Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_PAGEMAP_H
3#define _LINUX_PAGEMAP_H
4
5/*
6 * Copyright 1995 Linus Torvalds
7 */
8#include <linux/mm.h>
9#include <linux/fs.h>
10#include <linux/list.h>
11#include <linux/highmem.h>
12#include <linux/compiler.h>
13#include <linux/uaccess.h>
14#include <linux/gfp.h>
15#include <linux/bitops.h>
16#include <linux/hardirq.h> /* for in_interrupt() */
17#include <linux/hugetlb_inline.h>
18
19struct folio_batch;
20
21unsigned long invalidate_mapping_pages(struct address_space *mapping,
22 pgoff_t start, pgoff_t end);
23
24static inline void invalidate_remote_inode(struct inode *inode)
25{
26 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
27 S_ISLNK(inode->i_mode))
28 invalidate_mapping_pages(inode->i_mapping, 0, -1);
29}
30int invalidate_inode_pages2(struct address_space *mapping);
31int invalidate_inode_pages2_range(struct address_space *mapping,
32 pgoff_t start, pgoff_t end);
33int write_inode_now(struct inode *, int sync);
34int filemap_fdatawrite(struct address_space *);
35int filemap_flush(struct address_space *);
36int filemap_fdatawait_keep_errors(struct address_space *mapping);
37int filemap_fdatawait_range(struct address_space *, loff_t lstart, loff_t lend);
38int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
39 loff_t start_byte, loff_t end_byte);
40
41static inline int filemap_fdatawait(struct address_space *mapping)
42{
43 return filemap_fdatawait_range(mapping, 0, LLONG_MAX);
44}
45
46bool filemap_range_has_page(struct address_space *, loff_t lstart, loff_t lend);
47int filemap_write_and_wait_range(struct address_space *mapping,
48 loff_t lstart, loff_t lend);
49int __filemap_fdatawrite_range(struct address_space *mapping,
50 loff_t start, loff_t end, int sync_mode);
51int filemap_fdatawrite_range(struct address_space *mapping,
52 loff_t start, loff_t end);
53int filemap_check_errors(struct address_space *mapping);
54void __filemap_set_wb_err(struct address_space *mapping, int err);
55int filemap_fdatawrite_wbc(struct address_space *mapping,
56 struct writeback_control *wbc);
57
58static inline int filemap_write_and_wait(struct address_space *mapping)
59{
60 return filemap_write_and_wait_range(mapping, 0, LLONG_MAX);
61}
62
63/**
64 * filemap_set_wb_err - set a writeback error on an address_space
65 * @mapping: mapping in which to set writeback error
66 * @err: error to be set in mapping
67 *
68 * When writeback fails in some way, we must record that error so that
69 * userspace can be informed when fsync and the like are called. We endeavor
70 * to report errors on any file that was open at the time of the error. Some
71 * internal callers also need to know when writeback errors have occurred.
72 *
73 * When a writeback error occurs, most filesystems will want to call
74 * filemap_set_wb_err to record the error in the mapping so that it will be
75 * automatically reported whenever fsync is called on the file.
76 */
77static inline void filemap_set_wb_err(struct address_space *mapping, int err)
78{
79 /* Fastpath for common case of no error */
80 if (unlikely(err))
81 __filemap_set_wb_err(mapping, err);
82}
83
84/**
85 * filemap_check_wb_err - has an error occurred since the mark was sampled?
86 * @mapping: mapping to check for writeback errors
87 * @since: previously-sampled errseq_t
88 *
89 * Grab the errseq_t value from the mapping, and see if it has changed "since"
90 * the given value was sampled.
91 *
92 * If it has then report the latest error set, otherwise return 0.
93 */
94static inline int filemap_check_wb_err(struct address_space *mapping,
95 errseq_t since)
96{
97 return errseq_check(&mapping->wb_err, since);
98}
99
100/**
101 * filemap_sample_wb_err - sample the current errseq_t to test for later errors
102 * @mapping: mapping to be sampled
103 *
104 * Writeback errors are always reported relative to a particular sample point
105 * in the past. This function provides those sample points.
106 */
107static inline errseq_t filemap_sample_wb_err(struct address_space *mapping)
108{
109 return errseq_sample(&mapping->wb_err);
110}
111
112/**
113 * file_sample_sb_err - sample the current errseq_t to test for later errors
114 * @file: file pointer to be sampled
115 *
116 * Grab the most current superblock-level errseq_t value for the given
117 * struct file.
118 */
119static inline errseq_t file_sample_sb_err(struct file *file)
120{
121 return errseq_sample(&file->f_path.dentry->d_sb->s_wb_err);
122}
123
124/*
125 * Flush file data before changing attributes. Caller must hold any locks
126 * required to prevent further writes to this file until we're done setting
127 * flags.
128 */
129static inline int inode_drain_writes(struct inode *inode)
130{
131 inode_dio_wait(inode);
132 return filemap_write_and_wait(inode->i_mapping);
133}
134
135static inline bool mapping_empty(struct address_space *mapping)
136{
137 return xa_empty(&mapping->i_pages);
138}
139
140/*
141 * mapping_shrinkable - test if page cache state allows inode reclaim
142 * @mapping: the page cache mapping
143 *
144 * This checks the mapping's cache state for the pupose of inode
145 * reclaim and LRU management.
146 *
147 * The caller is expected to hold the i_lock, but is not required to
148 * hold the i_pages lock, which usually protects cache state. That's
149 * because the i_lock and the list_lru lock that protect the inode and
150 * its LRU state don't nest inside the irq-safe i_pages lock.
151 *
152 * Cache deletions are performed under the i_lock, which ensures that
153 * when an inode goes empty, it will reliably get queued on the LRU.
154 *
155 * Cache additions do not acquire the i_lock and may race with this
156 * check, in which case we'll report the inode as shrinkable when it
157 * has cache pages. This is okay: the shrinker also checks the
158 * refcount and the referenced bit, which will be elevated or set in
159 * the process of adding new cache pages to an inode.
160 */
161static inline bool mapping_shrinkable(struct address_space *mapping)
162{
163 void *head;
164
165 /*
166 * On highmem systems, there could be lowmem pressure from the
167 * inodes before there is highmem pressure from the page
168 * cache. Make inodes shrinkable regardless of cache state.
169 */
170 if (IS_ENABLED(CONFIG_HIGHMEM))
171 return true;
172
173 /* Cache completely empty? Shrink away. */
174 head = rcu_access_pointer(mapping->i_pages.xa_head);
175 if (!head)
176 return true;
177
178 /*
179 * The xarray stores single offset-0 entries directly in the
180 * head pointer, which allows non-resident page cache entries
181 * to escape the shadow shrinker's list of xarray nodes. The
182 * inode shrinker needs to pick them up under memory pressure.
183 */
184 if (!xa_is_node(head) && xa_is_value(head))
185 return true;
186
187 return false;
188}
189
190/*
191 * Bits in mapping->flags.
192 */
193enum mapping_flags {
194 AS_EIO = 0, /* IO error on async write */
195 AS_ENOSPC = 1, /* ENOSPC on async write */
196 AS_MM_ALL_LOCKS = 2, /* under mm_take_all_locks() */
197 AS_UNEVICTABLE = 3, /* e.g., ramdisk, SHM_LOCK */
198 AS_EXITING = 4, /* final truncate in progress */
199 /* writeback related tags are not used */
200 AS_NO_WRITEBACK_TAGS = 5,
201 AS_LARGE_FOLIO_SUPPORT = 6,
202};
203
204/**
205 * mapping_set_error - record a writeback error in the address_space
206 * @mapping: the mapping in which an error should be set
207 * @error: the error to set in the mapping
208 *
209 * When writeback fails in some way, we must record that error so that
210 * userspace can be informed when fsync and the like are called. We endeavor
211 * to report errors on any file that was open at the time of the error. Some
212 * internal callers also need to know when writeback errors have occurred.
213 *
214 * When a writeback error occurs, most filesystems will want to call
215 * mapping_set_error to record the error in the mapping so that it can be
216 * reported when the application calls fsync(2).
217 */
218static inline void mapping_set_error(struct address_space *mapping, int error)
219{
220 if (likely(!error))
221 return;
222
223 /* Record in wb_err for checkers using errseq_t based tracking */
224 __filemap_set_wb_err(mapping, error);
225
226 /* Record it in superblock */
227 if (mapping->host)
228 errseq_set(&mapping->host->i_sb->s_wb_err, error);
229
230 /* Record it in flags for now, for legacy callers */
231 if (error == -ENOSPC)
232 set_bit(AS_ENOSPC, &mapping->flags);
233 else
234 set_bit(AS_EIO, &mapping->flags);
235}
236
237static inline void mapping_set_unevictable(struct address_space *mapping)
238{
239 set_bit(AS_UNEVICTABLE, &mapping->flags);
240}
241
242static inline void mapping_clear_unevictable(struct address_space *mapping)
243{
244 clear_bit(AS_UNEVICTABLE, &mapping->flags);
245}
246
247static inline bool mapping_unevictable(struct address_space *mapping)
248{
249 return mapping && test_bit(AS_UNEVICTABLE, &mapping->flags);
250}
251
252static inline void mapping_set_exiting(struct address_space *mapping)
253{
254 set_bit(AS_EXITING, &mapping->flags);
255}
256
257static inline int mapping_exiting(struct address_space *mapping)
258{
259 return test_bit(AS_EXITING, &mapping->flags);
260}
261
262static inline void mapping_set_no_writeback_tags(struct address_space *mapping)
263{
264 set_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
265}
266
267static inline int mapping_use_writeback_tags(struct address_space *mapping)
268{
269 return !test_bit(AS_NO_WRITEBACK_TAGS, &mapping->flags);
270}
271
272static inline gfp_t mapping_gfp_mask(struct address_space * mapping)
273{
274 return mapping->gfp_mask;
275}
276
277/* Restricts the given gfp_mask to what the mapping allows. */
278static inline gfp_t mapping_gfp_constraint(struct address_space *mapping,
279 gfp_t gfp_mask)
280{
281 return mapping_gfp_mask(mapping) & gfp_mask;
282}
283
284/*
285 * This is non-atomic. Only to be used before the mapping is activated.
286 * Probably needs a barrier...
287 */
288static inline void mapping_set_gfp_mask(struct address_space *m, gfp_t mask)
289{
290 m->gfp_mask = mask;
291}
292
293/**
294 * mapping_set_large_folios() - Indicate the file supports large folios.
295 * @mapping: The file.
296 *
297 * The filesystem should call this function in its inode constructor to
298 * indicate that the VFS can use large folios to cache the contents of
299 * the file.
300 *
301 * Context: This should not be called while the inode is active as it
302 * is non-atomic.
303 */
304static inline void mapping_set_large_folios(struct address_space *mapping)
305{
306 __set_bit(AS_LARGE_FOLIO_SUPPORT, &mapping->flags);
307}
308
309/*
310 * Large folio support currently depends on THP. These dependencies are
311 * being worked on but are not yet fixed.
312 */
313static inline bool mapping_large_folio_support(struct address_space *mapping)
314{
315 return IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
316 test_bit(AS_LARGE_FOLIO_SUPPORT, &mapping->flags);
317}
318
319static inline int filemap_nr_thps(struct address_space *mapping)
320{
321#ifdef CONFIG_READ_ONLY_THP_FOR_FS
322 return atomic_read(&mapping->nr_thps);
323#else
324 return 0;
325#endif
326}
327
328static inline void filemap_nr_thps_inc(struct address_space *mapping)
329{
330#ifdef CONFIG_READ_ONLY_THP_FOR_FS
331 if (!mapping_large_folio_support(mapping))
332 atomic_inc(&mapping->nr_thps);
333#else
334 WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0);
335#endif
336}
337
338static inline void filemap_nr_thps_dec(struct address_space *mapping)
339{
340#ifdef CONFIG_READ_ONLY_THP_FOR_FS
341 if (!mapping_large_folio_support(mapping))
342 atomic_dec(&mapping->nr_thps);
343#else
344 WARN_ON_ONCE(mapping_large_folio_support(mapping) == 0);
345#endif
346}
347
348struct address_space *page_mapping(struct page *);
349struct address_space *folio_mapping(struct folio *);
350struct address_space *swapcache_mapping(struct folio *);
351
352/**
353 * folio_file_mapping - Find the mapping this folio belongs to.
354 * @folio: The folio.
355 *
356 * For folios which are in the page cache, return the mapping that this
357 * page belongs to. Folios in the swap cache return the mapping of the
358 * swap file or swap device where the data is stored. This is different
359 * from the mapping returned by folio_mapping(). The only reason to
360 * use it is if, like NFS, you return 0 from ->activate_swapfile.
361 *
362 * Do not call this for folios which aren't in the page cache or swap cache.
363 */
364static inline struct address_space *folio_file_mapping(struct folio *folio)
365{
366 if (unlikely(folio_test_swapcache(folio)))
367 return swapcache_mapping(folio);
368
369 return folio->mapping;
370}
371
372static inline struct address_space *page_file_mapping(struct page *page)
373{
374 return folio_file_mapping(page_folio(page));
375}
376
377/*
378 * For file cache pages, return the address_space, otherwise return NULL
379 */
380static inline struct address_space *page_mapping_file(struct page *page)
381{
382 struct folio *folio = page_folio(page);
383
384 if (unlikely(folio_test_swapcache(folio)))
385 return NULL;
386 return folio_mapping(folio);
387}
388
389/**
390 * folio_inode - Get the host inode for this folio.
391 * @folio: The folio.
392 *
393 * For folios which are in the page cache, return the inode that this folio
394 * belongs to.
395 *
396 * Do not call this for folios which aren't in the page cache.
397 */
398static inline struct inode *folio_inode(struct folio *folio)
399{
400 return folio->mapping->host;
401}
402
403/**
404 * folio_attach_private - Attach private data to a folio.
405 * @folio: Folio to attach data to.
406 * @data: Data to attach to folio.
407 *
408 * Attaching private data to a folio increments the page's reference count.
409 * The data must be detached before the folio will be freed.
410 */
411static inline void folio_attach_private(struct folio *folio, void *data)
412{
413 folio_get(folio);
414 folio->private = data;
415 folio_set_private(folio);
416}
417
418/**
419 * folio_change_private - Change private data on a folio.
420 * @folio: Folio to change the data on.
421 * @data: Data to set on the folio.
422 *
423 * Change the private data attached to a folio and return the old
424 * data. The page must previously have had data attached and the data
425 * must be detached before the folio will be freed.
426 *
427 * Return: Data that was previously attached to the folio.
428 */
429static inline void *folio_change_private(struct folio *folio, void *data)
430{
431 void *old = folio_get_private(folio);
432
433 folio->private = data;
434 return old;
435}
436
437/**
438 * folio_detach_private - Detach private data from a folio.
439 * @folio: Folio to detach data from.
440 *
441 * Removes the data that was previously attached to the folio and decrements
442 * the refcount on the page.
443 *
444 * Return: Data that was attached to the folio.
445 */
446static inline void *folio_detach_private(struct folio *folio)
447{
448 void *data = folio_get_private(folio);
449
450 if (!folio_test_private(folio))
451 return NULL;
452 folio_clear_private(folio);
453 folio->private = NULL;
454 folio_put(folio);
455
456 return data;
457}
458
459static inline void attach_page_private(struct page *page, void *data)
460{
461 folio_attach_private(page_folio(page), data);
462}
463
464static inline void *detach_page_private(struct page *page)
465{
466 return folio_detach_private(page_folio(page));
467}
468
469#ifdef CONFIG_NUMA
470struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order);
471#else
472static inline struct folio *filemap_alloc_folio(gfp_t gfp, unsigned int order)
473{
474 return folio_alloc(gfp, order);
475}
476#endif
477
478static inline struct page *__page_cache_alloc(gfp_t gfp)
479{
480 return &filemap_alloc_folio(gfp, 0)->page;
481}
482
483static inline struct page *page_cache_alloc(struct address_space *x)
484{
485 return __page_cache_alloc(mapping_gfp_mask(x));
486}
487
488static inline gfp_t readahead_gfp_mask(struct address_space *x)
489{
490 return mapping_gfp_mask(x) | __GFP_NORETRY | __GFP_NOWARN;
491}
492
493typedef int filler_t(struct file *, struct folio *);
494
495pgoff_t page_cache_next_miss(struct address_space *mapping,
496 pgoff_t index, unsigned long max_scan);
497pgoff_t page_cache_prev_miss(struct address_space *mapping,
498 pgoff_t index, unsigned long max_scan);
499
500#define FGP_ACCESSED 0x00000001
501#define FGP_LOCK 0x00000002
502#define FGP_CREAT 0x00000004
503#define FGP_WRITE 0x00000008
504#define FGP_NOFS 0x00000010
505#define FGP_NOWAIT 0x00000020
506#define FGP_FOR_MMAP 0x00000040
507#define FGP_STABLE 0x00000080
508
509#define FGP_WRITEBEGIN (FGP_LOCK | FGP_WRITE | FGP_CREAT | FGP_STABLE)
510
511void *filemap_get_entry(struct address_space *mapping, pgoff_t index);
512struct folio *__filemap_get_folio(struct address_space *mapping, pgoff_t index,
513 int fgp_flags, gfp_t gfp);
514struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
515 int fgp_flags, gfp_t gfp);
516
517/**
518 * filemap_get_folio - Find and get a folio.
519 * @mapping: The address_space to search.
520 * @index: The page index.
521 *
522 * Looks up the page cache entry at @mapping & @index. If a folio is
523 * present, it is returned with an increased refcount.
524 *
525 * Return: A folio or ERR_PTR(-ENOENT) if there is no folio in the cache for
526 * this index. Will not return a shadow, swap or DAX entry.
527 */
528static inline struct folio *filemap_get_folio(struct address_space *mapping,
529 pgoff_t index)
530{
531 return __filemap_get_folio(mapping, index, 0, 0);
532}
533
534/**
535 * filemap_lock_folio - Find and lock a folio.
536 * @mapping: The address_space to search.
537 * @index: The page index.
538 *
539 * Looks up the page cache entry at @mapping & @index. If a folio is
540 * present, it is returned locked with an increased refcount.
541 *
542 * Context: May sleep.
543 * Return: A folio or ERR_PTR(-ENOENT) if there is no folio in the cache for
544 * this index. Will not return a shadow, swap or DAX entry.
545 */
546static inline struct folio *filemap_lock_folio(struct address_space *mapping,
547 pgoff_t index)
548{
549 return __filemap_get_folio(mapping, index, FGP_LOCK, 0);
550}
551
552/**
553 * filemap_grab_folio - grab a folio from the page cache
554 * @mapping: The address space to search
555 * @index: The page index
556 *
557 * Looks up the page cache entry at @mapping & @index. If no folio is found,
558 * a new folio is created. The folio is locked, marked as accessed, and
559 * returned.
560 *
561 * Return: A found or created folio. ERR_PTR(-ENOMEM) if no folio is found
562 * and failed to create a folio.
563 */
564static inline struct folio *filemap_grab_folio(struct address_space *mapping,
565 pgoff_t index)
566{
567 return __filemap_get_folio(mapping, index,
568 FGP_LOCK | FGP_ACCESSED | FGP_CREAT,
569 mapping_gfp_mask(mapping));
570}
571
572/**
573 * find_get_page - find and get a page reference
574 * @mapping: the address_space to search
575 * @offset: the page index
576 *
577 * Looks up the page cache slot at @mapping & @offset. If there is a
578 * page cache page, it is returned with an increased refcount.
579 *
580 * Otherwise, %NULL is returned.
581 */
582static inline struct page *find_get_page(struct address_space *mapping,
583 pgoff_t offset)
584{
585 return pagecache_get_page(mapping, offset, 0, 0);
586}
587
588static inline struct page *find_get_page_flags(struct address_space *mapping,
589 pgoff_t offset, int fgp_flags)
590{
591 return pagecache_get_page(mapping, offset, fgp_flags, 0);
592}
593
594/**
595 * find_lock_page - locate, pin and lock a pagecache page
596 * @mapping: the address_space to search
597 * @index: the page index
598 *
599 * Looks up the page cache entry at @mapping & @index. If there is a
600 * page cache page, it is returned locked and with an increased
601 * refcount.
602 *
603 * Context: May sleep.
604 * Return: A struct page or %NULL if there is no page in the cache for this
605 * index.
606 */
607static inline struct page *find_lock_page(struct address_space *mapping,
608 pgoff_t index)
609{
610 return pagecache_get_page(mapping, index, FGP_LOCK, 0);
611}
612
613/**
614 * find_or_create_page - locate or add a pagecache page
615 * @mapping: the page's address_space
616 * @index: the page's index into the mapping
617 * @gfp_mask: page allocation mode
618 *
619 * Looks up the page cache slot at @mapping & @offset. If there is a
620 * page cache page, it is returned locked and with an increased
621 * refcount.
622 *
623 * If the page is not present, a new page is allocated using @gfp_mask
624 * and added to the page cache and the VM's LRU list. The page is
625 * returned locked and with an increased refcount.
626 *
627 * On memory exhaustion, %NULL is returned.
628 *
629 * find_or_create_page() may sleep, even if @gfp_flags specifies an
630 * atomic allocation!
631 */
632static inline struct page *find_or_create_page(struct address_space *mapping,
633 pgoff_t index, gfp_t gfp_mask)
634{
635 return pagecache_get_page(mapping, index,
636 FGP_LOCK|FGP_ACCESSED|FGP_CREAT,
637 gfp_mask);
638}
639
640/**
641 * grab_cache_page_nowait - returns locked page at given index in given cache
642 * @mapping: target address_space
643 * @index: the page index
644 *
645 * Same as grab_cache_page(), but do not wait if the page is unavailable.
646 * This is intended for speculative data generators, where the data can
647 * be regenerated if the page couldn't be grabbed. This routine should
648 * be safe to call while holding the lock for another page.
649 *
650 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
651 * and deadlock against the caller's locked page.
652 */
653static inline struct page *grab_cache_page_nowait(struct address_space *mapping,
654 pgoff_t index)
655{
656 return pagecache_get_page(mapping, index,
657 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
658 mapping_gfp_mask(mapping));
659}
660
661#define swapcache_index(folio) __page_file_index(&(folio)->page)
662
663/**
664 * folio_index - File index of a folio.
665 * @folio: The folio.
666 *
667 * For a folio which is either in the page cache or the swap cache,
668 * return its index within the address_space it belongs to. If you know
669 * the page is definitely in the page cache, you can look at the folio's
670 * index directly.
671 *
672 * Return: The index (offset in units of pages) of a folio in its file.
673 */
674static inline pgoff_t folio_index(struct folio *folio)
675{
676 if (unlikely(folio_test_swapcache(folio)))
677 return swapcache_index(folio);
678 return folio->index;
679}
680
681/**
682 * folio_next_index - Get the index of the next folio.
683 * @folio: The current folio.
684 *
685 * Return: The index of the folio which follows this folio in the file.
686 */
687static inline pgoff_t folio_next_index(struct folio *folio)
688{
689 return folio->index + folio_nr_pages(folio);
690}
691
692/**
693 * folio_file_page - The page for a particular index.
694 * @folio: The folio which contains this index.
695 * @index: The index we want to look up.
696 *
697 * Sometimes after looking up a folio in the page cache, we need to
698 * obtain the specific page for an index (eg a page fault).
699 *
700 * Return: The page containing the file data for this index.
701 */
702static inline struct page *folio_file_page(struct folio *folio, pgoff_t index)
703{
704 /* HugeTLBfs indexes the page cache in units of hpage_size */
705 if (folio_test_hugetlb(folio))
706 return &folio->page;
707 return folio_page(folio, index & (folio_nr_pages(folio) - 1));
708}
709
710/**
711 * folio_contains - Does this folio contain this index?
712 * @folio: The folio.
713 * @index: The page index within the file.
714 *
715 * Context: The caller should have the page locked in order to prevent
716 * (eg) shmem from moving the page between the page cache and swap cache
717 * and changing its index in the middle of the operation.
718 * Return: true or false.
719 */
720static inline bool folio_contains(struct folio *folio, pgoff_t index)
721{
722 /* HugeTLBfs indexes the page cache in units of hpage_size */
723 if (folio_test_hugetlb(folio))
724 return folio->index == index;
725 return index - folio_index(folio) < folio_nr_pages(folio);
726}
727
728/*
729 * Given the page we found in the page cache, return the page corresponding
730 * to this index in the file
731 */
732static inline struct page *find_subpage(struct page *head, pgoff_t index)
733{
734 /* HugeTLBfs wants the head page regardless */
735 if (PageHuge(head))
736 return head;
737
738 return head + (index & (thp_nr_pages(head) - 1));
739}
740
741unsigned filemap_get_folios(struct address_space *mapping, pgoff_t *start,
742 pgoff_t end, struct folio_batch *fbatch);
743unsigned filemap_get_folios_contig(struct address_space *mapping,
744 pgoff_t *start, pgoff_t end, struct folio_batch *fbatch);
745unsigned filemap_get_folios_tag(struct address_space *mapping, pgoff_t *start,
746 pgoff_t end, xa_mark_t tag, struct folio_batch *fbatch);
747
748struct page *grab_cache_page_write_begin(struct address_space *mapping,
749 pgoff_t index);
750
751/*
752 * Returns locked page at given index in given cache, creating it if needed.
753 */
754static inline struct page *grab_cache_page(struct address_space *mapping,
755 pgoff_t index)
756{
757 return find_or_create_page(mapping, index, mapping_gfp_mask(mapping));
758}
759
760struct folio *read_cache_folio(struct address_space *, pgoff_t index,
761 filler_t *filler, struct file *file);
762struct folio *mapping_read_folio_gfp(struct address_space *, pgoff_t index,
763 gfp_t flags);
764struct page *read_cache_page(struct address_space *, pgoff_t index,
765 filler_t *filler, struct file *file);
766extern struct page * read_cache_page_gfp(struct address_space *mapping,
767 pgoff_t index, gfp_t gfp_mask);
768
769static inline struct page *read_mapping_page(struct address_space *mapping,
770 pgoff_t index, struct file *file)
771{
772 return read_cache_page(mapping, index, NULL, file);
773}
774
775static inline struct folio *read_mapping_folio(struct address_space *mapping,
776 pgoff_t index, struct file *file)
777{
778 return read_cache_folio(mapping, index, NULL, file);
779}
780
781/*
782 * Get index of the page within radix-tree (but not for hugetlb pages).
783 * (TODO: remove once hugetlb pages will have ->index in PAGE_SIZE)
784 */
785static inline pgoff_t page_to_index(struct page *page)
786{
787 struct page *head;
788
789 if (likely(!PageTransTail(page)))
790 return page->index;
791
792 head = compound_head(page);
793 /*
794 * We don't initialize ->index for tail pages: calculate based on
795 * head page
796 */
797 return head->index + page - head;
798}
799
800extern pgoff_t hugetlb_basepage_index(struct page *page);
801
802/*
803 * Get the offset in PAGE_SIZE (even for hugetlb pages).
804 * (TODO: hugetlb pages should have ->index in PAGE_SIZE)
805 */
806static inline pgoff_t page_to_pgoff(struct page *page)
807{
808 if (unlikely(PageHuge(page)))
809 return hugetlb_basepage_index(page);
810 return page_to_index(page);
811}
812
813/*
814 * Return byte-offset into filesystem object for page.
815 */
816static inline loff_t page_offset(struct page *page)
817{
818 return ((loff_t)page->index) << PAGE_SHIFT;
819}
820
821static inline loff_t page_file_offset(struct page *page)
822{
823 return ((loff_t)page_index(page)) << PAGE_SHIFT;
824}
825
826/**
827 * folio_pos - Returns the byte position of this folio in its file.
828 * @folio: The folio.
829 */
830static inline loff_t folio_pos(struct folio *folio)
831{
832 return page_offset(&folio->page);
833}
834
835/**
836 * folio_file_pos - Returns the byte position of this folio in its file.
837 * @folio: The folio.
838 *
839 * This differs from folio_pos() for folios which belong to a swap file.
840 * NFS is the only filesystem today which needs to use folio_file_pos().
841 */
842static inline loff_t folio_file_pos(struct folio *folio)
843{
844 return page_file_offset(&folio->page);
845}
846
847/*
848 * Get the offset in PAGE_SIZE (even for hugetlb folios).
849 * (TODO: hugetlb folios should have ->index in PAGE_SIZE)
850 */
851static inline pgoff_t folio_pgoff(struct folio *folio)
852{
853 if (unlikely(folio_test_hugetlb(folio)))
854 return hugetlb_basepage_index(&folio->page);
855 return folio->index;
856}
857
858extern pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
859 unsigned long address);
860
861static inline pgoff_t linear_page_index(struct vm_area_struct *vma,
862 unsigned long address)
863{
864 pgoff_t pgoff;
865 if (unlikely(is_vm_hugetlb_page(vma)))
866 return linear_hugepage_index(vma, address);
867 pgoff = (address - vma->vm_start) >> PAGE_SHIFT;
868 pgoff += vma->vm_pgoff;
869 return pgoff;
870}
871
872struct wait_page_key {
873 struct folio *folio;
874 int bit_nr;
875 int page_match;
876};
877
878struct wait_page_queue {
879 struct folio *folio;
880 int bit_nr;
881 wait_queue_entry_t wait;
882};
883
884static inline bool wake_page_match(struct wait_page_queue *wait_page,
885 struct wait_page_key *key)
886{
887 if (wait_page->folio != key->folio)
888 return false;
889 key->page_match = 1;
890
891 if (wait_page->bit_nr != key->bit_nr)
892 return false;
893
894 return true;
895}
896
897void __folio_lock(struct folio *folio);
898int __folio_lock_killable(struct folio *folio);
899bool __folio_lock_or_retry(struct folio *folio, struct mm_struct *mm,
900 unsigned int flags);
901void unlock_page(struct page *page);
902void folio_unlock(struct folio *folio);
903
904/**
905 * folio_trylock() - Attempt to lock a folio.
906 * @folio: The folio to attempt to lock.
907 *
908 * Sometimes it is undesirable to wait for a folio to be unlocked (eg
909 * when the locks are being taken in the wrong order, or if making
910 * progress through a batch of folios is more important than processing
911 * them in order). Usually folio_lock() is the correct function to call.
912 *
913 * Context: Any context.
914 * Return: Whether the lock was successfully acquired.
915 */
916static inline bool folio_trylock(struct folio *folio)
917{
918 return likely(!test_and_set_bit_lock(PG_locked, folio_flags(folio, 0)));
919}
920
921/*
922 * Return true if the page was successfully locked
923 */
924static inline int trylock_page(struct page *page)
925{
926 return folio_trylock(page_folio(page));
927}
928
929/**
930 * folio_lock() - Lock this folio.
931 * @folio: The folio to lock.
932 *
933 * The folio lock protects against many things, probably more than it
934 * should. It is primarily held while a folio is being brought uptodate,
935 * either from its backing file or from swap. It is also held while a
936 * folio is being truncated from its address_space, so holding the lock
937 * is sufficient to keep folio->mapping stable.
938 *
939 * The folio lock is also held while write() is modifying the page to
940 * provide POSIX atomicity guarantees (as long as the write does not
941 * cross a page boundary). Other modifications to the data in the folio
942 * do not hold the folio lock and can race with writes, eg DMA and stores
943 * to mapped pages.
944 *
945 * Context: May sleep. If you need to acquire the locks of two or
946 * more folios, they must be in order of ascending index, if they are
947 * in the same address_space. If they are in different address_spaces,
948 * acquire the lock of the folio which belongs to the address_space which
949 * has the lowest address in memory first.
950 */
951static inline void folio_lock(struct folio *folio)
952{
953 might_sleep();
954 if (!folio_trylock(folio))
955 __folio_lock(folio);
956}
957
958/**
959 * lock_page() - Lock the folio containing this page.
960 * @page: The page to lock.
961 *
962 * See folio_lock() for a description of what the lock protects.
963 * This is a legacy function and new code should probably use folio_lock()
964 * instead.
965 *
966 * Context: May sleep. Pages in the same folio share a lock, so do not
967 * attempt to lock two pages which share a folio.
968 */
969static inline void lock_page(struct page *page)
970{
971 struct folio *folio;
972 might_sleep();
973
974 folio = page_folio(page);
975 if (!folio_trylock(folio))
976 __folio_lock(folio);
977}
978
979/**
980 * folio_lock_killable() - Lock this folio, interruptible by a fatal signal.
981 * @folio: The folio to lock.
982 *
983 * Attempts to lock the folio, like folio_lock(), except that the sleep
984 * to acquire the lock is interruptible by a fatal signal.
985 *
986 * Context: May sleep; see folio_lock().
987 * Return: 0 if the lock was acquired; -EINTR if a fatal signal was received.
988 */
989static inline int folio_lock_killable(struct folio *folio)
990{
991 might_sleep();
992 if (!folio_trylock(folio))
993 return __folio_lock_killable(folio);
994 return 0;
995}
996
997/*
998 * folio_lock_or_retry - Lock the folio, unless this would block and the
999 * caller indicated that it can handle a retry.
1000 *
1001 * Return value and mmap_lock implications depend on flags; see
1002 * __folio_lock_or_retry().
1003 */
1004static inline bool folio_lock_or_retry(struct folio *folio,
1005 struct mm_struct *mm, unsigned int flags)
1006{
1007 might_sleep();
1008 return folio_trylock(folio) || __folio_lock_or_retry(folio, mm, flags);
1009}
1010
1011/*
1012 * This is exported only for folio_wait_locked/folio_wait_writeback, etc.,
1013 * and should not be used directly.
1014 */
1015void folio_wait_bit(struct folio *folio, int bit_nr);
1016int folio_wait_bit_killable(struct folio *folio, int bit_nr);
1017
1018/*
1019 * Wait for a folio to be unlocked.
1020 *
1021 * This must be called with the caller "holding" the folio,
1022 * ie with increased folio reference count so that the folio won't
1023 * go away during the wait.
1024 */
1025static inline void folio_wait_locked(struct folio *folio)
1026{
1027 if (folio_test_locked(folio))
1028 folio_wait_bit(folio, PG_locked);
1029}
1030
1031static inline int folio_wait_locked_killable(struct folio *folio)
1032{
1033 if (!folio_test_locked(folio))
1034 return 0;
1035 return folio_wait_bit_killable(folio, PG_locked);
1036}
1037
1038static inline void wait_on_page_locked(struct page *page)
1039{
1040 folio_wait_locked(page_folio(page));
1041}
1042
1043static inline int wait_on_page_locked_killable(struct page *page)
1044{
1045 return folio_wait_locked_killable(page_folio(page));
1046}
1047
1048void wait_on_page_writeback(struct page *page);
1049void folio_wait_writeback(struct folio *folio);
1050int folio_wait_writeback_killable(struct folio *folio);
1051void end_page_writeback(struct page *page);
1052void folio_end_writeback(struct folio *folio);
1053void wait_for_stable_page(struct page *page);
1054void folio_wait_stable(struct folio *folio);
1055void __folio_mark_dirty(struct folio *folio, struct address_space *, int warn);
1056static inline void __set_page_dirty(struct page *page,
1057 struct address_space *mapping, int warn)
1058{
1059 __folio_mark_dirty(page_folio(page), mapping, warn);
1060}
1061void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb);
1062void __folio_cancel_dirty(struct folio *folio);
1063static inline void folio_cancel_dirty(struct folio *folio)
1064{
1065 /* Avoid atomic ops, locking, etc. when not actually needed. */
1066 if (folio_test_dirty(folio))
1067 __folio_cancel_dirty(folio);
1068}
1069bool folio_clear_dirty_for_io(struct folio *folio);
1070bool clear_page_dirty_for_io(struct page *page);
1071void folio_invalidate(struct folio *folio, size_t offset, size_t length);
1072int __set_page_dirty_nobuffers(struct page *page);
1073bool noop_dirty_folio(struct address_space *mapping, struct folio *folio);
1074
1075#ifdef CONFIG_MIGRATION
1076int filemap_migrate_folio(struct address_space *mapping, struct folio *dst,
1077 struct folio *src, enum migrate_mode mode);
1078#else
1079#define filemap_migrate_folio NULL
1080#endif
1081void page_endio(struct page *page, bool is_write, int err);
1082
1083void folio_end_private_2(struct folio *folio);
1084void folio_wait_private_2(struct folio *folio);
1085int folio_wait_private_2_killable(struct folio *folio);
1086
1087/*
1088 * Add an arbitrary waiter to a page's wait queue
1089 */
1090void folio_add_wait_queue(struct folio *folio, wait_queue_entry_t *waiter);
1091
1092/*
1093 * Fault in userspace address range.
1094 */
1095size_t fault_in_writeable(char __user *uaddr, size_t size);
1096size_t fault_in_subpage_writeable(char __user *uaddr, size_t size);
1097size_t fault_in_safe_writeable(const char __user *uaddr, size_t size);
1098size_t fault_in_readable(const char __user *uaddr, size_t size);
1099
1100int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
1101 pgoff_t index, gfp_t gfp);
1102int filemap_add_folio(struct address_space *mapping, struct folio *folio,
1103 pgoff_t index, gfp_t gfp);
1104void filemap_remove_folio(struct folio *folio);
1105void __filemap_remove_folio(struct folio *folio, void *shadow);
1106void replace_page_cache_folio(struct folio *old, struct folio *new);
1107void delete_from_page_cache_batch(struct address_space *mapping,
1108 struct folio_batch *fbatch);
1109bool filemap_release_folio(struct folio *folio, gfp_t gfp);
1110loff_t mapping_seek_hole_data(struct address_space *, loff_t start, loff_t end,
1111 int whence);
1112
1113/* Must be non-static for BPF error injection */
1114int __filemap_add_folio(struct address_space *mapping, struct folio *folio,
1115 pgoff_t index, gfp_t gfp, void **shadowp);
1116
1117bool filemap_range_has_writeback(struct address_space *mapping,
1118 loff_t start_byte, loff_t end_byte);
1119
1120/**
1121 * filemap_range_needs_writeback - check if range potentially needs writeback
1122 * @mapping: address space within which to check
1123 * @start_byte: offset in bytes where the range starts
1124 * @end_byte: offset in bytes where the range ends (inclusive)
1125 *
1126 * Find at least one page in the range supplied, usually used to check if
1127 * direct writing in this range will trigger a writeback. Used by O_DIRECT
1128 * read/write with IOCB_NOWAIT, to see if the caller needs to do
1129 * filemap_write_and_wait_range() before proceeding.
1130 *
1131 * Return: %true if the caller should do filemap_write_and_wait_range() before
1132 * doing O_DIRECT to a page in this range, %false otherwise.
1133 */
1134static inline bool filemap_range_needs_writeback(struct address_space *mapping,
1135 loff_t start_byte,
1136 loff_t end_byte)
1137{
1138 if (!mapping->nrpages)
1139 return false;
1140 if (!mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
1141 !mapping_tagged(mapping, PAGECACHE_TAG_WRITEBACK))
1142 return false;
1143 return filemap_range_has_writeback(mapping, start_byte, end_byte);
1144}
1145
1146/**
1147 * struct readahead_control - Describes a readahead request.
1148 *
1149 * A readahead request is for consecutive pages. Filesystems which
1150 * implement the ->readahead method should call readahead_page() or
1151 * readahead_page_batch() in a loop and attempt to start I/O against
1152 * each page in the request.
1153 *
1154 * Most of the fields in this struct are private and should be accessed
1155 * by the functions below.
1156 *
1157 * @file: The file, used primarily by network filesystems for authentication.
1158 * May be NULL if invoked internally by the filesystem.
1159 * @mapping: Readahead this filesystem object.
1160 * @ra: File readahead state. May be NULL.
1161 */
1162struct readahead_control {
1163 struct file *file;
1164 struct address_space *mapping;
1165 struct file_ra_state *ra;
1166/* private: use the readahead_* accessors instead */
1167 pgoff_t _index;
1168 unsigned int _nr_pages;
1169 unsigned int _batch_count;
1170 bool _workingset;
1171 unsigned long _pflags;
1172};
1173
1174#define DEFINE_READAHEAD(ractl, f, r, m, i) \
1175 struct readahead_control ractl = { \
1176 .file = f, \
1177 .mapping = m, \
1178 .ra = r, \
1179 ._index = i, \
1180 }
1181
1182#define VM_READAHEAD_PAGES (SZ_128K / PAGE_SIZE)
1183
1184void page_cache_ra_unbounded(struct readahead_control *,
1185 unsigned long nr_to_read, unsigned long lookahead_count);
1186void page_cache_sync_ra(struct readahead_control *, unsigned long req_count);
1187void page_cache_async_ra(struct readahead_control *, struct folio *,
1188 unsigned long req_count);
1189void readahead_expand(struct readahead_control *ractl,
1190 loff_t new_start, size_t new_len);
1191
1192/**
1193 * page_cache_sync_readahead - generic file readahead
1194 * @mapping: address_space which holds the pagecache and I/O vectors
1195 * @ra: file_ra_state which holds the readahead state
1196 * @file: Used by the filesystem for authentication.
1197 * @index: Index of first page to be read.
1198 * @req_count: Total number of pages being read by the caller.
1199 *
1200 * page_cache_sync_readahead() should be called when a cache miss happened:
1201 * it will submit the read. The readahead logic may decide to piggyback more
1202 * pages onto the read request if access patterns suggest it will improve
1203 * performance.
1204 */
1205static inline
1206void page_cache_sync_readahead(struct address_space *mapping,
1207 struct file_ra_state *ra, struct file *file, pgoff_t index,
1208 unsigned long req_count)
1209{
1210 DEFINE_READAHEAD(ractl, file, ra, mapping, index);
1211 page_cache_sync_ra(&ractl, req_count);
1212}
1213
1214/**
1215 * page_cache_async_readahead - file readahead for marked pages
1216 * @mapping: address_space which holds the pagecache and I/O vectors
1217 * @ra: file_ra_state which holds the readahead state
1218 * @file: Used by the filesystem for authentication.
1219 * @folio: The folio at @index which triggered the readahead call.
1220 * @index: Index of first page to be read.
1221 * @req_count: Total number of pages being read by the caller.
1222 *
1223 * page_cache_async_readahead() should be called when a page is used which
1224 * is marked as PageReadahead; this is a marker to suggest that the application
1225 * has used up enough of the readahead window that we should start pulling in
1226 * more pages.
1227 */
1228static inline
1229void page_cache_async_readahead(struct address_space *mapping,
1230 struct file_ra_state *ra, struct file *file,
1231 struct folio *folio, pgoff_t index, unsigned long req_count)
1232{
1233 DEFINE_READAHEAD(ractl, file, ra, mapping, index);
1234 page_cache_async_ra(&ractl, folio, req_count);
1235}
1236
1237static inline struct folio *__readahead_folio(struct readahead_control *ractl)
1238{
1239 struct folio *folio;
1240
1241 BUG_ON(ractl->_batch_count > ractl->_nr_pages);
1242 ractl->_nr_pages -= ractl->_batch_count;
1243 ractl->_index += ractl->_batch_count;
1244
1245 if (!ractl->_nr_pages) {
1246 ractl->_batch_count = 0;
1247 return NULL;
1248 }
1249
1250 folio = xa_load(&ractl->mapping->i_pages, ractl->_index);
1251 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
1252 ractl->_batch_count = folio_nr_pages(folio);
1253
1254 return folio;
1255}
1256
1257/**
1258 * readahead_page - Get the next page to read.
1259 * @ractl: The current readahead request.
1260 *
1261 * Context: The page is locked and has an elevated refcount. The caller
1262 * should decreases the refcount once the page has been submitted for I/O
1263 * and unlock the page once all I/O to that page has completed.
1264 * Return: A pointer to the next page, or %NULL if we are done.
1265 */
1266static inline struct page *readahead_page(struct readahead_control *ractl)
1267{
1268 struct folio *folio = __readahead_folio(ractl);
1269
1270 return &folio->page;
1271}
1272
1273/**
1274 * readahead_folio - Get the next folio to read.
1275 * @ractl: The current readahead request.
1276 *
1277 * Context: The folio is locked. The caller should unlock the folio once
1278 * all I/O to that folio has completed.
1279 * Return: A pointer to the next folio, or %NULL if we are done.
1280 */
1281static inline struct folio *readahead_folio(struct readahead_control *ractl)
1282{
1283 struct folio *folio = __readahead_folio(ractl);
1284
1285 if (folio)
1286 folio_put(folio);
1287 return folio;
1288}
1289
1290static inline unsigned int __readahead_batch(struct readahead_control *rac,
1291 struct page **array, unsigned int array_sz)
1292{
1293 unsigned int i = 0;
1294 XA_STATE(xas, &rac->mapping->i_pages, 0);
1295 struct page *page;
1296
1297 BUG_ON(rac->_batch_count > rac->_nr_pages);
1298 rac->_nr_pages -= rac->_batch_count;
1299 rac->_index += rac->_batch_count;
1300 rac->_batch_count = 0;
1301
1302 xas_set(&xas, rac->_index);
1303 rcu_read_lock();
1304 xas_for_each(&xas, page, rac->_index + rac->_nr_pages - 1) {
1305 if (xas_retry(&xas, page))
1306 continue;
1307 VM_BUG_ON_PAGE(!PageLocked(page), page);
1308 VM_BUG_ON_PAGE(PageTail(page), page);
1309 array[i++] = page;
1310 rac->_batch_count += thp_nr_pages(page);
1311 if (i == array_sz)
1312 break;
1313 }
1314 rcu_read_unlock();
1315
1316 return i;
1317}
1318
1319/**
1320 * readahead_page_batch - Get a batch of pages to read.
1321 * @rac: The current readahead request.
1322 * @array: An array of pointers to struct page.
1323 *
1324 * Context: The pages are locked and have an elevated refcount. The caller
1325 * should decreases the refcount once the page has been submitted for I/O
1326 * and unlock the page once all I/O to that page has completed.
1327 * Return: The number of pages placed in the array. 0 indicates the request
1328 * is complete.
1329 */
1330#define readahead_page_batch(rac, array) \
1331 __readahead_batch(rac, array, ARRAY_SIZE(array))
1332
1333/**
1334 * readahead_pos - The byte offset into the file of this readahead request.
1335 * @rac: The readahead request.
1336 */
1337static inline loff_t readahead_pos(struct readahead_control *rac)
1338{
1339 return (loff_t)rac->_index * PAGE_SIZE;
1340}
1341
1342/**
1343 * readahead_length - The number of bytes in this readahead request.
1344 * @rac: The readahead request.
1345 */
1346static inline size_t readahead_length(struct readahead_control *rac)
1347{
1348 return rac->_nr_pages * PAGE_SIZE;
1349}
1350
1351/**
1352 * readahead_index - The index of the first page in this readahead request.
1353 * @rac: The readahead request.
1354 */
1355static inline pgoff_t readahead_index(struct readahead_control *rac)
1356{
1357 return rac->_index;
1358}
1359
1360/**
1361 * readahead_count - The number of pages in this readahead request.
1362 * @rac: The readahead request.
1363 */
1364static inline unsigned int readahead_count(struct readahead_control *rac)
1365{
1366 return rac->_nr_pages;
1367}
1368
1369/**
1370 * readahead_batch_length - The number of bytes in the current batch.
1371 * @rac: The readahead request.
1372 */
1373static inline size_t readahead_batch_length(struct readahead_control *rac)
1374{
1375 return rac->_batch_count * PAGE_SIZE;
1376}
1377
1378static inline unsigned long dir_pages(struct inode *inode)
1379{
1380 return (unsigned long)(inode->i_size + PAGE_SIZE - 1) >>
1381 PAGE_SHIFT;
1382}
1383
1384/**
1385 * folio_mkwrite_check_truncate - check if folio was truncated
1386 * @folio: the folio to check
1387 * @inode: the inode to check the folio against
1388 *
1389 * Return: the number of bytes in the folio up to EOF,
1390 * or -EFAULT if the folio was truncated.
1391 */
1392static inline ssize_t folio_mkwrite_check_truncate(struct folio *folio,
1393 struct inode *inode)
1394{
1395 loff_t size = i_size_read(inode);
1396 pgoff_t index = size >> PAGE_SHIFT;
1397 size_t offset = offset_in_folio(folio, size);
1398
1399 if (!folio->mapping)
1400 return -EFAULT;
1401
1402 /* folio is wholly inside EOF */
1403 if (folio_next_index(folio) - 1 < index)
1404 return folio_size(folio);
1405 /* folio is wholly past EOF */
1406 if (folio->index > index || !offset)
1407 return -EFAULT;
1408 /* folio is partially inside EOF */
1409 return offset;
1410}
1411
1412/**
1413 * page_mkwrite_check_truncate - check if page was truncated
1414 * @page: the page to check
1415 * @inode: the inode to check the page against
1416 *
1417 * Returns the number of bytes in the page up to EOF,
1418 * or -EFAULT if the page was truncated.
1419 */
1420static inline int page_mkwrite_check_truncate(struct page *page,
1421 struct inode *inode)
1422{
1423 loff_t size = i_size_read(inode);
1424 pgoff_t index = size >> PAGE_SHIFT;
1425 int offset = offset_in_page(size);
1426
1427 if (page->mapping != inode->i_mapping)
1428 return -EFAULT;
1429
1430 /* page is wholly inside EOF */
1431 if (page->index < index)
1432 return PAGE_SIZE;
1433 /* page is wholly past EOF */
1434 if (page->index > index || !offset)
1435 return -EFAULT;
1436 /* page is partially inside EOF */
1437 return offset;
1438}
1439
1440/**
1441 * i_blocks_per_folio - How many blocks fit in this folio.
1442 * @inode: The inode which contains the blocks.
1443 * @folio: The folio.
1444 *
1445 * If the block size is larger than the size of this folio, return zero.
1446 *
1447 * Context: The caller should hold a refcount on the folio to prevent it
1448 * from being split.
1449 * Return: The number of filesystem blocks covered by this folio.
1450 */
1451static inline
1452unsigned int i_blocks_per_folio(struct inode *inode, struct folio *folio)
1453{
1454 return folio_size(folio) >> inode->i_blkbits;
1455}
1456
1457static inline
1458unsigned int i_blocks_per_page(struct inode *inode, struct page *page)
1459{
1460 return i_blocks_per_folio(inode, page_folio(page));
1461}
1462#endif /* _LINUX_PAGEMAP_H */