Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 * Definitions for the 'struct sk_buff' memory handlers.
4 *
5 * Authors:
6 * Alan Cox, <gw4pts@gw4pts.ampr.org>
7 * Florian La Roche, <rzsfl@rz.uni-sb.de>
8 */
9
10#ifndef _LINUX_SKBUFF_H
11#define _LINUX_SKBUFF_H
12
13#include <linux/kernel.h>
14#include <linux/compiler.h>
15#include <linux/time.h>
16#include <linux/bug.h>
17#include <linux/bvec.h>
18#include <linux/cache.h>
19#include <linux/rbtree.h>
20#include <linux/socket.h>
21#include <linux/refcount.h>
22
23#include <linux/atomic.h>
24#include <asm/types.h>
25#include <linux/spinlock.h>
26#include <net/checksum.h>
27#include <linux/rcupdate.h>
28#include <linux/dma-mapping.h>
29#include <linux/netdev_features.h>
30#include <net/flow_dissector.h>
31#include <linux/in6.h>
32#include <linux/if_packet.h>
33#include <linux/llist.h>
34#include <net/flow.h>
35#include <net/page_pool.h>
36#if IS_ENABLED(CONFIG_NF_CONNTRACK)
37#include <linux/netfilter/nf_conntrack_common.h>
38#endif
39#include <net/net_debug.h>
40#include <net/dropreason-core.h>
41
42/**
43 * DOC: skb checksums
44 *
45 * The interface for checksum offload between the stack and networking drivers
46 * is as follows...
47 *
48 * IP checksum related features
49 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
50 *
51 * Drivers advertise checksum offload capabilities in the features of a device.
52 * From the stack's point of view these are capabilities offered by the driver.
53 * A driver typically only advertises features that it is capable of offloading
54 * to its device.
55 *
56 * .. flat-table:: Checksum related device features
57 * :widths: 1 10
58 *
59 * * - %NETIF_F_HW_CSUM
60 * - The driver (or its device) is able to compute one
61 * IP (one's complement) checksum for any combination
62 * of protocols or protocol layering. The checksum is
63 * computed and set in a packet per the CHECKSUM_PARTIAL
64 * interface (see below).
65 *
66 * * - %NETIF_F_IP_CSUM
67 * - Driver (device) is only able to checksum plain
68 * TCP or UDP packets over IPv4. These are specifically
69 * unencapsulated packets of the form IPv4|TCP or
70 * IPv4|UDP where the Protocol field in the IPv4 header
71 * is TCP or UDP. The IPv4 header may contain IP options.
72 * This feature cannot be set in features for a device
73 * with NETIF_F_HW_CSUM also set. This feature is being
74 * DEPRECATED (see below).
75 *
76 * * - %NETIF_F_IPV6_CSUM
77 * - Driver (device) is only able to checksum plain
78 * TCP or UDP packets over IPv6. These are specifically
79 * unencapsulated packets of the form IPv6|TCP or
80 * IPv6|UDP where the Next Header field in the IPv6
81 * header is either TCP or UDP. IPv6 extension headers
82 * are not supported with this feature. This feature
83 * cannot be set in features for a device with
84 * NETIF_F_HW_CSUM also set. This feature is being
85 * DEPRECATED (see below).
86 *
87 * * - %NETIF_F_RXCSUM
88 * - Driver (device) performs receive checksum offload.
89 * This flag is only used to disable the RX checksum
90 * feature for a device. The stack will accept receive
91 * checksum indication in packets received on a device
92 * regardless of whether NETIF_F_RXCSUM is set.
93 *
94 * Checksumming of received packets by device
95 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
96 *
97 * Indication of checksum verification is set in &sk_buff.ip_summed.
98 * Possible values are:
99 *
100 * - %CHECKSUM_NONE
101 *
102 * Device did not checksum this packet e.g. due to lack of capabilities.
103 * The packet contains full (though not verified) checksum in packet but
104 * not in skb->csum. Thus, skb->csum is undefined in this case.
105 *
106 * - %CHECKSUM_UNNECESSARY
107 *
108 * The hardware you're dealing with doesn't calculate the full checksum
109 * (as in %CHECKSUM_COMPLETE), but it does parse headers and verify checksums
110 * for specific protocols. For such packets it will set %CHECKSUM_UNNECESSARY
111 * if their checksums are okay. &sk_buff.csum is still undefined in this case
112 * though. A driver or device must never modify the checksum field in the
113 * packet even if checksum is verified.
114 *
115 * %CHECKSUM_UNNECESSARY is applicable to following protocols:
116 *
117 * - TCP: IPv6 and IPv4.
118 * - UDP: IPv4 and IPv6. A device may apply CHECKSUM_UNNECESSARY to a
119 * zero UDP checksum for either IPv4 or IPv6, the networking stack
120 * may perform further validation in this case.
121 * - GRE: only if the checksum is present in the header.
122 * - SCTP: indicates the CRC in SCTP header has been validated.
123 * - FCOE: indicates the CRC in FC frame has been validated.
124 *
125 * &sk_buff.csum_level indicates the number of consecutive checksums found in
126 * the packet minus one that have been verified as %CHECKSUM_UNNECESSARY.
127 * For instance if a device receives an IPv6->UDP->GRE->IPv4->TCP packet
128 * and a device is able to verify the checksums for UDP (possibly zero),
129 * GRE (checksum flag is set) and TCP, &sk_buff.csum_level would be set to
130 * two. If the device were only able to verify the UDP checksum and not
131 * GRE, either because it doesn't support GRE checksum or because GRE
132 * checksum is bad, skb->csum_level would be set to zero (TCP checksum is
133 * not considered in this case).
134 *
135 * - %CHECKSUM_COMPLETE
136 *
137 * This is the most generic way. The device supplied checksum of the _whole_
138 * packet as seen by netif_rx() and fills in &sk_buff.csum. This means the
139 * hardware doesn't need to parse L3/L4 headers to implement this.
140 *
141 * Notes:
142 *
143 * - Even if device supports only some protocols, but is able to produce
144 * skb->csum, it MUST use CHECKSUM_COMPLETE, not CHECKSUM_UNNECESSARY.
145 * - CHECKSUM_COMPLETE is not applicable to SCTP and FCoE protocols.
146 *
147 * - %CHECKSUM_PARTIAL
148 *
149 * A checksum is set up to be offloaded to a device as described in the
150 * output description for CHECKSUM_PARTIAL. This may occur on a packet
151 * received directly from another Linux OS, e.g., a virtualized Linux kernel
152 * on the same host, or it may be set in the input path in GRO or remote
153 * checksum offload. For the purposes of checksum verification, the checksum
154 * referred to by skb->csum_start + skb->csum_offset and any preceding
155 * checksums in the packet are considered verified. Any checksums in the
156 * packet that are after the checksum being offloaded are not considered to
157 * be verified.
158 *
159 * Checksumming on transmit for non-GSO
160 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
161 *
162 * The stack requests checksum offload in the &sk_buff.ip_summed for a packet.
163 * Values are:
164 *
165 * - %CHECKSUM_PARTIAL
166 *
167 * The driver is required to checksum the packet as seen by hard_start_xmit()
168 * from &sk_buff.csum_start up to the end, and to record/write the checksum at
169 * offset &sk_buff.csum_start + &sk_buff.csum_offset.
170 * A driver may verify that the
171 * csum_start and csum_offset values are valid values given the length and
172 * offset of the packet, but it should not attempt to validate that the
173 * checksum refers to a legitimate transport layer checksum -- it is the
174 * purview of the stack to validate that csum_start and csum_offset are set
175 * correctly.
176 *
177 * When the stack requests checksum offload for a packet, the driver MUST
178 * ensure that the checksum is set correctly. A driver can either offload the
179 * checksum calculation to the device, or call skb_checksum_help (in the case
180 * that the device does not support offload for a particular checksum).
181 *
182 * %NETIF_F_IP_CSUM and %NETIF_F_IPV6_CSUM are being deprecated in favor of
183 * %NETIF_F_HW_CSUM. New devices should use %NETIF_F_HW_CSUM to indicate
184 * checksum offload capability.
185 * skb_csum_hwoffload_help() can be called to resolve %CHECKSUM_PARTIAL based
186 * on network device checksumming capabilities: if a packet does not match
187 * them, skb_checksum_help() or skb_crc32c_help() (depending on the value of
188 * &sk_buff.csum_not_inet, see :ref:`crc`)
189 * is called to resolve the checksum.
190 *
191 * - %CHECKSUM_NONE
192 *
193 * The skb was already checksummed by the protocol, or a checksum is not
194 * required.
195 *
196 * - %CHECKSUM_UNNECESSARY
197 *
198 * This has the same meaning as CHECKSUM_NONE for checksum offload on
199 * output.
200 *
201 * - %CHECKSUM_COMPLETE
202 *
203 * Not used in checksum output. If a driver observes a packet with this value
204 * set in skbuff, it should treat the packet as if %CHECKSUM_NONE were set.
205 *
206 * .. _crc:
207 *
208 * Non-IP checksum (CRC) offloads
209 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
210 *
211 * .. flat-table::
212 * :widths: 1 10
213 *
214 * * - %NETIF_F_SCTP_CRC
215 * - This feature indicates that a device is capable of
216 * offloading the SCTP CRC in a packet. To perform this offload the stack
217 * will set csum_start and csum_offset accordingly, set ip_summed to
218 * %CHECKSUM_PARTIAL and set csum_not_inet to 1, to provide an indication
219 * in the skbuff that the %CHECKSUM_PARTIAL refers to CRC32c.
220 * A driver that supports both IP checksum offload and SCTP CRC32c offload
221 * must verify which offload is configured for a packet by testing the
222 * value of &sk_buff.csum_not_inet; skb_crc32c_csum_help() is provided to
223 * resolve %CHECKSUM_PARTIAL on skbs where csum_not_inet is set to 1.
224 *
225 * * - %NETIF_F_FCOE_CRC
226 * - This feature indicates that a device is capable of offloading the FCOE
227 * CRC in a packet. To perform this offload the stack will set ip_summed
228 * to %CHECKSUM_PARTIAL and set csum_start and csum_offset
229 * accordingly. Note that there is no indication in the skbuff that the
230 * %CHECKSUM_PARTIAL refers to an FCOE checksum, so a driver that supports
231 * both IP checksum offload and FCOE CRC offload must verify which offload
232 * is configured for a packet, presumably by inspecting packet headers.
233 *
234 * Checksumming on output with GSO
235 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
236 *
237 * In the case of a GSO packet (skb_is_gso() is true), checksum offload
238 * is implied by the SKB_GSO_* flags in gso_type. Most obviously, if the
239 * gso_type is %SKB_GSO_TCPV4 or %SKB_GSO_TCPV6, TCP checksum offload as
240 * part of the GSO operation is implied. If a checksum is being offloaded
241 * with GSO then ip_summed is %CHECKSUM_PARTIAL, and both csum_start and
242 * csum_offset are set to refer to the outermost checksum being offloaded
243 * (two offloaded checksums are possible with UDP encapsulation).
244 */
245
246/* Don't change this without changing skb_csum_unnecessary! */
247#define CHECKSUM_NONE 0
248#define CHECKSUM_UNNECESSARY 1
249#define CHECKSUM_COMPLETE 2
250#define CHECKSUM_PARTIAL 3
251
252/* Maximum value in skb->csum_level */
253#define SKB_MAX_CSUM_LEVEL 3
254
255#define SKB_DATA_ALIGN(X) ALIGN(X, SMP_CACHE_BYTES)
256#define SKB_WITH_OVERHEAD(X) \
257 ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
258
259/* For X bytes available in skb->head, what is the minimal
260 * allocation needed, knowing struct skb_shared_info needs
261 * to be aligned.
262 */
263#define SKB_HEAD_ALIGN(X) (SKB_DATA_ALIGN(X) + \
264 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
265
266#define SKB_MAX_ORDER(X, ORDER) \
267 SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
268#define SKB_MAX_HEAD(X) (SKB_MAX_ORDER((X), 0))
269#define SKB_MAX_ALLOC (SKB_MAX_ORDER(0, 2))
270
271/* return minimum truesize of one skb containing X bytes of data */
272#define SKB_TRUESIZE(X) ((X) + \
273 SKB_DATA_ALIGN(sizeof(struct sk_buff)) + \
274 SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
275
276struct ahash_request;
277struct net_device;
278struct scatterlist;
279struct pipe_inode_info;
280struct iov_iter;
281struct napi_struct;
282struct bpf_prog;
283union bpf_attr;
284struct skb_ext;
285struct ts_config;
286
287#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
288struct nf_bridge_info {
289 enum {
290 BRNF_PROTO_UNCHANGED,
291 BRNF_PROTO_8021Q,
292 BRNF_PROTO_PPPOE
293 } orig_proto:8;
294 u8 pkt_otherhost:1;
295 u8 in_prerouting:1;
296 u8 bridged_dnat:1;
297 u8 sabotage_in_done:1;
298 __u16 frag_max_size;
299 struct net_device *physindev;
300
301 /* always valid & non-NULL from FORWARD on, for physdev match */
302 struct net_device *physoutdev;
303 union {
304 /* prerouting: detect dnat in orig/reply direction */
305 __be32 ipv4_daddr;
306 struct in6_addr ipv6_daddr;
307
308 /* after prerouting + nat detected: store original source
309 * mac since neigh resolution overwrites it, only used while
310 * skb is out in neigh layer.
311 */
312 char neigh_header[8];
313 };
314};
315#endif
316
317#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
318/* Chain in tc_skb_ext will be used to share the tc chain with
319 * ovs recirc_id. It will be set to the current chain by tc
320 * and read by ovs to recirc_id.
321 */
322struct tc_skb_ext {
323 union {
324 u64 act_miss_cookie;
325 __u32 chain;
326 };
327 __u16 mru;
328 __u16 zone;
329 u8 post_ct:1;
330 u8 post_ct_snat:1;
331 u8 post_ct_dnat:1;
332 u8 act_miss:1; /* Set if act_miss_cookie is used */
333};
334#endif
335
336struct sk_buff_head {
337 /* These two members must be first to match sk_buff. */
338 struct_group_tagged(sk_buff_list, list,
339 struct sk_buff *next;
340 struct sk_buff *prev;
341 );
342
343 __u32 qlen;
344 spinlock_t lock;
345};
346
347struct sk_buff;
348
349#ifndef CONFIG_MAX_SKB_FRAGS
350# define CONFIG_MAX_SKB_FRAGS 17
351#endif
352
353#define MAX_SKB_FRAGS CONFIG_MAX_SKB_FRAGS
354
355extern int sysctl_max_skb_frags;
356
357/* Set skb_shinfo(skb)->gso_size to this in case you want skb_segment to
358 * segment using its current segmentation instead.
359 */
360#define GSO_BY_FRAGS 0xFFFF
361
362typedef struct bio_vec skb_frag_t;
363
364/**
365 * skb_frag_size() - Returns the size of a skb fragment
366 * @frag: skb fragment
367 */
368static inline unsigned int skb_frag_size(const skb_frag_t *frag)
369{
370 return frag->bv_len;
371}
372
373/**
374 * skb_frag_size_set() - Sets the size of a skb fragment
375 * @frag: skb fragment
376 * @size: size of fragment
377 */
378static inline void skb_frag_size_set(skb_frag_t *frag, unsigned int size)
379{
380 frag->bv_len = size;
381}
382
383/**
384 * skb_frag_size_add() - Increments the size of a skb fragment by @delta
385 * @frag: skb fragment
386 * @delta: value to add
387 */
388static inline void skb_frag_size_add(skb_frag_t *frag, int delta)
389{
390 frag->bv_len += delta;
391}
392
393/**
394 * skb_frag_size_sub() - Decrements the size of a skb fragment by @delta
395 * @frag: skb fragment
396 * @delta: value to subtract
397 */
398static inline void skb_frag_size_sub(skb_frag_t *frag, int delta)
399{
400 frag->bv_len -= delta;
401}
402
403/**
404 * skb_frag_must_loop - Test if %p is a high memory page
405 * @p: fragment's page
406 */
407static inline bool skb_frag_must_loop(struct page *p)
408{
409#if defined(CONFIG_HIGHMEM)
410 if (IS_ENABLED(CONFIG_DEBUG_KMAP_LOCAL_FORCE_MAP) || PageHighMem(p))
411 return true;
412#endif
413 return false;
414}
415
416/**
417 * skb_frag_foreach_page - loop over pages in a fragment
418 *
419 * @f: skb frag to operate on
420 * @f_off: offset from start of f->bv_page
421 * @f_len: length from f_off to loop over
422 * @p: (temp var) current page
423 * @p_off: (temp var) offset from start of current page,
424 * non-zero only on first page.
425 * @p_len: (temp var) length in current page,
426 * < PAGE_SIZE only on first and last page.
427 * @copied: (temp var) length so far, excluding current p_len.
428 *
429 * A fragment can hold a compound page, in which case per-page
430 * operations, notably kmap_atomic, must be called for each
431 * regular page.
432 */
433#define skb_frag_foreach_page(f, f_off, f_len, p, p_off, p_len, copied) \
434 for (p = skb_frag_page(f) + ((f_off) >> PAGE_SHIFT), \
435 p_off = (f_off) & (PAGE_SIZE - 1), \
436 p_len = skb_frag_must_loop(p) ? \
437 min_t(u32, f_len, PAGE_SIZE - p_off) : f_len, \
438 copied = 0; \
439 copied < f_len; \
440 copied += p_len, p++, p_off = 0, \
441 p_len = min_t(u32, f_len - copied, PAGE_SIZE)) \
442
443#define HAVE_HW_TIME_STAMP
444
445/**
446 * struct skb_shared_hwtstamps - hardware time stamps
447 * @hwtstamp: hardware time stamp transformed into duration
448 * since arbitrary point in time
449 * @netdev_data: address/cookie of network device driver used as
450 * reference to actual hardware time stamp
451 *
452 * Software time stamps generated by ktime_get_real() are stored in
453 * skb->tstamp.
454 *
455 * hwtstamps can only be compared against other hwtstamps from
456 * the same device.
457 *
458 * This structure is attached to packets as part of the
459 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
460 */
461struct skb_shared_hwtstamps {
462 union {
463 ktime_t hwtstamp;
464 void *netdev_data;
465 };
466};
467
468/* Definitions for tx_flags in struct skb_shared_info */
469enum {
470 /* generate hardware time stamp */
471 SKBTX_HW_TSTAMP = 1 << 0,
472
473 /* generate software time stamp when queueing packet to NIC */
474 SKBTX_SW_TSTAMP = 1 << 1,
475
476 /* device driver is going to provide hardware time stamp */
477 SKBTX_IN_PROGRESS = 1 << 2,
478
479 /* generate hardware time stamp based on cycles if supported */
480 SKBTX_HW_TSTAMP_USE_CYCLES = 1 << 3,
481
482 /* generate wifi status information (where possible) */
483 SKBTX_WIFI_STATUS = 1 << 4,
484
485 /* determine hardware time stamp based on time or cycles */
486 SKBTX_HW_TSTAMP_NETDEV = 1 << 5,
487
488 /* generate software time stamp when entering packet scheduling */
489 SKBTX_SCHED_TSTAMP = 1 << 6,
490};
491
492#define SKBTX_ANY_SW_TSTAMP (SKBTX_SW_TSTAMP | \
493 SKBTX_SCHED_TSTAMP)
494#define SKBTX_ANY_TSTAMP (SKBTX_HW_TSTAMP | \
495 SKBTX_HW_TSTAMP_USE_CYCLES | \
496 SKBTX_ANY_SW_TSTAMP)
497
498/* Definitions for flags in struct skb_shared_info */
499enum {
500 /* use zcopy routines */
501 SKBFL_ZEROCOPY_ENABLE = BIT(0),
502
503 /* This indicates at least one fragment might be overwritten
504 * (as in vmsplice(), sendfile() ...)
505 * If we need to compute a TX checksum, we'll need to copy
506 * all frags to avoid possible bad checksum
507 */
508 SKBFL_SHARED_FRAG = BIT(1),
509
510 /* segment contains only zerocopy data and should not be
511 * charged to the kernel memory.
512 */
513 SKBFL_PURE_ZEROCOPY = BIT(2),
514
515 SKBFL_DONT_ORPHAN = BIT(3),
516
517 /* page references are managed by the ubuf_info, so it's safe to
518 * use frags only up until ubuf_info is released
519 */
520 SKBFL_MANAGED_FRAG_REFS = BIT(4),
521};
522
523#define SKBFL_ZEROCOPY_FRAG (SKBFL_ZEROCOPY_ENABLE | SKBFL_SHARED_FRAG)
524#define SKBFL_ALL_ZEROCOPY (SKBFL_ZEROCOPY_FRAG | SKBFL_PURE_ZEROCOPY | \
525 SKBFL_DONT_ORPHAN | SKBFL_MANAGED_FRAG_REFS)
526
527/*
528 * The callback notifies userspace to release buffers when skb DMA is done in
529 * lower device, the skb last reference should be 0 when calling this.
530 * The zerocopy_success argument is true if zero copy transmit occurred,
531 * false on data copy or out of memory error caused by data copy attempt.
532 * The ctx field is used to track device context.
533 * The desc field is used to track userspace buffer index.
534 */
535struct ubuf_info {
536 void (*callback)(struct sk_buff *, struct ubuf_info *,
537 bool zerocopy_success);
538 refcount_t refcnt;
539 u8 flags;
540};
541
542struct ubuf_info_msgzc {
543 struct ubuf_info ubuf;
544
545 union {
546 struct {
547 unsigned long desc;
548 void *ctx;
549 };
550 struct {
551 u32 id;
552 u16 len;
553 u16 zerocopy:1;
554 u32 bytelen;
555 };
556 };
557
558 struct mmpin {
559 struct user_struct *user;
560 unsigned int num_pg;
561 } mmp;
562};
563
564#define skb_uarg(SKB) ((struct ubuf_info *)(skb_shinfo(SKB)->destructor_arg))
565#define uarg_to_msgzc(ubuf_ptr) container_of((ubuf_ptr), struct ubuf_info_msgzc, \
566 ubuf)
567
568int mm_account_pinned_pages(struct mmpin *mmp, size_t size);
569void mm_unaccount_pinned_pages(struct mmpin *mmp);
570
571/* This data is invariant across clones and lives at
572 * the end of the header data, ie. at skb->end.
573 */
574struct skb_shared_info {
575 __u8 flags;
576 __u8 meta_len;
577 __u8 nr_frags;
578 __u8 tx_flags;
579 unsigned short gso_size;
580 /* Warning: this field is not always filled in (UFO)! */
581 unsigned short gso_segs;
582 struct sk_buff *frag_list;
583 struct skb_shared_hwtstamps hwtstamps;
584 unsigned int gso_type;
585 u32 tskey;
586
587 /*
588 * Warning : all fields before dataref are cleared in __alloc_skb()
589 */
590 atomic_t dataref;
591 unsigned int xdp_frags_size;
592
593 /* Intermediate layers must ensure that destructor_arg
594 * remains valid until skb destructor */
595 void * destructor_arg;
596
597 /* must be last field, see pskb_expand_head() */
598 skb_frag_t frags[MAX_SKB_FRAGS];
599};
600
601/**
602 * DOC: dataref and headerless skbs
603 *
604 * Transport layers send out clones of payload skbs they hold for
605 * retransmissions. To allow lower layers of the stack to prepend their headers
606 * we split &skb_shared_info.dataref into two halves.
607 * The lower 16 bits count the overall number of references.
608 * The higher 16 bits indicate how many of the references are payload-only.
609 * skb_header_cloned() checks if skb is allowed to add / write the headers.
610 *
611 * The creator of the skb (e.g. TCP) marks its skb as &sk_buff.nohdr
612 * (via __skb_header_release()). Any clone created from marked skb will get
613 * &sk_buff.hdr_len populated with the available headroom.
614 * If there's the only clone in existence it's able to modify the headroom
615 * at will. The sequence of calls inside the transport layer is::
616 *
617 * <alloc skb>
618 * skb_reserve()
619 * __skb_header_release()
620 * skb_clone()
621 * // send the clone down the stack
622 *
623 * This is not a very generic construct and it depends on the transport layers
624 * doing the right thing. In practice there's usually only one payload-only skb.
625 * Having multiple payload-only skbs with different lengths of hdr_len is not
626 * possible. The payload-only skbs should never leave their owner.
627 */
628#define SKB_DATAREF_SHIFT 16
629#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
630
631
632enum {
633 SKB_FCLONE_UNAVAILABLE, /* skb has no fclone (from head_cache) */
634 SKB_FCLONE_ORIG, /* orig skb (from fclone_cache) */
635 SKB_FCLONE_CLONE, /* companion fclone skb (from fclone_cache) */
636};
637
638enum {
639 SKB_GSO_TCPV4 = 1 << 0,
640
641 /* This indicates the skb is from an untrusted source. */
642 SKB_GSO_DODGY = 1 << 1,
643
644 /* This indicates the tcp segment has CWR set. */
645 SKB_GSO_TCP_ECN = 1 << 2,
646
647 SKB_GSO_TCP_FIXEDID = 1 << 3,
648
649 SKB_GSO_TCPV6 = 1 << 4,
650
651 SKB_GSO_FCOE = 1 << 5,
652
653 SKB_GSO_GRE = 1 << 6,
654
655 SKB_GSO_GRE_CSUM = 1 << 7,
656
657 SKB_GSO_IPXIP4 = 1 << 8,
658
659 SKB_GSO_IPXIP6 = 1 << 9,
660
661 SKB_GSO_UDP_TUNNEL = 1 << 10,
662
663 SKB_GSO_UDP_TUNNEL_CSUM = 1 << 11,
664
665 SKB_GSO_PARTIAL = 1 << 12,
666
667 SKB_GSO_TUNNEL_REMCSUM = 1 << 13,
668
669 SKB_GSO_SCTP = 1 << 14,
670
671 SKB_GSO_ESP = 1 << 15,
672
673 SKB_GSO_UDP = 1 << 16,
674
675 SKB_GSO_UDP_L4 = 1 << 17,
676
677 SKB_GSO_FRAGLIST = 1 << 18,
678};
679
680#if BITS_PER_LONG > 32
681#define NET_SKBUFF_DATA_USES_OFFSET 1
682#endif
683
684#ifdef NET_SKBUFF_DATA_USES_OFFSET
685typedef unsigned int sk_buff_data_t;
686#else
687typedef unsigned char *sk_buff_data_t;
688#endif
689
690/**
691 * DOC: Basic sk_buff geometry
692 *
693 * struct sk_buff itself is a metadata structure and does not hold any packet
694 * data. All the data is held in associated buffers.
695 *
696 * &sk_buff.head points to the main "head" buffer. The head buffer is divided
697 * into two parts:
698 *
699 * - data buffer, containing headers and sometimes payload;
700 * this is the part of the skb operated on by the common helpers
701 * such as skb_put() or skb_pull();
702 * - shared info (struct skb_shared_info) which holds an array of pointers
703 * to read-only data in the (page, offset, length) format.
704 *
705 * Optionally &skb_shared_info.frag_list may point to another skb.
706 *
707 * Basic diagram may look like this::
708 *
709 * ---------------
710 * | sk_buff |
711 * ---------------
712 * ,--------------------------- + head
713 * / ,----------------- + data
714 * / / ,----------- + tail
715 * | | | , + end
716 * | | | |
717 * v v v v
718 * -----------------------------------------------
719 * | headroom | data | tailroom | skb_shared_info |
720 * -----------------------------------------------
721 * + [page frag]
722 * + [page frag]
723 * + [page frag]
724 * + [page frag] ---------
725 * + frag_list --> | sk_buff |
726 * ---------
727 *
728 */
729
730/**
731 * struct sk_buff - socket buffer
732 * @next: Next buffer in list
733 * @prev: Previous buffer in list
734 * @tstamp: Time we arrived/left
735 * @skb_mstamp_ns: (aka @tstamp) earliest departure time; start point
736 * for retransmit timer
737 * @rbnode: RB tree node, alternative to next/prev for netem/tcp
738 * @list: queue head
739 * @ll_node: anchor in an llist (eg socket defer_list)
740 * @sk: Socket we are owned by
741 * @ip_defrag_offset: (aka @sk) alternate use of @sk, used in
742 * fragmentation management
743 * @dev: Device we arrived on/are leaving by
744 * @dev_scratch: (aka @dev) alternate use of @dev when @dev would be %NULL
745 * @cb: Control buffer. Free for use by every layer. Put private vars here
746 * @_skb_refdst: destination entry (with norefcount bit)
747 * @sp: the security path, used for xfrm
748 * @len: Length of actual data
749 * @data_len: Data length
750 * @mac_len: Length of link layer header
751 * @hdr_len: writable header length of cloned skb
752 * @csum: Checksum (must include start/offset pair)
753 * @csum_start: Offset from skb->head where checksumming should start
754 * @csum_offset: Offset from csum_start where checksum should be stored
755 * @priority: Packet queueing priority
756 * @ignore_df: allow local fragmentation
757 * @cloned: Head may be cloned (check refcnt to be sure)
758 * @ip_summed: Driver fed us an IP checksum
759 * @nohdr: Payload reference only, must not modify header
760 * @pkt_type: Packet class
761 * @fclone: skbuff clone status
762 * @ipvs_property: skbuff is owned by ipvs
763 * @inner_protocol_type: whether the inner protocol is
764 * ENCAP_TYPE_ETHER or ENCAP_TYPE_IPPROTO
765 * @remcsum_offload: remote checksum offload is enabled
766 * @offload_fwd_mark: Packet was L2-forwarded in hardware
767 * @offload_l3_fwd_mark: Packet was L3-forwarded in hardware
768 * @tc_skip_classify: do not classify packet. set by IFB device
769 * @tc_at_ingress: used within tc_classify to distinguish in/egress
770 * @redirected: packet was redirected by packet classifier
771 * @from_ingress: packet was redirected from the ingress path
772 * @nf_skip_egress: packet shall skip nf egress - see netfilter_netdev.h
773 * @peeked: this packet has been seen already, so stats have been
774 * done for it, don't do them again
775 * @nf_trace: netfilter packet trace flag
776 * @protocol: Packet protocol from driver
777 * @destructor: Destruct function
778 * @tcp_tsorted_anchor: list structure for TCP (tp->tsorted_sent_queue)
779 * @_sk_redir: socket redirection information for skmsg
780 * @_nfct: Associated connection, if any (with nfctinfo bits)
781 * @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
782 * @skb_iif: ifindex of device we arrived on
783 * @tc_index: Traffic control index
784 * @hash: the packet hash
785 * @queue_mapping: Queue mapping for multiqueue devices
786 * @head_frag: skb was allocated from page fragments,
787 * not allocated by kmalloc() or vmalloc().
788 * @pfmemalloc: skbuff was allocated from PFMEMALLOC reserves
789 * @pp_recycle: mark the packet for recycling instead of freeing (implies
790 * page_pool support on driver)
791 * @active_extensions: active extensions (skb_ext_id types)
792 * @ndisc_nodetype: router type (from link layer)
793 * @ooo_okay: allow the mapping of a socket to a queue to be changed
794 * @l4_hash: indicate hash is a canonical 4-tuple hash over transport
795 * ports.
796 * @sw_hash: indicates hash was computed in software stack
797 * @wifi_acked_valid: wifi_acked was set
798 * @wifi_acked: whether frame was acked on wifi or not
799 * @no_fcs: Request NIC to treat last 4 bytes as Ethernet FCS
800 * @encapsulation: indicates the inner headers in the skbuff are valid
801 * @encap_hdr_csum: software checksum is needed
802 * @csum_valid: checksum is already valid
803 * @csum_not_inet: use CRC32c to resolve CHECKSUM_PARTIAL
804 * @csum_complete_sw: checksum was completed by software
805 * @csum_level: indicates the number of consecutive checksums found in
806 * the packet minus one that have been verified as
807 * CHECKSUM_UNNECESSARY (max 3)
808 * @dst_pending_confirm: need to confirm neighbour
809 * @decrypted: Decrypted SKB
810 * @slow_gro: state present at GRO time, slower prepare step required
811 * @mono_delivery_time: When set, skb->tstamp has the
812 * delivery_time in mono clock base (i.e. EDT). Otherwise, the
813 * skb->tstamp has the (rcv) timestamp at ingress and
814 * delivery_time at egress.
815 * @napi_id: id of the NAPI struct this skb came from
816 * @sender_cpu: (aka @napi_id) source CPU in XPS
817 * @alloc_cpu: CPU which did the skb allocation.
818 * @secmark: security marking
819 * @mark: Generic packet mark
820 * @reserved_tailroom: (aka @mark) number of bytes of free space available
821 * at the tail of an sk_buff
822 * @vlan_all: vlan fields (proto & tci)
823 * @vlan_proto: vlan encapsulation protocol
824 * @vlan_tci: vlan tag control information
825 * @inner_protocol: Protocol (encapsulation)
826 * @inner_ipproto: (aka @inner_protocol) stores ipproto when
827 * skb->inner_protocol_type == ENCAP_TYPE_IPPROTO;
828 * @inner_transport_header: Inner transport layer header (encapsulation)
829 * @inner_network_header: Network layer header (encapsulation)
830 * @inner_mac_header: Link layer header (encapsulation)
831 * @transport_header: Transport layer header
832 * @network_header: Network layer header
833 * @mac_header: Link layer header
834 * @kcov_handle: KCOV remote handle for remote coverage collection
835 * @tail: Tail pointer
836 * @end: End pointer
837 * @head: Head of buffer
838 * @data: Data head pointer
839 * @truesize: Buffer size
840 * @users: User count - see {datagram,tcp}.c
841 * @extensions: allocated extensions, valid if active_extensions is nonzero
842 */
843
844struct sk_buff {
845 union {
846 struct {
847 /* These two members must be first to match sk_buff_head. */
848 struct sk_buff *next;
849 struct sk_buff *prev;
850
851 union {
852 struct net_device *dev;
853 /* Some protocols might use this space to store information,
854 * while device pointer would be NULL.
855 * UDP receive path is one user.
856 */
857 unsigned long dev_scratch;
858 };
859 };
860 struct rb_node rbnode; /* used in netem, ip4 defrag, and tcp stack */
861 struct list_head list;
862 struct llist_node ll_node;
863 };
864
865 union {
866 struct sock *sk;
867 int ip_defrag_offset;
868 };
869
870 union {
871 ktime_t tstamp;
872 u64 skb_mstamp_ns; /* earliest departure time */
873 };
874 /*
875 * This is the control buffer. It is free to use for every
876 * layer. Please put your private variables there. If you
877 * want to keep them across layers you have to do a skb_clone()
878 * first. This is owned by whoever has the skb queued ATM.
879 */
880 char cb[48] __aligned(8);
881
882 union {
883 struct {
884 unsigned long _skb_refdst;
885 void (*destructor)(struct sk_buff *skb);
886 };
887 struct list_head tcp_tsorted_anchor;
888#ifdef CONFIG_NET_SOCK_MSG
889 unsigned long _sk_redir;
890#endif
891 };
892
893#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
894 unsigned long _nfct;
895#endif
896 unsigned int len,
897 data_len;
898 __u16 mac_len,
899 hdr_len;
900
901 /* Following fields are _not_ copied in __copy_skb_header()
902 * Note that queue_mapping is here mostly to fill a hole.
903 */
904 __u16 queue_mapping;
905
906/* if you move cloned around you also must adapt those constants */
907#ifdef __BIG_ENDIAN_BITFIELD
908#define CLONED_MASK (1 << 7)
909#else
910#define CLONED_MASK 1
911#endif
912#define CLONED_OFFSET offsetof(struct sk_buff, __cloned_offset)
913
914 /* private: */
915 __u8 __cloned_offset[0];
916 /* public: */
917 __u8 cloned:1,
918 nohdr:1,
919 fclone:2,
920 peeked:1,
921 head_frag:1,
922 pfmemalloc:1,
923 pp_recycle:1; /* page_pool recycle indicator */
924#ifdef CONFIG_SKB_EXTENSIONS
925 __u8 active_extensions;
926#endif
927
928 /* Fields enclosed in headers group are copied
929 * using a single memcpy() in __copy_skb_header()
930 */
931 struct_group(headers,
932
933 /* private: */
934 __u8 __pkt_type_offset[0];
935 /* public: */
936 __u8 pkt_type:3; /* see PKT_TYPE_MAX */
937 __u8 ignore_df:1;
938 __u8 dst_pending_confirm:1;
939 __u8 ip_summed:2;
940 __u8 ooo_okay:1;
941
942 /* private: */
943 __u8 __mono_tc_offset[0];
944 /* public: */
945 __u8 mono_delivery_time:1; /* See SKB_MONO_DELIVERY_TIME_MASK */
946#ifdef CONFIG_NET_CLS_ACT
947 __u8 tc_at_ingress:1; /* See TC_AT_INGRESS_MASK */
948 __u8 tc_skip_classify:1;
949#endif
950 __u8 remcsum_offload:1;
951 __u8 csum_complete_sw:1;
952 __u8 csum_level:2;
953 __u8 inner_protocol_type:1;
954
955 __u8 l4_hash:1;
956 __u8 sw_hash:1;
957#ifdef CONFIG_WIRELESS
958 __u8 wifi_acked_valid:1;
959 __u8 wifi_acked:1;
960#endif
961 __u8 no_fcs:1;
962 /* Indicates the inner headers are valid in the skbuff. */
963 __u8 encapsulation:1;
964 __u8 encap_hdr_csum:1;
965 __u8 csum_valid:1;
966#ifdef CONFIG_IPV6_NDISC_NODETYPE
967 __u8 ndisc_nodetype:2;
968#endif
969
970#if IS_ENABLED(CONFIG_IP_VS)
971 __u8 ipvs_property:1;
972#endif
973#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
974 __u8 nf_trace:1;
975#endif
976#ifdef CONFIG_NET_SWITCHDEV
977 __u8 offload_fwd_mark:1;
978 __u8 offload_l3_fwd_mark:1;
979#endif
980 __u8 redirected:1;
981#ifdef CONFIG_NET_REDIRECT
982 __u8 from_ingress:1;
983#endif
984#ifdef CONFIG_NETFILTER_SKIP_EGRESS
985 __u8 nf_skip_egress:1;
986#endif
987#ifdef CONFIG_TLS_DEVICE
988 __u8 decrypted:1;
989#endif
990 __u8 slow_gro:1;
991#if IS_ENABLED(CONFIG_IP_SCTP)
992 __u8 csum_not_inet:1;
993#endif
994
995#ifdef CONFIG_NET_SCHED
996 __u16 tc_index; /* traffic control index */
997#endif
998
999 u16 alloc_cpu;
1000
1001 union {
1002 __wsum csum;
1003 struct {
1004 __u16 csum_start;
1005 __u16 csum_offset;
1006 };
1007 };
1008 __u32 priority;
1009 int skb_iif;
1010 __u32 hash;
1011 union {
1012 u32 vlan_all;
1013 struct {
1014 __be16 vlan_proto;
1015 __u16 vlan_tci;
1016 };
1017 };
1018#if defined(CONFIG_NET_RX_BUSY_POLL) || defined(CONFIG_XPS)
1019 union {
1020 unsigned int napi_id;
1021 unsigned int sender_cpu;
1022 };
1023#endif
1024#ifdef CONFIG_NETWORK_SECMARK
1025 __u32 secmark;
1026#endif
1027
1028 union {
1029 __u32 mark;
1030 __u32 reserved_tailroom;
1031 };
1032
1033 union {
1034 __be16 inner_protocol;
1035 __u8 inner_ipproto;
1036 };
1037
1038 __u16 inner_transport_header;
1039 __u16 inner_network_header;
1040 __u16 inner_mac_header;
1041
1042 __be16 protocol;
1043 __u16 transport_header;
1044 __u16 network_header;
1045 __u16 mac_header;
1046
1047#ifdef CONFIG_KCOV
1048 u64 kcov_handle;
1049#endif
1050
1051 ); /* end headers group */
1052
1053 /* These elements must be at the end, see alloc_skb() for details. */
1054 sk_buff_data_t tail;
1055 sk_buff_data_t end;
1056 unsigned char *head,
1057 *data;
1058 unsigned int truesize;
1059 refcount_t users;
1060
1061#ifdef CONFIG_SKB_EXTENSIONS
1062 /* only useable after checking ->active_extensions != 0 */
1063 struct skb_ext *extensions;
1064#endif
1065};
1066
1067/* if you move pkt_type around you also must adapt those constants */
1068#ifdef __BIG_ENDIAN_BITFIELD
1069#define PKT_TYPE_MAX (7 << 5)
1070#else
1071#define PKT_TYPE_MAX 7
1072#endif
1073#define PKT_TYPE_OFFSET offsetof(struct sk_buff, __pkt_type_offset)
1074
1075/* if you move tc_at_ingress or mono_delivery_time
1076 * around, you also must adapt these constants.
1077 */
1078#ifdef __BIG_ENDIAN_BITFIELD
1079#define SKB_MONO_DELIVERY_TIME_MASK (1 << 7)
1080#define TC_AT_INGRESS_MASK (1 << 6)
1081#else
1082#define SKB_MONO_DELIVERY_TIME_MASK (1 << 0)
1083#define TC_AT_INGRESS_MASK (1 << 1)
1084#endif
1085#define SKB_BF_MONO_TC_OFFSET offsetof(struct sk_buff, __mono_tc_offset)
1086
1087#ifdef __KERNEL__
1088/*
1089 * Handling routines are only of interest to the kernel
1090 */
1091
1092#define SKB_ALLOC_FCLONE 0x01
1093#define SKB_ALLOC_RX 0x02
1094#define SKB_ALLOC_NAPI 0x04
1095
1096/**
1097 * skb_pfmemalloc - Test if the skb was allocated from PFMEMALLOC reserves
1098 * @skb: buffer
1099 */
1100static inline bool skb_pfmemalloc(const struct sk_buff *skb)
1101{
1102 return unlikely(skb->pfmemalloc);
1103}
1104
1105/*
1106 * skb might have a dst pointer attached, refcounted or not.
1107 * _skb_refdst low order bit is set if refcount was _not_ taken
1108 */
1109#define SKB_DST_NOREF 1UL
1110#define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
1111
1112/**
1113 * skb_dst - returns skb dst_entry
1114 * @skb: buffer
1115 *
1116 * Returns skb dst_entry, regardless of reference taken or not.
1117 */
1118static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
1119{
1120 /* If refdst was not refcounted, check we still are in a
1121 * rcu_read_lock section
1122 */
1123 WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
1124 !rcu_read_lock_held() &&
1125 !rcu_read_lock_bh_held());
1126 return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
1127}
1128
1129/**
1130 * skb_dst_set - sets skb dst
1131 * @skb: buffer
1132 * @dst: dst entry
1133 *
1134 * Sets skb dst, assuming a reference was taken on dst and should
1135 * be released by skb_dst_drop()
1136 */
1137static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
1138{
1139 skb->slow_gro |= !!dst;
1140 skb->_skb_refdst = (unsigned long)dst;
1141}
1142
1143/**
1144 * skb_dst_set_noref - sets skb dst, hopefully, without taking reference
1145 * @skb: buffer
1146 * @dst: dst entry
1147 *
1148 * Sets skb dst, assuming a reference was not taken on dst.
1149 * If dst entry is cached, we do not take reference and dst_release
1150 * will be avoided by refdst_drop. If dst entry is not cached, we take
1151 * reference, so that last dst_release can destroy the dst immediately.
1152 */
1153static inline void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst)
1154{
1155 WARN_ON(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
1156 skb->slow_gro |= !!dst;
1157 skb->_skb_refdst = (unsigned long)dst | SKB_DST_NOREF;
1158}
1159
1160/**
1161 * skb_dst_is_noref - Test if skb dst isn't refcounted
1162 * @skb: buffer
1163 */
1164static inline bool skb_dst_is_noref(const struct sk_buff *skb)
1165{
1166 return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
1167}
1168
1169/**
1170 * skb_rtable - Returns the skb &rtable
1171 * @skb: buffer
1172 */
1173static inline struct rtable *skb_rtable(const struct sk_buff *skb)
1174{
1175 return (struct rtable *)skb_dst(skb);
1176}
1177
1178/* For mangling skb->pkt_type from user space side from applications
1179 * such as nft, tc, etc, we only allow a conservative subset of
1180 * possible pkt_types to be set.
1181*/
1182static inline bool skb_pkt_type_ok(u32 ptype)
1183{
1184 return ptype <= PACKET_OTHERHOST;
1185}
1186
1187/**
1188 * skb_napi_id - Returns the skb's NAPI id
1189 * @skb: buffer
1190 */
1191static inline unsigned int skb_napi_id(const struct sk_buff *skb)
1192{
1193#ifdef CONFIG_NET_RX_BUSY_POLL
1194 return skb->napi_id;
1195#else
1196 return 0;
1197#endif
1198}
1199
1200static inline bool skb_wifi_acked_valid(const struct sk_buff *skb)
1201{
1202#ifdef CONFIG_WIRELESS
1203 return skb->wifi_acked_valid;
1204#else
1205 return 0;
1206#endif
1207}
1208
1209/**
1210 * skb_unref - decrement the skb's reference count
1211 * @skb: buffer
1212 *
1213 * Returns true if we can free the skb.
1214 */
1215static inline bool skb_unref(struct sk_buff *skb)
1216{
1217 if (unlikely(!skb))
1218 return false;
1219 if (likely(refcount_read(&skb->users) == 1))
1220 smp_rmb();
1221 else if (likely(!refcount_dec_and_test(&skb->users)))
1222 return false;
1223
1224 return true;
1225}
1226
1227void __fix_address
1228kfree_skb_reason(struct sk_buff *skb, enum skb_drop_reason reason);
1229
1230/**
1231 * kfree_skb - free an sk_buff with 'NOT_SPECIFIED' reason
1232 * @skb: buffer to free
1233 */
1234static inline void kfree_skb(struct sk_buff *skb)
1235{
1236 kfree_skb_reason(skb, SKB_DROP_REASON_NOT_SPECIFIED);
1237}
1238
1239void skb_release_head_state(struct sk_buff *skb);
1240void kfree_skb_list_reason(struct sk_buff *segs,
1241 enum skb_drop_reason reason);
1242void skb_dump(const char *level, const struct sk_buff *skb, bool full_pkt);
1243void skb_tx_error(struct sk_buff *skb);
1244
1245static inline void kfree_skb_list(struct sk_buff *segs)
1246{
1247 kfree_skb_list_reason(segs, SKB_DROP_REASON_NOT_SPECIFIED);
1248}
1249
1250#ifdef CONFIG_TRACEPOINTS
1251void consume_skb(struct sk_buff *skb);
1252#else
1253static inline void consume_skb(struct sk_buff *skb)
1254{
1255 return kfree_skb(skb);
1256}
1257#endif
1258
1259void __consume_stateless_skb(struct sk_buff *skb);
1260void __kfree_skb(struct sk_buff *skb);
1261extern struct kmem_cache *skbuff_cache;
1262
1263void kfree_skb_partial(struct sk_buff *skb, bool head_stolen);
1264bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
1265 bool *fragstolen, int *delta_truesize);
1266
1267struct sk_buff *__alloc_skb(unsigned int size, gfp_t priority, int flags,
1268 int node);
1269struct sk_buff *__build_skb(void *data, unsigned int frag_size);
1270struct sk_buff *build_skb(void *data, unsigned int frag_size);
1271struct sk_buff *build_skb_around(struct sk_buff *skb,
1272 void *data, unsigned int frag_size);
1273void skb_attempt_defer_free(struct sk_buff *skb);
1274
1275struct sk_buff *napi_build_skb(void *data, unsigned int frag_size);
1276struct sk_buff *slab_build_skb(void *data);
1277
1278/**
1279 * alloc_skb - allocate a network buffer
1280 * @size: size to allocate
1281 * @priority: allocation mask
1282 *
1283 * This function is a convenient wrapper around __alloc_skb().
1284 */
1285static inline struct sk_buff *alloc_skb(unsigned int size,
1286 gfp_t priority)
1287{
1288 return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
1289}
1290
1291struct sk_buff *alloc_skb_with_frags(unsigned long header_len,
1292 unsigned long data_len,
1293 int max_page_order,
1294 int *errcode,
1295 gfp_t gfp_mask);
1296struct sk_buff *alloc_skb_for_msg(struct sk_buff *first);
1297
1298/* Layout of fast clones : [skb1][skb2][fclone_ref] */
1299struct sk_buff_fclones {
1300 struct sk_buff skb1;
1301
1302 struct sk_buff skb2;
1303
1304 refcount_t fclone_ref;
1305};
1306
1307/**
1308 * skb_fclone_busy - check if fclone is busy
1309 * @sk: socket
1310 * @skb: buffer
1311 *
1312 * Returns true if skb is a fast clone, and its clone is not freed.
1313 * Some drivers call skb_orphan() in their ndo_start_xmit(),
1314 * so we also check that this didnt happen.
1315 */
1316static inline bool skb_fclone_busy(const struct sock *sk,
1317 const struct sk_buff *skb)
1318{
1319 const struct sk_buff_fclones *fclones;
1320
1321 fclones = container_of(skb, struct sk_buff_fclones, skb1);
1322
1323 return skb->fclone == SKB_FCLONE_ORIG &&
1324 refcount_read(&fclones->fclone_ref) > 1 &&
1325 READ_ONCE(fclones->skb2.sk) == sk;
1326}
1327
1328/**
1329 * alloc_skb_fclone - allocate a network buffer from fclone cache
1330 * @size: size to allocate
1331 * @priority: allocation mask
1332 *
1333 * This function is a convenient wrapper around __alloc_skb().
1334 */
1335static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
1336 gfp_t priority)
1337{
1338 return __alloc_skb(size, priority, SKB_ALLOC_FCLONE, NUMA_NO_NODE);
1339}
1340
1341struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
1342void skb_headers_offset_update(struct sk_buff *skb, int off);
1343int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
1344struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t priority);
1345void skb_copy_header(struct sk_buff *new, const struct sk_buff *old);
1346struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t priority);
1347struct sk_buff *__pskb_copy_fclone(struct sk_buff *skb, int headroom,
1348 gfp_t gfp_mask, bool fclone);
1349static inline struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom,
1350 gfp_t gfp_mask)
1351{
1352 return __pskb_copy_fclone(skb, headroom, gfp_mask, false);
1353}
1354
1355int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail, gfp_t gfp_mask);
1356struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
1357 unsigned int headroom);
1358struct sk_buff *skb_expand_head(struct sk_buff *skb, unsigned int headroom);
1359struct sk_buff *skb_copy_expand(const struct sk_buff *skb, int newheadroom,
1360 int newtailroom, gfp_t priority);
1361int __must_check skb_to_sgvec_nomark(struct sk_buff *skb, struct scatterlist *sg,
1362 int offset, int len);
1363int __must_check skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg,
1364 int offset, int len);
1365int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer);
1366int __skb_pad(struct sk_buff *skb, int pad, bool free_on_error);
1367
1368/**
1369 * skb_pad - zero pad the tail of an skb
1370 * @skb: buffer to pad
1371 * @pad: space to pad
1372 *
1373 * Ensure that a buffer is followed by a padding area that is zero
1374 * filled. Used by network drivers which may DMA or transfer data
1375 * beyond the buffer end onto the wire.
1376 *
1377 * May return error in out of memory cases. The skb is freed on error.
1378 */
1379static inline int skb_pad(struct sk_buff *skb, int pad)
1380{
1381 return __skb_pad(skb, pad, true);
1382}
1383#define dev_kfree_skb(a) consume_skb(a)
1384
1385int skb_append_pagefrags(struct sk_buff *skb, struct page *page,
1386 int offset, size_t size);
1387
1388struct skb_seq_state {
1389 __u32 lower_offset;
1390 __u32 upper_offset;
1391 __u32 frag_idx;
1392 __u32 stepped_offset;
1393 struct sk_buff *root_skb;
1394 struct sk_buff *cur_skb;
1395 __u8 *frag_data;
1396 __u32 frag_off;
1397};
1398
1399void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
1400 unsigned int to, struct skb_seq_state *st);
1401unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
1402 struct skb_seq_state *st);
1403void skb_abort_seq_read(struct skb_seq_state *st);
1404
1405unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
1406 unsigned int to, struct ts_config *config);
1407
1408/*
1409 * Packet hash types specify the type of hash in skb_set_hash.
1410 *
1411 * Hash types refer to the protocol layer addresses which are used to
1412 * construct a packet's hash. The hashes are used to differentiate or identify
1413 * flows of the protocol layer for the hash type. Hash types are either
1414 * layer-2 (L2), layer-3 (L3), or layer-4 (L4).
1415 *
1416 * Properties of hashes:
1417 *
1418 * 1) Two packets in different flows have different hash values
1419 * 2) Two packets in the same flow should have the same hash value
1420 *
1421 * A hash at a higher layer is considered to be more specific. A driver should
1422 * set the most specific hash possible.
1423 *
1424 * A driver cannot indicate a more specific hash than the layer at which a hash
1425 * was computed. For instance an L3 hash cannot be set as an L4 hash.
1426 *
1427 * A driver may indicate a hash level which is less specific than the
1428 * actual layer the hash was computed on. For instance, a hash computed
1429 * at L4 may be considered an L3 hash. This should only be done if the
1430 * driver can't unambiguously determine that the HW computed the hash at
1431 * the higher layer. Note that the "should" in the second property above
1432 * permits this.
1433 */
1434enum pkt_hash_types {
1435 PKT_HASH_TYPE_NONE, /* Undefined type */
1436 PKT_HASH_TYPE_L2, /* Input: src_MAC, dest_MAC */
1437 PKT_HASH_TYPE_L3, /* Input: src_IP, dst_IP */
1438 PKT_HASH_TYPE_L4, /* Input: src_IP, dst_IP, src_port, dst_port */
1439};
1440
1441static inline void skb_clear_hash(struct sk_buff *skb)
1442{
1443 skb->hash = 0;
1444 skb->sw_hash = 0;
1445 skb->l4_hash = 0;
1446}
1447
1448static inline void skb_clear_hash_if_not_l4(struct sk_buff *skb)
1449{
1450 if (!skb->l4_hash)
1451 skb_clear_hash(skb);
1452}
1453
1454static inline void
1455__skb_set_hash(struct sk_buff *skb, __u32 hash, bool is_sw, bool is_l4)
1456{
1457 skb->l4_hash = is_l4;
1458 skb->sw_hash = is_sw;
1459 skb->hash = hash;
1460}
1461
1462static inline void
1463skb_set_hash(struct sk_buff *skb, __u32 hash, enum pkt_hash_types type)
1464{
1465 /* Used by drivers to set hash from HW */
1466 __skb_set_hash(skb, hash, false, type == PKT_HASH_TYPE_L4);
1467}
1468
1469static inline void
1470__skb_set_sw_hash(struct sk_buff *skb, __u32 hash, bool is_l4)
1471{
1472 __skb_set_hash(skb, hash, true, is_l4);
1473}
1474
1475void __skb_get_hash(struct sk_buff *skb);
1476u32 __skb_get_hash_symmetric(const struct sk_buff *skb);
1477u32 skb_get_poff(const struct sk_buff *skb);
1478u32 __skb_get_poff(const struct sk_buff *skb, const void *data,
1479 const struct flow_keys_basic *keys, int hlen);
1480__be32 __skb_flow_get_ports(const struct sk_buff *skb, int thoff, u8 ip_proto,
1481 const void *data, int hlen_proto);
1482
1483static inline __be32 skb_flow_get_ports(const struct sk_buff *skb,
1484 int thoff, u8 ip_proto)
1485{
1486 return __skb_flow_get_ports(skb, thoff, ip_proto, NULL, 0);
1487}
1488
1489void skb_flow_dissector_init(struct flow_dissector *flow_dissector,
1490 const struct flow_dissector_key *key,
1491 unsigned int key_count);
1492
1493struct bpf_flow_dissector;
1494u32 bpf_flow_dissect(struct bpf_prog *prog, struct bpf_flow_dissector *ctx,
1495 __be16 proto, int nhoff, int hlen, unsigned int flags);
1496
1497bool __skb_flow_dissect(const struct net *net,
1498 const struct sk_buff *skb,
1499 struct flow_dissector *flow_dissector,
1500 void *target_container, const void *data,
1501 __be16 proto, int nhoff, int hlen, unsigned int flags);
1502
1503static inline bool skb_flow_dissect(const struct sk_buff *skb,
1504 struct flow_dissector *flow_dissector,
1505 void *target_container, unsigned int flags)
1506{
1507 return __skb_flow_dissect(NULL, skb, flow_dissector,
1508 target_container, NULL, 0, 0, 0, flags);
1509}
1510
1511static inline bool skb_flow_dissect_flow_keys(const struct sk_buff *skb,
1512 struct flow_keys *flow,
1513 unsigned int flags)
1514{
1515 memset(flow, 0, sizeof(*flow));
1516 return __skb_flow_dissect(NULL, skb, &flow_keys_dissector,
1517 flow, NULL, 0, 0, 0, flags);
1518}
1519
1520static inline bool
1521skb_flow_dissect_flow_keys_basic(const struct net *net,
1522 const struct sk_buff *skb,
1523 struct flow_keys_basic *flow,
1524 const void *data, __be16 proto,
1525 int nhoff, int hlen, unsigned int flags)
1526{
1527 memset(flow, 0, sizeof(*flow));
1528 return __skb_flow_dissect(net, skb, &flow_keys_basic_dissector, flow,
1529 data, proto, nhoff, hlen, flags);
1530}
1531
1532void skb_flow_dissect_meta(const struct sk_buff *skb,
1533 struct flow_dissector *flow_dissector,
1534 void *target_container);
1535
1536/* Gets a skb connection tracking info, ctinfo map should be a
1537 * map of mapsize to translate enum ip_conntrack_info states
1538 * to user states.
1539 */
1540void
1541skb_flow_dissect_ct(const struct sk_buff *skb,
1542 struct flow_dissector *flow_dissector,
1543 void *target_container,
1544 u16 *ctinfo_map, size_t mapsize,
1545 bool post_ct, u16 zone);
1546void
1547skb_flow_dissect_tunnel_info(const struct sk_buff *skb,
1548 struct flow_dissector *flow_dissector,
1549 void *target_container);
1550
1551void skb_flow_dissect_hash(const struct sk_buff *skb,
1552 struct flow_dissector *flow_dissector,
1553 void *target_container);
1554
1555static inline __u32 skb_get_hash(struct sk_buff *skb)
1556{
1557 if (!skb->l4_hash && !skb->sw_hash)
1558 __skb_get_hash(skb);
1559
1560 return skb->hash;
1561}
1562
1563static inline __u32 skb_get_hash_flowi6(struct sk_buff *skb, const struct flowi6 *fl6)
1564{
1565 if (!skb->l4_hash && !skb->sw_hash) {
1566 struct flow_keys keys;
1567 __u32 hash = __get_hash_from_flowi6(fl6, &keys);
1568
1569 __skb_set_sw_hash(skb, hash, flow_keys_have_l4(&keys));
1570 }
1571
1572 return skb->hash;
1573}
1574
1575__u32 skb_get_hash_perturb(const struct sk_buff *skb,
1576 const siphash_key_t *perturb);
1577
1578static inline __u32 skb_get_hash_raw(const struct sk_buff *skb)
1579{
1580 return skb->hash;
1581}
1582
1583static inline void skb_copy_hash(struct sk_buff *to, const struct sk_buff *from)
1584{
1585 to->hash = from->hash;
1586 to->sw_hash = from->sw_hash;
1587 to->l4_hash = from->l4_hash;
1588};
1589
1590static inline int skb_cmp_decrypted(const struct sk_buff *skb1,
1591 const struct sk_buff *skb2)
1592{
1593#ifdef CONFIG_TLS_DEVICE
1594 return skb2->decrypted - skb1->decrypted;
1595#else
1596 return 0;
1597#endif
1598}
1599
1600static inline void skb_copy_decrypted(struct sk_buff *to,
1601 const struct sk_buff *from)
1602{
1603#ifdef CONFIG_TLS_DEVICE
1604 to->decrypted = from->decrypted;
1605#endif
1606}
1607
1608#ifdef NET_SKBUFF_DATA_USES_OFFSET
1609static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1610{
1611 return skb->head + skb->end;
1612}
1613
1614static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1615{
1616 return skb->end;
1617}
1618
1619static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1620{
1621 skb->end = offset;
1622}
1623#else
1624static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
1625{
1626 return skb->end;
1627}
1628
1629static inline unsigned int skb_end_offset(const struct sk_buff *skb)
1630{
1631 return skb->end - skb->head;
1632}
1633
1634static inline void skb_set_end_offset(struct sk_buff *skb, unsigned int offset)
1635{
1636 skb->end = skb->head + offset;
1637}
1638#endif
1639
1640struct ubuf_info *msg_zerocopy_realloc(struct sock *sk, size_t size,
1641 struct ubuf_info *uarg);
1642
1643void msg_zerocopy_put_abort(struct ubuf_info *uarg, bool have_uref);
1644
1645void msg_zerocopy_callback(struct sk_buff *skb, struct ubuf_info *uarg,
1646 bool success);
1647
1648int __zerocopy_sg_from_iter(struct msghdr *msg, struct sock *sk,
1649 struct sk_buff *skb, struct iov_iter *from,
1650 size_t length);
1651
1652static inline int skb_zerocopy_iter_dgram(struct sk_buff *skb,
1653 struct msghdr *msg, int len)
1654{
1655 return __zerocopy_sg_from_iter(msg, skb->sk, skb, &msg->msg_iter, len);
1656}
1657
1658int skb_zerocopy_iter_stream(struct sock *sk, struct sk_buff *skb,
1659 struct msghdr *msg, int len,
1660 struct ubuf_info *uarg);
1661
1662/* Internal */
1663#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
1664
1665static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
1666{
1667 return &skb_shinfo(skb)->hwtstamps;
1668}
1669
1670static inline struct ubuf_info *skb_zcopy(struct sk_buff *skb)
1671{
1672 bool is_zcopy = skb && skb_shinfo(skb)->flags & SKBFL_ZEROCOPY_ENABLE;
1673
1674 return is_zcopy ? skb_uarg(skb) : NULL;
1675}
1676
1677static inline bool skb_zcopy_pure(const struct sk_buff *skb)
1678{
1679 return skb_shinfo(skb)->flags & SKBFL_PURE_ZEROCOPY;
1680}
1681
1682static inline bool skb_zcopy_managed(const struct sk_buff *skb)
1683{
1684 return skb_shinfo(skb)->flags & SKBFL_MANAGED_FRAG_REFS;
1685}
1686
1687static inline bool skb_pure_zcopy_same(const struct sk_buff *skb1,
1688 const struct sk_buff *skb2)
1689{
1690 return skb_zcopy_pure(skb1) == skb_zcopy_pure(skb2);
1691}
1692
1693static inline void net_zcopy_get(struct ubuf_info *uarg)
1694{
1695 refcount_inc(&uarg->refcnt);
1696}
1697
1698static inline void skb_zcopy_init(struct sk_buff *skb, struct ubuf_info *uarg)
1699{
1700 skb_shinfo(skb)->destructor_arg = uarg;
1701 skb_shinfo(skb)->flags |= uarg->flags;
1702}
1703
1704static inline void skb_zcopy_set(struct sk_buff *skb, struct ubuf_info *uarg,
1705 bool *have_ref)
1706{
1707 if (skb && uarg && !skb_zcopy(skb)) {
1708 if (unlikely(have_ref && *have_ref))
1709 *have_ref = false;
1710 else
1711 net_zcopy_get(uarg);
1712 skb_zcopy_init(skb, uarg);
1713 }
1714}
1715
1716static inline void skb_zcopy_set_nouarg(struct sk_buff *skb, void *val)
1717{
1718 skb_shinfo(skb)->destructor_arg = (void *)((uintptr_t) val | 0x1UL);
1719 skb_shinfo(skb)->flags |= SKBFL_ZEROCOPY_FRAG;
1720}
1721
1722static inline bool skb_zcopy_is_nouarg(struct sk_buff *skb)
1723{
1724 return (uintptr_t) skb_shinfo(skb)->destructor_arg & 0x1UL;
1725}
1726
1727static inline void *skb_zcopy_get_nouarg(struct sk_buff *skb)
1728{
1729 return (void *)((uintptr_t) skb_shinfo(skb)->destructor_arg & ~0x1UL);
1730}
1731
1732static inline void net_zcopy_put(struct ubuf_info *uarg)
1733{
1734 if (uarg)
1735 uarg->callback(NULL, uarg, true);
1736}
1737
1738static inline void net_zcopy_put_abort(struct ubuf_info *uarg, bool have_uref)
1739{
1740 if (uarg) {
1741 if (uarg->callback == msg_zerocopy_callback)
1742 msg_zerocopy_put_abort(uarg, have_uref);
1743 else if (have_uref)
1744 net_zcopy_put(uarg);
1745 }
1746}
1747
1748/* Release a reference on a zerocopy structure */
1749static inline void skb_zcopy_clear(struct sk_buff *skb, bool zerocopy_success)
1750{
1751 struct ubuf_info *uarg = skb_zcopy(skb);
1752
1753 if (uarg) {
1754 if (!skb_zcopy_is_nouarg(skb))
1755 uarg->callback(skb, uarg, zerocopy_success);
1756
1757 skb_shinfo(skb)->flags &= ~SKBFL_ALL_ZEROCOPY;
1758 }
1759}
1760
1761void __skb_zcopy_downgrade_managed(struct sk_buff *skb);
1762
1763static inline void skb_zcopy_downgrade_managed(struct sk_buff *skb)
1764{
1765 if (unlikely(skb_zcopy_managed(skb)))
1766 __skb_zcopy_downgrade_managed(skb);
1767}
1768
1769static inline void skb_mark_not_on_list(struct sk_buff *skb)
1770{
1771 skb->next = NULL;
1772}
1773
1774static inline void skb_poison_list(struct sk_buff *skb)
1775{
1776#ifdef CONFIG_DEBUG_NET
1777 skb->next = SKB_LIST_POISON_NEXT;
1778#endif
1779}
1780
1781/* Iterate through singly-linked GSO fragments of an skb. */
1782#define skb_list_walk_safe(first, skb, next_skb) \
1783 for ((skb) = (first), (next_skb) = (skb) ? (skb)->next : NULL; (skb); \
1784 (skb) = (next_skb), (next_skb) = (skb) ? (skb)->next : NULL)
1785
1786static inline void skb_list_del_init(struct sk_buff *skb)
1787{
1788 __list_del_entry(&skb->list);
1789 skb_mark_not_on_list(skb);
1790}
1791
1792/**
1793 * skb_queue_empty - check if a queue is empty
1794 * @list: queue head
1795 *
1796 * Returns true if the queue is empty, false otherwise.
1797 */
1798static inline int skb_queue_empty(const struct sk_buff_head *list)
1799{
1800 return list->next == (const struct sk_buff *) list;
1801}
1802
1803/**
1804 * skb_queue_empty_lockless - check if a queue is empty
1805 * @list: queue head
1806 *
1807 * Returns true if the queue is empty, false otherwise.
1808 * This variant can be used in lockless contexts.
1809 */
1810static inline bool skb_queue_empty_lockless(const struct sk_buff_head *list)
1811{
1812 return READ_ONCE(list->next) == (const struct sk_buff *) list;
1813}
1814
1815
1816/**
1817 * skb_queue_is_last - check if skb is the last entry in the queue
1818 * @list: queue head
1819 * @skb: buffer
1820 *
1821 * Returns true if @skb is the last buffer on the list.
1822 */
1823static inline bool skb_queue_is_last(const struct sk_buff_head *list,
1824 const struct sk_buff *skb)
1825{
1826 return skb->next == (const struct sk_buff *) list;
1827}
1828
1829/**
1830 * skb_queue_is_first - check if skb is the first entry in the queue
1831 * @list: queue head
1832 * @skb: buffer
1833 *
1834 * Returns true if @skb is the first buffer on the list.
1835 */
1836static inline bool skb_queue_is_first(const struct sk_buff_head *list,
1837 const struct sk_buff *skb)
1838{
1839 return skb->prev == (const struct sk_buff *) list;
1840}
1841
1842/**
1843 * skb_queue_next - return the next packet in the queue
1844 * @list: queue head
1845 * @skb: current buffer
1846 *
1847 * Return the next packet in @list after @skb. It is only valid to
1848 * call this if skb_queue_is_last() evaluates to false.
1849 */
1850static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
1851 const struct sk_buff *skb)
1852{
1853 /* This BUG_ON may seem severe, but if we just return then we
1854 * are going to dereference garbage.
1855 */
1856 BUG_ON(skb_queue_is_last(list, skb));
1857 return skb->next;
1858}
1859
1860/**
1861 * skb_queue_prev - return the prev packet in the queue
1862 * @list: queue head
1863 * @skb: current buffer
1864 *
1865 * Return the prev packet in @list before @skb. It is only valid to
1866 * call this if skb_queue_is_first() evaluates to false.
1867 */
1868static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
1869 const struct sk_buff *skb)
1870{
1871 /* This BUG_ON may seem severe, but if we just return then we
1872 * are going to dereference garbage.
1873 */
1874 BUG_ON(skb_queue_is_first(list, skb));
1875 return skb->prev;
1876}
1877
1878/**
1879 * skb_get - reference buffer
1880 * @skb: buffer to reference
1881 *
1882 * Makes another reference to a socket buffer and returns a pointer
1883 * to the buffer.
1884 */
1885static inline struct sk_buff *skb_get(struct sk_buff *skb)
1886{
1887 refcount_inc(&skb->users);
1888 return skb;
1889}
1890
1891/*
1892 * If users == 1, we are the only owner and can avoid redundant atomic changes.
1893 */
1894
1895/**
1896 * skb_cloned - is the buffer a clone
1897 * @skb: buffer to check
1898 *
1899 * Returns true if the buffer was generated with skb_clone() and is
1900 * one of multiple shared copies of the buffer. Cloned buffers are
1901 * shared data so must not be written to under normal circumstances.
1902 */
1903static inline int skb_cloned(const struct sk_buff *skb)
1904{
1905 return skb->cloned &&
1906 (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
1907}
1908
1909static inline int skb_unclone(struct sk_buff *skb, gfp_t pri)
1910{
1911 might_sleep_if(gfpflags_allow_blocking(pri));
1912
1913 if (skb_cloned(skb))
1914 return pskb_expand_head(skb, 0, 0, pri);
1915
1916 return 0;
1917}
1918
1919/* This variant of skb_unclone() makes sure skb->truesize
1920 * and skb_end_offset() are not changed, whenever a new skb->head is needed.
1921 *
1922 * Indeed there is no guarantee that ksize(kmalloc(X)) == ksize(kmalloc(X))
1923 * when various debugging features are in place.
1924 */
1925int __skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri);
1926static inline int skb_unclone_keeptruesize(struct sk_buff *skb, gfp_t pri)
1927{
1928 might_sleep_if(gfpflags_allow_blocking(pri));
1929
1930 if (skb_cloned(skb))
1931 return __skb_unclone_keeptruesize(skb, pri);
1932 return 0;
1933}
1934
1935/**
1936 * skb_header_cloned - is the header a clone
1937 * @skb: buffer to check
1938 *
1939 * Returns true if modifying the header part of the buffer requires
1940 * the data to be copied.
1941 */
1942static inline int skb_header_cloned(const struct sk_buff *skb)
1943{
1944 int dataref;
1945
1946 if (!skb->cloned)
1947 return 0;
1948
1949 dataref = atomic_read(&skb_shinfo(skb)->dataref);
1950 dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
1951 return dataref != 1;
1952}
1953
1954static inline int skb_header_unclone(struct sk_buff *skb, gfp_t pri)
1955{
1956 might_sleep_if(gfpflags_allow_blocking(pri));
1957
1958 if (skb_header_cloned(skb))
1959 return pskb_expand_head(skb, 0, 0, pri);
1960
1961 return 0;
1962}
1963
1964/**
1965 * __skb_header_release() - allow clones to use the headroom
1966 * @skb: buffer to operate on
1967 *
1968 * See "DOC: dataref and headerless skbs".
1969 */
1970static inline void __skb_header_release(struct sk_buff *skb)
1971{
1972 skb->nohdr = 1;
1973 atomic_set(&skb_shinfo(skb)->dataref, 1 + (1 << SKB_DATAREF_SHIFT));
1974}
1975
1976
1977/**
1978 * skb_shared - is the buffer shared
1979 * @skb: buffer to check
1980 *
1981 * Returns true if more than one person has a reference to this
1982 * buffer.
1983 */
1984static inline int skb_shared(const struct sk_buff *skb)
1985{
1986 return refcount_read(&skb->users) != 1;
1987}
1988
1989/**
1990 * skb_share_check - check if buffer is shared and if so clone it
1991 * @skb: buffer to check
1992 * @pri: priority for memory allocation
1993 *
1994 * If the buffer is shared the buffer is cloned and the old copy
1995 * drops a reference. A new clone with a single reference is returned.
1996 * If the buffer is not shared the original buffer is returned. When
1997 * being called from interrupt status or with spinlocks held pri must
1998 * be GFP_ATOMIC.
1999 *
2000 * NULL is returned on a memory allocation failure.
2001 */
2002static inline struct sk_buff *skb_share_check(struct sk_buff *skb, gfp_t pri)
2003{
2004 might_sleep_if(gfpflags_allow_blocking(pri));
2005 if (skb_shared(skb)) {
2006 struct sk_buff *nskb = skb_clone(skb, pri);
2007
2008 if (likely(nskb))
2009 consume_skb(skb);
2010 else
2011 kfree_skb(skb);
2012 skb = nskb;
2013 }
2014 return skb;
2015}
2016
2017/*
2018 * Copy shared buffers into a new sk_buff. We effectively do COW on
2019 * packets to handle cases where we have a local reader and forward
2020 * and a couple of other messy ones. The normal one is tcpdumping
2021 * a packet thats being forwarded.
2022 */
2023
2024/**
2025 * skb_unshare - make a copy of a shared buffer
2026 * @skb: buffer to check
2027 * @pri: priority for memory allocation
2028 *
2029 * If the socket buffer is a clone then this function creates a new
2030 * copy of the data, drops a reference count on the old copy and returns
2031 * the new copy with the reference count at 1. If the buffer is not a clone
2032 * the original buffer is returned. When called with a spinlock held or
2033 * from interrupt state @pri must be %GFP_ATOMIC
2034 *
2035 * %NULL is returned on a memory allocation failure.
2036 */
2037static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
2038 gfp_t pri)
2039{
2040 might_sleep_if(gfpflags_allow_blocking(pri));
2041 if (skb_cloned(skb)) {
2042 struct sk_buff *nskb = skb_copy(skb, pri);
2043
2044 /* Free our shared copy */
2045 if (likely(nskb))
2046 consume_skb(skb);
2047 else
2048 kfree_skb(skb);
2049 skb = nskb;
2050 }
2051 return skb;
2052}
2053
2054/**
2055 * skb_peek - peek at the head of an &sk_buff_head
2056 * @list_: list to peek at
2057 *
2058 * Peek an &sk_buff. Unlike most other operations you _MUST_
2059 * be careful with this one. A peek leaves the buffer on the
2060 * list and someone else may run off with it. You must hold
2061 * the appropriate locks or have a private queue to do this.
2062 *
2063 * Returns %NULL for an empty list or a pointer to the head element.
2064 * The reference count is not incremented and the reference is therefore
2065 * volatile. Use with caution.
2066 */
2067static inline struct sk_buff *skb_peek(const struct sk_buff_head *list_)
2068{
2069 struct sk_buff *skb = list_->next;
2070
2071 if (skb == (struct sk_buff *)list_)
2072 skb = NULL;
2073 return skb;
2074}
2075
2076/**
2077 * __skb_peek - peek at the head of a non-empty &sk_buff_head
2078 * @list_: list to peek at
2079 *
2080 * Like skb_peek(), but the caller knows that the list is not empty.
2081 */
2082static inline struct sk_buff *__skb_peek(const struct sk_buff_head *list_)
2083{
2084 return list_->next;
2085}
2086
2087/**
2088 * skb_peek_next - peek skb following the given one from a queue
2089 * @skb: skb to start from
2090 * @list_: list to peek at
2091 *
2092 * Returns %NULL when the end of the list is met or a pointer to the
2093 * next element. The reference count is not incremented and the
2094 * reference is therefore volatile. Use with caution.
2095 */
2096static inline struct sk_buff *skb_peek_next(struct sk_buff *skb,
2097 const struct sk_buff_head *list_)
2098{
2099 struct sk_buff *next = skb->next;
2100
2101 if (next == (struct sk_buff *)list_)
2102 next = NULL;
2103 return next;
2104}
2105
2106/**
2107 * skb_peek_tail - peek at the tail of an &sk_buff_head
2108 * @list_: list to peek at
2109 *
2110 * Peek an &sk_buff. Unlike most other operations you _MUST_
2111 * be careful with this one. A peek leaves the buffer on the
2112 * list and someone else may run off with it. You must hold
2113 * the appropriate locks or have a private queue to do this.
2114 *
2115 * Returns %NULL for an empty list or a pointer to the tail element.
2116 * The reference count is not incremented and the reference is therefore
2117 * volatile. Use with caution.
2118 */
2119static inline struct sk_buff *skb_peek_tail(const struct sk_buff_head *list_)
2120{
2121 struct sk_buff *skb = READ_ONCE(list_->prev);
2122
2123 if (skb == (struct sk_buff *)list_)
2124 skb = NULL;
2125 return skb;
2126
2127}
2128
2129/**
2130 * skb_queue_len - get queue length
2131 * @list_: list to measure
2132 *
2133 * Return the length of an &sk_buff queue.
2134 */
2135static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
2136{
2137 return list_->qlen;
2138}
2139
2140/**
2141 * skb_queue_len_lockless - get queue length
2142 * @list_: list to measure
2143 *
2144 * Return the length of an &sk_buff queue.
2145 * This variant can be used in lockless contexts.
2146 */
2147static inline __u32 skb_queue_len_lockless(const struct sk_buff_head *list_)
2148{
2149 return READ_ONCE(list_->qlen);
2150}
2151
2152/**
2153 * __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
2154 * @list: queue to initialize
2155 *
2156 * This initializes only the list and queue length aspects of
2157 * an sk_buff_head object. This allows to initialize the list
2158 * aspects of an sk_buff_head without reinitializing things like
2159 * the spinlock. It can also be used for on-stack sk_buff_head
2160 * objects where the spinlock is known to not be used.
2161 */
2162static inline void __skb_queue_head_init(struct sk_buff_head *list)
2163{
2164 list->prev = list->next = (struct sk_buff *)list;
2165 list->qlen = 0;
2166}
2167
2168/*
2169 * This function creates a split out lock class for each invocation;
2170 * this is needed for now since a whole lot of users of the skb-queue
2171 * infrastructure in drivers have different locking usage (in hardirq)
2172 * than the networking core (in softirq only). In the long run either the
2173 * network layer or drivers should need annotation to consolidate the
2174 * main types of usage into 3 classes.
2175 */
2176static inline void skb_queue_head_init(struct sk_buff_head *list)
2177{
2178 spin_lock_init(&list->lock);
2179 __skb_queue_head_init(list);
2180}
2181
2182static inline void skb_queue_head_init_class(struct sk_buff_head *list,
2183 struct lock_class_key *class)
2184{
2185 skb_queue_head_init(list);
2186 lockdep_set_class(&list->lock, class);
2187}
2188
2189/*
2190 * Insert an sk_buff on a list.
2191 *
2192 * The "__skb_xxxx()" functions are the non-atomic ones that
2193 * can only be called with interrupts disabled.
2194 */
2195static inline void __skb_insert(struct sk_buff *newsk,
2196 struct sk_buff *prev, struct sk_buff *next,
2197 struct sk_buff_head *list)
2198{
2199 /* See skb_queue_empty_lockless() and skb_peek_tail()
2200 * for the opposite READ_ONCE()
2201 */
2202 WRITE_ONCE(newsk->next, next);
2203 WRITE_ONCE(newsk->prev, prev);
2204 WRITE_ONCE(((struct sk_buff_list *)next)->prev, newsk);
2205 WRITE_ONCE(((struct sk_buff_list *)prev)->next, newsk);
2206 WRITE_ONCE(list->qlen, list->qlen + 1);
2207}
2208
2209static inline void __skb_queue_splice(const struct sk_buff_head *list,
2210 struct sk_buff *prev,
2211 struct sk_buff *next)
2212{
2213 struct sk_buff *first = list->next;
2214 struct sk_buff *last = list->prev;
2215
2216 WRITE_ONCE(first->prev, prev);
2217 WRITE_ONCE(prev->next, first);
2218
2219 WRITE_ONCE(last->next, next);
2220 WRITE_ONCE(next->prev, last);
2221}
2222
2223/**
2224 * skb_queue_splice - join two skb lists, this is designed for stacks
2225 * @list: the new list to add
2226 * @head: the place to add it in the first list
2227 */
2228static inline void skb_queue_splice(const struct sk_buff_head *list,
2229 struct sk_buff_head *head)
2230{
2231 if (!skb_queue_empty(list)) {
2232 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
2233 head->qlen += list->qlen;
2234 }
2235}
2236
2237/**
2238 * skb_queue_splice_init - join two skb lists and reinitialise the emptied list
2239 * @list: the new list to add
2240 * @head: the place to add it in the first list
2241 *
2242 * The list at @list is reinitialised
2243 */
2244static inline void skb_queue_splice_init(struct sk_buff_head *list,
2245 struct sk_buff_head *head)
2246{
2247 if (!skb_queue_empty(list)) {
2248 __skb_queue_splice(list, (struct sk_buff *) head, head->next);
2249 head->qlen += list->qlen;
2250 __skb_queue_head_init(list);
2251 }
2252}
2253
2254/**
2255 * skb_queue_splice_tail - join two skb lists, each list being a queue
2256 * @list: the new list to add
2257 * @head: the place to add it in the first list
2258 */
2259static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
2260 struct sk_buff_head *head)
2261{
2262 if (!skb_queue_empty(list)) {
2263 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2264 head->qlen += list->qlen;
2265 }
2266}
2267
2268/**
2269 * skb_queue_splice_tail_init - join two skb lists and reinitialise the emptied list
2270 * @list: the new list to add
2271 * @head: the place to add it in the first list
2272 *
2273 * Each of the lists is a queue.
2274 * The list at @list is reinitialised
2275 */
2276static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
2277 struct sk_buff_head *head)
2278{
2279 if (!skb_queue_empty(list)) {
2280 __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
2281 head->qlen += list->qlen;
2282 __skb_queue_head_init(list);
2283 }
2284}
2285
2286/**
2287 * __skb_queue_after - queue a buffer at the list head
2288 * @list: list to use
2289 * @prev: place after this buffer
2290 * @newsk: buffer to queue
2291 *
2292 * Queue a buffer int the middle of a list. This function takes no locks
2293 * and you must therefore hold required locks before calling it.
2294 *
2295 * A buffer cannot be placed on two lists at the same time.
2296 */
2297static inline void __skb_queue_after(struct sk_buff_head *list,
2298 struct sk_buff *prev,
2299 struct sk_buff *newsk)
2300{
2301 __skb_insert(newsk, prev, ((struct sk_buff_list *)prev)->next, list);
2302}
2303
2304void skb_append(struct sk_buff *old, struct sk_buff *newsk,
2305 struct sk_buff_head *list);
2306
2307static inline void __skb_queue_before(struct sk_buff_head *list,
2308 struct sk_buff *next,
2309 struct sk_buff *newsk)
2310{
2311 __skb_insert(newsk, ((struct sk_buff_list *)next)->prev, next, list);
2312}
2313
2314/**
2315 * __skb_queue_head - queue a buffer at the list head
2316 * @list: list to use
2317 * @newsk: buffer to queue
2318 *
2319 * Queue a buffer at the start of a list. This function takes no locks
2320 * and you must therefore hold required locks before calling it.
2321 *
2322 * A buffer cannot be placed on two lists at the same time.
2323 */
2324static inline void __skb_queue_head(struct sk_buff_head *list,
2325 struct sk_buff *newsk)
2326{
2327 __skb_queue_after(list, (struct sk_buff *)list, newsk);
2328}
2329void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
2330
2331/**
2332 * __skb_queue_tail - queue a buffer at the list tail
2333 * @list: list to use
2334 * @newsk: buffer to queue
2335 *
2336 * Queue a buffer at the end of a list. This function takes no locks
2337 * and you must therefore hold required locks before calling it.
2338 *
2339 * A buffer cannot be placed on two lists at the same time.
2340 */
2341static inline void __skb_queue_tail(struct sk_buff_head *list,
2342 struct sk_buff *newsk)
2343{
2344 __skb_queue_before(list, (struct sk_buff *)list, newsk);
2345}
2346void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
2347
2348/*
2349 * remove sk_buff from list. _Must_ be called atomically, and with
2350 * the list known..
2351 */
2352void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
2353static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2354{
2355 struct sk_buff *next, *prev;
2356
2357 WRITE_ONCE(list->qlen, list->qlen - 1);
2358 next = skb->next;
2359 prev = skb->prev;
2360 skb->next = skb->prev = NULL;
2361 WRITE_ONCE(next->prev, prev);
2362 WRITE_ONCE(prev->next, next);
2363}
2364
2365/**
2366 * __skb_dequeue - remove from the head of the queue
2367 * @list: list to dequeue from
2368 *
2369 * Remove the head of the list. This function does not take any locks
2370 * so must be used with appropriate locks held only. The head item is
2371 * returned or %NULL if the list is empty.
2372 */
2373static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
2374{
2375 struct sk_buff *skb = skb_peek(list);
2376 if (skb)
2377 __skb_unlink(skb, list);
2378 return skb;
2379}
2380struct sk_buff *skb_dequeue(struct sk_buff_head *list);
2381
2382/**
2383 * __skb_dequeue_tail - remove from the tail of the queue
2384 * @list: list to dequeue from
2385 *
2386 * Remove the tail of the list. This function does not take any locks
2387 * so must be used with appropriate locks held only. The tail item is
2388 * returned or %NULL if the list is empty.
2389 */
2390static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
2391{
2392 struct sk_buff *skb = skb_peek_tail(list);
2393 if (skb)
2394 __skb_unlink(skb, list);
2395 return skb;
2396}
2397struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
2398
2399
2400static inline bool skb_is_nonlinear(const struct sk_buff *skb)
2401{
2402 return skb->data_len;
2403}
2404
2405static inline unsigned int skb_headlen(const struct sk_buff *skb)
2406{
2407 return skb->len - skb->data_len;
2408}
2409
2410static inline unsigned int __skb_pagelen(const struct sk_buff *skb)
2411{
2412 unsigned int i, len = 0;
2413
2414 for (i = skb_shinfo(skb)->nr_frags - 1; (int)i >= 0; i--)
2415 len += skb_frag_size(&skb_shinfo(skb)->frags[i]);
2416 return len;
2417}
2418
2419static inline unsigned int skb_pagelen(const struct sk_buff *skb)
2420{
2421 return skb_headlen(skb) + __skb_pagelen(skb);
2422}
2423
2424static inline void __skb_fill_page_desc_noacc(struct skb_shared_info *shinfo,
2425 int i, struct page *page,
2426 int off, int size)
2427{
2428 skb_frag_t *frag = &shinfo->frags[i];
2429
2430 /*
2431 * Propagate page pfmemalloc to the skb if we can. The problem is
2432 * that not all callers have unique ownership of the page but rely
2433 * on page_is_pfmemalloc doing the right thing(tm).
2434 */
2435 frag->bv_page = page;
2436 frag->bv_offset = off;
2437 skb_frag_size_set(frag, size);
2438}
2439
2440/**
2441 * skb_len_add - adds a number to len fields of skb
2442 * @skb: buffer to add len to
2443 * @delta: number of bytes to add
2444 */
2445static inline void skb_len_add(struct sk_buff *skb, int delta)
2446{
2447 skb->len += delta;
2448 skb->data_len += delta;
2449 skb->truesize += delta;
2450}
2451
2452/**
2453 * __skb_fill_page_desc - initialise a paged fragment in an skb
2454 * @skb: buffer containing fragment to be initialised
2455 * @i: paged fragment index to initialise
2456 * @page: the page to use for this fragment
2457 * @off: the offset to the data with @page
2458 * @size: the length of the data
2459 *
2460 * Initialises the @i'th fragment of @skb to point to &size bytes at
2461 * offset @off within @page.
2462 *
2463 * Does not take any additional reference on the fragment.
2464 */
2465static inline void __skb_fill_page_desc(struct sk_buff *skb, int i,
2466 struct page *page, int off, int size)
2467{
2468 __skb_fill_page_desc_noacc(skb_shinfo(skb), i, page, off, size);
2469 page = compound_head(page);
2470 if (page_is_pfmemalloc(page))
2471 skb->pfmemalloc = true;
2472}
2473
2474/**
2475 * skb_fill_page_desc - initialise a paged fragment in an skb
2476 * @skb: buffer containing fragment to be initialised
2477 * @i: paged fragment index to initialise
2478 * @page: the page to use for this fragment
2479 * @off: the offset to the data with @page
2480 * @size: the length of the data
2481 *
2482 * As per __skb_fill_page_desc() -- initialises the @i'th fragment of
2483 * @skb to point to @size bytes at offset @off within @page. In
2484 * addition updates @skb such that @i is the last fragment.
2485 *
2486 * Does not take any additional reference on the fragment.
2487 */
2488static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
2489 struct page *page, int off, int size)
2490{
2491 __skb_fill_page_desc(skb, i, page, off, size);
2492 skb_shinfo(skb)->nr_frags = i + 1;
2493}
2494
2495/**
2496 * skb_fill_page_desc_noacc - initialise a paged fragment in an skb
2497 * @skb: buffer containing fragment to be initialised
2498 * @i: paged fragment index to initialise
2499 * @page: the page to use for this fragment
2500 * @off: the offset to the data with @page
2501 * @size: the length of the data
2502 *
2503 * Variant of skb_fill_page_desc() which does not deal with
2504 * pfmemalloc, if page is not owned by us.
2505 */
2506static inline void skb_fill_page_desc_noacc(struct sk_buff *skb, int i,
2507 struct page *page, int off,
2508 int size)
2509{
2510 struct skb_shared_info *shinfo = skb_shinfo(skb);
2511
2512 __skb_fill_page_desc_noacc(shinfo, i, page, off, size);
2513 shinfo->nr_frags = i + 1;
2514}
2515
2516void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
2517 int size, unsigned int truesize);
2518
2519void skb_coalesce_rx_frag(struct sk_buff *skb, int i, int size,
2520 unsigned int truesize);
2521
2522#define SKB_LINEAR_ASSERT(skb) BUG_ON(skb_is_nonlinear(skb))
2523
2524#ifdef NET_SKBUFF_DATA_USES_OFFSET
2525static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2526{
2527 return skb->head + skb->tail;
2528}
2529
2530static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2531{
2532 skb->tail = skb->data - skb->head;
2533}
2534
2535static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2536{
2537 skb_reset_tail_pointer(skb);
2538 skb->tail += offset;
2539}
2540
2541#else /* NET_SKBUFF_DATA_USES_OFFSET */
2542static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
2543{
2544 return skb->tail;
2545}
2546
2547static inline void skb_reset_tail_pointer(struct sk_buff *skb)
2548{
2549 skb->tail = skb->data;
2550}
2551
2552static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
2553{
2554 skb->tail = skb->data + offset;
2555}
2556
2557#endif /* NET_SKBUFF_DATA_USES_OFFSET */
2558
2559static inline void skb_assert_len(struct sk_buff *skb)
2560{
2561#ifdef CONFIG_DEBUG_NET
2562 if (WARN_ONCE(!skb->len, "%s\n", __func__))
2563 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
2564#endif /* CONFIG_DEBUG_NET */
2565}
2566
2567/*
2568 * Add data to an sk_buff
2569 */
2570void *pskb_put(struct sk_buff *skb, struct sk_buff *tail, int len);
2571void *skb_put(struct sk_buff *skb, unsigned int len);
2572static inline void *__skb_put(struct sk_buff *skb, unsigned int len)
2573{
2574 void *tmp = skb_tail_pointer(skb);
2575 SKB_LINEAR_ASSERT(skb);
2576 skb->tail += len;
2577 skb->len += len;
2578 return tmp;
2579}
2580
2581static inline void *__skb_put_zero(struct sk_buff *skb, unsigned int len)
2582{
2583 void *tmp = __skb_put(skb, len);
2584
2585 memset(tmp, 0, len);
2586 return tmp;
2587}
2588
2589static inline void *__skb_put_data(struct sk_buff *skb, const void *data,
2590 unsigned int len)
2591{
2592 void *tmp = __skb_put(skb, len);
2593
2594 memcpy(tmp, data, len);
2595 return tmp;
2596}
2597
2598static inline void __skb_put_u8(struct sk_buff *skb, u8 val)
2599{
2600 *(u8 *)__skb_put(skb, 1) = val;
2601}
2602
2603static inline void *skb_put_zero(struct sk_buff *skb, unsigned int len)
2604{
2605 void *tmp = skb_put(skb, len);
2606
2607 memset(tmp, 0, len);
2608
2609 return tmp;
2610}
2611
2612static inline void *skb_put_data(struct sk_buff *skb, const void *data,
2613 unsigned int len)
2614{
2615 void *tmp = skb_put(skb, len);
2616
2617 memcpy(tmp, data, len);
2618
2619 return tmp;
2620}
2621
2622static inline void skb_put_u8(struct sk_buff *skb, u8 val)
2623{
2624 *(u8 *)skb_put(skb, 1) = val;
2625}
2626
2627void *skb_push(struct sk_buff *skb, unsigned int len);
2628static inline void *__skb_push(struct sk_buff *skb, unsigned int len)
2629{
2630 skb->data -= len;
2631 skb->len += len;
2632 return skb->data;
2633}
2634
2635void *skb_pull(struct sk_buff *skb, unsigned int len);
2636static inline void *__skb_pull(struct sk_buff *skb, unsigned int len)
2637{
2638 skb->len -= len;
2639 if (unlikely(skb->len < skb->data_len)) {
2640#if defined(CONFIG_DEBUG_NET)
2641 skb->len += len;
2642 pr_err("__skb_pull(len=%u)\n", len);
2643 skb_dump(KERN_ERR, skb, false);
2644#endif
2645 BUG();
2646 }
2647 return skb->data += len;
2648}
2649
2650static inline void *skb_pull_inline(struct sk_buff *skb, unsigned int len)
2651{
2652 return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
2653}
2654
2655void *skb_pull_data(struct sk_buff *skb, size_t len);
2656
2657void *__pskb_pull_tail(struct sk_buff *skb, int delta);
2658
2659static inline enum skb_drop_reason
2660pskb_may_pull_reason(struct sk_buff *skb, unsigned int len)
2661{
2662 if (likely(len <= skb_headlen(skb)))
2663 return SKB_NOT_DROPPED_YET;
2664
2665 if (unlikely(len > skb->len))
2666 return SKB_DROP_REASON_PKT_TOO_SMALL;
2667
2668 if (unlikely(!__pskb_pull_tail(skb, len - skb_headlen(skb))))
2669 return SKB_DROP_REASON_NOMEM;
2670
2671 return SKB_NOT_DROPPED_YET;
2672}
2673
2674static inline bool pskb_may_pull(struct sk_buff *skb, unsigned int len)
2675{
2676 return pskb_may_pull_reason(skb, len) == SKB_NOT_DROPPED_YET;
2677}
2678
2679static inline void *pskb_pull(struct sk_buff *skb, unsigned int len)
2680{
2681 if (!pskb_may_pull(skb, len))
2682 return NULL;
2683
2684 skb->len -= len;
2685 return skb->data += len;
2686}
2687
2688void skb_condense(struct sk_buff *skb);
2689
2690/**
2691 * skb_headroom - bytes at buffer head
2692 * @skb: buffer to check
2693 *
2694 * Return the number of bytes of free space at the head of an &sk_buff.
2695 */
2696static inline unsigned int skb_headroom(const struct sk_buff *skb)
2697{
2698 return skb->data - skb->head;
2699}
2700
2701/**
2702 * skb_tailroom - bytes at buffer end
2703 * @skb: buffer to check
2704 *
2705 * Return the number of bytes of free space at the tail of an sk_buff
2706 */
2707static inline int skb_tailroom(const struct sk_buff *skb)
2708{
2709 return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
2710}
2711
2712/**
2713 * skb_availroom - bytes at buffer end
2714 * @skb: buffer to check
2715 *
2716 * Return the number of bytes of free space at the tail of an sk_buff
2717 * allocated by sk_stream_alloc()
2718 */
2719static inline int skb_availroom(const struct sk_buff *skb)
2720{
2721 if (skb_is_nonlinear(skb))
2722 return 0;
2723
2724 return skb->end - skb->tail - skb->reserved_tailroom;
2725}
2726
2727/**
2728 * skb_reserve - adjust headroom
2729 * @skb: buffer to alter
2730 * @len: bytes to move
2731 *
2732 * Increase the headroom of an empty &sk_buff by reducing the tail
2733 * room. This is only allowed for an empty buffer.
2734 */
2735static inline void skb_reserve(struct sk_buff *skb, int len)
2736{
2737 skb->data += len;
2738 skb->tail += len;
2739}
2740
2741/**
2742 * skb_tailroom_reserve - adjust reserved_tailroom
2743 * @skb: buffer to alter
2744 * @mtu: maximum amount of headlen permitted
2745 * @needed_tailroom: minimum amount of reserved_tailroom
2746 *
2747 * Set reserved_tailroom so that headlen can be as large as possible but
2748 * not larger than mtu and tailroom cannot be smaller than
2749 * needed_tailroom.
2750 * The required headroom should already have been reserved before using
2751 * this function.
2752 */
2753static inline void skb_tailroom_reserve(struct sk_buff *skb, unsigned int mtu,
2754 unsigned int needed_tailroom)
2755{
2756 SKB_LINEAR_ASSERT(skb);
2757 if (mtu < skb_tailroom(skb) - needed_tailroom)
2758 /* use at most mtu */
2759 skb->reserved_tailroom = skb_tailroom(skb) - mtu;
2760 else
2761 /* use up to all available space */
2762 skb->reserved_tailroom = needed_tailroom;
2763}
2764
2765#define ENCAP_TYPE_ETHER 0
2766#define ENCAP_TYPE_IPPROTO 1
2767
2768static inline void skb_set_inner_protocol(struct sk_buff *skb,
2769 __be16 protocol)
2770{
2771 skb->inner_protocol = protocol;
2772 skb->inner_protocol_type = ENCAP_TYPE_ETHER;
2773}
2774
2775static inline void skb_set_inner_ipproto(struct sk_buff *skb,
2776 __u8 ipproto)
2777{
2778 skb->inner_ipproto = ipproto;
2779 skb->inner_protocol_type = ENCAP_TYPE_IPPROTO;
2780}
2781
2782static inline void skb_reset_inner_headers(struct sk_buff *skb)
2783{
2784 skb->inner_mac_header = skb->mac_header;
2785 skb->inner_network_header = skb->network_header;
2786 skb->inner_transport_header = skb->transport_header;
2787}
2788
2789static inline void skb_reset_mac_len(struct sk_buff *skb)
2790{
2791 skb->mac_len = skb->network_header - skb->mac_header;
2792}
2793
2794static inline unsigned char *skb_inner_transport_header(const struct sk_buff
2795 *skb)
2796{
2797 return skb->head + skb->inner_transport_header;
2798}
2799
2800static inline int skb_inner_transport_offset(const struct sk_buff *skb)
2801{
2802 return skb_inner_transport_header(skb) - skb->data;
2803}
2804
2805static inline void skb_reset_inner_transport_header(struct sk_buff *skb)
2806{
2807 skb->inner_transport_header = skb->data - skb->head;
2808}
2809
2810static inline void skb_set_inner_transport_header(struct sk_buff *skb,
2811 const int offset)
2812{
2813 skb_reset_inner_transport_header(skb);
2814 skb->inner_transport_header += offset;
2815}
2816
2817static inline unsigned char *skb_inner_network_header(const struct sk_buff *skb)
2818{
2819 return skb->head + skb->inner_network_header;
2820}
2821
2822static inline void skb_reset_inner_network_header(struct sk_buff *skb)
2823{
2824 skb->inner_network_header = skb->data - skb->head;
2825}
2826
2827static inline void skb_set_inner_network_header(struct sk_buff *skb,
2828 const int offset)
2829{
2830 skb_reset_inner_network_header(skb);
2831 skb->inner_network_header += offset;
2832}
2833
2834static inline unsigned char *skb_inner_mac_header(const struct sk_buff *skb)
2835{
2836 return skb->head + skb->inner_mac_header;
2837}
2838
2839static inline void skb_reset_inner_mac_header(struct sk_buff *skb)
2840{
2841 skb->inner_mac_header = skb->data - skb->head;
2842}
2843
2844static inline void skb_set_inner_mac_header(struct sk_buff *skb,
2845 const int offset)
2846{
2847 skb_reset_inner_mac_header(skb);
2848 skb->inner_mac_header += offset;
2849}
2850static inline bool skb_transport_header_was_set(const struct sk_buff *skb)
2851{
2852 return skb->transport_header != (typeof(skb->transport_header))~0U;
2853}
2854
2855static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
2856{
2857 DEBUG_NET_WARN_ON_ONCE(!skb_transport_header_was_set(skb));
2858 return skb->head + skb->transport_header;
2859}
2860
2861static inline void skb_reset_transport_header(struct sk_buff *skb)
2862{
2863 skb->transport_header = skb->data - skb->head;
2864}
2865
2866static inline void skb_set_transport_header(struct sk_buff *skb,
2867 const int offset)
2868{
2869 skb_reset_transport_header(skb);
2870 skb->transport_header += offset;
2871}
2872
2873static inline unsigned char *skb_network_header(const struct sk_buff *skb)
2874{
2875 return skb->head + skb->network_header;
2876}
2877
2878static inline void skb_reset_network_header(struct sk_buff *skb)
2879{
2880 skb->network_header = skb->data - skb->head;
2881}
2882
2883static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
2884{
2885 skb_reset_network_header(skb);
2886 skb->network_header += offset;
2887}
2888
2889static inline int skb_mac_header_was_set(const struct sk_buff *skb)
2890{
2891 return skb->mac_header != (typeof(skb->mac_header))~0U;
2892}
2893
2894static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
2895{
2896 DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2897 return skb->head + skb->mac_header;
2898}
2899
2900static inline int skb_mac_offset(const struct sk_buff *skb)
2901{
2902 return skb_mac_header(skb) - skb->data;
2903}
2904
2905static inline u32 skb_mac_header_len(const struct sk_buff *skb)
2906{
2907 DEBUG_NET_WARN_ON_ONCE(!skb_mac_header_was_set(skb));
2908 return skb->network_header - skb->mac_header;
2909}
2910
2911static inline void skb_unset_mac_header(struct sk_buff *skb)
2912{
2913 skb->mac_header = (typeof(skb->mac_header))~0U;
2914}
2915
2916static inline void skb_reset_mac_header(struct sk_buff *skb)
2917{
2918 skb->mac_header = skb->data - skb->head;
2919}
2920
2921static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
2922{
2923 skb_reset_mac_header(skb);
2924 skb->mac_header += offset;
2925}
2926
2927static inline void skb_pop_mac_header(struct sk_buff *skb)
2928{
2929 skb->mac_header = skb->network_header;
2930}
2931
2932static inline void skb_probe_transport_header(struct sk_buff *skb)
2933{
2934 struct flow_keys_basic keys;
2935
2936 if (skb_transport_header_was_set(skb))
2937 return;
2938
2939 if (skb_flow_dissect_flow_keys_basic(NULL, skb, &keys,
2940 NULL, 0, 0, 0, 0))
2941 skb_set_transport_header(skb, keys.control.thoff);
2942}
2943
2944static inline void skb_mac_header_rebuild(struct sk_buff *skb)
2945{
2946 if (skb_mac_header_was_set(skb)) {
2947 const unsigned char *old_mac = skb_mac_header(skb);
2948
2949 skb_set_mac_header(skb, -skb->mac_len);
2950 memmove(skb_mac_header(skb), old_mac, skb->mac_len);
2951 }
2952}
2953
2954static inline int skb_checksum_start_offset(const struct sk_buff *skb)
2955{
2956 return skb->csum_start - skb_headroom(skb);
2957}
2958
2959static inline unsigned char *skb_checksum_start(const struct sk_buff *skb)
2960{
2961 return skb->head + skb->csum_start;
2962}
2963
2964static inline int skb_transport_offset(const struct sk_buff *skb)
2965{
2966 return skb_transport_header(skb) - skb->data;
2967}
2968
2969static inline u32 skb_network_header_len(const struct sk_buff *skb)
2970{
2971 return skb->transport_header - skb->network_header;
2972}
2973
2974static inline u32 skb_inner_network_header_len(const struct sk_buff *skb)
2975{
2976 return skb->inner_transport_header - skb->inner_network_header;
2977}
2978
2979static inline int skb_network_offset(const struct sk_buff *skb)
2980{
2981 return skb_network_header(skb) - skb->data;
2982}
2983
2984static inline int skb_inner_network_offset(const struct sk_buff *skb)
2985{
2986 return skb_inner_network_header(skb) - skb->data;
2987}
2988
2989static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
2990{
2991 return pskb_may_pull(skb, skb_network_offset(skb) + len);
2992}
2993
2994/*
2995 * CPUs often take a performance hit when accessing unaligned memory
2996 * locations. The actual performance hit varies, it can be small if the
2997 * hardware handles it or large if we have to take an exception and fix it
2998 * in software.
2999 *
3000 * Since an ethernet header is 14 bytes network drivers often end up with
3001 * the IP header at an unaligned offset. The IP header can be aligned by
3002 * shifting the start of the packet by 2 bytes. Drivers should do this
3003 * with:
3004 *
3005 * skb_reserve(skb, NET_IP_ALIGN);
3006 *
3007 * The downside to this alignment of the IP header is that the DMA is now
3008 * unaligned. On some architectures the cost of an unaligned DMA is high
3009 * and this cost outweighs the gains made by aligning the IP header.
3010 *
3011 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
3012 * to be overridden.
3013 */
3014#ifndef NET_IP_ALIGN
3015#define NET_IP_ALIGN 2
3016#endif
3017
3018/*
3019 * The networking layer reserves some headroom in skb data (via
3020 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
3021 * the header has to grow. In the default case, if the header has to grow
3022 * 32 bytes or less we avoid the reallocation.
3023 *
3024 * Unfortunately this headroom changes the DMA alignment of the resulting
3025 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
3026 * on some architectures. An architecture can override this value,
3027 * perhaps setting it to a cacheline in size (since that will maintain
3028 * cacheline alignment of the DMA). It must be a power of 2.
3029 *
3030 * Various parts of the networking layer expect at least 32 bytes of
3031 * headroom, you should not reduce this.
3032 *
3033 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
3034 * to reduce average number of cache lines per packet.
3035 * get_rps_cpu() for example only access one 64 bytes aligned block :
3036 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
3037 */
3038#ifndef NET_SKB_PAD
3039#define NET_SKB_PAD max(32, L1_CACHE_BYTES)
3040#endif
3041
3042int ___pskb_trim(struct sk_buff *skb, unsigned int len);
3043
3044static inline void __skb_set_length(struct sk_buff *skb, unsigned int len)
3045{
3046 if (WARN_ON(skb_is_nonlinear(skb)))
3047 return;
3048 skb->len = len;
3049 skb_set_tail_pointer(skb, len);
3050}
3051
3052static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
3053{
3054 __skb_set_length(skb, len);
3055}
3056
3057void skb_trim(struct sk_buff *skb, unsigned int len);
3058
3059static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
3060{
3061 if (skb->data_len)
3062 return ___pskb_trim(skb, len);
3063 __skb_trim(skb, len);
3064 return 0;
3065}
3066
3067static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
3068{
3069 return (len < skb->len) ? __pskb_trim(skb, len) : 0;
3070}
3071
3072/**
3073 * pskb_trim_unique - remove end from a paged unique (not cloned) buffer
3074 * @skb: buffer to alter
3075 * @len: new length
3076 *
3077 * This is identical to pskb_trim except that the caller knows that
3078 * the skb is not cloned so we should never get an error due to out-
3079 * of-memory.
3080 */
3081static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
3082{
3083 int err = pskb_trim(skb, len);
3084 BUG_ON(err);
3085}
3086
3087static inline int __skb_grow(struct sk_buff *skb, unsigned int len)
3088{
3089 unsigned int diff = len - skb->len;
3090
3091 if (skb_tailroom(skb) < diff) {
3092 int ret = pskb_expand_head(skb, 0, diff - skb_tailroom(skb),
3093 GFP_ATOMIC);
3094 if (ret)
3095 return ret;
3096 }
3097 __skb_set_length(skb, len);
3098 return 0;
3099}
3100
3101/**
3102 * skb_orphan - orphan a buffer
3103 * @skb: buffer to orphan
3104 *
3105 * If a buffer currently has an owner then we call the owner's
3106 * destructor function and make the @skb unowned. The buffer continues
3107 * to exist but is no longer charged to its former owner.
3108 */
3109static inline void skb_orphan(struct sk_buff *skb)
3110{
3111 if (skb->destructor) {
3112 skb->destructor(skb);
3113 skb->destructor = NULL;
3114 skb->sk = NULL;
3115 } else {
3116 BUG_ON(skb->sk);
3117 }
3118}
3119
3120/**
3121 * skb_orphan_frags - orphan the frags contained in a buffer
3122 * @skb: buffer to orphan frags from
3123 * @gfp_mask: allocation mask for replacement pages
3124 *
3125 * For each frag in the SKB which needs a destructor (i.e. has an
3126 * owner) create a copy of that frag and release the original
3127 * page by calling the destructor.
3128 */
3129static inline int skb_orphan_frags(struct sk_buff *skb, gfp_t gfp_mask)
3130{
3131 if (likely(!skb_zcopy(skb)))
3132 return 0;
3133 if (skb_shinfo(skb)->flags & SKBFL_DONT_ORPHAN)
3134 return 0;
3135 return skb_copy_ubufs(skb, gfp_mask);
3136}
3137
3138/* Frags must be orphaned, even if refcounted, if skb might loop to rx path */
3139static inline int skb_orphan_frags_rx(struct sk_buff *skb, gfp_t gfp_mask)
3140{
3141 if (likely(!skb_zcopy(skb)))
3142 return 0;
3143 return skb_copy_ubufs(skb, gfp_mask);
3144}
3145
3146/**
3147 * __skb_queue_purge - empty a list
3148 * @list: list to empty
3149 *
3150 * Delete all buffers on an &sk_buff list. Each buffer is removed from
3151 * the list and one reference dropped. This function does not take the
3152 * list lock and the caller must hold the relevant locks to use it.
3153 */
3154static inline void __skb_queue_purge(struct sk_buff_head *list)
3155{
3156 struct sk_buff *skb;
3157 while ((skb = __skb_dequeue(list)) != NULL)
3158 kfree_skb(skb);
3159}
3160void skb_queue_purge(struct sk_buff_head *list);
3161
3162unsigned int skb_rbtree_purge(struct rb_root *root);
3163
3164void *__netdev_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3165
3166/**
3167 * netdev_alloc_frag - allocate a page fragment
3168 * @fragsz: fragment size
3169 *
3170 * Allocates a frag from a page for receive buffer.
3171 * Uses GFP_ATOMIC allocations.
3172 */
3173static inline void *netdev_alloc_frag(unsigned int fragsz)
3174{
3175 return __netdev_alloc_frag_align(fragsz, ~0u);
3176}
3177
3178static inline void *netdev_alloc_frag_align(unsigned int fragsz,
3179 unsigned int align)
3180{
3181 WARN_ON_ONCE(!is_power_of_2(align));
3182 return __netdev_alloc_frag_align(fragsz, -align);
3183}
3184
3185struct sk_buff *__netdev_alloc_skb(struct net_device *dev, unsigned int length,
3186 gfp_t gfp_mask);
3187
3188/**
3189 * netdev_alloc_skb - allocate an skbuff for rx on a specific device
3190 * @dev: network device to receive on
3191 * @length: length to allocate
3192 *
3193 * Allocate a new &sk_buff and assign it a usage count of one. The
3194 * buffer has unspecified headroom built in. Users should allocate
3195 * the headroom they think they need without accounting for the
3196 * built in space. The built in space is used for optimisations.
3197 *
3198 * %NULL is returned if there is no free memory. Although this function
3199 * allocates memory it can be called from an interrupt.
3200 */
3201static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
3202 unsigned int length)
3203{
3204 return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
3205}
3206
3207/* legacy helper around __netdev_alloc_skb() */
3208static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
3209 gfp_t gfp_mask)
3210{
3211 return __netdev_alloc_skb(NULL, length, gfp_mask);
3212}
3213
3214/* legacy helper around netdev_alloc_skb() */
3215static inline struct sk_buff *dev_alloc_skb(unsigned int length)
3216{
3217 return netdev_alloc_skb(NULL, length);
3218}
3219
3220
3221static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
3222 unsigned int length, gfp_t gfp)
3223{
3224 struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
3225
3226 if (NET_IP_ALIGN && skb)
3227 skb_reserve(skb, NET_IP_ALIGN);
3228 return skb;
3229}
3230
3231static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
3232 unsigned int length)
3233{
3234 return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
3235}
3236
3237static inline void skb_free_frag(void *addr)
3238{
3239 page_frag_free(addr);
3240}
3241
3242void *__napi_alloc_frag_align(unsigned int fragsz, unsigned int align_mask);
3243
3244static inline void *napi_alloc_frag(unsigned int fragsz)
3245{
3246 return __napi_alloc_frag_align(fragsz, ~0u);
3247}
3248
3249static inline void *napi_alloc_frag_align(unsigned int fragsz,
3250 unsigned int align)
3251{
3252 WARN_ON_ONCE(!is_power_of_2(align));
3253 return __napi_alloc_frag_align(fragsz, -align);
3254}
3255
3256struct sk_buff *__napi_alloc_skb(struct napi_struct *napi,
3257 unsigned int length, gfp_t gfp_mask);
3258static inline struct sk_buff *napi_alloc_skb(struct napi_struct *napi,
3259 unsigned int length)
3260{
3261 return __napi_alloc_skb(napi, length, GFP_ATOMIC);
3262}
3263void napi_consume_skb(struct sk_buff *skb, int budget);
3264
3265void napi_skb_free_stolen_head(struct sk_buff *skb);
3266void __napi_kfree_skb(struct sk_buff *skb, enum skb_drop_reason reason);
3267
3268/**
3269 * __dev_alloc_pages - allocate page for network Rx
3270 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3271 * @order: size of the allocation
3272 *
3273 * Allocate a new page.
3274 *
3275 * %NULL is returned if there is no free memory.
3276*/
3277static inline struct page *__dev_alloc_pages(gfp_t gfp_mask,
3278 unsigned int order)
3279{
3280 /* This piece of code contains several assumptions.
3281 * 1. This is for device Rx, therefor a cold page is preferred.
3282 * 2. The expectation is the user wants a compound page.
3283 * 3. If requesting a order 0 page it will not be compound
3284 * due to the check to see if order has a value in prep_new_page
3285 * 4. __GFP_MEMALLOC is ignored if __GFP_NOMEMALLOC is set due to
3286 * code in gfp_to_alloc_flags that should be enforcing this.
3287 */
3288 gfp_mask |= __GFP_COMP | __GFP_MEMALLOC;
3289
3290 return alloc_pages_node(NUMA_NO_NODE, gfp_mask, order);
3291}
3292
3293static inline struct page *dev_alloc_pages(unsigned int order)
3294{
3295 return __dev_alloc_pages(GFP_ATOMIC | __GFP_NOWARN, order);
3296}
3297
3298/**
3299 * __dev_alloc_page - allocate a page for network Rx
3300 * @gfp_mask: allocation priority. Set __GFP_NOMEMALLOC if not for network Rx
3301 *
3302 * Allocate a new page.
3303 *
3304 * %NULL is returned if there is no free memory.
3305 */
3306static inline struct page *__dev_alloc_page(gfp_t gfp_mask)
3307{
3308 return __dev_alloc_pages(gfp_mask, 0);
3309}
3310
3311static inline struct page *dev_alloc_page(void)
3312{
3313 return dev_alloc_pages(0);
3314}
3315
3316/**
3317 * dev_page_is_reusable - check whether a page can be reused for network Rx
3318 * @page: the page to test
3319 *
3320 * A page shouldn't be considered for reusing/recycling if it was allocated
3321 * under memory pressure or at a distant memory node.
3322 *
3323 * Returns false if this page should be returned to page allocator, true
3324 * otherwise.
3325 */
3326static inline bool dev_page_is_reusable(const struct page *page)
3327{
3328 return likely(page_to_nid(page) == numa_mem_id() &&
3329 !page_is_pfmemalloc(page));
3330}
3331
3332/**
3333 * skb_propagate_pfmemalloc - Propagate pfmemalloc if skb is allocated after RX page
3334 * @page: The page that was allocated from skb_alloc_page
3335 * @skb: The skb that may need pfmemalloc set
3336 */
3337static inline void skb_propagate_pfmemalloc(const struct page *page,
3338 struct sk_buff *skb)
3339{
3340 if (page_is_pfmemalloc(page))
3341 skb->pfmemalloc = true;
3342}
3343
3344/**
3345 * skb_frag_off() - Returns the offset of a skb fragment
3346 * @frag: the paged fragment
3347 */
3348static inline unsigned int skb_frag_off(const skb_frag_t *frag)
3349{
3350 return frag->bv_offset;
3351}
3352
3353/**
3354 * skb_frag_off_add() - Increments the offset of a skb fragment by @delta
3355 * @frag: skb fragment
3356 * @delta: value to add
3357 */
3358static inline void skb_frag_off_add(skb_frag_t *frag, int delta)
3359{
3360 frag->bv_offset += delta;
3361}
3362
3363/**
3364 * skb_frag_off_set() - Sets the offset of a skb fragment
3365 * @frag: skb fragment
3366 * @offset: offset of fragment
3367 */
3368static inline void skb_frag_off_set(skb_frag_t *frag, unsigned int offset)
3369{
3370 frag->bv_offset = offset;
3371}
3372
3373/**
3374 * skb_frag_off_copy() - Sets the offset of a skb fragment from another fragment
3375 * @fragto: skb fragment where offset is set
3376 * @fragfrom: skb fragment offset is copied from
3377 */
3378static inline void skb_frag_off_copy(skb_frag_t *fragto,
3379 const skb_frag_t *fragfrom)
3380{
3381 fragto->bv_offset = fragfrom->bv_offset;
3382}
3383
3384/**
3385 * skb_frag_page - retrieve the page referred to by a paged fragment
3386 * @frag: the paged fragment
3387 *
3388 * Returns the &struct page associated with @frag.
3389 */
3390static inline struct page *skb_frag_page(const skb_frag_t *frag)
3391{
3392 return frag->bv_page;
3393}
3394
3395/**
3396 * __skb_frag_ref - take an addition reference on a paged fragment.
3397 * @frag: the paged fragment
3398 *
3399 * Takes an additional reference on the paged fragment @frag.
3400 */
3401static inline void __skb_frag_ref(skb_frag_t *frag)
3402{
3403 get_page(skb_frag_page(frag));
3404}
3405
3406/**
3407 * skb_frag_ref - take an addition reference on a paged fragment of an skb.
3408 * @skb: the buffer
3409 * @f: the fragment offset.
3410 *
3411 * Takes an additional reference on the @f'th paged fragment of @skb.
3412 */
3413static inline void skb_frag_ref(struct sk_buff *skb, int f)
3414{
3415 __skb_frag_ref(&skb_shinfo(skb)->frags[f]);
3416}
3417
3418static inline void
3419napi_frag_unref(skb_frag_t *frag, bool recycle, bool napi_safe)
3420{
3421 struct page *page = skb_frag_page(frag);
3422
3423#ifdef CONFIG_PAGE_POOL
3424 if (recycle && page_pool_return_skb_page(page, napi_safe))
3425 return;
3426#endif
3427 put_page(page);
3428}
3429
3430/**
3431 * __skb_frag_unref - release a reference on a paged fragment.
3432 * @frag: the paged fragment
3433 * @recycle: recycle the page if allocated via page_pool
3434 *
3435 * Releases a reference on the paged fragment @frag
3436 * or recycles the page via the page_pool API.
3437 */
3438static inline void __skb_frag_unref(skb_frag_t *frag, bool recycle)
3439{
3440 napi_frag_unref(frag, recycle, false);
3441}
3442
3443/**
3444 * skb_frag_unref - release a reference on a paged fragment of an skb.
3445 * @skb: the buffer
3446 * @f: the fragment offset
3447 *
3448 * Releases a reference on the @f'th paged fragment of @skb.
3449 */
3450static inline void skb_frag_unref(struct sk_buff *skb, int f)
3451{
3452 struct skb_shared_info *shinfo = skb_shinfo(skb);
3453
3454 if (!skb_zcopy_managed(skb))
3455 __skb_frag_unref(&shinfo->frags[f], skb->pp_recycle);
3456}
3457
3458/**
3459 * skb_frag_address - gets the address of the data contained in a paged fragment
3460 * @frag: the paged fragment buffer
3461 *
3462 * Returns the address of the data within @frag. The page must already
3463 * be mapped.
3464 */
3465static inline void *skb_frag_address(const skb_frag_t *frag)
3466{
3467 return page_address(skb_frag_page(frag)) + skb_frag_off(frag);
3468}
3469
3470/**
3471 * skb_frag_address_safe - gets the address of the data contained in a paged fragment
3472 * @frag: the paged fragment buffer
3473 *
3474 * Returns the address of the data within @frag. Checks that the page
3475 * is mapped and returns %NULL otherwise.
3476 */
3477static inline void *skb_frag_address_safe(const skb_frag_t *frag)
3478{
3479 void *ptr = page_address(skb_frag_page(frag));
3480 if (unlikely(!ptr))
3481 return NULL;
3482
3483 return ptr + skb_frag_off(frag);
3484}
3485
3486/**
3487 * skb_frag_page_copy() - sets the page in a fragment from another fragment
3488 * @fragto: skb fragment where page is set
3489 * @fragfrom: skb fragment page is copied from
3490 */
3491static inline void skb_frag_page_copy(skb_frag_t *fragto,
3492 const skb_frag_t *fragfrom)
3493{
3494 fragto->bv_page = fragfrom->bv_page;
3495}
3496
3497/**
3498 * __skb_frag_set_page - sets the page contained in a paged fragment
3499 * @frag: the paged fragment
3500 * @page: the page to set
3501 *
3502 * Sets the fragment @frag to contain @page.
3503 */
3504static inline void __skb_frag_set_page(skb_frag_t *frag, struct page *page)
3505{
3506 frag->bv_page = page;
3507}
3508
3509/**
3510 * skb_frag_set_page - sets the page contained in a paged fragment of an skb
3511 * @skb: the buffer
3512 * @f: the fragment offset
3513 * @page: the page to set
3514 *
3515 * Sets the @f'th fragment of @skb to contain @page.
3516 */
3517static inline void skb_frag_set_page(struct sk_buff *skb, int f,
3518 struct page *page)
3519{
3520 __skb_frag_set_page(&skb_shinfo(skb)->frags[f], page);
3521}
3522
3523bool skb_page_frag_refill(unsigned int sz, struct page_frag *pfrag, gfp_t prio);
3524
3525/**
3526 * skb_frag_dma_map - maps a paged fragment via the DMA API
3527 * @dev: the device to map the fragment to
3528 * @frag: the paged fragment to map
3529 * @offset: the offset within the fragment (starting at the
3530 * fragment's own offset)
3531 * @size: the number of bytes to map
3532 * @dir: the direction of the mapping (``PCI_DMA_*``)
3533 *
3534 * Maps the page associated with @frag to @device.
3535 */
3536static inline dma_addr_t skb_frag_dma_map(struct device *dev,
3537 const skb_frag_t *frag,
3538 size_t offset, size_t size,
3539 enum dma_data_direction dir)
3540{
3541 return dma_map_page(dev, skb_frag_page(frag),
3542 skb_frag_off(frag) + offset, size, dir);
3543}
3544
3545static inline struct sk_buff *pskb_copy(struct sk_buff *skb,
3546 gfp_t gfp_mask)
3547{
3548 return __pskb_copy(skb, skb_headroom(skb), gfp_mask);
3549}
3550
3551
3552static inline struct sk_buff *pskb_copy_for_clone(struct sk_buff *skb,
3553 gfp_t gfp_mask)
3554{
3555 return __pskb_copy_fclone(skb, skb_headroom(skb), gfp_mask, true);
3556}
3557
3558
3559/**
3560 * skb_clone_writable - is the header of a clone writable
3561 * @skb: buffer to check
3562 * @len: length up to which to write
3563 *
3564 * Returns true if modifying the header part of the cloned buffer
3565 * does not requires the data to be copied.
3566 */
3567static inline int skb_clone_writable(const struct sk_buff *skb, unsigned int len)
3568{
3569 return !skb_header_cloned(skb) &&
3570 skb_headroom(skb) + len <= skb->hdr_len;
3571}
3572
3573static inline int skb_try_make_writable(struct sk_buff *skb,
3574 unsigned int write_len)
3575{
3576 return skb_cloned(skb) && !skb_clone_writable(skb, write_len) &&
3577 pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
3578}
3579
3580static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
3581 int cloned)
3582{
3583 int delta = 0;
3584
3585 if (headroom > skb_headroom(skb))
3586 delta = headroom - skb_headroom(skb);
3587
3588 if (delta || cloned)
3589 return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
3590 GFP_ATOMIC);
3591 return 0;
3592}
3593
3594/**
3595 * skb_cow - copy header of skb when it is required
3596 * @skb: buffer to cow
3597 * @headroom: needed headroom
3598 *
3599 * If the skb passed lacks sufficient headroom or its data part
3600 * is shared, data is reallocated. If reallocation fails, an error
3601 * is returned and original skb is not changed.
3602 *
3603 * The result is skb with writable area skb->head...skb->tail
3604 * and at least @headroom of space at head.
3605 */
3606static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
3607{
3608 return __skb_cow(skb, headroom, skb_cloned(skb));
3609}
3610
3611/**
3612 * skb_cow_head - skb_cow but only making the head writable
3613 * @skb: buffer to cow
3614 * @headroom: needed headroom
3615 *
3616 * This function is identical to skb_cow except that we replace the
3617 * skb_cloned check by skb_header_cloned. It should be used when
3618 * you only need to push on some header and do not need to modify
3619 * the data.
3620 */
3621static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
3622{
3623 return __skb_cow(skb, headroom, skb_header_cloned(skb));
3624}
3625
3626/**
3627 * skb_padto - pad an skbuff up to a minimal size
3628 * @skb: buffer to pad
3629 * @len: minimal length
3630 *
3631 * Pads up a buffer to ensure the trailing bytes exist and are
3632 * blanked. If the buffer already contains sufficient data it
3633 * is untouched. Otherwise it is extended. Returns zero on
3634 * success. The skb is freed on error.
3635 */
3636static inline int skb_padto(struct sk_buff *skb, unsigned int len)
3637{
3638 unsigned int size = skb->len;
3639 if (likely(size >= len))
3640 return 0;
3641 return skb_pad(skb, len - size);
3642}
3643
3644/**
3645 * __skb_put_padto - increase size and pad an skbuff up to a minimal size
3646 * @skb: buffer to pad
3647 * @len: minimal length
3648 * @free_on_error: free buffer on error
3649 *
3650 * Pads up a buffer to ensure the trailing bytes exist and are
3651 * blanked. If the buffer already contains sufficient data it
3652 * is untouched. Otherwise it is extended. Returns zero on
3653 * success. The skb is freed on error if @free_on_error is true.
3654 */
3655static inline int __must_check __skb_put_padto(struct sk_buff *skb,
3656 unsigned int len,
3657 bool free_on_error)
3658{
3659 unsigned int size = skb->len;
3660
3661 if (unlikely(size < len)) {
3662 len -= size;
3663 if (__skb_pad(skb, len, free_on_error))
3664 return -ENOMEM;
3665 __skb_put(skb, len);
3666 }
3667 return 0;
3668}
3669
3670/**
3671 * skb_put_padto - increase size and pad an skbuff up to a minimal size
3672 * @skb: buffer to pad
3673 * @len: minimal length
3674 *
3675 * Pads up a buffer to ensure the trailing bytes exist and are
3676 * blanked. If the buffer already contains sufficient data it
3677 * is untouched. Otherwise it is extended. Returns zero on
3678 * success. The skb is freed on error.
3679 */
3680static inline int __must_check skb_put_padto(struct sk_buff *skb, unsigned int len)
3681{
3682 return __skb_put_padto(skb, len, true);
3683}
3684
3685static inline int skb_add_data(struct sk_buff *skb,
3686 struct iov_iter *from, int copy)
3687{
3688 const int off = skb->len;
3689
3690 if (skb->ip_summed == CHECKSUM_NONE) {
3691 __wsum csum = 0;
3692 if (csum_and_copy_from_iter_full(skb_put(skb, copy), copy,
3693 &csum, from)) {
3694 skb->csum = csum_block_add(skb->csum, csum, off);
3695 return 0;
3696 }
3697 } else if (copy_from_iter_full(skb_put(skb, copy), copy, from))
3698 return 0;
3699
3700 __skb_trim(skb, off);
3701 return -EFAULT;
3702}
3703
3704static inline bool skb_can_coalesce(struct sk_buff *skb, int i,
3705 const struct page *page, int off)
3706{
3707 if (skb_zcopy(skb))
3708 return false;
3709 if (i) {
3710 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i - 1];
3711
3712 return page == skb_frag_page(frag) &&
3713 off == skb_frag_off(frag) + skb_frag_size(frag);
3714 }
3715 return false;
3716}
3717
3718static inline int __skb_linearize(struct sk_buff *skb)
3719{
3720 return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
3721}
3722
3723/**
3724 * skb_linearize - convert paged skb to linear one
3725 * @skb: buffer to linarize
3726 *
3727 * If there is no free memory -ENOMEM is returned, otherwise zero
3728 * is returned and the old skb data released.
3729 */
3730static inline int skb_linearize(struct sk_buff *skb)
3731{
3732 return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
3733}
3734
3735/**
3736 * skb_has_shared_frag - can any frag be overwritten
3737 * @skb: buffer to test
3738 *
3739 * Return true if the skb has at least one frag that might be modified
3740 * by an external entity (as in vmsplice()/sendfile())
3741 */
3742static inline bool skb_has_shared_frag(const struct sk_buff *skb)
3743{
3744 return skb_is_nonlinear(skb) &&
3745 skb_shinfo(skb)->flags & SKBFL_SHARED_FRAG;
3746}
3747
3748/**
3749 * skb_linearize_cow - make sure skb is linear and writable
3750 * @skb: buffer to process
3751 *
3752 * If there is no free memory -ENOMEM is returned, otherwise zero
3753 * is returned and the old skb data released.
3754 */
3755static inline int skb_linearize_cow(struct sk_buff *skb)
3756{
3757 return skb_is_nonlinear(skb) || skb_cloned(skb) ?
3758 __skb_linearize(skb) : 0;
3759}
3760
3761static __always_inline void
3762__skb_postpull_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3763 unsigned int off)
3764{
3765 if (skb->ip_summed == CHECKSUM_COMPLETE)
3766 skb->csum = csum_block_sub(skb->csum,
3767 csum_partial(start, len, 0), off);
3768 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3769 skb_checksum_start_offset(skb) < 0)
3770 skb->ip_summed = CHECKSUM_NONE;
3771}
3772
3773/**
3774 * skb_postpull_rcsum - update checksum for received skb after pull
3775 * @skb: buffer to update
3776 * @start: start of data before pull
3777 * @len: length of data pulled
3778 *
3779 * After doing a pull on a received packet, you need to call this to
3780 * update the CHECKSUM_COMPLETE checksum, or set ip_summed to
3781 * CHECKSUM_NONE so that it can be recomputed from scratch.
3782 */
3783static inline void skb_postpull_rcsum(struct sk_buff *skb,
3784 const void *start, unsigned int len)
3785{
3786 if (skb->ip_summed == CHECKSUM_COMPLETE)
3787 skb->csum = wsum_negate(csum_partial(start, len,
3788 wsum_negate(skb->csum)));
3789 else if (skb->ip_summed == CHECKSUM_PARTIAL &&
3790 skb_checksum_start_offset(skb) < 0)
3791 skb->ip_summed = CHECKSUM_NONE;
3792}
3793
3794static __always_inline void
3795__skb_postpush_rcsum(struct sk_buff *skb, const void *start, unsigned int len,
3796 unsigned int off)
3797{
3798 if (skb->ip_summed == CHECKSUM_COMPLETE)
3799 skb->csum = csum_block_add(skb->csum,
3800 csum_partial(start, len, 0), off);
3801}
3802
3803/**
3804 * skb_postpush_rcsum - update checksum for received skb after push
3805 * @skb: buffer to update
3806 * @start: start of data after push
3807 * @len: length of data pushed
3808 *
3809 * After doing a push on a received packet, you need to call this to
3810 * update the CHECKSUM_COMPLETE checksum.
3811 */
3812static inline void skb_postpush_rcsum(struct sk_buff *skb,
3813 const void *start, unsigned int len)
3814{
3815 __skb_postpush_rcsum(skb, start, len, 0);
3816}
3817
3818void *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
3819
3820/**
3821 * skb_push_rcsum - push skb and update receive checksum
3822 * @skb: buffer to update
3823 * @len: length of data pulled
3824 *
3825 * This function performs an skb_push on the packet and updates
3826 * the CHECKSUM_COMPLETE checksum. It should be used on
3827 * receive path processing instead of skb_push unless you know
3828 * that the checksum difference is zero (e.g., a valid IP header)
3829 * or you are setting ip_summed to CHECKSUM_NONE.
3830 */
3831static inline void *skb_push_rcsum(struct sk_buff *skb, unsigned int len)
3832{
3833 skb_push(skb, len);
3834 skb_postpush_rcsum(skb, skb->data, len);
3835 return skb->data;
3836}
3837
3838int pskb_trim_rcsum_slow(struct sk_buff *skb, unsigned int len);
3839/**
3840 * pskb_trim_rcsum - trim received skb and update checksum
3841 * @skb: buffer to trim
3842 * @len: new length
3843 *
3844 * This is exactly the same as pskb_trim except that it ensures the
3845 * checksum of received packets are still valid after the operation.
3846 * It can change skb pointers.
3847 */
3848
3849static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3850{
3851 if (likely(len >= skb->len))
3852 return 0;
3853 return pskb_trim_rcsum_slow(skb, len);
3854}
3855
3856static inline int __skb_trim_rcsum(struct sk_buff *skb, unsigned int len)
3857{
3858 if (skb->ip_summed == CHECKSUM_COMPLETE)
3859 skb->ip_summed = CHECKSUM_NONE;
3860 __skb_trim(skb, len);
3861 return 0;
3862}
3863
3864static inline int __skb_grow_rcsum(struct sk_buff *skb, unsigned int len)
3865{
3866 if (skb->ip_summed == CHECKSUM_COMPLETE)
3867 skb->ip_summed = CHECKSUM_NONE;
3868 return __skb_grow(skb, len);
3869}
3870
3871#define rb_to_skb(rb) rb_entry_safe(rb, struct sk_buff, rbnode)
3872#define skb_rb_first(root) rb_to_skb(rb_first(root))
3873#define skb_rb_last(root) rb_to_skb(rb_last(root))
3874#define skb_rb_next(skb) rb_to_skb(rb_next(&(skb)->rbnode))
3875#define skb_rb_prev(skb) rb_to_skb(rb_prev(&(skb)->rbnode))
3876
3877#define skb_queue_walk(queue, skb) \
3878 for (skb = (queue)->next; \
3879 skb != (struct sk_buff *)(queue); \
3880 skb = skb->next)
3881
3882#define skb_queue_walk_safe(queue, skb, tmp) \
3883 for (skb = (queue)->next, tmp = skb->next; \
3884 skb != (struct sk_buff *)(queue); \
3885 skb = tmp, tmp = skb->next)
3886
3887#define skb_queue_walk_from(queue, skb) \
3888 for (; skb != (struct sk_buff *)(queue); \
3889 skb = skb->next)
3890
3891#define skb_rbtree_walk(skb, root) \
3892 for (skb = skb_rb_first(root); skb != NULL; \
3893 skb = skb_rb_next(skb))
3894
3895#define skb_rbtree_walk_from(skb) \
3896 for (; skb != NULL; \
3897 skb = skb_rb_next(skb))
3898
3899#define skb_rbtree_walk_from_safe(skb, tmp) \
3900 for (; tmp = skb ? skb_rb_next(skb) : NULL, (skb != NULL); \
3901 skb = tmp)
3902
3903#define skb_queue_walk_from_safe(queue, skb, tmp) \
3904 for (tmp = skb->next; \
3905 skb != (struct sk_buff *)(queue); \
3906 skb = tmp, tmp = skb->next)
3907
3908#define skb_queue_reverse_walk(queue, skb) \
3909 for (skb = (queue)->prev; \
3910 skb != (struct sk_buff *)(queue); \
3911 skb = skb->prev)
3912
3913#define skb_queue_reverse_walk_safe(queue, skb, tmp) \
3914 for (skb = (queue)->prev, tmp = skb->prev; \
3915 skb != (struct sk_buff *)(queue); \
3916 skb = tmp, tmp = skb->prev)
3917
3918#define skb_queue_reverse_walk_from_safe(queue, skb, tmp) \
3919 for (tmp = skb->prev; \
3920 skb != (struct sk_buff *)(queue); \
3921 skb = tmp, tmp = skb->prev)
3922
3923static inline bool skb_has_frag_list(const struct sk_buff *skb)
3924{
3925 return skb_shinfo(skb)->frag_list != NULL;
3926}
3927
3928static inline void skb_frag_list_init(struct sk_buff *skb)
3929{
3930 skb_shinfo(skb)->frag_list = NULL;
3931}
3932
3933#define skb_walk_frags(skb, iter) \
3934 for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
3935
3936
3937int __skb_wait_for_more_packets(struct sock *sk, struct sk_buff_head *queue,
3938 int *err, long *timeo_p,
3939 const struct sk_buff *skb);
3940struct sk_buff *__skb_try_recv_from_queue(struct sock *sk,
3941 struct sk_buff_head *queue,
3942 unsigned int flags,
3943 int *off, int *err,
3944 struct sk_buff **last);
3945struct sk_buff *__skb_try_recv_datagram(struct sock *sk,
3946 struct sk_buff_head *queue,
3947 unsigned int flags, int *off, int *err,
3948 struct sk_buff **last);
3949struct sk_buff *__skb_recv_datagram(struct sock *sk,
3950 struct sk_buff_head *sk_queue,
3951 unsigned int flags, int *off, int *err);
3952struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned int flags, int *err);
3953__poll_t datagram_poll(struct file *file, struct socket *sock,
3954 struct poll_table_struct *wait);
3955int skb_copy_datagram_iter(const struct sk_buff *from, int offset,
3956 struct iov_iter *to, int size);
3957static inline int skb_copy_datagram_msg(const struct sk_buff *from, int offset,
3958 struct msghdr *msg, int size)
3959{
3960 return skb_copy_datagram_iter(from, offset, &msg->msg_iter, size);
3961}
3962int skb_copy_and_csum_datagram_msg(struct sk_buff *skb, int hlen,
3963 struct msghdr *msg);
3964int skb_copy_and_hash_datagram_iter(const struct sk_buff *skb, int offset,
3965 struct iov_iter *to, int len,
3966 struct ahash_request *hash);
3967int skb_copy_datagram_from_iter(struct sk_buff *skb, int offset,
3968 struct iov_iter *from, int len);
3969int zerocopy_sg_from_iter(struct sk_buff *skb, struct iov_iter *frm);
3970void skb_free_datagram(struct sock *sk, struct sk_buff *skb);
3971void __skb_free_datagram_locked(struct sock *sk, struct sk_buff *skb, int len);
3972static inline void skb_free_datagram_locked(struct sock *sk,
3973 struct sk_buff *skb)
3974{
3975 __skb_free_datagram_locked(sk, skb, 0);
3976}
3977int skb_kill_datagram(struct sock *sk, struct sk_buff *skb, unsigned int flags);
3978int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len);
3979int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len);
3980__wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset, u8 *to,
3981 int len);
3982int skb_splice_bits(struct sk_buff *skb, struct sock *sk, unsigned int offset,
3983 struct pipe_inode_info *pipe, unsigned int len,
3984 unsigned int flags);
3985int skb_send_sock_locked(struct sock *sk, struct sk_buff *skb, int offset,
3986 int len);
3987int skb_send_sock(struct sock *sk, struct sk_buff *skb, int offset, int len);
3988void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
3989unsigned int skb_zerocopy_headlen(const struct sk_buff *from);
3990int skb_zerocopy(struct sk_buff *to, struct sk_buff *from,
3991 int len, int hlen);
3992void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len);
3993int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen);
3994void skb_scrub_packet(struct sk_buff *skb, bool xnet);
3995bool skb_gso_validate_network_len(const struct sk_buff *skb, unsigned int mtu);
3996bool skb_gso_validate_mac_len(const struct sk_buff *skb, unsigned int len);
3997struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features);
3998struct sk_buff *skb_segment_list(struct sk_buff *skb, netdev_features_t features,
3999 unsigned int offset);
4000struct sk_buff *skb_vlan_untag(struct sk_buff *skb);
4001int skb_ensure_writable(struct sk_buff *skb, unsigned int write_len);
4002int __skb_vlan_pop(struct sk_buff *skb, u16 *vlan_tci);
4003int skb_vlan_pop(struct sk_buff *skb);
4004int skb_vlan_push(struct sk_buff *skb, __be16 vlan_proto, u16 vlan_tci);
4005int skb_eth_pop(struct sk_buff *skb);
4006int skb_eth_push(struct sk_buff *skb, const unsigned char *dst,
4007 const unsigned char *src);
4008int skb_mpls_push(struct sk_buff *skb, __be32 mpls_lse, __be16 mpls_proto,
4009 int mac_len, bool ethernet);
4010int skb_mpls_pop(struct sk_buff *skb, __be16 next_proto, int mac_len,
4011 bool ethernet);
4012int skb_mpls_update_lse(struct sk_buff *skb, __be32 mpls_lse);
4013int skb_mpls_dec_ttl(struct sk_buff *skb);
4014struct sk_buff *pskb_extract(struct sk_buff *skb, int off, int to_copy,
4015 gfp_t gfp);
4016
4017static inline int memcpy_from_msg(void *data, struct msghdr *msg, int len)
4018{
4019 return copy_from_iter_full(data, len, &msg->msg_iter) ? 0 : -EFAULT;
4020}
4021
4022static inline int memcpy_to_msg(struct msghdr *msg, void *data, int len)
4023{
4024 return copy_to_iter(data, len, &msg->msg_iter) == len ? 0 : -EFAULT;
4025}
4026
4027struct skb_checksum_ops {
4028 __wsum (*update)(const void *mem, int len, __wsum wsum);
4029 __wsum (*combine)(__wsum csum, __wsum csum2, int offset, int len);
4030};
4031
4032extern const struct skb_checksum_ops *crc32c_csum_stub __read_mostly;
4033
4034__wsum __skb_checksum(const struct sk_buff *skb, int offset, int len,
4035 __wsum csum, const struct skb_checksum_ops *ops);
4036__wsum skb_checksum(const struct sk_buff *skb, int offset, int len,
4037 __wsum csum);
4038
4039static inline void * __must_check
4040__skb_header_pointer(const struct sk_buff *skb, int offset, int len,
4041 const void *data, int hlen, void *buffer)
4042{
4043 if (likely(hlen - offset >= len))
4044 return (void *)data + offset;
4045
4046 if (!skb || unlikely(skb_copy_bits(skb, offset, buffer, len) < 0))
4047 return NULL;
4048
4049 return buffer;
4050}
4051
4052static inline void * __must_check
4053skb_header_pointer(const struct sk_buff *skb, int offset, int len, void *buffer)
4054{
4055 return __skb_header_pointer(skb, offset, len, skb->data,
4056 skb_headlen(skb), buffer);
4057}
4058
4059/**
4060 * skb_needs_linearize - check if we need to linearize a given skb
4061 * depending on the given device features.
4062 * @skb: socket buffer to check
4063 * @features: net device features
4064 *
4065 * Returns true if either:
4066 * 1. skb has frag_list and the device doesn't support FRAGLIST, or
4067 * 2. skb is fragmented and the device does not support SG.
4068 */
4069static inline bool skb_needs_linearize(struct sk_buff *skb,
4070 netdev_features_t features)
4071{
4072 return skb_is_nonlinear(skb) &&
4073 ((skb_has_frag_list(skb) && !(features & NETIF_F_FRAGLIST)) ||
4074 (skb_shinfo(skb)->nr_frags && !(features & NETIF_F_SG)));
4075}
4076
4077static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
4078 void *to,
4079 const unsigned int len)
4080{
4081 memcpy(to, skb->data, len);
4082}
4083
4084static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
4085 const int offset, void *to,
4086 const unsigned int len)
4087{
4088 memcpy(to, skb->data + offset, len);
4089}
4090
4091static inline void skb_copy_to_linear_data(struct sk_buff *skb,
4092 const void *from,
4093 const unsigned int len)
4094{
4095 memcpy(skb->data, from, len);
4096}
4097
4098static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
4099 const int offset,
4100 const void *from,
4101 const unsigned int len)
4102{
4103 memcpy(skb->data + offset, from, len);
4104}
4105
4106void skb_init(void);
4107
4108static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
4109{
4110 return skb->tstamp;
4111}
4112
4113/**
4114 * skb_get_timestamp - get timestamp from a skb
4115 * @skb: skb to get stamp from
4116 * @stamp: pointer to struct __kernel_old_timeval to store stamp in
4117 *
4118 * Timestamps are stored in the skb as offsets to a base timestamp.
4119 * This function converts the offset back to a struct timeval and stores
4120 * it in stamp.
4121 */
4122static inline void skb_get_timestamp(const struct sk_buff *skb,
4123 struct __kernel_old_timeval *stamp)
4124{
4125 *stamp = ns_to_kernel_old_timeval(skb->tstamp);
4126}
4127
4128static inline void skb_get_new_timestamp(const struct sk_buff *skb,
4129 struct __kernel_sock_timeval *stamp)
4130{
4131 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4132
4133 stamp->tv_sec = ts.tv_sec;
4134 stamp->tv_usec = ts.tv_nsec / 1000;
4135}
4136
4137static inline void skb_get_timestampns(const struct sk_buff *skb,
4138 struct __kernel_old_timespec *stamp)
4139{
4140 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4141
4142 stamp->tv_sec = ts.tv_sec;
4143 stamp->tv_nsec = ts.tv_nsec;
4144}
4145
4146static inline void skb_get_new_timestampns(const struct sk_buff *skb,
4147 struct __kernel_timespec *stamp)
4148{
4149 struct timespec64 ts = ktime_to_timespec64(skb->tstamp);
4150
4151 stamp->tv_sec = ts.tv_sec;
4152 stamp->tv_nsec = ts.tv_nsec;
4153}
4154
4155static inline void __net_timestamp(struct sk_buff *skb)
4156{
4157 skb->tstamp = ktime_get_real();
4158 skb->mono_delivery_time = 0;
4159}
4160
4161static inline ktime_t net_timedelta(ktime_t t)
4162{
4163 return ktime_sub(ktime_get_real(), t);
4164}
4165
4166static inline void skb_set_delivery_time(struct sk_buff *skb, ktime_t kt,
4167 bool mono)
4168{
4169 skb->tstamp = kt;
4170 skb->mono_delivery_time = kt && mono;
4171}
4172
4173DECLARE_STATIC_KEY_FALSE(netstamp_needed_key);
4174
4175/* It is used in the ingress path to clear the delivery_time.
4176 * If needed, set the skb->tstamp to the (rcv) timestamp.
4177 */
4178static inline void skb_clear_delivery_time(struct sk_buff *skb)
4179{
4180 if (skb->mono_delivery_time) {
4181 skb->mono_delivery_time = 0;
4182 if (static_branch_unlikely(&netstamp_needed_key))
4183 skb->tstamp = ktime_get_real();
4184 else
4185 skb->tstamp = 0;
4186 }
4187}
4188
4189static inline void skb_clear_tstamp(struct sk_buff *skb)
4190{
4191 if (skb->mono_delivery_time)
4192 return;
4193
4194 skb->tstamp = 0;
4195}
4196
4197static inline ktime_t skb_tstamp(const struct sk_buff *skb)
4198{
4199 if (skb->mono_delivery_time)
4200 return 0;
4201
4202 return skb->tstamp;
4203}
4204
4205static inline ktime_t skb_tstamp_cond(const struct sk_buff *skb, bool cond)
4206{
4207 if (!skb->mono_delivery_time && skb->tstamp)
4208 return skb->tstamp;
4209
4210 if (static_branch_unlikely(&netstamp_needed_key) || cond)
4211 return ktime_get_real();
4212
4213 return 0;
4214}
4215
4216static inline u8 skb_metadata_len(const struct sk_buff *skb)
4217{
4218 return skb_shinfo(skb)->meta_len;
4219}
4220
4221static inline void *skb_metadata_end(const struct sk_buff *skb)
4222{
4223 return skb_mac_header(skb);
4224}
4225
4226static inline bool __skb_metadata_differs(const struct sk_buff *skb_a,
4227 const struct sk_buff *skb_b,
4228 u8 meta_len)
4229{
4230 const void *a = skb_metadata_end(skb_a);
4231 const void *b = skb_metadata_end(skb_b);
4232 /* Using more efficient varaiant than plain call to memcmp(). */
4233#if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
4234 u64 diffs = 0;
4235
4236 switch (meta_len) {
4237#define __it(x, op) (x -= sizeof(u##op))
4238#define __it_diff(a, b, op) (*(u##op *)__it(a, op)) ^ (*(u##op *)__it(b, op))
4239 case 32: diffs |= __it_diff(a, b, 64);
4240 fallthrough;
4241 case 24: diffs |= __it_diff(a, b, 64);
4242 fallthrough;
4243 case 16: diffs |= __it_diff(a, b, 64);
4244 fallthrough;
4245 case 8: diffs |= __it_diff(a, b, 64);
4246 break;
4247 case 28: diffs |= __it_diff(a, b, 64);
4248 fallthrough;
4249 case 20: diffs |= __it_diff(a, b, 64);
4250 fallthrough;
4251 case 12: diffs |= __it_diff(a, b, 64);
4252 fallthrough;
4253 case 4: diffs |= __it_diff(a, b, 32);
4254 break;
4255 }
4256 return diffs;
4257#else
4258 return memcmp(a - meta_len, b - meta_len, meta_len);
4259#endif
4260}
4261
4262static inline bool skb_metadata_differs(const struct sk_buff *skb_a,
4263 const struct sk_buff *skb_b)
4264{
4265 u8 len_a = skb_metadata_len(skb_a);
4266 u8 len_b = skb_metadata_len(skb_b);
4267
4268 if (!(len_a | len_b))
4269 return false;
4270
4271 return len_a != len_b ?
4272 true : __skb_metadata_differs(skb_a, skb_b, len_a);
4273}
4274
4275static inline void skb_metadata_set(struct sk_buff *skb, u8 meta_len)
4276{
4277 skb_shinfo(skb)->meta_len = meta_len;
4278}
4279
4280static inline void skb_metadata_clear(struct sk_buff *skb)
4281{
4282 skb_metadata_set(skb, 0);
4283}
4284
4285struct sk_buff *skb_clone_sk(struct sk_buff *skb);
4286
4287#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
4288
4289void skb_clone_tx_timestamp(struct sk_buff *skb);
4290bool skb_defer_rx_timestamp(struct sk_buff *skb);
4291
4292#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
4293
4294static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
4295{
4296}
4297
4298static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
4299{
4300 return false;
4301}
4302
4303#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
4304
4305/**
4306 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
4307 *
4308 * PHY drivers may accept clones of transmitted packets for
4309 * timestamping via their phy_driver.txtstamp method. These drivers
4310 * must call this function to return the skb back to the stack with a
4311 * timestamp.
4312 *
4313 * @skb: clone of the original outgoing packet
4314 * @hwtstamps: hardware time stamps
4315 *
4316 */
4317void skb_complete_tx_timestamp(struct sk_buff *skb,
4318 struct skb_shared_hwtstamps *hwtstamps);
4319
4320void __skb_tstamp_tx(struct sk_buff *orig_skb, const struct sk_buff *ack_skb,
4321 struct skb_shared_hwtstamps *hwtstamps,
4322 struct sock *sk, int tstype);
4323
4324/**
4325 * skb_tstamp_tx - queue clone of skb with send time stamps
4326 * @orig_skb: the original outgoing packet
4327 * @hwtstamps: hardware time stamps, may be NULL if not available
4328 *
4329 * If the skb has a socket associated, then this function clones the
4330 * skb (thus sharing the actual data and optional structures), stores
4331 * the optional hardware time stamping information (if non NULL) or
4332 * generates a software time stamp (otherwise), then queues the clone
4333 * to the error queue of the socket. Errors are silently ignored.
4334 */
4335void skb_tstamp_tx(struct sk_buff *orig_skb,
4336 struct skb_shared_hwtstamps *hwtstamps);
4337
4338/**
4339 * skb_tx_timestamp() - Driver hook for transmit timestamping
4340 *
4341 * Ethernet MAC Drivers should call this function in their hard_xmit()
4342 * function immediately before giving the sk_buff to the MAC hardware.
4343 *
4344 * Specifically, one should make absolutely sure that this function is
4345 * called before TX completion of this packet can trigger. Otherwise
4346 * the packet could potentially already be freed.
4347 *
4348 * @skb: A socket buffer.
4349 */
4350static inline void skb_tx_timestamp(struct sk_buff *skb)
4351{
4352 skb_clone_tx_timestamp(skb);
4353 if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP)
4354 skb_tstamp_tx(skb, NULL);
4355}
4356
4357/**
4358 * skb_complete_wifi_ack - deliver skb with wifi status
4359 *
4360 * @skb: the original outgoing packet
4361 * @acked: ack status
4362 *
4363 */
4364void skb_complete_wifi_ack(struct sk_buff *skb, bool acked);
4365
4366__sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
4367__sum16 __skb_checksum_complete(struct sk_buff *skb);
4368
4369static inline int skb_csum_unnecessary(const struct sk_buff *skb)
4370{
4371 return ((skb->ip_summed == CHECKSUM_UNNECESSARY) ||
4372 skb->csum_valid ||
4373 (skb->ip_summed == CHECKSUM_PARTIAL &&
4374 skb_checksum_start_offset(skb) >= 0));
4375}
4376
4377/**
4378 * skb_checksum_complete - Calculate checksum of an entire packet
4379 * @skb: packet to process
4380 *
4381 * This function calculates the checksum over the entire packet plus
4382 * the value of skb->csum. The latter can be used to supply the
4383 * checksum of a pseudo header as used by TCP/UDP. It returns the
4384 * checksum.
4385 *
4386 * For protocols that contain complete checksums such as ICMP/TCP/UDP,
4387 * this function can be used to verify that checksum on received
4388 * packets. In that case the function should return zero if the
4389 * checksum is correct. In particular, this function will return zero
4390 * if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
4391 * hardware has already verified the correctness of the checksum.
4392 */
4393static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
4394{
4395 return skb_csum_unnecessary(skb) ?
4396 0 : __skb_checksum_complete(skb);
4397}
4398
4399static inline void __skb_decr_checksum_unnecessary(struct sk_buff *skb)
4400{
4401 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4402 if (skb->csum_level == 0)
4403 skb->ip_summed = CHECKSUM_NONE;
4404 else
4405 skb->csum_level--;
4406 }
4407}
4408
4409static inline void __skb_incr_checksum_unnecessary(struct sk_buff *skb)
4410{
4411 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4412 if (skb->csum_level < SKB_MAX_CSUM_LEVEL)
4413 skb->csum_level++;
4414 } else if (skb->ip_summed == CHECKSUM_NONE) {
4415 skb->ip_summed = CHECKSUM_UNNECESSARY;
4416 skb->csum_level = 0;
4417 }
4418}
4419
4420static inline void __skb_reset_checksum_unnecessary(struct sk_buff *skb)
4421{
4422 if (skb->ip_summed == CHECKSUM_UNNECESSARY) {
4423 skb->ip_summed = CHECKSUM_NONE;
4424 skb->csum_level = 0;
4425 }
4426}
4427
4428/* Check if we need to perform checksum complete validation.
4429 *
4430 * Returns true if checksum complete is needed, false otherwise
4431 * (either checksum is unnecessary or zero checksum is allowed).
4432 */
4433static inline bool __skb_checksum_validate_needed(struct sk_buff *skb,
4434 bool zero_okay,
4435 __sum16 check)
4436{
4437 if (skb_csum_unnecessary(skb) || (zero_okay && !check)) {
4438 skb->csum_valid = 1;
4439 __skb_decr_checksum_unnecessary(skb);
4440 return false;
4441 }
4442
4443 return true;
4444}
4445
4446/* For small packets <= CHECKSUM_BREAK perform checksum complete directly
4447 * in checksum_init.
4448 */
4449#define CHECKSUM_BREAK 76
4450
4451/* Unset checksum-complete
4452 *
4453 * Unset checksum complete can be done when packet is being modified
4454 * (uncompressed for instance) and checksum-complete value is
4455 * invalidated.
4456 */
4457static inline void skb_checksum_complete_unset(struct sk_buff *skb)
4458{
4459 if (skb->ip_summed == CHECKSUM_COMPLETE)
4460 skb->ip_summed = CHECKSUM_NONE;
4461}
4462
4463/* Validate (init) checksum based on checksum complete.
4464 *
4465 * Return values:
4466 * 0: checksum is validated or try to in skb_checksum_complete. In the latter
4467 * case the ip_summed will not be CHECKSUM_UNNECESSARY and the pseudo
4468 * checksum is stored in skb->csum for use in __skb_checksum_complete
4469 * non-zero: value of invalid checksum
4470 *
4471 */
4472static inline __sum16 __skb_checksum_validate_complete(struct sk_buff *skb,
4473 bool complete,
4474 __wsum psum)
4475{
4476 if (skb->ip_summed == CHECKSUM_COMPLETE) {
4477 if (!csum_fold(csum_add(psum, skb->csum))) {
4478 skb->csum_valid = 1;
4479 return 0;
4480 }
4481 }
4482
4483 skb->csum = psum;
4484
4485 if (complete || skb->len <= CHECKSUM_BREAK) {
4486 __sum16 csum;
4487
4488 csum = __skb_checksum_complete(skb);
4489 skb->csum_valid = !csum;
4490 return csum;
4491 }
4492
4493 return 0;
4494}
4495
4496static inline __wsum null_compute_pseudo(struct sk_buff *skb, int proto)
4497{
4498 return 0;
4499}
4500
4501/* Perform checksum validate (init). Note that this is a macro since we only
4502 * want to calculate the pseudo header which is an input function if necessary.
4503 * First we try to validate without any computation (checksum unnecessary) and
4504 * then calculate based on checksum complete calling the function to compute
4505 * pseudo header.
4506 *
4507 * Return values:
4508 * 0: checksum is validated or try to in skb_checksum_complete
4509 * non-zero: value of invalid checksum
4510 */
4511#define __skb_checksum_validate(skb, proto, complete, \
4512 zero_okay, check, compute_pseudo) \
4513({ \
4514 __sum16 __ret = 0; \
4515 skb->csum_valid = 0; \
4516 if (__skb_checksum_validate_needed(skb, zero_okay, check)) \
4517 __ret = __skb_checksum_validate_complete(skb, \
4518 complete, compute_pseudo(skb, proto)); \
4519 __ret; \
4520})
4521
4522#define skb_checksum_init(skb, proto, compute_pseudo) \
4523 __skb_checksum_validate(skb, proto, false, false, 0, compute_pseudo)
4524
4525#define skb_checksum_init_zero_check(skb, proto, check, compute_pseudo) \
4526 __skb_checksum_validate(skb, proto, false, true, check, compute_pseudo)
4527
4528#define skb_checksum_validate(skb, proto, compute_pseudo) \
4529 __skb_checksum_validate(skb, proto, true, false, 0, compute_pseudo)
4530
4531#define skb_checksum_validate_zero_check(skb, proto, check, \
4532 compute_pseudo) \
4533 __skb_checksum_validate(skb, proto, true, true, check, compute_pseudo)
4534
4535#define skb_checksum_simple_validate(skb) \
4536 __skb_checksum_validate(skb, 0, true, false, 0, null_compute_pseudo)
4537
4538static inline bool __skb_checksum_convert_check(struct sk_buff *skb)
4539{
4540 return (skb->ip_summed == CHECKSUM_NONE && skb->csum_valid);
4541}
4542
4543static inline void __skb_checksum_convert(struct sk_buff *skb, __wsum pseudo)
4544{
4545 skb->csum = ~pseudo;
4546 skb->ip_summed = CHECKSUM_COMPLETE;
4547}
4548
4549#define skb_checksum_try_convert(skb, proto, compute_pseudo) \
4550do { \
4551 if (__skb_checksum_convert_check(skb)) \
4552 __skb_checksum_convert(skb, compute_pseudo(skb, proto)); \
4553} while (0)
4554
4555static inline void skb_remcsum_adjust_partial(struct sk_buff *skb, void *ptr,
4556 u16 start, u16 offset)
4557{
4558 skb->ip_summed = CHECKSUM_PARTIAL;
4559 skb->csum_start = ((unsigned char *)ptr + start) - skb->head;
4560 skb->csum_offset = offset - start;
4561}
4562
4563/* Update skbuf and packet to reflect the remote checksum offload operation.
4564 * When called, ptr indicates the starting point for skb->csum when
4565 * ip_summed is CHECKSUM_COMPLETE. If we need create checksum complete
4566 * here, skb_postpull_rcsum is done so skb->csum start is ptr.
4567 */
4568static inline void skb_remcsum_process(struct sk_buff *skb, void *ptr,
4569 int start, int offset, bool nopartial)
4570{
4571 __wsum delta;
4572
4573 if (!nopartial) {
4574 skb_remcsum_adjust_partial(skb, ptr, start, offset);
4575 return;
4576 }
4577
4578 if (unlikely(skb->ip_summed != CHECKSUM_COMPLETE)) {
4579 __skb_checksum_complete(skb);
4580 skb_postpull_rcsum(skb, skb->data, ptr - (void *)skb->data);
4581 }
4582
4583 delta = remcsum_adjust(ptr, skb->csum, start, offset);
4584
4585 /* Adjust skb->csum since we changed the packet */
4586 skb->csum = csum_add(skb->csum, delta);
4587}
4588
4589static inline struct nf_conntrack *skb_nfct(const struct sk_buff *skb)
4590{
4591#if IS_ENABLED(CONFIG_NF_CONNTRACK)
4592 return (void *)(skb->_nfct & NFCT_PTRMASK);
4593#else
4594 return NULL;
4595#endif
4596}
4597
4598static inline unsigned long skb_get_nfct(const struct sk_buff *skb)
4599{
4600#if IS_ENABLED(CONFIG_NF_CONNTRACK)
4601 return skb->_nfct;
4602#else
4603 return 0UL;
4604#endif
4605}
4606
4607static inline void skb_set_nfct(struct sk_buff *skb, unsigned long nfct)
4608{
4609#if IS_ENABLED(CONFIG_NF_CONNTRACK)
4610 skb->slow_gro |= !!nfct;
4611 skb->_nfct = nfct;
4612#endif
4613}
4614
4615#ifdef CONFIG_SKB_EXTENSIONS
4616enum skb_ext_id {
4617#if IS_ENABLED(CONFIG_BRIDGE_NETFILTER)
4618 SKB_EXT_BRIDGE_NF,
4619#endif
4620#ifdef CONFIG_XFRM
4621 SKB_EXT_SEC_PATH,
4622#endif
4623#if IS_ENABLED(CONFIG_NET_TC_SKB_EXT)
4624 TC_SKB_EXT,
4625#endif
4626#if IS_ENABLED(CONFIG_MPTCP)
4627 SKB_EXT_MPTCP,
4628#endif
4629#if IS_ENABLED(CONFIG_MCTP_FLOWS)
4630 SKB_EXT_MCTP,
4631#endif
4632 SKB_EXT_NUM, /* must be last */
4633};
4634
4635/**
4636 * struct skb_ext - sk_buff extensions
4637 * @refcnt: 1 on allocation, deallocated on 0
4638 * @offset: offset to add to @data to obtain extension address
4639 * @chunks: size currently allocated, stored in SKB_EXT_ALIGN_SHIFT units
4640 * @data: start of extension data, variable sized
4641 *
4642 * Note: offsets/lengths are stored in chunks of 8 bytes, this allows
4643 * to use 'u8' types while allowing up to 2kb worth of extension data.
4644 */
4645struct skb_ext {
4646 refcount_t refcnt;
4647 u8 offset[SKB_EXT_NUM]; /* in chunks of 8 bytes */
4648 u8 chunks; /* same */
4649 char data[] __aligned(8);
4650};
4651
4652struct skb_ext *__skb_ext_alloc(gfp_t flags);
4653void *__skb_ext_set(struct sk_buff *skb, enum skb_ext_id id,
4654 struct skb_ext *ext);
4655void *skb_ext_add(struct sk_buff *skb, enum skb_ext_id id);
4656void __skb_ext_del(struct sk_buff *skb, enum skb_ext_id id);
4657void __skb_ext_put(struct skb_ext *ext);
4658
4659static inline void skb_ext_put(struct sk_buff *skb)
4660{
4661 if (skb->active_extensions)
4662 __skb_ext_put(skb->extensions);
4663}
4664
4665static inline void __skb_ext_copy(struct sk_buff *dst,
4666 const struct sk_buff *src)
4667{
4668 dst->active_extensions = src->active_extensions;
4669
4670 if (src->active_extensions) {
4671 struct skb_ext *ext = src->extensions;
4672
4673 refcount_inc(&ext->refcnt);
4674 dst->extensions = ext;
4675 }
4676}
4677
4678static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *src)
4679{
4680 skb_ext_put(dst);
4681 __skb_ext_copy(dst, src);
4682}
4683
4684static inline bool __skb_ext_exist(const struct skb_ext *ext, enum skb_ext_id i)
4685{
4686 return !!ext->offset[i];
4687}
4688
4689static inline bool skb_ext_exist(const struct sk_buff *skb, enum skb_ext_id id)
4690{
4691 return skb->active_extensions & (1 << id);
4692}
4693
4694static inline void skb_ext_del(struct sk_buff *skb, enum skb_ext_id id)
4695{
4696 if (skb_ext_exist(skb, id))
4697 __skb_ext_del(skb, id);
4698}
4699
4700static inline void *skb_ext_find(const struct sk_buff *skb, enum skb_ext_id id)
4701{
4702 if (skb_ext_exist(skb, id)) {
4703 struct skb_ext *ext = skb->extensions;
4704
4705 return (void *)ext + (ext->offset[id] << 3);
4706 }
4707
4708 return NULL;
4709}
4710
4711static inline void skb_ext_reset(struct sk_buff *skb)
4712{
4713 if (unlikely(skb->active_extensions)) {
4714 __skb_ext_put(skb->extensions);
4715 skb->active_extensions = 0;
4716 }
4717}
4718
4719static inline bool skb_has_extensions(struct sk_buff *skb)
4720{
4721 return unlikely(skb->active_extensions);
4722}
4723#else
4724static inline void skb_ext_put(struct sk_buff *skb) {}
4725static inline void skb_ext_reset(struct sk_buff *skb) {}
4726static inline void skb_ext_del(struct sk_buff *skb, int unused) {}
4727static inline void __skb_ext_copy(struct sk_buff *d, const struct sk_buff *s) {}
4728static inline void skb_ext_copy(struct sk_buff *dst, const struct sk_buff *s) {}
4729static inline bool skb_has_extensions(struct sk_buff *skb) { return false; }
4730#endif /* CONFIG_SKB_EXTENSIONS */
4731
4732static inline void nf_reset_ct(struct sk_buff *skb)
4733{
4734#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4735 nf_conntrack_put(skb_nfct(skb));
4736 skb->_nfct = 0;
4737#endif
4738}
4739
4740static inline void nf_reset_trace(struct sk_buff *skb)
4741{
4742#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4743 skb->nf_trace = 0;
4744#endif
4745}
4746
4747static inline void ipvs_reset(struct sk_buff *skb)
4748{
4749#if IS_ENABLED(CONFIG_IP_VS)
4750 skb->ipvs_property = 0;
4751#endif
4752}
4753
4754/* Note: This doesn't put any conntrack info in dst. */
4755static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src,
4756 bool copy)
4757{
4758#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4759 dst->_nfct = src->_nfct;
4760 nf_conntrack_get(skb_nfct(src));
4761#endif
4762#if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE) || IS_ENABLED(CONFIG_NF_TABLES)
4763 if (copy)
4764 dst->nf_trace = src->nf_trace;
4765#endif
4766}
4767
4768static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
4769{
4770#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
4771 nf_conntrack_put(skb_nfct(dst));
4772#endif
4773 dst->slow_gro = src->slow_gro;
4774 __nf_copy(dst, src, true);
4775}
4776
4777#ifdef CONFIG_NETWORK_SECMARK
4778static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4779{
4780 to->secmark = from->secmark;
4781}
4782
4783static inline void skb_init_secmark(struct sk_buff *skb)
4784{
4785 skb->secmark = 0;
4786}
4787#else
4788static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
4789{ }
4790
4791static inline void skb_init_secmark(struct sk_buff *skb)
4792{ }
4793#endif
4794
4795static inline int secpath_exists(const struct sk_buff *skb)
4796{
4797#ifdef CONFIG_XFRM
4798 return skb_ext_exist(skb, SKB_EXT_SEC_PATH);
4799#else
4800 return 0;
4801#endif
4802}
4803
4804static inline bool skb_irq_freeable(const struct sk_buff *skb)
4805{
4806 return !skb->destructor &&
4807 !secpath_exists(skb) &&
4808 !skb_nfct(skb) &&
4809 !skb->_skb_refdst &&
4810 !skb_has_frag_list(skb);
4811}
4812
4813static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
4814{
4815 skb->queue_mapping = queue_mapping;
4816}
4817
4818static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
4819{
4820 return skb->queue_mapping;
4821}
4822
4823static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
4824{
4825 to->queue_mapping = from->queue_mapping;
4826}
4827
4828static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
4829{
4830 skb->queue_mapping = rx_queue + 1;
4831}
4832
4833static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
4834{
4835 return skb->queue_mapping - 1;
4836}
4837
4838static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
4839{
4840 return skb->queue_mapping != 0;
4841}
4842
4843static inline void skb_set_dst_pending_confirm(struct sk_buff *skb, u32 val)
4844{
4845 skb->dst_pending_confirm = val;
4846}
4847
4848static inline bool skb_get_dst_pending_confirm(const struct sk_buff *skb)
4849{
4850 return skb->dst_pending_confirm != 0;
4851}
4852
4853static inline struct sec_path *skb_sec_path(const struct sk_buff *skb)
4854{
4855#ifdef CONFIG_XFRM
4856 return skb_ext_find(skb, SKB_EXT_SEC_PATH);
4857#else
4858 return NULL;
4859#endif
4860}
4861
4862/* Keeps track of mac header offset relative to skb->head.
4863 * It is useful for TSO of Tunneling protocol. e.g. GRE.
4864 * For non-tunnel skb it points to skb_mac_header() and for
4865 * tunnel skb it points to outer mac header.
4866 * Keeps track of level of encapsulation of network headers.
4867 */
4868struct skb_gso_cb {
4869 union {
4870 int mac_offset;
4871 int data_offset;
4872 };
4873 int encap_level;
4874 __wsum csum;
4875 __u16 csum_start;
4876};
4877#define SKB_GSO_CB_OFFSET 32
4878#define SKB_GSO_CB(skb) ((struct skb_gso_cb *)((skb)->cb + SKB_GSO_CB_OFFSET))
4879
4880static inline int skb_tnl_header_len(const struct sk_buff *inner_skb)
4881{
4882 return (skb_mac_header(inner_skb) - inner_skb->head) -
4883 SKB_GSO_CB(inner_skb)->mac_offset;
4884}
4885
4886static inline int gso_pskb_expand_head(struct sk_buff *skb, int extra)
4887{
4888 int new_headroom, headroom;
4889 int ret;
4890
4891 headroom = skb_headroom(skb);
4892 ret = pskb_expand_head(skb, extra, 0, GFP_ATOMIC);
4893 if (ret)
4894 return ret;
4895
4896 new_headroom = skb_headroom(skb);
4897 SKB_GSO_CB(skb)->mac_offset += (new_headroom - headroom);
4898 return 0;
4899}
4900
4901static inline void gso_reset_checksum(struct sk_buff *skb, __wsum res)
4902{
4903 /* Do not update partial checksums if remote checksum is enabled. */
4904 if (skb->remcsum_offload)
4905 return;
4906
4907 SKB_GSO_CB(skb)->csum = res;
4908 SKB_GSO_CB(skb)->csum_start = skb_checksum_start(skb) - skb->head;
4909}
4910
4911/* Compute the checksum for a gso segment. First compute the checksum value
4912 * from the start of transport header to SKB_GSO_CB(skb)->csum_start, and
4913 * then add in skb->csum (checksum from csum_start to end of packet).
4914 * skb->csum and csum_start are then updated to reflect the checksum of the
4915 * resultant packet starting from the transport header-- the resultant checksum
4916 * is in the res argument (i.e. normally zero or ~ of checksum of a pseudo
4917 * header.
4918 */
4919static inline __sum16 gso_make_checksum(struct sk_buff *skb, __wsum res)
4920{
4921 unsigned char *csum_start = skb_transport_header(skb);
4922 int plen = (skb->head + SKB_GSO_CB(skb)->csum_start) - csum_start;
4923 __wsum partial = SKB_GSO_CB(skb)->csum;
4924
4925 SKB_GSO_CB(skb)->csum = res;
4926 SKB_GSO_CB(skb)->csum_start = csum_start - skb->head;
4927
4928 return csum_fold(csum_partial(csum_start, plen, partial));
4929}
4930
4931static inline bool skb_is_gso(const struct sk_buff *skb)
4932{
4933 return skb_shinfo(skb)->gso_size;
4934}
4935
4936/* Note: Should be called only if skb_is_gso(skb) is true */
4937static inline bool skb_is_gso_v6(const struct sk_buff *skb)
4938{
4939 return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
4940}
4941
4942/* Note: Should be called only if skb_is_gso(skb) is true */
4943static inline bool skb_is_gso_sctp(const struct sk_buff *skb)
4944{
4945 return skb_shinfo(skb)->gso_type & SKB_GSO_SCTP;
4946}
4947
4948/* Note: Should be called only if skb_is_gso(skb) is true */
4949static inline bool skb_is_gso_tcp(const struct sk_buff *skb)
4950{
4951 return skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6);
4952}
4953
4954static inline void skb_gso_reset(struct sk_buff *skb)
4955{
4956 skb_shinfo(skb)->gso_size = 0;
4957 skb_shinfo(skb)->gso_segs = 0;
4958 skb_shinfo(skb)->gso_type = 0;
4959}
4960
4961static inline void skb_increase_gso_size(struct skb_shared_info *shinfo,
4962 u16 increment)
4963{
4964 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4965 return;
4966 shinfo->gso_size += increment;
4967}
4968
4969static inline void skb_decrease_gso_size(struct skb_shared_info *shinfo,
4970 u16 decrement)
4971{
4972 if (WARN_ON_ONCE(shinfo->gso_size == GSO_BY_FRAGS))
4973 return;
4974 shinfo->gso_size -= decrement;
4975}
4976
4977void __skb_warn_lro_forwarding(const struct sk_buff *skb);
4978
4979static inline bool skb_warn_if_lro(const struct sk_buff *skb)
4980{
4981 /* LRO sets gso_size but not gso_type, whereas if GSO is really
4982 * wanted then gso_type will be set. */
4983 const struct skb_shared_info *shinfo = skb_shinfo(skb);
4984
4985 if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
4986 unlikely(shinfo->gso_type == 0)) {
4987 __skb_warn_lro_forwarding(skb);
4988 return true;
4989 }
4990 return false;
4991}
4992
4993static inline void skb_forward_csum(struct sk_buff *skb)
4994{
4995 /* Unfortunately we don't support this one. Any brave souls? */
4996 if (skb->ip_summed == CHECKSUM_COMPLETE)
4997 skb->ip_summed = CHECKSUM_NONE;
4998}
4999
5000/**
5001 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
5002 * @skb: skb to check
5003 *
5004 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
5005 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
5006 * use this helper, to document places where we make this assertion.
5007 */
5008static inline void skb_checksum_none_assert(const struct sk_buff *skb)
5009{
5010 DEBUG_NET_WARN_ON_ONCE(skb->ip_summed != CHECKSUM_NONE);
5011}
5012
5013bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
5014
5015int skb_checksum_setup(struct sk_buff *skb, bool recalculate);
5016struct sk_buff *skb_checksum_trimmed(struct sk_buff *skb,
5017 unsigned int transport_len,
5018 __sum16(*skb_chkf)(struct sk_buff *skb));
5019
5020/**
5021 * skb_head_is_locked - Determine if the skb->head is locked down
5022 * @skb: skb to check
5023 *
5024 * The head on skbs build around a head frag can be removed if they are
5025 * not cloned. This function returns true if the skb head is locked down
5026 * due to either being allocated via kmalloc, or by being a clone with
5027 * multiple references to the head.
5028 */
5029static inline bool skb_head_is_locked(const struct sk_buff *skb)
5030{
5031 return !skb->head_frag || skb_cloned(skb);
5032}
5033
5034/* Local Checksum Offload.
5035 * Compute outer checksum based on the assumption that the
5036 * inner checksum will be offloaded later.
5037 * See Documentation/networking/checksum-offloads.rst for
5038 * explanation of how this works.
5039 * Fill in outer checksum adjustment (e.g. with sum of outer
5040 * pseudo-header) before calling.
5041 * Also ensure that inner checksum is in linear data area.
5042 */
5043static inline __wsum lco_csum(struct sk_buff *skb)
5044{
5045 unsigned char *csum_start = skb_checksum_start(skb);
5046 unsigned char *l4_hdr = skb_transport_header(skb);
5047 __wsum partial;
5048
5049 /* Start with complement of inner checksum adjustment */
5050 partial = ~csum_unfold(*(__force __sum16 *)(csum_start +
5051 skb->csum_offset));
5052
5053 /* Add in checksum of our headers (incl. outer checksum
5054 * adjustment filled in by caller) and return result.
5055 */
5056 return csum_partial(l4_hdr, csum_start - l4_hdr, partial);
5057}
5058
5059static inline bool skb_is_redirected(const struct sk_buff *skb)
5060{
5061 return skb->redirected;
5062}
5063
5064static inline void skb_set_redirected(struct sk_buff *skb, bool from_ingress)
5065{
5066 skb->redirected = 1;
5067#ifdef CONFIG_NET_REDIRECT
5068 skb->from_ingress = from_ingress;
5069 if (skb->from_ingress)
5070 skb_clear_tstamp(skb);
5071#endif
5072}
5073
5074static inline void skb_reset_redirect(struct sk_buff *skb)
5075{
5076 skb->redirected = 0;
5077}
5078
5079static inline void skb_set_redirected_noclear(struct sk_buff *skb,
5080 bool from_ingress)
5081{
5082 skb->redirected = 1;
5083#ifdef CONFIG_NET_REDIRECT
5084 skb->from_ingress = from_ingress;
5085#endif
5086}
5087
5088static inline bool skb_csum_is_sctp(struct sk_buff *skb)
5089{
5090#if IS_ENABLED(CONFIG_IP_SCTP)
5091 return skb->csum_not_inet;
5092#else
5093 return 0;
5094#endif
5095}
5096
5097static inline void skb_reset_csum_not_inet(struct sk_buff *skb)
5098{
5099 skb->ip_summed = CHECKSUM_NONE;
5100#if IS_ENABLED(CONFIG_IP_SCTP)
5101 skb->csum_not_inet = 0;
5102#endif
5103}
5104
5105static inline void skb_set_kcov_handle(struct sk_buff *skb,
5106 const u64 kcov_handle)
5107{
5108#ifdef CONFIG_KCOV
5109 skb->kcov_handle = kcov_handle;
5110#endif
5111}
5112
5113static inline u64 skb_get_kcov_handle(struct sk_buff *skb)
5114{
5115#ifdef CONFIG_KCOV
5116 return skb->kcov_handle;
5117#else
5118 return 0;
5119#endif
5120}
5121
5122static inline void skb_mark_for_recycle(struct sk_buff *skb)
5123{
5124#ifdef CONFIG_PAGE_POOL
5125 skb->pp_recycle = 1;
5126#endif
5127}
5128
5129#endif /* __KERNEL__ */
5130#endif /* _LINUX_SKBUFF_H */