Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _LINUX_MM_H
3#define _LINUX_MM_H
4
5#include <linux/errno.h>
6#include <linux/mmdebug.h>
7#include <linux/gfp.h>
8#include <linux/bug.h>
9#include <linux/list.h>
10#include <linux/mmzone.h>
11#include <linux/rbtree.h>
12#include <linux/atomic.h>
13#include <linux/debug_locks.h>
14#include <linux/mm_types.h>
15#include <linux/mmap_lock.h>
16#include <linux/range.h>
17#include <linux/pfn.h>
18#include <linux/percpu-refcount.h>
19#include <linux/bit_spinlock.h>
20#include <linux/shrinker.h>
21#include <linux/resource.h>
22#include <linux/page_ext.h>
23#include <linux/err.h>
24#include <linux/page-flags.h>
25#include <linux/page_ref.h>
26#include <linux/overflow.h>
27#include <linux/sizes.h>
28#include <linux/sched.h>
29#include <linux/pgtable.h>
30#include <linux/kasan.h>
31#include <linux/memremap.h>
32#include <linux/slab.h>
33
34struct mempolicy;
35struct anon_vma;
36struct anon_vma_chain;
37struct user_struct;
38struct pt_regs;
39
40extern int sysctl_page_lock_unfairness;
41
42void mm_core_init(void);
43void init_mm_internals(void);
44
45#ifndef CONFIG_NUMA /* Don't use mapnrs, do it properly */
46extern unsigned long max_mapnr;
47
48static inline void set_max_mapnr(unsigned long limit)
49{
50 max_mapnr = limit;
51}
52#else
53static inline void set_max_mapnr(unsigned long limit) { }
54#endif
55
56extern atomic_long_t _totalram_pages;
57static inline unsigned long totalram_pages(void)
58{
59 return (unsigned long)atomic_long_read(&_totalram_pages);
60}
61
62static inline void totalram_pages_inc(void)
63{
64 atomic_long_inc(&_totalram_pages);
65}
66
67static inline void totalram_pages_dec(void)
68{
69 atomic_long_dec(&_totalram_pages);
70}
71
72static inline void totalram_pages_add(long count)
73{
74 atomic_long_add(count, &_totalram_pages);
75}
76
77extern void * high_memory;
78extern int page_cluster;
79extern const int page_cluster_max;
80
81#ifdef CONFIG_SYSCTL
82extern int sysctl_legacy_va_layout;
83#else
84#define sysctl_legacy_va_layout 0
85#endif
86
87#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
88extern const int mmap_rnd_bits_min;
89extern const int mmap_rnd_bits_max;
90extern int mmap_rnd_bits __read_mostly;
91#endif
92#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
93extern const int mmap_rnd_compat_bits_min;
94extern const int mmap_rnd_compat_bits_max;
95extern int mmap_rnd_compat_bits __read_mostly;
96#endif
97
98#include <asm/page.h>
99#include <asm/processor.h>
100
101#ifndef __pa_symbol
102#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
103#endif
104
105#ifndef page_to_virt
106#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
107#endif
108
109#ifndef lm_alias
110#define lm_alias(x) __va(__pa_symbol(x))
111#endif
112
113/*
114 * To prevent common memory management code establishing
115 * a zero page mapping on a read fault.
116 * This macro should be defined within <asm/pgtable.h>.
117 * s390 does this to prevent multiplexing of hardware bits
118 * related to the physical page in case of virtualization.
119 */
120#ifndef mm_forbids_zeropage
121#define mm_forbids_zeropage(X) (0)
122#endif
123
124/*
125 * On some architectures it is expensive to call memset() for small sizes.
126 * If an architecture decides to implement their own version of
127 * mm_zero_struct_page they should wrap the defines below in a #ifndef and
128 * define their own version of this macro in <asm/pgtable.h>
129 */
130#if BITS_PER_LONG == 64
131/* This function must be updated when the size of struct page grows above 96
132 * or reduces below 56. The idea that compiler optimizes out switch()
133 * statement, and only leaves move/store instructions. Also the compiler can
134 * combine write statements if they are both assignments and can be reordered,
135 * this can result in several of the writes here being dropped.
136 */
137#define mm_zero_struct_page(pp) __mm_zero_struct_page(pp)
138static inline void __mm_zero_struct_page(struct page *page)
139{
140 unsigned long *_pp = (void *)page;
141
142 /* Check that struct page is either 56, 64, 72, 80, 88 or 96 bytes */
143 BUILD_BUG_ON(sizeof(struct page) & 7);
144 BUILD_BUG_ON(sizeof(struct page) < 56);
145 BUILD_BUG_ON(sizeof(struct page) > 96);
146
147 switch (sizeof(struct page)) {
148 case 96:
149 _pp[11] = 0;
150 fallthrough;
151 case 88:
152 _pp[10] = 0;
153 fallthrough;
154 case 80:
155 _pp[9] = 0;
156 fallthrough;
157 case 72:
158 _pp[8] = 0;
159 fallthrough;
160 case 64:
161 _pp[7] = 0;
162 fallthrough;
163 case 56:
164 _pp[6] = 0;
165 _pp[5] = 0;
166 _pp[4] = 0;
167 _pp[3] = 0;
168 _pp[2] = 0;
169 _pp[1] = 0;
170 _pp[0] = 0;
171 }
172}
173#else
174#define mm_zero_struct_page(pp) ((void)memset((pp), 0, sizeof(struct page)))
175#endif
176
177/*
178 * Default maximum number of active map areas, this limits the number of vmas
179 * per mm struct. Users can overwrite this number by sysctl but there is a
180 * problem.
181 *
182 * When a program's coredump is generated as ELF format, a section is created
183 * per a vma. In ELF, the number of sections is represented in unsigned short.
184 * This means the number of sections should be smaller than 65535 at coredump.
185 * Because the kernel adds some informative sections to a image of program at
186 * generating coredump, we need some margin. The number of extra sections is
187 * 1-3 now and depends on arch. We use "5" as safe margin, here.
188 *
189 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
190 * not a hard limit any more. Although some userspace tools can be surprised by
191 * that.
192 */
193#define MAPCOUNT_ELF_CORE_MARGIN (5)
194#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
195
196extern int sysctl_max_map_count;
197
198extern unsigned long sysctl_user_reserve_kbytes;
199extern unsigned long sysctl_admin_reserve_kbytes;
200
201extern int sysctl_overcommit_memory;
202extern int sysctl_overcommit_ratio;
203extern unsigned long sysctl_overcommit_kbytes;
204
205int overcommit_ratio_handler(struct ctl_table *, int, void *, size_t *,
206 loff_t *);
207int overcommit_kbytes_handler(struct ctl_table *, int, void *, size_t *,
208 loff_t *);
209int overcommit_policy_handler(struct ctl_table *, int, void *, size_t *,
210 loff_t *);
211
212#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
213#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
214#define folio_page_idx(folio, p) (page_to_pfn(p) - folio_pfn(folio))
215#else
216#define nth_page(page,n) ((page) + (n))
217#define folio_page_idx(folio, p) ((p) - &(folio)->page)
218#endif
219
220/* to align the pointer to the (next) page boundary */
221#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
222
223/* to align the pointer to the (prev) page boundary */
224#define PAGE_ALIGN_DOWN(addr) ALIGN_DOWN(addr, PAGE_SIZE)
225
226/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
227#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)(addr), PAGE_SIZE)
228
229#define lru_to_page(head) (list_entry((head)->prev, struct page, lru))
230static inline struct folio *lru_to_folio(struct list_head *head)
231{
232 return list_entry((head)->prev, struct folio, lru);
233}
234
235void setup_initial_init_mm(void *start_code, void *end_code,
236 void *end_data, void *brk);
237
238/*
239 * Linux kernel virtual memory manager primitives.
240 * The idea being to have a "virtual" mm in the same way
241 * we have a virtual fs - giving a cleaner interface to the
242 * mm details, and allowing different kinds of memory mappings
243 * (from shared memory to executable loading to arbitrary
244 * mmap() functions).
245 */
246
247struct vm_area_struct *vm_area_alloc(struct mm_struct *);
248struct vm_area_struct *vm_area_dup(struct vm_area_struct *);
249void vm_area_free(struct vm_area_struct *);
250/* Use only if VMA has no other users */
251void __vm_area_free(struct vm_area_struct *vma);
252
253#ifndef CONFIG_MMU
254extern struct rb_root nommu_region_tree;
255extern struct rw_semaphore nommu_region_sem;
256
257extern unsigned int kobjsize(const void *objp);
258#endif
259
260/*
261 * vm_flags in vm_area_struct, see mm_types.h.
262 * When changing, update also include/trace/events/mmflags.h
263 */
264#define VM_NONE 0x00000000
265
266#define VM_READ 0x00000001 /* currently active flags */
267#define VM_WRITE 0x00000002
268#define VM_EXEC 0x00000004
269#define VM_SHARED 0x00000008
270
271/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
272#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
273#define VM_MAYWRITE 0x00000020
274#define VM_MAYEXEC 0x00000040
275#define VM_MAYSHARE 0x00000080
276
277#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
278#ifdef CONFIG_MMU
279#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
280#else /* CONFIG_MMU */
281#define VM_MAYOVERLAY 0x00000200 /* nommu: R/O MAP_PRIVATE mapping that might overlay a file mapping */
282#define VM_UFFD_MISSING 0
283#endif /* CONFIG_MMU */
284#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
285#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
286
287#define VM_LOCKED 0x00002000
288#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
289
290 /* Used by sys_madvise() */
291#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
292#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
293
294#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
295#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
296#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
297#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
298#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
299#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
300#define VM_SYNC 0x00800000 /* Synchronous page faults */
301#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
302#define VM_WIPEONFORK 0x02000000 /* Wipe VMA contents in child. */
303#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
304
305#ifdef CONFIG_MEM_SOFT_DIRTY
306# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
307#else
308# define VM_SOFTDIRTY 0
309#endif
310
311#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
312#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
313#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
314#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
315
316#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
317#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
318#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
319#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
320#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
321#define VM_HIGH_ARCH_BIT_4 36 /* bit only usable on 64-bit architectures */
322#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
323#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
324#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
325#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
326#define VM_HIGH_ARCH_4 BIT(VM_HIGH_ARCH_BIT_4)
327#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
328
329#ifdef CONFIG_ARCH_HAS_PKEYS
330# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
331# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
332# define VM_PKEY_BIT1 VM_HIGH_ARCH_1 /* on x86 and 5-bit value on ppc64 */
333# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
334# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
335#ifdef CONFIG_PPC
336# define VM_PKEY_BIT4 VM_HIGH_ARCH_4
337#else
338# define VM_PKEY_BIT4 0
339#endif
340#endif /* CONFIG_ARCH_HAS_PKEYS */
341
342#if defined(CONFIG_X86)
343# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
344#elif defined(CONFIG_PPC)
345# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
346#elif defined(CONFIG_PARISC)
347# define VM_GROWSUP VM_ARCH_1
348#elif defined(CONFIG_IA64)
349# define VM_GROWSUP VM_ARCH_1
350#elif defined(CONFIG_SPARC64)
351# define VM_SPARC_ADI VM_ARCH_1 /* Uses ADI tag for access control */
352# define VM_ARCH_CLEAR VM_SPARC_ADI
353#elif defined(CONFIG_ARM64)
354# define VM_ARM64_BTI VM_ARCH_1 /* BTI guarded page, a.k.a. GP bit */
355# define VM_ARCH_CLEAR VM_ARM64_BTI
356#elif !defined(CONFIG_MMU)
357# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
358#endif
359
360#if defined(CONFIG_ARM64_MTE)
361# define VM_MTE VM_HIGH_ARCH_0 /* Use Tagged memory for access control */
362# define VM_MTE_ALLOWED VM_HIGH_ARCH_1 /* Tagged memory permitted */
363#else
364# define VM_MTE VM_NONE
365# define VM_MTE_ALLOWED VM_NONE
366#endif
367
368#ifndef VM_GROWSUP
369# define VM_GROWSUP VM_NONE
370#endif
371
372#ifdef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
373# define VM_UFFD_MINOR_BIT 37
374# define VM_UFFD_MINOR BIT(VM_UFFD_MINOR_BIT) /* UFFD minor faults */
375#else /* !CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
376# define VM_UFFD_MINOR VM_NONE
377#endif /* CONFIG_HAVE_ARCH_USERFAULTFD_MINOR */
378
379/* Bits set in the VMA until the stack is in its final location */
380#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
381
382#define TASK_EXEC ((current->personality & READ_IMPLIES_EXEC) ? VM_EXEC : 0)
383
384/* Common data flag combinations */
385#define VM_DATA_FLAGS_TSK_EXEC (VM_READ | VM_WRITE | TASK_EXEC | \
386 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
387#define VM_DATA_FLAGS_NON_EXEC (VM_READ | VM_WRITE | VM_MAYREAD | \
388 VM_MAYWRITE | VM_MAYEXEC)
389#define VM_DATA_FLAGS_EXEC (VM_READ | VM_WRITE | VM_EXEC | \
390 VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC)
391
392#ifndef VM_DATA_DEFAULT_FLAGS /* arch can override this */
393#define VM_DATA_DEFAULT_FLAGS VM_DATA_FLAGS_EXEC
394#endif
395
396#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
397#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
398#endif
399
400#ifdef CONFIG_STACK_GROWSUP
401#define VM_STACK VM_GROWSUP
402#else
403#define VM_STACK VM_GROWSDOWN
404#endif
405
406#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
407
408/* VMA basic access permission flags */
409#define VM_ACCESS_FLAGS (VM_READ | VM_WRITE | VM_EXEC)
410
411
412/*
413 * Special vmas that are non-mergable, non-mlock()able.
414 */
415#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
416
417/* This mask prevents VMA from being scanned with khugepaged */
418#define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
419
420/* This mask defines which mm->def_flags a process can inherit its parent */
421#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
422
423/* This mask represents all the VMA flag bits used by mlock */
424#define VM_LOCKED_MASK (VM_LOCKED | VM_LOCKONFAULT)
425
426/* Arch-specific flags to clear when updating VM flags on protection change */
427#ifndef VM_ARCH_CLEAR
428# define VM_ARCH_CLEAR VM_NONE
429#endif
430#define VM_FLAGS_CLEAR (ARCH_VM_PKEY_FLAGS | VM_ARCH_CLEAR)
431
432/*
433 * mapping from the currently active vm_flags protection bits (the
434 * low four bits) to a page protection mask..
435 */
436
437/*
438 * The default fault flags that should be used by most of the
439 * arch-specific page fault handlers.
440 */
441#define FAULT_FLAG_DEFAULT (FAULT_FLAG_ALLOW_RETRY | \
442 FAULT_FLAG_KILLABLE | \
443 FAULT_FLAG_INTERRUPTIBLE)
444
445/**
446 * fault_flag_allow_retry_first - check ALLOW_RETRY the first time
447 * @flags: Fault flags.
448 *
449 * This is mostly used for places where we want to try to avoid taking
450 * the mmap_lock for too long a time when waiting for another condition
451 * to change, in which case we can try to be polite to release the
452 * mmap_lock in the first round to avoid potential starvation of other
453 * processes that would also want the mmap_lock.
454 *
455 * Return: true if the page fault allows retry and this is the first
456 * attempt of the fault handling; false otherwise.
457 */
458static inline bool fault_flag_allow_retry_first(enum fault_flag flags)
459{
460 return (flags & FAULT_FLAG_ALLOW_RETRY) &&
461 (!(flags & FAULT_FLAG_TRIED));
462}
463
464#define FAULT_FLAG_TRACE \
465 { FAULT_FLAG_WRITE, "WRITE" }, \
466 { FAULT_FLAG_MKWRITE, "MKWRITE" }, \
467 { FAULT_FLAG_ALLOW_RETRY, "ALLOW_RETRY" }, \
468 { FAULT_FLAG_RETRY_NOWAIT, "RETRY_NOWAIT" }, \
469 { FAULT_FLAG_KILLABLE, "KILLABLE" }, \
470 { FAULT_FLAG_TRIED, "TRIED" }, \
471 { FAULT_FLAG_USER, "USER" }, \
472 { FAULT_FLAG_REMOTE, "REMOTE" }, \
473 { FAULT_FLAG_INSTRUCTION, "INSTRUCTION" }, \
474 { FAULT_FLAG_INTERRUPTIBLE, "INTERRUPTIBLE" }, \
475 { FAULT_FLAG_VMA_LOCK, "VMA_LOCK" }
476
477/*
478 * vm_fault is filled by the pagefault handler and passed to the vma's
479 * ->fault function. The vma's ->fault is responsible for returning a bitmask
480 * of VM_FAULT_xxx flags that give details about how the fault was handled.
481 *
482 * MM layer fills up gfp_mask for page allocations but fault handler might
483 * alter it if its implementation requires a different allocation context.
484 *
485 * pgoff should be used in favour of virtual_address, if possible.
486 */
487struct vm_fault {
488 const struct {
489 struct vm_area_struct *vma; /* Target VMA */
490 gfp_t gfp_mask; /* gfp mask to be used for allocations */
491 pgoff_t pgoff; /* Logical page offset based on vma */
492 unsigned long address; /* Faulting virtual address - masked */
493 unsigned long real_address; /* Faulting virtual address - unmasked */
494 };
495 enum fault_flag flags; /* FAULT_FLAG_xxx flags
496 * XXX: should really be 'const' */
497 pmd_t *pmd; /* Pointer to pmd entry matching
498 * the 'address' */
499 pud_t *pud; /* Pointer to pud entry matching
500 * the 'address'
501 */
502 union {
503 pte_t orig_pte; /* Value of PTE at the time of fault */
504 pmd_t orig_pmd; /* Value of PMD at the time of fault,
505 * used by PMD fault only.
506 */
507 };
508
509 struct page *cow_page; /* Page handler may use for COW fault */
510 struct page *page; /* ->fault handlers should return a
511 * page here, unless VM_FAULT_NOPAGE
512 * is set (which is also implied by
513 * VM_FAULT_ERROR).
514 */
515 /* These three entries are valid only while holding ptl lock */
516 pte_t *pte; /* Pointer to pte entry matching
517 * the 'address'. NULL if the page
518 * table hasn't been allocated.
519 */
520 spinlock_t *ptl; /* Page table lock.
521 * Protects pte page table if 'pte'
522 * is not NULL, otherwise pmd.
523 */
524 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
525 * vm_ops->map_pages() sets up a page
526 * table from atomic context.
527 * do_fault_around() pre-allocates
528 * page table to avoid allocation from
529 * atomic context.
530 */
531};
532
533/* page entry size for vm->huge_fault() */
534enum page_entry_size {
535 PE_SIZE_PTE = 0,
536 PE_SIZE_PMD,
537 PE_SIZE_PUD,
538};
539
540/*
541 * These are the virtual MM functions - opening of an area, closing and
542 * unmapping it (needed to keep files on disk up-to-date etc), pointer
543 * to the functions called when a no-page or a wp-page exception occurs.
544 */
545struct vm_operations_struct {
546 void (*open)(struct vm_area_struct * area);
547 /**
548 * @close: Called when the VMA is being removed from the MM.
549 * Context: User context. May sleep. Caller holds mmap_lock.
550 */
551 void (*close)(struct vm_area_struct * area);
552 /* Called any time before splitting to check if it's allowed */
553 int (*may_split)(struct vm_area_struct *area, unsigned long addr);
554 int (*mremap)(struct vm_area_struct *area);
555 /*
556 * Called by mprotect() to make driver-specific permission
557 * checks before mprotect() is finalised. The VMA must not
558 * be modified. Returns 0 if mprotect() can proceed.
559 */
560 int (*mprotect)(struct vm_area_struct *vma, unsigned long start,
561 unsigned long end, unsigned long newflags);
562 vm_fault_t (*fault)(struct vm_fault *vmf);
563 vm_fault_t (*huge_fault)(struct vm_fault *vmf,
564 enum page_entry_size pe_size);
565 vm_fault_t (*map_pages)(struct vm_fault *vmf,
566 pgoff_t start_pgoff, pgoff_t end_pgoff);
567 unsigned long (*pagesize)(struct vm_area_struct * area);
568
569 /* notification that a previously read-only page is about to become
570 * writable, if an error is returned it will cause a SIGBUS */
571 vm_fault_t (*page_mkwrite)(struct vm_fault *vmf);
572
573 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
574 vm_fault_t (*pfn_mkwrite)(struct vm_fault *vmf);
575
576 /* called by access_process_vm when get_user_pages() fails, typically
577 * for use by special VMAs. See also generic_access_phys() for a generic
578 * implementation useful for any iomem mapping.
579 */
580 int (*access)(struct vm_area_struct *vma, unsigned long addr,
581 void *buf, int len, int write);
582
583 /* Called by the /proc/PID/maps code to ask the vma whether it
584 * has a special name. Returning non-NULL will also cause this
585 * vma to be dumped unconditionally. */
586 const char *(*name)(struct vm_area_struct *vma);
587
588#ifdef CONFIG_NUMA
589 /*
590 * set_policy() op must add a reference to any non-NULL @new mempolicy
591 * to hold the policy upon return. Caller should pass NULL @new to
592 * remove a policy and fall back to surrounding context--i.e. do not
593 * install a MPOL_DEFAULT policy, nor the task or system default
594 * mempolicy.
595 */
596 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
597
598 /*
599 * get_policy() op must add reference [mpol_get()] to any policy at
600 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
601 * in mm/mempolicy.c will do this automatically.
602 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
603 * marked as MPOL_SHARED. vma policies are protected by the mmap_lock.
604 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
605 * must return NULL--i.e., do not "fallback" to task or system default
606 * policy.
607 */
608 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
609 unsigned long addr);
610#endif
611 /*
612 * Called by vm_normal_page() for special PTEs to find the
613 * page for @addr. This is useful if the default behavior
614 * (using pte_page()) would not find the correct page.
615 */
616 struct page *(*find_special_page)(struct vm_area_struct *vma,
617 unsigned long addr);
618};
619
620#ifdef CONFIG_NUMA_BALANCING
621static inline void vma_numab_state_init(struct vm_area_struct *vma)
622{
623 vma->numab_state = NULL;
624}
625static inline void vma_numab_state_free(struct vm_area_struct *vma)
626{
627 kfree(vma->numab_state);
628}
629#else
630static inline void vma_numab_state_init(struct vm_area_struct *vma) {}
631static inline void vma_numab_state_free(struct vm_area_struct *vma) {}
632#endif /* CONFIG_NUMA_BALANCING */
633
634#ifdef CONFIG_PER_VMA_LOCK
635/*
636 * Try to read-lock a vma. The function is allowed to occasionally yield false
637 * locked result to avoid performance overhead, in which case we fall back to
638 * using mmap_lock. The function should never yield false unlocked result.
639 */
640static inline bool vma_start_read(struct vm_area_struct *vma)
641{
642 /* Check before locking. A race might cause false locked result. */
643 if (vma->vm_lock_seq == READ_ONCE(vma->vm_mm->mm_lock_seq))
644 return false;
645
646 if (unlikely(down_read_trylock(&vma->vm_lock->lock) == 0))
647 return false;
648
649 /*
650 * Overflow might produce false locked result.
651 * False unlocked result is impossible because we modify and check
652 * vma->vm_lock_seq under vma->vm_lock protection and mm->mm_lock_seq
653 * modification invalidates all existing locks.
654 */
655 if (unlikely(vma->vm_lock_seq == READ_ONCE(vma->vm_mm->mm_lock_seq))) {
656 up_read(&vma->vm_lock->lock);
657 return false;
658 }
659 return true;
660}
661
662static inline void vma_end_read(struct vm_area_struct *vma)
663{
664 rcu_read_lock(); /* keeps vma alive till the end of up_read */
665 up_read(&vma->vm_lock->lock);
666 rcu_read_unlock();
667}
668
669static bool __is_vma_write_locked(struct vm_area_struct *vma, int *mm_lock_seq)
670{
671 mmap_assert_write_locked(vma->vm_mm);
672
673 /*
674 * current task is holding mmap_write_lock, both vma->vm_lock_seq and
675 * mm->mm_lock_seq can't be concurrently modified.
676 */
677 *mm_lock_seq = READ_ONCE(vma->vm_mm->mm_lock_seq);
678 return (vma->vm_lock_seq == *mm_lock_seq);
679}
680
681static inline void vma_start_write(struct vm_area_struct *vma)
682{
683 int mm_lock_seq;
684
685 if (__is_vma_write_locked(vma, &mm_lock_seq))
686 return;
687
688 down_write(&vma->vm_lock->lock);
689 vma->vm_lock_seq = mm_lock_seq;
690 up_write(&vma->vm_lock->lock);
691}
692
693static inline bool vma_try_start_write(struct vm_area_struct *vma)
694{
695 int mm_lock_seq;
696
697 if (__is_vma_write_locked(vma, &mm_lock_seq))
698 return true;
699
700 if (!down_write_trylock(&vma->vm_lock->lock))
701 return false;
702
703 vma->vm_lock_seq = mm_lock_seq;
704 up_write(&vma->vm_lock->lock);
705 return true;
706}
707
708static inline void vma_assert_write_locked(struct vm_area_struct *vma)
709{
710 int mm_lock_seq;
711
712 VM_BUG_ON_VMA(!__is_vma_write_locked(vma, &mm_lock_seq), vma);
713}
714
715static inline void vma_mark_detached(struct vm_area_struct *vma, bool detached)
716{
717 /* When detaching vma should be write-locked */
718 if (detached)
719 vma_assert_write_locked(vma);
720 vma->detached = detached;
721}
722
723struct vm_area_struct *lock_vma_under_rcu(struct mm_struct *mm,
724 unsigned long address);
725
726#else /* CONFIG_PER_VMA_LOCK */
727
728static inline void vma_init_lock(struct vm_area_struct *vma) {}
729static inline bool vma_start_read(struct vm_area_struct *vma)
730 { return false; }
731static inline void vma_end_read(struct vm_area_struct *vma) {}
732static inline void vma_start_write(struct vm_area_struct *vma) {}
733static inline bool vma_try_start_write(struct vm_area_struct *vma)
734 { return true; }
735static inline void vma_assert_write_locked(struct vm_area_struct *vma) {}
736static inline void vma_mark_detached(struct vm_area_struct *vma,
737 bool detached) {}
738
739#endif /* CONFIG_PER_VMA_LOCK */
740
741/*
742 * WARNING: vma_init does not initialize vma->vm_lock.
743 * Use vm_area_alloc()/vm_area_free() if vma needs locking.
744 */
745static inline void vma_init(struct vm_area_struct *vma, struct mm_struct *mm)
746{
747 static const struct vm_operations_struct dummy_vm_ops = {};
748
749 memset(vma, 0, sizeof(*vma));
750 vma->vm_mm = mm;
751 vma->vm_ops = &dummy_vm_ops;
752 INIT_LIST_HEAD(&vma->anon_vma_chain);
753 vma_mark_detached(vma, false);
754 vma_numab_state_init(vma);
755}
756
757/* Use when VMA is not part of the VMA tree and needs no locking */
758static inline void vm_flags_init(struct vm_area_struct *vma,
759 vm_flags_t flags)
760{
761 ACCESS_PRIVATE(vma, __vm_flags) = flags;
762}
763
764/* Use when VMA is part of the VMA tree and modifications need coordination */
765static inline void vm_flags_reset(struct vm_area_struct *vma,
766 vm_flags_t flags)
767{
768 vma_start_write(vma);
769 vm_flags_init(vma, flags);
770}
771
772static inline void vm_flags_reset_once(struct vm_area_struct *vma,
773 vm_flags_t flags)
774{
775 vma_start_write(vma);
776 WRITE_ONCE(ACCESS_PRIVATE(vma, __vm_flags), flags);
777}
778
779static inline void vm_flags_set(struct vm_area_struct *vma,
780 vm_flags_t flags)
781{
782 vma_start_write(vma);
783 ACCESS_PRIVATE(vma, __vm_flags) |= flags;
784}
785
786static inline void vm_flags_clear(struct vm_area_struct *vma,
787 vm_flags_t flags)
788{
789 vma_start_write(vma);
790 ACCESS_PRIVATE(vma, __vm_flags) &= ~flags;
791}
792
793/*
794 * Use only if VMA is not part of the VMA tree or has no other users and
795 * therefore needs no locking.
796 */
797static inline void __vm_flags_mod(struct vm_area_struct *vma,
798 vm_flags_t set, vm_flags_t clear)
799{
800 vm_flags_init(vma, (vma->vm_flags | set) & ~clear);
801}
802
803/*
804 * Use only when the order of set/clear operations is unimportant, otherwise
805 * use vm_flags_{set|clear} explicitly.
806 */
807static inline void vm_flags_mod(struct vm_area_struct *vma,
808 vm_flags_t set, vm_flags_t clear)
809{
810 vma_start_write(vma);
811 __vm_flags_mod(vma, set, clear);
812}
813
814static inline void vma_set_anonymous(struct vm_area_struct *vma)
815{
816 vma->vm_ops = NULL;
817}
818
819static inline bool vma_is_anonymous(struct vm_area_struct *vma)
820{
821 return !vma->vm_ops;
822}
823
824static inline bool vma_is_temporary_stack(struct vm_area_struct *vma)
825{
826 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
827
828 if (!maybe_stack)
829 return false;
830
831 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
832 VM_STACK_INCOMPLETE_SETUP)
833 return true;
834
835 return false;
836}
837
838static inline bool vma_is_foreign(struct vm_area_struct *vma)
839{
840 if (!current->mm)
841 return true;
842
843 if (current->mm != vma->vm_mm)
844 return true;
845
846 return false;
847}
848
849static inline bool vma_is_accessible(struct vm_area_struct *vma)
850{
851 return vma->vm_flags & VM_ACCESS_FLAGS;
852}
853
854static inline
855struct vm_area_struct *vma_find(struct vma_iterator *vmi, unsigned long max)
856{
857 return mas_find(&vmi->mas, max - 1);
858}
859
860static inline struct vm_area_struct *vma_next(struct vma_iterator *vmi)
861{
862 /*
863 * Uses mas_find() to get the first VMA when the iterator starts.
864 * Calling mas_next() could skip the first entry.
865 */
866 return mas_find(&vmi->mas, ULONG_MAX);
867}
868
869static inline struct vm_area_struct *vma_prev(struct vma_iterator *vmi)
870{
871 return mas_prev(&vmi->mas, 0);
872}
873
874static inline unsigned long vma_iter_addr(struct vma_iterator *vmi)
875{
876 return vmi->mas.index;
877}
878
879static inline unsigned long vma_iter_end(struct vma_iterator *vmi)
880{
881 return vmi->mas.last + 1;
882}
883static inline int vma_iter_bulk_alloc(struct vma_iterator *vmi,
884 unsigned long count)
885{
886 return mas_expected_entries(&vmi->mas, count);
887}
888
889/* Free any unused preallocations */
890static inline void vma_iter_free(struct vma_iterator *vmi)
891{
892 mas_destroy(&vmi->mas);
893}
894
895static inline int vma_iter_bulk_store(struct vma_iterator *vmi,
896 struct vm_area_struct *vma)
897{
898 vmi->mas.index = vma->vm_start;
899 vmi->mas.last = vma->vm_end - 1;
900 mas_store(&vmi->mas, vma);
901 if (unlikely(mas_is_err(&vmi->mas)))
902 return -ENOMEM;
903
904 return 0;
905}
906
907static inline void vma_iter_invalidate(struct vma_iterator *vmi)
908{
909 mas_pause(&vmi->mas);
910}
911
912static inline void vma_iter_set(struct vma_iterator *vmi, unsigned long addr)
913{
914 mas_set(&vmi->mas, addr);
915}
916
917#define for_each_vma(__vmi, __vma) \
918 while (((__vma) = vma_next(&(__vmi))) != NULL)
919
920/* The MM code likes to work with exclusive end addresses */
921#define for_each_vma_range(__vmi, __vma, __end) \
922 while (((__vma) = vma_find(&(__vmi), (__end))) != NULL)
923
924#ifdef CONFIG_SHMEM
925/*
926 * The vma_is_shmem is not inline because it is used only by slow
927 * paths in userfault.
928 */
929bool vma_is_shmem(struct vm_area_struct *vma);
930bool vma_is_anon_shmem(struct vm_area_struct *vma);
931#else
932static inline bool vma_is_shmem(struct vm_area_struct *vma) { return false; }
933static inline bool vma_is_anon_shmem(struct vm_area_struct *vma) { return false; }
934#endif
935
936int vma_is_stack_for_current(struct vm_area_struct *vma);
937
938/* flush_tlb_range() takes a vma, not a mm, and can care about flags */
939#define TLB_FLUSH_VMA(mm,flags) { .vm_mm = (mm), .vm_flags = (flags) }
940
941struct mmu_gather;
942struct inode;
943
944/*
945 * compound_order() can be called without holding a reference, which means
946 * that niceties like page_folio() don't work. These callers should be
947 * prepared to handle wild return values. For example, PG_head may be
948 * set before _folio_order is initialised, or this may be a tail page.
949 * See compaction.c for some good examples.
950 */
951static inline unsigned int compound_order(struct page *page)
952{
953 struct folio *folio = (struct folio *)page;
954
955 if (!test_bit(PG_head, &folio->flags))
956 return 0;
957 return folio->_folio_order;
958}
959
960/**
961 * folio_order - The allocation order of a folio.
962 * @folio: The folio.
963 *
964 * A folio is composed of 2^order pages. See get_order() for the definition
965 * of order.
966 *
967 * Return: The order of the folio.
968 */
969static inline unsigned int folio_order(struct folio *folio)
970{
971 if (!folio_test_large(folio))
972 return 0;
973 return folio->_folio_order;
974}
975
976#include <linux/huge_mm.h>
977
978/*
979 * Methods to modify the page usage count.
980 *
981 * What counts for a page usage:
982 * - cache mapping (page->mapping)
983 * - private data (page->private)
984 * - page mapped in a task's page tables, each mapping
985 * is counted separately
986 *
987 * Also, many kernel routines increase the page count before a critical
988 * routine so they can be sure the page doesn't go away from under them.
989 */
990
991/*
992 * Drop a ref, return true if the refcount fell to zero (the page has no users)
993 */
994static inline int put_page_testzero(struct page *page)
995{
996 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
997 return page_ref_dec_and_test(page);
998}
999
1000static inline int folio_put_testzero(struct folio *folio)
1001{
1002 return put_page_testzero(&folio->page);
1003}
1004
1005/*
1006 * Try to grab a ref unless the page has a refcount of zero, return false if
1007 * that is the case.
1008 * This can be called when MMU is off so it must not access
1009 * any of the virtual mappings.
1010 */
1011static inline bool get_page_unless_zero(struct page *page)
1012{
1013 return page_ref_add_unless(page, 1, 0);
1014}
1015
1016static inline struct folio *folio_get_nontail_page(struct page *page)
1017{
1018 if (unlikely(!get_page_unless_zero(page)))
1019 return NULL;
1020 return (struct folio *)page;
1021}
1022
1023extern int page_is_ram(unsigned long pfn);
1024
1025enum {
1026 REGION_INTERSECTS,
1027 REGION_DISJOINT,
1028 REGION_MIXED,
1029};
1030
1031int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
1032 unsigned long desc);
1033
1034/* Support for virtually mapped pages */
1035struct page *vmalloc_to_page(const void *addr);
1036unsigned long vmalloc_to_pfn(const void *addr);
1037
1038/*
1039 * Determine if an address is within the vmalloc range
1040 *
1041 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
1042 * is no special casing required.
1043 */
1044
1045#ifndef is_ioremap_addr
1046#define is_ioremap_addr(x) is_vmalloc_addr(x)
1047#endif
1048
1049#ifdef CONFIG_MMU
1050extern bool is_vmalloc_addr(const void *x);
1051extern int is_vmalloc_or_module_addr(const void *x);
1052#else
1053static inline bool is_vmalloc_addr(const void *x)
1054{
1055 return false;
1056}
1057static inline int is_vmalloc_or_module_addr(const void *x)
1058{
1059 return 0;
1060}
1061#endif
1062
1063/*
1064 * How many times the entire folio is mapped as a single unit (eg by a
1065 * PMD or PUD entry). This is probably not what you want, except for
1066 * debugging purposes - it does not include PTE-mapped sub-pages; look
1067 * at folio_mapcount() or page_mapcount() or total_mapcount() instead.
1068 */
1069static inline int folio_entire_mapcount(struct folio *folio)
1070{
1071 VM_BUG_ON_FOLIO(!folio_test_large(folio), folio);
1072 return atomic_read(&folio->_entire_mapcount) + 1;
1073}
1074
1075/*
1076 * The atomic page->_mapcount, starts from -1: so that transitions
1077 * both from it and to it can be tracked, using atomic_inc_and_test
1078 * and atomic_add_negative(-1).
1079 */
1080static inline void page_mapcount_reset(struct page *page)
1081{
1082 atomic_set(&(page)->_mapcount, -1);
1083}
1084
1085/**
1086 * page_mapcount() - Number of times this precise page is mapped.
1087 * @page: The page.
1088 *
1089 * The number of times this page is mapped. If this page is part of
1090 * a large folio, it includes the number of times this page is mapped
1091 * as part of that folio.
1092 *
1093 * The result is undefined for pages which cannot be mapped into userspace.
1094 * For example SLAB or special types of pages. See function page_has_type().
1095 * They use this field in struct page differently.
1096 */
1097static inline int page_mapcount(struct page *page)
1098{
1099 int mapcount = atomic_read(&page->_mapcount) + 1;
1100
1101 if (unlikely(PageCompound(page)))
1102 mapcount += folio_entire_mapcount(page_folio(page));
1103
1104 return mapcount;
1105}
1106
1107int folio_total_mapcount(struct folio *folio);
1108
1109/**
1110 * folio_mapcount() - Calculate the number of mappings of this folio.
1111 * @folio: The folio.
1112 *
1113 * A large folio tracks both how many times the entire folio is mapped,
1114 * and how many times each individual page in the folio is mapped.
1115 * This function calculates the total number of times the folio is
1116 * mapped.
1117 *
1118 * Return: The number of times this folio is mapped.
1119 */
1120static inline int folio_mapcount(struct folio *folio)
1121{
1122 if (likely(!folio_test_large(folio)))
1123 return atomic_read(&folio->_mapcount) + 1;
1124 return folio_total_mapcount(folio);
1125}
1126
1127static inline int total_mapcount(struct page *page)
1128{
1129 if (likely(!PageCompound(page)))
1130 return atomic_read(&page->_mapcount) + 1;
1131 return folio_total_mapcount(page_folio(page));
1132}
1133
1134static inline bool folio_large_is_mapped(struct folio *folio)
1135{
1136 /*
1137 * Reading _entire_mapcount below could be omitted if hugetlb
1138 * participated in incrementing nr_pages_mapped when compound mapped.
1139 */
1140 return atomic_read(&folio->_nr_pages_mapped) > 0 ||
1141 atomic_read(&folio->_entire_mapcount) >= 0;
1142}
1143
1144/**
1145 * folio_mapped - Is this folio mapped into userspace?
1146 * @folio: The folio.
1147 *
1148 * Return: True if any page in this folio is referenced by user page tables.
1149 */
1150static inline bool folio_mapped(struct folio *folio)
1151{
1152 if (likely(!folio_test_large(folio)))
1153 return atomic_read(&folio->_mapcount) >= 0;
1154 return folio_large_is_mapped(folio);
1155}
1156
1157/*
1158 * Return true if this page is mapped into pagetables.
1159 * For compound page it returns true if any sub-page of compound page is mapped,
1160 * even if this particular sub-page is not itself mapped by any PTE or PMD.
1161 */
1162static inline bool page_mapped(struct page *page)
1163{
1164 if (likely(!PageCompound(page)))
1165 return atomic_read(&page->_mapcount) >= 0;
1166 return folio_large_is_mapped(page_folio(page));
1167}
1168
1169static inline struct page *virt_to_head_page(const void *x)
1170{
1171 struct page *page = virt_to_page(x);
1172
1173 return compound_head(page);
1174}
1175
1176static inline struct folio *virt_to_folio(const void *x)
1177{
1178 struct page *page = virt_to_page(x);
1179
1180 return page_folio(page);
1181}
1182
1183void __folio_put(struct folio *folio);
1184
1185void put_pages_list(struct list_head *pages);
1186
1187void split_page(struct page *page, unsigned int order);
1188void folio_copy(struct folio *dst, struct folio *src);
1189
1190unsigned long nr_free_buffer_pages(void);
1191
1192/*
1193 * Compound pages have a destructor function. Provide a
1194 * prototype for that function and accessor functions.
1195 * These are _only_ valid on the head of a compound page.
1196 */
1197typedef void compound_page_dtor(struct page *);
1198
1199/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
1200enum compound_dtor_id {
1201 NULL_COMPOUND_DTOR,
1202 COMPOUND_PAGE_DTOR,
1203#ifdef CONFIG_HUGETLB_PAGE
1204 HUGETLB_PAGE_DTOR,
1205#endif
1206#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1207 TRANSHUGE_PAGE_DTOR,
1208#endif
1209 NR_COMPOUND_DTORS,
1210};
1211extern compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS];
1212
1213static inline void set_compound_page_dtor(struct page *page,
1214 enum compound_dtor_id compound_dtor)
1215{
1216 struct folio *folio = (struct folio *)page;
1217
1218 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
1219 VM_BUG_ON_PAGE(!PageHead(page), page);
1220 folio->_folio_dtor = compound_dtor;
1221}
1222
1223static inline void folio_set_compound_dtor(struct folio *folio,
1224 enum compound_dtor_id compound_dtor)
1225{
1226 VM_BUG_ON_FOLIO(compound_dtor >= NR_COMPOUND_DTORS, folio);
1227 folio->_folio_dtor = compound_dtor;
1228}
1229
1230void destroy_large_folio(struct folio *folio);
1231
1232static inline void set_compound_order(struct page *page, unsigned int order)
1233{
1234 struct folio *folio = (struct folio *)page;
1235
1236 folio->_folio_order = order;
1237#ifdef CONFIG_64BIT
1238 folio->_folio_nr_pages = 1U << order;
1239#endif
1240}
1241
1242/* Returns the number of bytes in this potentially compound page. */
1243static inline unsigned long page_size(struct page *page)
1244{
1245 return PAGE_SIZE << compound_order(page);
1246}
1247
1248/* Returns the number of bits needed for the number of bytes in a page */
1249static inline unsigned int page_shift(struct page *page)
1250{
1251 return PAGE_SHIFT + compound_order(page);
1252}
1253
1254/**
1255 * thp_order - Order of a transparent huge page.
1256 * @page: Head page of a transparent huge page.
1257 */
1258static inline unsigned int thp_order(struct page *page)
1259{
1260 VM_BUG_ON_PGFLAGS(PageTail(page), page);
1261 return compound_order(page);
1262}
1263
1264/**
1265 * thp_size - Size of a transparent huge page.
1266 * @page: Head page of a transparent huge page.
1267 *
1268 * Return: Number of bytes in this page.
1269 */
1270static inline unsigned long thp_size(struct page *page)
1271{
1272 return PAGE_SIZE << thp_order(page);
1273}
1274
1275void free_compound_page(struct page *page);
1276
1277#ifdef CONFIG_MMU
1278/*
1279 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1280 * servicing faults for write access. In the normal case, do always want
1281 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1282 * that do not have writing enabled, when used by access_process_vm.
1283 */
1284static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1285{
1286 if (likely(vma->vm_flags & VM_WRITE))
1287 pte = pte_mkwrite(pte);
1288 return pte;
1289}
1290
1291vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page);
1292void do_set_pte(struct vm_fault *vmf, struct page *page, unsigned long addr);
1293
1294vm_fault_t finish_fault(struct vm_fault *vmf);
1295vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf);
1296#endif
1297
1298/*
1299 * Multiple processes may "see" the same page. E.g. for untouched
1300 * mappings of /dev/null, all processes see the same page full of
1301 * zeroes, and text pages of executables and shared libraries have
1302 * only one copy in memory, at most, normally.
1303 *
1304 * For the non-reserved pages, page_count(page) denotes a reference count.
1305 * page_count() == 0 means the page is free. page->lru is then used for
1306 * freelist management in the buddy allocator.
1307 * page_count() > 0 means the page has been allocated.
1308 *
1309 * Pages are allocated by the slab allocator in order to provide memory
1310 * to kmalloc and kmem_cache_alloc. In this case, the management of the
1311 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
1312 * unless a particular usage is carefully commented. (the responsibility of
1313 * freeing the kmalloc memory is the caller's, of course).
1314 *
1315 * A page may be used by anyone else who does a __get_free_page().
1316 * In this case, page_count still tracks the references, and should only
1317 * be used through the normal accessor functions. The top bits of page->flags
1318 * and page->virtual store page management information, but all other fields
1319 * are unused and could be used privately, carefully. The management of this
1320 * page is the responsibility of the one who allocated it, and those who have
1321 * subsequently been given references to it.
1322 *
1323 * The other pages (we may call them "pagecache pages") are completely
1324 * managed by the Linux memory manager: I/O, buffers, swapping etc.
1325 * The following discussion applies only to them.
1326 *
1327 * A pagecache page contains an opaque `private' member, which belongs to the
1328 * page's address_space. Usually, this is the address of a circular list of
1329 * the page's disk buffers. PG_private must be set to tell the VM to call
1330 * into the filesystem to release these pages.
1331 *
1332 * A page may belong to an inode's memory mapping. In this case, page->mapping
1333 * is the pointer to the inode, and page->index is the file offset of the page,
1334 * in units of PAGE_SIZE.
1335 *
1336 * If pagecache pages are not associated with an inode, they are said to be
1337 * anonymous pages. These may become associated with the swapcache, and in that
1338 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1339 *
1340 * In either case (swapcache or inode backed), the pagecache itself holds one
1341 * reference to the page. Setting PG_private should also increment the
1342 * refcount. The each user mapping also has a reference to the page.
1343 *
1344 * The pagecache pages are stored in a per-mapping radix tree, which is
1345 * rooted at mapping->i_pages, and indexed by offset.
1346 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
1347 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1348 *
1349 * All pagecache pages may be subject to I/O:
1350 * - inode pages may need to be read from disk,
1351 * - inode pages which have been modified and are MAP_SHARED may need
1352 * to be written back to the inode on disk,
1353 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
1354 * modified may need to be swapped out to swap space and (later) to be read
1355 * back into memory.
1356 */
1357
1358#if defined(CONFIG_ZONE_DEVICE) && defined(CONFIG_FS_DAX)
1359DECLARE_STATIC_KEY_FALSE(devmap_managed_key);
1360
1361bool __put_devmap_managed_page_refs(struct page *page, int refs);
1362static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
1363{
1364 if (!static_branch_unlikely(&devmap_managed_key))
1365 return false;
1366 if (!is_zone_device_page(page))
1367 return false;
1368 return __put_devmap_managed_page_refs(page, refs);
1369}
1370#else /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1371static inline bool put_devmap_managed_page_refs(struct page *page, int refs)
1372{
1373 return false;
1374}
1375#endif /* CONFIG_ZONE_DEVICE && CONFIG_FS_DAX */
1376
1377static inline bool put_devmap_managed_page(struct page *page)
1378{
1379 return put_devmap_managed_page_refs(page, 1);
1380}
1381
1382/* 127: arbitrary random number, small enough to assemble well */
1383#define folio_ref_zero_or_close_to_overflow(folio) \
1384 ((unsigned int) folio_ref_count(folio) + 127u <= 127u)
1385
1386/**
1387 * folio_get - Increment the reference count on a folio.
1388 * @folio: The folio.
1389 *
1390 * Context: May be called in any context, as long as you know that
1391 * you have a refcount on the folio. If you do not already have one,
1392 * folio_try_get() may be the right interface for you to use.
1393 */
1394static inline void folio_get(struct folio *folio)
1395{
1396 VM_BUG_ON_FOLIO(folio_ref_zero_or_close_to_overflow(folio), folio);
1397 folio_ref_inc(folio);
1398}
1399
1400static inline void get_page(struct page *page)
1401{
1402 folio_get(page_folio(page));
1403}
1404
1405static inline __must_check bool try_get_page(struct page *page)
1406{
1407 page = compound_head(page);
1408 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
1409 return false;
1410 page_ref_inc(page);
1411 return true;
1412}
1413
1414/**
1415 * folio_put - Decrement the reference count on a folio.
1416 * @folio: The folio.
1417 *
1418 * If the folio's reference count reaches zero, the memory will be
1419 * released back to the page allocator and may be used by another
1420 * allocation immediately. Do not access the memory or the struct folio
1421 * after calling folio_put() unless you can be sure that it wasn't the
1422 * last reference.
1423 *
1424 * Context: May be called in process or interrupt context, but not in NMI
1425 * context. May be called while holding a spinlock.
1426 */
1427static inline void folio_put(struct folio *folio)
1428{
1429 if (folio_put_testzero(folio))
1430 __folio_put(folio);
1431}
1432
1433/**
1434 * folio_put_refs - Reduce the reference count on a folio.
1435 * @folio: The folio.
1436 * @refs: The amount to subtract from the folio's reference count.
1437 *
1438 * If the folio's reference count reaches zero, the memory will be
1439 * released back to the page allocator and may be used by another
1440 * allocation immediately. Do not access the memory or the struct folio
1441 * after calling folio_put_refs() unless you can be sure that these weren't
1442 * the last references.
1443 *
1444 * Context: May be called in process or interrupt context, but not in NMI
1445 * context. May be called while holding a spinlock.
1446 */
1447static inline void folio_put_refs(struct folio *folio, int refs)
1448{
1449 if (folio_ref_sub_and_test(folio, refs))
1450 __folio_put(folio);
1451}
1452
1453/*
1454 * union release_pages_arg - an array of pages or folios
1455 *
1456 * release_pages() releases a simple array of multiple pages, and
1457 * accepts various different forms of said page array: either
1458 * a regular old boring array of pages, an array of folios, or
1459 * an array of encoded page pointers.
1460 *
1461 * The transparent union syntax for this kind of "any of these
1462 * argument types" is all kinds of ugly, so look away.
1463 */
1464typedef union {
1465 struct page **pages;
1466 struct folio **folios;
1467 struct encoded_page **encoded_pages;
1468} release_pages_arg __attribute__ ((__transparent_union__));
1469
1470void release_pages(release_pages_arg, int nr);
1471
1472/**
1473 * folios_put - Decrement the reference count on an array of folios.
1474 * @folios: The folios.
1475 * @nr: How many folios there are.
1476 *
1477 * Like folio_put(), but for an array of folios. This is more efficient
1478 * than writing the loop yourself as it will optimise the locks which
1479 * need to be taken if the folios are freed.
1480 *
1481 * Context: May be called in process or interrupt context, but not in NMI
1482 * context. May be called while holding a spinlock.
1483 */
1484static inline void folios_put(struct folio **folios, unsigned int nr)
1485{
1486 release_pages(folios, nr);
1487}
1488
1489static inline void put_page(struct page *page)
1490{
1491 struct folio *folio = page_folio(page);
1492
1493 /*
1494 * For some devmap managed pages we need to catch refcount transition
1495 * from 2 to 1:
1496 */
1497 if (put_devmap_managed_page(&folio->page))
1498 return;
1499 folio_put(folio);
1500}
1501
1502/*
1503 * GUP_PIN_COUNTING_BIAS, and the associated functions that use it, overload
1504 * the page's refcount so that two separate items are tracked: the original page
1505 * reference count, and also a new count of how many pin_user_pages() calls were
1506 * made against the page. ("gup-pinned" is another term for the latter).
1507 *
1508 * With this scheme, pin_user_pages() becomes special: such pages are marked as
1509 * distinct from normal pages. As such, the unpin_user_page() call (and its
1510 * variants) must be used in order to release gup-pinned pages.
1511 *
1512 * Choice of value:
1513 *
1514 * By making GUP_PIN_COUNTING_BIAS a power of two, debugging of page reference
1515 * counts with respect to pin_user_pages() and unpin_user_page() becomes
1516 * simpler, due to the fact that adding an even power of two to the page
1517 * refcount has the effect of using only the upper N bits, for the code that
1518 * counts up using the bias value. This means that the lower bits are left for
1519 * the exclusive use of the original code that increments and decrements by one
1520 * (or at least, by much smaller values than the bias value).
1521 *
1522 * Of course, once the lower bits overflow into the upper bits (and this is
1523 * OK, because subtraction recovers the original values), then visual inspection
1524 * no longer suffices to directly view the separate counts. However, for normal
1525 * applications that don't have huge page reference counts, this won't be an
1526 * issue.
1527 *
1528 * Locking: the lockless algorithm described in folio_try_get_rcu()
1529 * provides safe operation for get_user_pages(), page_mkclean() and
1530 * other calls that race to set up page table entries.
1531 */
1532#define GUP_PIN_COUNTING_BIAS (1U << 10)
1533
1534void unpin_user_page(struct page *page);
1535void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
1536 bool make_dirty);
1537void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
1538 bool make_dirty);
1539void unpin_user_pages(struct page **pages, unsigned long npages);
1540
1541static inline bool is_cow_mapping(vm_flags_t flags)
1542{
1543 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
1544}
1545
1546#ifndef CONFIG_MMU
1547static inline bool is_nommu_shared_mapping(vm_flags_t flags)
1548{
1549 /*
1550 * NOMMU shared mappings are ordinary MAP_SHARED mappings and selected
1551 * R/O MAP_PRIVATE file mappings that are an effective R/O overlay of
1552 * a file mapping. R/O MAP_PRIVATE mappings might still modify
1553 * underlying memory if ptrace is active, so this is only possible if
1554 * ptrace does not apply. Note that there is no mprotect() to upgrade
1555 * write permissions later.
1556 */
1557 return flags & (VM_MAYSHARE | VM_MAYOVERLAY);
1558}
1559#endif
1560
1561#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
1562#define SECTION_IN_PAGE_FLAGS
1563#endif
1564
1565/*
1566 * The identification function is mainly used by the buddy allocator for
1567 * determining if two pages could be buddies. We are not really identifying
1568 * the zone since we could be using the section number id if we do not have
1569 * node id available in page flags.
1570 * We only guarantee that it will return the same value for two combinable
1571 * pages in a zone.
1572 */
1573static inline int page_zone_id(struct page *page)
1574{
1575 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
1576}
1577
1578#ifdef NODE_NOT_IN_PAGE_FLAGS
1579extern int page_to_nid(const struct page *page);
1580#else
1581static inline int page_to_nid(const struct page *page)
1582{
1583 struct page *p = (struct page *)page;
1584
1585 return (PF_POISONED_CHECK(p)->flags >> NODES_PGSHIFT) & NODES_MASK;
1586}
1587#endif
1588
1589static inline int folio_nid(const struct folio *folio)
1590{
1591 return page_to_nid(&folio->page);
1592}
1593
1594#ifdef CONFIG_NUMA_BALANCING
1595/* page access time bits needs to hold at least 4 seconds */
1596#define PAGE_ACCESS_TIME_MIN_BITS 12
1597#if LAST_CPUPID_SHIFT < PAGE_ACCESS_TIME_MIN_BITS
1598#define PAGE_ACCESS_TIME_BUCKETS \
1599 (PAGE_ACCESS_TIME_MIN_BITS - LAST_CPUPID_SHIFT)
1600#else
1601#define PAGE_ACCESS_TIME_BUCKETS 0
1602#endif
1603
1604#define PAGE_ACCESS_TIME_MASK \
1605 (LAST_CPUPID_MASK << PAGE_ACCESS_TIME_BUCKETS)
1606
1607static inline int cpu_pid_to_cpupid(int cpu, int pid)
1608{
1609 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
1610}
1611
1612static inline int cpupid_to_pid(int cpupid)
1613{
1614 return cpupid & LAST__PID_MASK;
1615}
1616
1617static inline int cpupid_to_cpu(int cpupid)
1618{
1619 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
1620}
1621
1622static inline int cpupid_to_nid(int cpupid)
1623{
1624 return cpu_to_node(cpupid_to_cpu(cpupid));
1625}
1626
1627static inline bool cpupid_pid_unset(int cpupid)
1628{
1629 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
1630}
1631
1632static inline bool cpupid_cpu_unset(int cpupid)
1633{
1634 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
1635}
1636
1637static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
1638{
1639 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
1640}
1641
1642#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
1643#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
1644static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1645{
1646 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
1647}
1648
1649static inline int page_cpupid_last(struct page *page)
1650{
1651 return page->_last_cpupid;
1652}
1653static inline void page_cpupid_reset_last(struct page *page)
1654{
1655 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
1656}
1657#else
1658static inline int page_cpupid_last(struct page *page)
1659{
1660 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
1661}
1662
1663extern int page_cpupid_xchg_last(struct page *page, int cpupid);
1664
1665static inline void page_cpupid_reset_last(struct page *page)
1666{
1667 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
1668}
1669#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
1670
1671static inline int xchg_page_access_time(struct page *page, int time)
1672{
1673 int last_time;
1674
1675 last_time = page_cpupid_xchg_last(page, time >> PAGE_ACCESS_TIME_BUCKETS);
1676 return last_time << PAGE_ACCESS_TIME_BUCKETS;
1677}
1678
1679static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1680{
1681 unsigned int pid_bit;
1682
1683 pid_bit = hash_32(current->pid, ilog2(BITS_PER_LONG));
1684 if (vma->numab_state && !test_bit(pid_bit, &vma->numab_state->access_pids[1])) {
1685 __set_bit(pid_bit, &vma->numab_state->access_pids[1]);
1686 }
1687}
1688#else /* !CONFIG_NUMA_BALANCING */
1689static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
1690{
1691 return page_to_nid(page); /* XXX */
1692}
1693
1694static inline int xchg_page_access_time(struct page *page, int time)
1695{
1696 return 0;
1697}
1698
1699static inline int page_cpupid_last(struct page *page)
1700{
1701 return page_to_nid(page); /* XXX */
1702}
1703
1704static inline int cpupid_to_nid(int cpupid)
1705{
1706 return -1;
1707}
1708
1709static inline int cpupid_to_pid(int cpupid)
1710{
1711 return -1;
1712}
1713
1714static inline int cpupid_to_cpu(int cpupid)
1715{
1716 return -1;
1717}
1718
1719static inline int cpu_pid_to_cpupid(int nid, int pid)
1720{
1721 return -1;
1722}
1723
1724static inline bool cpupid_pid_unset(int cpupid)
1725{
1726 return true;
1727}
1728
1729static inline void page_cpupid_reset_last(struct page *page)
1730{
1731}
1732
1733static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
1734{
1735 return false;
1736}
1737
1738static inline void vma_set_access_pid_bit(struct vm_area_struct *vma)
1739{
1740}
1741#endif /* CONFIG_NUMA_BALANCING */
1742
1743#if defined(CONFIG_KASAN_SW_TAGS) || defined(CONFIG_KASAN_HW_TAGS)
1744
1745/*
1746 * KASAN per-page tags are stored xor'ed with 0xff. This allows to avoid
1747 * setting tags for all pages to native kernel tag value 0xff, as the default
1748 * value 0x00 maps to 0xff.
1749 */
1750
1751static inline u8 page_kasan_tag(const struct page *page)
1752{
1753 u8 tag = 0xff;
1754
1755 if (kasan_enabled()) {
1756 tag = (page->flags >> KASAN_TAG_PGSHIFT) & KASAN_TAG_MASK;
1757 tag ^= 0xff;
1758 }
1759
1760 return tag;
1761}
1762
1763static inline void page_kasan_tag_set(struct page *page, u8 tag)
1764{
1765 unsigned long old_flags, flags;
1766
1767 if (!kasan_enabled())
1768 return;
1769
1770 tag ^= 0xff;
1771 old_flags = READ_ONCE(page->flags);
1772 do {
1773 flags = old_flags;
1774 flags &= ~(KASAN_TAG_MASK << KASAN_TAG_PGSHIFT);
1775 flags |= (tag & KASAN_TAG_MASK) << KASAN_TAG_PGSHIFT;
1776 } while (unlikely(!try_cmpxchg(&page->flags, &old_flags, flags)));
1777}
1778
1779static inline void page_kasan_tag_reset(struct page *page)
1780{
1781 if (kasan_enabled())
1782 page_kasan_tag_set(page, 0xff);
1783}
1784
1785#else /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1786
1787static inline u8 page_kasan_tag(const struct page *page)
1788{
1789 return 0xff;
1790}
1791
1792static inline void page_kasan_tag_set(struct page *page, u8 tag) { }
1793static inline void page_kasan_tag_reset(struct page *page) { }
1794
1795#endif /* CONFIG_KASAN_SW_TAGS || CONFIG_KASAN_HW_TAGS */
1796
1797static inline struct zone *page_zone(const struct page *page)
1798{
1799 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
1800}
1801
1802static inline pg_data_t *page_pgdat(const struct page *page)
1803{
1804 return NODE_DATA(page_to_nid(page));
1805}
1806
1807static inline struct zone *folio_zone(const struct folio *folio)
1808{
1809 return page_zone(&folio->page);
1810}
1811
1812static inline pg_data_t *folio_pgdat(const struct folio *folio)
1813{
1814 return page_pgdat(&folio->page);
1815}
1816
1817#ifdef SECTION_IN_PAGE_FLAGS
1818static inline void set_page_section(struct page *page, unsigned long section)
1819{
1820 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
1821 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
1822}
1823
1824static inline unsigned long page_to_section(const struct page *page)
1825{
1826 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
1827}
1828#endif
1829
1830/**
1831 * folio_pfn - Return the Page Frame Number of a folio.
1832 * @folio: The folio.
1833 *
1834 * A folio may contain multiple pages. The pages have consecutive
1835 * Page Frame Numbers.
1836 *
1837 * Return: The Page Frame Number of the first page in the folio.
1838 */
1839static inline unsigned long folio_pfn(struct folio *folio)
1840{
1841 return page_to_pfn(&folio->page);
1842}
1843
1844static inline struct folio *pfn_folio(unsigned long pfn)
1845{
1846 return page_folio(pfn_to_page(pfn));
1847}
1848
1849/**
1850 * folio_maybe_dma_pinned - Report if a folio may be pinned for DMA.
1851 * @folio: The folio.
1852 *
1853 * This function checks if a folio has been pinned via a call to
1854 * a function in the pin_user_pages() family.
1855 *
1856 * For small folios, the return value is partially fuzzy: false is not fuzzy,
1857 * because it means "definitely not pinned for DMA", but true means "probably
1858 * pinned for DMA, but possibly a false positive due to having at least
1859 * GUP_PIN_COUNTING_BIAS worth of normal folio references".
1860 *
1861 * False positives are OK, because: a) it's unlikely for a folio to
1862 * get that many refcounts, and b) all the callers of this routine are
1863 * expected to be able to deal gracefully with a false positive.
1864 *
1865 * For large folios, the result will be exactly correct. That's because
1866 * we have more tracking data available: the _pincount field is used
1867 * instead of the GUP_PIN_COUNTING_BIAS scheme.
1868 *
1869 * For more information, please see Documentation/core-api/pin_user_pages.rst.
1870 *
1871 * Return: True, if it is likely that the page has been "dma-pinned".
1872 * False, if the page is definitely not dma-pinned.
1873 */
1874static inline bool folio_maybe_dma_pinned(struct folio *folio)
1875{
1876 if (folio_test_large(folio))
1877 return atomic_read(&folio->_pincount) > 0;
1878
1879 /*
1880 * folio_ref_count() is signed. If that refcount overflows, then
1881 * folio_ref_count() returns a negative value, and callers will avoid
1882 * further incrementing the refcount.
1883 *
1884 * Here, for that overflow case, use the sign bit to count a little
1885 * bit higher via unsigned math, and thus still get an accurate result.
1886 */
1887 return ((unsigned int)folio_ref_count(folio)) >=
1888 GUP_PIN_COUNTING_BIAS;
1889}
1890
1891static inline bool page_maybe_dma_pinned(struct page *page)
1892{
1893 return folio_maybe_dma_pinned(page_folio(page));
1894}
1895
1896/*
1897 * This should most likely only be called during fork() to see whether we
1898 * should break the cow immediately for an anon page on the src mm.
1899 *
1900 * The caller has to hold the PT lock and the vma->vm_mm->->write_protect_seq.
1901 */
1902static inline bool page_needs_cow_for_dma(struct vm_area_struct *vma,
1903 struct page *page)
1904{
1905 VM_BUG_ON(!(raw_read_seqcount(&vma->vm_mm->write_protect_seq) & 1));
1906
1907 if (!test_bit(MMF_HAS_PINNED, &vma->vm_mm->flags))
1908 return false;
1909
1910 return page_maybe_dma_pinned(page);
1911}
1912
1913/* MIGRATE_CMA and ZONE_MOVABLE do not allow pin pages */
1914#ifdef CONFIG_MIGRATION
1915static inline bool is_longterm_pinnable_page(struct page *page)
1916{
1917#ifdef CONFIG_CMA
1918 int mt = get_pageblock_migratetype(page);
1919
1920 if (mt == MIGRATE_CMA || mt == MIGRATE_ISOLATE)
1921 return false;
1922#endif
1923 /* The zero page may always be pinned */
1924 if (is_zero_pfn(page_to_pfn(page)))
1925 return true;
1926
1927 /* Coherent device memory must always allow eviction. */
1928 if (is_device_coherent_page(page))
1929 return false;
1930
1931 /* Otherwise, non-movable zone pages can be pinned. */
1932 return !is_zone_movable_page(page);
1933}
1934#else
1935static inline bool is_longterm_pinnable_page(struct page *page)
1936{
1937 return true;
1938}
1939#endif
1940
1941static inline bool folio_is_longterm_pinnable(struct folio *folio)
1942{
1943 return is_longterm_pinnable_page(&folio->page);
1944}
1945
1946static inline void set_page_zone(struct page *page, enum zone_type zone)
1947{
1948 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
1949 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
1950}
1951
1952static inline void set_page_node(struct page *page, unsigned long node)
1953{
1954 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
1955 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1956}
1957
1958static inline void set_page_links(struct page *page, enum zone_type zone,
1959 unsigned long node, unsigned long pfn)
1960{
1961 set_page_zone(page, zone);
1962 set_page_node(page, node);
1963#ifdef SECTION_IN_PAGE_FLAGS
1964 set_page_section(page, pfn_to_section_nr(pfn));
1965#endif
1966}
1967
1968/**
1969 * folio_nr_pages - The number of pages in the folio.
1970 * @folio: The folio.
1971 *
1972 * Return: A positive power of two.
1973 */
1974static inline long folio_nr_pages(struct folio *folio)
1975{
1976 if (!folio_test_large(folio))
1977 return 1;
1978#ifdef CONFIG_64BIT
1979 return folio->_folio_nr_pages;
1980#else
1981 return 1L << folio->_folio_order;
1982#endif
1983}
1984
1985/*
1986 * compound_nr() returns the number of pages in this potentially compound
1987 * page. compound_nr() can be called on a tail page, and is defined to
1988 * return 1 in that case.
1989 */
1990static inline unsigned long compound_nr(struct page *page)
1991{
1992 struct folio *folio = (struct folio *)page;
1993
1994 if (!test_bit(PG_head, &folio->flags))
1995 return 1;
1996#ifdef CONFIG_64BIT
1997 return folio->_folio_nr_pages;
1998#else
1999 return 1L << folio->_folio_order;
2000#endif
2001}
2002
2003/**
2004 * thp_nr_pages - The number of regular pages in this huge page.
2005 * @page: The head page of a huge page.
2006 */
2007static inline int thp_nr_pages(struct page *page)
2008{
2009 return folio_nr_pages((struct folio *)page);
2010}
2011
2012/**
2013 * folio_next - Move to the next physical folio.
2014 * @folio: The folio we're currently operating on.
2015 *
2016 * If you have physically contiguous memory which may span more than
2017 * one folio (eg a &struct bio_vec), use this function to move from one
2018 * folio to the next. Do not use it if the memory is only virtually
2019 * contiguous as the folios are almost certainly not adjacent to each
2020 * other. This is the folio equivalent to writing ``page++``.
2021 *
2022 * Context: We assume that the folios are refcounted and/or locked at a
2023 * higher level and do not adjust the reference counts.
2024 * Return: The next struct folio.
2025 */
2026static inline struct folio *folio_next(struct folio *folio)
2027{
2028 return (struct folio *)folio_page(folio, folio_nr_pages(folio));
2029}
2030
2031/**
2032 * folio_shift - The size of the memory described by this folio.
2033 * @folio: The folio.
2034 *
2035 * A folio represents a number of bytes which is a power-of-two in size.
2036 * This function tells you which power-of-two the folio is. See also
2037 * folio_size() and folio_order().
2038 *
2039 * Context: The caller should have a reference on the folio to prevent
2040 * it from being split. It is not necessary for the folio to be locked.
2041 * Return: The base-2 logarithm of the size of this folio.
2042 */
2043static inline unsigned int folio_shift(struct folio *folio)
2044{
2045 return PAGE_SHIFT + folio_order(folio);
2046}
2047
2048/**
2049 * folio_size - The number of bytes in a folio.
2050 * @folio: The folio.
2051 *
2052 * Context: The caller should have a reference on the folio to prevent
2053 * it from being split. It is not necessary for the folio to be locked.
2054 * Return: The number of bytes in this folio.
2055 */
2056static inline size_t folio_size(struct folio *folio)
2057{
2058 return PAGE_SIZE << folio_order(folio);
2059}
2060
2061/**
2062 * folio_estimated_sharers - Estimate the number of sharers of a folio.
2063 * @folio: The folio.
2064 *
2065 * folio_estimated_sharers() aims to serve as a function to efficiently
2066 * estimate the number of processes sharing a folio. This is done by
2067 * looking at the precise mapcount of the first subpage in the folio, and
2068 * assuming the other subpages are the same. This may not be true for large
2069 * folios. If you want exact mapcounts for exact calculations, look at
2070 * page_mapcount() or folio_total_mapcount().
2071 *
2072 * Return: The estimated number of processes sharing a folio.
2073 */
2074static inline int folio_estimated_sharers(struct folio *folio)
2075{
2076 return page_mapcount(folio_page(folio, 0));
2077}
2078
2079#ifndef HAVE_ARCH_MAKE_PAGE_ACCESSIBLE
2080static inline int arch_make_page_accessible(struct page *page)
2081{
2082 return 0;
2083}
2084#endif
2085
2086#ifndef HAVE_ARCH_MAKE_FOLIO_ACCESSIBLE
2087static inline int arch_make_folio_accessible(struct folio *folio)
2088{
2089 int ret;
2090 long i, nr = folio_nr_pages(folio);
2091
2092 for (i = 0; i < nr; i++) {
2093 ret = arch_make_page_accessible(folio_page(folio, i));
2094 if (ret)
2095 break;
2096 }
2097
2098 return ret;
2099}
2100#endif
2101
2102/*
2103 * Some inline functions in vmstat.h depend on page_zone()
2104 */
2105#include <linux/vmstat.h>
2106
2107static __always_inline void *lowmem_page_address(const struct page *page)
2108{
2109 return page_to_virt(page);
2110}
2111
2112#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
2113#define HASHED_PAGE_VIRTUAL
2114#endif
2115
2116#if defined(WANT_PAGE_VIRTUAL)
2117static inline void *page_address(const struct page *page)
2118{
2119 return page->virtual;
2120}
2121static inline void set_page_address(struct page *page, void *address)
2122{
2123 page->virtual = address;
2124}
2125#define page_address_init() do { } while(0)
2126#endif
2127
2128#if defined(HASHED_PAGE_VIRTUAL)
2129void *page_address(const struct page *page);
2130void set_page_address(struct page *page, void *virtual);
2131void page_address_init(void);
2132#endif
2133
2134#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
2135#define page_address(page) lowmem_page_address(page)
2136#define set_page_address(page, address) do { } while(0)
2137#define page_address_init() do { } while(0)
2138#endif
2139
2140static inline void *folio_address(const struct folio *folio)
2141{
2142 return page_address(&folio->page);
2143}
2144
2145extern void *page_rmapping(struct page *page);
2146extern pgoff_t __page_file_index(struct page *page);
2147
2148/*
2149 * Return the pagecache index of the passed page. Regular pagecache pages
2150 * use ->index whereas swapcache pages use swp_offset(->private)
2151 */
2152static inline pgoff_t page_index(struct page *page)
2153{
2154 if (unlikely(PageSwapCache(page)))
2155 return __page_file_index(page);
2156 return page->index;
2157}
2158
2159/*
2160 * Return true only if the page has been allocated with
2161 * ALLOC_NO_WATERMARKS and the low watermark was not
2162 * met implying that the system is under some pressure.
2163 */
2164static inline bool page_is_pfmemalloc(const struct page *page)
2165{
2166 /*
2167 * lru.next has bit 1 set if the page is allocated from the
2168 * pfmemalloc reserves. Callers may simply overwrite it if
2169 * they do not need to preserve that information.
2170 */
2171 return (uintptr_t)page->lru.next & BIT(1);
2172}
2173
2174/*
2175 * Return true only if the folio has been allocated with
2176 * ALLOC_NO_WATERMARKS and the low watermark was not
2177 * met implying that the system is under some pressure.
2178 */
2179static inline bool folio_is_pfmemalloc(const struct folio *folio)
2180{
2181 /*
2182 * lru.next has bit 1 set if the page is allocated from the
2183 * pfmemalloc reserves. Callers may simply overwrite it if
2184 * they do not need to preserve that information.
2185 */
2186 return (uintptr_t)folio->lru.next & BIT(1);
2187}
2188
2189/*
2190 * Only to be called by the page allocator on a freshly allocated
2191 * page.
2192 */
2193static inline void set_page_pfmemalloc(struct page *page)
2194{
2195 page->lru.next = (void *)BIT(1);
2196}
2197
2198static inline void clear_page_pfmemalloc(struct page *page)
2199{
2200 page->lru.next = NULL;
2201}
2202
2203/*
2204 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
2205 */
2206extern void pagefault_out_of_memory(void);
2207
2208#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
2209#define offset_in_thp(page, p) ((unsigned long)(p) & (thp_size(page) - 1))
2210#define offset_in_folio(folio, p) ((unsigned long)(p) & (folio_size(folio) - 1))
2211
2212/*
2213 * Flags passed to show_mem() and show_free_areas() to suppress output in
2214 * various contexts.
2215 */
2216#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
2217
2218extern void __show_free_areas(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
2219static void __maybe_unused show_free_areas(unsigned int flags, nodemask_t *nodemask)
2220{
2221 __show_free_areas(flags, nodemask, MAX_NR_ZONES - 1);
2222}
2223
2224/*
2225 * Parameter block passed down to zap_pte_range in exceptional cases.
2226 */
2227struct zap_details {
2228 struct folio *single_folio; /* Locked folio to be unmapped */
2229 bool even_cows; /* Zap COWed private pages too? */
2230 zap_flags_t zap_flags; /* Extra flags for zapping */
2231};
2232
2233/*
2234 * Whether to drop the pte markers, for example, the uffd-wp information for
2235 * file-backed memory. This should only be specified when we will completely
2236 * drop the page in the mm, either by truncation or unmapping of the vma. By
2237 * default, the flag is not set.
2238 */
2239#define ZAP_FLAG_DROP_MARKER ((__force zap_flags_t) BIT(0))
2240/* Set in unmap_vmas() to indicate a final unmap call. Only used by hugetlb */
2241#define ZAP_FLAG_UNMAP ((__force zap_flags_t) BIT(1))
2242
2243#ifdef CONFIG_SCHED_MM_CID
2244void sched_mm_cid_before_execve(struct task_struct *t);
2245void sched_mm_cid_after_execve(struct task_struct *t);
2246void sched_mm_cid_fork(struct task_struct *t);
2247void sched_mm_cid_exit_signals(struct task_struct *t);
2248static inline int task_mm_cid(struct task_struct *t)
2249{
2250 return t->mm_cid;
2251}
2252#else
2253static inline void sched_mm_cid_before_execve(struct task_struct *t) { }
2254static inline void sched_mm_cid_after_execve(struct task_struct *t) { }
2255static inline void sched_mm_cid_fork(struct task_struct *t) { }
2256static inline void sched_mm_cid_exit_signals(struct task_struct *t) { }
2257static inline int task_mm_cid(struct task_struct *t)
2258{
2259 /*
2260 * Use the processor id as a fall-back when the mm cid feature is
2261 * disabled. This provides functional per-cpu data structure accesses
2262 * in user-space, althrough it won't provide the memory usage benefits.
2263 */
2264 return raw_smp_processor_id();
2265}
2266#endif
2267
2268#ifdef CONFIG_MMU
2269extern bool can_do_mlock(void);
2270#else
2271static inline bool can_do_mlock(void) { return false; }
2272#endif
2273extern int user_shm_lock(size_t, struct ucounts *);
2274extern void user_shm_unlock(size_t, struct ucounts *);
2275
2276struct folio *vm_normal_folio(struct vm_area_struct *vma, unsigned long addr,
2277 pte_t pte);
2278struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
2279 pte_t pte);
2280struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
2281 pmd_t pmd);
2282
2283void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
2284 unsigned long size);
2285void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
2286 unsigned long size, struct zap_details *details);
2287static inline void zap_vma_pages(struct vm_area_struct *vma)
2288{
2289 zap_page_range_single(vma, vma->vm_start,
2290 vma->vm_end - vma->vm_start, NULL);
2291}
2292void unmap_vmas(struct mmu_gather *tlb, struct maple_tree *mt,
2293 struct vm_area_struct *start_vma, unsigned long start,
2294 unsigned long end, bool mm_wr_locked);
2295
2296struct mmu_notifier_range;
2297
2298void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
2299 unsigned long end, unsigned long floor, unsigned long ceiling);
2300int
2301copy_page_range(struct vm_area_struct *dst_vma, struct vm_area_struct *src_vma);
2302int follow_pte(struct mm_struct *mm, unsigned long address,
2303 pte_t **ptepp, spinlock_t **ptlp);
2304int follow_pfn(struct vm_area_struct *vma, unsigned long address,
2305 unsigned long *pfn);
2306int follow_phys(struct vm_area_struct *vma, unsigned long address,
2307 unsigned int flags, unsigned long *prot, resource_size_t *phys);
2308int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2309 void *buf, int len, int write);
2310
2311extern void truncate_pagecache(struct inode *inode, loff_t new);
2312extern void truncate_setsize(struct inode *inode, loff_t newsize);
2313void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
2314void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
2315int generic_error_remove_page(struct address_space *mapping, struct page *page);
2316
2317#ifdef CONFIG_MMU
2318extern vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2319 unsigned long address, unsigned int flags,
2320 struct pt_regs *regs);
2321extern int fixup_user_fault(struct mm_struct *mm,
2322 unsigned long address, unsigned int fault_flags,
2323 bool *unlocked);
2324void unmap_mapping_pages(struct address_space *mapping,
2325 pgoff_t start, pgoff_t nr, bool even_cows);
2326void unmap_mapping_range(struct address_space *mapping,
2327 loff_t const holebegin, loff_t const holelen, int even_cows);
2328#else
2329static inline vm_fault_t handle_mm_fault(struct vm_area_struct *vma,
2330 unsigned long address, unsigned int flags,
2331 struct pt_regs *regs)
2332{
2333 /* should never happen if there's no MMU */
2334 BUG();
2335 return VM_FAULT_SIGBUS;
2336}
2337static inline int fixup_user_fault(struct mm_struct *mm, unsigned long address,
2338 unsigned int fault_flags, bool *unlocked)
2339{
2340 /* should never happen if there's no MMU */
2341 BUG();
2342 return -EFAULT;
2343}
2344static inline void unmap_mapping_pages(struct address_space *mapping,
2345 pgoff_t start, pgoff_t nr, bool even_cows) { }
2346static inline void unmap_mapping_range(struct address_space *mapping,
2347 loff_t const holebegin, loff_t const holelen, int even_cows) { }
2348#endif
2349
2350static inline void unmap_shared_mapping_range(struct address_space *mapping,
2351 loff_t const holebegin, loff_t const holelen)
2352{
2353 unmap_mapping_range(mapping, holebegin, holelen, 0);
2354}
2355
2356extern int access_process_vm(struct task_struct *tsk, unsigned long addr,
2357 void *buf, int len, unsigned int gup_flags);
2358extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2359 void *buf, int len, unsigned int gup_flags);
2360extern int __access_remote_vm(struct mm_struct *mm, unsigned long addr,
2361 void *buf, int len, unsigned int gup_flags);
2362
2363long get_user_pages_remote(struct mm_struct *mm,
2364 unsigned long start, unsigned long nr_pages,
2365 unsigned int gup_flags, struct page **pages,
2366 struct vm_area_struct **vmas, int *locked);
2367long pin_user_pages_remote(struct mm_struct *mm,
2368 unsigned long start, unsigned long nr_pages,
2369 unsigned int gup_flags, struct page **pages,
2370 struct vm_area_struct **vmas, int *locked);
2371long get_user_pages(unsigned long start, unsigned long nr_pages,
2372 unsigned int gup_flags, struct page **pages,
2373 struct vm_area_struct **vmas);
2374long pin_user_pages(unsigned long start, unsigned long nr_pages,
2375 unsigned int gup_flags, struct page **pages,
2376 struct vm_area_struct **vmas);
2377long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2378 struct page **pages, unsigned int gup_flags);
2379long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2380 struct page **pages, unsigned int gup_flags);
2381
2382int get_user_pages_fast(unsigned long start, int nr_pages,
2383 unsigned int gup_flags, struct page **pages);
2384int pin_user_pages_fast(unsigned long start, int nr_pages,
2385 unsigned int gup_flags, struct page **pages);
2386
2387int account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc);
2388int __account_locked_vm(struct mm_struct *mm, unsigned long pages, bool inc,
2389 struct task_struct *task, bool bypass_rlim);
2390
2391struct kvec;
2392struct page *get_dump_page(unsigned long addr);
2393
2394bool folio_mark_dirty(struct folio *folio);
2395bool set_page_dirty(struct page *page);
2396int set_page_dirty_lock(struct page *page);
2397
2398int get_cmdline(struct task_struct *task, char *buffer, int buflen);
2399
2400extern unsigned long move_page_tables(struct vm_area_struct *vma,
2401 unsigned long old_addr, struct vm_area_struct *new_vma,
2402 unsigned long new_addr, unsigned long len,
2403 bool need_rmap_locks);
2404
2405/*
2406 * Flags used by change_protection(). For now we make it a bitmap so
2407 * that we can pass in multiple flags just like parameters. However
2408 * for now all the callers are only use one of the flags at the same
2409 * time.
2410 */
2411/*
2412 * Whether we should manually check if we can map individual PTEs writable,
2413 * because something (e.g., COW, uffd-wp) blocks that from happening for all
2414 * PTEs automatically in a writable mapping.
2415 */
2416#define MM_CP_TRY_CHANGE_WRITABLE (1UL << 0)
2417/* Whether this protection change is for NUMA hints */
2418#define MM_CP_PROT_NUMA (1UL << 1)
2419/* Whether this change is for write protecting */
2420#define MM_CP_UFFD_WP (1UL << 2) /* do wp */
2421#define MM_CP_UFFD_WP_RESOLVE (1UL << 3) /* Resolve wp */
2422#define MM_CP_UFFD_WP_ALL (MM_CP_UFFD_WP | \
2423 MM_CP_UFFD_WP_RESOLVE)
2424
2425int vma_wants_writenotify(struct vm_area_struct *vma, pgprot_t vm_page_prot);
2426static inline bool vma_wants_manual_pte_write_upgrade(struct vm_area_struct *vma)
2427{
2428 /*
2429 * We want to check manually if we can change individual PTEs writable
2430 * if we can't do that automatically for all PTEs in a mapping. For
2431 * private mappings, that's always the case when we have write
2432 * permissions as we properly have to handle COW.
2433 */
2434 if (vma->vm_flags & VM_SHARED)
2435 return vma_wants_writenotify(vma, vma->vm_page_prot);
2436 return !!(vma->vm_flags & VM_WRITE);
2437
2438}
2439bool can_change_pte_writable(struct vm_area_struct *vma, unsigned long addr,
2440 pte_t pte);
2441extern long change_protection(struct mmu_gather *tlb,
2442 struct vm_area_struct *vma, unsigned long start,
2443 unsigned long end, unsigned long cp_flags);
2444extern int mprotect_fixup(struct vma_iterator *vmi, struct mmu_gather *tlb,
2445 struct vm_area_struct *vma, struct vm_area_struct **pprev,
2446 unsigned long start, unsigned long end, unsigned long newflags);
2447
2448/*
2449 * doesn't attempt to fault and will return short.
2450 */
2451int get_user_pages_fast_only(unsigned long start, int nr_pages,
2452 unsigned int gup_flags, struct page **pages);
2453
2454static inline bool get_user_page_fast_only(unsigned long addr,
2455 unsigned int gup_flags, struct page **pagep)
2456{
2457 return get_user_pages_fast_only(addr, 1, gup_flags, pagep) == 1;
2458}
2459/*
2460 * per-process(per-mm_struct) statistics.
2461 */
2462static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
2463{
2464 return percpu_counter_read_positive(&mm->rss_stat[member]);
2465}
2466
2467void mm_trace_rss_stat(struct mm_struct *mm, int member);
2468
2469static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
2470{
2471 percpu_counter_add(&mm->rss_stat[member], value);
2472
2473 mm_trace_rss_stat(mm, member);
2474}
2475
2476static inline void inc_mm_counter(struct mm_struct *mm, int member)
2477{
2478 percpu_counter_inc(&mm->rss_stat[member]);
2479
2480 mm_trace_rss_stat(mm, member);
2481}
2482
2483static inline void dec_mm_counter(struct mm_struct *mm, int member)
2484{
2485 percpu_counter_dec(&mm->rss_stat[member]);
2486
2487 mm_trace_rss_stat(mm, member);
2488}
2489
2490/* Optimized variant when page is already known not to be PageAnon */
2491static inline int mm_counter_file(struct page *page)
2492{
2493 if (PageSwapBacked(page))
2494 return MM_SHMEMPAGES;
2495 return MM_FILEPAGES;
2496}
2497
2498static inline int mm_counter(struct page *page)
2499{
2500 if (PageAnon(page))
2501 return MM_ANONPAGES;
2502 return mm_counter_file(page);
2503}
2504
2505static inline unsigned long get_mm_rss(struct mm_struct *mm)
2506{
2507 return get_mm_counter(mm, MM_FILEPAGES) +
2508 get_mm_counter(mm, MM_ANONPAGES) +
2509 get_mm_counter(mm, MM_SHMEMPAGES);
2510}
2511
2512static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
2513{
2514 return max(mm->hiwater_rss, get_mm_rss(mm));
2515}
2516
2517static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
2518{
2519 return max(mm->hiwater_vm, mm->total_vm);
2520}
2521
2522static inline void update_hiwater_rss(struct mm_struct *mm)
2523{
2524 unsigned long _rss = get_mm_rss(mm);
2525
2526 if ((mm)->hiwater_rss < _rss)
2527 (mm)->hiwater_rss = _rss;
2528}
2529
2530static inline void update_hiwater_vm(struct mm_struct *mm)
2531{
2532 if (mm->hiwater_vm < mm->total_vm)
2533 mm->hiwater_vm = mm->total_vm;
2534}
2535
2536static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
2537{
2538 mm->hiwater_rss = get_mm_rss(mm);
2539}
2540
2541static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
2542 struct mm_struct *mm)
2543{
2544 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
2545
2546 if (*maxrss < hiwater_rss)
2547 *maxrss = hiwater_rss;
2548}
2549
2550#if defined(SPLIT_RSS_COUNTING)
2551void sync_mm_rss(struct mm_struct *mm);
2552#else
2553static inline void sync_mm_rss(struct mm_struct *mm)
2554{
2555}
2556#endif
2557
2558#ifndef CONFIG_ARCH_HAS_PTE_SPECIAL
2559static inline int pte_special(pte_t pte)
2560{
2561 return 0;
2562}
2563
2564static inline pte_t pte_mkspecial(pte_t pte)
2565{
2566 return pte;
2567}
2568#endif
2569
2570#ifndef CONFIG_ARCH_HAS_PTE_DEVMAP
2571static inline int pte_devmap(pte_t pte)
2572{
2573 return 0;
2574}
2575#endif
2576
2577extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
2578 spinlock_t **ptl);
2579static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
2580 spinlock_t **ptl)
2581{
2582 pte_t *ptep;
2583 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
2584 return ptep;
2585}
2586
2587#ifdef __PAGETABLE_P4D_FOLDED
2588static inline int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2589 unsigned long address)
2590{
2591 return 0;
2592}
2593#else
2594int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
2595#endif
2596
2597#if defined(__PAGETABLE_PUD_FOLDED) || !defined(CONFIG_MMU)
2598static inline int __pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2599 unsigned long address)
2600{
2601 return 0;
2602}
2603static inline void mm_inc_nr_puds(struct mm_struct *mm) {}
2604static inline void mm_dec_nr_puds(struct mm_struct *mm) {}
2605
2606#else
2607int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address);
2608
2609static inline void mm_inc_nr_puds(struct mm_struct *mm)
2610{
2611 if (mm_pud_folded(mm))
2612 return;
2613 atomic_long_add(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2614}
2615
2616static inline void mm_dec_nr_puds(struct mm_struct *mm)
2617{
2618 if (mm_pud_folded(mm))
2619 return;
2620 atomic_long_sub(PTRS_PER_PUD * sizeof(pud_t), &mm->pgtables_bytes);
2621}
2622#endif
2623
2624#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
2625static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
2626 unsigned long address)
2627{
2628 return 0;
2629}
2630
2631static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
2632static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
2633
2634#else
2635int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
2636
2637static inline void mm_inc_nr_pmds(struct mm_struct *mm)
2638{
2639 if (mm_pmd_folded(mm))
2640 return;
2641 atomic_long_add(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2642}
2643
2644static inline void mm_dec_nr_pmds(struct mm_struct *mm)
2645{
2646 if (mm_pmd_folded(mm))
2647 return;
2648 atomic_long_sub(PTRS_PER_PMD * sizeof(pmd_t), &mm->pgtables_bytes);
2649}
2650#endif
2651
2652#ifdef CONFIG_MMU
2653static inline void mm_pgtables_bytes_init(struct mm_struct *mm)
2654{
2655 atomic_long_set(&mm->pgtables_bytes, 0);
2656}
2657
2658static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2659{
2660 return atomic_long_read(&mm->pgtables_bytes);
2661}
2662
2663static inline void mm_inc_nr_ptes(struct mm_struct *mm)
2664{
2665 atomic_long_add(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2666}
2667
2668static inline void mm_dec_nr_ptes(struct mm_struct *mm)
2669{
2670 atomic_long_sub(PTRS_PER_PTE * sizeof(pte_t), &mm->pgtables_bytes);
2671}
2672#else
2673
2674static inline void mm_pgtables_bytes_init(struct mm_struct *mm) {}
2675static inline unsigned long mm_pgtables_bytes(const struct mm_struct *mm)
2676{
2677 return 0;
2678}
2679
2680static inline void mm_inc_nr_ptes(struct mm_struct *mm) {}
2681static inline void mm_dec_nr_ptes(struct mm_struct *mm) {}
2682#endif
2683
2684int __pte_alloc(struct mm_struct *mm, pmd_t *pmd);
2685int __pte_alloc_kernel(pmd_t *pmd);
2686
2687#if defined(CONFIG_MMU)
2688
2689static inline p4d_t *p4d_alloc(struct mm_struct *mm, pgd_t *pgd,
2690 unsigned long address)
2691{
2692 return (unlikely(pgd_none(*pgd)) && __p4d_alloc(mm, pgd, address)) ?
2693 NULL : p4d_offset(pgd, address);
2694}
2695
2696static inline pud_t *pud_alloc(struct mm_struct *mm, p4d_t *p4d,
2697 unsigned long address)
2698{
2699 return (unlikely(p4d_none(*p4d)) && __pud_alloc(mm, p4d, address)) ?
2700 NULL : pud_offset(p4d, address);
2701}
2702
2703static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2704{
2705 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
2706 NULL: pmd_offset(pud, address);
2707}
2708#endif /* CONFIG_MMU */
2709
2710#if USE_SPLIT_PTE_PTLOCKS
2711#if ALLOC_SPLIT_PTLOCKS
2712void __init ptlock_cache_init(void);
2713extern bool ptlock_alloc(struct page *page);
2714extern void ptlock_free(struct page *page);
2715
2716static inline spinlock_t *ptlock_ptr(struct page *page)
2717{
2718 return page->ptl;
2719}
2720#else /* ALLOC_SPLIT_PTLOCKS */
2721static inline void ptlock_cache_init(void)
2722{
2723}
2724
2725static inline bool ptlock_alloc(struct page *page)
2726{
2727 return true;
2728}
2729
2730static inline void ptlock_free(struct page *page)
2731{
2732}
2733
2734static inline spinlock_t *ptlock_ptr(struct page *page)
2735{
2736 return &page->ptl;
2737}
2738#endif /* ALLOC_SPLIT_PTLOCKS */
2739
2740static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2741{
2742 return ptlock_ptr(pmd_page(*pmd));
2743}
2744
2745static inline bool ptlock_init(struct page *page)
2746{
2747 /*
2748 * prep_new_page() initialize page->private (and therefore page->ptl)
2749 * with 0. Make sure nobody took it in use in between.
2750 *
2751 * It can happen if arch try to use slab for page table allocation:
2752 * slab code uses page->slab_cache, which share storage with page->ptl.
2753 */
2754 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
2755 if (!ptlock_alloc(page))
2756 return false;
2757 spin_lock_init(ptlock_ptr(page));
2758 return true;
2759}
2760
2761#else /* !USE_SPLIT_PTE_PTLOCKS */
2762/*
2763 * We use mm->page_table_lock to guard all pagetable pages of the mm.
2764 */
2765static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
2766{
2767 return &mm->page_table_lock;
2768}
2769static inline void ptlock_cache_init(void) {}
2770static inline bool ptlock_init(struct page *page) { return true; }
2771static inline void ptlock_free(struct page *page) {}
2772#endif /* USE_SPLIT_PTE_PTLOCKS */
2773
2774static inline bool pgtable_pte_page_ctor(struct page *page)
2775{
2776 if (!ptlock_init(page))
2777 return false;
2778 __SetPageTable(page);
2779 inc_lruvec_page_state(page, NR_PAGETABLE);
2780 return true;
2781}
2782
2783static inline void pgtable_pte_page_dtor(struct page *page)
2784{
2785 ptlock_free(page);
2786 __ClearPageTable(page);
2787 dec_lruvec_page_state(page, NR_PAGETABLE);
2788}
2789
2790#define pte_offset_map_lock(mm, pmd, address, ptlp) \
2791({ \
2792 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
2793 pte_t *__pte = pte_offset_map(pmd, address); \
2794 *(ptlp) = __ptl; \
2795 spin_lock(__ptl); \
2796 __pte; \
2797})
2798
2799#define pte_unmap_unlock(pte, ptl) do { \
2800 spin_unlock(ptl); \
2801 pte_unmap(pte); \
2802} while (0)
2803
2804#define pte_alloc(mm, pmd) (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd))
2805
2806#define pte_alloc_map(mm, pmd, address) \
2807 (pte_alloc(mm, pmd) ? NULL : pte_offset_map(pmd, address))
2808
2809#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
2810 (pte_alloc(mm, pmd) ? \
2811 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
2812
2813#define pte_alloc_kernel(pmd, address) \
2814 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd))? \
2815 NULL: pte_offset_kernel(pmd, address))
2816
2817#if USE_SPLIT_PMD_PTLOCKS
2818
2819static inline struct page *pmd_pgtable_page(pmd_t *pmd)
2820{
2821 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
2822 return virt_to_page((void *)((unsigned long) pmd & mask));
2823}
2824
2825static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2826{
2827 return ptlock_ptr(pmd_pgtable_page(pmd));
2828}
2829
2830static inline bool pmd_ptlock_init(struct page *page)
2831{
2832#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2833 page->pmd_huge_pte = NULL;
2834#endif
2835 return ptlock_init(page);
2836}
2837
2838static inline void pmd_ptlock_free(struct page *page)
2839{
2840#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2841 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
2842#endif
2843 ptlock_free(page);
2844}
2845
2846#define pmd_huge_pte(mm, pmd) (pmd_pgtable_page(pmd)->pmd_huge_pte)
2847
2848#else
2849
2850static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
2851{
2852 return &mm->page_table_lock;
2853}
2854
2855static inline bool pmd_ptlock_init(struct page *page) { return true; }
2856static inline void pmd_ptlock_free(struct page *page) {}
2857
2858#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
2859
2860#endif
2861
2862static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
2863{
2864 spinlock_t *ptl = pmd_lockptr(mm, pmd);
2865 spin_lock(ptl);
2866 return ptl;
2867}
2868
2869static inline bool pgtable_pmd_page_ctor(struct page *page)
2870{
2871 if (!pmd_ptlock_init(page))
2872 return false;
2873 __SetPageTable(page);
2874 inc_lruvec_page_state(page, NR_PAGETABLE);
2875 return true;
2876}
2877
2878static inline void pgtable_pmd_page_dtor(struct page *page)
2879{
2880 pmd_ptlock_free(page);
2881 __ClearPageTable(page);
2882 dec_lruvec_page_state(page, NR_PAGETABLE);
2883}
2884
2885/*
2886 * No scalability reason to split PUD locks yet, but follow the same pattern
2887 * as the PMD locks to make it easier if we decide to. The VM should not be
2888 * considered ready to switch to split PUD locks yet; there may be places
2889 * which need to be converted from page_table_lock.
2890 */
2891static inline spinlock_t *pud_lockptr(struct mm_struct *mm, pud_t *pud)
2892{
2893 return &mm->page_table_lock;
2894}
2895
2896static inline spinlock_t *pud_lock(struct mm_struct *mm, pud_t *pud)
2897{
2898 spinlock_t *ptl = pud_lockptr(mm, pud);
2899
2900 spin_lock(ptl);
2901 return ptl;
2902}
2903
2904extern void __init pagecache_init(void);
2905extern void free_initmem(void);
2906
2907/*
2908 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
2909 * into the buddy system. The freed pages will be poisoned with pattern
2910 * "poison" if it's within range [0, UCHAR_MAX].
2911 * Return pages freed into the buddy system.
2912 */
2913extern unsigned long free_reserved_area(void *start, void *end,
2914 int poison, const char *s);
2915
2916extern void adjust_managed_page_count(struct page *page, long count);
2917
2918extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
2919
2920/* Free the reserved page into the buddy system, so it gets managed. */
2921static inline void free_reserved_page(struct page *page)
2922{
2923 ClearPageReserved(page);
2924 init_page_count(page);
2925 __free_page(page);
2926 adjust_managed_page_count(page, 1);
2927}
2928#define free_highmem_page(page) free_reserved_page(page)
2929
2930static inline void mark_page_reserved(struct page *page)
2931{
2932 SetPageReserved(page);
2933 adjust_managed_page_count(page, -1);
2934}
2935
2936/*
2937 * Default method to free all the __init memory into the buddy system.
2938 * The freed pages will be poisoned with pattern "poison" if it's within
2939 * range [0, UCHAR_MAX].
2940 * Return pages freed into the buddy system.
2941 */
2942static inline unsigned long free_initmem_default(int poison)
2943{
2944 extern char __init_begin[], __init_end[];
2945
2946 return free_reserved_area(&__init_begin, &__init_end,
2947 poison, "unused kernel image (initmem)");
2948}
2949
2950static inline unsigned long get_num_physpages(void)
2951{
2952 int nid;
2953 unsigned long phys_pages = 0;
2954
2955 for_each_online_node(nid)
2956 phys_pages += node_present_pages(nid);
2957
2958 return phys_pages;
2959}
2960
2961/*
2962 * Using memblock node mappings, an architecture may initialise its
2963 * zones, allocate the backing mem_map and account for memory holes in an
2964 * architecture independent manner.
2965 *
2966 * An architecture is expected to register range of page frames backed by
2967 * physical memory with memblock_add[_node]() before calling
2968 * free_area_init() passing in the PFN each zone ends at. At a basic
2969 * usage, an architecture is expected to do something like
2970 *
2971 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
2972 * max_highmem_pfn};
2973 * for_each_valid_physical_page_range()
2974 * memblock_add_node(base, size, nid, MEMBLOCK_NONE)
2975 * free_area_init(max_zone_pfns);
2976 */
2977void free_area_init(unsigned long *max_zone_pfn);
2978unsigned long node_map_pfn_alignment(void);
2979unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
2980 unsigned long end_pfn);
2981extern unsigned long absent_pages_in_range(unsigned long start_pfn,
2982 unsigned long end_pfn);
2983extern void get_pfn_range_for_nid(unsigned int nid,
2984 unsigned long *start_pfn, unsigned long *end_pfn);
2985
2986#ifndef CONFIG_NUMA
2987static inline int early_pfn_to_nid(unsigned long pfn)
2988{
2989 return 0;
2990}
2991#else
2992/* please see mm/page_alloc.c */
2993extern int __meminit early_pfn_to_nid(unsigned long pfn);
2994#endif
2995
2996extern void set_dma_reserve(unsigned long new_dma_reserve);
2997extern void memmap_init_range(unsigned long, int, unsigned long,
2998 unsigned long, unsigned long, enum meminit_context,
2999 struct vmem_altmap *, int migratetype);
3000extern void setup_per_zone_wmarks(void);
3001extern void calculate_min_free_kbytes(void);
3002extern int __meminit init_per_zone_wmark_min(void);
3003extern void mem_init(void);
3004extern void __init mmap_init(void);
3005
3006extern void __show_mem(unsigned int flags, nodemask_t *nodemask, int max_zone_idx);
3007static inline void show_mem(unsigned int flags, nodemask_t *nodemask)
3008{
3009 __show_mem(flags, nodemask, MAX_NR_ZONES - 1);
3010}
3011extern long si_mem_available(void);
3012extern void si_meminfo(struct sysinfo * val);
3013extern void si_meminfo_node(struct sysinfo *val, int nid);
3014#ifdef __HAVE_ARCH_RESERVED_KERNEL_PAGES
3015extern unsigned long arch_reserved_kernel_pages(void);
3016#endif
3017
3018extern __printf(3, 4)
3019void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...);
3020
3021extern void setup_per_cpu_pageset(void);
3022
3023/* page_alloc.c */
3024extern int min_free_kbytes;
3025extern int watermark_boost_factor;
3026extern int watermark_scale_factor;
3027
3028/* nommu.c */
3029extern atomic_long_t mmap_pages_allocated;
3030extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
3031
3032/* interval_tree.c */
3033void vma_interval_tree_insert(struct vm_area_struct *node,
3034 struct rb_root_cached *root);
3035void vma_interval_tree_insert_after(struct vm_area_struct *node,
3036 struct vm_area_struct *prev,
3037 struct rb_root_cached *root);
3038void vma_interval_tree_remove(struct vm_area_struct *node,
3039 struct rb_root_cached *root);
3040struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root_cached *root,
3041 unsigned long start, unsigned long last);
3042struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
3043 unsigned long start, unsigned long last);
3044
3045#define vma_interval_tree_foreach(vma, root, start, last) \
3046 for (vma = vma_interval_tree_iter_first(root, start, last); \
3047 vma; vma = vma_interval_tree_iter_next(vma, start, last))
3048
3049void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
3050 struct rb_root_cached *root);
3051void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
3052 struct rb_root_cached *root);
3053struct anon_vma_chain *
3054anon_vma_interval_tree_iter_first(struct rb_root_cached *root,
3055 unsigned long start, unsigned long last);
3056struct anon_vma_chain *anon_vma_interval_tree_iter_next(
3057 struct anon_vma_chain *node, unsigned long start, unsigned long last);
3058#ifdef CONFIG_DEBUG_VM_RB
3059void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
3060#endif
3061
3062#define anon_vma_interval_tree_foreach(avc, root, start, last) \
3063 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
3064 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
3065
3066/* mmap.c */
3067extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
3068extern int vma_expand(struct vma_iterator *vmi, struct vm_area_struct *vma,
3069 unsigned long start, unsigned long end, pgoff_t pgoff,
3070 struct vm_area_struct *next);
3071extern int vma_shrink(struct vma_iterator *vmi, struct vm_area_struct *vma,
3072 unsigned long start, unsigned long end, pgoff_t pgoff);
3073extern struct vm_area_struct *vma_merge(struct vma_iterator *vmi,
3074 struct mm_struct *, struct vm_area_struct *prev, unsigned long addr,
3075 unsigned long end, unsigned long vm_flags, struct anon_vma *,
3076 struct file *, pgoff_t, struct mempolicy *, struct vm_userfaultfd_ctx,
3077 struct anon_vma_name *);
3078extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
3079extern int __split_vma(struct vma_iterator *vmi, struct vm_area_struct *,
3080 unsigned long addr, int new_below);
3081extern int split_vma(struct vma_iterator *vmi, struct vm_area_struct *,
3082 unsigned long addr, int new_below);
3083extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
3084extern void unlink_file_vma(struct vm_area_struct *);
3085extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
3086 unsigned long addr, unsigned long len, pgoff_t pgoff,
3087 bool *need_rmap_locks);
3088extern void exit_mmap(struct mm_struct *);
3089
3090static inline int check_data_rlimit(unsigned long rlim,
3091 unsigned long new,
3092 unsigned long start,
3093 unsigned long end_data,
3094 unsigned long start_data)
3095{
3096 if (rlim < RLIM_INFINITY) {
3097 if (((new - start) + (end_data - start_data)) > rlim)
3098 return -ENOSPC;
3099 }
3100
3101 return 0;
3102}
3103
3104extern int mm_take_all_locks(struct mm_struct *mm);
3105extern void mm_drop_all_locks(struct mm_struct *mm);
3106
3107extern int set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3108extern int replace_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
3109extern struct file *get_mm_exe_file(struct mm_struct *mm);
3110extern struct file *get_task_exe_file(struct task_struct *task);
3111
3112extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
3113extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
3114
3115extern bool vma_is_special_mapping(const struct vm_area_struct *vma,
3116 const struct vm_special_mapping *sm);
3117extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
3118 unsigned long addr, unsigned long len,
3119 unsigned long flags,
3120 const struct vm_special_mapping *spec);
3121/* This is an obsolete alternative to _install_special_mapping. */
3122extern int install_special_mapping(struct mm_struct *mm,
3123 unsigned long addr, unsigned long len,
3124 unsigned long flags, struct page **pages);
3125
3126unsigned long randomize_stack_top(unsigned long stack_top);
3127unsigned long randomize_page(unsigned long start, unsigned long range);
3128
3129extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
3130
3131extern unsigned long mmap_region(struct file *file, unsigned long addr,
3132 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff,
3133 struct list_head *uf);
3134extern unsigned long do_mmap(struct file *file, unsigned long addr,
3135 unsigned long len, unsigned long prot, unsigned long flags,
3136 unsigned long pgoff, unsigned long *populate, struct list_head *uf);
3137extern int do_vmi_munmap(struct vma_iterator *vmi, struct mm_struct *mm,
3138 unsigned long start, size_t len, struct list_head *uf,
3139 bool downgrade);
3140extern int do_munmap(struct mm_struct *, unsigned long, size_t,
3141 struct list_head *uf);
3142extern int do_madvise(struct mm_struct *mm, unsigned long start, size_t len_in, int behavior);
3143
3144#ifdef CONFIG_MMU
3145extern int do_vma_munmap(struct vma_iterator *vmi, struct vm_area_struct *vma,
3146 unsigned long start, unsigned long end,
3147 struct list_head *uf, bool downgrade);
3148extern int __mm_populate(unsigned long addr, unsigned long len,
3149 int ignore_errors);
3150static inline void mm_populate(unsigned long addr, unsigned long len)
3151{
3152 /* Ignore errors */
3153 (void) __mm_populate(addr, len, 1);
3154}
3155#else
3156static inline void mm_populate(unsigned long addr, unsigned long len) {}
3157#endif
3158
3159/* These take the mm semaphore themselves */
3160extern int __must_check vm_brk(unsigned long, unsigned long);
3161extern int __must_check vm_brk_flags(unsigned long, unsigned long, unsigned long);
3162extern int vm_munmap(unsigned long, size_t);
3163extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
3164 unsigned long, unsigned long,
3165 unsigned long, unsigned long);
3166
3167struct vm_unmapped_area_info {
3168#define VM_UNMAPPED_AREA_TOPDOWN 1
3169 unsigned long flags;
3170 unsigned long length;
3171 unsigned long low_limit;
3172 unsigned long high_limit;
3173 unsigned long align_mask;
3174 unsigned long align_offset;
3175};
3176
3177extern unsigned long vm_unmapped_area(struct vm_unmapped_area_info *info);
3178
3179/* truncate.c */
3180extern void truncate_inode_pages(struct address_space *, loff_t);
3181extern void truncate_inode_pages_range(struct address_space *,
3182 loff_t lstart, loff_t lend);
3183extern void truncate_inode_pages_final(struct address_space *);
3184
3185/* generic vm_area_ops exported for stackable file systems */
3186extern vm_fault_t filemap_fault(struct vm_fault *vmf);
3187extern vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3188 pgoff_t start_pgoff, pgoff_t end_pgoff);
3189extern vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf);
3190
3191extern unsigned long stack_guard_gap;
3192/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
3193extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
3194
3195/* CONFIG_STACK_GROWSUP still needs to grow downwards at some places */
3196extern int expand_downwards(struct vm_area_struct *vma,
3197 unsigned long address);
3198#if VM_GROWSUP
3199extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
3200#else
3201 #define expand_upwards(vma, address) (0)
3202#endif
3203
3204/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
3205extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
3206extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
3207 struct vm_area_struct **pprev);
3208
3209/*
3210 * Look up the first VMA which intersects the interval [start_addr, end_addr)
3211 * NULL if none. Assume start_addr < end_addr.
3212 */
3213struct vm_area_struct *find_vma_intersection(struct mm_struct *mm,
3214 unsigned long start_addr, unsigned long end_addr);
3215
3216/**
3217 * vma_lookup() - Find a VMA at a specific address
3218 * @mm: The process address space.
3219 * @addr: The user address.
3220 *
3221 * Return: The vm_area_struct at the given address, %NULL otherwise.
3222 */
3223static inline
3224struct vm_area_struct *vma_lookup(struct mm_struct *mm, unsigned long addr)
3225{
3226 return mtree_load(&mm->mm_mt, addr);
3227}
3228
3229static inline unsigned long vm_start_gap(struct vm_area_struct *vma)
3230{
3231 unsigned long vm_start = vma->vm_start;
3232
3233 if (vma->vm_flags & VM_GROWSDOWN) {
3234 vm_start -= stack_guard_gap;
3235 if (vm_start > vma->vm_start)
3236 vm_start = 0;
3237 }
3238 return vm_start;
3239}
3240
3241static inline unsigned long vm_end_gap(struct vm_area_struct *vma)
3242{
3243 unsigned long vm_end = vma->vm_end;
3244
3245 if (vma->vm_flags & VM_GROWSUP) {
3246 vm_end += stack_guard_gap;
3247 if (vm_end < vma->vm_end)
3248 vm_end = -PAGE_SIZE;
3249 }
3250 return vm_end;
3251}
3252
3253static inline unsigned long vma_pages(struct vm_area_struct *vma)
3254{
3255 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
3256}
3257
3258/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
3259static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
3260 unsigned long vm_start, unsigned long vm_end)
3261{
3262 struct vm_area_struct *vma = vma_lookup(mm, vm_start);
3263
3264 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
3265 vma = NULL;
3266
3267 return vma;
3268}
3269
3270static inline bool range_in_vma(struct vm_area_struct *vma,
3271 unsigned long start, unsigned long end)
3272{
3273 return (vma && vma->vm_start <= start && end <= vma->vm_end);
3274}
3275
3276#ifdef CONFIG_MMU
3277pgprot_t vm_get_page_prot(unsigned long vm_flags);
3278void vma_set_page_prot(struct vm_area_struct *vma);
3279#else
3280static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
3281{
3282 return __pgprot(0);
3283}
3284static inline void vma_set_page_prot(struct vm_area_struct *vma)
3285{
3286 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
3287}
3288#endif
3289
3290void vma_set_file(struct vm_area_struct *vma, struct file *file);
3291
3292#ifdef CONFIG_NUMA_BALANCING
3293unsigned long change_prot_numa(struct vm_area_struct *vma,
3294 unsigned long start, unsigned long end);
3295#endif
3296
3297struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
3298int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
3299 unsigned long pfn, unsigned long size, pgprot_t);
3300int remap_pfn_range_notrack(struct vm_area_struct *vma, unsigned long addr,
3301 unsigned long pfn, unsigned long size, pgprot_t prot);
3302int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
3303int vm_insert_pages(struct vm_area_struct *vma, unsigned long addr,
3304 struct page **pages, unsigned long *num);
3305int vm_map_pages(struct vm_area_struct *vma, struct page **pages,
3306 unsigned long num);
3307int vm_map_pages_zero(struct vm_area_struct *vma, struct page **pages,
3308 unsigned long num);
3309vm_fault_t vmf_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
3310 unsigned long pfn);
3311vm_fault_t vmf_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
3312 unsigned long pfn, pgprot_t pgprot);
3313vm_fault_t vmf_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
3314 pfn_t pfn);
3315vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
3316 unsigned long addr, pfn_t pfn);
3317int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
3318
3319static inline vm_fault_t vmf_insert_page(struct vm_area_struct *vma,
3320 unsigned long addr, struct page *page)
3321{
3322 int err = vm_insert_page(vma, addr, page);
3323
3324 if (err == -ENOMEM)
3325 return VM_FAULT_OOM;
3326 if (err < 0 && err != -EBUSY)
3327 return VM_FAULT_SIGBUS;
3328
3329 return VM_FAULT_NOPAGE;
3330}
3331
3332#ifndef io_remap_pfn_range
3333static inline int io_remap_pfn_range(struct vm_area_struct *vma,
3334 unsigned long addr, unsigned long pfn,
3335 unsigned long size, pgprot_t prot)
3336{
3337 return remap_pfn_range(vma, addr, pfn, size, pgprot_decrypted(prot));
3338}
3339#endif
3340
3341static inline vm_fault_t vmf_error(int err)
3342{
3343 if (err == -ENOMEM)
3344 return VM_FAULT_OOM;
3345 return VM_FAULT_SIGBUS;
3346}
3347
3348struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
3349 unsigned int foll_flags);
3350
3351static inline int vm_fault_to_errno(vm_fault_t vm_fault, int foll_flags)
3352{
3353 if (vm_fault & VM_FAULT_OOM)
3354 return -ENOMEM;
3355 if (vm_fault & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
3356 return (foll_flags & FOLL_HWPOISON) ? -EHWPOISON : -EFAULT;
3357 if (vm_fault & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
3358 return -EFAULT;
3359 return 0;
3360}
3361
3362/*
3363 * Indicates whether GUP can follow a PROT_NONE mapped page, or whether
3364 * a (NUMA hinting) fault is required.
3365 */
3366static inline bool gup_can_follow_protnone(unsigned int flags)
3367{
3368 /*
3369 * FOLL_FORCE has to be able to make progress even if the VMA is
3370 * inaccessible. Further, FOLL_FORCE access usually does not represent
3371 * application behaviour and we should avoid triggering NUMA hinting
3372 * faults.
3373 */
3374 return flags & FOLL_FORCE;
3375}
3376
3377typedef int (*pte_fn_t)(pte_t *pte, unsigned long addr, void *data);
3378extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
3379 unsigned long size, pte_fn_t fn, void *data);
3380extern int apply_to_existing_page_range(struct mm_struct *mm,
3381 unsigned long address, unsigned long size,
3382 pte_fn_t fn, void *data);
3383
3384#ifdef CONFIG_PAGE_POISONING
3385extern void __kernel_poison_pages(struct page *page, int numpages);
3386extern void __kernel_unpoison_pages(struct page *page, int numpages);
3387extern bool _page_poisoning_enabled_early;
3388DECLARE_STATIC_KEY_FALSE(_page_poisoning_enabled);
3389static inline bool page_poisoning_enabled(void)
3390{
3391 return _page_poisoning_enabled_early;
3392}
3393/*
3394 * For use in fast paths after init_mem_debugging() has run, or when a
3395 * false negative result is not harmful when called too early.
3396 */
3397static inline bool page_poisoning_enabled_static(void)
3398{
3399 return static_branch_unlikely(&_page_poisoning_enabled);
3400}
3401static inline void kernel_poison_pages(struct page *page, int numpages)
3402{
3403 if (page_poisoning_enabled_static())
3404 __kernel_poison_pages(page, numpages);
3405}
3406static inline void kernel_unpoison_pages(struct page *page, int numpages)
3407{
3408 if (page_poisoning_enabled_static())
3409 __kernel_unpoison_pages(page, numpages);
3410}
3411#else
3412static inline bool page_poisoning_enabled(void) { return false; }
3413static inline bool page_poisoning_enabled_static(void) { return false; }
3414static inline void __kernel_poison_pages(struct page *page, int nunmpages) { }
3415static inline void kernel_poison_pages(struct page *page, int numpages) { }
3416static inline void kernel_unpoison_pages(struct page *page, int numpages) { }
3417#endif
3418
3419DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
3420static inline bool want_init_on_alloc(gfp_t flags)
3421{
3422 if (static_branch_maybe(CONFIG_INIT_ON_ALLOC_DEFAULT_ON,
3423 &init_on_alloc))
3424 return true;
3425 return flags & __GFP_ZERO;
3426}
3427
3428DECLARE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
3429static inline bool want_init_on_free(void)
3430{
3431 return static_branch_maybe(CONFIG_INIT_ON_FREE_DEFAULT_ON,
3432 &init_on_free);
3433}
3434
3435extern bool _debug_pagealloc_enabled_early;
3436DECLARE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
3437
3438static inline bool debug_pagealloc_enabled(void)
3439{
3440 return IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
3441 _debug_pagealloc_enabled_early;
3442}
3443
3444/*
3445 * For use in fast paths after init_debug_pagealloc() has run, or when a
3446 * false negative result is not harmful when called too early.
3447 */
3448static inline bool debug_pagealloc_enabled_static(void)
3449{
3450 if (!IS_ENABLED(CONFIG_DEBUG_PAGEALLOC))
3451 return false;
3452
3453 return static_branch_unlikely(&_debug_pagealloc_enabled);
3454}
3455
3456#ifdef CONFIG_DEBUG_PAGEALLOC
3457/*
3458 * To support DEBUG_PAGEALLOC architecture must ensure that
3459 * __kernel_map_pages() never fails
3460 */
3461extern void __kernel_map_pages(struct page *page, int numpages, int enable);
3462
3463static inline void debug_pagealloc_map_pages(struct page *page, int numpages)
3464{
3465 if (debug_pagealloc_enabled_static())
3466 __kernel_map_pages(page, numpages, 1);
3467}
3468
3469static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages)
3470{
3471 if (debug_pagealloc_enabled_static())
3472 __kernel_map_pages(page, numpages, 0);
3473}
3474#else /* CONFIG_DEBUG_PAGEALLOC */
3475static inline void debug_pagealloc_map_pages(struct page *page, int numpages) {}
3476static inline void debug_pagealloc_unmap_pages(struct page *page, int numpages) {}
3477#endif /* CONFIG_DEBUG_PAGEALLOC */
3478
3479#ifdef __HAVE_ARCH_GATE_AREA
3480extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
3481extern int in_gate_area_no_mm(unsigned long addr);
3482extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
3483#else
3484static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
3485{
3486 return NULL;
3487}
3488static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
3489static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
3490{
3491 return 0;
3492}
3493#endif /* __HAVE_ARCH_GATE_AREA */
3494
3495extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
3496
3497#ifdef CONFIG_SYSCTL
3498extern int sysctl_drop_caches;
3499int drop_caches_sysctl_handler(struct ctl_table *, int, void *, size_t *,
3500 loff_t *);
3501#endif
3502
3503void drop_slab(void);
3504
3505#ifndef CONFIG_MMU
3506#define randomize_va_space 0
3507#else
3508extern int randomize_va_space;
3509#endif
3510
3511const char * arch_vma_name(struct vm_area_struct *vma);
3512#ifdef CONFIG_MMU
3513void print_vma_addr(char *prefix, unsigned long rip);
3514#else
3515static inline void print_vma_addr(char *prefix, unsigned long rip)
3516{
3517}
3518#endif
3519
3520void *sparse_buffer_alloc(unsigned long size);
3521struct page * __populate_section_memmap(unsigned long pfn,
3522 unsigned long nr_pages, int nid, struct vmem_altmap *altmap,
3523 struct dev_pagemap *pgmap);
3524void pmd_init(void *addr);
3525void pud_init(void *addr);
3526pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
3527p4d_t *vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node);
3528pud_t *vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node);
3529pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
3530pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node,
3531 struct vmem_altmap *altmap, struct page *reuse);
3532void *vmemmap_alloc_block(unsigned long size, int node);
3533struct vmem_altmap;
3534void *vmemmap_alloc_block_buf(unsigned long size, int node,
3535 struct vmem_altmap *altmap);
3536void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
3537void vmemmap_set_pmd(pmd_t *pmd, void *p, int node,
3538 unsigned long addr, unsigned long next);
3539int vmemmap_check_pmd(pmd_t *pmd, int node,
3540 unsigned long addr, unsigned long next);
3541int vmemmap_populate_basepages(unsigned long start, unsigned long end,
3542 int node, struct vmem_altmap *altmap);
3543int vmemmap_populate_hugepages(unsigned long start, unsigned long end,
3544 int node, struct vmem_altmap *altmap);
3545int vmemmap_populate(unsigned long start, unsigned long end, int node,
3546 struct vmem_altmap *altmap);
3547void vmemmap_populate_print_last(void);
3548#ifdef CONFIG_MEMORY_HOTPLUG
3549void vmemmap_free(unsigned long start, unsigned long end,
3550 struct vmem_altmap *altmap);
3551#endif
3552
3553#ifdef CONFIG_ARCH_WANT_OPTIMIZE_VMEMMAP
3554static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3555 struct dev_pagemap *pgmap)
3556{
3557 return is_power_of_2(sizeof(struct page)) &&
3558 pgmap && (pgmap_vmemmap_nr(pgmap) > 1) && !altmap;
3559}
3560#else
3561static inline bool vmemmap_can_optimize(struct vmem_altmap *altmap,
3562 struct dev_pagemap *pgmap)
3563{
3564 return false;
3565}
3566#endif
3567
3568void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
3569 unsigned long nr_pages);
3570
3571enum mf_flags {
3572 MF_COUNT_INCREASED = 1 << 0,
3573 MF_ACTION_REQUIRED = 1 << 1,
3574 MF_MUST_KILL = 1 << 2,
3575 MF_SOFT_OFFLINE = 1 << 3,
3576 MF_UNPOISON = 1 << 4,
3577 MF_SW_SIMULATED = 1 << 5,
3578 MF_NO_RETRY = 1 << 6,
3579};
3580int mf_dax_kill_procs(struct address_space *mapping, pgoff_t index,
3581 unsigned long count, int mf_flags);
3582extern int memory_failure(unsigned long pfn, int flags);
3583extern void memory_failure_queue_kick(int cpu);
3584extern int unpoison_memory(unsigned long pfn);
3585extern void shake_page(struct page *p);
3586extern atomic_long_t num_poisoned_pages __read_mostly;
3587extern int soft_offline_page(unsigned long pfn, int flags);
3588#ifdef CONFIG_MEMORY_FAILURE
3589extern void memory_failure_queue(unsigned long pfn, int flags);
3590extern int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3591 bool *migratable_cleared);
3592void num_poisoned_pages_inc(unsigned long pfn);
3593void num_poisoned_pages_sub(unsigned long pfn, long i);
3594struct task_struct *task_early_kill(struct task_struct *tsk, int force_early);
3595#else
3596static inline void memory_failure_queue(unsigned long pfn, int flags)
3597{
3598}
3599
3600static inline int __get_huge_page_for_hwpoison(unsigned long pfn, int flags,
3601 bool *migratable_cleared)
3602{
3603 return 0;
3604}
3605
3606static inline void num_poisoned_pages_inc(unsigned long pfn)
3607{
3608}
3609
3610static inline void num_poisoned_pages_sub(unsigned long pfn, long i)
3611{
3612}
3613#endif
3614
3615#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_KSM)
3616void add_to_kill_ksm(struct task_struct *tsk, struct page *p,
3617 struct vm_area_struct *vma, struct list_head *to_kill,
3618 unsigned long ksm_addr);
3619#endif
3620
3621#if defined(CONFIG_MEMORY_FAILURE) && defined(CONFIG_MEMORY_HOTPLUG)
3622extern void memblk_nr_poison_inc(unsigned long pfn);
3623extern void memblk_nr_poison_sub(unsigned long pfn, long i);
3624#else
3625static inline void memblk_nr_poison_inc(unsigned long pfn)
3626{
3627}
3628
3629static inline void memblk_nr_poison_sub(unsigned long pfn, long i)
3630{
3631}
3632#endif
3633
3634#ifndef arch_memory_failure
3635static inline int arch_memory_failure(unsigned long pfn, int flags)
3636{
3637 return -ENXIO;
3638}
3639#endif
3640
3641#ifndef arch_is_platform_page
3642static inline bool arch_is_platform_page(u64 paddr)
3643{
3644 return false;
3645}
3646#endif
3647
3648/*
3649 * Error handlers for various types of pages.
3650 */
3651enum mf_result {
3652 MF_IGNORED, /* Error: cannot be handled */
3653 MF_FAILED, /* Error: handling failed */
3654 MF_DELAYED, /* Will be handled later */
3655 MF_RECOVERED, /* Successfully recovered */
3656};
3657
3658enum mf_action_page_type {
3659 MF_MSG_KERNEL,
3660 MF_MSG_KERNEL_HIGH_ORDER,
3661 MF_MSG_SLAB,
3662 MF_MSG_DIFFERENT_COMPOUND,
3663 MF_MSG_HUGE,
3664 MF_MSG_FREE_HUGE,
3665 MF_MSG_UNMAP_FAILED,
3666 MF_MSG_DIRTY_SWAPCACHE,
3667 MF_MSG_CLEAN_SWAPCACHE,
3668 MF_MSG_DIRTY_MLOCKED_LRU,
3669 MF_MSG_CLEAN_MLOCKED_LRU,
3670 MF_MSG_DIRTY_UNEVICTABLE_LRU,
3671 MF_MSG_CLEAN_UNEVICTABLE_LRU,
3672 MF_MSG_DIRTY_LRU,
3673 MF_MSG_CLEAN_LRU,
3674 MF_MSG_TRUNCATED_LRU,
3675 MF_MSG_BUDDY,
3676 MF_MSG_DAX,
3677 MF_MSG_UNSPLIT_THP,
3678 MF_MSG_UNKNOWN,
3679};
3680
3681/*
3682 * Sysfs entries for memory failure handling statistics.
3683 */
3684extern const struct attribute_group memory_failure_attr_group;
3685
3686#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3687extern void clear_huge_page(struct page *page,
3688 unsigned long addr_hint,
3689 unsigned int pages_per_huge_page);
3690int copy_user_large_folio(struct folio *dst, struct folio *src,
3691 unsigned long addr_hint,
3692 struct vm_area_struct *vma);
3693long copy_folio_from_user(struct folio *dst_folio,
3694 const void __user *usr_src,
3695 bool allow_pagefault);
3696
3697/**
3698 * vma_is_special_huge - Are transhuge page-table entries considered special?
3699 * @vma: Pointer to the struct vm_area_struct to consider
3700 *
3701 * Whether transhuge page-table entries are considered "special" following
3702 * the definition in vm_normal_page().
3703 *
3704 * Return: true if transhuge page-table entries should be considered special,
3705 * false otherwise.
3706 */
3707static inline bool vma_is_special_huge(const struct vm_area_struct *vma)
3708{
3709 return vma_is_dax(vma) || (vma->vm_file &&
3710 (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
3711}
3712
3713#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
3714
3715#ifdef CONFIG_DEBUG_PAGEALLOC
3716extern unsigned int _debug_guardpage_minorder;
3717DECLARE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
3718
3719static inline unsigned int debug_guardpage_minorder(void)
3720{
3721 return _debug_guardpage_minorder;
3722}
3723
3724static inline bool debug_guardpage_enabled(void)
3725{
3726 return static_branch_unlikely(&_debug_guardpage_enabled);
3727}
3728
3729static inline bool page_is_guard(struct page *page)
3730{
3731 if (!debug_guardpage_enabled())
3732 return false;
3733
3734 return PageGuard(page);
3735}
3736#else
3737static inline unsigned int debug_guardpage_minorder(void) { return 0; }
3738static inline bool debug_guardpage_enabled(void) { return false; }
3739static inline bool page_is_guard(struct page *page) { return false; }
3740#endif /* CONFIG_DEBUG_PAGEALLOC */
3741
3742#if MAX_NUMNODES > 1
3743void __init setup_nr_node_ids(void);
3744#else
3745static inline void setup_nr_node_ids(void) {}
3746#endif
3747
3748extern int memcmp_pages(struct page *page1, struct page *page2);
3749
3750static inline int pages_identical(struct page *page1, struct page *page2)
3751{
3752 return !memcmp_pages(page1, page2);
3753}
3754
3755#ifdef CONFIG_MAPPING_DIRTY_HELPERS
3756unsigned long clean_record_shared_mapping_range(struct address_space *mapping,
3757 pgoff_t first_index, pgoff_t nr,
3758 pgoff_t bitmap_pgoff,
3759 unsigned long *bitmap,
3760 pgoff_t *start,
3761 pgoff_t *end);
3762
3763unsigned long wp_shared_mapping_range(struct address_space *mapping,
3764 pgoff_t first_index, pgoff_t nr);
3765#endif
3766
3767extern int sysctl_nr_trim_pages;
3768
3769#ifdef CONFIG_PRINTK
3770void mem_dump_obj(void *object);
3771#else
3772static inline void mem_dump_obj(void *object) {}
3773#endif
3774
3775/**
3776 * seal_check_future_write - Check for F_SEAL_FUTURE_WRITE flag and handle it
3777 * @seals: the seals to check
3778 * @vma: the vma to operate on
3779 *
3780 * Check whether F_SEAL_FUTURE_WRITE is set; if so, do proper check/handling on
3781 * the vma flags. Return 0 if check pass, or <0 for errors.
3782 */
3783static inline int seal_check_future_write(int seals, struct vm_area_struct *vma)
3784{
3785 if (seals & F_SEAL_FUTURE_WRITE) {
3786 /*
3787 * New PROT_WRITE and MAP_SHARED mmaps are not allowed when
3788 * "future write" seal active.
3789 */
3790 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_WRITE))
3791 return -EPERM;
3792
3793 /*
3794 * Since an F_SEAL_FUTURE_WRITE sealed memfd can be mapped as
3795 * MAP_SHARED and read-only, take care to not allow mprotect to
3796 * revert protections on such mappings. Do this only for shared
3797 * mappings. For private mappings, don't need to mask
3798 * VM_MAYWRITE as we still want them to be COW-writable.
3799 */
3800 if (vma->vm_flags & VM_SHARED)
3801 vm_flags_clear(vma, VM_MAYWRITE);
3802 }
3803
3804 return 0;
3805}
3806
3807#ifdef CONFIG_ANON_VMA_NAME
3808int madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
3809 unsigned long len_in,
3810 struct anon_vma_name *anon_name);
3811#else
3812static inline int
3813madvise_set_anon_name(struct mm_struct *mm, unsigned long start,
3814 unsigned long len_in, struct anon_vma_name *anon_name) {
3815 return 0;
3816}
3817#endif
3818
3819#endif /* _LINUX_MM_H */