mappings created via
4933 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4934 * their original vm_ops are overwritten with shm_vm_ops.
4935 */
4936const struct vm_operations_struct hugetlb_vm_ops = {
4937 .fault = hugetlb_vm_op_fault,
4938 .open = hugetlb_vm_op_open,
4939 .close = hugetlb_vm_op_close,
4940 .may_split = hugetlb_vm_op_split,
4941 .pagesize = hugetlb_vm_op_pagesize,
4942};
4943
4944static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4945 int writable)
4946{
4947 pte_t entry;
4948 unsigned int shift = huge_page_shift(hstate_vma(vma));
4949
4950 if (writable) {
4951 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4952 vma->vm_page_prot)));
4953 } else {
4954 entry = huge_pte_wrprotect(mk_huge_pte(page,
4955 vma->vm_page_prot));
4956 }
4957 entry = pte_mkyoung(entry);
4958 entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4959
4960 return entry;
4961}
4962
4963static void set_huge_ptep_writable(struct vm_area_struct *vma,
4964 unsigned long address, pte_t *ptep)
4965{
4966 pte_t entry;
4967
4968 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4969 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4970 update_mmu_cache(vma, address, ptep);
4971}
4972
4973bool is_hugetlb_entry_migration(pte_t pte)
4974{
4975 swp_entry_t swp;
4976
4977 if (huge_pte_none(pte) || pte_present(pte))
4978 return false;
4979 swp = pte_to_swp_entry(pte);
4980 if (is_migration_entry(swp))
4981 return true;
4982 else
4983 return false;
4984}
4985
4986static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4987{
4988 swp_entry_t swp;
4989
4990 if (huge_pte_none(pte) || pte_present(pte))
4991 return false;
4992 swp = pte_to_swp_entry(pte);
4993 if (is_hwpoison_entry(swp))
4994 return true;
4995 else
4996 return false;
4997}
4998
4999static void
5000hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
5001 struct folio *new_folio, pte_t old)
5002{
5003 pte_t newpte = make_huge_pte(vma, &new_folio->page, 1);
5004
5005 __folio_mark_uptodate(new_folio);
5006 hugepage_add_new_anon_rmap(new_folio, vma, addr);
5007 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
5008 newpte = huge_pte_mkuffd_wp(newpte);
5009 set_huge_pte_at(vma->vm_mm, addr, ptep, newpte);
5010 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
5011 folio_set_hugetlb_migratable(new_folio);
5012}
5013
5014int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
5015 struct vm_area_struct *dst_vma,
5016 struct vm_area_struct *src_vma)
5017{
5018 pte_t *src_pte, *dst_pte, entry;
5019 struct page *ptepage;
5020 unsigned long addr;
5021 bool cow = is_cow_mapping(src_vma->vm_flags);
5022 struct hstate *h = hstate_vma(src_vma);
5023 unsigned long sz = huge_page_size(h);
5024 unsigned long npages = pages_per_huge_page(h);
5025 struct mmu_notifier_range range;
5026 unsigned long last_addr_mask;
5027 int ret = 0;
5028
5029 if (cow) {
5030 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5031 src_vma->vm_start,
5032 src_vma->vm_end);
5033 mmu_notifier_invalidate_range_start(&range);
5034 mmap_assert_write_locked(src);
5035 raw_write_seqcount_begin(&src->write_protect_seq);
5036 } else {
5037 /*
5038 * For shared mappings the vma lock must be held before
5039 * calling hugetlb_walk() in the src vma. Otherwise, the
5040 * returned ptep could go away if part of a shared pmd and
5041 * another thread calls huge_pmd_unshare.
5042 */
5043 hugetlb_vma_lock_read(src_vma);
5044 }
5045
5046 last_addr_mask = hugetlb_mask_last_page(h);
5047 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5048 spinlock_t *src_ptl, *dst_ptl;
5049 src_pte = hugetlb_walk(src_vma, addr, sz);
5050 if (!src_pte) {
5051 addr |= last_addr_mask;
5052 continue;
5053 }
5054 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5055 if (!dst_pte) {
5056 ret = -ENOMEM;
5057 break;
5058 }
5059
5060 /*
5061 * If the pagetables are shared don't copy or take references.
5062 *
5063 * dst_pte == src_pte is the common case of src/dest sharing.
5064 * However, src could have 'unshared' and dst shares with
5065 * another vma. So page_count of ptep page is checked instead
5066 * to reliably determine whether pte is shared.
5067 */
5068 if (page_count(virt_to_page(dst_pte)) > 1) {
5069 addr |= last_addr_mask;
5070 continue;
5071 }
5072
5073 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5074 src_ptl = huge_pte_lockptr(h, src, src_pte);
5075 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5076 entry = huge_ptep_get(src_pte);
5077again:
5078 if (huge_pte_none(entry)) {
5079 /*
5080 * Skip if src entry none.
5081 */
5082 ;
5083 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5084 if (!userfaultfd_wp(dst_vma))
5085 entry = huge_pte_clear_uffd_wp(entry);
5086 set_huge_pte_at(dst, addr, dst_pte, entry);
5087 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
5088 swp_entry_t swp_entry = pte_to_swp_entry(entry);
5089 bool uffd_wp = pte_swp_uffd_wp(entry);
5090
5091 if (!is_readable_migration_entry(swp_entry) && cow) {
5092 /*
5093 * COW mappings require pages in both
5094 * parent and child to be set to read.
5095 */
5096 swp_entry = make_readable_migration_entry(
5097 swp_offset(swp_entry));
5098 entry = swp_entry_to_pte(swp_entry);
5099 if (userfaultfd_wp(src_vma) && uffd_wp)
5100 entry = pte_swp_mkuffd_wp(entry);
5101 set_huge_pte_at(src, addr, src_pte, entry);
5102 }
5103 if (!userfaultfd_wp(dst_vma))
5104 entry = huge_pte_clear_uffd_wp(entry);
5105 set_huge_pte_at(dst, addr, dst_pte, entry);
5106 } else if (unlikely(is_pte_marker(entry))) {
5107 /* No swap on hugetlb */
5108 WARN_ON_ONCE(
5109 is_swapin_error_entry(pte_to_swp_entry(entry)));
5110 /*
5111 * We copy the pte marker only if the dst vma has
5112 * uffd-wp enabled.
5113 */
5114 if (userfaultfd_wp(dst_vma))
5115 set_huge_pte_at(dst, addr, dst_pte, entry);
5116 } else {
5117 entry = huge_ptep_get(src_pte);
5118 ptepage = pte_page(entry);
5119 get_page(ptepage);
5120
5121 /*
5122 * Failing to duplicate the anon rmap is a rare case
5123 * where we see pinned hugetlb pages while they're
5124 * prone to COW. We need to do the COW earlier during
5125 * fork.
5126 *
5127 * When pre-allocating the page or copying data, we
5128 * need to be without the pgtable locks since we could
5129 * sleep during the process.
5130 */
5131 if (!PageAnon(ptepage)) {
5132 page_dup_file_rmap(ptepage, true);
5133 } else if (page_try_dup_anon_rmap(ptepage, true,
5134 src_vma)) {
5135 pte_t src_pte_old = entry;
5136 struct folio *new_folio;
5137
5138 spin_unlock(src_ptl);
5139 spin_unlock(dst_ptl);
5140 /* Do not use reserve as it's private owned */
5141 new_folio = alloc_hugetlb_folio(dst_vma, addr, 1);
5142 if (IS_ERR(new_folio)) {
5143 put_page(ptepage);
5144 ret = PTR_ERR(new_folio);
5145 break;
5146 }
5147 ret = copy_user_large_folio(new_folio,
5148 page_folio(ptepage),
5149 addr, dst_vma);
5150 put_page(ptepage);
5151 if (ret) {
5152 folio_put(new_folio);
5153 break;
5154 }
5155
5156 /* Install the new hugetlb folio if src pte stable */
5157 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5158 src_ptl = huge_pte_lockptr(h, src, src_pte);
5159 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5160 entry = huge_ptep_get(src_pte);
5161 if (!pte_same(src_pte_old, entry)) {
5162 restore_reserve_on_error(h, dst_vma, addr,
5163 new_folio);
5164 folio_put(new_folio);
5165 /* huge_ptep of dst_pte won't change as in child */
5166 goto again;
5167 }
5168 hugetlb_install_folio(dst_vma, dst_pte, addr,
5169 new_folio, src_pte_old);
5170 spin_unlock(src_ptl);
5171 spin_unlock(dst_ptl);
5172 continue;
5173 }
5174
5175 if (cow) {
5176 /*
5177 * No need to notify as we are downgrading page
5178 * table protection not changing it to point
5179 * to a new page.
5180 *
5181 * See Documentation/mm/mmu_notifier.rst
5182 */
5183 huge_ptep_set_wrprotect(src, addr, src_pte);
5184 entry = huge_pte_wrprotect(entry);
5185 }
5186
5187 if (!userfaultfd_wp(dst_vma))
5188 entry = huge_pte_clear_uffd_wp(entry);
5189
5190 set_huge_pte_at(dst, addr, dst_pte, entry);
5191 hugetlb_count_add(npages, dst);
5192 }
5193 spin_unlock(src_ptl);
5194 spin_unlock(dst_ptl);
5195 }
5196
5197 if (cow) {
5198 raw_write_seqcount_end(&src->write_protect_seq);
5199 mmu_notifier_invalidate_range_end(&range);
5200 } else {
5201 hugetlb_vma_unlock_read(src_vma);
5202 }
5203
5204 return ret;
5205}
5206
5207static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5208 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
5209{
5210 struct hstate *h = hstate_vma(vma);
5211 struct mm_struct *mm = vma->vm_mm;
5212 spinlock_t *src_ptl, *dst_ptl;
5213 pte_t pte;
5214
5215 dst_ptl = huge_pte_lock(h, mm, dst_pte);
5216 src_ptl = huge_pte_lockptr(h, mm, src_pte);
5217
5218 /*
5219 * We don't have to worry about the ordering of src and dst ptlocks
5220 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5221 */
5222 if (src_ptl != dst_ptl)
5223 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5224
5225 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5226 set_huge_pte_at(mm, new_addr, dst_pte, pte);
5227
5228 if (src_ptl != dst_ptl)
5229 spin_unlock(src_ptl);
5230 spin_unlock(dst_ptl);
5231}
5232
5233int move_hugetlb_page_tables(struct vm_area_struct *vma,
5234 struct vm_area_struct *new_vma,
5235 unsigned long old_addr, unsigned long new_addr,
5236 unsigned long len)
5237{
5238 struct hstate *h = hstate_vma(vma);
5239 struct address_space *mapping = vma->vm_file->f_mapping;
5240 unsigned long sz = huge_page_size(h);
5241 struct mm_struct *mm = vma->vm_mm;
5242 unsigned long old_end = old_addr + len;
5243 unsigned long last_addr_mask;
5244 pte_t *src_pte, *dst_pte;
5245 struct mmu_notifier_range range;
5246 bool shared_pmd = false;
5247
5248 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5249 old_end);
5250 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5251 /*
5252 * In case of shared PMDs, we should cover the maximum possible
5253 * range.
5254 */
5255 flush_cache_range(vma, range.start, range.end);
5256
5257 mmu_notifier_invalidate_range_start(&range);
5258 last_addr_mask = hugetlb_mask_last_page(h);
5259 /* Prevent race with file truncation */
5260 hugetlb_vma_lock_write(vma);
5261 i_mmap_lock_write(mapping);
5262 for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5263 src_pte = hugetlb_walk(vma, old_addr, sz);
5264 if (!src_pte) {
5265 old_addr |= last_addr_mask;
5266 new_addr |= last_addr_mask;
5267 continue;
5268 }
5269 if (huge_pte_none(huge_ptep_get(src_pte)))
5270 continue;
5271
5272 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5273 shared_pmd = true;
5274 old_addr |= last_addr_mask;
5275 new_addr |= last_addr_mask;
5276 continue;
5277 }
5278
5279 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5280 if (!dst_pte)
5281 break;
5282
5283 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
5284 }
5285
5286 if (shared_pmd)
5287 flush_tlb_range(vma, range.start, range.end);
5288 else
5289 flush_tlb_range(vma, old_end - len, old_end);
5290 mmu_notifier_invalidate_range_end(&range);
5291 i_mmap_unlock_write(mapping);
5292 hugetlb_vma_unlock_write(vma);
5293
5294 return len + old_addr - old_end;
5295}
5296
5297static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5298 unsigned long start, unsigned long end,
5299 struct page *ref_page, zap_flags_t zap_flags)
5300{
5301 struct mm_struct *mm = vma->vm_mm;
5302 unsigned long address;
5303 pte_t *ptep;
5304 pte_t pte;
5305 spinlock_t *ptl;
5306 struct page *page;
5307 struct hstate *h = hstate_vma(vma);
5308 unsigned long sz = huge_page_size(h);
5309 unsigned long last_addr_mask;
5310 bool force_flush = false;
5311
5312 WARN_ON(!is_vm_hugetlb_page(vma));
5313 BUG_ON(start & ~huge_page_mask(h));
5314 BUG_ON(end & ~huge_page_mask(h));
5315
5316 /*
5317 * This is a hugetlb vma, all the pte entries should point
5318 * to huge page.
5319 */
5320 tlb_change_page_size(tlb, sz);
5321 tlb_start_vma(tlb, vma);
5322
5323 last_addr_mask = hugetlb_mask_last_page(h);
5324 address = start;
5325 for (; address < end; address += sz) {
5326 ptep = hugetlb_walk(vma, address, sz);
5327 if (!ptep) {
5328 address |= last_addr_mask;
5329 continue;
5330 }
5331
5332 ptl = huge_pte_lock(h, mm, ptep);
5333 if (huge_pmd_unshare(mm, vma, address, ptep)) {
5334 spin_unlock(ptl);
5335 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5336 force_flush = true;
5337 address |= last_addr_mask;
5338 continue;
5339 }
5340
5341 pte = huge_ptep_get(ptep);
5342 if (huge_pte_none(pte)) {
5343 spin_unlock(ptl);
5344 continue;
5345 }
5346
5347 /*
5348 * Migrating hugepage or HWPoisoned hugepage is already
5349 * unmapped and its refcount is dropped, so just clear pte here.
5350 */
5351 if (unlikely(!pte_present(pte))) {
5352 /*
5353 * If the pte was wr-protected by uffd-wp in any of the
5354 * swap forms, meanwhile the caller does not want to
5355 * drop the uffd-wp bit in this zap, then replace the
5356 * pte with a marker.
5357 */
5358 if (pte_swp_uffd_wp_any(pte) &&
5359 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5360 set_huge_pte_at(mm, address, ptep,
5361 make_pte_marker(PTE_MARKER_UFFD_WP));
5362 else
5363 huge_pte_clear(mm, address, ptep, sz);
5364 spin_unlock(ptl);
5365 continue;
5366 }
5367
5368 page = pte_page(pte);
5369 /*
5370 * If a reference page is supplied, it is because a specific
5371 * page is being unmapped, not a range. Ensure the page we
5372 * are about to unmap is the actual page of interest.
5373 */
5374 if (ref_page) {
5375 if (page != ref_page) {
5376 spin_unlock(ptl);
5377 continue;
5378 }
5379 /*
5380 * Mark the VMA as having unmapped its page so that
5381 * future faults in this VMA will fail rather than
5382 * looking like data was lost
5383 */
5384 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5385 }
5386
5387 pte = huge_ptep_get_and_clear(mm, address, ptep);
5388 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5389 if (huge_pte_dirty(pte))
5390 set_page_dirty(page);
5391 /* Leave a uffd-wp pte marker if needed */
5392 if (huge_pte_uffd_wp(pte) &&
5393 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5394 set_huge_pte_at(mm, address, ptep,
5395 make_pte_marker(PTE_MARKER_UFFD_WP));
5396 hugetlb_count_sub(pages_per_huge_page(h), mm);
5397 page_remove_rmap(page, vma, true);
5398
5399 spin_unlock(ptl);
5400 tlb_remove_page_size(tlb, page, huge_page_size(h));
5401 /*
5402 * Bail out after unmapping reference page if supplied
5403 */
5404 if (ref_page)
5405 break;
5406 }
5407 tlb_end_vma(tlb, vma);
5408
5409 /*
5410 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5411 * could defer the flush until now, since by holding i_mmap_rwsem we
5412 * guaranteed that the last refernece would not be dropped. But we must
5413 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5414 * dropped and the last reference to the shared PMDs page might be
5415 * dropped as well.
5416 *
5417 * In theory we could defer the freeing of the PMD pages as well, but
5418 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5419 * detect sharing, so we cannot defer the release of the page either.
5420 * Instead, do flush now.
5421 */
5422 if (force_flush)
5423 tlb_flush_mmu_tlbonly(tlb);
5424}
5425
5426void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5427 struct vm_area_struct *vma, unsigned long start,
5428 unsigned long end, struct page *ref_page,
5429 zap_flags_t zap_flags)
5430{
5431 hugetlb_vma_lock_write(vma);
5432 i_mmap_lock_write(vma->vm_file->f_mapping);
5433
5434 /* mmu notification performed in caller */
5435 __unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
5436
5437 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */
5438 /*
5439 * Unlock and free the vma lock before releasing i_mmap_rwsem.
5440 * When the vma_lock is freed, this makes the vma ineligible
5441 * for pmd sharing. And, i_mmap_rwsem is required to set up
5442 * pmd sharing. This is important as page tables for this
5443 * unmapped range will be asynchrously deleted. If the page
5444 * tables are shared, there will be issues when accessed by
5445 * someone else.
5446 */
5447 __hugetlb_vma_unlock_write_free(vma);
5448 i_mmap_unlock_write(vma->vm_file->f_mapping);
5449 } else {
5450 i_mmap_unlock_write(vma->vm_file->f_mapping);
5451 hugetlb_vma_unlock_write(vma);
5452 }
5453}
5454
5455void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5456 unsigned long end, struct page *ref_page,
5457 zap_flags_t zap_flags)
5458{
5459 struct mmu_notifier_range range;
5460 struct mmu_gather tlb;
5461
5462 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5463 start, end);
5464 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5465 mmu_notifier_invalidate_range_start(&range);
5466 tlb_gather_mmu(&tlb, vma->vm_mm);
5467
5468 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5469
5470 mmu_notifier_invalidate_range_end(&range);
5471 tlb_finish_mmu(&tlb);
5472}
5473
5474/*
5475 * This is called when the original mapper is failing to COW a MAP_PRIVATE
5476 * mapping it owns the reserve page for. The intention is to unmap the page
5477 * from other VMAs and let the children be SIGKILLed if they are faulting the
5478 * same region.
5479 */
5480static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5481 struct page *page, unsigned long address)
5482{
5483 struct hstate *h = hstate_vma(vma);
5484 struct vm_area_struct *iter_vma;
5485 struct address_space *mapping;
5486 pgoff_t pgoff;
5487
5488 /*
5489 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5490 * from page cache lookup which is in HPAGE_SIZE units.
5491 */
5492 address = address & huge_page_mask(h);
5493 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5494 vma->vm_pgoff;
5495 mapping = vma->vm_file->f_mapping;
5496
5497 /*
5498 * Take the mapping lock for the duration of the table walk. As
5499 * this mapping should be shared between all the VMAs,
5500 * __unmap_hugepage_range() is called as the lock is already held
5501 */
5502 i_mmap_lock_write(mapping);
5503 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5504 /* Do not unmap the current VMA */
5505 if (iter_vma == vma)
5506 continue;
5507
5508 /*
5509 * Shared VMAs have their own reserves and do not affect
5510 * MAP_PRIVATE accounting but it is possible that a shared
5511 * VMA is using the same page so check and skip such VMAs.
5512 */
5513 if (iter_vma->vm_flags & VM_MAYSHARE)
5514 continue;
5515
5516 /*
5517 * Unmap the page from other VMAs without their own reserves.
5518 * They get marked to be SIGKILLed if they fault in these
5519 * areas. This is because a future no-page fault on this VMA
5520 * could insert a zeroed page instead of the data existing
5521 * from the time of fork. This would look like data corruption
5522 */
5523 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5524 unmap_hugepage_range(iter_vma, address,
5525 address + huge_page_size(h), page, 0);
5526 }
5527 i_mmap_unlock_write(mapping);
5528}
5529
5530/*
5531 * hugetlb_wp() should be called with page lock of the original hugepage held.
5532 * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5533 * cannot race with other handlers or page migration.
5534 * Keep the pte_same checks anyway to make transition from the mutex easier.
5535 */
5536static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5537 unsigned long address, pte_t *ptep, unsigned int flags,
5538 struct folio *pagecache_folio, spinlock_t *ptl)
5539{
5540 const bool unshare = flags & FAULT_FLAG_UNSHARE;
5541 pte_t pte = huge_ptep_get(ptep);
5542 struct hstate *h = hstate_vma(vma);
5543 struct page *old_page;
5544 struct folio *new_folio;
5545 int outside_reserve = 0;
5546 vm_fault_t ret = 0;
5547 unsigned long haddr = address & huge_page_mask(h);
5548 struct mmu_notifier_range range;
5549
5550 /*
5551 * Never handle CoW for uffd-wp protected pages. It should be only
5552 * handled when the uffd-wp protection is removed.
5553 *
5554 * Note that only the CoW optimization path (in hugetlb_no_page())
5555 * can trigger this, because hugetlb_fault() will always resolve
5556 * uffd-wp bit first.
5557 */
5558 if (!unshare && huge_pte_uffd_wp(pte))
5559 return 0;
5560
5561 /*
5562 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5563 * PTE mapped R/O such as maybe_mkwrite() would do.
5564 */
5565 if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5566 return VM_FAULT_SIGSEGV;
5567
5568 /* Let's take out MAP_SHARED mappings first. */
5569 if (vma->vm_flags & VM_MAYSHARE) {
5570 set_huge_ptep_writable(vma, haddr, ptep);
5571 return 0;
5572 }
5573
5574 old_page = pte_page(pte);
5575
5576 delayacct_wpcopy_start();
5577
5578retry_avoidcopy:
5579 /*
5580 * If no-one else is actually using this page, we're the exclusive
5581 * owner and can reuse this page.
5582 */
5583 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5584 if (!PageAnonExclusive(old_page))
5585 page_move_anon_rmap(old_page, vma);
5586 if (likely(!unshare))
5587 set_huge_ptep_writable(vma, haddr, ptep);
5588
5589 delayacct_wpcopy_end();
5590 return 0;
5591 }
5592 VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page),
5593 old_page);
5594
5595 /*
5596 * If the process that created a MAP_PRIVATE mapping is about to
5597 * perform a COW due to a shared page count, attempt to satisfy
5598 * the allocation without using the existing reserves. The pagecache
5599 * page is used to determine if the reserve at this address was
5600 * consumed or not. If reserves were used, a partial faulted mapping
5601 * at the time of fork() could consume its reserves on COW instead
5602 * of the full address range.
5603 */
5604 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5605 page_folio(old_page) != pagecache_folio)
5606 outside_reserve = 1;
5607
5608 get_page(old_page);
5609
5610 /*
5611 * Drop page table lock as buddy allocator may be called. It will
5612 * be acquired again before returning to the caller, as expected.
5613 */
5614 spin_unlock(ptl);
5615 new_folio = alloc_hugetlb_folio(vma, haddr, outside_reserve);
5616
5617 if (IS_ERR(new_folio)) {
5618 /*
5619 * If a process owning a MAP_PRIVATE mapping fails to COW,
5620 * it is due to references held by a child and an insufficient
5621 * huge page pool. To guarantee the original mappers
5622 * reliability, unmap the page from child processes. The child
5623 * may get SIGKILLed if it later faults.
5624 */
5625 if (outside_reserve) {
5626 struct address_space *mapping = vma->vm_file->f_mapping;
5627 pgoff_t idx;
5628 u32 hash;
5629
5630 put_page(old_page);
5631 /*
5632 * Drop hugetlb_fault_mutex and vma_lock before
5633 * unmapping. unmapping needs to hold vma_lock
5634 * in write mode. Dropping vma_lock in read mode
5635 * here is OK as COW mappings do not interact with
5636 * PMD sharing.
5637 *
5638 * Reacquire both after unmap operation.
5639 */
5640 idx = vma_hugecache_offset(h, vma, haddr);
5641 hash = hugetlb_fault_mutex_hash(mapping, idx);
5642 hugetlb_vma_unlock_read(vma);
5643 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5644
5645 unmap_ref_private(mm, vma, old_page, haddr);
5646
5647 mutex_lock(&hugetlb_fault_mutex_table[hash]);
5648 hugetlb_vma_lock_read(vma);
5649 spin_lock(ptl);
5650 ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5651 if (likely(ptep &&
5652 pte_same(huge_ptep_get(ptep), pte)))
5653 goto retry_avoidcopy;
5654 /*
5655 * race occurs while re-acquiring page table
5656 * lock, and our job is done.
5657 */
5658 delayacct_wpcopy_end();
5659 return 0;
5660 }
5661
5662 ret = vmf_error(PTR_ERR(new_folio));
5663 goto out_release_old;
5664 }
5665
5666 /*
5667 * When the original hugepage is shared one, it does not have
5668 * anon_vma prepared.
5669 */
5670 if (unlikely(anon_vma_prepare(vma))) {
5671 ret = VM_FAULT_OOM;
5672 goto out_release_all;
5673 }
5674
5675 if (copy_user_large_folio(new_folio, page_folio(old_page), address, vma)) {
5676 ret = VM_FAULT_HWPOISON_LARGE;
5677 goto out_release_all;
5678 }
5679 __folio_mark_uptodate(new_folio);
5680
5681 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, haddr,
5682 haddr + huge_page_size(h));
5683 mmu_notifier_invalidate_range_start(&range);
5684
5685 /*
5686 * Retake the page table lock to check for racing updates
5687 * before the page tables are altered
5688 */
5689 spin_lock(ptl);
5690 ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5691 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5692 pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare);
5693
5694 /* Break COW or unshare */
5695 huge_ptep_clear_flush(vma, haddr, ptep);
5696 mmu_notifier_invalidate_range(mm, range.start, range.end);
5697 page_remove_rmap(old_page, vma, true);
5698 hugepage_add_new_anon_rmap(new_folio, vma, haddr);
5699 if (huge_pte_uffd_wp(pte))
5700 newpte = huge_pte_mkuffd_wp(newpte);
5701 set_huge_pte_at(mm, haddr, ptep, newpte);
5702 folio_set_hugetlb_migratable(new_folio);
5703 /* Make the old page be freed below */
5704 new_folio = page_folio(old_page);
5705 }
5706 spin_unlock(ptl);
5707 mmu_notifier_invalidate_range_end(&range);
5708out_release_all:
5709 /*
5710 * No restore in case of successful pagetable update (Break COW or
5711 * unshare)
5712 */
5713 if (new_folio != page_folio(old_page))
5714 restore_reserve_on_error(h, vma, haddr, new_folio);
5715 folio_put(new_folio);
5716out_release_old:
5717 put_page(old_page);
5718
5719 spin_lock(ptl); /* Caller expects lock to be held */
5720
5721 delayacct_wpcopy_end();
5722 return ret;
5723}
5724
5725/*
5726 * Return whether there is a pagecache page to back given address within VMA.
5727 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5728 */
5729static bool hugetlbfs_pagecache_present(struct hstate *h,
5730 struct vm_area_struct *vma, unsigned long address)
5731{
5732 struct address_space *mapping = vma->vm_file->f_mapping;
5733 pgoff_t idx = vma_hugecache_offset(h, vma, address);
5734 bool present;
5735
5736 rcu_read_lock();
5737 present = page_cache_next_miss(mapping, idx, 1) != idx;
5738 rcu_read_unlock();
5739
5740 return present;
5741}
5742
5743int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
5744 pgoff_t idx)
5745{
5746 struct inode *inode = mapping->host;
5747 struct hstate *h = hstate_inode(inode);
5748 int err;
5749
5750 __folio_set_locked(folio);
5751 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5752
5753 if (unlikely(err)) {
5754 __folio_clear_locked(folio);
5755 return err;
5756 }
5757 folio_clear_hugetlb_restore_reserve(folio);
5758
5759 /*
5760 * mark folio dirty so that it will not be removed from cache/file
5761 * by non-hugetlbfs specific code paths.
5762 */
5763 folio_mark_dirty(folio);
5764
5765 spin_lock(&inode->i_lock);
5766 inode->i_blocks += blocks_per_huge_page(h);
5767 spin_unlock(&inode->i_lock);
5768 return 0;
5769}
5770
5771static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5772 struct address_space *mapping,
5773 pgoff_t idx,
5774 unsigned int flags,
5775 unsigned long haddr,
5776 unsigned long addr,
5777 unsigned long reason)
5778{
5779 u32 hash;
5780 struct vm_fault vmf = {
5781 .vma = vma,
5782 .address = haddr,
5783 .real_address = addr,
5784 .flags = flags,
5785
5786 /*
5787 * Hard to debug if it ends up being
5788 * used by a callee that assumes
5789 * something about the other
5790 * uninitialized fields... same as in
5791 * memory.c
5792 */
5793 };
5794
5795 /*
5796 * vma_lock and hugetlb_fault_mutex must be dropped before handling
5797 * userfault. Also mmap_lock could be dropped due to handling
5798 * userfault, any vma operation should be careful from here.
5799 */
5800 hugetlb_vma_unlock_read(vma);
5801 hash = hugetlb_fault_mutex_hash(mapping, idx);
5802 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5803 return handle_userfault(&vmf, reason);
5804}
5805
5806/*
5807 * Recheck pte with pgtable lock. Returns true if pte didn't change, or
5808 * false if pte changed or is changing.
5809 */
5810static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
5811 pte_t *ptep, pte_t old_pte)
5812{
5813 spinlock_t *ptl;
5814 bool same;
5815
5816 ptl = huge_pte_lock(h, mm, ptep);
5817 same = pte_same(huge_ptep_get(ptep), old_pte);
5818 spin_unlock(ptl);
5819
5820 return same;
5821}
5822
5823static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5824 struct vm_area_struct *vma,
5825 struct address_space *mapping, pgoff_t idx,
5826 unsigned long address, pte_t *ptep,
5827 pte_t old_pte, unsigned int flags)
5828{
5829 struct hstate *h = hstate_vma(vma);
5830 vm_fault_t ret = VM_FAULT_SIGBUS;
5831 int anon_rmap = 0;
5832 unsigned long size;
5833 struct folio *folio;
5834 pte_t new_pte;
5835 spinlock_t *ptl;
5836 unsigned long haddr = address & huge_page_mask(h);
5837 bool new_folio, new_pagecache_folio = false;
5838 u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
5839
5840 /*
5841 * Currently, we are forced to kill the process in the event the
5842 * original mapper has unmapped pages from the child due to a failed
5843 * COW/unsharing. Warn that such a situation has occurred as it may not
5844 * be obvious.
5845 */
5846 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5847 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5848 current->pid);
5849 goto out;
5850 }
5851
5852 /*
5853 * Use page lock to guard against racing truncation
5854 * before we get page_table_lock.
5855 */
5856 new_folio = false;
5857 folio = filemap_lock_folio(mapping, idx);
5858 if (IS_ERR(folio)) {
5859 size = i_size_read(mapping->host) >> huge_page_shift(h);
5860 if (idx >= size)
5861 goto out;
5862 /* Check for page in userfault range */
5863 if (userfaultfd_missing(vma)) {
5864 /*
5865 * Since hugetlb_no_page() was examining pte
5866 * without pgtable lock, we need to re-test under
5867 * lock because the pte may not be stable and could
5868 * have changed from under us. Try to detect
5869 * either changed or during-changing ptes and retry
5870 * properly when needed.
5871 *
5872 * Note that userfaultfd is actually fine with
5873 * false positives (e.g. caused by pte changed),
5874 * but not wrong logical events (e.g. caused by
5875 * reading a pte during changing). The latter can
5876 * confuse the userspace, so the strictness is very
5877 * much preferred. E.g., MISSING event should
5878 * never happen on the page after UFFDIO_COPY has
5879 * correctly installed the page and returned.
5880 */
5881 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5882 ret = 0;
5883 goto out;
5884 }
5885
5886 return hugetlb_handle_userfault(vma, mapping, idx, flags,
5887 haddr, address,
5888 VM_UFFD_MISSING);
5889 }
5890
5891 folio = alloc_hugetlb_folio(vma, haddr, 0);
5892 if (IS_ERR(folio)) {
5893 /*
5894 * Returning error will result in faulting task being
5895 * sent SIGBUS. The hugetlb fault mutex prevents two
5896 * tasks from racing to fault in the same page which
5897 * could result in false unable to allocate errors.
5898 * Page migration does not take the fault mutex, but
5899 * does a clear then write of pte's under page table
5900 * lock. Page fault code could race with migration,
5901 * notice the clear pte and try to allocate a page
5902 * here. Before returning error, get ptl and make
5903 * sure there really is no pte entry.
5904 */
5905 if (hugetlb_pte_stable(h, mm, ptep, old_pte))
5906 ret = vmf_error(PTR_ERR(folio));
5907 else
5908 ret = 0;
5909 goto out;
5910 }
5911 clear_huge_page(&folio->page, address, pages_per_huge_page(h));
5912 __folio_mark_uptodate(folio);
5913 new_folio = true;
5914
5915 if (vma->vm_flags & VM_MAYSHARE) {
5916 int err = hugetlb_add_to_page_cache(folio, mapping, idx);
5917 if (err) {
5918 /*
5919 * err can't be -EEXIST which implies someone
5920 * else consumed the reservation since hugetlb
5921 * fault mutex is held when add a hugetlb page
5922 * to the page cache. So it's safe to call
5923 * restore_reserve_on_error() here.
5924 */
5925 restore_reserve_on_error(h, vma, haddr, folio);
5926 folio_put(folio);
5927 goto out;
5928 }
5929 new_pagecache_folio = true;
5930 } else {
5931 folio_lock(folio);
5932 if (unlikely(anon_vma_prepare(vma))) {
5933 ret = VM_FAULT_OOM;
5934 goto backout_unlocked;
5935 }
5936 anon_rmap = 1;
5937 }
5938 } else {
5939 /*
5940 * If memory error occurs between mmap() and fault, some process
5941 * don't have hwpoisoned swap entry for errored virtual address.
5942 * So we need to block hugepage fault by PG_hwpoison bit check.
5943 */
5944 if (unlikely(folio_test_hwpoison(folio))) {
5945 ret = VM_FAULT_HWPOISON_LARGE |
5946 VM_FAULT_SET_HINDEX(hstate_index(h));
5947 goto backout_unlocked;
5948 }
5949
5950 /* Check for page in userfault range. */
5951 if (userfaultfd_minor(vma)) {
5952 folio_unlock(folio);
5953 folio_put(folio);
5954 /* See comment in userfaultfd_missing() block above */
5955 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5956 ret = 0;
5957 goto out;
5958 }
5959 return hugetlb_handle_userfault(vma, mapping, idx, flags,
5960 haddr, address,
5961 VM_UFFD_MINOR);
5962 }
5963 }
5964
5965 /*
5966 * If we are going to COW a private mapping later, we examine the
5967 * pending reservations for this page now. This will ensure that
5968 * any allocations necessary to record that reservation occur outside
5969 * the spinlock.
5970 */
5971 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5972 if (vma_needs_reservation(h, vma, haddr) < 0) {
5973 ret = VM_FAULT_OOM;
5974 goto backout_unlocked;
5975 }
5976 /* Just decrements count, does not deallocate */
5977 vma_end_reservation(h, vma, haddr);
5978 }
5979
5980 ptl = huge_pte_lock(h, mm, ptep);
5981 ret = 0;
5982 /* If pte changed from under us, retry */
5983 if (!pte_same(huge_ptep_get(ptep), old_pte))
5984 goto backout;
5985
5986 if (anon_rmap)
5987 hugepage_add_new_anon_rmap(folio, vma, haddr);
5988 else
5989 page_dup_file_rmap(&folio->page, true);
5990 new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE)
5991 && (vma->vm_flags & VM_SHARED)));
5992 /*
5993 * If this pte was previously wr-protected, keep it wr-protected even
5994 * if populated.
5995 */
5996 if (unlikely(pte_marker_uffd_wp(old_pte)))
5997 new_pte = huge_pte_mkuffd_wp(new_pte);
5998 set_huge_pte_at(mm, haddr, ptep, new_pte);
5999
6000 hugetlb_count_add(pages_per_huge_page(h), mm);
6001 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6002 /* Optimization, do the COW without a second fault */
6003 ret = hugetlb_wp(mm, vma, address, ptep, flags, folio, ptl);
6004 }
6005
6006 spin_unlock(ptl);
6007
6008 /*
6009 * Only set hugetlb_migratable in newly allocated pages. Existing pages
6010 * found in the pagecache may not have hugetlb_migratable if they have
6011 * been isolated for migration.
6012 */
6013 if (new_folio)
6014 folio_set_hugetlb_migratable(folio);
6015
6016 folio_unlock(folio);
6017out:
6018 hugetlb_vma_unlock_read(vma);
6019 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6020 return ret;
6021
6022backout:
6023 spin_unlock(ptl);
6024backout_unlocked:
6025 if (new_folio && !new_pagecache_folio)
6026 restore_reserve_on_error(h, vma, haddr, folio);
6027
6028 folio_unlock(folio);
6029 folio_put(folio);
6030 goto out;
6031}
6032
6033#ifdef CONFIG_SMP
6034u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6035{
6036 unsigned long key[2];
6037 u32 hash;
6038
6039 key[0] = (unsigned long) mapping;
6040 key[1] = idx;
6041
6042 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6043
6044 return hash & (num_fault_mutexes - 1);
6045}
6046#else
6047/*
6048 * For uniprocessor systems we always use a single mutex, so just
6049 * return 0 and avoid the hashing overhead.
6050 */
6051u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6052{
6053 return 0;
6054}
6055#endif
6056
6057vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6058 unsigned long address, unsigned int flags)
6059{
6060 pte_t *ptep, entry;
6061 spinlock_t *ptl;
6062 vm_fault_t ret;
6063 u32 hash;
6064 pgoff_t idx;
6065 struct page *page = NULL;
6066 struct folio *pagecache_folio = NULL;
6067 struct hstate *h = hstate_vma(vma);
6068 struct address_space *mapping;
6069 int need_wait_lock = 0;
6070 unsigned long haddr = address & huge_page_mask(h);
6071
6072 /*
6073 * Serialize hugepage allocation and instantiation, so that we don't
6074 * get spurious allocation failures if two CPUs race to instantiate
6075 * the same page in the page cache.
6076 */
6077 mapping = vma->vm_file->f_mapping;
6078 idx = vma_hugecache_offset(h, vma, haddr);
6079 hash = hugetlb_fault_mutex_hash(mapping, idx);
6080 mutex_lock(&hugetlb_fault_mutex_table[hash]);
6081
6082 /*
6083 * Acquire vma lock before calling huge_pte_alloc and hold
6084 * until finished with ptep. This prevents huge_pmd_unshare from
6085 * being called elsewhere and making the ptep no longer valid.
6086 */
6087 hugetlb_vma_lock_read(vma);
6088 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
6089 if (!ptep) {
6090 hugetlb_vma_unlock_read(vma);
6091 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6092 return VM_FAULT_OOM;
6093 }
6094
6095 entry = huge_ptep_get(ptep);
6096 /* PTE markers should be handled the same way as none pte */
6097 if (huge_pte_none_mostly(entry))
6098 /*
6099 * hugetlb_no_page will drop vma lock and hugetlb fault
6100 * mutex internally, which make us return immediately.
6101 */
6102 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
6103 entry, flags);
6104
6105 ret = 0;
6106
6107 /*
6108 * entry could be a migration/hwpoison entry at this point, so this
6109 * check prevents the kernel from going below assuming that we have
6110 * an active hugepage in pagecache. This goto expects the 2nd page
6111 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
6112 * properly handle it.
6113 */
6114 if (!pte_present(entry)) {
6115 if (unlikely(is_hugetlb_entry_migration(entry))) {
6116 /*
6117 * Release the hugetlb fault lock now, but retain
6118 * the vma lock, because it is needed to guard the
6119 * huge_pte_lockptr() later in
6120 * migration_entry_wait_huge(). The vma lock will
6121 * be released there.
6122 */
6123 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6124 migration_entry_wait_huge(vma, ptep);
6125 return 0;
6126 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
6127 ret = VM_FAULT_HWPOISON_LARGE |
6128 VM_FAULT_SET_HINDEX(hstate_index(h));
6129 goto out_mutex;
6130 }
6131
6132 /*
6133 * If we are going to COW/unshare the mapping later, we examine the
6134 * pending reservations for this page now. This will ensure that any
6135 * allocations necessary to record that reservation occur outside the
6136 * spinlock. Also lookup the pagecache page now as it is used to
6137 * determine if a reservation has been consumed.
6138 */
6139 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6140 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
6141 if (vma_needs_reservation(h, vma, haddr) < 0) {
6142 ret = VM_FAULT_OOM;
6143 goto out_mutex;
6144 }
6145 /* Just decrements count, does not deallocate */
6146 vma_end_reservation(h, vma, haddr);
6147
6148 pagecache_folio = filemap_lock_folio(mapping, idx);
6149 if (IS_ERR(pagecache_folio))
6150 pagecache_folio = NULL;
6151 }
6152
6153 ptl = huge_pte_lock(h, mm, ptep);
6154
6155 /* Check for a racing update before calling hugetlb_wp() */
6156 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
6157 goto out_ptl;
6158
6159 /* Handle userfault-wp first, before trying to lock more pages */
6160 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
6161 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
6162 struct vm_fault vmf = {
6163 .vma = vma,
6164 .address = haddr,
6165 .real_address = address,
6166 .flags = flags,
6167 };
6168
6169 spin_unlock(ptl);
6170 if (pagecache_folio) {
6171 folio_unlock(pagecache_folio);
6172 folio_put(pagecache_folio);
6173 }
6174 hugetlb_vma_unlock_read(vma);
6175 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6176 return handle_userfault(&vmf, VM_UFFD_WP);
6177 }
6178
6179 /*
6180 * hugetlb_wp() requires page locks of pte_page(entry) and
6181 * pagecache_folio, so here we need take the former one
6182 * when page != pagecache_folio or !pagecache_folio.
6183 */
6184 page = pte_page(entry);
6185 if (page_folio(page) != pagecache_folio)
6186 if (!trylock_page(page)) {
6187 need_wait_lock = 1;
6188 goto out_ptl;
6189 }
6190
6191 get_page(page);
6192
6193 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6194 if (!huge_pte_write(entry)) {
6195 ret = hugetlb_wp(mm, vma, address, ptep, flags,
6196 pagecache_folio, ptl);
6197 goto out_put_page;
6198 } else if (likely(flags & FAULT_FLAG_WRITE)) {
6199 entry = huge_pte_mkdirty(entry);
6200 }
6201 }
6202 entry = pte_mkyoung(entry);
6203 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
6204 flags & FAULT_FLAG_WRITE))
6205 update_mmu_cache(vma, haddr, ptep);
6206out_put_page:
6207 if (page_folio(page) != pagecache_folio)
6208 unlock_page(page);
6209 put_page(page);
6210out_ptl:
6211 spin_unlock(ptl);
6212
6213 if (pagecache_folio) {
6214 folio_unlock(pagecache_folio);
6215 folio_put(pagecache_folio);
6216 }
6217out_mutex:
6218 hugetlb_vma_unlock_read(vma);
6219 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6220 /*
6221 * Generally it's safe to hold refcount during waiting page lock. But
6222 * here we just wait to defer the next page fault to avoid busy loop and
6223 * the page is not used after unlocked before returning from the current
6224 * page fault. So we are safe from accessing freed page, even if we wait
6225 * here without taking refcount.
6226 */
6227 if (need_wait_lock)
6228 wait_on_page_locked(page);
6229 return ret;
6230}
6231
6232#ifdef CONFIG_USERFAULTFD
6233/*
6234 * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6235 * with modifications for hugetlb pages.
6236 */
6237int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6238 struct vm_area_struct *dst_vma,
6239 unsigned long dst_addr,
6240 unsigned long src_addr,
6241 uffd_flags_t flags,
6242 struct folio **foliop)
6243{
6244 struct mm_struct *dst_mm = dst_vma->vm_mm;
6245 bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6246 bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6247 struct hstate *h = hstate_vma(dst_vma);
6248 struct address_space *mapping = dst_vma->vm_file->f_mapping;
6249 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6250 unsigned long size;
6251 int vm_shared = dst_vma->vm_flags & VM_SHARED;
6252 pte_t _dst_pte;
6253 spinlock_t *ptl;
6254 int ret = -ENOMEM;
6255 struct folio *folio;
6256 int writable;
6257 bool folio_in_pagecache = false;
6258
6259 if (is_continue) {
6260 ret = -EFAULT;
6261 folio = filemap_lock_folio(mapping, idx);
6262 if (IS_ERR(folio))
6263 goto out;
6264 folio_in_pagecache = true;
6265 } else if (!*foliop) {
6266 /* If a folio already exists, then it's UFFDIO_COPY for
6267 * a non-missing case. Return -EEXIST.
6268 */
6269 if (vm_shared &&
6270 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6271 ret = -EEXIST;
6272 goto out;
6273 }
6274
6275 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6276 if (IS_ERR(folio)) {
6277 ret = -ENOMEM;
6278 goto out;
6279 }
6280
6281 ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6282 false);
6283
6284 /* fallback to copy_from_user outside mmap_lock */
6285 if (unlikely(ret)) {
6286 ret = -ENOENT;
6287 /* Free the allocated folio which may have
6288 * consumed a reservation.
6289 */
6290 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6291 folio_put(folio);
6292
6293 /* Allocate a temporary folio to hold the copied
6294 * contents.
6295 */
6296 folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6297 if (!folio) {
6298 ret = -ENOMEM;
6299 goto out;
6300 }
6301 *foliop = folio;
6302 /* Set the outparam foliop and return to the caller to
6303 * copy the contents outside the lock. Don't free the
6304 * folio.
6305 */
6306 goto out;
6307 }
6308 } else {
6309 if (vm_shared &&
6310 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6311 folio_put(*foliop);
6312 ret = -EEXIST;
6313 *foliop = NULL;
6314 goto out;
6315 }
6316
6317 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6318 if (IS_ERR(folio)) {
6319 folio_put(*foliop);
6320 ret = -ENOMEM;
6321 *foliop = NULL;
6322 goto out;
6323 }
6324 ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
6325 folio_put(*foliop);
6326 *foliop = NULL;
6327 if (ret) {
6328 folio_put(folio);
6329 goto out;
6330 }
6331 }
6332
6333 /*
6334 * The memory barrier inside __folio_mark_uptodate makes sure that
6335 * preceding stores to the page contents become visible before
6336 * the set_pte_at() write.
6337 */
6338 __folio_mark_uptodate(folio);
6339
6340 /* Add shared, newly allocated pages to the page cache. */
6341 if (vm_shared && !is_continue) {
6342 size = i_size_read(mapping->host) >> huge_page_shift(h);
6343 ret = -EFAULT;
6344 if (idx >= size)
6345 goto out_release_nounlock;
6346
6347 /*
6348 * Serialization between remove_inode_hugepages() and
6349 * hugetlb_add_to_page_cache() below happens through the
6350 * hugetlb_fault_mutex_table that here must be hold by
6351 * the caller.
6352 */
6353 ret = hugetlb_add_to_page_cache(folio, mapping, idx);
6354 if (ret)
6355 goto out_release_nounlock;
6356 folio_in_pagecache = true;
6357 }
6358
6359 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6360
6361 ret = -EIO;
6362 if (folio_test_hwpoison(folio))
6363 goto out_release_unlock;
6364
6365 /*
6366 * We allow to overwrite a pte marker: consider when both MISSING|WP
6367 * registered, we firstly wr-protect a none pte which has no page cache
6368 * page backing it, then access the page.
6369 */
6370 ret = -EEXIST;
6371 if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6372 goto out_release_unlock;
6373
6374 if (folio_in_pagecache)
6375 page_dup_file_rmap(&folio->page, true);
6376 else
6377 hugepage_add_new_anon_rmap(folio, dst_vma, dst_addr);
6378
6379 /*
6380 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6381 * with wp flag set, don't set pte write bit.
6382 */
6383 if (wp_enabled || (is_continue && !vm_shared))
6384 writable = 0;
6385 else
6386 writable = dst_vma->vm_flags & VM_WRITE;
6387
6388 _dst_pte = make_huge_pte(dst_vma, &folio->page, writable);
6389 /*
6390 * Always mark UFFDIO_COPY page dirty; note that this may not be
6391 * extremely important for hugetlbfs for now since swapping is not
6392 * supported, but we should still be clear in that this page cannot be
6393 * thrown away at will, even if write bit not set.
6394 */
6395 _dst_pte = huge_pte_mkdirty(_dst_pte);
6396 _dst_pte = pte_mkyoung(_dst_pte);
6397
6398 if (wp_enabled)
6399 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6400
6401 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6402
6403 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6404
6405 /* No need to invalidate - it was non-present before */
6406 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6407
6408 spin_unlock(ptl);
6409 if (!is_continue)
6410 folio_set_hugetlb_migratable(folio);
6411 if (vm_shared || is_continue)
6412 folio_unlock(folio);
6413 ret = 0;
6414out:
6415 return ret;
6416out_release_unlock:
6417 spin_unlock(ptl);
6418 if (vm_shared || is_continue)
6419 folio_unlock(folio);
6420out_release_nounlock:
6421 if (!folio_in_pagecache)
6422 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6423 folio_put(folio);
6424 goto out;
6425}
6426#endif /* CONFIG_USERFAULTFD */
6427
6428static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
6429 int refs, struct page **pages,
6430 struct vm_area_struct **vmas)
6431{
6432 int nr;
6433
6434 for (nr = 0; nr < refs; nr++) {
6435 if (likely(pages))
6436 pages[nr] = nth_page(page, nr);
6437 if (vmas)
6438 vmas[nr] = vma;
6439 }
6440}
6441
6442static inline bool __follow_hugetlb_must_fault(struct vm_area_struct *vma,
6443 unsigned int flags, pte_t *pte,
6444 bool *unshare)
6445{
6446 pte_t pteval = huge_ptep_get(pte);
6447
6448 *unshare = false;
6449 if (is_swap_pte(pteval))
6450 return true;
6451 if (huge_pte_write(pteval))
6452 return false;
6453 if (flags & FOLL_WRITE)
6454 return true;
6455 if (gup_must_unshare(vma, flags, pte_page(pteval))) {
6456 *unshare = true;
6457 return true;
6458 }
6459 return false;
6460}
6461
6462struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
6463 unsigned long address, unsigned int flags)
6464{
6465 struct hstate *h = hstate_vma(vma);
6466 struct mm_struct *mm = vma->vm_mm;
6467 unsigned long haddr = address & huge_page_mask(h);
6468 struct page *page = NULL;
6469 spinlock_t *ptl;
6470 pte_t *pte, entry;
6471
6472 /*
6473 * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via
6474 * follow_hugetlb_page().
6475 */
6476 if (WARN_ON_ONCE(flags & FOLL_PIN))
6477 return NULL;
6478
6479 hugetlb_vma_lock_read(vma);
6480 pte = hugetlb_walk(vma, haddr, huge_page_size(h));
6481 if (!pte)
6482 goto out_unlock;
6483
6484 ptl = huge_pte_lock(h, mm, pte);
6485 entry = huge_ptep_get(pte);
6486 if (pte_present(entry)) {
6487 page = pte_page(entry) +
6488 ((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
6489 /*
6490 * Note that page may be a sub-page, and with vmemmap
6491 * optimizations the page struct may be read only.
6492 * try_grab_page() will increase the ref count on the
6493 * head page, so this will be OK.
6494 *
6495 * try_grab_page() should always be able to get the page here,
6496 * because we hold the ptl lock and have verified pte_present().
6497 */
6498 if (try_grab_page(page, flags)) {
6499 page = NULL;
6500 goto out;
6501 }
6502 }
6503out:
6504 spin_unlock(ptl);
6505out_unlock:
6506 hugetlb_vma_unlock_read(vma);
6507 return page;
6508}
6509
6510long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
6511 struct page **pages, struct vm_area_struct **vmas,
6512 unsigned long *position, unsigned long *nr_pages,
6513 long i, unsigned int flags, int *locked)
6514{
6515 unsigned long pfn_offset;
6516 unsigned long vaddr = *position;
6517 unsigned long remainder = *nr_pages;
6518 struct hstate *h = hstate_vma(vma);
6519 int err = -EFAULT, refs;
6520
6521 while (vaddr < vma->vm_end && remainder) {
6522 pte_t *pte;
6523 spinlock_t *ptl = NULL;
6524 bool unshare = false;
6525 int absent;
6526 struct page *page;
6527
6528 /*
6529 * If we have a pending SIGKILL, don't keep faulting pages and
6530 * potentially allocating memory.
6531 */
6532 if (fatal_signal_pending(current)) {
6533 remainder = 0;
6534 break;
6535 }
6536
6537 hugetlb_vma_lock_read(vma);
6538 /*
6539 * Some archs (sparc64, sh*) have multiple pte_ts to
6540 * each hugepage. We have to make sure we get the
6541 * first, for the page indexing below to work.
6542 *
6543 * Note that page table lock is not held when pte is null.
6544 */
6545 pte = hugetlb_walk(vma, vaddr & huge_page_mask(h),
6546 huge_page_size(h));
6547 if (pte)
6548 ptl = huge_pte_lock(h, mm, pte);
6549 absent = !pte || huge_pte_none(huge_ptep_get(pte));
6550
6551 /*
6552 * When coredumping, it suits get_dump_page if we just return
6553 * an error where there's an empty slot with no huge pagecache
6554 * to back it. This way, we avoid allocating a hugepage, and
6555 * the sparse dumpfile avoids allocating disk blocks, but its
6556 * huge holes still show up with zeroes where they need to be.
6557 */
6558 if (absent && (flags & FOLL_DUMP) &&
6559 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
6560 if (pte)
6561 spin_unlock(ptl);
6562 hugetlb_vma_unlock_read(vma);
6563 remainder = 0;
6564 break;
6565 }
6566
6567 /*
6568 * We need call hugetlb_fault for both hugepages under migration
6569 * (in which case hugetlb_fault waits for the migration,) and
6570 * hwpoisoned hugepages (in which case we need to prevent the
6571 * caller from accessing to them.) In order to do this, we use
6572 * here is_swap_pte instead of is_hugetlb_entry_migration and
6573 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
6574 * both cases, and because we can't follow correct pages
6575 * directly from any kind of swap entries.
6576 */
6577 if (absent ||
6578 __follow_hugetlb_must_fault(vma, flags, pte, &unshare)) {
6579 vm_fault_t ret;
6580 unsigned int fault_flags = 0;
6581
6582 if (pte)
6583 spin_unlock(ptl);
6584 hugetlb_vma_unlock_read(vma);
6585
6586 if (flags & FOLL_WRITE)
6587 fault_flags |= FAULT_FLAG_WRITE;
6588 else if (unshare)
6589 fault_flags |= FAULT_FLAG_UNSHARE;
6590 if (locked) {
6591 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6592 FAULT_FLAG_KILLABLE;
6593 if (flags & FOLL_INTERRUPTIBLE)
6594 fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
6595 }
6596 if (flags & FOLL_NOWAIT)
6597 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6598 FAULT_FLAG_RETRY_NOWAIT;
6599 if (flags & FOLL_TRIED) {
6600 /*
6601 * Note: FAULT_FLAG_ALLOW_RETRY and
6602 * FAULT_FLAG_TRIED can co-exist
6603 */
6604 fault_flags |= FAULT_FLAG_TRIED;
6605 }
6606 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6607 if (ret & VM_FAULT_ERROR) {
6608 err = vm_fault_to_errno(ret, flags);
6609 remainder = 0;
6610 break;
6611 }
6612 if (ret & VM_FAULT_RETRY) {
6613 if (locked &&
6614 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
6615 *locked = 0;
6616 *nr_pages = 0;
6617 /*
6618 * VM_FAULT_RETRY must not return an
6619 * error, it will return zero
6620 * instead.
6621 *
6622 * No need to update "position" as the
6623 * caller will not check it after
6624 * *nr_pages is set to 0.
6625 */
6626 return i;
6627 }
6628 continue;
6629 }
6630
6631 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
6632 page = pte_page(huge_ptep_get(pte));
6633
6634 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
6635 !PageAnonExclusive(page), page);
6636
6637 /*
6638 * If subpage information not requested, update counters
6639 * and skip the same_page loop below.
6640 */
6641 if (!pages && !vmas && !pfn_offset &&
6642 (vaddr + huge_page_size(h) < vma->vm_end) &&
6643 (remainder >= pages_per_huge_page(h))) {
6644 vaddr += huge_page_size(h);
6645 remainder -= pages_per_huge_page(h);
6646 i += pages_per_huge_page(h);
6647 spin_unlock(ptl);
6648 hugetlb_vma_unlock_read(vma);
6649 continue;
6650 }
6651
6652 /* vaddr may not be aligned to PAGE_SIZE */
6653 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6654 (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
6655
6656 if (pages || vmas)
6657 record_subpages_vmas(nth_page(page, pfn_offset),
6658 vma, refs,
6659 likely(pages) ? pages + i : NULL,
6660 vmas ? vmas + i : NULL);
6661
6662 if (pages) {
6663 /*
6664 * try_grab_folio() should always succeed here,
6665 * because: a) we hold the ptl lock, and b) we've just
6666 * checked that the huge page is present in the page
6667 * tables. If the huge page is present, then the tail
6668 * pages must also be present. The ptl prevents the
6669 * head page and tail pages from being rearranged in
6670 * any way. As this is hugetlb, the pages will never
6671 * be p2pdma or not longterm pinable. So this page
6672 * must be available at this point, unless the page
6673 * refcount overflowed:
6674 */
6675 if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
6676 flags))) {
6677 spin_unlock(ptl);
6678 hugetlb_vma_unlock_read(vma);
6679 remainder = 0;
6680 err = -ENOMEM;
6681 break;
6682 }
6683 }
6684
6685 vaddr += (refs << PAGE_SHIFT);
6686 remainder -= refs;
6687 i += refs;
6688
6689 spin_unlock(ptl);
6690 hugetlb_vma_unlock_read(vma);
6691 }
6692 *nr_pages = remainder;
6693 /*
6694 * setting position is actually required only if remainder is
6695 * not zero but it's faster not to add a "if (remainder)"
6696 * branch.
6697 */
6698 *position = vaddr;
6699
6700 return i ? i : err;
6701}
6702
6703long hugetlb_change_protection(struct vm_area_struct *vma,
6704 unsigned long address, unsigned long end,
6705 pgprot_t newprot, unsigned long cp_flags)
6706{
6707 struct mm_struct *mm = vma->vm_mm;
6708 unsigned long start = address;
6709 pte_t *ptep;
6710 pte_t pte;
6711 struct hstate *h = hstate_vma(vma);
6712 long pages = 0, psize = huge_page_size(h);
6713 bool shared_pmd = false;
6714 struct mmu_notifier_range range;
6715 unsigned long last_addr_mask;
6716 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6717 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6718
6719 /*
6720 * In the case of shared PMDs, the area to flush could be beyond
6721 * start/end. Set range.start/range.end to cover the maximum possible
6722 * range if PMD sharing is possible.
6723 */
6724 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6725 0, mm, start, end);
6726 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6727
6728 BUG_ON(address >= end);
6729 flush_cache_range(vma, range.start, range.end);
6730
6731 mmu_notifier_invalidate_range_start(&range);
6732 hugetlb_vma_lock_write(vma);
6733 i_mmap_lock_write(vma->vm_file->f_mapping);
6734 last_addr_mask = hugetlb_mask_last_page(h);
6735 for (; address < end; address += psize) {
6736 spinlock_t *ptl;
6737 ptep = hugetlb_walk(vma, address, psize);
6738 if (!ptep) {
6739 if (!uffd_wp) {
6740 address |= last_addr_mask;
6741 continue;
6742 }
6743 /*
6744 * Userfaultfd wr-protect requires pgtable
6745 * pre-allocations to install pte markers.
6746 */
6747 ptep = huge_pte_alloc(mm, vma, address, psize);
6748 if (!ptep) {
6749 pages = -ENOMEM;
6750 break;
6751 }
6752 }
6753 ptl = huge_pte_lock(h, mm, ptep);
6754 if (huge_pmd_unshare(mm, vma, address, ptep)) {
6755 /*
6756 * When uffd-wp is enabled on the vma, unshare
6757 * shouldn't happen at all. Warn about it if it
6758 * happened due to some reason.
6759 */
6760 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6761 pages++;
6762 spin_unlock(ptl);
6763 shared_pmd = true;
6764 address |= last_addr_mask;
6765 continue;
6766 }
6767 pte = huge_ptep_get(ptep);
6768 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6769 /* Nothing to do. */
6770 } else if (unlikely(is_hugetlb_entry_migration(pte))) {
6771 swp_entry_t entry = pte_to_swp_entry(pte);
6772 struct page *page = pfn_swap_entry_to_page(entry);
6773 pte_t newpte = pte;
6774
6775 if (is_writable_migration_entry(entry)) {
6776 if (PageAnon(page))
6777 entry = make_readable_exclusive_migration_entry(
6778 swp_offset(entry));
6779 else
6780 entry = make_readable_migration_entry(
6781 swp_offset(entry));
6782 newpte = swp_entry_to_pte(entry);
6783 pages++;
6784 }
6785
6786 if (uffd_wp)
6787 newpte = pte_swp_mkuffd_wp(newpte);
6788 else if (uffd_wp_resolve)
6789 newpte = pte_swp_clear_uffd_wp(newpte);
6790 if (!pte_same(pte, newpte))
6791 set_huge_pte_at(mm, address, ptep, newpte);
6792 } else if (unlikely(is_pte_marker(pte))) {
6793 /* No other markers apply for now. */
6794 WARN_ON_ONCE(!pte_marker_uffd_wp(pte));
6795 if (uffd_wp_resolve)
6796 /* Safe to modify directly (non-present->none). */
6797 huge_pte_clear(mm, address, ptep, psize);
6798 } else if (!huge_pte_none(pte)) {
6799 pte_t old_pte;
6800 unsigned int shift = huge_page_shift(hstate_vma(vma));
6801
6802 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6803 pte = huge_pte_modify(old_pte, newprot);
6804 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6805 if (uffd_wp)
6806 pte = huge_pte_mkuffd_wp(pte);
6807 else if (uffd_wp_resolve)
6808 pte = huge_pte_clear_uffd_wp(pte);
6809 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6810 pages++;
6811 } else {
6812 /* None pte */
6813 if (unlikely(uffd_wp))
6814 /* Safe to modify directly (none->non-present). */
6815 set_huge_pte_at(mm, address, ptep,
6816 make_pte_marker(PTE_MARKER_UFFD_WP));
6817 }
6818 spin_unlock(ptl);
6819 }
6820 /*
6821 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6822 * may have cleared our pud entry and done put_page on the page table:
6823 * once we release i_mmap_rwsem, another task can do the final put_page
6824 * and that page table be reused and filled with junk. If we actually
6825 * did unshare a page of pmds, flush the range corresponding to the pud.
6826 */
6827 if (shared_pmd)
6828 flush_hugetlb_tlb_range(vma, range.start, range.end);
6829 else
6830 flush_hugetlb_tlb_range(vma, start, end);
6831 /*
6832 * No need to call mmu_notifier_invalidate_range() we are downgrading
6833 * page table protection not changing it to point to a new page.
6834 *
6835 * See Documentation/mm/mmu_notifier.rst
6836 */
6837 i_mmap_unlock_write(vma->vm_file->f_mapping);
6838 hugetlb_vma_unlock_write(vma);
6839 mmu_notifier_invalidate_range_end(&range);
6840
6841 return pages > 0 ? (pages << h->order) : pages;
6842}
6843
6844/* Return true if reservation was successful, false otherwise. */
6845bool hugetlb_reserve_pages(struct inode *inode,
6846 long from, long to,
6847 struct vm_area_struct *vma,
6848 vm_flags_t vm_flags)
6849{
6850 long chg = -1, add = -1;
6851 struct hstate *h = hstate_inode(inode);
6852 struct hugepage_subpool *spool = subpool_inode(inode);
6853 struct resv_map *resv_map;
6854 struct hugetlb_cgroup *h_cg = NULL;
6855 long gbl_reserve, regions_needed = 0;
6856
6857 /* This should never happen */
6858 if (from > to) {
6859 VM_WARN(1, "%s called with a negative range\n", __func__);
6860 return false;
6861 }
6862
6863 /*
6864 * vma specific semaphore used for pmd sharing and fault/truncation
6865 * synchronization
6866 */
6867 hugetlb_vma_lock_alloc(vma);
6868
6869 /*
6870 * Only apply hugepage reservation if asked. At fault time, an
6871 * attempt will be made for VM_NORESERVE to allocate a page
6872 * without using reserves
6873 */
6874 if (vm_flags & VM_NORESERVE)
6875 return true;
6876
6877 /*
6878 * Shared mappings base their reservation on the number of pages that
6879 * are already allocated on behalf of the file. Private mappings need
6880 * to reserve the full area even if read-only as mprotect() may be
6881 * called to make the mapping read-write. Assume !vma is a shm mapping
6882 */
6883 if (!vma || vma->vm_flags & VM_MAYSHARE) {
6884 /*
6885 * resv_map can not be NULL as hugetlb_reserve_pages is only
6886 * called for inodes for which resv_maps were created (see
6887 * hugetlbfs_get_inode).
6888 */
6889 resv_map = inode_resv_map(inode);
6890
6891 chg = region_chg(resv_map, from, to, ®ions_needed);
6892 } else {
6893 /* Private mapping. */
6894 resv_map = resv_map_alloc();
6895 if (!resv_map)
6896 goto out_err;
6897
6898 chg = to - from;
6899
6900 set_vma_resv_map(vma, resv_map);
6901 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6902 }
6903
6904 if (chg < 0)
6905 goto out_err;
6906
6907 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6908 chg * pages_per_huge_page(h), &h_cg) < 0)
6909 goto out_err;
6910
6911 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6912 /* For private mappings, the hugetlb_cgroup uncharge info hangs
6913 * of the resv_map.
6914 */
6915 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6916 }
6917
6918 /*
6919 * There must be enough pages in the subpool for the mapping. If
6920 * the subpool has a minimum size, there may be some global
6921 * reservations already in place (gbl_reserve).
6922 */
6923 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6924 if (gbl_reserve < 0)
6925 goto out_uncharge_cgroup;
6926
6927 /*
6928 * Check enough hugepages are available for the reservation.
6929 * Hand the pages back to the subpool if there are not
6930 */
6931 if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6932 goto out_put_pages;
6933
6934 /*
6935 * Account for the reservations made. Shared mappings record regions
6936 * that have reservations as they are shared by multiple VMAs.
6937 * When the last VMA disappears, the region map says how much
6938 * the reservation was and the page cache tells how much of
6939 * the reservation was consumed. Private mappings are per-VMA and
6940 * only the consumed reservations are tracked. When the VMA
6941 * disappears, the original reservation is the VMA size and the
6942 * consumed reservations are stored in the map. Hence, nothing
6943 * else has to be done for private mappings here
6944 */
6945 if (!vma || vma->vm_flags & VM_MAYSHARE) {
6946 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6947
6948 if (unlikely(add < 0)) {
6949 hugetlb_acct_memory(h, -gbl_reserve);
6950 goto out_put_pages;
6951 } else if (unlikely(chg > add)) {
6952 /*
6953 * pages in this range were added to the reserve
6954 * map between region_chg and region_add. This
6955 * indicates a race with alloc_hugetlb_folio. Adjust
6956 * the subpool and reserve counts modified above
6957 * based on the difference.
6958 */
6959 long rsv_adjust;
6960
6961 /*
6962 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6963 * reference to h_cg->css. See comment below for detail.
6964 */
6965 hugetlb_cgroup_uncharge_cgroup_rsvd(
6966 hstate_index(h),
6967 (chg - add) * pages_per_huge_page(h), h_cg);
6968
6969 rsv_adjust = hugepage_subpool_put_pages(spool,
6970 chg - add);
6971 hugetlb_acct_memory(h, -rsv_adjust);
6972 } else if (h_cg) {
6973 /*
6974 * The file_regions will hold their own reference to
6975 * h_cg->css. So we should release the reference held
6976 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6977 * done.
6978 */
6979 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6980 }
6981 }
6982 return true;
6983
6984out_put_pages:
6985 /* put back original number of pages, chg */
6986 (void)hugepage_subpool_put_pages(spool, chg);
6987out_uncharge_cgroup:
6988 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6989 chg * pages_per_huge_page(h), h_cg);
6990out_err:
6991 hugetlb_vma_lock_free(vma);
6992 if (!vma || vma->vm_flags & VM_MAYSHARE)
6993 /* Only call region_abort if the region_chg succeeded but the
6994 * region_add failed or didn't run.
6995 */
6996 if (chg >= 0 && add < 0)
6997 region_abort(resv_map, from, to, regions_needed);
6998 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6999 kref_put(&resv_map->refs, resv_map_release);
7000 return false;
7001}
7002
7003long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
7004 long freed)
7005{
7006 struct hstate *h = hstate_inode(inode);
7007 struct resv_map *resv_map = inode_resv_map(inode);
7008 long chg = 0;
7009 struct hugepage_subpool *spool = subpool_inode(inode);
7010 long gbl_reserve;
7011
7012 /*
7013 * Since this routine can be called in the evict inode path for all
7014 * hugetlbfs inodes, resv_map could be NULL.
7015 */
7016 if (resv_map) {
7017 chg = region_del(resv_map, start, end);
7018 /*
7019 * region_del() can fail in the rare case where a region
7020 * must be split and another region descriptor can not be
7021 * allocated. If end == LONG_MAX, it will not fail.
7022 */
7023 if (chg < 0)
7024 return chg;
7025 }
7026
7027 spin_lock(&inode->i_lock);
7028 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
7029 spin_unlock(&inode->i_lock);
7030
7031 /*
7032 * If the subpool has a minimum size, the number of global
7033 * reservations to be released may be adjusted.
7034 *
7035 * Note that !resv_map implies freed == 0. So (chg - freed)
7036 * won't go negative.
7037 */
7038 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
7039 hugetlb_acct_memory(h, -gbl_reserve);
7040
7041 return 0;
7042}
7043
7044#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7045static unsigned long page_table_shareable(struct vm_area_struct *svma,
7046 struct vm_area_struct *vma,
7047 unsigned long addr, pgoff_t idx)
7048{
7049 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
7050 svma->vm_start;
7051 unsigned long sbase = saddr & PUD_MASK;
7052 unsigned long s_end = sbase + PUD_SIZE;
7053
7054 /* Allow segments to share if only one is marked locked */
7055 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
7056 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
7057
7058 /*
7059 * match the virtual addresses, permission and the alignment of the
7060 * page table page.
7061 *
7062 * Also, vma_lock (vm_private_data) is required for sharing.
7063 */
7064 if (pmd_index(addr) != pmd_index(saddr) ||
7065 vm_flags != svm_flags ||
7066 !range_in_vma(svma, sbase, s_end) ||
7067 !svma->vm_private_data)
7068 return 0;
7069
7070 return saddr;
7071}
7072
7073bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7074{
7075 unsigned long start = addr & PUD_MASK;
7076 unsigned long end = start + PUD_SIZE;
7077
7078#ifdef CONFIG_USERFAULTFD
7079 if (uffd_disable_huge_pmd_share(vma))
7080 return false;
7081#endif
7082 /*
7083 * check on proper vm_flags and page table alignment
7084 */
7085 if (!(vma->vm_flags & VM_MAYSHARE))
7086 return false;
7087 if (!vma->vm_private_data) /* vma lock required for sharing */
7088 return false;
7089 if (!range_in_vma(vma, start, end))
7090 return false;
7091 return true;
7092}
7093
7094/*
7095 * Determine if start,end range within vma could be mapped by shared pmd.
7096 * If yes, adjust start and end to cover range associated with possible
7097 * shared pmd mappings.
7098 */
7099void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7100 unsigned long *start, unsigned long *end)
7101{
7102 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7103 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7104
7105 /*
7106 * vma needs to span at least one aligned PUD size, and the range
7107 * must be at least partially within in.
7108 */
7109 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7110 (*end <= v_start) || (*start >= v_end))
7111 return;
7112
7113 /* Extend the range to be PUD aligned for a worst case scenario */
7114 if (*start > v_start)
7115 *start = ALIGN_DOWN(*start, PUD_SIZE);
7116
7117 if (*end < v_end)
7118 *end = ALIGN(*end, PUD_SIZE);
7119}
7120
7121/*
7122 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7123 * and returns the corresponding pte. While this is not necessary for the
7124 * !shared pmd case because we can allocate the pmd later as well, it makes the
7125 * code much cleaner. pmd allocation is essential for the shared case because
7126 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7127 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7128 * bad pmd for sharing.
7129 */
7130pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7131 unsigned long addr, pud_t *pud)
7132{
7133 struct address_space *mapping = vma->vm_file->f_mapping;
7134 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7135 vma->vm_pgoff;
7136 struct vm_area_struct *svma;
7137 unsigned long saddr;
7138 pte_t *spte = NULL;
7139 pte_t *pte;
7140 spinlock_t *ptl;
7141
7142 i_mmap_lock_read(mapping);
7143 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7144 if (svma == vma)
7145 continue;
7146
7147 saddr = page_table_shareable(svma, vma, addr, idx);
7148 if (saddr) {
7149 spte = hugetlb_walk(svma, saddr,
7150 vma_mmu_pagesize(svma));
7151 if (spte) {
7152 get_page(virt_to_page(spte));
7153 break;
7154 }
7155 }
7156 }
7157
7158 if (!spte)
7159 goto out;
7160
7161 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
7162 if (pud_none(*pud)) {
7163 pud_populate(mm, pud,
7164 (pmd_t *)((unsigned long)spte & PAGE_MASK));
7165 mm_inc_nr_pmds(mm);
7166 } else {
7167 put_page(virt_to_page(spte));
7168 }
7169 spin_unlock(ptl);
7170out:
7171 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7172 i_mmap_unlock_read(mapping);
7173 return pte;
7174}
7175
7176/*
7177 * unmap huge page backed by shared pte.
7178 *
7179 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
7180 * indicated by page_count > 1, unmap is achieved by clearing pud and
7181 * decrementing the ref count. If count == 1, the pte page is not shared.
7182 *
7183 * Called with page table lock held.
7184 *
7185 * returns: 1 successfully unmapped a shared pte page
7186 * 0 the underlying pte page is not shared, or it is the last user
7187 */
7188int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7189 unsigned long addr, pte_t *ptep)
7190{
7191 pgd_t *pgd = pgd_offset(mm, addr);
7192 p4d_t *p4d = p4d_offset(pgd, addr);
7193 pud_t *pud = pud_offset(p4d, addr);
7194
7195 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7196 hugetlb_vma_assert_locked(vma);
7197 BUG_ON(page_count(virt_to_page(ptep)) == 0);
7198 if (page_count(virt_to_page(ptep)) == 1)
7199 return 0;
7200
7201 pud_clear(pud);
7202 put_page(virt_to_page(ptep));
7203 mm_dec_nr_pmds(mm);
7204 return 1;
7205}
7206
7207#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7208
7209pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7210 unsigned long addr, pud_t *pud)
7211{
7212 return NULL;
7213}
7214
7215int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7216 unsigned long addr, pte_t *ptep)
7217{
7218 return 0;
7219}
7220
7221void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7222 unsigned long *start, unsigned long *end)
7223{
7224}
7225
7226bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7227{
7228 return false;
7229}
7230#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7231
7232#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7233pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7234 unsigned long addr, unsigned long sz)
7235{
7236 pgd_t *pgd;
7237 p4d_t *p4d;
7238 pud_t *pud;
7239 pte_t *pte = NULL;
7240
7241 pgd = pgd_offset(mm, addr);
7242 p4d = p4d_alloc(mm, pgd, addr);
7243 if (!p4d)
7244 return NULL;
7245 pud = pud_alloc(mm, p4d, addr);
7246 if (pud) {
7247 if (sz == PUD_SIZE) {
7248 pte = (pte_t *)pud;
7249 } else {
7250 BUG_ON(sz != PMD_SIZE);
7251 if (want_pmd_share(vma, addr) && pud_none(*pud))
7252 pte = huge_pmd_share(mm, vma, addr, pud);
7253 else
7254 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7255 }
7256 }
7257 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
7258
7259 return pte;
7260}
7261
7262/*
7263 * huge_pte_offset() - Walk the page table to resolve the hugepage
7264 * entry at address @addr
7265 *
7266 * Return: Pointer to page table entry (PUD or PMD) for
7267 * address @addr, or NULL if a !p*d_present() entry is encountered and the
7268 * size @sz doesn't match the hugepage size at this level of the page
7269 * table.
7270 */
7271pte_t *huge_pte_offset(struct mm_struct *mm,
7272 unsigned long addr, unsigned long sz)
7273{
7274 pgd_t *pgd;
7275 p4d_t *p4d;
7276 pud_t *pud;
7277 pmd_t *pmd;
7278
7279 pgd = pgd_offset(mm, addr);
7280 if (!pgd_present(*pgd))
7281 return NULL;
7282 p4d = p4d_offset(pgd, addr);
7283 if (!p4d_present(*p4d))
7284 return NULL;
7285
7286 pud = pud_offset(p4d, addr);
7287 if (sz == PUD_SIZE)
7288 /* must be pud huge, non-present or none */
7289 return (pte_t *)pud;
7290 if (!pud_present(*pud))
7291 return NULL;
7292 /* must have a valid entry and size to go further */
7293
7294 pmd = pmd_offset(pud, addr);
7295 /* must be pmd huge, non-present or none */
7296 return (pte_t *)pmd;
7297}
7298
7299/*
7300 * Return a mask that can be used to update an address to the last huge
7301 * page in a page table page mapping size. Used to skip non-present
7302 * page table entries when linearly scanning address ranges. Architectures
7303 * with unique huge page to page table relationships can define their own
7304 * version of this routine.
7305 */
7306unsigned long hugetlb_mask_last_page(struct hstate *h)
7307{
7308 unsigned long hp_size = huge_page_size(h);
7309
7310 if (hp_size == PUD_SIZE)
7311 return P4D_SIZE - PUD_SIZE;
7312 else if (hp_size == PMD_SIZE)
7313 return PUD_SIZE - PMD_SIZE;
7314 else
7315 return 0UL;
7316}
7317
7318#else
7319
7320/* See description above. Architectures can provide their own version. */
7321__weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7322{
7323#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7324 if (huge_page_size(h) == PMD_SIZE)
7325 return PUD_SIZE - PMD_SIZE;
7326#endif
7327 return 0UL;
7328}
7329
7330#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7331
7332/*
7333 * These functions are overwritable if your architecture needs its own
7334 * behavior.
7335 */
7336bool isolate_hugetlb(struct folio *folio, struct list_head *list)
7337{
7338 bool ret = true;
7339
7340 spin_lock_irq(&hugetlb_lock);
7341 if (!folio_test_hugetlb(folio) ||
7342 !folio_test_hugetlb_migratable(folio) ||
7343 !folio_try_get(folio)) {
7344 ret = false;
7345 goto unlock;
7346 }
7347 folio_clear_hugetlb_migratable(folio);
7348 list_move_tail(&folio->lru, list);
7349unlock:
7350 spin_unlock_irq(&hugetlb_lock);
7351 return ret;
7352}
7353
7354int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7355{
7356 int ret = 0;
7357
7358 *hugetlb = false;
7359 spin_lock_irq(&hugetlb_lock);
7360 if (folio_test_hugetlb(folio)) {
7361 *hugetlb = true;
7362 if (folio_test_hugetlb_freed(folio))
7363 ret = 0;
7364 else if (folio_test_hugetlb_migratable(folio) || unpoison)
7365 ret = folio_try_get(folio);
7366 else
7367 ret = -EBUSY;
7368 }
7369 spin_unlock_irq(&hugetlb_lock);
7370 return ret;
7371}
7372
7373int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7374 bool *migratable_cleared)
7375{
7376 int ret;
7377
7378 spin_lock_irq(&hugetlb_lock);
7379 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7380 spin_unlock_irq(&hugetlb_lock);
7381 return ret;
7382}
7383
7384void folio_putback_active_hugetlb(struct folio *folio)
7385{
7386 spin_lock_irq(&hugetlb_lock);
7387 folio_set_hugetlb_migratable(folio);
7388 list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7389 spin_unlock_irq(&hugetlb_lock);
7390 folio_put(folio);
7391}
7392
7393void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7394{
7395 struct hstate *h = folio_hstate(old_folio);
7396
7397 hugetlb_cgroup_migrate(old_folio, new_folio);
7398 set_page_owner_migrate_reason(&new_folio->page, reason);
7399
7400 /*
7401 * transfer temporary state of the new hugetlb folio. This is
7402 * reverse to other transitions because the newpage is going to
7403 * be final while the old one will be freed so it takes over
7404 * the temporary status.
7405 *
7406 * Also note that we have to transfer the per-node surplus state
7407 * here as well otherwise the global surplus count will not match
7408 * the per-node's.
7409 */
7410 if (folio_test_hugetlb_temporary(new_folio)) {
7411 int old_nid = folio_nid(old_folio);
7412 int new_nid = folio_nid(new_folio);
7413
7414 folio_set_hugetlb_temporary(old_folio);
7415 folio_clear_hugetlb_temporary(new_folio);
7416
7417
7418 /*
7419 * There is no need to transfer the per-node surplus state
7420 * when we do not cross the node.
7421 */
7422 if (new_nid == old_nid)
7423 return;
7424 spin_lock_irq(&hugetlb_lock);
7425 if (h->surplus_huge_pages_node[old_nid]) {
7426 h->surplus_huge_pages_node[old_nid]--;
7427 h->surplus_huge_pages_node[new_nid]++;
7428 }
7429 spin_unlock_irq(&hugetlb_lock);
7430 }
7431}
7432
7433static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7434 unsigned long start,
7435 unsigned long end)
7436{
7437 struct hstate *h = hstate_vma(vma);
7438 unsigned long sz = huge_page_size(h);
7439 struct mm_struct *mm = vma->vm_mm;
7440 struct mmu_notifier_range range;
7441 unsigned long address;
7442 spinlock_t *ptl;
7443 pte_t *ptep;
7444
7445 if (!(vma->vm_flags & VM_MAYSHARE))
7446 return;
7447
7448 if (start >= end)
7449 return;
7450
7451 flush_cache_range(vma, start, end);
7452 /*
7453 * No need to call adjust_range_if_pmd_sharing_possible(), because
7454 * we have already done the PUD_SIZE alignment.
7455 */
7456 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7457 start, end);
7458 mmu_notifier_invalidate_range_start(&range);
7459 hugetlb_vma_lock_write(vma);
7460 i_mmap_lock_write(vma->vm_file->f_mapping);
7461 for (address = start; address < end; address += PUD_SIZE) {
7462 ptep = hugetlb_walk(vma, address, sz);
7463 if (!ptep)
7464 continue;
7465 ptl = huge_pte_lock(h, mm, ptep);
7466 huge_pmd_unshare(mm, vma, address, ptep);
7467 spin_unlock(ptl);
7468 }
7469 flush_hugetlb_tlb_range(vma, start, end);
7470 i_mmap_unlock_write(vma->vm_file->f_mapping);
7471 hugetlb_vma_unlock_write(vma);
7472 /*
7473 * No need to call mmu_notifier_invalidate_range(), see
7474 * Documentation/mm/mmu_notifier.rst.
7475 */
7476 mmu_notifier_invalidate_range_end(&range);
7477}
7478
7479/*
7480 * This function will unconditionally remove all the shared pmd pgtable entries
7481 * within the specific vma for a hugetlbfs memory range.
7482 */
7483void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7484{
7485 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7486 ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7487}
7488
7489#ifdef CONFIG_CMA
7490static bool cma_reserve_called __initdata;
7491
7492static int __init cmdline_parse_hugetlb_cma(char *p)
7493{
7494 int nid, count = 0;
7495 unsigned long tmp;
7496 char *s = p;
7497
7498 while (*s) {
7499 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7500 break;
7501
7502 if (s[count] == ':') {
7503 if (tmp >= MAX_NUMNODES)
7504 break;
7505 nid = array_index_nospec(tmp, MAX_NUMNODES);
7506
7507 s += count + 1;
7508 tmp = memparse(s, &s);
7509 hugetlb_cma_size_in_node[nid] = tmp;
7510 hugetlb_cma_size += tmp;
7511
7512 /*
7513 * Skip the separator if have one, otherwise
7514 * break the parsing.
7515 */
7516 if (*s == ',')
7517 s++;
7518 else
7519 break;
7520 } else {
7521 hugetlb_cma_size = memparse(p, &p);
7522 break;
7523 }
7524 }
7525
7526 return 0;
7527}
7528
7529early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7530
7531void __init hugetlb_cma_reserve(int order)
7532{
7533 unsigned long size, reserved, per_node;
7534 bool node_specific_cma_alloc = false;
7535 int nid;
7536
7537 cma_reserve_called = true;
7538
7539 if (!hugetlb_cma_size)
7540 return;
7541
7542 for (nid = 0; nid < MAX_NUMNODES; nid++) {
7543 if (hugetlb_cma_size_in_node[nid] == 0)
7544 continue;
7545
7546 if (!node_online(nid)) {
7547 pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7548 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7549 hugetlb_cma_size_in_node[nid] = 0;
7550 continue;
7551 }
7552
7553 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7554 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7555 nid, (PAGE_SIZE << order) / SZ_1M);
7556 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7557 hugetlb_cma_size_in_node[nid] = 0;
7558 } else {
7559 node_specific_cma_alloc = true;
7560 }
7561 }
7562
7563 /* Validate the CMA size again in case some invalid nodes specified. */
7564 if (!hugetlb_cma_size)
7565 return;
7566
7567 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7568 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7569 (PAGE_SIZE << order) / SZ_1M);
7570 hugetlb_cma_size = 0;
7571 return;
7572 }
7573
7574 if (!node_specific_cma_alloc) {
7575 /*
7576 * If 3 GB area is requested on a machine with 4 numa nodes,
7577 * let's allocate 1 GB on first three nodes and ignore the last one.
7578 */
7579 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7580 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7581 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7582 }
7583
7584 reserved = 0;
7585 for_each_online_node(nid) {
7586 int res;
7587 char name[CMA_MAX_NAME];
7588
7589 if (node_specific_cma_alloc) {
7590 if (hugetlb_cma_size_in_node[nid] == 0)
7591 continue;
7592
7593 size = hugetlb_cma_size_in_node[nid];
7594 } else {
7595 size = min(per_node, hugetlb_cma_size - reserved);
7596 }
7597
7598 size = round_up(size, PAGE_SIZE << order);
7599
7600 snprintf(name, sizeof(name), "hugetlb%d", nid);
7601 /*
7602 * Note that 'order per bit' is based on smallest size that
7603 * may be returned to CMA allocator in the case of
7604 * huge page demotion.
7605 */
7606 res = cma_declare_contiguous_nid(0, size, 0,
7607 PAGE_SIZE << HUGETLB_PAGE_ORDER,
7608 0, false, name,
7609 &hugetlb_cma[nid], nid);
7610 if (res) {
7611 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7612 res, nid);
7613 continue;
7614 }
7615
7616 reserved += size;
7617 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7618 size / SZ_1M, nid);
7619
7620 if (reserved >= hugetlb_cma_size)
7621 break;
7622 }
7623
7624 if (!reserved)
7625 /*
7626 * hugetlb_cma_size is used to determine if allocations from
7627 * cma are possible. Set to zero if no cma regions are set up.
7628 */
7629 hugetlb_cma_size = 0;
7630}
7631
7632static void __init hugetlb_cma_check(void)
7633{
7634 if (!hugetlb_cma_size || cma_reserve_called)
7635 return;
7636
7637 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7638}
7639
7640#endif /* CONFIG_CMA */