at v6.4 1627 lines 53 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-only */ 2/* 3 * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org> 4 * Steven J. Hill <sjhill@realitydiluted.com> 5 * Thomas Gleixner <tglx@linutronix.de> 6 * 7 * Info: 8 * Contains standard defines and IDs for NAND flash devices 9 * 10 * Changelog: 11 * See git changelog. 12 */ 13#ifndef __LINUX_MTD_RAWNAND_H 14#define __LINUX_MTD_RAWNAND_H 15 16#include <linux/mtd/mtd.h> 17#include <linux/mtd/nand.h> 18#include <linux/mtd/flashchip.h> 19#include <linux/mtd/bbm.h> 20#include <linux/mtd/jedec.h> 21#include <linux/mtd/onfi.h> 22#include <linux/mutex.h> 23#include <linux/of.h> 24#include <linux/types.h> 25 26struct nand_chip; 27struct gpio_desc; 28 29/* The maximum number of NAND chips in an array */ 30#define NAND_MAX_CHIPS 8 31 32/* 33 * Constants for hardware specific CLE/ALE/NCE function 34 * 35 * These are bits which can be or'ed to set/clear multiple 36 * bits in one go. 37 */ 38/* Select the chip by setting nCE to low */ 39#define NAND_NCE 0x01 40/* Select the command latch by setting CLE to high */ 41#define NAND_CLE 0x02 42/* Select the address latch by setting ALE to high */ 43#define NAND_ALE 0x04 44 45#define NAND_CTRL_CLE (NAND_NCE | NAND_CLE) 46#define NAND_CTRL_ALE (NAND_NCE | NAND_ALE) 47#define NAND_CTRL_CHANGE 0x80 48 49/* 50 * Standard NAND flash commands 51 */ 52#define NAND_CMD_READ0 0 53#define NAND_CMD_READ1 1 54#define NAND_CMD_RNDOUT 5 55#define NAND_CMD_PAGEPROG 0x10 56#define NAND_CMD_READOOB 0x50 57#define NAND_CMD_ERASE1 0x60 58#define NAND_CMD_STATUS 0x70 59#define NAND_CMD_SEQIN 0x80 60#define NAND_CMD_RNDIN 0x85 61#define NAND_CMD_READID 0x90 62#define NAND_CMD_ERASE2 0xd0 63#define NAND_CMD_PARAM 0xec 64#define NAND_CMD_GET_FEATURES 0xee 65#define NAND_CMD_SET_FEATURES 0xef 66#define NAND_CMD_RESET 0xff 67 68/* Extended commands for large page devices */ 69#define NAND_CMD_READSTART 0x30 70#define NAND_CMD_READCACHESEQ 0x31 71#define NAND_CMD_READCACHEEND 0x3f 72#define NAND_CMD_RNDOUTSTART 0xE0 73#define NAND_CMD_CACHEDPROG 0x15 74 75#define NAND_CMD_NONE -1 76 77/* Status bits */ 78#define NAND_STATUS_FAIL 0x01 79#define NAND_STATUS_FAIL_N1 0x02 80#define NAND_STATUS_TRUE_READY 0x20 81#define NAND_STATUS_READY 0x40 82#define NAND_STATUS_WP 0x80 83 84#define NAND_DATA_IFACE_CHECK_ONLY -1 85 86/* 87 * Constants for Hardware ECC 88 */ 89/* Reset Hardware ECC for read */ 90#define NAND_ECC_READ 0 91/* Reset Hardware ECC for write */ 92#define NAND_ECC_WRITE 1 93/* Enable Hardware ECC before syndrome is read back from flash */ 94#define NAND_ECC_READSYN 2 95 96/* 97 * Enable generic NAND 'page erased' check. This check is only done when 98 * ecc.correct() returns -EBADMSG. 99 * Set this flag if your implementation does not fix bitflips in erased 100 * pages and you want to rely on the default implementation. 101 */ 102#define NAND_ECC_GENERIC_ERASED_CHECK BIT(0) 103 104/* 105 * Option constants for bizarre disfunctionality and real 106 * features. 107 */ 108 109/* Buswidth is 16 bit */ 110#define NAND_BUSWIDTH_16 BIT(1) 111 112/* 113 * When using software implementation of Hamming, we can specify which byte 114 * ordering should be used. 115 */ 116#define NAND_ECC_SOFT_HAMMING_SM_ORDER BIT(2) 117 118/* Chip has cache program function */ 119#define NAND_CACHEPRG BIT(3) 120/* Options valid for Samsung large page devices */ 121#define NAND_SAMSUNG_LP_OPTIONS NAND_CACHEPRG 122 123/* 124 * Chip requires ready check on read (for auto-incremented sequential read). 125 * True only for small page devices; large page devices do not support 126 * autoincrement. 127 */ 128#define NAND_NEED_READRDY BIT(8) 129 130/* Chip does not allow subpage writes */ 131#define NAND_NO_SUBPAGE_WRITE BIT(9) 132 133/* Device is one of 'new' xD cards that expose fake nand command set */ 134#define NAND_BROKEN_XD BIT(10) 135 136/* Device behaves just like nand, but is readonly */ 137#define NAND_ROM BIT(11) 138 139/* Device supports subpage reads */ 140#define NAND_SUBPAGE_READ BIT(12) 141/* Macros to identify the above */ 142#define NAND_HAS_SUBPAGE_READ(chip) ((chip->options & NAND_SUBPAGE_READ)) 143 144/* 145 * Some MLC NANDs need data scrambling to limit bitflips caused by repeated 146 * patterns. 147 */ 148#define NAND_NEED_SCRAMBLING BIT(13) 149 150/* Device needs 3rd row address cycle */ 151#define NAND_ROW_ADDR_3 BIT(14) 152 153/* Non chip related options */ 154/* This option skips the bbt scan during initialization. */ 155#define NAND_SKIP_BBTSCAN BIT(16) 156/* Chip may not exist, so silence any errors in scan */ 157#define NAND_SCAN_SILENT_NODEV BIT(18) 158 159/* 160 * Autodetect nand buswidth with readid/onfi. 161 * This suppose the driver will configure the hardware in 8 bits mode 162 * when calling nand_scan_ident, and update its configuration 163 * before calling nand_scan_tail. 164 */ 165#define NAND_BUSWIDTH_AUTO BIT(19) 166 167/* 168 * This option could be defined by controller drivers to protect against 169 * kmap'ed, vmalloc'ed highmem buffers being passed from upper layers 170 */ 171#define NAND_USES_DMA BIT(20) 172 173/* 174 * In case your controller is implementing ->legacy.cmd_ctrl() and is relying 175 * on the default ->cmdfunc() implementation, you may want to let the core 176 * handle the tCCS delay which is required when a column change (RNDIN or 177 * RNDOUT) is requested. 178 * If your controller already takes care of this delay, you don't need to set 179 * this flag. 180 */ 181#define NAND_WAIT_TCCS BIT(21) 182 183/* 184 * Whether the NAND chip is a boot medium. Drivers might use this information 185 * to select ECC algorithms supported by the boot ROM or similar restrictions. 186 */ 187#define NAND_IS_BOOT_MEDIUM BIT(22) 188 189/* 190 * Do not try to tweak the timings at runtime. This is needed when the 191 * controller initializes the timings on itself or when it relies on 192 * configuration done by the bootloader. 193 */ 194#define NAND_KEEP_TIMINGS BIT(23) 195 196/* 197 * There are different places where the manufacturer stores the factory bad 198 * block markers. 199 * 200 * Position within the block: Each of these pages needs to be checked for a 201 * bad block marking pattern. 202 */ 203#define NAND_BBM_FIRSTPAGE BIT(24) 204#define NAND_BBM_SECONDPAGE BIT(25) 205#define NAND_BBM_LASTPAGE BIT(26) 206 207/* 208 * Some controllers with pipelined ECC engines override the BBM marker with 209 * data or ECC bytes, thus making bad block detection through bad block marker 210 * impossible. Let's flag those chips so the core knows it shouldn't check the 211 * BBM and consider all blocks good. 212 */ 213#define NAND_NO_BBM_QUIRK BIT(27) 214 215/* Cell info constants */ 216#define NAND_CI_CHIPNR_MSK 0x03 217#define NAND_CI_CELLTYPE_MSK 0x0C 218#define NAND_CI_CELLTYPE_SHIFT 2 219 220/* Position within the OOB data of the page */ 221#define NAND_BBM_POS_SMALL 5 222#define NAND_BBM_POS_LARGE 0 223 224/** 225 * struct nand_parameters - NAND generic parameters from the parameter page 226 * @model: Model name 227 * @supports_set_get_features: The NAND chip supports setting/getting features 228 * @set_feature_list: Bitmap of features that can be set 229 * @get_feature_list: Bitmap of features that can be get 230 * @onfi: ONFI specific parameters 231 */ 232struct nand_parameters { 233 /* Generic parameters */ 234 const char *model; 235 bool supports_set_get_features; 236 DECLARE_BITMAP(set_feature_list, ONFI_FEATURE_NUMBER); 237 DECLARE_BITMAP(get_feature_list, ONFI_FEATURE_NUMBER); 238 239 /* ONFI parameters */ 240 struct onfi_params *onfi; 241}; 242 243/* The maximum expected count of bytes in the NAND ID sequence */ 244#define NAND_MAX_ID_LEN 8 245 246/** 247 * struct nand_id - NAND id structure 248 * @data: buffer containing the id bytes. 249 * @len: ID length. 250 */ 251struct nand_id { 252 u8 data[NAND_MAX_ID_LEN]; 253 int len; 254}; 255 256/** 257 * struct nand_ecc_step_info - ECC step information of ECC engine 258 * @stepsize: data bytes per ECC step 259 * @strengths: array of supported strengths 260 * @nstrengths: number of supported strengths 261 */ 262struct nand_ecc_step_info { 263 int stepsize; 264 const int *strengths; 265 int nstrengths; 266}; 267 268/** 269 * struct nand_ecc_caps - capability of ECC engine 270 * @stepinfos: array of ECC step information 271 * @nstepinfos: number of ECC step information 272 * @calc_ecc_bytes: driver's hook to calculate ECC bytes per step 273 */ 274struct nand_ecc_caps { 275 const struct nand_ecc_step_info *stepinfos; 276 int nstepinfos; 277 int (*calc_ecc_bytes)(int step_size, int strength); 278}; 279 280/* a shorthand to generate struct nand_ecc_caps with only one ECC stepsize */ 281#define NAND_ECC_CAPS_SINGLE(__name, __calc, __step, ...) \ 282static const int __name##_strengths[] = { __VA_ARGS__ }; \ 283static const struct nand_ecc_step_info __name##_stepinfo = { \ 284 .stepsize = __step, \ 285 .strengths = __name##_strengths, \ 286 .nstrengths = ARRAY_SIZE(__name##_strengths), \ 287}; \ 288static const struct nand_ecc_caps __name = { \ 289 .stepinfos = &__name##_stepinfo, \ 290 .nstepinfos = 1, \ 291 .calc_ecc_bytes = __calc, \ 292} 293 294/** 295 * struct nand_ecc_ctrl - Control structure for ECC 296 * @engine_type: ECC engine type 297 * @placement: OOB bytes placement 298 * @algo: ECC algorithm 299 * @steps: number of ECC steps per page 300 * @size: data bytes per ECC step 301 * @bytes: ECC bytes per step 302 * @strength: max number of correctible bits per ECC step 303 * @total: total number of ECC bytes per page 304 * @prepad: padding information for syndrome based ECC generators 305 * @postpad: padding information for syndrome based ECC generators 306 * @options: ECC specific options (see NAND_ECC_XXX flags defined above) 307 * @calc_buf: buffer for calculated ECC, size is oobsize. 308 * @code_buf: buffer for ECC read from flash, size is oobsize. 309 * @hwctl: function to control hardware ECC generator. Must only 310 * be provided if an hardware ECC is available 311 * @calculate: function for ECC calculation or readback from ECC hardware 312 * @correct: function for ECC correction, matching to ECC generator (sw/hw). 313 * Should return a positive number representing the number of 314 * corrected bitflips, -EBADMSG if the number of bitflips exceed 315 * ECC strength, or any other error code if the error is not 316 * directly related to correction. 317 * If -EBADMSG is returned the input buffers should be left 318 * untouched. 319 * @read_page_raw: function to read a raw page without ECC. This function 320 * should hide the specific layout used by the ECC 321 * controller and always return contiguous in-band and 322 * out-of-band data even if they're not stored 323 * contiguously on the NAND chip (e.g. 324 * NAND_ECC_PLACEMENT_INTERLEAVED interleaves in-band and 325 * out-of-band data). 326 * @write_page_raw: function to write a raw page without ECC. This function 327 * should hide the specific layout used by the ECC 328 * controller and consider the passed data as contiguous 329 * in-band and out-of-band data. ECC controller is 330 * responsible for doing the appropriate transformations 331 * to adapt to its specific layout (e.g. 332 * NAND_ECC_PLACEMENT_INTERLEAVED interleaves in-band and 333 * out-of-band data). 334 * @read_page: function to read a page according to the ECC generator 335 * requirements; returns maximum number of bitflips corrected in 336 * any single ECC step, -EIO hw error 337 * @read_subpage: function to read parts of the page covered by ECC; 338 * returns same as read_page() 339 * @write_subpage: function to write parts of the page covered by ECC. 340 * @write_page: function to write a page according to the ECC generator 341 * requirements. 342 * @write_oob_raw: function to write chip OOB data without ECC 343 * @read_oob_raw: function to read chip OOB data without ECC 344 * @read_oob: function to read chip OOB data 345 * @write_oob: function to write chip OOB data 346 */ 347struct nand_ecc_ctrl { 348 enum nand_ecc_engine_type engine_type; 349 enum nand_ecc_placement placement; 350 enum nand_ecc_algo algo; 351 int steps; 352 int size; 353 int bytes; 354 int total; 355 int strength; 356 int prepad; 357 int postpad; 358 unsigned int options; 359 u8 *calc_buf; 360 u8 *code_buf; 361 void (*hwctl)(struct nand_chip *chip, int mode); 362 int (*calculate)(struct nand_chip *chip, const uint8_t *dat, 363 uint8_t *ecc_code); 364 int (*correct)(struct nand_chip *chip, uint8_t *dat, uint8_t *read_ecc, 365 uint8_t *calc_ecc); 366 int (*read_page_raw)(struct nand_chip *chip, uint8_t *buf, 367 int oob_required, int page); 368 int (*write_page_raw)(struct nand_chip *chip, const uint8_t *buf, 369 int oob_required, int page); 370 int (*read_page)(struct nand_chip *chip, uint8_t *buf, 371 int oob_required, int page); 372 int (*read_subpage)(struct nand_chip *chip, uint32_t offs, 373 uint32_t len, uint8_t *buf, int page); 374 int (*write_subpage)(struct nand_chip *chip, uint32_t offset, 375 uint32_t data_len, const uint8_t *data_buf, 376 int oob_required, int page); 377 int (*write_page)(struct nand_chip *chip, const uint8_t *buf, 378 int oob_required, int page); 379 int (*write_oob_raw)(struct nand_chip *chip, int page); 380 int (*read_oob_raw)(struct nand_chip *chip, int page); 381 int (*read_oob)(struct nand_chip *chip, int page); 382 int (*write_oob)(struct nand_chip *chip, int page); 383}; 384 385/** 386 * struct nand_sdr_timings - SDR NAND chip timings 387 * 388 * This struct defines the timing requirements of a SDR NAND chip. 389 * These information can be found in every NAND datasheets and the timings 390 * meaning are described in the ONFI specifications: 391 * https://media-www.micron.com/-/media/client/onfi/specs/onfi_3_1_spec.pdf 392 * (chapter 4.15 Timing Parameters) 393 * 394 * All these timings are expressed in picoseconds. 395 * 396 * @tBERS_max: Block erase time 397 * @tCCS_min: Change column setup time 398 * @tPROG_max: Page program time 399 * @tR_max: Page read time 400 * @tALH_min: ALE hold time 401 * @tADL_min: ALE to data loading time 402 * @tALS_min: ALE setup time 403 * @tAR_min: ALE to RE# delay 404 * @tCEA_max: CE# access time 405 * @tCEH_min: CE# high hold time 406 * @tCH_min: CE# hold time 407 * @tCHZ_max: CE# high to output hi-Z 408 * @tCLH_min: CLE hold time 409 * @tCLR_min: CLE to RE# delay 410 * @tCLS_min: CLE setup time 411 * @tCOH_min: CE# high to output hold 412 * @tCS_min: CE# setup time 413 * @tDH_min: Data hold time 414 * @tDS_min: Data setup time 415 * @tFEAT_max: Busy time for Set Features and Get Features 416 * @tIR_min: Output hi-Z to RE# low 417 * @tITC_max: Interface and Timing Mode Change time 418 * @tRC_min: RE# cycle time 419 * @tREA_max: RE# access time 420 * @tREH_min: RE# high hold time 421 * @tRHOH_min: RE# high to output hold 422 * @tRHW_min: RE# high to WE# low 423 * @tRHZ_max: RE# high to output hi-Z 424 * @tRLOH_min: RE# low to output hold 425 * @tRP_min: RE# pulse width 426 * @tRR_min: Ready to RE# low (data only) 427 * @tRST_max: Device reset time, measured from the falling edge of R/B# to the 428 * rising edge of R/B#. 429 * @tWB_max: WE# high to SR[6] low 430 * @tWC_min: WE# cycle time 431 * @tWH_min: WE# high hold time 432 * @tWHR_min: WE# high to RE# low 433 * @tWP_min: WE# pulse width 434 * @tWW_min: WP# transition to WE# low 435 */ 436struct nand_sdr_timings { 437 u64 tBERS_max; 438 u32 tCCS_min; 439 u64 tPROG_max; 440 u64 tR_max; 441 u32 tALH_min; 442 u32 tADL_min; 443 u32 tALS_min; 444 u32 tAR_min; 445 u32 tCEA_max; 446 u32 tCEH_min; 447 u32 tCH_min; 448 u32 tCHZ_max; 449 u32 tCLH_min; 450 u32 tCLR_min; 451 u32 tCLS_min; 452 u32 tCOH_min; 453 u32 tCS_min; 454 u32 tDH_min; 455 u32 tDS_min; 456 u32 tFEAT_max; 457 u32 tIR_min; 458 u32 tITC_max; 459 u32 tRC_min; 460 u32 tREA_max; 461 u32 tREH_min; 462 u32 tRHOH_min; 463 u32 tRHW_min; 464 u32 tRHZ_max; 465 u32 tRLOH_min; 466 u32 tRP_min; 467 u32 tRR_min; 468 u64 tRST_max; 469 u32 tWB_max; 470 u32 tWC_min; 471 u32 tWH_min; 472 u32 tWHR_min; 473 u32 tWP_min; 474 u32 tWW_min; 475}; 476 477/** 478 * struct nand_nvddr_timings - NV-DDR NAND chip timings 479 * 480 * This struct defines the timing requirements of a NV-DDR NAND data interface. 481 * These information can be found in every NAND datasheets and the timings 482 * meaning are described in the ONFI specifications: 483 * https://media-www.micron.com/-/media/client/onfi/specs/onfi_4_1_gold.pdf 484 * (chapter 4.18.2 NV-DDR) 485 * 486 * All these timings are expressed in picoseconds. 487 * 488 * @tBERS_max: Block erase time 489 * @tCCS_min: Change column setup time 490 * @tPROG_max: Page program time 491 * @tR_max: Page read time 492 * @tAC_min: Access window of DQ[7:0] from CLK 493 * @tAC_max: Access window of DQ[7:0] from CLK 494 * @tADL_min: ALE to data loading time 495 * @tCAD_min: Command, Address, Data delay 496 * @tCAH_min: Command/Address DQ hold time 497 * @tCALH_min: W/R_n, CLE and ALE hold time 498 * @tCALS_min: W/R_n, CLE and ALE setup time 499 * @tCAS_min: Command/address DQ setup time 500 * @tCEH_min: CE# high hold time 501 * @tCH_min: CE# hold time 502 * @tCK_min: Average clock cycle time 503 * @tCS_min: CE# setup time 504 * @tDH_min: Data hold time 505 * @tDQSCK_min: Start of the access window of DQS from CLK 506 * @tDQSCK_max: End of the access window of DQS from CLK 507 * @tDQSD_min: Min W/R_n low to DQS/DQ driven by device 508 * @tDQSD_max: Max W/R_n low to DQS/DQ driven by device 509 * @tDQSHZ_max: W/R_n high to DQS/DQ tri-state by device 510 * @tDQSQ_max: DQS-DQ skew, DQS to last DQ valid, per access 511 * @tDS_min: Data setup time 512 * @tDSC_min: DQS cycle time 513 * @tFEAT_max: Busy time for Set Features and Get Features 514 * @tITC_max: Interface and Timing Mode Change time 515 * @tQHS_max: Data hold skew factor 516 * @tRHW_min: Data output cycle to command, address, or data input cycle 517 * @tRR_min: Ready to RE# low (data only) 518 * @tRST_max: Device reset time, measured from the falling edge of R/B# to the 519 * rising edge of R/B#. 520 * @tWB_max: WE# high to SR[6] low 521 * @tWHR_min: WE# high to RE# low 522 * @tWRCK_min: W/R_n low to data output cycle 523 * @tWW_min: WP# transition to WE# low 524 */ 525struct nand_nvddr_timings { 526 u64 tBERS_max; 527 u32 tCCS_min; 528 u64 tPROG_max; 529 u64 tR_max; 530 u32 tAC_min; 531 u32 tAC_max; 532 u32 tADL_min; 533 u32 tCAD_min; 534 u32 tCAH_min; 535 u32 tCALH_min; 536 u32 tCALS_min; 537 u32 tCAS_min; 538 u32 tCEH_min; 539 u32 tCH_min; 540 u32 tCK_min; 541 u32 tCS_min; 542 u32 tDH_min; 543 u32 tDQSCK_min; 544 u32 tDQSCK_max; 545 u32 tDQSD_min; 546 u32 tDQSD_max; 547 u32 tDQSHZ_max; 548 u32 tDQSQ_max; 549 u32 tDS_min; 550 u32 tDSC_min; 551 u32 tFEAT_max; 552 u32 tITC_max; 553 u32 tQHS_max; 554 u32 tRHW_min; 555 u32 tRR_min; 556 u32 tRST_max; 557 u32 tWB_max; 558 u32 tWHR_min; 559 u32 tWRCK_min; 560 u32 tWW_min; 561}; 562 563/* 564 * While timings related to the data interface itself are mostly different 565 * between SDR and NV-DDR, timings related to the internal chip behavior are 566 * common. IOW, the following entries which describe the internal delays have 567 * the same definition and are shared in both SDR and NV-DDR timing structures: 568 * - tADL_min 569 * - tBERS_max 570 * - tCCS_min 571 * - tFEAT_max 572 * - tPROG_max 573 * - tR_max 574 * - tRR_min 575 * - tRST_max 576 * - tWB_max 577 * 578 * The below macros return the value of a given timing, no matter the interface. 579 */ 580#define NAND_COMMON_TIMING_PS(conf, timing_name) \ 581 nand_interface_is_sdr(conf) ? \ 582 nand_get_sdr_timings(conf)->timing_name : \ 583 nand_get_nvddr_timings(conf)->timing_name 584 585#define NAND_COMMON_TIMING_MS(conf, timing_name) \ 586 PSEC_TO_MSEC(NAND_COMMON_TIMING_PS((conf), timing_name)) 587 588#define NAND_COMMON_TIMING_NS(conf, timing_name) \ 589 PSEC_TO_NSEC(NAND_COMMON_TIMING_PS((conf), timing_name)) 590 591/** 592 * enum nand_interface_type - NAND interface type 593 * @NAND_SDR_IFACE: Single Data Rate interface 594 * @NAND_NVDDR_IFACE: Double Data Rate interface 595 */ 596enum nand_interface_type { 597 NAND_SDR_IFACE, 598 NAND_NVDDR_IFACE, 599}; 600 601/** 602 * struct nand_interface_config - NAND interface timing 603 * @type: type of the timing 604 * @timings: The timing information 605 * @timings.mode: Timing mode as defined in the specification 606 * @timings.sdr: Use it when @type is %NAND_SDR_IFACE. 607 * @timings.nvddr: Use it when @type is %NAND_NVDDR_IFACE. 608 */ 609struct nand_interface_config { 610 enum nand_interface_type type; 611 struct nand_timings { 612 unsigned int mode; 613 union { 614 struct nand_sdr_timings sdr; 615 struct nand_nvddr_timings nvddr; 616 }; 617 } timings; 618}; 619 620/** 621 * nand_interface_is_sdr - get the interface type 622 * @conf: The data interface 623 */ 624static bool nand_interface_is_sdr(const struct nand_interface_config *conf) 625{ 626 return conf->type == NAND_SDR_IFACE; 627} 628 629/** 630 * nand_interface_is_nvddr - get the interface type 631 * @conf: The data interface 632 */ 633static bool nand_interface_is_nvddr(const struct nand_interface_config *conf) 634{ 635 return conf->type == NAND_NVDDR_IFACE; 636} 637 638/** 639 * nand_get_sdr_timings - get SDR timing from data interface 640 * @conf: The data interface 641 */ 642static inline const struct nand_sdr_timings * 643nand_get_sdr_timings(const struct nand_interface_config *conf) 644{ 645 if (!nand_interface_is_sdr(conf)) 646 return ERR_PTR(-EINVAL); 647 648 return &conf->timings.sdr; 649} 650 651/** 652 * nand_get_nvddr_timings - get NV-DDR timing from data interface 653 * @conf: The data interface 654 */ 655static inline const struct nand_nvddr_timings * 656nand_get_nvddr_timings(const struct nand_interface_config *conf) 657{ 658 if (!nand_interface_is_nvddr(conf)) 659 return ERR_PTR(-EINVAL); 660 661 return &conf->timings.nvddr; 662} 663 664/** 665 * struct nand_op_cmd_instr - Definition of a command instruction 666 * @opcode: the command to issue in one cycle 667 */ 668struct nand_op_cmd_instr { 669 u8 opcode; 670}; 671 672/** 673 * struct nand_op_addr_instr - Definition of an address instruction 674 * @naddrs: length of the @addrs array 675 * @addrs: array containing the address cycles to issue 676 */ 677struct nand_op_addr_instr { 678 unsigned int naddrs; 679 const u8 *addrs; 680}; 681 682/** 683 * struct nand_op_data_instr - Definition of a data instruction 684 * @len: number of data bytes to move 685 * @buf: buffer to fill 686 * @buf.in: buffer to fill when reading from the NAND chip 687 * @buf.out: buffer to read from when writing to the NAND chip 688 * @force_8bit: force 8-bit access 689 * 690 * Please note that "in" and "out" are inverted from the ONFI specification 691 * and are from the controller perspective, so a "in" is a read from the NAND 692 * chip while a "out" is a write to the NAND chip. 693 */ 694struct nand_op_data_instr { 695 unsigned int len; 696 union { 697 void *in; 698 const void *out; 699 } buf; 700 bool force_8bit; 701}; 702 703/** 704 * struct nand_op_waitrdy_instr - Definition of a wait ready instruction 705 * @timeout_ms: maximum delay while waiting for the ready/busy pin in ms 706 */ 707struct nand_op_waitrdy_instr { 708 unsigned int timeout_ms; 709}; 710 711/** 712 * enum nand_op_instr_type - Definition of all instruction types 713 * @NAND_OP_CMD_INSTR: command instruction 714 * @NAND_OP_ADDR_INSTR: address instruction 715 * @NAND_OP_DATA_IN_INSTR: data in instruction 716 * @NAND_OP_DATA_OUT_INSTR: data out instruction 717 * @NAND_OP_WAITRDY_INSTR: wait ready instruction 718 */ 719enum nand_op_instr_type { 720 NAND_OP_CMD_INSTR, 721 NAND_OP_ADDR_INSTR, 722 NAND_OP_DATA_IN_INSTR, 723 NAND_OP_DATA_OUT_INSTR, 724 NAND_OP_WAITRDY_INSTR, 725}; 726 727/** 728 * struct nand_op_instr - Instruction object 729 * @type: the instruction type 730 * @ctx: extra data associated to the instruction. You'll have to use the 731 * appropriate element depending on @type 732 * @ctx.cmd: use it if @type is %NAND_OP_CMD_INSTR 733 * @ctx.addr: use it if @type is %NAND_OP_ADDR_INSTR 734 * @ctx.data: use it if @type is %NAND_OP_DATA_IN_INSTR 735 * or %NAND_OP_DATA_OUT_INSTR 736 * @ctx.waitrdy: use it if @type is %NAND_OP_WAITRDY_INSTR 737 * @delay_ns: delay the controller should apply after the instruction has been 738 * issued on the bus. Most modern controllers have internal timings 739 * control logic, and in this case, the controller driver can ignore 740 * this field. 741 */ 742struct nand_op_instr { 743 enum nand_op_instr_type type; 744 union { 745 struct nand_op_cmd_instr cmd; 746 struct nand_op_addr_instr addr; 747 struct nand_op_data_instr data; 748 struct nand_op_waitrdy_instr waitrdy; 749 } ctx; 750 unsigned int delay_ns; 751}; 752 753/* 754 * Special handling must be done for the WAITRDY timeout parameter as it usually 755 * is either tPROG (after a prog), tR (before a read), tRST (during a reset) or 756 * tBERS (during an erase) which all of them are u64 values that cannot be 757 * divided by usual kernel macros and must be handled with the special 758 * DIV_ROUND_UP_ULL() macro. 759 * 760 * Cast to type of dividend is needed here to guarantee that the result won't 761 * be an unsigned long long when the dividend is an unsigned long (or smaller), 762 * which is what the compiler does when it sees ternary operator with 2 763 * different return types (picks the largest type to make sure there's no 764 * loss). 765 */ 766#define __DIVIDE(dividend, divisor) ({ \ 767 (__typeof__(dividend))(sizeof(dividend) <= sizeof(unsigned long) ? \ 768 DIV_ROUND_UP(dividend, divisor) : \ 769 DIV_ROUND_UP_ULL(dividend, divisor)); \ 770 }) 771#define PSEC_TO_NSEC(x) __DIVIDE(x, 1000) 772#define PSEC_TO_MSEC(x) __DIVIDE(x, 1000000000) 773 774#define NAND_OP_CMD(id, ns) \ 775 { \ 776 .type = NAND_OP_CMD_INSTR, \ 777 .ctx.cmd.opcode = id, \ 778 .delay_ns = ns, \ 779 } 780 781#define NAND_OP_ADDR(ncycles, cycles, ns) \ 782 { \ 783 .type = NAND_OP_ADDR_INSTR, \ 784 .ctx.addr = { \ 785 .naddrs = ncycles, \ 786 .addrs = cycles, \ 787 }, \ 788 .delay_ns = ns, \ 789 } 790 791#define NAND_OP_DATA_IN(l, b, ns) \ 792 { \ 793 .type = NAND_OP_DATA_IN_INSTR, \ 794 .ctx.data = { \ 795 .len = l, \ 796 .buf.in = b, \ 797 .force_8bit = false, \ 798 }, \ 799 .delay_ns = ns, \ 800 } 801 802#define NAND_OP_DATA_OUT(l, b, ns) \ 803 { \ 804 .type = NAND_OP_DATA_OUT_INSTR, \ 805 .ctx.data = { \ 806 .len = l, \ 807 .buf.out = b, \ 808 .force_8bit = false, \ 809 }, \ 810 .delay_ns = ns, \ 811 } 812 813#define NAND_OP_8BIT_DATA_IN(l, b, ns) \ 814 { \ 815 .type = NAND_OP_DATA_IN_INSTR, \ 816 .ctx.data = { \ 817 .len = l, \ 818 .buf.in = b, \ 819 .force_8bit = true, \ 820 }, \ 821 .delay_ns = ns, \ 822 } 823 824#define NAND_OP_8BIT_DATA_OUT(l, b, ns) \ 825 { \ 826 .type = NAND_OP_DATA_OUT_INSTR, \ 827 .ctx.data = { \ 828 .len = l, \ 829 .buf.out = b, \ 830 .force_8bit = true, \ 831 }, \ 832 .delay_ns = ns, \ 833 } 834 835#define NAND_OP_WAIT_RDY(tout_ms, ns) \ 836 { \ 837 .type = NAND_OP_WAITRDY_INSTR, \ 838 .ctx.waitrdy.timeout_ms = tout_ms, \ 839 .delay_ns = ns, \ 840 } 841 842/** 843 * struct nand_subop - a sub operation 844 * @cs: the CS line to select for this NAND sub-operation 845 * @instrs: array of instructions 846 * @ninstrs: length of the @instrs array 847 * @first_instr_start_off: offset to start from for the first instruction 848 * of the sub-operation 849 * @last_instr_end_off: offset to end at (excluded) for the last instruction 850 * of the sub-operation 851 * 852 * Both @first_instr_start_off and @last_instr_end_off only apply to data or 853 * address instructions. 854 * 855 * When an operation cannot be handled as is by the NAND controller, it will 856 * be split by the parser into sub-operations which will be passed to the 857 * controller driver. 858 */ 859struct nand_subop { 860 unsigned int cs; 861 const struct nand_op_instr *instrs; 862 unsigned int ninstrs; 863 unsigned int first_instr_start_off; 864 unsigned int last_instr_end_off; 865}; 866 867unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop, 868 unsigned int op_id); 869unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop, 870 unsigned int op_id); 871unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop, 872 unsigned int op_id); 873unsigned int nand_subop_get_data_len(const struct nand_subop *subop, 874 unsigned int op_id); 875 876/** 877 * struct nand_op_parser_addr_constraints - Constraints for address instructions 878 * @maxcycles: maximum number of address cycles the controller can issue in a 879 * single step 880 */ 881struct nand_op_parser_addr_constraints { 882 unsigned int maxcycles; 883}; 884 885/** 886 * struct nand_op_parser_data_constraints - Constraints for data instructions 887 * @maxlen: maximum data length that the controller can handle in a single step 888 */ 889struct nand_op_parser_data_constraints { 890 unsigned int maxlen; 891}; 892 893/** 894 * struct nand_op_parser_pattern_elem - One element of a pattern 895 * @type: the instructuction type 896 * @optional: whether this element of the pattern is optional or mandatory 897 * @ctx: address or data constraint 898 * @ctx.addr: address constraint (number of cycles) 899 * @ctx.data: data constraint (data length) 900 */ 901struct nand_op_parser_pattern_elem { 902 enum nand_op_instr_type type; 903 bool optional; 904 union { 905 struct nand_op_parser_addr_constraints addr; 906 struct nand_op_parser_data_constraints data; 907 } ctx; 908}; 909 910#define NAND_OP_PARSER_PAT_CMD_ELEM(_opt) \ 911 { \ 912 .type = NAND_OP_CMD_INSTR, \ 913 .optional = _opt, \ 914 } 915 916#define NAND_OP_PARSER_PAT_ADDR_ELEM(_opt, _maxcycles) \ 917 { \ 918 .type = NAND_OP_ADDR_INSTR, \ 919 .optional = _opt, \ 920 .ctx.addr.maxcycles = _maxcycles, \ 921 } 922 923#define NAND_OP_PARSER_PAT_DATA_IN_ELEM(_opt, _maxlen) \ 924 { \ 925 .type = NAND_OP_DATA_IN_INSTR, \ 926 .optional = _opt, \ 927 .ctx.data.maxlen = _maxlen, \ 928 } 929 930#define NAND_OP_PARSER_PAT_DATA_OUT_ELEM(_opt, _maxlen) \ 931 { \ 932 .type = NAND_OP_DATA_OUT_INSTR, \ 933 .optional = _opt, \ 934 .ctx.data.maxlen = _maxlen, \ 935 } 936 937#define NAND_OP_PARSER_PAT_WAITRDY_ELEM(_opt) \ 938 { \ 939 .type = NAND_OP_WAITRDY_INSTR, \ 940 .optional = _opt, \ 941 } 942 943/** 944 * struct nand_op_parser_pattern - NAND sub-operation pattern descriptor 945 * @elems: array of pattern elements 946 * @nelems: number of pattern elements in @elems array 947 * @exec: the function that will issue a sub-operation 948 * 949 * A pattern is a list of elements, each element reprensenting one instruction 950 * with its constraints. The pattern itself is used by the core to match NAND 951 * chip operation with NAND controller operations. 952 * Once a match between a NAND controller operation pattern and a NAND chip 953 * operation (or a sub-set of a NAND operation) is found, the pattern ->exec() 954 * hook is called so that the controller driver can issue the operation on the 955 * bus. 956 * 957 * Controller drivers should declare as many patterns as they support and pass 958 * this list of patterns (created with the help of the following macro) to 959 * the nand_op_parser_exec_op() helper. 960 */ 961struct nand_op_parser_pattern { 962 const struct nand_op_parser_pattern_elem *elems; 963 unsigned int nelems; 964 int (*exec)(struct nand_chip *chip, const struct nand_subop *subop); 965}; 966 967#define NAND_OP_PARSER_PATTERN(_exec, ...) \ 968 { \ 969 .exec = _exec, \ 970 .elems = (const struct nand_op_parser_pattern_elem[]) { __VA_ARGS__ }, \ 971 .nelems = sizeof((struct nand_op_parser_pattern_elem[]) { __VA_ARGS__ }) / \ 972 sizeof(struct nand_op_parser_pattern_elem), \ 973 } 974 975/** 976 * struct nand_op_parser - NAND controller operation parser descriptor 977 * @patterns: array of supported patterns 978 * @npatterns: length of the @patterns array 979 * 980 * The parser descriptor is just an array of supported patterns which will be 981 * iterated by nand_op_parser_exec_op() everytime it tries to execute an 982 * NAND operation (or tries to determine if a specific operation is supported). 983 * 984 * It is worth mentioning that patterns will be tested in their declaration 985 * order, and the first match will be taken, so it's important to order patterns 986 * appropriately so that simple/inefficient patterns are placed at the end of 987 * the list. Usually, this is where you put single instruction patterns. 988 */ 989struct nand_op_parser { 990 const struct nand_op_parser_pattern *patterns; 991 unsigned int npatterns; 992}; 993 994#define NAND_OP_PARSER(...) \ 995 { \ 996 .patterns = (const struct nand_op_parser_pattern[]) { __VA_ARGS__ }, \ 997 .npatterns = sizeof((struct nand_op_parser_pattern[]) { __VA_ARGS__ }) / \ 998 sizeof(struct nand_op_parser_pattern), \ 999 } 1000 1001/** 1002 * struct nand_operation - NAND operation descriptor 1003 * @cs: the CS line to select for this NAND operation 1004 * @instrs: array of instructions to execute 1005 * @ninstrs: length of the @instrs array 1006 * 1007 * The actual operation structure that will be passed to chip->exec_op(). 1008 */ 1009struct nand_operation { 1010 unsigned int cs; 1011 const struct nand_op_instr *instrs; 1012 unsigned int ninstrs; 1013}; 1014 1015#define NAND_OPERATION(_cs, _instrs) \ 1016 { \ 1017 .cs = _cs, \ 1018 .instrs = _instrs, \ 1019 .ninstrs = ARRAY_SIZE(_instrs), \ 1020 } 1021 1022int nand_op_parser_exec_op(struct nand_chip *chip, 1023 const struct nand_op_parser *parser, 1024 const struct nand_operation *op, bool check_only); 1025 1026static inline void nand_op_trace(const char *prefix, 1027 const struct nand_op_instr *instr) 1028{ 1029#if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG) 1030 switch (instr->type) { 1031 case NAND_OP_CMD_INSTR: 1032 pr_debug("%sCMD [0x%02x]\n", prefix, 1033 instr->ctx.cmd.opcode); 1034 break; 1035 case NAND_OP_ADDR_INSTR: 1036 pr_debug("%sADDR [%d cyc: %*ph]\n", prefix, 1037 instr->ctx.addr.naddrs, 1038 instr->ctx.addr.naddrs < 64 ? 1039 instr->ctx.addr.naddrs : 64, 1040 instr->ctx.addr.addrs); 1041 break; 1042 case NAND_OP_DATA_IN_INSTR: 1043 pr_debug("%sDATA_IN [%d B%s]\n", prefix, 1044 instr->ctx.data.len, 1045 instr->ctx.data.force_8bit ? 1046 ", force 8-bit" : ""); 1047 break; 1048 case NAND_OP_DATA_OUT_INSTR: 1049 pr_debug("%sDATA_OUT [%d B%s]\n", prefix, 1050 instr->ctx.data.len, 1051 instr->ctx.data.force_8bit ? 1052 ", force 8-bit" : ""); 1053 break; 1054 case NAND_OP_WAITRDY_INSTR: 1055 pr_debug("%sWAITRDY [max %d ms]\n", prefix, 1056 instr->ctx.waitrdy.timeout_ms); 1057 break; 1058 } 1059#endif 1060} 1061 1062/** 1063 * struct nand_controller_ops - Controller operations 1064 * 1065 * @attach_chip: this method is called after the NAND detection phase after 1066 * flash ID and MTD fields such as erase size, page size and OOB 1067 * size have been set up. ECC requirements are available if 1068 * provided by the NAND chip or device tree. Typically used to 1069 * choose the appropriate ECC configuration and allocate 1070 * associated resources. 1071 * This hook is optional. 1072 * @detach_chip: free all resources allocated/claimed in 1073 * nand_controller_ops->attach_chip(). 1074 * This hook is optional. 1075 * @exec_op: controller specific method to execute NAND operations. 1076 * This method replaces chip->legacy.cmdfunc(), 1077 * chip->legacy.{read,write}_{buf,byte,word}(), 1078 * chip->legacy.dev_ready() and chip->legacy.waitfunc(). 1079 * @setup_interface: setup the data interface and timing. If chipnr is set to 1080 * %NAND_DATA_IFACE_CHECK_ONLY this means the configuration 1081 * should not be applied but only checked. 1082 * This hook is optional. 1083 */ 1084struct nand_controller_ops { 1085 int (*attach_chip)(struct nand_chip *chip); 1086 void (*detach_chip)(struct nand_chip *chip); 1087 int (*exec_op)(struct nand_chip *chip, 1088 const struct nand_operation *op, 1089 bool check_only); 1090 int (*setup_interface)(struct nand_chip *chip, int chipnr, 1091 const struct nand_interface_config *conf); 1092}; 1093 1094/** 1095 * struct nand_controller - Structure used to describe a NAND controller 1096 * 1097 * @lock: lock used to serialize accesses to the NAND controller 1098 * @ops: NAND controller operations. 1099 * @supported_op: NAND controller known-to-be-supported operations, 1100 * only writable by the core after initial checking. 1101 * @supported_op.data_only_read: The controller supports reading more data from 1102 * the bus without restarting an entire read operation nor 1103 * changing the column. 1104 * @supported_op.cont_read: The controller supports sequential cache reads. 1105 */ 1106struct nand_controller { 1107 struct mutex lock; 1108 const struct nand_controller_ops *ops; 1109 struct { 1110 unsigned int data_only_read: 1; 1111 unsigned int cont_read: 1; 1112 } supported_op; 1113}; 1114 1115static inline void nand_controller_init(struct nand_controller *nfc) 1116{ 1117 mutex_init(&nfc->lock); 1118} 1119 1120/** 1121 * struct nand_legacy - NAND chip legacy fields/hooks 1122 * @IO_ADDR_R: address to read the 8 I/O lines of the flash device 1123 * @IO_ADDR_W: address to write the 8 I/O lines of the flash device 1124 * @select_chip: select/deselect a specific target/die 1125 * @read_byte: read one byte from the chip 1126 * @write_byte: write a single byte to the chip on the low 8 I/O lines 1127 * @write_buf: write data from the buffer to the chip 1128 * @read_buf: read data from the chip into the buffer 1129 * @cmd_ctrl: hardware specific function for controlling ALE/CLE/nCE. Also used 1130 * to write command and address 1131 * @cmdfunc: hardware specific function for writing commands to the chip. 1132 * @dev_ready: hardware specific function for accessing device ready/busy line. 1133 * If set to NULL no access to ready/busy is available and the 1134 * ready/busy information is read from the chip status register. 1135 * @waitfunc: hardware specific function for wait on ready. 1136 * @block_bad: check if a block is bad, using OOB markers 1137 * @block_markbad: mark a block bad 1138 * @set_features: set the NAND chip features 1139 * @get_features: get the NAND chip features 1140 * @chip_delay: chip dependent delay for transferring data from array to read 1141 * regs (tR). 1142 * @dummy_controller: dummy controller implementation for drivers that can 1143 * only control a single chip 1144 * 1145 * If you look at this structure you're already wrong. These fields/hooks are 1146 * all deprecated. 1147 */ 1148struct nand_legacy { 1149 void __iomem *IO_ADDR_R; 1150 void __iomem *IO_ADDR_W; 1151 void (*select_chip)(struct nand_chip *chip, int cs); 1152 u8 (*read_byte)(struct nand_chip *chip); 1153 void (*write_byte)(struct nand_chip *chip, u8 byte); 1154 void (*write_buf)(struct nand_chip *chip, const u8 *buf, int len); 1155 void (*read_buf)(struct nand_chip *chip, u8 *buf, int len); 1156 void (*cmd_ctrl)(struct nand_chip *chip, int dat, unsigned int ctrl); 1157 void (*cmdfunc)(struct nand_chip *chip, unsigned command, int column, 1158 int page_addr); 1159 int (*dev_ready)(struct nand_chip *chip); 1160 int (*waitfunc)(struct nand_chip *chip); 1161 int (*block_bad)(struct nand_chip *chip, loff_t ofs); 1162 int (*block_markbad)(struct nand_chip *chip, loff_t ofs); 1163 int (*set_features)(struct nand_chip *chip, int feature_addr, 1164 u8 *subfeature_para); 1165 int (*get_features)(struct nand_chip *chip, int feature_addr, 1166 u8 *subfeature_para); 1167 int chip_delay; 1168 struct nand_controller dummy_controller; 1169}; 1170 1171/** 1172 * struct nand_chip_ops - NAND chip operations 1173 * @suspend: Suspend operation 1174 * @resume: Resume operation 1175 * @lock_area: Lock operation 1176 * @unlock_area: Unlock operation 1177 * @setup_read_retry: Set the read-retry mode (mostly needed for MLC NANDs) 1178 * @choose_interface_config: Choose the best interface configuration 1179 */ 1180struct nand_chip_ops { 1181 int (*suspend)(struct nand_chip *chip); 1182 void (*resume)(struct nand_chip *chip); 1183 int (*lock_area)(struct nand_chip *chip, loff_t ofs, uint64_t len); 1184 int (*unlock_area)(struct nand_chip *chip, loff_t ofs, uint64_t len); 1185 int (*setup_read_retry)(struct nand_chip *chip, int retry_mode); 1186 int (*choose_interface_config)(struct nand_chip *chip, 1187 struct nand_interface_config *iface); 1188}; 1189 1190/** 1191 * struct nand_manufacturer - NAND manufacturer structure 1192 * @desc: The manufacturer description 1193 * @priv: Private information for the manufacturer driver 1194 */ 1195struct nand_manufacturer { 1196 const struct nand_manufacturer_desc *desc; 1197 void *priv; 1198}; 1199 1200/** 1201 * struct nand_secure_region - NAND secure region structure 1202 * @offset: Offset of the start of the secure region 1203 * @size: Size of the secure region 1204 */ 1205struct nand_secure_region { 1206 u64 offset; 1207 u64 size; 1208}; 1209 1210/** 1211 * struct nand_chip - NAND Private Flash Chip Data 1212 * @base: Inherit from the generic NAND device 1213 * @id: Holds NAND ID 1214 * @parameters: Holds generic parameters under an easily readable form 1215 * @manufacturer: Manufacturer information 1216 * @ops: NAND chip operations 1217 * @legacy: All legacy fields/hooks. If you develop a new driver, don't even try 1218 * to use any of these fields/hooks, and if you're modifying an 1219 * existing driver that is using those fields/hooks, you should 1220 * consider reworking the driver and avoid using them. 1221 * @options: Various chip options. They can partly be set to inform nand_scan 1222 * about special functionality. See the defines for further 1223 * explanation. 1224 * @current_interface_config: The currently used NAND interface configuration 1225 * @best_interface_config: The best NAND interface configuration which fits both 1226 * the NAND chip and NAND controller constraints. If 1227 * unset, the default reset interface configuration must 1228 * be used. 1229 * @bbt_erase_shift: Number of address bits in a bbt entry 1230 * @bbt_options: Bad block table specific options. All options used here must 1231 * come from bbm.h. By default, these options will be copied to 1232 * the appropriate nand_bbt_descr's. 1233 * @badblockpos: Bad block marker position in the oob area 1234 * @badblockbits: Minimum number of set bits in a good block's bad block marker 1235 * position; i.e., BBM = 11110111b is good when badblockbits = 7 1236 * @bbt_td: Bad block table descriptor for flash lookup 1237 * @bbt_md: Bad block table mirror descriptor 1238 * @badblock_pattern: Bad block scan pattern used for initial bad block scan 1239 * @bbt: Bad block table pointer 1240 * @page_shift: Number of address bits in a page (column address bits) 1241 * @phys_erase_shift: Number of address bits in a physical eraseblock 1242 * @chip_shift: Number of address bits in one chip 1243 * @pagemask: Page number mask = number of (pages / chip) - 1 1244 * @subpagesize: Holds the subpagesize 1245 * @data_buf: Buffer for data, size is (page size + oobsize) 1246 * @oob_poi: pointer on the OOB area covered by data_buf 1247 * @pagecache: Structure containing page cache related fields 1248 * @pagecache.bitflips: Number of bitflips of the cached page 1249 * @pagecache.page: Page number currently in the cache. -1 means no page is 1250 * currently cached 1251 * @buf_align: Minimum buffer alignment required by a platform 1252 * @lock: Lock protecting the suspended field. Also used to serialize accesses 1253 * to the NAND device 1254 * @suspended: Set to 1 when the device is suspended, 0 when it's not 1255 * @resume_wq: wait queue to sleep if rawnand is in suspended state. 1256 * @cur_cs: Currently selected target. -1 means no target selected, otherwise we 1257 * should always have cur_cs >= 0 && cur_cs < nanddev_ntargets(). 1258 * NAND Controller drivers should not modify this value, but they're 1259 * allowed to read it. 1260 * @read_retries: The number of read retry modes supported 1261 * @secure_regions: Structure containing the secure regions info 1262 * @nr_secure_regions: Number of secure regions 1263 * @cont_read: Sequential page read internals 1264 * @cont_read.ongoing: Whether a continuous read is ongoing or not 1265 * @cont_read.first_page: Start of the continuous read operation 1266 * @cont_read.last_page: End of the continuous read operation 1267 * @controller: The hardware controller structure which is shared among multiple 1268 * independent devices 1269 * @ecc: The ECC controller structure 1270 * @priv: Chip private data 1271 */ 1272struct nand_chip { 1273 struct nand_device base; 1274 struct nand_id id; 1275 struct nand_parameters parameters; 1276 struct nand_manufacturer manufacturer; 1277 struct nand_chip_ops ops; 1278 struct nand_legacy legacy; 1279 unsigned int options; 1280 1281 /* Data interface */ 1282 const struct nand_interface_config *current_interface_config; 1283 struct nand_interface_config *best_interface_config; 1284 1285 /* Bad block information */ 1286 unsigned int bbt_erase_shift; 1287 unsigned int bbt_options; 1288 unsigned int badblockpos; 1289 unsigned int badblockbits; 1290 struct nand_bbt_descr *bbt_td; 1291 struct nand_bbt_descr *bbt_md; 1292 struct nand_bbt_descr *badblock_pattern; 1293 u8 *bbt; 1294 1295 /* Device internal layout */ 1296 unsigned int page_shift; 1297 unsigned int phys_erase_shift; 1298 unsigned int chip_shift; 1299 unsigned int pagemask; 1300 unsigned int subpagesize; 1301 1302 /* Buffers */ 1303 u8 *data_buf; 1304 u8 *oob_poi; 1305 struct { 1306 unsigned int bitflips; 1307 int page; 1308 } pagecache; 1309 unsigned long buf_align; 1310 1311 /* Internals */ 1312 struct mutex lock; 1313 unsigned int suspended : 1; 1314 wait_queue_head_t resume_wq; 1315 int cur_cs; 1316 int read_retries; 1317 struct nand_secure_region *secure_regions; 1318 u8 nr_secure_regions; 1319 struct { 1320 bool ongoing; 1321 unsigned int first_page; 1322 unsigned int last_page; 1323 } cont_read; 1324 1325 /* Externals */ 1326 struct nand_controller *controller; 1327 struct nand_ecc_ctrl ecc; 1328 void *priv; 1329}; 1330 1331static inline struct nand_chip *mtd_to_nand(struct mtd_info *mtd) 1332{ 1333 return container_of(mtd, struct nand_chip, base.mtd); 1334} 1335 1336static inline struct mtd_info *nand_to_mtd(struct nand_chip *chip) 1337{ 1338 return &chip->base.mtd; 1339} 1340 1341static inline void *nand_get_controller_data(struct nand_chip *chip) 1342{ 1343 return chip->priv; 1344} 1345 1346static inline void nand_set_controller_data(struct nand_chip *chip, void *priv) 1347{ 1348 chip->priv = priv; 1349} 1350 1351static inline void nand_set_manufacturer_data(struct nand_chip *chip, 1352 void *priv) 1353{ 1354 chip->manufacturer.priv = priv; 1355} 1356 1357static inline void *nand_get_manufacturer_data(struct nand_chip *chip) 1358{ 1359 return chip->manufacturer.priv; 1360} 1361 1362static inline void nand_set_flash_node(struct nand_chip *chip, 1363 struct device_node *np) 1364{ 1365 mtd_set_of_node(nand_to_mtd(chip), np); 1366} 1367 1368static inline struct device_node *nand_get_flash_node(struct nand_chip *chip) 1369{ 1370 return mtd_get_of_node(nand_to_mtd(chip)); 1371} 1372 1373/** 1374 * nand_get_interface_config - Retrieve the current interface configuration 1375 * of a NAND chip 1376 * @chip: The NAND chip 1377 */ 1378static inline const struct nand_interface_config * 1379nand_get_interface_config(struct nand_chip *chip) 1380{ 1381 return chip->current_interface_config; 1382} 1383 1384/* 1385 * A helper for defining older NAND chips where the second ID byte fully 1386 * defined the chip, including the geometry (chip size, eraseblock size, page 1387 * size). All these chips have 512 bytes NAND page size. 1388 */ 1389#define LEGACY_ID_NAND(nm, devid, chipsz, erasesz, opts) \ 1390 { .name = (nm), {{ .dev_id = (devid) }}, .pagesize = 512, \ 1391 .chipsize = (chipsz), .erasesize = (erasesz), .options = (opts) } 1392 1393/* 1394 * A helper for defining newer chips which report their page size and 1395 * eraseblock size via the extended ID bytes. 1396 * 1397 * The real difference between LEGACY_ID_NAND and EXTENDED_ID_NAND is that with 1398 * EXTENDED_ID_NAND, manufacturers overloaded the same device ID so that the 1399 * device ID now only represented a particular total chip size (and voltage, 1400 * buswidth), and the page size, eraseblock size, and OOB size could vary while 1401 * using the same device ID. 1402 */ 1403#define EXTENDED_ID_NAND(nm, devid, chipsz, opts) \ 1404 { .name = (nm), {{ .dev_id = (devid) }}, .chipsize = (chipsz), \ 1405 .options = (opts) } 1406 1407#define NAND_ECC_INFO(_strength, _step) \ 1408 { .strength_ds = (_strength), .step_ds = (_step) } 1409#define NAND_ECC_STRENGTH(type) ((type)->ecc.strength_ds) 1410#define NAND_ECC_STEP(type) ((type)->ecc.step_ds) 1411 1412/** 1413 * struct nand_flash_dev - NAND Flash Device ID Structure 1414 * @name: a human-readable name of the NAND chip 1415 * @dev_id: the device ID (the second byte of the full chip ID array) 1416 * @mfr_id: manufacturer ID part of the full chip ID array (refers the same 1417 * memory address as ``id[0]``) 1418 * @dev_id: device ID part of the full chip ID array (refers the same memory 1419 * address as ``id[1]``) 1420 * @id: full device ID array 1421 * @pagesize: size of the NAND page in bytes; if 0, then the real page size (as 1422 * well as the eraseblock size) is determined from the extended NAND 1423 * chip ID array) 1424 * @chipsize: total chip size in MiB 1425 * @erasesize: eraseblock size in bytes (determined from the extended ID if 0) 1426 * @options: stores various chip bit options 1427 * @id_len: The valid length of the @id. 1428 * @oobsize: OOB size 1429 * @ecc: ECC correctability and step information from the datasheet. 1430 * @ecc.strength_ds: The ECC correctability from the datasheet, same as the 1431 * @ecc_strength_ds in nand_chip{}. 1432 * @ecc.step_ds: The ECC step required by the @ecc.strength_ds, same as the 1433 * @ecc_step_ds in nand_chip{}, also from the datasheet. 1434 * For example, the "4bit ECC for each 512Byte" can be set with 1435 * NAND_ECC_INFO(4, 512). 1436 */ 1437struct nand_flash_dev { 1438 char *name; 1439 union { 1440 struct { 1441 uint8_t mfr_id; 1442 uint8_t dev_id; 1443 }; 1444 uint8_t id[NAND_MAX_ID_LEN]; 1445 }; 1446 unsigned int pagesize; 1447 unsigned int chipsize; 1448 unsigned int erasesize; 1449 unsigned int options; 1450 uint16_t id_len; 1451 uint16_t oobsize; 1452 struct { 1453 uint16_t strength_ds; 1454 uint16_t step_ds; 1455 } ecc; 1456}; 1457 1458int nand_create_bbt(struct nand_chip *chip); 1459 1460/* 1461 * Check if it is a SLC nand. 1462 * The !nand_is_slc() can be used to check the MLC/TLC nand chips. 1463 * We do not distinguish the MLC and TLC now. 1464 */ 1465static inline bool nand_is_slc(struct nand_chip *chip) 1466{ 1467 WARN(nanddev_bits_per_cell(&chip->base) == 0, 1468 "chip->bits_per_cell is used uninitialized\n"); 1469 return nanddev_bits_per_cell(&chip->base) == 1; 1470} 1471 1472/** 1473 * nand_opcode_8bits - Check if the opcode's address should be sent only on the 1474 * lower 8 bits 1475 * @command: opcode to check 1476 */ 1477static inline int nand_opcode_8bits(unsigned int command) 1478{ 1479 switch (command) { 1480 case NAND_CMD_READID: 1481 case NAND_CMD_PARAM: 1482 case NAND_CMD_GET_FEATURES: 1483 case NAND_CMD_SET_FEATURES: 1484 return 1; 1485 default: 1486 break; 1487 } 1488 return 0; 1489} 1490 1491int rawnand_sw_hamming_init(struct nand_chip *chip); 1492int rawnand_sw_hamming_calculate(struct nand_chip *chip, 1493 const unsigned char *buf, 1494 unsigned char *code); 1495int rawnand_sw_hamming_correct(struct nand_chip *chip, 1496 unsigned char *buf, 1497 unsigned char *read_ecc, 1498 unsigned char *calc_ecc); 1499void rawnand_sw_hamming_cleanup(struct nand_chip *chip); 1500int rawnand_sw_bch_init(struct nand_chip *chip); 1501int rawnand_sw_bch_correct(struct nand_chip *chip, unsigned char *buf, 1502 unsigned char *read_ecc, unsigned char *calc_ecc); 1503void rawnand_sw_bch_cleanup(struct nand_chip *chip); 1504 1505int nand_check_erased_ecc_chunk(void *data, int datalen, 1506 void *ecc, int ecclen, 1507 void *extraoob, int extraooblen, 1508 int threshold); 1509 1510int nand_ecc_choose_conf(struct nand_chip *chip, 1511 const struct nand_ecc_caps *caps, int oobavail); 1512 1513/* Default write_oob implementation */ 1514int nand_write_oob_std(struct nand_chip *chip, int page); 1515 1516/* Default read_oob implementation */ 1517int nand_read_oob_std(struct nand_chip *chip, int page); 1518 1519/* Stub used by drivers that do not support GET/SET FEATURES operations */ 1520int nand_get_set_features_notsupp(struct nand_chip *chip, int addr, 1521 u8 *subfeature_param); 1522 1523/* read_page_raw implementations */ 1524int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required, 1525 int page); 1526int nand_monolithic_read_page_raw(struct nand_chip *chip, uint8_t *buf, 1527 int oob_required, int page); 1528 1529/* write_page_raw implementations */ 1530int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf, 1531 int oob_required, int page); 1532int nand_monolithic_write_page_raw(struct nand_chip *chip, const uint8_t *buf, 1533 int oob_required, int page); 1534 1535/* Reset and initialize a NAND device */ 1536int nand_reset(struct nand_chip *chip, int chipnr); 1537 1538/* NAND operation helpers */ 1539int nand_reset_op(struct nand_chip *chip); 1540int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf, 1541 unsigned int len); 1542int nand_status_op(struct nand_chip *chip, u8 *status); 1543int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock); 1544int nand_read_page_op(struct nand_chip *chip, unsigned int page, 1545 unsigned int offset_in_page, void *buf, unsigned int len); 1546int nand_change_read_column_op(struct nand_chip *chip, 1547 unsigned int offset_in_page, void *buf, 1548 unsigned int len, bool force_8bit); 1549int nand_read_oob_op(struct nand_chip *chip, unsigned int page, 1550 unsigned int offset_in_page, void *buf, unsigned int len); 1551int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page, 1552 unsigned int offset_in_page, const void *buf, 1553 unsigned int len); 1554int nand_prog_page_end_op(struct nand_chip *chip); 1555int nand_prog_page_op(struct nand_chip *chip, unsigned int page, 1556 unsigned int offset_in_page, const void *buf, 1557 unsigned int len); 1558int nand_change_write_column_op(struct nand_chip *chip, 1559 unsigned int offset_in_page, const void *buf, 1560 unsigned int len, bool force_8bit); 1561int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len, 1562 bool force_8bit, bool check_only); 1563int nand_write_data_op(struct nand_chip *chip, const void *buf, 1564 unsigned int len, bool force_8bit); 1565int nand_read_page_hwecc_oob_first(struct nand_chip *chip, uint8_t *buf, 1566 int oob_required, int page); 1567 1568/* Scan and identify a NAND device */ 1569int nand_scan_with_ids(struct nand_chip *chip, unsigned int max_chips, 1570 struct nand_flash_dev *ids); 1571 1572static inline int nand_scan(struct nand_chip *chip, unsigned int max_chips) 1573{ 1574 return nand_scan_with_ids(chip, max_chips, NULL); 1575} 1576 1577/* Internal helper for board drivers which need to override command function */ 1578void nand_wait_ready(struct nand_chip *chip); 1579 1580/* 1581 * Free resources held by the NAND device, must be called on error after a 1582 * sucessful nand_scan(). 1583 */ 1584void nand_cleanup(struct nand_chip *chip); 1585 1586/* 1587 * External helper for controller drivers that have to implement the WAITRDY 1588 * instruction and have no physical pin to check it. 1589 */ 1590int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms); 1591int nand_gpio_waitrdy(struct nand_chip *chip, struct gpio_desc *gpiod, 1592 unsigned long timeout_ms); 1593 1594/* Select/deselect a NAND target. */ 1595void nand_select_target(struct nand_chip *chip, unsigned int cs); 1596void nand_deselect_target(struct nand_chip *chip); 1597 1598/* Bitops */ 1599void nand_extract_bits(u8 *dst, unsigned int dst_off, const u8 *src, 1600 unsigned int src_off, unsigned int nbits); 1601 1602/** 1603 * nand_get_data_buf() - Get the internal page buffer 1604 * @chip: NAND chip object 1605 * 1606 * Returns the pre-allocated page buffer after invalidating the cache. This 1607 * function should be used by drivers that do not want to allocate their own 1608 * bounce buffer and still need such a buffer for specific operations (most 1609 * commonly when reading OOB data only). 1610 * 1611 * Be careful to never call this function in the write/write_oob path, because 1612 * the core may have placed the data to be written out in this buffer. 1613 * 1614 * Return: pointer to the page cache buffer 1615 */ 1616static inline void *nand_get_data_buf(struct nand_chip *chip) 1617{ 1618 chip->pagecache.page = -1; 1619 1620 return chip->data_buf; 1621} 1622 1623/* Parse the gpio-cs property */ 1624int rawnand_dt_parse_gpio_cs(struct device *dev, struct gpio_desc ***cs_array, 1625 unsigned int *ncs_array); 1626 1627#endif /* __LINUX_MTD_RAWNAND_H */