at v6.4 65 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_MMZONE_H 3#define _LINUX_MMZONE_H 4 5#ifndef __ASSEMBLY__ 6#ifndef __GENERATING_BOUNDS_H 7 8#include <linux/spinlock.h> 9#include <linux/list.h> 10#include <linux/list_nulls.h> 11#include <linux/wait.h> 12#include <linux/bitops.h> 13#include <linux/cache.h> 14#include <linux/threads.h> 15#include <linux/numa.h> 16#include <linux/init.h> 17#include <linux/seqlock.h> 18#include <linux/nodemask.h> 19#include <linux/pageblock-flags.h> 20#include <linux/page-flags-layout.h> 21#include <linux/atomic.h> 22#include <linux/mm_types.h> 23#include <linux/page-flags.h> 24#include <linux/local_lock.h> 25#include <asm/page.h> 26 27/* Free memory management - zoned buddy allocator. */ 28#ifndef CONFIG_ARCH_FORCE_MAX_ORDER 29#define MAX_ORDER 10 30#else 31#define MAX_ORDER CONFIG_ARCH_FORCE_MAX_ORDER 32#endif 33#define MAX_ORDER_NR_PAGES (1 << MAX_ORDER) 34 35#define IS_MAX_ORDER_ALIGNED(pfn) IS_ALIGNED(pfn, MAX_ORDER_NR_PAGES) 36 37/* 38 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed 39 * costly to service. That is between allocation orders which should 40 * coalesce naturally under reasonable reclaim pressure and those which 41 * will not. 42 */ 43#define PAGE_ALLOC_COSTLY_ORDER 3 44 45enum migratetype { 46 MIGRATE_UNMOVABLE, 47 MIGRATE_MOVABLE, 48 MIGRATE_RECLAIMABLE, 49 MIGRATE_PCPTYPES, /* the number of types on the pcp lists */ 50 MIGRATE_HIGHATOMIC = MIGRATE_PCPTYPES, 51#ifdef CONFIG_CMA 52 /* 53 * MIGRATE_CMA migration type is designed to mimic the way 54 * ZONE_MOVABLE works. Only movable pages can be allocated 55 * from MIGRATE_CMA pageblocks and page allocator never 56 * implicitly change migration type of MIGRATE_CMA pageblock. 57 * 58 * The way to use it is to change migratetype of a range of 59 * pageblocks to MIGRATE_CMA which can be done by 60 * __free_pageblock_cma() function. 61 */ 62 MIGRATE_CMA, 63#endif 64#ifdef CONFIG_MEMORY_ISOLATION 65 MIGRATE_ISOLATE, /* can't allocate from here */ 66#endif 67 MIGRATE_TYPES 68}; 69 70/* In mm/page_alloc.c; keep in sync also with show_migration_types() there */ 71extern const char * const migratetype_names[MIGRATE_TYPES]; 72 73#ifdef CONFIG_CMA 74# define is_migrate_cma(migratetype) unlikely((migratetype) == MIGRATE_CMA) 75# define is_migrate_cma_page(_page) (get_pageblock_migratetype(_page) == MIGRATE_CMA) 76#else 77# define is_migrate_cma(migratetype) false 78# define is_migrate_cma_page(_page) false 79#endif 80 81static inline bool is_migrate_movable(int mt) 82{ 83 return is_migrate_cma(mt) || mt == MIGRATE_MOVABLE; 84} 85 86/* 87 * Check whether a migratetype can be merged with another migratetype. 88 * 89 * It is only mergeable when it can fall back to other migratetypes for 90 * allocation. See fallbacks[MIGRATE_TYPES][3] in page_alloc.c. 91 */ 92static inline bool migratetype_is_mergeable(int mt) 93{ 94 return mt < MIGRATE_PCPTYPES; 95} 96 97#define for_each_migratetype_order(order, type) \ 98 for (order = 0; order <= MAX_ORDER; order++) \ 99 for (type = 0; type < MIGRATE_TYPES; type++) 100 101extern int page_group_by_mobility_disabled; 102 103#define MIGRATETYPE_MASK ((1UL << PB_migratetype_bits) - 1) 104 105#define get_pageblock_migratetype(page) \ 106 get_pfnblock_flags_mask(page, page_to_pfn(page), MIGRATETYPE_MASK) 107 108struct free_area { 109 struct list_head free_list[MIGRATE_TYPES]; 110 unsigned long nr_free; 111}; 112 113struct pglist_data; 114 115#ifdef CONFIG_NUMA 116enum numa_stat_item { 117 NUMA_HIT, /* allocated in intended node */ 118 NUMA_MISS, /* allocated in non intended node */ 119 NUMA_FOREIGN, /* was intended here, hit elsewhere */ 120 NUMA_INTERLEAVE_HIT, /* interleaver preferred this zone */ 121 NUMA_LOCAL, /* allocation from local node */ 122 NUMA_OTHER, /* allocation from other node */ 123 NR_VM_NUMA_EVENT_ITEMS 124}; 125#else 126#define NR_VM_NUMA_EVENT_ITEMS 0 127#endif 128 129enum zone_stat_item { 130 /* First 128 byte cacheline (assuming 64 bit words) */ 131 NR_FREE_PAGES, 132 NR_ZONE_LRU_BASE, /* Used only for compaction and reclaim retry */ 133 NR_ZONE_INACTIVE_ANON = NR_ZONE_LRU_BASE, 134 NR_ZONE_ACTIVE_ANON, 135 NR_ZONE_INACTIVE_FILE, 136 NR_ZONE_ACTIVE_FILE, 137 NR_ZONE_UNEVICTABLE, 138 NR_ZONE_WRITE_PENDING, /* Count of dirty, writeback and unstable pages */ 139 NR_MLOCK, /* mlock()ed pages found and moved off LRU */ 140 /* Second 128 byte cacheline */ 141 NR_BOUNCE, 142#if IS_ENABLED(CONFIG_ZSMALLOC) 143 NR_ZSPAGES, /* allocated in zsmalloc */ 144#endif 145 NR_FREE_CMA_PAGES, 146 NR_VM_ZONE_STAT_ITEMS }; 147 148enum node_stat_item { 149 NR_LRU_BASE, 150 NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */ 151 NR_ACTIVE_ANON, /* " " " " " */ 152 NR_INACTIVE_FILE, /* " " " " " */ 153 NR_ACTIVE_FILE, /* " " " " " */ 154 NR_UNEVICTABLE, /* " " " " " */ 155 NR_SLAB_RECLAIMABLE_B, 156 NR_SLAB_UNRECLAIMABLE_B, 157 NR_ISOLATED_ANON, /* Temporary isolated pages from anon lru */ 158 NR_ISOLATED_FILE, /* Temporary isolated pages from file lru */ 159 WORKINGSET_NODES, 160 WORKINGSET_REFAULT_BASE, 161 WORKINGSET_REFAULT_ANON = WORKINGSET_REFAULT_BASE, 162 WORKINGSET_REFAULT_FILE, 163 WORKINGSET_ACTIVATE_BASE, 164 WORKINGSET_ACTIVATE_ANON = WORKINGSET_ACTIVATE_BASE, 165 WORKINGSET_ACTIVATE_FILE, 166 WORKINGSET_RESTORE_BASE, 167 WORKINGSET_RESTORE_ANON = WORKINGSET_RESTORE_BASE, 168 WORKINGSET_RESTORE_FILE, 169 WORKINGSET_NODERECLAIM, 170 NR_ANON_MAPPED, /* Mapped anonymous pages */ 171 NR_FILE_MAPPED, /* pagecache pages mapped into pagetables. 172 only modified from process context */ 173 NR_FILE_PAGES, 174 NR_FILE_DIRTY, 175 NR_WRITEBACK, 176 NR_WRITEBACK_TEMP, /* Writeback using temporary buffers */ 177 NR_SHMEM, /* shmem pages (included tmpfs/GEM pages) */ 178 NR_SHMEM_THPS, 179 NR_SHMEM_PMDMAPPED, 180 NR_FILE_THPS, 181 NR_FILE_PMDMAPPED, 182 NR_ANON_THPS, 183 NR_VMSCAN_WRITE, 184 NR_VMSCAN_IMMEDIATE, /* Prioritise for reclaim when writeback ends */ 185 NR_DIRTIED, /* page dirtyings since bootup */ 186 NR_WRITTEN, /* page writings since bootup */ 187 NR_THROTTLED_WRITTEN, /* NR_WRITTEN while reclaim throttled */ 188 NR_KERNEL_MISC_RECLAIMABLE, /* reclaimable non-slab kernel pages */ 189 NR_FOLL_PIN_ACQUIRED, /* via: pin_user_page(), gup flag: FOLL_PIN */ 190 NR_FOLL_PIN_RELEASED, /* pages returned via unpin_user_page() */ 191 NR_KERNEL_STACK_KB, /* measured in KiB */ 192#if IS_ENABLED(CONFIG_SHADOW_CALL_STACK) 193 NR_KERNEL_SCS_KB, /* measured in KiB */ 194#endif 195 NR_PAGETABLE, /* used for pagetables */ 196 NR_SECONDARY_PAGETABLE, /* secondary pagetables, e.g. KVM pagetables */ 197#ifdef CONFIG_SWAP 198 NR_SWAPCACHE, 199#endif 200#ifdef CONFIG_NUMA_BALANCING 201 PGPROMOTE_SUCCESS, /* promote successfully */ 202 PGPROMOTE_CANDIDATE, /* candidate pages to promote */ 203#endif 204 NR_VM_NODE_STAT_ITEMS 205}; 206 207/* 208 * Returns true if the item should be printed in THPs (/proc/vmstat 209 * currently prints number of anon, file and shmem THPs. But the item 210 * is charged in pages). 211 */ 212static __always_inline bool vmstat_item_print_in_thp(enum node_stat_item item) 213{ 214 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) 215 return false; 216 217 return item == NR_ANON_THPS || 218 item == NR_FILE_THPS || 219 item == NR_SHMEM_THPS || 220 item == NR_SHMEM_PMDMAPPED || 221 item == NR_FILE_PMDMAPPED; 222} 223 224/* 225 * Returns true if the value is measured in bytes (most vmstat values are 226 * measured in pages). This defines the API part, the internal representation 227 * might be different. 228 */ 229static __always_inline bool vmstat_item_in_bytes(int idx) 230{ 231 /* 232 * Global and per-node slab counters track slab pages. 233 * It's expected that changes are multiples of PAGE_SIZE. 234 * Internally values are stored in pages. 235 * 236 * Per-memcg and per-lruvec counters track memory, consumed 237 * by individual slab objects. These counters are actually 238 * byte-precise. 239 */ 240 return (idx == NR_SLAB_RECLAIMABLE_B || 241 idx == NR_SLAB_UNRECLAIMABLE_B); 242} 243 244/* 245 * We do arithmetic on the LRU lists in various places in the code, 246 * so it is important to keep the active lists LRU_ACTIVE higher in 247 * the array than the corresponding inactive lists, and to keep 248 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists. 249 * 250 * This has to be kept in sync with the statistics in zone_stat_item 251 * above and the descriptions in vmstat_text in mm/vmstat.c 252 */ 253#define LRU_BASE 0 254#define LRU_ACTIVE 1 255#define LRU_FILE 2 256 257enum lru_list { 258 LRU_INACTIVE_ANON = LRU_BASE, 259 LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE, 260 LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE, 261 LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE, 262 LRU_UNEVICTABLE, 263 NR_LRU_LISTS 264}; 265 266enum vmscan_throttle_state { 267 VMSCAN_THROTTLE_WRITEBACK, 268 VMSCAN_THROTTLE_ISOLATED, 269 VMSCAN_THROTTLE_NOPROGRESS, 270 VMSCAN_THROTTLE_CONGESTED, 271 NR_VMSCAN_THROTTLE, 272}; 273 274#define for_each_lru(lru) for (lru = 0; lru < NR_LRU_LISTS; lru++) 275 276#define for_each_evictable_lru(lru) for (lru = 0; lru <= LRU_ACTIVE_FILE; lru++) 277 278static inline bool is_file_lru(enum lru_list lru) 279{ 280 return (lru == LRU_INACTIVE_FILE || lru == LRU_ACTIVE_FILE); 281} 282 283static inline bool is_active_lru(enum lru_list lru) 284{ 285 return (lru == LRU_ACTIVE_ANON || lru == LRU_ACTIVE_FILE); 286} 287 288#define WORKINGSET_ANON 0 289#define WORKINGSET_FILE 1 290#define ANON_AND_FILE 2 291 292enum lruvec_flags { 293 LRUVEC_CONGESTED, /* lruvec has many dirty pages 294 * backed by a congested BDI 295 */ 296}; 297 298#endif /* !__GENERATING_BOUNDS_H */ 299 300/* 301 * Evictable pages are divided into multiple generations. The youngest and the 302 * oldest generation numbers, max_seq and min_seq, are monotonically increasing. 303 * They form a sliding window of a variable size [MIN_NR_GENS, MAX_NR_GENS]. An 304 * offset within MAX_NR_GENS, i.e., gen, indexes the LRU list of the 305 * corresponding generation. The gen counter in folio->flags stores gen+1 while 306 * a page is on one of lrugen->folios[]. Otherwise it stores 0. 307 * 308 * A page is added to the youngest generation on faulting. The aging needs to 309 * check the accessed bit at least twice before handing this page over to the 310 * eviction. The first check takes care of the accessed bit set on the initial 311 * fault; the second check makes sure this page hasn't been used since then. 312 * This process, AKA second chance, requires a minimum of two generations, 313 * hence MIN_NR_GENS. And to maintain ABI compatibility with the active/inactive 314 * LRU, e.g., /proc/vmstat, these two generations are considered active; the 315 * rest of generations, if they exist, are considered inactive. See 316 * lru_gen_is_active(). 317 * 318 * PG_active is always cleared while a page is on one of lrugen->folios[] so 319 * that the aging needs not to worry about it. And it's set again when a page 320 * considered active is isolated for non-reclaiming purposes, e.g., migration. 321 * See lru_gen_add_folio() and lru_gen_del_folio(). 322 * 323 * MAX_NR_GENS is set to 4 so that the multi-gen LRU can support twice the 324 * number of categories of the active/inactive LRU when keeping track of 325 * accesses through page tables. This requires order_base_2(MAX_NR_GENS+1) bits 326 * in folio->flags. 327 */ 328#define MIN_NR_GENS 2U 329#define MAX_NR_GENS 4U 330 331/* 332 * Each generation is divided into multiple tiers. A page accessed N times 333 * through file descriptors is in tier order_base_2(N). A page in the first tier 334 * (N=0,1) is marked by PG_referenced unless it was faulted in through page 335 * tables or read ahead. A page in any other tier (N>1) is marked by 336 * PG_referenced and PG_workingset. This implies a minimum of two tiers is 337 * supported without using additional bits in folio->flags. 338 * 339 * In contrast to moving across generations which requires the LRU lock, moving 340 * across tiers only involves atomic operations on folio->flags and therefore 341 * has a negligible cost in the buffered access path. In the eviction path, 342 * comparisons of refaulted/(evicted+protected) from the first tier and the 343 * rest infer whether pages accessed multiple times through file descriptors 344 * are statistically hot and thus worth protecting. 345 * 346 * MAX_NR_TIERS is set to 4 so that the multi-gen LRU can support twice the 347 * number of categories of the active/inactive LRU when keeping track of 348 * accesses through file descriptors. This uses MAX_NR_TIERS-2 spare bits in 349 * folio->flags. 350 */ 351#define MAX_NR_TIERS 4U 352 353#ifndef __GENERATING_BOUNDS_H 354 355struct lruvec; 356struct page_vma_mapped_walk; 357 358#define LRU_GEN_MASK ((BIT(LRU_GEN_WIDTH) - 1) << LRU_GEN_PGOFF) 359#define LRU_REFS_MASK ((BIT(LRU_REFS_WIDTH) - 1) << LRU_REFS_PGOFF) 360 361#ifdef CONFIG_LRU_GEN 362 363enum { 364 LRU_GEN_ANON, 365 LRU_GEN_FILE, 366}; 367 368enum { 369 LRU_GEN_CORE, 370 LRU_GEN_MM_WALK, 371 LRU_GEN_NONLEAF_YOUNG, 372 NR_LRU_GEN_CAPS 373}; 374 375#define MIN_LRU_BATCH BITS_PER_LONG 376#define MAX_LRU_BATCH (MIN_LRU_BATCH * 64) 377 378/* whether to keep historical stats from evicted generations */ 379#ifdef CONFIG_LRU_GEN_STATS 380#define NR_HIST_GENS MAX_NR_GENS 381#else 382#define NR_HIST_GENS 1U 383#endif 384 385/* 386 * The youngest generation number is stored in max_seq for both anon and file 387 * types as they are aged on an equal footing. The oldest generation numbers are 388 * stored in min_seq[] separately for anon and file types as clean file pages 389 * can be evicted regardless of swap constraints. 390 * 391 * Normally anon and file min_seq are in sync. But if swapping is constrained, 392 * e.g., out of swap space, file min_seq is allowed to advance and leave anon 393 * min_seq behind. 394 * 395 * The number of pages in each generation is eventually consistent and therefore 396 * can be transiently negative when reset_batch_size() is pending. 397 */ 398struct lru_gen_folio { 399 /* the aging increments the youngest generation number */ 400 unsigned long max_seq; 401 /* the eviction increments the oldest generation numbers */ 402 unsigned long min_seq[ANON_AND_FILE]; 403 /* the birth time of each generation in jiffies */ 404 unsigned long timestamps[MAX_NR_GENS]; 405 /* the multi-gen LRU lists, lazily sorted on eviction */ 406 struct list_head folios[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; 407 /* the multi-gen LRU sizes, eventually consistent */ 408 long nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; 409 /* the exponential moving average of refaulted */ 410 unsigned long avg_refaulted[ANON_AND_FILE][MAX_NR_TIERS]; 411 /* the exponential moving average of evicted+protected */ 412 unsigned long avg_total[ANON_AND_FILE][MAX_NR_TIERS]; 413 /* the first tier doesn't need protection, hence the minus one */ 414 unsigned long protected[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS - 1]; 415 /* can be modified without holding the LRU lock */ 416 atomic_long_t evicted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS]; 417 atomic_long_t refaulted[NR_HIST_GENS][ANON_AND_FILE][MAX_NR_TIERS]; 418 /* whether the multi-gen LRU is enabled */ 419 bool enabled; 420#ifdef CONFIG_MEMCG 421 /* the memcg generation this lru_gen_folio belongs to */ 422 u8 gen; 423 /* the list segment this lru_gen_folio belongs to */ 424 u8 seg; 425 /* per-node lru_gen_folio list for global reclaim */ 426 struct hlist_nulls_node list; 427#endif 428}; 429 430enum { 431 MM_LEAF_TOTAL, /* total leaf entries */ 432 MM_LEAF_OLD, /* old leaf entries */ 433 MM_LEAF_YOUNG, /* young leaf entries */ 434 MM_NONLEAF_TOTAL, /* total non-leaf entries */ 435 MM_NONLEAF_FOUND, /* non-leaf entries found in Bloom filters */ 436 MM_NONLEAF_ADDED, /* non-leaf entries added to Bloom filters */ 437 NR_MM_STATS 438}; 439 440/* double-buffering Bloom filters */ 441#define NR_BLOOM_FILTERS 2 442 443struct lru_gen_mm_state { 444 /* set to max_seq after each iteration */ 445 unsigned long seq; 446 /* where the current iteration continues after */ 447 struct list_head *head; 448 /* where the last iteration ended before */ 449 struct list_head *tail; 450 /* Bloom filters flip after each iteration */ 451 unsigned long *filters[NR_BLOOM_FILTERS]; 452 /* the mm stats for debugging */ 453 unsigned long stats[NR_HIST_GENS][NR_MM_STATS]; 454}; 455 456struct lru_gen_mm_walk { 457 /* the lruvec under reclaim */ 458 struct lruvec *lruvec; 459 /* unstable max_seq from lru_gen_folio */ 460 unsigned long max_seq; 461 /* the next address within an mm to scan */ 462 unsigned long next_addr; 463 /* to batch promoted pages */ 464 int nr_pages[MAX_NR_GENS][ANON_AND_FILE][MAX_NR_ZONES]; 465 /* to batch the mm stats */ 466 int mm_stats[NR_MM_STATS]; 467 /* total batched items */ 468 int batched; 469 bool can_swap; 470 bool force_scan; 471}; 472 473void lru_gen_init_lruvec(struct lruvec *lruvec); 474void lru_gen_look_around(struct page_vma_mapped_walk *pvmw); 475 476#ifdef CONFIG_MEMCG 477 478/* 479 * For each node, memcgs are divided into two generations: the old and the 480 * young. For each generation, memcgs are randomly sharded into multiple bins 481 * to improve scalability. For each bin, the hlist_nulls is virtually divided 482 * into three segments: the head, the tail and the default. 483 * 484 * An onlining memcg is added to the tail of a random bin in the old generation. 485 * The eviction starts at the head of a random bin in the old generation. The 486 * per-node memcg generation counter, whose reminder (mod MEMCG_NR_GENS) indexes 487 * the old generation, is incremented when all its bins become empty. 488 * 489 * There are four operations: 490 * 1. MEMCG_LRU_HEAD, which moves an memcg to the head of a random bin in its 491 * current generation (old or young) and updates its "seg" to "head"; 492 * 2. MEMCG_LRU_TAIL, which moves an memcg to the tail of a random bin in its 493 * current generation (old or young) and updates its "seg" to "tail"; 494 * 3. MEMCG_LRU_OLD, which moves an memcg to the head of a random bin in the old 495 * generation, updates its "gen" to "old" and resets its "seg" to "default"; 496 * 4. MEMCG_LRU_YOUNG, which moves an memcg to the tail of a random bin in the 497 * young generation, updates its "gen" to "young" and resets its "seg" to 498 * "default". 499 * 500 * The events that trigger the above operations are: 501 * 1. Exceeding the soft limit, which triggers MEMCG_LRU_HEAD; 502 * 2. The first attempt to reclaim an memcg below low, which triggers 503 * MEMCG_LRU_TAIL; 504 * 3. The first attempt to reclaim an memcg below reclaimable size threshold, 505 * which triggers MEMCG_LRU_TAIL; 506 * 4. The second attempt to reclaim an memcg below reclaimable size threshold, 507 * which triggers MEMCG_LRU_YOUNG; 508 * 5. Attempting to reclaim an memcg below min, which triggers MEMCG_LRU_YOUNG; 509 * 6. Finishing the aging on the eviction path, which triggers MEMCG_LRU_YOUNG; 510 * 7. Offlining an memcg, which triggers MEMCG_LRU_OLD. 511 * 512 * Note that memcg LRU only applies to global reclaim, and the round-robin 513 * incrementing of their max_seq counters ensures the eventual fairness to all 514 * eligible memcgs. For memcg reclaim, it still relies on mem_cgroup_iter(). 515 */ 516#define MEMCG_NR_GENS 2 517#define MEMCG_NR_BINS 8 518 519struct lru_gen_memcg { 520 /* the per-node memcg generation counter */ 521 unsigned long seq; 522 /* each memcg has one lru_gen_folio per node */ 523 unsigned long nr_memcgs[MEMCG_NR_GENS]; 524 /* per-node lru_gen_folio list for global reclaim */ 525 struct hlist_nulls_head fifo[MEMCG_NR_GENS][MEMCG_NR_BINS]; 526 /* protects the above */ 527 spinlock_t lock; 528}; 529 530void lru_gen_init_pgdat(struct pglist_data *pgdat); 531 532void lru_gen_init_memcg(struct mem_cgroup *memcg); 533void lru_gen_exit_memcg(struct mem_cgroup *memcg); 534void lru_gen_online_memcg(struct mem_cgroup *memcg); 535void lru_gen_offline_memcg(struct mem_cgroup *memcg); 536void lru_gen_release_memcg(struct mem_cgroup *memcg); 537void lru_gen_soft_reclaim(struct lruvec *lruvec); 538 539#else /* !CONFIG_MEMCG */ 540 541#define MEMCG_NR_GENS 1 542 543struct lru_gen_memcg { 544}; 545 546static inline void lru_gen_init_pgdat(struct pglist_data *pgdat) 547{ 548} 549 550#endif /* CONFIG_MEMCG */ 551 552#else /* !CONFIG_LRU_GEN */ 553 554static inline void lru_gen_init_pgdat(struct pglist_data *pgdat) 555{ 556} 557 558static inline void lru_gen_init_lruvec(struct lruvec *lruvec) 559{ 560} 561 562static inline void lru_gen_look_around(struct page_vma_mapped_walk *pvmw) 563{ 564} 565 566#ifdef CONFIG_MEMCG 567 568static inline void lru_gen_init_memcg(struct mem_cgroup *memcg) 569{ 570} 571 572static inline void lru_gen_exit_memcg(struct mem_cgroup *memcg) 573{ 574} 575 576static inline void lru_gen_online_memcg(struct mem_cgroup *memcg) 577{ 578} 579 580static inline void lru_gen_offline_memcg(struct mem_cgroup *memcg) 581{ 582} 583 584static inline void lru_gen_release_memcg(struct mem_cgroup *memcg) 585{ 586} 587 588static inline void lru_gen_soft_reclaim(struct lruvec *lruvec) 589{ 590} 591 592#endif /* CONFIG_MEMCG */ 593 594#endif /* CONFIG_LRU_GEN */ 595 596struct lruvec { 597 struct list_head lists[NR_LRU_LISTS]; 598 /* per lruvec lru_lock for memcg */ 599 spinlock_t lru_lock; 600 /* 601 * These track the cost of reclaiming one LRU - file or anon - 602 * over the other. As the observed cost of reclaiming one LRU 603 * increases, the reclaim scan balance tips toward the other. 604 */ 605 unsigned long anon_cost; 606 unsigned long file_cost; 607 /* Non-resident age, driven by LRU movement */ 608 atomic_long_t nonresident_age; 609 /* Refaults at the time of last reclaim cycle */ 610 unsigned long refaults[ANON_AND_FILE]; 611 /* Various lruvec state flags (enum lruvec_flags) */ 612 unsigned long flags; 613#ifdef CONFIG_LRU_GEN 614 /* evictable pages divided into generations */ 615 struct lru_gen_folio lrugen; 616 /* to concurrently iterate lru_gen_mm_list */ 617 struct lru_gen_mm_state mm_state; 618#endif 619#ifdef CONFIG_MEMCG 620 struct pglist_data *pgdat; 621#endif 622}; 623 624/* Isolate unmapped pages */ 625#define ISOLATE_UNMAPPED ((__force isolate_mode_t)0x2) 626/* Isolate for asynchronous migration */ 627#define ISOLATE_ASYNC_MIGRATE ((__force isolate_mode_t)0x4) 628/* Isolate unevictable pages */ 629#define ISOLATE_UNEVICTABLE ((__force isolate_mode_t)0x8) 630 631/* LRU Isolation modes. */ 632typedef unsigned __bitwise isolate_mode_t; 633 634enum zone_watermarks { 635 WMARK_MIN, 636 WMARK_LOW, 637 WMARK_HIGH, 638 WMARK_PROMO, 639 NR_WMARK 640}; 641 642/* 643 * One per migratetype for each PAGE_ALLOC_COSTLY_ORDER. One additional list 644 * for THP which will usually be GFP_MOVABLE. Even if it is another type, 645 * it should not contribute to serious fragmentation causing THP allocation 646 * failures. 647 */ 648#ifdef CONFIG_TRANSPARENT_HUGEPAGE 649#define NR_PCP_THP 1 650#else 651#define NR_PCP_THP 0 652#endif 653#define NR_LOWORDER_PCP_LISTS (MIGRATE_PCPTYPES * (PAGE_ALLOC_COSTLY_ORDER + 1)) 654#define NR_PCP_LISTS (NR_LOWORDER_PCP_LISTS + NR_PCP_THP) 655 656#define min_wmark_pages(z) (z->_watermark[WMARK_MIN] + z->watermark_boost) 657#define low_wmark_pages(z) (z->_watermark[WMARK_LOW] + z->watermark_boost) 658#define high_wmark_pages(z) (z->_watermark[WMARK_HIGH] + z->watermark_boost) 659#define wmark_pages(z, i) (z->_watermark[i] + z->watermark_boost) 660 661/* Fields and list protected by pagesets local_lock in page_alloc.c */ 662struct per_cpu_pages { 663 spinlock_t lock; /* Protects lists field */ 664 int count; /* number of pages in the list */ 665 int high; /* high watermark, emptying needed */ 666 int batch; /* chunk size for buddy add/remove */ 667 short free_factor; /* batch scaling factor during free */ 668#ifdef CONFIG_NUMA 669 short expire; /* When 0, remote pagesets are drained */ 670#endif 671 672 /* Lists of pages, one per migrate type stored on the pcp-lists */ 673 struct list_head lists[NR_PCP_LISTS]; 674} ____cacheline_aligned_in_smp; 675 676struct per_cpu_zonestat { 677#ifdef CONFIG_SMP 678 s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS]; 679 s8 stat_threshold; 680#endif 681#ifdef CONFIG_NUMA 682 /* 683 * Low priority inaccurate counters that are only folded 684 * on demand. Use a large type to avoid the overhead of 685 * folding during refresh_cpu_vm_stats. 686 */ 687 unsigned long vm_numa_event[NR_VM_NUMA_EVENT_ITEMS]; 688#endif 689}; 690 691struct per_cpu_nodestat { 692 s8 stat_threshold; 693 s8 vm_node_stat_diff[NR_VM_NODE_STAT_ITEMS]; 694}; 695 696#endif /* !__GENERATING_BOUNDS.H */ 697 698enum zone_type { 699 /* 700 * ZONE_DMA and ZONE_DMA32 are used when there are peripherals not able 701 * to DMA to all of the addressable memory (ZONE_NORMAL). 702 * On architectures where this area covers the whole 32 bit address 703 * space ZONE_DMA32 is used. ZONE_DMA is left for the ones with smaller 704 * DMA addressing constraints. This distinction is important as a 32bit 705 * DMA mask is assumed when ZONE_DMA32 is defined. Some 64-bit 706 * platforms may need both zones as they support peripherals with 707 * different DMA addressing limitations. 708 */ 709#ifdef CONFIG_ZONE_DMA 710 ZONE_DMA, 711#endif 712#ifdef CONFIG_ZONE_DMA32 713 ZONE_DMA32, 714#endif 715 /* 716 * Normal addressable memory is in ZONE_NORMAL. DMA operations can be 717 * performed on pages in ZONE_NORMAL if the DMA devices support 718 * transfers to all addressable memory. 719 */ 720 ZONE_NORMAL, 721#ifdef CONFIG_HIGHMEM 722 /* 723 * A memory area that is only addressable by the kernel through 724 * mapping portions into its own address space. This is for example 725 * used by i386 to allow the kernel to address the memory beyond 726 * 900MB. The kernel will set up special mappings (page 727 * table entries on i386) for each page that the kernel needs to 728 * access. 729 */ 730 ZONE_HIGHMEM, 731#endif 732 /* 733 * ZONE_MOVABLE is similar to ZONE_NORMAL, except that it contains 734 * movable pages with few exceptional cases described below. Main use 735 * cases for ZONE_MOVABLE are to make memory offlining/unplug more 736 * likely to succeed, and to locally limit unmovable allocations - e.g., 737 * to increase the number of THP/huge pages. Notable special cases are: 738 * 739 * 1. Pinned pages: (long-term) pinning of movable pages might 740 * essentially turn such pages unmovable. Therefore, we do not allow 741 * pinning long-term pages in ZONE_MOVABLE. When pages are pinned and 742 * faulted, they come from the right zone right away. However, it is 743 * still possible that address space already has pages in 744 * ZONE_MOVABLE at the time when pages are pinned (i.e. user has 745 * touches that memory before pinning). In such case we migrate them 746 * to a different zone. When migration fails - pinning fails. 747 * 2. memblock allocations: kernelcore/movablecore setups might create 748 * situations where ZONE_MOVABLE contains unmovable allocations 749 * after boot. Memory offlining and allocations fail early. 750 * 3. Memory holes: kernelcore/movablecore setups might create very rare 751 * situations where ZONE_MOVABLE contains memory holes after boot, 752 * for example, if we have sections that are only partially 753 * populated. Memory offlining and allocations fail early. 754 * 4. PG_hwpoison pages: while poisoned pages can be skipped during 755 * memory offlining, such pages cannot be allocated. 756 * 5. Unmovable PG_offline pages: in paravirtualized environments, 757 * hotplugged memory blocks might only partially be managed by the 758 * buddy (e.g., via XEN-balloon, Hyper-V balloon, virtio-mem). The 759 * parts not manged by the buddy are unmovable PG_offline pages. In 760 * some cases (virtio-mem), such pages can be skipped during 761 * memory offlining, however, cannot be moved/allocated. These 762 * techniques might use alloc_contig_range() to hide previously 763 * exposed pages from the buddy again (e.g., to implement some sort 764 * of memory unplug in virtio-mem). 765 * 6. ZERO_PAGE(0), kernelcore/movablecore setups might create 766 * situations where ZERO_PAGE(0) which is allocated differently 767 * on different platforms may end up in a movable zone. ZERO_PAGE(0) 768 * cannot be migrated. 769 * 7. Memory-hotplug: when using memmap_on_memory and onlining the 770 * memory to the MOVABLE zone, the vmemmap pages are also placed in 771 * such zone. Such pages cannot be really moved around as they are 772 * self-stored in the range, but they are treated as movable when 773 * the range they describe is about to be offlined. 774 * 775 * In general, no unmovable allocations that degrade memory offlining 776 * should end up in ZONE_MOVABLE. Allocators (like alloc_contig_range()) 777 * have to expect that migrating pages in ZONE_MOVABLE can fail (even 778 * if has_unmovable_pages() states that there are no unmovable pages, 779 * there can be false negatives). 780 */ 781 ZONE_MOVABLE, 782#ifdef CONFIG_ZONE_DEVICE 783 ZONE_DEVICE, 784#endif 785 __MAX_NR_ZONES 786 787}; 788 789#ifndef __GENERATING_BOUNDS_H 790 791#define ASYNC_AND_SYNC 2 792 793struct zone { 794 /* Read-mostly fields */ 795 796 /* zone watermarks, access with *_wmark_pages(zone) macros */ 797 unsigned long _watermark[NR_WMARK]; 798 unsigned long watermark_boost; 799 800 unsigned long nr_reserved_highatomic; 801 802 /* 803 * We don't know if the memory that we're going to allocate will be 804 * freeable or/and it will be released eventually, so to avoid totally 805 * wasting several GB of ram we must reserve some of the lower zone 806 * memory (otherwise we risk to run OOM on the lower zones despite 807 * there being tons of freeable ram on the higher zones). This array is 808 * recalculated at runtime if the sysctl_lowmem_reserve_ratio sysctl 809 * changes. 810 */ 811 long lowmem_reserve[MAX_NR_ZONES]; 812 813#ifdef CONFIG_NUMA 814 int node; 815#endif 816 struct pglist_data *zone_pgdat; 817 struct per_cpu_pages __percpu *per_cpu_pageset; 818 struct per_cpu_zonestat __percpu *per_cpu_zonestats; 819 /* 820 * the high and batch values are copied to individual pagesets for 821 * faster access 822 */ 823 int pageset_high; 824 int pageset_batch; 825 826#ifndef CONFIG_SPARSEMEM 827 /* 828 * Flags for a pageblock_nr_pages block. See pageblock-flags.h. 829 * In SPARSEMEM, this map is stored in struct mem_section 830 */ 831 unsigned long *pageblock_flags; 832#endif /* CONFIG_SPARSEMEM */ 833 834 /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */ 835 unsigned long zone_start_pfn; 836 837 /* 838 * spanned_pages is the total pages spanned by the zone, including 839 * holes, which is calculated as: 840 * spanned_pages = zone_end_pfn - zone_start_pfn; 841 * 842 * present_pages is physical pages existing within the zone, which 843 * is calculated as: 844 * present_pages = spanned_pages - absent_pages(pages in holes); 845 * 846 * present_early_pages is present pages existing within the zone 847 * located on memory available since early boot, excluding hotplugged 848 * memory. 849 * 850 * managed_pages is present pages managed by the buddy system, which 851 * is calculated as (reserved_pages includes pages allocated by the 852 * bootmem allocator): 853 * managed_pages = present_pages - reserved_pages; 854 * 855 * cma pages is present pages that are assigned for CMA use 856 * (MIGRATE_CMA). 857 * 858 * So present_pages may be used by memory hotplug or memory power 859 * management logic to figure out unmanaged pages by checking 860 * (present_pages - managed_pages). And managed_pages should be used 861 * by page allocator and vm scanner to calculate all kinds of watermarks 862 * and thresholds. 863 * 864 * Locking rules: 865 * 866 * zone_start_pfn and spanned_pages are protected by span_seqlock. 867 * It is a seqlock because it has to be read outside of zone->lock, 868 * and it is done in the main allocator path. But, it is written 869 * quite infrequently. 870 * 871 * The span_seq lock is declared along with zone->lock because it is 872 * frequently read in proximity to zone->lock. It's good to 873 * give them a chance of being in the same cacheline. 874 * 875 * Write access to present_pages at runtime should be protected by 876 * mem_hotplug_begin/done(). Any reader who can't tolerant drift of 877 * present_pages should use get_online_mems() to get a stable value. 878 */ 879 atomic_long_t managed_pages; 880 unsigned long spanned_pages; 881 unsigned long present_pages; 882#if defined(CONFIG_MEMORY_HOTPLUG) 883 unsigned long present_early_pages; 884#endif 885#ifdef CONFIG_CMA 886 unsigned long cma_pages; 887#endif 888 889 const char *name; 890 891#ifdef CONFIG_MEMORY_ISOLATION 892 /* 893 * Number of isolated pageblock. It is used to solve incorrect 894 * freepage counting problem due to racy retrieving migratetype 895 * of pageblock. Protected by zone->lock. 896 */ 897 unsigned long nr_isolate_pageblock; 898#endif 899 900#ifdef CONFIG_MEMORY_HOTPLUG 901 /* see spanned/present_pages for more description */ 902 seqlock_t span_seqlock; 903#endif 904 905 int initialized; 906 907 /* Write-intensive fields used from the page allocator */ 908 CACHELINE_PADDING(_pad1_); 909 910 /* free areas of different sizes */ 911 struct free_area free_area[MAX_ORDER + 1]; 912 913 /* zone flags, see below */ 914 unsigned long flags; 915 916 /* Primarily protects free_area */ 917 spinlock_t lock; 918 919 /* Write-intensive fields used by compaction and vmstats. */ 920 CACHELINE_PADDING(_pad2_); 921 922 /* 923 * When free pages are below this point, additional steps are taken 924 * when reading the number of free pages to avoid per-cpu counter 925 * drift allowing watermarks to be breached 926 */ 927 unsigned long percpu_drift_mark; 928 929#if defined CONFIG_COMPACTION || defined CONFIG_CMA 930 /* pfn where compaction free scanner should start */ 931 unsigned long compact_cached_free_pfn; 932 /* pfn where compaction migration scanner should start */ 933 unsigned long compact_cached_migrate_pfn[ASYNC_AND_SYNC]; 934 unsigned long compact_init_migrate_pfn; 935 unsigned long compact_init_free_pfn; 936#endif 937 938#ifdef CONFIG_COMPACTION 939 /* 940 * On compaction failure, 1<<compact_defer_shift compactions 941 * are skipped before trying again. The number attempted since 942 * last failure is tracked with compact_considered. 943 * compact_order_failed is the minimum compaction failed order. 944 */ 945 unsigned int compact_considered; 946 unsigned int compact_defer_shift; 947 int compact_order_failed; 948#endif 949 950#if defined CONFIG_COMPACTION || defined CONFIG_CMA 951 /* Set to true when the PG_migrate_skip bits should be cleared */ 952 bool compact_blockskip_flush; 953#endif 954 955 bool contiguous; 956 957 CACHELINE_PADDING(_pad3_); 958 /* Zone statistics */ 959 atomic_long_t vm_stat[NR_VM_ZONE_STAT_ITEMS]; 960 atomic_long_t vm_numa_event[NR_VM_NUMA_EVENT_ITEMS]; 961} ____cacheline_internodealigned_in_smp; 962 963enum pgdat_flags { 964 PGDAT_DIRTY, /* reclaim scanning has recently found 965 * many dirty file pages at the tail 966 * of the LRU. 967 */ 968 PGDAT_WRITEBACK, /* reclaim scanning has recently found 969 * many pages under writeback 970 */ 971 PGDAT_RECLAIM_LOCKED, /* prevents concurrent reclaim */ 972}; 973 974enum zone_flags { 975 ZONE_BOOSTED_WATERMARK, /* zone recently boosted watermarks. 976 * Cleared when kswapd is woken. 977 */ 978 ZONE_RECLAIM_ACTIVE, /* kswapd may be scanning the zone. */ 979}; 980 981static inline unsigned long zone_managed_pages(struct zone *zone) 982{ 983 return (unsigned long)atomic_long_read(&zone->managed_pages); 984} 985 986static inline unsigned long zone_cma_pages(struct zone *zone) 987{ 988#ifdef CONFIG_CMA 989 return zone->cma_pages; 990#else 991 return 0; 992#endif 993} 994 995static inline unsigned long zone_end_pfn(const struct zone *zone) 996{ 997 return zone->zone_start_pfn + zone->spanned_pages; 998} 999 1000static inline bool zone_spans_pfn(const struct zone *zone, unsigned long pfn) 1001{ 1002 return zone->zone_start_pfn <= pfn && pfn < zone_end_pfn(zone); 1003} 1004 1005static inline bool zone_is_initialized(struct zone *zone) 1006{ 1007 return zone->initialized; 1008} 1009 1010static inline bool zone_is_empty(struct zone *zone) 1011{ 1012 return zone->spanned_pages == 0; 1013} 1014 1015#ifndef BUILD_VDSO32_64 1016/* 1017 * The zone field is never updated after free_area_init_core() 1018 * sets it, so none of the operations on it need to be atomic. 1019 */ 1020 1021/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */ 1022#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH) 1023#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH) 1024#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH) 1025#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH) 1026#define KASAN_TAG_PGOFF (LAST_CPUPID_PGOFF - KASAN_TAG_WIDTH) 1027#define LRU_GEN_PGOFF (KASAN_TAG_PGOFF - LRU_GEN_WIDTH) 1028#define LRU_REFS_PGOFF (LRU_GEN_PGOFF - LRU_REFS_WIDTH) 1029 1030/* 1031 * Define the bit shifts to access each section. For non-existent 1032 * sections we define the shift as 0; that plus a 0 mask ensures 1033 * the compiler will optimise away reference to them. 1034 */ 1035#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0)) 1036#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0)) 1037#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0)) 1038#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0)) 1039#define KASAN_TAG_PGSHIFT (KASAN_TAG_PGOFF * (KASAN_TAG_WIDTH != 0)) 1040 1041/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */ 1042#ifdef NODE_NOT_IN_PAGE_FLAGS 1043#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT) 1044#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF) ? \ 1045 SECTIONS_PGOFF : ZONES_PGOFF) 1046#else 1047#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT) 1048#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF) ? \ 1049 NODES_PGOFF : ZONES_PGOFF) 1050#endif 1051 1052#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0)) 1053 1054#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1) 1055#define NODES_MASK ((1UL << NODES_WIDTH) - 1) 1056#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1) 1057#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1) 1058#define KASAN_TAG_MASK ((1UL << KASAN_TAG_WIDTH) - 1) 1059#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1) 1060 1061static inline enum zone_type page_zonenum(const struct page *page) 1062{ 1063 ASSERT_EXCLUSIVE_BITS(page->flags, ZONES_MASK << ZONES_PGSHIFT); 1064 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK; 1065} 1066 1067static inline enum zone_type folio_zonenum(const struct folio *folio) 1068{ 1069 return page_zonenum(&folio->page); 1070} 1071 1072#ifdef CONFIG_ZONE_DEVICE 1073static inline bool is_zone_device_page(const struct page *page) 1074{ 1075 return page_zonenum(page) == ZONE_DEVICE; 1076} 1077 1078/* 1079 * Consecutive zone device pages should not be merged into the same sgl 1080 * or bvec segment with other types of pages or if they belong to different 1081 * pgmaps. Otherwise getting the pgmap of a given segment is not possible 1082 * without scanning the entire segment. This helper returns true either if 1083 * both pages are not zone device pages or both pages are zone device pages 1084 * with the same pgmap. 1085 */ 1086static inline bool zone_device_pages_have_same_pgmap(const struct page *a, 1087 const struct page *b) 1088{ 1089 if (is_zone_device_page(a) != is_zone_device_page(b)) 1090 return false; 1091 if (!is_zone_device_page(a)) 1092 return true; 1093 return a->pgmap == b->pgmap; 1094} 1095 1096extern void memmap_init_zone_device(struct zone *, unsigned long, 1097 unsigned long, struct dev_pagemap *); 1098#else 1099static inline bool is_zone_device_page(const struct page *page) 1100{ 1101 return false; 1102} 1103static inline bool zone_device_pages_have_same_pgmap(const struct page *a, 1104 const struct page *b) 1105{ 1106 return true; 1107} 1108#endif 1109 1110static inline bool folio_is_zone_device(const struct folio *folio) 1111{ 1112 return is_zone_device_page(&folio->page); 1113} 1114 1115static inline bool is_zone_movable_page(const struct page *page) 1116{ 1117 return page_zonenum(page) == ZONE_MOVABLE; 1118} 1119#endif 1120 1121/* 1122 * Return true if [start_pfn, start_pfn + nr_pages) range has a non-empty 1123 * intersection with the given zone 1124 */ 1125static inline bool zone_intersects(struct zone *zone, 1126 unsigned long start_pfn, unsigned long nr_pages) 1127{ 1128 if (zone_is_empty(zone)) 1129 return false; 1130 if (start_pfn >= zone_end_pfn(zone) || 1131 start_pfn + nr_pages <= zone->zone_start_pfn) 1132 return false; 1133 1134 return true; 1135} 1136 1137/* 1138 * The "priority" of VM scanning is how much of the queues we will scan in one 1139 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the 1140 * queues ("queue_length >> 12") during an aging round. 1141 */ 1142#define DEF_PRIORITY 12 1143 1144/* Maximum number of zones on a zonelist */ 1145#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES) 1146 1147enum { 1148 ZONELIST_FALLBACK, /* zonelist with fallback */ 1149#ifdef CONFIG_NUMA 1150 /* 1151 * The NUMA zonelists are doubled because we need zonelists that 1152 * restrict the allocations to a single node for __GFP_THISNODE. 1153 */ 1154 ZONELIST_NOFALLBACK, /* zonelist without fallback (__GFP_THISNODE) */ 1155#endif 1156 MAX_ZONELISTS 1157}; 1158 1159/* 1160 * This struct contains information about a zone in a zonelist. It is stored 1161 * here to avoid dereferences into large structures and lookups of tables 1162 */ 1163struct zoneref { 1164 struct zone *zone; /* Pointer to actual zone */ 1165 int zone_idx; /* zone_idx(zoneref->zone) */ 1166}; 1167 1168/* 1169 * One allocation request operates on a zonelist. A zonelist 1170 * is a list of zones, the first one is the 'goal' of the 1171 * allocation, the other zones are fallback zones, in decreasing 1172 * priority. 1173 * 1174 * To speed the reading of the zonelist, the zonerefs contain the zone index 1175 * of the entry being read. Helper functions to access information given 1176 * a struct zoneref are 1177 * 1178 * zonelist_zone() - Return the struct zone * for an entry in _zonerefs 1179 * zonelist_zone_idx() - Return the index of the zone for an entry 1180 * zonelist_node_idx() - Return the index of the node for an entry 1181 */ 1182struct zonelist { 1183 struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1]; 1184}; 1185 1186/* 1187 * The array of struct pages for flatmem. 1188 * It must be declared for SPARSEMEM as well because there are configurations 1189 * that rely on that. 1190 */ 1191extern struct page *mem_map; 1192 1193#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1194struct deferred_split { 1195 spinlock_t split_queue_lock; 1196 struct list_head split_queue; 1197 unsigned long split_queue_len; 1198}; 1199#endif 1200 1201#ifdef CONFIG_MEMORY_FAILURE 1202/* 1203 * Per NUMA node memory failure handling statistics. 1204 */ 1205struct memory_failure_stats { 1206 /* 1207 * Number of raw pages poisoned. 1208 * Cases not accounted: memory outside kernel control, offline page, 1209 * arch-specific memory_failure (SGX), hwpoison_filter() filtered 1210 * error events, and unpoison actions from hwpoison_unpoison. 1211 */ 1212 unsigned long total; 1213 /* 1214 * Recovery results of poisoned raw pages handled by memory_failure, 1215 * in sync with mf_result. 1216 * total = ignored + failed + delayed + recovered. 1217 * total * PAGE_SIZE * #nodes = /proc/meminfo/HardwareCorrupted. 1218 */ 1219 unsigned long ignored; 1220 unsigned long failed; 1221 unsigned long delayed; 1222 unsigned long recovered; 1223}; 1224#endif 1225 1226/* 1227 * On NUMA machines, each NUMA node would have a pg_data_t to describe 1228 * it's memory layout. On UMA machines there is a single pglist_data which 1229 * describes the whole memory. 1230 * 1231 * Memory statistics and page replacement data structures are maintained on a 1232 * per-zone basis. 1233 */ 1234typedef struct pglist_data { 1235 /* 1236 * node_zones contains just the zones for THIS node. Not all of the 1237 * zones may be populated, but it is the full list. It is referenced by 1238 * this node's node_zonelists as well as other node's node_zonelists. 1239 */ 1240 struct zone node_zones[MAX_NR_ZONES]; 1241 1242 /* 1243 * node_zonelists contains references to all zones in all nodes. 1244 * Generally the first zones will be references to this node's 1245 * node_zones. 1246 */ 1247 struct zonelist node_zonelists[MAX_ZONELISTS]; 1248 1249 int nr_zones; /* number of populated zones in this node */ 1250#ifdef CONFIG_FLATMEM /* means !SPARSEMEM */ 1251 struct page *node_mem_map; 1252#ifdef CONFIG_PAGE_EXTENSION 1253 struct page_ext *node_page_ext; 1254#endif 1255#endif 1256#if defined(CONFIG_MEMORY_HOTPLUG) || defined(CONFIG_DEFERRED_STRUCT_PAGE_INIT) 1257 /* 1258 * Must be held any time you expect node_start_pfn, 1259 * node_present_pages, node_spanned_pages or nr_zones to stay constant. 1260 * Also synchronizes pgdat->first_deferred_pfn during deferred page 1261 * init. 1262 * 1263 * pgdat_resize_lock() and pgdat_resize_unlock() are provided to 1264 * manipulate node_size_lock without checking for CONFIG_MEMORY_HOTPLUG 1265 * or CONFIG_DEFERRED_STRUCT_PAGE_INIT. 1266 * 1267 * Nests above zone->lock and zone->span_seqlock 1268 */ 1269 spinlock_t node_size_lock; 1270#endif 1271 unsigned long node_start_pfn; 1272 unsigned long node_present_pages; /* total number of physical pages */ 1273 unsigned long node_spanned_pages; /* total size of physical page 1274 range, including holes */ 1275 int node_id; 1276 wait_queue_head_t kswapd_wait; 1277 wait_queue_head_t pfmemalloc_wait; 1278 1279 /* workqueues for throttling reclaim for different reasons. */ 1280 wait_queue_head_t reclaim_wait[NR_VMSCAN_THROTTLE]; 1281 1282 atomic_t nr_writeback_throttled;/* nr of writeback-throttled tasks */ 1283 unsigned long nr_reclaim_start; /* nr pages written while throttled 1284 * when throttling started. */ 1285#ifdef CONFIG_MEMORY_HOTPLUG 1286 struct mutex kswapd_lock; 1287#endif 1288 struct task_struct *kswapd; /* Protected by kswapd_lock */ 1289 int kswapd_order; 1290 enum zone_type kswapd_highest_zoneidx; 1291 1292 int kswapd_failures; /* Number of 'reclaimed == 0' runs */ 1293 1294#ifdef CONFIG_COMPACTION 1295 int kcompactd_max_order; 1296 enum zone_type kcompactd_highest_zoneidx; 1297 wait_queue_head_t kcompactd_wait; 1298 struct task_struct *kcompactd; 1299 bool proactive_compact_trigger; 1300#endif 1301 /* 1302 * This is a per-node reserve of pages that are not available 1303 * to userspace allocations. 1304 */ 1305 unsigned long totalreserve_pages; 1306 1307#ifdef CONFIG_NUMA 1308 /* 1309 * node reclaim becomes active if more unmapped pages exist. 1310 */ 1311 unsigned long min_unmapped_pages; 1312 unsigned long min_slab_pages; 1313#endif /* CONFIG_NUMA */ 1314 1315 /* Write-intensive fields used by page reclaim */ 1316 CACHELINE_PADDING(_pad1_); 1317 1318#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1319 /* 1320 * If memory initialisation on large machines is deferred then this 1321 * is the first PFN that needs to be initialised. 1322 */ 1323 unsigned long first_deferred_pfn; 1324#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1325 1326#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1327 struct deferred_split deferred_split_queue; 1328#endif 1329 1330#ifdef CONFIG_NUMA_BALANCING 1331 /* start time in ms of current promote rate limit period */ 1332 unsigned int nbp_rl_start; 1333 /* number of promote candidate pages at start time of current rate limit period */ 1334 unsigned long nbp_rl_nr_cand; 1335 /* promote threshold in ms */ 1336 unsigned int nbp_threshold; 1337 /* start time in ms of current promote threshold adjustment period */ 1338 unsigned int nbp_th_start; 1339 /* 1340 * number of promote candidate pages at start time of current promote 1341 * threshold adjustment period 1342 */ 1343 unsigned long nbp_th_nr_cand; 1344#endif 1345 /* Fields commonly accessed by the page reclaim scanner */ 1346 1347 /* 1348 * NOTE: THIS IS UNUSED IF MEMCG IS ENABLED. 1349 * 1350 * Use mem_cgroup_lruvec() to look up lruvecs. 1351 */ 1352 struct lruvec __lruvec; 1353 1354 unsigned long flags; 1355 1356#ifdef CONFIG_LRU_GEN 1357 /* kswap mm walk data */ 1358 struct lru_gen_mm_walk mm_walk; 1359 /* lru_gen_folio list */ 1360 struct lru_gen_memcg memcg_lru; 1361#endif 1362 1363 CACHELINE_PADDING(_pad2_); 1364 1365 /* Per-node vmstats */ 1366 struct per_cpu_nodestat __percpu *per_cpu_nodestats; 1367 atomic_long_t vm_stat[NR_VM_NODE_STAT_ITEMS]; 1368#ifdef CONFIG_NUMA 1369 struct memory_tier __rcu *memtier; 1370#endif 1371#ifdef CONFIG_MEMORY_FAILURE 1372 struct memory_failure_stats mf_stats; 1373#endif 1374} pg_data_t; 1375 1376#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages) 1377#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages) 1378 1379#define node_start_pfn(nid) (NODE_DATA(nid)->node_start_pfn) 1380#define node_end_pfn(nid) pgdat_end_pfn(NODE_DATA(nid)) 1381 1382static inline unsigned long pgdat_end_pfn(pg_data_t *pgdat) 1383{ 1384 return pgdat->node_start_pfn + pgdat->node_spanned_pages; 1385} 1386 1387#include <linux/memory_hotplug.h> 1388 1389void build_all_zonelists(pg_data_t *pgdat); 1390void wakeup_kswapd(struct zone *zone, gfp_t gfp_mask, int order, 1391 enum zone_type highest_zoneidx); 1392bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 1393 int highest_zoneidx, unsigned int alloc_flags, 1394 long free_pages); 1395bool zone_watermark_ok(struct zone *z, unsigned int order, 1396 unsigned long mark, int highest_zoneidx, 1397 unsigned int alloc_flags); 1398bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 1399 unsigned long mark, int highest_zoneidx); 1400/* 1401 * Memory initialization context, use to differentiate memory added by 1402 * the platform statically or via memory hotplug interface. 1403 */ 1404enum meminit_context { 1405 MEMINIT_EARLY, 1406 MEMINIT_HOTPLUG, 1407}; 1408 1409extern void init_currently_empty_zone(struct zone *zone, unsigned long start_pfn, 1410 unsigned long size); 1411 1412extern void lruvec_init(struct lruvec *lruvec); 1413 1414static inline struct pglist_data *lruvec_pgdat(struct lruvec *lruvec) 1415{ 1416#ifdef CONFIG_MEMCG 1417 return lruvec->pgdat; 1418#else 1419 return container_of(lruvec, struct pglist_data, __lruvec); 1420#endif 1421} 1422 1423#ifdef CONFIG_HAVE_MEMORYLESS_NODES 1424int local_memory_node(int node_id); 1425#else 1426static inline int local_memory_node(int node_id) { return node_id; }; 1427#endif 1428 1429/* 1430 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc. 1431 */ 1432#define zone_idx(zone) ((zone) - (zone)->zone_pgdat->node_zones) 1433 1434#ifdef CONFIG_ZONE_DEVICE 1435static inline bool zone_is_zone_device(struct zone *zone) 1436{ 1437 return zone_idx(zone) == ZONE_DEVICE; 1438} 1439#else 1440static inline bool zone_is_zone_device(struct zone *zone) 1441{ 1442 return false; 1443} 1444#endif 1445 1446/* 1447 * Returns true if a zone has pages managed by the buddy allocator. 1448 * All the reclaim decisions have to use this function rather than 1449 * populated_zone(). If the whole zone is reserved then we can easily 1450 * end up with populated_zone() && !managed_zone(). 1451 */ 1452static inline bool managed_zone(struct zone *zone) 1453{ 1454 return zone_managed_pages(zone); 1455} 1456 1457/* Returns true if a zone has memory */ 1458static inline bool populated_zone(struct zone *zone) 1459{ 1460 return zone->present_pages; 1461} 1462 1463#ifdef CONFIG_NUMA 1464static inline int zone_to_nid(struct zone *zone) 1465{ 1466 return zone->node; 1467} 1468 1469static inline void zone_set_nid(struct zone *zone, int nid) 1470{ 1471 zone->node = nid; 1472} 1473#else 1474static inline int zone_to_nid(struct zone *zone) 1475{ 1476 return 0; 1477} 1478 1479static inline void zone_set_nid(struct zone *zone, int nid) {} 1480#endif 1481 1482extern int movable_zone; 1483 1484static inline int is_highmem_idx(enum zone_type idx) 1485{ 1486#ifdef CONFIG_HIGHMEM 1487 return (idx == ZONE_HIGHMEM || 1488 (idx == ZONE_MOVABLE && movable_zone == ZONE_HIGHMEM)); 1489#else 1490 return 0; 1491#endif 1492} 1493 1494/** 1495 * is_highmem - helper function to quickly check if a struct zone is a 1496 * highmem zone or not. This is an attempt to keep references 1497 * to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum. 1498 * @zone: pointer to struct zone variable 1499 * Return: 1 for a highmem zone, 0 otherwise 1500 */ 1501static inline int is_highmem(struct zone *zone) 1502{ 1503 return is_highmem_idx(zone_idx(zone)); 1504} 1505 1506#ifdef CONFIG_ZONE_DMA 1507bool has_managed_dma(void); 1508#else 1509static inline bool has_managed_dma(void) 1510{ 1511 return false; 1512} 1513#endif 1514 1515/* These two functions are used to setup the per zone pages min values */ 1516struct ctl_table; 1517 1518int min_free_kbytes_sysctl_handler(struct ctl_table *, int, void *, size_t *, 1519 loff_t *); 1520int watermark_scale_factor_sysctl_handler(struct ctl_table *, int, void *, 1521 size_t *, loff_t *); 1522extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES]; 1523int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int, void *, 1524 size_t *, loff_t *); 1525int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *, int, 1526 void *, size_t *, loff_t *); 1527int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int, 1528 void *, size_t *, loff_t *); 1529int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int, 1530 void *, size_t *, loff_t *); 1531int numa_zonelist_order_handler(struct ctl_table *, int, 1532 void *, size_t *, loff_t *); 1533extern int percpu_pagelist_high_fraction; 1534extern char numa_zonelist_order[]; 1535#define NUMA_ZONELIST_ORDER_LEN 16 1536 1537#ifndef CONFIG_NUMA 1538 1539extern struct pglist_data contig_page_data; 1540static inline struct pglist_data *NODE_DATA(int nid) 1541{ 1542 return &contig_page_data; 1543} 1544 1545#else /* CONFIG_NUMA */ 1546 1547#include <asm/mmzone.h> 1548 1549#endif /* !CONFIG_NUMA */ 1550 1551extern struct pglist_data *first_online_pgdat(void); 1552extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat); 1553extern struct zone *next_zone(struct zone *zone); 1554 1555/** 1556 * for_each_online_pgdat - helper macro to iterate over all online nodes 1557 * @pgdat: pointer to a pg_data_t variable 1558 */ 1559#define for_each_online_pgdat(pgdat) \ 1560 for (pgdat = first_online_pgdat(); \ 1561 pgdat; \ 1562 pgdat = next_online_pgdat(pgdat)) 1563/** 1564 * for_each_zone - helper macro to iterate over all memory zones 1565 * @zone: pointer to struct zone variable 1566 * 1567 * The user only needs to declare the zone variable, for_each_zone 1568 * fills it in. 1569 */ 1570#define for_each_zone(zone) \ 1571 for (zone = (first_online_pgdat())->node_zones; \ 1572 zone; \ 1573 zone = next_zone(zone)) 1574 1575#define for_each_populated_zone(zone) \ 1576 for (zone = (first_online_pgdat())->node_zones; \ 1577 zone; \ 1578 zone = next_zone(zone)) \ 1579 if (!populated_zone(zone)) \ 1580 ; /* do nothing */ \ 1581 else 1582 1583static inline struct zone *zonelist_zone(struct zoneref *zoneref) 1584{ 1585 return zoneref->zone; 1586} 1587 1588static inline int zonelist_zone_idx(struct zoneref *zoneref) 1589{ 1590 return zoneref->zone_idx; 1591} 1592 1593static inline int zonelist_node_idx(struct zoneref *zoneref) 1594{ 1595 return zone_to_nid(zoneref->zone); 1596} 1597 1598struct zoneref *__next_zones_zonelist(struct zoneref *z, 1599 enum zone_type highest_zoneidx, 1600 nodemask_t *nodes); 1601 1602/** 1603 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point 1604 * @z: The cursor used as a starting point for the search 1605 * @highest_zoneidx: The zone index of the highest zone to return 1606 * @nodes: An optional nodemask to filter the zonelist with 1607 * 1608 * This function returns the next zone at or below a given zone index that is 1609 * within the allowed nodemask using a cursor as the starting point for the 1610 * search. The zoneref returned is a cursor that represents the current zone 1611 * being examined. It should be advanced by one before calling 1612 * next_zones_zonelist again. 1613 * 1614 * Return: the next zone at or below highest_zoneidx within the allowed 1615 * nodemask using a cursor within a zonelist as a starting point 1616 */ 1617static __always_inline struct zoneref *next_zones_zonelist(struct zoneref *z, 1618 enum zone_type highest_zoneidx, 1619 nodemask_t *nodes) 1620{ 1621 if (likely(!nodes && zonelist_zone_idx(z) <= highest_zoneidx)) 1622 return z; 1623 return __next_zones_zonelist(z, highest_zoneidx, nodes); 1624} 1625 1626/** 1627 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist 1628 * @zonelist: The zonelist to search for a suitable zone 1629 * @highest_zoneidx: The zone index of the highest zone to return 1630 * @nodes: An optional nodemask to filter the zonelist with 1631 * 1632 * This function returns the first zone at or below a given zone index that is 1633 * within the allowed nodemask. The zoneref returned is a cursor that can be 1634 * used to iterate the zonelist with next_zones_zonelist by advancing it by 1635 * one before calling. 1636 * 1637 * When no eligible zone is found, zoneref->zone is NULL (zoneref itself is 1638 * never NULL). This may happen either genuinely, or due to concurrent nodemask 1639 * update due to cpuset modification. 1640 * 1641 * Return: Zoneref pointer for the first suitable zone found 1642 */ 1643static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist, 1644 enum zone_type highest_zoneidx, 1645 nodemask_t *nodes) 1646{ 1647 return next_zones_zonelist(zonelist->_zonerefs, 1648 highest_zoneidx, nodes); 1649} 1650 1651/** 1652 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask 1653 * @zone: The current zone in the iterator 1654 * @z: The current pointer within zonelist->_zonerefs being iterated 1655 * @zlist: The zonelist being iterated 1656 * @highidx: The zone index of the highest zone to return 1657 * @nodemask: Nodemask allowed by the allocator 1658 * 1659 * This iterator iterates though all zones at or below a given zone index and 1660 * within a given nodemask 1661 */ 1662#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \ 1663 for (z = first_zones_zonelist(zlist, highidx, nodemask), zone = zonelist_zone(z); \ 1664 zone; \ 1665 z = next_zones_zonelist(++z, highidx, nodemask), \ 1666 zone = zonelist_zone(z)) 1667 1668#define for_next_zone_zonelist_nodemask(zone, z, highidx, nodemask) \ 1669 for (zone = z->zone; \ 1670 zone; \ 1671 z = next_zones_zonelist(++z, highidx, nodemask), \ 1672 zone = zonelist_zone(z)) 1673 1674 1675/** 1676 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index 1677 * @zone: The current zone in the iterator 1678 * @z: The current pointer within zonelist->zones being iterated 1679 * @zlist: The zonelist being iterated 1680 * @highidx: The zone index of the highest zone to return 1681 * 1682 * This iterator iterates though all zones at or below a given zone index. 1683 */ 1684#define for_each_zone_zonelist(zone, z, zlist, highidx) \ 1685 for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL) 1686 1687/* Whether the 'nodes' are all movable nodes */ 1688static inline bool movable_only_nodes(nodemask_t *nodes) 1689{ 1690 struct zonelist *zonelist; 1691 struct zoneref *z; 1692 int nid; 1693 1694 if (nodes_empty(*nodes)) 1695 return false; 1696 1697 /* 1698 * We can chose arbitrary node from the nodemask to get a 1699 * zonelist as they are interlinked. We just need to find 1700 * at least one zone that can satisfy kernel allocations. 1701 */ 1702 nid = first_node(*nodes); 1703 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK]; 1704 z = first_zones_zonelist(zonelist, ZONE_NORMAL, nodes); 1705 return (!z->zone) ? true : false; 1706} 1707 1708 1709#ifdef CONFIG_SPARSEMEM 1710#include <asm/sparsemem.h> 1711#endif 1712 1713#ifdef CONFIG_FLATMEM 1714#define pfn_to_nid(pfn) (0) 1715#endif 1716 1717#ifdef CONFIG_SPARSEMEM 1718 1719/* 1720 * PA_SECTION_SHIFT physical address to/from section number 1721 * PFN_SECTION_SHIFT pfn to/from section number 1722 */ 1723#define PA_SECTION_SHIFT (SECTION_SIZE_BITS) 1724#define PFN_SECTION_SHIFT (SECTION_SIZE_BITS - PAGE_SHIFT) 1725 1726#define NR_MEM_SECTIONS (1UL << SECTIONS_SHIFT) 1727 1728#define PAGES_PER_SECTION (1UL << PFN_SECTION_SHIFT) 1729#define PAGE_SECTION_MASK (~(PAGES_PER_SECTION-1)) 1730 1731#define SECTION_BLOCKFLAGS_BITS \ 1732 ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS) 1733 1734#if (MAX_ORDER + PAGE_SHIFT) > SECTION_SIZE_BITS 1735#error Allocator MAX_ORDER exceeds SECTION_SIZE 1736#endif 1737 1738static inline unsigned long pfn_to_section_nr(unsigned long pfn) 1739{ 1740 return pfn >> PFN_SECTION_SHIFT; 1741} 1742static inline unsigned long section_nr_to_pfn(unsigned long sec) 1743{ 1744 return sec << PFN_SECTION_SHIFT; 1745} 1746 1747#define SECTION_ALIGN_UP(pfn) (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK) 1748#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK) 1749 1750#define SUBSECTION_SHIFT 21 1751#define SUBSECTION_SIZE (1UL << SUBSECTION_SHIFT) 1752 1753#define PFN_SUBSECTION_SHIFT (SUBSECTION_SHIFT - PAGE_SHIFT) 1754#define PAGES_PER_SUBSECTION (1UL << PFN_SUBSECTION_SHIFT) 1755#define PAGE_SUBSECTION_MASK (~(PAGES_PER_SUBSECTION-1)) 1756 1757#if SUBSECTION_SHIFT > SECTION_SIZE_BITS 1758#error Subsection size exceeds section size 1759#else 1760#define SUBSECTIONS_PER_SECTION (1UL << (SECTION_SIZE_BITS - SUBSECTION_SHIFT)) 1761#endif 1762 1763#define SUBSECTION_ALIGN_UP(pfn) ALIGN((pfn), PAGES_PER_SUBSECTION) 1764#define SUBSECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SUBSECTION_MASK) 1765 1766struct mem_section_usage { 1767#ifdef CONFIG_SPARSEMEM_VMEMMAP 1768 DECLARE_BITMAP(subsection_map, SUBSECTIONS_PER_SECTION); 1769#endif 1770 /* See declaration of similar field in struct zone */ 1771 unsigned long pageblock_flags[0]; 1772}; 1773 1774void subsection_map_init(unsigned long pfn, unsigned long nr_pages); 1775 1776struct page; 1777struct page_ext; 1778struct mem_section { 1779 /* 1780 * This is, logically, a pointer to an array of struct 1781 * pages. However, it is stored with some other magic. 1782 * (see sparse.c::sparse_init_one_section()) 1783 * 1784 * Additionally during early boot we encode node id of 1785 * the location of the section here to guide allocation. 1786 * (see sparse.c::memory_present()) 1787 * 1788 * Making it a UL at least makes someone do a cast 1789 * before using it wrong. 1790 */ 1791 unsigned long section_mem_map; 1792 1793 struct mem_section_usage *usage; 1794#ifdef CONFIG_PAGE_EXTENSION 1795 /* 1796 * If SPARSEMEM, pgdat doesn't have page_ext pointer. We use 1797 * section. (see page_ext.h about this.) 1798 */ 1799 struct page_ext *page_ext; 1800 unsigned long pad; 1801#endif 1802 /* 1803 * WARNING: mem_section must be a power-of-2 in size for the 1804 * calculation and use of SECTION_ROOT_MASK to make sense. 1805 */ 1806}; 1807 1808#ifdef CONFIG_SPARSEMEM_EXTREME 1809#define SECTIONS_PER_ROOT (PAGE_SIZE / sizeof (struct mem_section)) 1810#else 1811#define SECTIONS_PER_ROOT 1 1812#endif 1813 1814#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT) 1815#define NR_SECTION_ROOTS DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT) 1816#define SECTION_ROOT_MASK (SECTIONS_PER_ROOT - 1) 1817 1818#ifdef CONFIG_SPARSEMEM_EXTREME 1819extern struct mem_section **mem_section; 1820#else 1821extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]; 1822#endif 1823 1824static inline unsigned long *section_to_usemap(struct mem_section *ms) 1825{ 1826 return ms->usage->pageblock_flags; 1827} 1828 1829static inline struct mem_section *__nr_to_section(unsigned long nr) 1830{ 1831 unsigned long root = SECTION_NR_TO_ROOT(nr); 1832 1833 if (unlikely(root >= NR_SECTION_ROOTS)) 1834 return NULL; 1835 1836#ifdef CONFIG_SPARSEMEM_EXTREME 1837 if (!mem_section || !mem_section[root]) 1838 return NULL; 1839#endif 1840 return &mem_section[root][nr & SECTION_ROOT_MASK]; 1841} 1842extern size_t mem_section_usage_size(void); 1843 1844/* 1845 * We use the lower bits of the mem_map pointer to store 1846 * a little bit of information. The pointer is calculated 1847 * as mem_map - section_nr_to_pfn(pnum). The result is 1848 * aligned to the minimum alignment of the two values: 1849 * 1. All mem_map arrays are page-aligned. 1850 * 2. section_nr_to_pfn() always clears PFN_SECTION_SHIFT 1851 * lowest bits. PFN_SECTION_SHIFT is arch-specific 1852 * (equal SECTION_SIZE_BITS - PAGE_SHIFT), and the 1853 * worst combination is powerpc with 256k pages, 1854 * which results in PFN_SECTION_SHIFT equal 6. 1855 * To sum it up, at least 6 bits are available on all architectures. 1856 * However, we can exceed 6 bits on some other architectures except 1857 * powerpc (e.g. 15 bits are available on x86_64, 13 bits are available 1858 * with the worst case of 64K pages on arm64) if we make sure the 1859 * exceeded bit is not applicable to powerpc. 1860 */ 1861enum { 1862 SECTION_MARKED_PRESENT_BIT, 1863 SECTION_HAS_MEM_MAP_BIT, 1864 SECTION_IS_ONLINE_BIT, 1865 SECTION_IS_EARLY_BIT, 1866#ifdef CONFIG_ZONE_DEVICE 1867 SECTION_TAINT_ZONE_DEVICE_BIT, 1868#endif 1869 SECTION_MAP_LAST_BIT, 1870}; 1871 1872#define SECTION_MARKED_PRESENT BIT(SECTION_MARKED_PRESENT_BIT) 1873#define SECTION_HAS_MEM_MAP BIT(SECTION_HAS_MEM_MAP_BIT) 1874#define SECTION_IS_ONLINE BIT(SECTION_IS_ONLINE_BIT) 1875#define SECTION_IS_EARLY BIT(SECTION_IS_EARLY_BIT) 1876#ifdef CONFIG_ZONE_DEVICE 1877#define SECTION_TAINT_ZONE_DEVICE BIT(SECTION_TAINT_ZONE_DEVICE_BIT) 1878#endif 1879#define SECTION_MAP_MASK (~(BIT(SECTION_MAP_LAST_BIT) - 1)) 1880#define SECTION_NID_SHIFT SECTION_MAP_LAST_BIT 1881 1882static inline struct page *__section_mem_map_addr(struct mem_section *section) 1883{ 1884 unsigned long map = section->section_mem_map; 1885 map &= SECTION_MAP_MASK; 1886 return (struct page *)map; 1887} 1888 1889static inline int present_section(struct mem_section *section) 1890{ 1891 return (section && (section->section_mem_map & SECTION_MARKED_PRESENT)); 1892} 1893 1894static inline int present_section_nr(unsigned long nr) 1895{ 1896 return present_section(__nr_to_section(nr)); 1897} 1898 1899static inline int valid_section(struct mem_section *section) 1900{ 1901 return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP)); 1902} 1903 1904static inline int early_section(struct mem_section *section) 1905{ 1906 return (section && (section->section_mem_map & SECTION_IS_EARLY)); 1907} 1908 1909static inline int valid_section_nr(unsigned long nr) 1910{ 1911 return valid_section(__nr_to_section(nr)); 1912} 1913 1914static inline int online_section(struct mem_section *section) 1915{ 1916 return (section && (section->section_mem_map & SECTION_IS_ONLINE)); 1917} 1918 1919#ifdef CONFIG_ZONE_DEVICE 1920static inline int online_device_section(struct mem_section *section) 1921{ 1922 unsigned long flags = SECTION_IS_ONLINE | SECTION_TAINT_ZONE_DEVICE; 1923 1924 return section && ((section->section_mem_map & flags) == flags); 1925} 1926#else 1927static inline int online_device_section(struct mem_section *section) 1928{ 1929 return 0; 1930} 1931#endif 1932 1933static inline int online_section_nr(unsigned long nr) 1934{ 1935 return online_section(__nr_to_section(nr)); 1936} 1937 1938#ifdef CONFIG_MEMORY_HOTPLUG 1939void online_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 1940void offline_mem_sections(unsigned long start_pfn, unsigned long end_pfn); 1941#endif 1942 1943static inline struct mem_section *__pfn_to_section(unsigned long pfn) 1944{ 1945 return __nr_to_section(pfn_to_section_nr(pfn)); 1946} 1947 1948extern unsigned long __highest_present_section_nr; 1949 1950static inline int subsection_map_index(unsigned long pfn) 1951{ 1952 return (pfn & ~(PAGE_SECTION_MASK)) / PAGES_PER_SUBSECTION; 1953} 1954 1955#ifdef CONFIG_SPARSEMEM_VMEMMAP 1956static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) 1957{ 1958 int idx = subsection_map_index(pfn); 1959 1960 return test_bit(idx, ms->usage->subsection_map); 1961} 1962#else 1963static inline int pfn_section_valid(struct mem_section *ms, unsigned long pfn) 1964{ 1965 return 1; 1966} 1967#endif 1968 1969#ifndef CONFIG_HAVE_ARCH_PFN_VALID 1970/** 1971 * pfn_valid - check if there is a valid memory map entry for a PFN 1972 * @pfn: the page frame number to check 1973 * 1974 * Check if there is a valid memory map entry aka struct page for the @pfn. 1975 * Note, that availability of the memory map entry does not imply that 1976 * there is actual usable memory at that @pfn. The struct page may 1977 * represent a hole or an unusable page frame. 1978 * 1979 * Return: 1 for PFNs that have memory map entries and 0 otherwise 1980 */ 1981static inline int pfn_valid(unsigned long pfn) 1982{ 1983 struct mem_section *ms; 1984 1985 /* 1986 * Ensure the upper PAGE_SHIFT bits are clear in the 1987 * pfn. Else it might lead to false positives when 1988 * some of the upper bits are set, but the lower bits 1989 * match a valid pfn. 1990 */ 1991 if (PHYS_PFN(PFN_PHYS(pfn)) != pfn) 1992 return 0; 1993 1994 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 1995 return 0; 1996 ms = __pfn_to_section(pfn); 1997 if (!valid_section(ms)) 1998 return 0; 1999 /* 2000 * Traditionally early sections always returned pfn_valid() for 2001 * the entire section-sized span. 2002 */ 2003 return early_section(ms) || pfn_section_valid(ms, pfn); 2004} 2005#endif 2006 2007static inline int pfn_in_present_section(unsigned long pfn) 2008{ 2009 if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS) 2010 return 0; 2011 return present_section(__pfn_to_section(pfn)); 2012} 2013 2014static inline unsigned long next_present_section_nr(unsigned long section_nr) 2015{ 2016 while (++section_nr <= __highest_present_section_nr) { 2017 if (present_section_nr(section_nr)) 2018 return section_nr; 2019 } 2020 2021 return -1; 2022} 2023 2024/* 2025 * These are _only_ used during initialisation, therefore they 2026 * can use __initdata ... They could have names to indicate 2027 * this restriction. 2028 */ 2029#ifdef CONFIG_NUMA 2030#define pfn_to_nid(pfn) \ 2031({ \ 2032 unsigned long __pfn_to_nid_pfn = (pfn); \ 2033 page_to_nid(pfn_to_page(__pfn_to_nid_pfn)); \ 2034}) 2035#else 2036#define pfn_to_nid(pfn) (0) 2037#endif 2038 2039void sparse_init(void); 2040#else 2041#define sparse_init() do {} while (0) 2042#define sparse_index_init(_sec, _nid) do {} while (0) 2043#define pfn_in_present_section pfn_valid 2044#define subsection_map_init(_pfn, _nr_pages) do {} while (0) 2045#endif /* CONFIG_SPARSEMEM */ 2046 2047#endif /* !__GENERATING_BOUNDS.H */ 2048#endif /* !__ASSEMBLY__ */ 2049#endif /* _LINUX_MMZONE_H */