at v6.4 36 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * Macros for manipulating and testing page->flags 4 */ 5 6#ifndef PAGE_FLAGS_H 7#define PAGE_FLAGS_H 8 9#include <linux/types.h> 10#include <linux/bug.h> 11#include <linux/mmdebug.h> 12#ifndef __GENERATING_BOUNDS_H 13#include <linux/mm_types.h> 14#include <generated/bounds.h> 15#endif /* !__GENERATING_BOUNDS_H */ 16 17/* 18 * Various page->flags bits: 19 * 20 * PG_reserved is set for special pages. The "struct page" of such a page 21 * should in general not be touched (e.g. set dirty) except by its owner. 22 * Pages marked as PG_reserved include: 23 * - Pages part of the kernel image (including vDSO) and similar (e.g. BIOS, 24 * initrd, HW tables) 25 * - Pages reserved or allocated early during boot (before the page allocator 26 * was initialized). This includes (depending on the architecture) the 27 * initial vmemmap, initial page tables, crashkernel, elfcorehdr, and much 28 * much more. Once (if ever) freed, PG_reserved is cleared and they will 29 * be given to the page allocator. 30 * - Pages falling into physical memory gaps - not IORESOURCE_SYSRAM. Trying 31 * to read/write these pages might end badly. Don't touch! 32 * - The zero page(s) 33 * - Pages not added to the page allocator when onlining a section because 34 * they were excluded via the online_page_callback() or because they are 35 * PG_hwpoison. 36 * - Pages allocated in the context of kexec/kdump (loaded kernel image, 37 * control pages, vmcoreinfo) 38 * - MMIO/DMA pages. Some architectures don't allow to ioremap pages that are 39 * not marked PG_reserved (as they might be in use by somebody else who does 40 * not respect the caching strategy). 41 * - Pages part of an offline section (struct pages of offline sections should 42 * not be trusted as they will be initialized when first onlined). 43 * - MCA pages on ia64 44 * - Pages holding CPU notes for POWER Firmware Assisted Dump 45 * - Device memory (e.g. PMEM, DAX, HMM) 46 * Some PG_reserved pages will be excluded from the hibernation image. 47 * PG_reserved does in general not hinder anybody from dumping or swapping 48 * and is no longer required for remap_pfn_range(). ioremap might require it. 49 * Consequently, PG_reserved for a page mapped into user space can indicate 50 * the zero page, the vDSO, MMIO pages or device memory. 51 * 52 * The PG_private bitflag is set on pagecache pages if they contain filesystem 53 * specific data (which is normally at page->private). It can be used by 54 * private allocations for its own usage. 55 * 56 * During initiation of disk I/O, PG_locked is set. This bit is set before I/O 57 * and cleared when writeback _starts_ or when read _completes_. PG_writeback 58 * is set before writeback starts and cleared when it finishes. 59 * 60 * PG_locked also pins a page in pagecache, and blocks truncation of the file 61 * while it is held. 62 * 63 * page_waitqueue(page) is a wait queue of all tasks waiting for the page 64 * to become unlocked. 65 * 66 * PG_swapbacked is set when a page uses swap as a backing storage. This are 67 * usually PageAnon or shmem pages but please note that even anonymous pages 68 * might lose their PG_swapbacked flag when they simply can be dropped (e.g. as 69 * a result of MADV_FREE). 70 * 71 * PG_referenced, PG_reclaim are used for page reclaim for anonymous and 72 * file-backed pagecache (see mm/vmscan.c). 73 * 74 * PG_error is set to indicate that an I/O error occurred on this page. 75 * 76 * PG_arch_1 is an architecture specific page state bit. The generic code 77 * guarantees that this bit is cleared for a page when it first is entered into 78 * the page cache. 79 * 80 * PG_hwpoison indicates that a page got corrupted in hardware and contains 81 * data with incorrect ECC bits that triggered a machine check. Accessing is 82 * not safe since it may cause another machine check. Don't touch! 83 */ 84 85/* 86 * Don't use the pageflags directly. Use the PageFoo macros. 87 * 88 * The page flags field is split into two parts, the main flags area 89 * which extends from the low bits upwards, and the fields area which 90 * extends from the high bits downwards. 91 * 92 * | FIELD | ... | FLAGS | 93 * N-1 ^ 0 94 * (NR_PAGEFLAGS) 95 * 96 * The fields area is reserved for fields mapping zone, node (for NUMA) and 97 * SPARSEMEM section (for variants of SPARSEMEM that require section ids like 98 * SPARSEMEM_EXTREME with !SPARSEMEM_VMEMMAP). 99 */ 100enum pageflags { 101 PG_locked, /* Page is locked. Don't touch. */ 102 PG_referenced, 103 PG_uptodate, 104 PG_dirty, 105 PG_lru, 106 PG_active, 107 PG_workingset, 108 PG_waiters, /* Page has waiters, check its waitqueue. Must be bit #7 and in the same byte as "PG_locked" */ 109 PG_error, 110 PG_slab, 111 PG_owner_priv_1, /* Owner use. If pagecache, fs may use*/ 112 PG_arch_1, 113 PG_reserved, 114 PG_private, /* If pagecache, has fs-private data */ 115 PG_private_2, /* If pagecache, has fs aux data */ 116 PG_writeback, /* Page is under writeback */ 117 PG_head, /* A head page */ 118 PG_mappedtodisk, /* Has blocks allocated on-disk */ 119 PG_reclaim, /* To be reclaimed asap */ 120 PG_swapbacked, /* Page is backed by RAM/swap */ 121 PG_unevictable, /* Page is "unevictable" */ 122#ifdef CONFIG_MMU 123 PG_mlocked, /* Page is vma mlocked */ 124#endif 125#ifdef CONFIG_ARCH_USES_PG_UNCACHED 126 PG_uncached, /* Page has been mapped as uncached */ 127#endif 128#ifdef CONFIG_MEMORY_FAILURE 129 PG_hwpoison, /* hardware poisoned page. Don't touch */ 130#endif 131#if defined(CONFIG_PAGE_IDLE_FLAG) && defined(CONFIG_64BIT) 132 PG_young, 133 PG_idle, 134#endif 135#ifdef CONFIG_ARCH_USES_PG_ARCH_X 136 PG_arch_2, 137 PG_arch_3, 138#endif 139 __NR_PAGEFLAGS, 140 141 PG_readahead = PG_reclaim, 142 143 /* 144 * Depending on the way an anonymous folio can be mapped into a page 145 * table (e.g., single PMD/PUD/CONT of the head page vs. PTE-mapped 146 * THP), PG_anon_exclusive may be set only for the head page or for 147 * tail pages of an anonymous folio. For now, we only expect it to be 148 * set on tail pages for PTE-mapped THP. 149 */ 150 PG_anon_exclusive = PG_mappedtodisk, 151 152 /* Filesystems */ 153 PG_checked = PG_owner_priv_1, 154 155 /* SwapBacked */ 156 PG_swapcache = PG_owner_priv_1, /* Swap page: swp_entry_t in private */ 157 158 /* Two page bits are conscripted by FS-Cache to maintain local caching 159 * state. These bits are set on pages belonging to the netfs's inodes 160 * when those inodes are being locally cached. 161 */ 162 PG_fscache = PG_private_2, /* page backed by cache */ 163 164 /* XEN */ 165 /* Pinned in Xen as a read-only pagetable page. */ 166 PG_pinned = PG_owner_priv_1, 167 /* Pinned as part of domain save (see xen_mm_pin_all()). */ 168 PG_savepinned = PG_dirty, 169 /* Has a grant mapping of another (foreign) domain's page. */ 170 PG_foreign = PG_owner_priv_1, 171 /* Remapped by swiotlb-xen. */ 172 PG_xen_remapped = PG_owner_priv_1, 173 174#ifdef CONFIG_MEMORY_FAILURE 175 /* 176 * Compound pages. Stored in first tail page's flags. 177 * Indicates that at least one subpage is hwpoisoned in the 178 * THP. 179 */ 180 PG_has_hwpoisoned = PG_error, 181#endif 182 183 /* non-lru isolated movable page */ 184 PG_isolated = PG_reclaim, 185 186 /* Only valid for buddy pages. Used to track pages that are reported */ 187 PG_reported = PG_uptodate, 188 189#ifdef CONFIG_MEMORY_HOTPLUG 190 /* For self-hosted memmap pages */ 191 PG_vmemmap_self_hosted = PG_owner_priv_1, 192#endif 193}; 194 195#define PAGEFLAGS_MASK ((1UL << NR_PAGEFLAGS) - 1) 196 197#ifndef __GENERATING_BOUNDS_H 198 199#ifdef CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP 200DECLARE_STATIC_KEY_FALSE(hugetlb_optimize_vmemmap_key); 201 202/* 203 * Return the real head page struct iff the @page is a fake head page, otherwise 204 * return the @page itself. See Documentation/mm/vmemmap_dedup.rst. 205 */ 206static __always_inline const struct page *page_fixed_fake_head(const struct page *page) 207{ 208 if (!static_branch_unlikely(&hugetlb_optimize_vmemmap_key)) 209 return page; 210 211 /* 212 * Only addresses aligned with PAGE_SIZE of struct page may be fake head 213 * struct page. The alignment check aims to avoid access the fields ( 214 * e.g. compound_head) of the @page[1]. It can avoid touch a (possibly) 215 * cold cacheline in some cases. 216 */ 217 if (IS_ALIGNED((unsigned long)page, PAGE_SIZE) && 218 test_bit(PG_head, &page->flags)) { 219 /* 220 * We can safely access the field of the @page[1] with PG_head 221 * because the @page is a compound page composed with at least 222 * two contiguous pages. 223 */ 224 unsigned long head = READ_ONCE(page[1].compound_head); 225 226 if (likely(head & 1)) 227 return (const struct page *)(head - 1); 228 } 229 return page; 230} 231#else 232static inline const struct page *page_fixed_fake_head(const struct page *page) 233{ 234 return page; 235} 236#endif 237 238static __always_inline int page_is_fake_head(struct page *page) 239{ 240 return page_fixed_fake_head(page) != page; 241} 242 243static inline unsigned long _compound_head(const struct page *page) 244{ 245 unsigned long head = READ_ONCE(page->compound_head); 246 247 if (unlikely(head & 1)) 248 return head - 1; 249 return (unsigned long)page_fixed_fake_head(page); 250} 251 252#define compound_head(page) ((typeof(page))_compound_head(page)) 253 254/** 255 * page_folio - Converts from page to folio. 256 * @p: The page. 257 * 258 * Every page is part of a folio. This function cannot be called on a 259 * NULL pointer. 260 * 261 * Context: No reference, nor lock is required on @page. If the caller 262 * does not hold a reference, this call may race with a folio split, so 263 * it should re-check the folio still contains this page after gaining 264 * a reference on the folio. 265 * Return: The folio which contains this page. 266 */ 267#define page_folio(p) (_Generic((p), \ 268 const struct page *: (const struct folio *)_compound_head(p), \ 269 struct page *: (struct folio *)_compound_head(p))) 270 271/** 272 * folio_page - Return a page from a folio. 273 * @folio: The folio. 274 * @n: The page number to return. 275 * 276 * @n is relative to the start of the folio. This function does not 277 * check that the page number lies within @folio; the caller is presumed 278 * to have a reference to the page. 279 */ 280#define folio_page(folio, n) nth_page(&(folio)->page, n) 281 282static __always_inline int PageTail(struct page *page) 283{ 284 return READ_ONCE(page->compound_head) & 1 || page_is_fake_head(page); 285} 286 287static __always_inline int PageCompound(struct page *page) 288{ 289 return test_bit(PG_head, &page->flags) || 290 READ_ONCE(page->compound_head) & 1; 291} 292 293#define PAGE_POISON_PATTERN -1l 294static inline int PagePoisoned(const struct page *page) 295{ 296 return READ_ONCE(page->flags) == PAGE_POISON_PATTERN; 297} 298 299#ifdef CONFIG_DEBUG_VM 300void page_init_poison(struct page *page, size_t size); 301#else 302static inline void page_init_poison(struct page *page, size_t size) 303{ 304} 305#endif 306 307static unsigned long *folio_flags(struct folio *folio, unsigned n) 308{ 309 struct page *page = &folio->page; 310 311 VM_BUG_ON_PGFLAGS(PageTail(page), page); 312 VM_BUG_ON_PGFLAGS(n > 0 && !test_bit(PG_head, &page->flags), page); 313 return &page[n].flags; 314} 315 316/* 317 * Page flags policies wrt compound pages 318 * 319 * PF_POISONED_CHECK 320 * check if this struct page poisoned/uninitialized 321 * 322 * PF_ANY: 323 * the page flag is relevant for small, head and tail pages. 324 * 325 * PF_HEAD: 326 * for compound page all operations related to the page flag applied to 327 * head page. 328 * 329 * PF_ONLY_HEAD: 330 * for compound page, callers only ever operate on the head page. 331 * 332 * PF_NO_TAIL: 333 * modifications of the page flag must be done on small or head pages, 334 * checks can be done on tail pages too. 335 * 336 * PF_NO_COMPOUND: 337 * the page flag is not relevant for compound pages. 338 * 339 * PF_SECOND: 340 * the page flag is stored in the first tail page. 341 */ 342#define PF_POISONED_CHECK(page) ({ \ 343 VM_BUG_ON_PGFLAGS(PagePoisoned(page), page); \ 344 page; }) 345#define PF_ANY(page, enforce) PF_POISONED_CHECK(page) 346#define PF_HEAD(page, enforce) PF_POISONED_CHECK(compound_head(page)) 347#define PF_ONLY_HEAD(page, enforce) ({ \ 348 VM_BUG_ON_PGFLAGS(PageTail(page), page); \ 349 PF_POISONED_CHECK(page); }) 350#define PF_NO_TAIL(page, enforce) ({ \ 351 VM_BUG_ON_PGFLAGS(enforce && PageTail(page), page); \ 352 PF_POISONED_CHECK(compound_head(page)); }) 353#define PF_NO_COMPOUND(page, enforce) ({ \ 354 VM_BUG_ON_PGFLAGS(enforce && PageCompound(page), page); \ 355 PF_POISONED_CHECK(page); }) 356#define PF_SECOND(page, enforce) ({ \ 357 VM_BUG_ON_PGFLAGS(!PageHead(page), page); \ 358 PF_POISONED_CHECK(&page[1]); }) 359 360/* Which page is the flag stored in */ 361#define FOLIO_PF_ANY 0 362#define FOLIO_PF_HEAD 0 363#define FOLIO_PF_ONLY_HEAD 0 364#define FOLIO_PF_NO_TAIL 0 365#define FOLIO_PF_NO_COMPOUND 0 366#define FOLIO_PF_SECOND 1 367 368/* 369 * Macros to create function definitions for page flags 370 */ 371#define TESTPAGEFLAG(uname, lname, policy) \ 372static __always_inline bool folio_test_##lname(struct folio *folio) \ 373{ return test_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \ 374static __always_inline int Page##uname(struct page *page) \ 375{ return test_bit(PG_##lname, &policy(page, 0)->flags); } 376 377#define SETPAGEFLAG(uname, lname, policy) \ 378static __always_inline \ 379void folio_set_##lname(struct folio *folio) \ 380{ set_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \ 381static __always_inline void SetPage##uname(struct page *page) \ 382{ set_bit(PG_##lname, &policy(page, 1)->flags); } 383 384#define CLEARPAGEFLAG(uname, lname, policy) \ 385static __always_inline \ 386void folio_clear_##lname(struct folio *folio) \ 387{ clear_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \ 388static __always_inline void ClearPage##uname(struct page *page) \ 389{ clear_bit(PG_##lname, &policy(page, 1)->flags); } 390 391#define __SETPAGEFLAG(uname, lname, policy) \ 392static __always_inline \ 393void __folio_set_##lname(struct folio *folio) \ 394{ __set_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \ 395static __always_inline void __SetPage##uname(struct page *page) \ 396{ __set_bit(PG_##lname, &policy(page, 1)->flags); } 397 398#define __CLEARPAGEFLAG(uname, lname, policy) \ 399static __always_inline \ 400void __folio_clear_##lname(struct folio *folio) \ 401{ __clear_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \ 402static __always_inline void __ClearPage##uname(struct page *page) \ 403{ __clear_bit(PG_##lname, &policy(page, 1)->flags); } 404 405#define TESTSETFLAG(uname, lname, policy) \ 406static __always_inline \ 407bool folio_test_set_##lname(struct folio *folio) \ 408{ return test_and_set_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \ 409static __always_inline int TestSetPage##uname(struct page *page) \ 410{ return test_and_set_bit(PG_##lname, &policy(page, 1)->flags); } 411 412#define TESTCLEARFLAG(uname, lname, policy) \ 413static __always_inline \ 414bool folio_test_clear_##lname(struct folio *folio) \ 415{ return test_and_clear_bit(PG_##lname, folio_flags(folio, FOLIO_##policy)); } \ 416static __always_inline int TestClearPage##uname(struct page *page) \ 417{ return test_and_clear_bit(PG_##lname, &policy(page, 1)->flags); } 418 419#define PAGEFLAG(uname, lname, policy) \ 420 TESTPAGEFLAG(uname, lname, policy) \ 421 SETPAGEFLAG(uname, lname, policy) \ 422 CLEARPAGEFLAG(uname, lname, policy) 423 424#define __PAGEFLAG(uname, lname, policy) \ 425 TESTPAGEFLAG(uname, lname, policy) \ 426 __SETPAGEFLAG(uname, lname, policy) \ 427 __CLEARPAGEFLAG(uname, lname, policy) 428 429#define TESTSCFLAG(uname, lname, policy) \ 430 TESTSETFLAG(uname, lname, policy) \ 431 TESTCLEARFLAG(uname, lname, policy) 432 433#define TESTPAGEFLAG_FALSE(uname, lname) \ 434static inline bool folio_test_##lname(const struct folio *folio) { return false; } \ 435static inline int Page##uname(const struct page *page) { return 0; } 436 437#define SETPAGEFLAG_NOOP(uname, lname) \ 438static inline void folio_set_##lname(struct folio *folio) { } \ 439static inline void SetPage##uname(struct page *page) { } 440 441#define CLEARPAGEFLAG_NOOP(uname, lname) \ 442static inline void folio_clear_##lname(struct folio *folio) { } \ 443static inline void ClearPage##uname(struct page *page) { } 444 445#define __CLEARPAGEFLAG_NOOP(uname, lname) \ 446static inline void __folio_clear_##lname(struct folio *folio) { } \ 447static inline void __ClearPage##uname(struct page *page) { } 448 449#define TESTSETFLAG_FALSE(uname, lname) \ 450static inline bool folio_test_set_##lname(struct folio *folio) \ 451{ return 0; } \ 452static inline int TestSetPage##uname(struct page *page) { return 0; } 453 454#define TESTCLEARFLAG_FALSE(uname, lname) \ 455static inline bool folio_test_clear_##lname(struct folio *folio) \ 456{ return 0; } \ 457static inline int TestClearPage##uname(struct page *page) { return 0; } 458 459#define PAGEFLAG_FALSE(uname, lname) TESTPAGEFLAG_FALSE(uname, lname) \ 460 SETPAGEFLAG_NOOP(uname, lname) CLEARPAGEFLAG_NOOP(uname, lname) 461 462#define TESTSCFLAG_FALSE(uname, lname) \ 463 TESTSETFLAG_FALSE(uname, lname) TESTCLEARFLAG_FALSE(uname, lname) 464 465__PAGEFLAG(Locked, locked, PF_NO_TAIL) 466PAGEFLAG(Waiters, waiters, PF_ONLY_HEAD) 467PAGEFLAG(Error, error, PF_NO_TAIL) TESTCLEARFLAG(Error, error, PF_NO_TAIL) 468PAGEFLAG(Referenced, referenced, PF_HEAD) 469 TESTCLEARFLAG(Referenced, referenced, PF_HEAD) 470 __SETPAGEFLAG(Referenced, referenced, PF_HEAD) 471PAGEFLAG(Dirty, dirty, PF_HEAD) TESTSCFLAG(Dirty, dirty, PF_HEAD) 472 __CLEARPAGEFLAG(Dirty, dirty, PF_HEAD) 473PAGEFLAG(LRU, lru, PF_HEAD) __CLEARPAGEFLAG(LRU, lru, PF_HEAD) 474 TESTCLEARFLAG(LRU, lru, PF_HEAD) 475PAGEFLAG(Active, active, PF_HEAD) __CLEARPAGEFLAG(Active, active, PF_HEAD) 476 TESTCLEARFLAG(Active, active, PF_HEAD) 477PAGEFLAG(Workingset, workingset, PF_HEAD) 478 TESTCLEARFLAG(Workingset, workingset, PF_HEAD) 479__PAGEFLAG(Slab, slab, PF_NO_TAIL) 480PAGEFLAG(Checked, checked, PF_NO_COMPOUND) /* Used by some filesystems */ 481 482/* Xen */ 483PAGEFLAG(Pinned, pinned, PF_NO_COMPOUND) 484 TESTSCFLAG(Pinned, pinned, PF_NO_COMPOUND) 485PAGEFLAG(SavePinned, savepinned, PF_NO_COMPOUND); 486PAGEFLAG(Foreign, foreign, PF_NO_COMPOUND); 487PAGEFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND) 488 TESTCLEARFLAG(XenRemapped, xen_remapped, PF_NO_COMPOUND) 489 490PAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 491 __CLEARPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 492 __SETPAGEFLAG(Reserved, reserved, PF_NO_COMPOUND) 493PAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) 494 __CLEARPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) 495 __SETPAGEFLAG(SwapBacked, swapbacked, PF_NO_TAIL) 496 497/* 498 * Private page markings that may be used by the filesystem that owns the page 499 * for its own purposes. 500 * - PG_private and PG_private_2 cause release_folio() and co to be invoked 501 */ 502PAGEFLAG(Private, private, PF_ANY) 503PAGEFLAG(Private2, private_2, PF_ANY) TESTSCFLAG(Private2, private_2, PF_ANY) 504PAGEFLAG(OwnerPriv1, owner_priv_1, PF_ANY) 505 TESTCLEARFLAG(OwnerPriv1, owner_priv_1, PF_ANY) 506 507/* 508 * Only test-and-set exist for PG_writeback. The unconditional operators are 509 * risky: they bypass page accounting. 510 */ 511TESTPAGEFLAG(Writeback, writeback, PF_NO_TAIL) 512 TESTSCFLAG(Writeback, writeback, PF_NO_TAIL) 513PAGEFLAG(MappedToDisk, mappedtodisk, PF_NO_TAIL) 514 515/* PG_readahead is only used for reads; PG_reclaim is only for writes */ 516PAGEFLAG(Reclaim, reclaim, PF_NO_TAIL) 517 TESTCLEARFLAG(Reclaim, reclaim, PF_NO_TAIL) 518PAGEFLAG(Readahead, readahead, PF_NO_COMPOUND) 519 TESTCLEARFLAG(Readahead, readahead, PF_NO_COMPOUND) 520 521#ifdef CONFIG_HIGHMEM 522/* 523 * Must use a macro here due to header dependency issues. page_zone() is not 524 * available at this point. 525 */ 526#define PageHighMem(__p) is_highmem_idx(page_zonenum(__p)) 527#define folio_test_highmem(__f) is_highmem_idx(folio_zonenum(__f)) 528#else 529PAGEFLAG_FALSE(HighMem, highmem) 530#endif 531 532#ifdef CONFIG_SWAP 533static __always_inline bool folio_test_swapcache(struct folio *folio) 534{ 535 return folio_test_swapbacked(folio) && 536 test_bit(PG_swapcache, folio_flags(folio, 0)); 537} 538 539static __always_inline bool PageSwapCache(struct page *page) 540{ 541 return folio_test_swapcache(page_folio(page)); 542} 543 544SETPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL) 545CLEARPAGEFLAG(SwapCache, swapcache, PF_NO_TAIL) 546#else 547PAGEFLAG_FALSE(SwapCache, swapcache) 548#endif 549 550PAGEFLAG(Unevictable, unevictable, PF_HEAD) 551 __CLEARPAGEFLAG(Unevictable, unevictable, PF_HEAD) 552 TESTCLEARFLAG(Unevictable, unevictable, PF_HEAD) 553 554#ifdef CONFIG_MMU 555PAGEFLAG(Mlocked, mlocked, PF_NO_TAIL) 556 __CLEARPAGEFLAG(Mlocked, mlocked, PF_NO_TAIL) 557 TESTSCFLAG(Mlocked, mlocked, PF_NO_TAIL) 558#else 559PAGEFLAG_FALSE(Mlocked, mlocked) __CLEARPAGEFLAG_NOOP(Mlocked, mlocked) 560 TESTSCFLAG_FALSE(Mlocked, mlocked) 561#endif 562 563#ifdef CONFIG_ARCH_USES_PG_UNCACHED 564PAGEFLAG(Uncached, uncached, PF_NO_COMPOUND) 565#else 566PAGEFLAG_FALSE(Uncached, uncached) 567#endif 568 569#ifdef CONFIG_MEMORY_FAILURE 570PAGEFLAG(HWPoison, hwpoison, PF_ANY) 571TESTSCFLAG(HWPoison, hwpoison, PF_ANY) 572#define __PG_HWPOISON (1UL << PG_hwpoison) 573#define MAGIC_HWPOISON 0x48575053U /* HWPS */ 574extern void SetPageHWPoisonTakenOff(struct page *page); 575extern void ClearPageHWPoisonTakenOff(struct page *page); 576extern bool take_page_off_buddy(struct page *page); 577extern bool put_page_back_buddy(struct page *page); 578#else 579PAGEFLAG_FALSE(HWPoison, hwpoison) 580#define __PG_HWPOISON 0 581#endif 582 583#if defined(CONFIG_PAGE_IDLE_FLAG) && defined(CONFIG_64BIT) 584TESTPAGEFLAG(Young, young, PF_ANY) 585SETPAGEFLAG(Young, young, PF_ANY) 586TESTCLEARFLAG(Young, young, PF_ANY) 587PAGEFLAG(Idle, idle, PF_ANY) 588#endif 589 590/* 591 * PageReported() is used to track reported free pages within the Buddy 592 * allocator. We can use the non-atomic version of the test and set 593 * operations as both should be shielded with the zone lock to prevent 594 * any possible races on the setting or clearing of the bit. 595 */ 596__PAGEFLAG(Reported, reported, PF_NO_COMPOUND) 597 598#ifdef CONFIG_MEMORY_HOTPLUG 599PAGEFLAG(VmemmapSelfHosted, vmemmap_self_hosted, PF_ANY) 600#else 601PAGEFLAG_FALSE(VmemmapSelfHosted, vmemmap_self_hosted) 602#endif 603 604/* 605 * On an anonymous page mapped into a user virtual memory area, 606 * page->mapping points to its anon_vma, not to a struct address_space; 607 * with the PAGE_MAPPING_ANON bit set to distinguish it. See rmap.h. 608 * 609 * On an anonymous page in a VM_MERGEABLE area, if CONFIG_KSM is enabled, 610 * the PAGE_MAPPING_MOVABLE bit may be set along with the PAGE_MAPPING_ANON 611 * bit; and then page->mapping points, not to an anon_vma, but to a private 612 * structure which KSM associates with that merged page. See ksm.h. 613 * 614 * PAGE_MAPPING_KSM without PAGE_MAPPING_ANON is used for non-lru movable 615 * page and then page->mapping points to a struct movable_operations. 616 * 617 * Please note that, confusingly, "page_mapping" refers to the inode 618 * address_space which maps the page from disk; whereas "page_mapped" 619 * refers to user virtual address space into which the page is mapped. 620 * 621 * For slab pages, since slab reuses the bits in struct page to store its 622 * internal states, the page->mapping does not exist as such, nor do these 623 * flags below. So in order to avoid testing non-existent bits, please 624 * make sure that PageSlab(page) actually evaluates to false before calling 625 * the following functions (e.g., PageAnon). See mm/slab.h. 626 */ 627#define PAGE_MAPPING_ANON 0x1 628#define PAGE_MAPPING_MOVABLE 0x2 629#define PAGE_MAPPING_KSM (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE) 630#define PAGE_MAPPING_FLAGS (PAGE_MAPPING_ANON | PAGE_MAPPING_MOVABLE) 631 632/* 633 * Different with flags above, this flag is used only for fsdax mode. It 634 * indicates that this page->mapping is now under reflink case. 635 */ 636#define PAGE_MAPPING_DAX_SHARED ((void *)0x1) 637 638static __always_inline bool folio_mapping_flags(struct folio *folio) 639{ 640 return ((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS) != 0; 641} 642 643static __always_inline int PageMappingFlags(struct page *page) 644{ 645 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) != 0; 646} 647 648static __always_inline bool folio_test_anon(struct folio *folio) 649{ 650 return ((unsigned long)folio->mapping & PAGE_MAPPING_ANON) != 0; 651} 652 653static __always_inline bool PageAnon(struct page *page) 654{ 655 return folio_test_anon(page_folio(page)); 656} 657 658static __always_inline bool __folio_test_movable(const struct folio *folio) 659{ 660 return ((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS) == 661 PAGE_MAPPING_MOVABLE; 662} 663 664static __always_inline int __PageMovable(struct page *page) 665{ 666 return ((unsigned long)page->mapping & PAGE_MAPPING_FLAGS) == 667 PAGE_MAPPING_MOVABLE; 668} 669 670#ifdef CONFIG_KSM 671/* 672 * A KSM page is one of those write-protected "shared pages" or "merged pages" 673 * which KSM maps into multiple mms, wherever identical anonymous page content 674 * is found in VM_MERGEABLE vmas. It's a PageAnon page, pointing not to any 675 * anon_vma, but to that page's node of the stable tree. 676 */ 677static __always_inline bool folio_test_ksm(struct folio *folio) 678{ 679 return ((unsigned long)folio->mapping & PAGE_MAPPING_FLAGS) == 680 PAGE_MAPPING_KSM; 681} 682 683static __always_inline bool PageKsm(struct page *page) 684{ 685 return folio_test_ksm(page_folio(page)); 686} 687#else 688TESTPAGEFLAG_FALSE(Ksm, ksm) 689#endif 690 691u64 stable_page_flags(struct page *page); 692 693/** 694 * folio_test_uptodate - Is this folio up to date? 695 * @folio: The folio. 696 * 697 * The uptodate flag is set on a folio when every byte in the folio is 698 * at least as new as the corresponding bytes on storage. Anonymous 699 * and CoW folios are always uptodate. If the folio is not uptodate, 700 * some of the bytes in it may be; see the is_partially_uptodate() 701 * address_space operation. 702 */ 703static inline bool folio_test_uptodate(struct folio *folio) 704{ 705 bool ret = test_bit(PG_uptodate, folio_flags(folio, 0)); 706 /* 707 * Must ensure that the data we read out of the folio is loaded 708 * _after_ we've loaded folio->flags to check the uptodate bit. 709 * We can skip the barrier if the folio is not uptodate, because 710 * we wouldn't be reading anything from it. 711 * 712 * See folio_mark_uptodate() for the other side of the story. 713 */ 714 if (ret) 715 smp_rmb(); 716 717 return ret; 718} 719 720static inline int PageUptodate(struct page *page) 721{ 722 return folio_test_uptodate(page_folio(page)); 723} 724 725static __always_inline void __folio_mark_uptodate(struct folio *folio) 726{ 727 smp_wmb(); 728 __set_bit(PG_uptodate, folio_flags(folio, 0)); 729} 730 731static __always_inline void folio_mark_uptodate(struct folio *folio) 732{ 733 /* 734 * Memory barrier must be issued before setting the PG_uptodate bit, 735 * so that all previous stores issued in order to bring the folio 736 * uptodate are actually visible before folio_test_uptodate becomes true. 737 */ 738 smp_wmb(); 739 set_bit(PG_uptodate, folio_flags(folio, 0)); 740} 741 742static __always_inline void __SetPageUptodate(struct page *page) 743{ 744 __folio_mark_uptodate((struct folio *)page); 745} 746 747static __always_inline void SetPageUptodate(struct page *page) 748{ 749 folio_mark_uptodate((struct folio *)page); 750} 751 752CLEARPAGEFLAG(Uptodate, uptodate, PF_NO_TAIL) 753 754bool __folio_start_writeback(struct folio *folio, bool keep_write); 755bool set_page_writeback(struct page *page); 756 757#define folio_start_writeback(folio) \ 758 __folio_start_writeback(folio, false) 759#define folio_start_writeback_keepwrite(folio) \ 760 __folio_start_writeback(folio, true) 761 762static inline bool test_set_page_writeback(struct page *page) 763{ 764 return set_page_writeback(page); 765} 766 767static __always_inline bool folio_test_head(struct folio *folio) 768{ 769 return test_bit(PG_head, folio_flags(folio, FOLIO_PF_ANY)); 770} 771 772static __always_inline int PageHead(struct page *page) 773{ 774 PF_POISONED_CHECK(page); 775 return test_bit(PG_head, &page->flags) && !page_is_fake_head(page); 776} 777 778__SETPAGEFLAG(Head, head, PF_ANY) 779__CLEARPAGEFLAG(Head, head, PF_ANY) 780CLEARPAGEFLAG(Head, head, PF_ANY) 781 782/** 783 * folio_test_large() - Does this folio contain more than one page? 784 * @folio: The folio to test. 785 * 786 * Return: True if the folio is larger than one page. 787 */ 788static inline bool folio_test_large(struct folio *folio) 789{ 790 return folio_test_head(folio); 791} 792 793static __always_inline void set_compound_head(struct page *page, struct page *head) 794{ 795 WRITE_ONCE(page->compound_head, (unsigned long)head + 1); 796} 797 798static __always_inline void clear_compound_head(struct page *page) 799{ 800 WRITE_ONCE(page->compound_head, 0); 801} 802 803#ifdef CONFIG_TRANSPARENT_HUGEPAGE 804static inline void ClearPageCompound(struct page *page) 805{ 806 BUG_ON(!PageHead(page)); 807 ClearPageHead(page); 808} 809#endif 810 811#define PG_head_mask ((1UL << PG_head)) 812 813#ifdef CONFIG_HUGETLB_PAGE 814int PageHuge(struct page *page); 815bool folio_test_hugetlb(struct folio *folio); 816#else 817TESTPAGEFLAG_FALSE(Huge, hugetlb) 818#endif 819 820#ifdef CONFIG_TRANSPARENT_HUGEPAGE 821/* 822 * PageHuge() only returns true for hugetlbfs pages, but not for 823 * normal or transparent huge pages. 824 * 825 * PageTransHuge() returns true for both transparent huge and 826 * hugetlbfs pages, but not normal pages. PageTransHuge() can only be 827 * called only in the core VM paths where hugetlbfs pages can't exist. 828 */ 829static inline int PageTransHuge(struct page *page) 830{ 831 VM_BUG_ON_PAGE(PageTail(page), page); 832 return PageHead(page); 833} 834 835static inline bool folio_test_transhuge(struct folio *folio) 836{ 837 return folio_test_head(folio); 838} 839 840/* 841 * PageTransCompound returns true for both transparent huge pages 842 * and hugetlbfs pages, so it should only be called when it's known 843 * that hugetlbfs pages aren't involved. 844 */ 845static inline int PageTransCompound(struct page *page) 846{ 847 return PageCompound(page); 848} 849 850/* 851 * PageTransTail returns true for both transparent huge pages 852 * and hugetlbfs pages, so it should only be called when it's known 853 * that hugetlbfs pages aren't involved. 854 */ 855static inline int PageTransTail(struct page *page) 856{ 857 return PageTail(page); 858} 859#else 860TESTPAGEFLAG_FALSE(TransHuge, transhuge) 861TESTPAGEFLAG_FALSE(TransCompound, transcompound) 862TESTPAGEFLAG_FALSE(TransCompoundMap, transcompoundmap) 863TESTPAGEFLAG_FALSE(TransTail, transtail) 864#endif 865 866#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_TRANSPARENT_HUGEPAGE) 867/* 868 * PageHasHWPoisoned indicates that at least one subpage is hwpoisoned in the 869 * compound page. 870 * 871 * This flag is set by hwpoison handler. Cleared by THP split or free page. 872 */ 873PAGEFLAG(HasHWPoisoned, has_hwpoisoned, PF_SECOND) 874 TESTSCFLAG(HasHWPoisoned, has_hwpoisoned, PF_SECOND) 875#else 876PAGEFLAG_FALSE(HasHWPoisoned, has_hwpoisoned) 877 TESTSCFLAG_FALSE(HasHWPoisoned, has_hwpoisoned) 878#endif 879 880/* 881 * Check if a page is currently marked HWPoisoned. Note that this check is 882 * best effort only and inherently racy: there is no way to synchronize with 883 * failing hardware. 884 */ 885static inline bool is_page_hwpoison(struct page *page) 886{ 887 if (PageHWPoison(page)) 888 return true; 889 return PageHuge(page) && PageHWPoison(compound_head(page)); 890} 891 892/* 893 * For pages that are never mapped to userspace (and aren't PageSlab), 894 * page_type may be used. Because it is initialised to -1, we invert the 895 * sense of the bit, so __SetPageFoo *clears* the bit used for PageFoo, and 896 * __ClearPageFoo *sets* the bit used for PageFoo. We reserve a few high and 897 * low bits so that an underflow or overflow of page_mapcount() won't be 898 * mistaken for a page type value. 899 */ 900 901#define PAGE_TYPE_BASE 0xf0000000 902/* Reserve 0x0000007f to catch underflows of page_mapcount */ 903#define PAGE_MAPCOUNT_RESERVE -128 904#define PG_buddy 0x00000080 905#define PG_offline 0x00000100 906#define PG_table 0x00000200 907#define PG_guard 0x00000400 908 909#define PageType(page, flag) \ 910 ((page->page_type & (PAGE_TYPE_BASE | flag)) == PAGE_TYPE_BASE) 911 912static inline int page_type_has_type(unsigned int page_type) 913{ 914 return (int)page_type < PAGE_MAPCOUNT_RESERVE; 915} 916 917static inline int page_has_type(struct page *page) 918{ 919 return page_type_has_type(page->page_type); 920} 921 922#define PAGE_TYPE_OPS(uname, lname) \ 923static __always_inline int Page##uname(struct page *page) \ 924{ \ 925 return PageType(page, PG_##lname); \ 926} \ 927static __always_inline void __SetPage##uname(struct page *page) \ 928{ \ 929 VM_BUG_ON_PAGE(!PageType(page, 0), page); \ 930 page->page_type &= ~PG_##lname; \ 931} \ 932static __always_inline void __ClearPage##uname(struct page *page) \ 933{ \ 934 VM_BUG_ON_PAGE(!Page##uname(page), page); \ 935 page->page_type |= PG_##lname; \ 936} 937 938/* 939 * PageBuddy() indicates that the page is free and in the buddy system 940 * (see mm/page_alloc.c). 941 */ 942PAGE_TYPE_OPS(Buddy, buddy) 943 944/* 945 * PageOffline() indicates that the page is logically offline although the 946 * containing section is online. (e.g. inflated in a balloon driver or 947 * not onlined when onlining the section). 948 * The content of these pages is effectively stale. Such pages should not 949 * be touched (read/write/dump/save) except by their owner. 950 * 951 * If a driver wants to allow to offline unmovable PageOffline() pages without 952 * putting them back to the buddy, it can do so via the memory notifier by 953 * decrementing the reference count in MEM_GOING_OFFLINE and incrementing the 954 * reference count in MEM_CANCEL_OFFLINE. When offlining, the PageOffline() 955 * pages (now with a reference count of zero) are treated like free pages, 956 * allowing the containing memory block to get offlined. A driver that 957 * relies on this feature is aware that re-onlining the memory block will 958 * require to re-set the pages PageOffline() and not giving them to the 959 * buddy via online_page_callback_t. 960 * 961 * There are drivers that mark a page PageOffline() and expect there won't be 962 * any further access to page content. PFN walkers that read content of random 963 * pages should check PageOffline() and synchronize with such drivers using 964 * page_offline_freeze()/page_offline_thaw(). 965 */ 966PAGE_TYPE_OPS(Offline, offline) 967 968extern void page_offline_freeze(void); 969extern void page_offline_thaw(void); 970extern void page_offline_begin(void); 971extern void page_offline_end(void); 972 973/* 974 * Marks pages in use as page tables. 975 */ 976PAGE_TYPE_OPS(Table, table) 977 978/* 979 * Marks guardpages used with debug_pagealloc. 980 */ 981PAGE_TYPE_OPS(Guard, guard) 982 983extern bool is_free_buddy_page(struct page *page); 984 985PAGEFLAG(Isolated, isolated, PF_ANY); 986 987static __always_inline int PageAnonExclusive(struct page *page) 988{ 989 VM_BUG_ON_PGFLAGS(!PageAnon(page), page); 990 VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page); 991 return test_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags); 992} 993 994static __always_inline void SetPageAnonExclusive(struct page *page) 995{ 996 VM_BUG_ON_PGFLAGS(!PageAnon(page) || PageKsm(page), page); 997 VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page); 998 set_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags); 999} 1000 1001static __always_inline void ClearPageAnonExclusive(struct page *page) 1002{ 1003 VM_BUG_ON_PGFLAGS(!PageAnon(page) || PageKsm(page), page); 1004 VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page); 1005 clear_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags); 1006} 1007 1008static __always_inline void __ClearPageAnonExclusive(struct page *page) 1009{ 1010 VM_BUG_ON_PGFLAGS(!PageAnon(page), page); 1011 VM_BUG_ON_PGFLAGS(PageHuge(page) && !PageHead(page), page); 1012 __clear_bit(PG_anon_exclusive, &PF_ANY(page, 1)->flags); 1013} 1014 1015#ifdef CONFIG_MMU 1016#define __PG_MLOCKED (1UL << PG_mlocked) 1017#else 1018#define __PG_MLOCKED 0 1019#endif 1020 1021/* 1022 * Flags checked when a page is freed. Pages being freed should not have 1023 * these flags set. If they are, there is a problem. 1024 */ 1025#define PAGE_FLAGS_CHECK_AT_FREE \ 1026 (1UL << PG_lru | 1UL << PG_locked | \ 1027 1UL << PG_private | 1UL << PG_private_2 | \ 1028 1UL << PG_writeback | 1UL << PG_reserved | \ 1029 1UL << PG_slab | 1UL << PG_active | \ 1030 1UL << PG_unevictable | __PG_MLOCKED | LRU_GEN_MASK) 1031 1032/* 1033 * Flags checked when a page is prepped for return by the page allocator. 1034 * Pages being prepped should not have these flags set. If they are set, 1035 * there has been a kernel bug or struct page corruption. 1036 * 1037 * __PG_HWPOISON is exceptional because it needs to be kept beyond page's 1038 * alloc-free cycle to prevent from reusing the page. 1039 */ 1040#define PAGE_FLAGS_CHECK_AT_PREP \ 1041 ((PAGEFLAGS_MASK & ~__PG_HWPOISON) | LRU_GEN_MASK | LRU_REFS_MASK) 1042 1043#define PAGE_FLAGS_PRIVATE \ 1044 (1UL << PG_private | 1UL << PG_private_2) 1045/** 1046 * page_has_private - Determine if page has private stuff 1047 * @page: The page to be checked 1048 * 1049 * Determine if a page has private stuff, indicating that release routines 1050 * should be invoked upon it. 1051 */ 1052static inline int page_has_private(struct page *page) 1053{ 1054 return !!(page->flags & PAGE_FLAGS_PRIVATE); 1055} 1056 1057static inline bool folio_has_private(struct folio *folio) 1058{ 1059 return page_has_private(&folio->page); 1060} 1061 1062#undef PF_ANY 1063#undef PF_HEAD 1064#undef PF_ONLY_HEAD 1065#undef PF_NO_TAIL 1066#undef PF_NO_COMPOUND 1067#undef PF_SECOND 1068#endif /* !__GENERATING_BOUNDS_H */ 1069 1070#endif /* PAGE_FLAGS_H */