Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/* memcontrol.h - Memory Controller
3 *
4 * Copyright IBM Corporation, 2007
5 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 *
7 * Copyright 2007 OpenVZ SWsoft Inc
8 * Author: Pavel Emelianov <xemul@openvz.org>
9 */
10
11#ifndef _LINUX_MEMCONTROL_H
12#define _LINUX_MEMCONTROL_H
13#include <linux/cgroup.h>
14#include <linux/vm_event_item.h>
15#include <linux/hardirq.h>
16#include <linux/jump_label.h>
17#include <linux/page_counter.h>
18#include <linux/vmpressure.h>
19#include <linux/eventfd.h>
20#include <linux/mm.h>
21#include <linux/vmstat.h>
22#include <linux/writeback.h>
23#include <linux/page-flags.h>
24
25struct mem_cgroup;
26struct obj_cgroup;
27struct page;
28struct mm_struct;
29struct kmem_cache;
30
31/* Cgroup-specific page state, on top of universal node page state */
32enum memcg_stat_item {
33 MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS,
34 MEMCG_SOCK,
35 MEMCG_PERCPU_B,
36 MEMCG_VMALLOC,
37 MEMCG_KMEM,
38 MEMCG_ZSWAP_B,
39 MEMCG_ZSWAPPED,
40 MEMCG_NR_STAT,
41};
42
43enum memcg_memory_event {
44 MEMCG_LOW,
45 MEMCG_HIGH,
46 MEMCG_MAX,
47 MEMCG_OOM,
48 MEMCG_OOM_KILL,
49 MEMCG_OOM_GROUP_KILL,
50 MEMCG_SWAP_HIGH,
51 MEMCG_SWAP_MAX,
52 MEMCG_SWAP_FAIL,
53 MEMCG_NR_MEMORY_EVENTS,
54};
55
56struct mem_cgroup_reclaim_cookie {
57 pg_data_t *pgdat;
58 unsigned int generation;
59};
60
61#ifdef CONFIG_MEMCG
62
63#define MEM_CGROUP_ID_SHIFT 16
64#define MEM_CGROUP_ID_MAX USHRT_MAX
65
66struct mem_cgroup_id {
67 int id;
68 refcount_t ref;
69};
70
71/*
72 * Per memcg event counter is incremented at every pagein/pageout. With THP,
73 * it will be incremented by the number of pages. This counter is used
74 * to trigger some periodic events. This is straightforward and better
75 * than using jiffies etc. to handle periodic memcg event.
76 */
77enum mem_cgroup_events_target {
78 MEM_CGROUP_TARGET_THRESH,
79 MEM_CGROUP_TARGET_SOFTLIMIT,
80 MEM_CGROUP_NTARGETS,
81};
82
83struct memcg_vmstats_percpu;
84struct memcg_vmstats;
85
86struct mem_cgroup_reclaim_iter {
87 struct mem_cgroup *position;
88 /* scan generation, increased every round-trip */
89 unsigned int generation;
90};
91
92/*
93 * Bitmap and deferred work of shrinker::id corresponding to memcg-aware
94 * shrinkers, which have elements charged to this memcg.
95 */
96struct shrinker_info {
97 struct rcu_head rcu;
98 atomic_long_t *nr_deferred;
99 unsigned long *map;
100 int map_nr_max;
101};
102
103struct lruvec_stats_percpu {
104 /* Local (CPU and cgroup) state */
105 long state[NR_VM_NODE_STAT_ITEMS];
106
107 /* Delta calculation for lockless upward propagation */
108 long state_prev[NR_VM_NODE_STAT_ITEMS];
109};
110
111struct lruvec_stats {
112 /* Aggregated (CPU and subtree) state */
113 long state[NR_VM_NODE_STAT_ITEMS];
114
115 /* Pending child counts during tree propagation */
116 long state_pending[NR_VM_NODE_STAT_ITEMS];
117};
118
119/*
120 * per-node information in memory controller.
121 */
122struct mem_cgroup_per_node {
123 struct lruvec lruvec;
124
125 struct lruvec_stats_percpu __percpu *lruvec_stats_percpu;
126 struct lruvec_stats lruvec_stats;
127
128 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS];
129
130 struct mem_cgroup_reclaim_iter iter;
131
132 struct shrinker_info __rcu *shrinker_info;
133
134 struct rb_node tree_node; /* RB tree node */
135 unsigned long usage_in_excess;/* Set to the value by which */
136 /* the soft limit is exceeded*/
137 bool on_tree;
138 struct mem_cgroup *memcg; /* Back pointer, we cannot */
139 /* use container_of */
140};
141
142struct mem_cgroup_threshold {
143 struct eventfd_ctx *eventfd;
144 unsigned long threshold;
145};
146
147/* For threshold */
148struct mem_cgroup_threshold_ary {
149 /* An array index points to threshold just below or equal to usage. */
150 int current_threshold;
151 /* Size of entries[] */
152 unsigned int size;
153 /* Array of thresholds */
154 struct mem_cgroup_threshold entries[];
155};
156
157struct mem_cgroup_thresholds {
158 /* Primary thresholds array */
159 struct mem_cgroup_threshold_ary *primary;
160 /*
161 * Spare threshold array.
162 * This is needed to make mem_cgroup_unregister_event() "never fail".
163 * It must be able to store at least primary->size - 1 entries.
164 */
165 struct mem_cgroup_threshold_ary *spare;
166};
167
168/*
169 * Remember four most recent foreign writebacks with dirty pages in this
170 * cgroup. Inode sharing is expected to be uncommon and, even if we miss
171 * one in a given round, we're likely to catch it later if it keeps
172 * foreign-dirtying, so a fairly low count should be enough.
173 *
174 * See mem_cgroup_track_foreign_dirty_slowpath() for details.
175 */
176#define MEMCG_CGWB_FRN_CNT 4
177
178struct memcg_cgwb_frn {
179 u64 bdi_id; /* bdi->id of the foreign inode */
180 int memcg_id; /* memcg->css.id of foreign inode */
181 u64 at; /* jiffies_64 at the time of dirtying */
182 struct wb_completion done; /* tracks in-flight foreign writebacks */
183};
184
185/*
186 * Bucket for arbitrarily byte-sized objects charged to a memory
187 * cgroup. The bucket can be reparented in one piece when the cgroup
188 * is destroyed, without having to round up the individual references
189 * of all live memory objects in the wild.
190 */
191struct obj_cgroup {
192 struct percpu_ref refcnt;
193 struct mem_cgroup *memcg;
194 atomic_t nr_charged_bytes;
195 union {
196 struct list_head list; /* protected by objcg_lock */
197 struct rcu_head rcu;
198 };
199};
200
201/*
202 * The memory controller data structure. The memory controller controls both
203 * page cache and RSS per cgroup. We would eventually like to provide
204 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
205 * to help the administrator determine what knobs to tune.
206 */
207struct mem_cgroup {
208 struct cgroup_subsys_state css;
209
210 /* Private memcg ID. Used to ID objects that outlive the cgroup */
211 struct mem_cgroup_id id;
212
213 /* Accounted resources */
214 struct page_counter memory; /* Both v1 & v2 */
215
216 union {
217 struct page_counter swap; /* v2 only */
218 struct page_counter memsw; /* v1 only */
219 };
220
221 /* Legacy consumer-oriented counters */
222 struct page_counter kmem; /* v1 only */
223 struct page_counter tcpmem; /* v1 only */
224
225 /* Range enforcement for interrupt charges */
226 struct work_struct high_work;
227
228#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
229 unsigned long zswap_max;
230#endif
231
232 unsigned long soft_limit;
233
234 /* vmpressure notifications */
235 struct vmpressure vmpressure;
236
237 /*
238 * Should the OOM killer kill all belonging tasks, had it kill one?
239 */
240 bool oom_group;
241
242 /* protected by memcg_oom_lock */
243 bool oom_lock;
244 int under_oom;
245
246 int swappiness;
247 /* OOM-Killer disable */
248 int oom_kill_disable;
249
250 /* memory.events and memory.events.local */
251 struct cgroup_file events_file;
252 struct cgroup_file events_local_file;
253
254 /* handle for "memory.swap.events" */
255 struct cgroup_file swap_events_file;
256
257 /* protect arrays of thresholds */
258 struct mutex thresholds_lock;
259
260 /* thresholds for memory usage. RCU-protected */
261 struct mem_cgroup_thresholds thresholds;
262
263 /* thresholds for mem+swap usage. RCU-protected */
264 struct mem_cgroup_thresholds memsw_thresholds;
265
266 /* For oom notifier event fd */
267 struct list_head oom_notify;
268
269 /*
270 * Should we move charges of a task when a task is moved into this
271 * mem_cgroup ? And what type of charges should we move ?
272 */
273 unsigned long move_charge_at_immigrate;
274 /* taken only while moving_account > 0 */
275 spinlock_t move_lock;
276 unsigned long move_lock_flags;
277
278 CACHELINE_PADDING(_pad1_);
279
280 /* memory.stat */
281 struct memcg_vmstats *vmstats;
282
283 /* memory.events */
284 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS];
285 atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS];
286
287 unsigned long socket_pressure;
288
289 /* Legacy tcp memory accounting */
290 bool tcpmem_active;
291 int tcpmem_pressure;
292
293#ifdef CONFIG_MEMCG_KMEM
294 int kmemcg_id;
295 struct obj_cgroup __rcu *objcg;
296 /* list of inherited objcgs, protected by objcg_lock */
297 struct list_head objcg_list;
298#endif
299
300 CACHELINE_PADDING(_pad2_);
301
302 /*
303 * set > 0 if pages under this cgroup are moving to other cgroup.
304 */
305 atomic_t moving_account;
306 struct task_struct *move_lock_task;
307
308 struct memcg_vmstats_percpu __percpu *vmstats_percpu;
309
310#ifdef CONFIG_CGROUP_WRITEBACK
311 struct list_head cgwb_list;
312 struct wb_domain cgwb_domain;
313 struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT];
314#endif
315
316 /* List of events which userspace want to receive */
317 struct list_head event_list;
318 spinlock_t event_list_lock;
319
320#ifdef CONFIG_TRANSPARENT_HUGEPAGE
321 struct deferred_split deferred_split_queue;
322#endif
323
324#ifdef CONFIG_LRU_GEN
325 /* per-memcg mm_struct list */
326 struct lru_gen_mm_list mm_list;
327#endif
328
329 struct mem_cgroup_per_node *nodeinfo[];
330};
331
332/*
333 * size of first charge trial.
334 * TODO: maybe necessary to use big numbers in big irons or dynamic based of the
335 * workload.
336 */
337#define MEMCG_CHARGE_BATCH 64U
338
339extern struct mem_cgroup *root_mem_cgroup;
340
341enum page_memcg_data_flags {
342 /* page->memcg_data is a pointer to an objcgs vector */
343 MEMCG_DATA_OBJCGS = (1UL << 0),
344 /* page has been accounted as a non-slab kernel page */
345 MEMCG_DATA_KMEM = (1UL << 1),
346 /* the next bit after the last actual flag */
347 __NR_MEMCG_DATA_FLAGS = (1UL << 2),
348};
349
350#define MEMCG_DATA_FLAGS_MASK (__NR_MEMCG_DATA_FLAGS - 1)
351
352static inline bool folio_memcg_kmem(struct folio *folio);
353
354/*
355 * After the initialization objcg->memcg is always pointing at
356 * a valid memcg, but can be atomically swapped to the parent memcg.
357 *
358 * The caller must ensure that the returned memcg won't be released:
359 * e.g. acquire the rcu_read_lock or css_set_lock.
360 */
361static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg)
362{
363 return READ_ONCE(objcg->memcg);
364}
365
366/*
367 * __folio_memcg - Get the memory cgroup associated with a non-kmem folio
368 * @folio: Pointer to the folio.
369 *
370 * Returns a pointer to the memory cgroup associated with the folio,
371 * or NULL. This function assumes that the folio is known to have a
372 * proper memory cgroup pointer. It's not safe to call this function
373 * against some type of folios, e.g. slab folios or ex-slab folios or
374 * kmem folios.
375 */
376static inline struct mem_cgroup *__folio_memcg(struct folio *folio)
377{
378 unsigned long memcg_data = folio->memcg_data;
379
380 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
381 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio);
382 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_KMEM, folio);
383
384 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
385}
386
387/*
388 * __folio_objcg - get the object cgroup associated with a kmem folio.
389 * @folio: Pointer to the folio.
390 *
391 * Returns a pointer to the object cgroup associated with the folio,
392 * or NULL. This function assumes that the folio is known to have a
393 * proper object cgroup pointer. It's not safe to call this function
394 * against some type of folios, e.g. slab folios or ex-slab folios or
395 * LRU folios.
396 */
397static inline struct obj_cgroup *__folio_objcg(struct folio *folio)
398{
399 unsigned long memcg_data = folio->memcg_data;
400
401 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
402 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio);
403 VM_BUG_ON_FOLIO(!(memcg_data & MEMCG_DATA_KMEM), folio);
404
405 return (struct obj_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
406}
407
408/*
409 * folio_memcg - Get the memory cgroup associated with a folio.
410 * @folio: Pointer to the folio.
411 *
412 * Returns a pointer to the memory cgroup associated with the folio,
413 * or NULL. This function assumes that the folio is known to have a
414 * proper memory cgroup pointer. It's not safe to call this function
415 * against some type of folios, e.g. slab folios or ex-slab folios.
416 *
417 * For a non-kmem folio any of the following ensures folio and memcg binding
418 * stability:
419 *
420 * - the folio lock
421 * - LRU isolation
422 * - lock_page_memcg()
423 * - exclusive reference
424 * - mem_cgroup_trylock_pages()
425 *
426 * For a kmem folio a caller should hold an rcu read lock to protect memcg
427 * associated with a kmem folio from being released.
428 */
429static inline struct mem_cgroup *folio_memcg(struct folio *folio)
430{
431 if (folio_memcg_kmem(folio))
432 return obj_cgroup_memcg(__folio_objcg(folio));
433 return __folio_memcg(folio);
434}
435
436static inline struct mem_cgroup *page_memcg(struct page *page)
437{
438 return folio_memcg(page_folio(page));
439}
440
441/**
442 * folio_memcg_rcu - Locklessly get the memory cgroup associated with a folio.
443 * @folio: Pointer to the folio.
444 *
445 * This function assumes that the folio is known to have a
446 * proper memory cgroup pointer. It's not safe to call this function
447 * against some type of folios, e.g. slab folios or ex-slab folios.
448 *
449 * Return: A pointer to the memory cgroup associated with the folio,
450 * or NULL.
451 */
452static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
453{
454 unsigned long memcg_data = READ_ONCE(folio->memcg_data);
455
456 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio);
457 WARN_ON_ONCE(!rcu_read_lock_held());
458
459 if (memcg_data & MEMCG_DATA_KMEM) {
460 struct obj_cgroup *objcg;
461
462 objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
463 return obj_cgroup_memcg(objcg);
464 }
465
466 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
467}
468
469/*
470 * folio_memcg_check - Get the memory cgroup associated with a folio.
471 * @folio: Pointer to the folio.
472 *
473 * Returns a pointer to the memory cgroup associated with the folio,
474 * or NULL. This function unlike folio_memcg() can take any folio
475 * as an argument. It has to be used in cases when it's not known if a folio
476 * has an associated memory cgroup pointer or an object cgroups vector or
477 * an object cgroup.
478 *
479 * For a non-kmem folio any of the following ensures folio and memcg binding
480 * stability:
481 *
482 * - the folio lock
483 * - LRU isolation
484 * - lock_folio_memcg()
485 * - exclusive reference
486 * - mem_cgroup_trylock_pages()
487 *
488 * For a kmem folio a caller should hold an rcu read lock to protect memcg
489 * associated with a kmem folio from being released.
490 */
491static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
492{
493 /*
494 * Because folio->memcg_data might be changed asynchronously
495 * for slabs, READ_ONCE() should be used here.
496 */
497 unsigned long memcg_data = READ_ONCE(folio->memcg_data);
498
499 if (memcg_data & MEMCG_DATA_OBJCGS)
500 return NULL;
501
502 if (memcg_data & MEMCG_DATA_KMEM) {
503 struct obj_cgroup *objcg;
504
505 objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
506 return obj_cgroup_memcg(objcg);
507 }
508
509 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK);
510}
511
512static inline struct mem_cgroup *page_memcg_check(struct page *page)
513{
514 if (PageTail(page))
515 return NULL;
516 return folio_memcg_check((struct folio *)page);
517}
518
519static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg)
520{
521 struct mem_cgroup *memcg;
522
523 rcu_read_lock();
524retry:
525 memcg = obj_cgroup_memcg(objcg);
526 if (unlikely(!css_tryget(&memcg->css)))
527 goto retry;
528 rcu_read_unlock();
529
530 return memcg;
531}
532
533#ifdef CONFIG_MEMCG_KMEM
534/*
535 * folio_memcg_kmem - Check if the folio has the memcg_kmem flag set.
536 * @folio: Pointer to the folio.
537 *
538 * Checks if the folio has MemcgKmem flag set. The caller must ensure
539 * that the folio has an associated memory cgroup. It's not safe to call
540 * this function against some types of folios, e.g. slab folios.
541 */
542static inline bool folio_memcg_kmem(struct folio *folio)
543{
544 VM_BUG_ON_PGFLAGS(PageTail(&folio->page), &folio->page);
545 VM_BUG_ON_FOLIO(folio->memcg_data & MEMCG_DATA_OBJCGS, folio);
546 return folio->memcg_data & MEMCG_DATA_KMEM;
547}
548
549
550#else
551static inline bool folio_memcg_kmem(struct folio *folio)
552{
553 return false;
554}
555
556#endif
557
558static inline bool PageMemcgKmem(struct page *page)
559{
560 return folio_memcg_kmem(page_folio(page));
561}
562
563static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
564{
565 return (memcg == root_mem_cgroup);
566}
567
568static inline bool mem_cgroup_disabled(void)
569{
570 return !cgroup_subsys_enabled(memory_cgrp_subsys);
571}
572
573static inline void mem_cgroup_protection(struct mem_cgroup *root,
574 struct mem_cgroup *memcg,
575 unsigned long *min,
576 unsigned long *low)
577{
578 *min = *low = 0;
579
580 if (mem_cgroup_disabled())
581 return;
582
583 /*
584 * There is no reclaim protection applied to a targeted reclaim.
585 * We are special casing this specific case here because
586 * mem_cgroup_protected calculation is not robust enough to keep
587 * the protection invariant for calculated effective values for
588 * parallel reclaimers with different reclaim target. This is
589 * especially a problem for tail memcgs (as they have pages on LRU)
590 * which would want to have effective values 0 for targeted reclaim
591 * but a different value for external reclaim.
592 *
593 * Example
594 * Let's have global and A's reclaim in parallel:
595 * |
596 * A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G)
597 * |\
598 * | C (low = 1G, usage = 2.5G)
599 * B (low = 1G, usage = 0.5G)
600 *
601 * For the global reclaim
602 * A.elow = A.low
603 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow
604 * C.elow = min(C.usage, C.low)
605 *
606 * With the effective values resetting we have A reclaim
607 * A.elow = 0
608 * B.elow = B.low
609 * C.elow = C.low
610 *
611 * If the global reclaim races with A's reclaim then
612 * B.elow = C.elow = 0 because children_low_usage > A.elow)
613 * is possible and reclaiming B would be violating the protection.
614 *
615 */
616 if (root == memcg)
617 return;
618
619 *min = READ_ONCE(memcg->memory.emin);
620 *low = READ_ONCE(memcg->memory.elow);
621}
622
623void mem_cgroup_calculate_protection(struct mem_cgroup *root,
624 struct mem_cgroup *memcg);
625
626static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
627 struct mem_cgroup *memcg)
628{
629 /*
630 * The root memcg doesn't account charges, and doesn't support
631 * protection. The target memcg's protection is ignored, see
632 * mem_cgroup_calculate_protection() and mem_cgroup_protection()
633 */
634 return mem_cgroup_disabled() || mem_cgroup_is_root(memcg) ||
635 memcg == target;
636}
637
638static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
639 struct mem_cgroup *memcg)
640{
641 if (mem_cgroup_unprotected(target, memcg))
642 return false;
643
644 return READ_ONCE(memcg->memory.elow) >=
645 page_counter_read(&memcg->memory);
646}
647
648static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
649 struct mem_cgroup *memcg)
650{
651 if (mem_cgroup_unprotected(target, memcg))
652 return false;
653
654 return READ_ONCE(memcg->memory.emin) >=
655 page_counter_read(&memcg->memory);
656}
657
658int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp);
659
660/**
661 * mem_cgroup_charge - Charge a newly allocated folio to a cgroup.
662 * @folio: Folio to charge.
663 * @mm: mm context of the allocating task.
664 * @gfp: Reclaim mode.
665 *
666 * Try to charge @folio to the memcg that @mm belongs to, reclaiming
667 * pages according to @gfp if necessary. If @mm is NULL, try to
668 * charge to the active memcg.
669 *
670 * Do not use this for folios allocated for swapin.
671 *
672 * Return: 0 on success. Otherwise, an error code is returned.
673 */
674static inline int mem_cgroup_charge(struct folio *folio, struct mm_struct *mm,
675 gfp_t gfp)
676{
677 if (mem_cgroup_disabled())
678 return 0;
679 return __mem_cgroup_charge(folio, mm, gfp);
680}
681
682int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm,
683 gfp_t gfp, swp_entry_t entry);
684void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry);
685
686void __mem_cgroup_uncharge(struct folio *folio);
687
688/**
689 * mem_cgroup_uncharge - Uncharge a folio.
690 * @folio: Folio to uncharge.
691 *
692 * Uncharge a folio previously charged with mem_cgroup_charge().
693 */
694static inline void mem_cgroup_uncharge(struct folio *folio)
695{
696 if (mem_cgroup_disabled())
697 return;
698 __mem_cgroup_uncharge(folio);
699}
700
701void __mem_cgroup_uncharge_list(struct list_head *page_list);
702static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
703{
704 if (mem_cgroup_disabled())
705 return;
706 __mem_cgroup_uncharge_list(page_list);
707}
708
709void mem_cgroup_migrate(struct folio *old, struct folio *new);
710
711/**
712 * mem_cgroup_lruvec - get the lru list vector for a memcg & node
713 * @memcg: memcg of the wanted lruvec
714 * @pgdat: pglist_data
715 *
716 * Returns the lru list vector holding pages for a given @memcg &
717 * @pgdat combination. This can be the node lruvec, if the memory
718 * controller is disabled.
719 */
720static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
721 struct pglist_data *pgdat)
722{
723 struct mem_cgroup_per_node *mz;
724 struct lruvec *lruvec;
725
726 if (mem_cgroup_disabled()) {
727 lruvec = &pgdat->__lruvec;
728 goto out;
729 }
730
731 if (!memcg)
732 memcg = root_mem_cgroup;
733
734 mz = memcg->nodeinfo[pgdat->node_id];
735 lruvec = &mz->lruvec;
736out:
737 /*
738 * Since a node can be onlined after the mem_cgroup was created,
739 * we have to be prepared to initialize lruvec->pgdat here;
740 * and if offlined then reonlined, we need to reinitialize it.
741 */
742 if (unlikely(lruvec->pgdat != pgdat))
743 lruvec->pgdat = pgdat;
744 return lruvec;
745}
746
747/**
748 * folio_lruvec - return lruvec for isolating/putting an LRU folio
749 * @folio: Pointer to the folio.
750 *
751 * This function relies on folio->mem_cgroup being stable.
752 */
753static inline struct lruvec *folio_lruvec(struct folio *folio)
754{
755 struct mem_cgroup *memcg = folio_memcg(folio);
756
757 VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled(), folio);
758 return mem_cgroup_lruvec(memcg, folio_pgdat(folio));
759}
760
761struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p);
762
763struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm);
764
765struct lruvec *folio_lruvec_lock(struct folio *folio);
766struct lruvec *folio_lruvec_lock_irq(struct folio *folio);
767struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
768 unsigned long *flags);
769
770#ifdef CONFIG_DEBUG_VM
771void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio);
772#else
773static inline
774void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
775{
776}
777#endif
778
779static inline
780struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){
781 return css ? container_of(css, struct mem_cgroup, css) : NULL;
782}
783
784static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg)
785{
786 return percpu_ref_tryget(&objcg->refcnt);
787}
788
789static inline void obj_cgroup_get(struct obj_cgroup *objcg)
790{
791 percpu_ref_get(&objcg->refcnt);
792}
793
794static inline void obj_cgroup_get_many(struct obj_cgroup *objcg,
795 unsigned long nr)
796{
797 percpu_ref_get_many(&objcg->refcnt, nr);
798}
799
800static inline void obj_cgroup_put(struct obj_cgroup *objcg)
801{
802 percpu_ref_put(&objcg->refcnt);
803}
804
805static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
806{
807 return !memcg || css_tryget(&memcg->css);
808}
809
810static inline void mem_cgroup_put(struct mem_cgroup *memcg)
811{
812 if (memcg)
813 css_put(&memcg->css);
814}
815
816#define mem_cgroup_from_counter(counter, member) \
817 container_of(counter, struct mem_cgroup, member)
818
819struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *,
820 struct mem_cgroup *,
821 struct mem_cgroup_reclaim_cookie *);
822void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *);
823int mem_cgroup_scan_tasks(struct mem_cgroup *,
824 int (*)(struct task_struct *, void *), void *);
825
826static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
827{
828 if (mem_cgroup_disabled())
829 return 0;
830
831 return memcg->id.id;
832}
833struct mem_cgroup *mem_cgroup_from_id(unsigned short id);
834
835#ifdef CONFIG_SHRINKER_DEBUG
836static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
837{
838 return memcg ? cgroup_ino(memcg->css.cgroup) : 0;
839}
840
841struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino);
842#endif
843
844static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
845{
846 return mem_cgroup_from_css(seq_css(m));
847}
848
849static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
850{
851 struct mem_cgroup_per_node *mz;
852
853 if (mem_cgroup_disabled())
854 return NULL;
855
856 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
857 return mz->memcg;
858}
859
860/**
861 * parent_mem_cgroup - find the accounting parent of a memcg
862 * @memcg: memcg whose parent to find
863 *
864 * Returns the parent memcg, or NULL if this is the root or the memory
865 * controller is in legacy no-hierarchy mode.
866 */
867static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
868{
869 return mem_cgroup_from_css(memcg->css.parent);
870}
871
872static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg,
873 struct mem_cgroup *root)
874{
875 if (root == memcg)
876 return true;
877 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
878}
879
880static inline bool mm_match_cgroup(struct mm_struct *mm,
881 struct mem_cgroup *memcg)
882{
883 struct mem_cgroup *task_memcg;
884 bool match = false;
885
886 rcu_read_lock();
887 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
888 if (task_memcg)
889 match = mem_cgroup_is_descendant(task_memcg, memcg);
890 rcu_read_unlock();
891 return match;
892}
893
894struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio);
895ino_t page_cgroup_ino(struct page *page);
896
897static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
898{
899 if (mem_cgroup_disabled())
900 return true;
901 return !!(memcg->css.flags & CSS_ONLINE);
902}
903
904void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
905 int zid, int nr_pages);
906
907static inline
908unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
909 enum lru_list lru, int zone_idx)
910{
911 struct mem_cgroup_per_node *mz;
912
913 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
914 return READ_ONCE(mz->lru_zone_size[zone_idx][lru]);
915}
916
917void mem_cgroup_handle_over_high(void);
918
919unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg);
920
921unsigned long mem_cgroup_size(struct mem_cgroup *memcg);
922
923void mem_cgroup_print_oom_context(struct mem_cgroup *memcg,
924 struct task_struct *p);
925
926void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg);
927
928static inline void mem_cgroup_enter_user_fault(void)
929{
930 WARN_ON(current->in_user_fault);
931 current->in_user_fault = 1;
932}
933
934static inline void mem_cgroup_exit_user_fault(void)
935{
936 WARN_ON(!current->in_user_fault);
937 current->in_user_fault = 0;
938}
939
940static inline bool task_in_memcg_oom(struct task_struct *p)
941{
942 return p->memcg_in_oom;
943}
944
945bool mem_cgroup_oom_synchronize(bool wait);
946struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim,
947 struct mem_cgroup *oom_domain);
948void mem_cgroup_print_oom_group(struct mem_cgroup *memcg);
949
950void folio_memcg_lock(struct folio *folio);
951void folio_memcg_unlock(struct folio *folio);
952void lock_page_memcg(struct page *page);
953void unlock_page_memcg(struct page *page);
954
955void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val);
956
957/* try to stablize folio_memcg() for all the pages in a memcg */
958static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg)
959{
960 rcu_read_lock();
961
962 if (mem_cgroup_disabled() || !atomic_read(&memcg->moving_account))
963 return true;
964
965 rcu_read_unlock();
966 return false;
967}
968
969static inline void mem_cgroup_unlock_pages(void)
970{
971 rcu_read_unlock();
972}
973
974/* idx can be of type enum memcg_stat_item or node_stat_item */
975static inline void mod_memcg_state(struct mem_cgroup *memcg,
976 int idx, int val)
977{
978 unsigned long flags;
979
980 local_irq_save(flags);
981 __mod_memcg_state(memcg, idx, val);
982 local_irq_restore(flags);
983}
984
985static inline void mod_memcg_page_state(struct page *page,
986 int idx, int val)
987{
988 struct mem_cgroup *memcg;
989
990 if (mem_cgroup_disabled())
991 return;
992
993 rcu_read_lock();
994 memcg = page_memcg(page);
995 if (memcg)
996 mod_memcg_state(memcg, idx, val);
997 rcu_read_unlock();
998}
999
1000unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx);
1001
1002static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1003 enum node_stat_item idx)
1004{
1005 struct mem_cgroup_per_node *pn;
1006 long x;
1007
1008 if (mem_cgroup_disabled())
1009 return node_page_state(lruvec_pgdat(lruvec), idx);
1010
1011 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1012 x = READ_ONCE(pn->lruvec_stats.state[idx]);
1013#ifdef CONFIG_SMP
1014 if (x < 0)
1015 x = 0;
1016#endif
1017 return x;
1018}
1019
1020static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1021 enum node_stat_item idx)
1022{
1023 struct mem_cgroup_per_node *pn;
1024 long x = 0;
1025 int cpu;
1026
1027 if (mem_cgroup_disabled())
1028 return node_page_state(lruvec_pgdat(lruvec), idx);
1029
1030 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
1031 for_each_possible_cpu(cpu)
1032 x += per_cpu(pn->lruvec_stats_percpu->state[idx], cpu);
1033#ifdef CONFIG_SMP
1034 if (x < 0)
1035 x = 0;
1036#endif
1037 return x;
1038}
1039
1040void mem_cgroup_flush_stats(void);
1041void mem_cgroup_flush_stats_atomic(void);
1042void mem_cgroup_flush_stats_ratelimited(void);
1043
1044void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx,
1045 int val);
1046void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val);
1047
1048static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1049 int val)
1050{
1051 unsigned long flags;
1052
1053 local_irq_save(flags);
1054 __mod_lruvec_kmem_state(p, idx, val);
1055 local_irq_restore(flags);
1056}
1057
1058static inline void mod_memcg_lruvec_state(struct lruvec *lruvec,
1059 enum node_stat_item idx, int val)
1060{
1061 unsigned long flags;
1062
1063 local_irq_save(flags);
1064 __mod_memcg_lruvec_state(lruvec, idx, val);
1065 local_irq_restore(flags);
1066}
1067
1068void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx,
1069 unsigned long count);
1070
1071static inline void count_memcg_events(struct mem_cgroup *memcg,
1072 enum vm_event_item idx,
1073 unsigned long count)
1074{
1075 unsigned long flags;
1076
1077 local_irq_save(flags);
1078 __count_memcg_events(memcg, idx, count);
1079 local_irq_restore(flags);
1080}
1081
1082static inline void count_memcg_page_event(struct page *page,
1083 enum vm_event_item idx)
1084{
1085 struct mem_cgroup *memcg = page_memcg(page);
1086
1087 if (memcg)
1088 count_memcg_events(memcg, idx, 1);
1089}
1090
1091static inline void count_memcg_folio_events(struct folio *folio,
1092 enum vm_event_item idx, unsigned long nr)
1093{
1094 struct mem_cgroup *memcg = folio_memcg(folio);
1095
1096 if (memcg)
1097 count_memcg_events(memcg, idx, nr);
1098}
1099
1100static inline void count_memcg_event_mm(struct mm_struct *mm,
1101 enum vm_event_item idx)
1102{
1103 struct mem_cgroup *memcg;
1104
1105 if (mem_cgroup_disabled())
1106 return;
1107
1108 rcu_read_lock();
1109 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1110 if (likely(memcg))
1111 count_memcg_events(memcg, idx, 1);
1112 rcu_read_unlock();
1113}
1114
1115static inline void memcg_memory_event(struct mem_cgroup *memcg,
1116 enum memcg_memory_event event)
1117{
1118 bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX ||
1119 event == MEMCG_SWAP_FAIL;
1120
1121 atomic_long_inc(&memcg->memory_events_local[event]);
1122 if (!swap_event)
1123 cgroup_file_notify(&memcg->events_local_file);
1124
1125 do {
1126 atomic_long_inc(&memcg->memory_events[event]);
1127 if (swap_event)
1128 cgroup_file_notify(&memcg->swap_events_file);
1129 else
1130 cgroup_file_notify(&memcg->events_file);
1131
1132 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
1133 break;
1134 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS)
1135 break;
1136 } while ((memcg = parent_mem_cgroup(memcg)) &&
1137 !mem_cgroup_is_root(memcg));
1138}
1139
1140static inline void memcg_memory_event_mm(struct mm_struct *mm,
1141 enum memcg_memory_event event)
1142{
1143 struct mem_cgroup *memcg;
1144
1145 if (mem_cgroup_disabled())
1146 return;
1147
1148 rcu_read_lock();
1149 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1150 if (likely(memcg))
1151 memcg_memory_event(memcg, event);
1152 rcu_read_unlock();
1153}
1154
1155void split_page_memcg(struct page *head, unsigned int nr);
1156
1157unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1158 gfp_t gfp_mask,
1159 unsigned long *total_scanned);
1160
1161#else /* CONFIG_MEMCG */
1162
1163#define MEM_CGROUP_ID_SHIFT 0
1164#define MEM_CGROUP_ID_MAX 0
1165
1166static inline struct mem_cgroup *folio_memcg(struct folio *folio)
1167{
1168 return NULL;
1169}
1170
1171static inline struct mem_cgroup *page_memcg(struct page *page)
1172{
1173 return NULL;
1174}
1175
1176static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio)
1177{
1178 WARN_ON_ONCE(!rcu_read_lock_held());
1179 return NULL;
1180}
1181
1182static inline struct mem_cgroup *folio_memcg_check(struct folio *folio)
1183{
1184 return NULL;
1185}
1186
1187static inline struct mem_cgroup *page_memcg_check(struct page *page)
1188{
1189 return NULL;
1190}
1191
1192static inline bool folio_memcg_kmem(struct folio *folio)
1193{
1194 return false;
1195}
1196
1197static inline bool PageMemcgKmem(struct page *page)
1198{
1199 return false;
1200}
1201
1202static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
1203{
1204 return true;
1205}
1206
1207static inline bool mem_cgroup_disabled(void)
1208{
1209 return true;
1210}
1211
1212static inline void memcg_memory_event(struct mem_cgroup *memcg,
1213 enum memcg_memory_event event)
1214{
1215}
1216
1217static inline void memcg_memory_event_mm(struct mm_struct *mm,
1218 enum memcg_memory_event event)
1219{
1220}
1221
1222static inline void mem_cgroup_protection(struct mem_cgroup *root,
1223 struct mem_cgroup *memcg,
1224 unsigned long *min,
1225 unsigned long *low)
1226{
1227 *min = *low = 0;
1228}
1229
1230static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root,
1231 struct mem_cgroup *memcg)
1232{
1233}
1234
1235static inline bool mem_cgroup_unprotected(struct mem_cgroup *target,
1236 struct mem_cgroup *memcg)
1237{
1238 return true;
1239}
1240static inline bool mem_cgroup_below_low(struct mem_cgroup *target,
1241 struct mem_cgroup *memcg)
1242{
1243 return false;
1244}
1245
1246static inline bool mem_cgroup_below_min(struct mem_cgroup *target,
1247 struct mem_cgroup *memcg)
1248{
1249 return false;
1250}
1251
1252static inline int mem_cgroup_charge(struct folio *folio,
1253 struct mm_struct *mm, gfp_t gfp)
1254{
1255 return 0;
1256}
1257
1258static inline int mem_cgroup_swapin_charge_folio(struct folio *folio,
1259 struct mm_struct *mm, gfp_t gfp, swp_entry_t entry)
1260{
1261 return 0;
1262}
1263
1264static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry)
1265{
1266}
1267
1268static inline void mem_cgroup_uncharge(struct folio *folio)
1269{
1270}
1271
1272static inline void mem_cgroup_uncharge_list(struct list_head *page_list)
1273{
1274}
1275
1276static inline void mem_cgroup_migrate(struct folio *old, struct folio *new)
1277{
1278}
1279
1280static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg,
1281 struct pglist_data *pgdat)
1282{
1283 return &pgdat->__lruvec;
1284}
1285
1286static inline struct lruvec *folio_lruvec(struct folio *folio)
1287{
1288 struct pglist_data *pgdat = folio_pgdat(folio);
1289 return &pgdat->__lruvec;
1290}
1291
1292static inline
1293void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio)
1294{
1295}
1296
1297static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
1298{
1299 return NULL;
1300}
1301
1302static inline bool mm_match_cgroup(struct mm_struct *mm,
1303 struct mem_cgroup *memcg)
1304{
1305 return true;
1306}
1307
1308static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
1309{
1310 return NULL;
1311}
1312
1313static inline
1314struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css)
1315{
1316 return NULL;
1317}
1318
1319static inline void obj_cgroup_put(struct obj_cgroup *objcg)
1320{
1321}
1322
1323static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg)
1324{
1325 return true;
1326}
1327
1328static inline void mem_cgroup_put(struct mem_cgroup *memcg)
1329{
1330}
1331
1332static inline struct lruvec *folio_lruvec_lock(struct folio *folio)
1333{
1334 struct pglist_data *pgdat = folio_pgdat(folio);
1335
1336 spin_lock(&pgdat->__lruvec.lru_lock);
1337 return &pgdat->__lruvec;
1338}
1339
1340static inline struct lruvec *folio_lruvec_lock_irq(struct folio *folio)
1341{
1342 struct pglist_data *pgdat = folio_pgdat(folio);
1343
1344 spin_lock_irq(&pgdat->__lruvec.lru_lock);
1345 return &pgdat->__lruvec;
1346}
1347
1348static inline struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio,
1349 unsigned long *flagsp)
1350{
1351 struct pglist_data *pgdat = folio_pgdat(folio);
1352
1353 spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp);
1354 return &pgdat->__lruvec;
1355}
1356
1357static inline struct mem_cgroup *
1358mem_cgroup_iter(struct mem_cgroup *root,
1359 struct mem_cgroup *prev,
1360 struct mem_cgroup_reclaim_cookie *reclaim)
1361{
1362 return NULL;
1363}
1364
1365static inline void mem_cgroup_iter_break(struct mem_cgroup *root,
1366 struct mem_cgroup *prev)
1367{
1368}
1369
1370static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
1371 int (*fn)(struct task_struct *, void *), void *arg)
1372{
1373 return 0;
1374}
1375
1376static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
1377{
1378 return 0;
1379}
1380
1381static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
1382{
1383 WARN_ON_ONCE(id);
1384 /* XXX: This should always return root_mem_cgroup */
1385 return NULL;
1386}
1387
1388#ifdef CONFIG_SHRINKER_DEBUG
1389static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg)
1390{
1391 return 0;
1392}
1393
1394static inline struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino)
1395{
1396 return NULL;
1397}
1398#endif
1399
1400static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m)
1401{
1402 return NULL;
1403}
1404
1405static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec)
1406{
1407 return NULL;
1408}
1409
1410static inline bool mem_cgroup_online(struct mem_cgroup *memcg)
1411{
1412 return true;
1413}
1414
1415static inline
1416unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec,
1417 enum lru_list lru, int zone_idx)
1418{
1419 return 0;
1420}
1421
1422static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg)
1423{
1424 return 0;
1425}
1426
1427static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg)
1428{
1429 return 0;
1430}
1431
1432static inline void
1433mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p)
1434{
1435}
1436
1437static inline void
1438mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg)
1439{
1440}
1441
1442static inline void lock_page_memcg(struct page *page)
1443{
1444}
1445
1446static inline void unlock_page_memcg(struct page *page)
1447{
1448}
1449
1450static inline void folio_memcg_lock(struct folio *folio)
1451{
1452}
1453
1454static inline void folio_memcg_unlock(struct folio *folio)
1455{
1456}
1457
1458static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg)
1459{
1460 /* to match folio_memcg_rcu() */
1461 rcu_read_lock();
1462 return true;
1463}
1464
1465static inline void mem_cgroup_unlock_pages(void)
1466{
1467 rcu_read_unlock();
1468}
1469
1470static inline void mem_cgroup_handle_over_high(void)
1471{
1472}
1473
1474static inline void mem_cgroup_enter_user_fault(void)
1475{
1476}
1477
1478static inline void mem_cgroup_exit_user_fault(void)
1479{
1480}
1481
1482static inline bool task_in_memcg_oom(struct task_struct *p)
1483{
1484 return false;
1485}
1486
1487static inline bool mem_cgroup_oom_synchronize(bool wait)
1488{
1489 return false;
1490}
1491
1492static inline struct mem_cgroup *mem_cgroup_get_oom_group(
1493 struct task_struct *victim, struct mem_cgroup *oom_domain)
1494{
1495 return NULL;
1496}
1497
1498static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg)
1499{
1500}
1501
1502static inline void __mod_memcg_state(struct mem_cgroup *memcg,
1503 int idx,
1504 int nr)
1505{
1506}
1507
1508static inline void mod_memcg_state(struct mem_cgroup *memcg,
1509 int idx,
1510 int nr)
1511{
1512}
1513
1514static inline void mod_memcg_page_state(struct page *page,
1515 int idx, int val)
1516{
1517}
1518
1519static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx)
1520{
1521 return 0;
1522}
1523
1524static inline unsigned long lruvec_page_state(struct lruvec *lruvec,
1525 enum node_stat_item idx)
1526{
1527 return node_page_state(lruvec_pgdat(lruvec), idx);
1528}
1529
1530static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec,
1531 enum node_stat_item idx)
1532{
1533 return node_page_state(lruvec_pgdat(lruvec), idx);
1534}
1535
1536static inline void mem_cgroup_flush_stats(void)
1537{
1538}
1539
1540static inline void mem_cgroup_flush_stats_atomic(void)
1541{
1542}
1543
1544static inline void mem_cgroup_flush_stats_ratelimited(void)
1545{
1546}
1547
1548static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec,
1549 enum node_stat_item idx, int val)
1550{
1551}
1552
1553static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1554 int val)
1555{
1556 struct page *page = virt_to_head_page(p);
1557
1558 __mod_node_page_state(page_pgdat(page), idx, val);
1559}
1560
1561static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx,
1562 int val)
1563{
1564 struct page *page = virt_to_head_page(p);
1565
1566 mod_node_page_state(page_pgdat(page), idx, val);
1567}
1568
1569static inline void count_memcg_events(struct mem_cgroup *memcg,
1570 enum vm_event_item idx,
1571 unsigned long count)
1572{
1573}
1574
1575static inline void __count_memcg_events(struct mem_cgroup *memcg,
1576 enum vm_event_item idx,
1577 unsigned long count)
1578{
1579}
1580
1581static inline void count_memcg_page_event(struct page *page,
1582 int idx)
1583{
1584}
1585
1586static inline void count_memcg_folio_events(struct folio *folio,
1587 enum vm_event_item idx, unsigned long nr)
1588{
1589}
1590
1591static inline
1592void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx)
1593{
1594}
1595
1596static inline void split_page_memcg(struct page *head, unsigned int nr)
1597{
1598}
1599
1600static inline
1601unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
1602 gfp_t gfp_mask,
1603 unsigned long *total_scanned)
1604{
1605 return 0;
1606}
1607#endif /* CONFIG_MEMCG */
1608
1609static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx)
1610{
1611 __mod_lruvec_kmem_state(p, idx, 1);
1612}
1613
1614static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx)
1615{
1616 __mod_lruvec_kmem_state(p, idx, -1);
1617}
1618
1619static inline struct lruvec *parent_lruvec(struct lruvec *lruvec)
1620{
1621 struct mem_cgroup *memcg;
1622
1623 memcg = lruvec_memcg(lruvec);
1624 if (!memcg)
1625 return NULL;
1626 memcg = parent_mem_cgroup(memcg);
1627 if (!memcg)
1628 return NULL;
1629 return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec));
1630}
1631
1632static inline void unlock_page_lruvec(struct lruvec *lruvec)
1633{
1634 spin_unlock(&lruvec->lru_lock);
1635}
1636
1637static inline void unlock_page_lruvec_irq(struct lruvec *lruvec)
1638{
1639 spin_unlock_irq(&lruvec->lru_lock);
1640}
1641
1642static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec,
1643 unsigned long flags)
1644{
1645 spin_unlock_irqrestore(&lruvec->lru_lock, flags);
1646}
1647
1648/* Test requires a stable page->memcg binding, see page_memcg() */
1649static inline bool folio_matches_lruvec(struct folio *folio,
1650 struct lruvec *lruvec)
1651{
1652 return lruvec_pgdat(lruvec) == folio_pgdat(folio) &&
1653 lruvec_memcg(lruvec) == folio_memcg(folio);
1654}
1655
1656/* Don't lock again iff page's lruvec locked */
1657static inline struct lruvec *folio_lruvec_relock_irq(struct folio *folio,
1658 struct lruvec *locked_lruvec)
1659{
1660 if (locked_lruvec) {
1661 if (folio_matches_lruvec(folio, locked_lruvec))
1662 return locked_lruvec;
1663
1664 unlock_page_lruvec_irq(locked_lruvec);
1665 }
1666
1667 return folio_lruvec_lock_irq(folio);
1668}
1669
1670/* Don't lock again iff page's lruvec locked */
1671static inline struct lruvec *folio_lruvec_relock_irqsave(struct folio *folio,
1672 struct lruvec *locked_lruvec, unsigned long *flags)
1673{
1674 if (locked_lruvec) {
1675 if (folio_matches_lruvec(folio, locked_lruvec))
1676 return locked_lruvec;
1677
1678 unlock_page_lruvec_irqrestore(locked_lruvec, *flags);
1679 }
1680
1681 return folio_lruvec_lock_irqsave(folio, flags);
1682}
1683
1684#ifdef CONFIG_CGROUP_WRITEBACK
1685
1686struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb);
1687void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
1688 unsigned long *pheadroom, unsigned long *pdirty,
1689 unsigned long *pwriteback);
1690
1691void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio,
1692 struct bdi_writeback *wb);
1693
1694static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1695 struct bdi_writeback *wb)
1696{
1697 struct mem_cgroup *memcg;
1698
1699 if (mem_cgroup_disabled())
1700 return;
1701
1702 memcg = folio_memcg(folio);
1703 if (unlikely(memcg && &memcg->css != wb->memcg_css))
1704 mem_cgroup_track_foreign_dirty_slowpath(folio, wb);
1705}
1706
1707void mem_cgroup_flush_foreign(struct bdi_writeback *wb);
1708
1709#else /* CONFIG_CGROUP_WRITEBACK */
1710
1711static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
1712{
1713 return NULL;
1714}
1715
1716static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb,
1717 unsigned long *pfilepages,
1718 unsigned long *pheadroom,
1719 unsigned long *pdirty,
1720 unsigned long *pwriteback)
1721{
1722}
1723
1724static inline void mem_cgroup_track_foreign_dirty(struct folio *folio,
1725 struct bdi_writeback *wb)
1726{
1727}
1728
1729static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb)
1730{
1731}
1732
1733#endif /* CONFIG_CGROUP_WRITEBACK */
1734
1735struct sock;
1736bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages,
1737 gfp_t gfp_mask);
1738void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages);
1739#ifdef CONFIG_MEMCG
1740extern struct static_key_false memcg_sockets_enabled_key;
1741#define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key)
1742void mem_cgroup_sk_alloc(struct sock *sk);
1743void mem_cgroup_sk_free(struct sock *sk);
1744static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1745{
1746 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure)
1747 return true;
1748 do {
1749 if (time_before(jiffies, READ_ONCE(memcg->socket_pressure)))
1750 return true;
1751 } while ((memcg = parent_mem_cgroup(memcg)));
1752 return false;
1753}
1754
1755int alloc_shrinker_info(struct mem_cgroup *memcg);
1756void free_shrinker_info(struct mem_cgroup *memcg);
1757void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id);
1758void reparent_shrinker_deferred(struct mem_cgroup *memcg);
1759#else
1760#define mem_cgroup_sockets_enabled 0
1761static inline void mem_cgroup_sk_alloc(struct sock *sk) { };
1762static inline void mem_cgroup_sk_free(struct sock *sk) { };
1763static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg)
1764{
1765 return false;
1766}
1767
1768static inline void set_shrinker_bit(struct mem_cgroup *memcg,
1769 int nid, int shrinker_id)
1770{
1771}
1772#endif
1773
1774#ifdef CONFIG_MEMCG_KMEM
1775bool mem_cgroup_kmem_disabled(void);
1776int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order);
1777void __memcg_kmem_uncharge_page(struct page *page, int order);
1778
1779struct obj_cgroup *get_obj_cgroup_from_current(void);
1780struct obj_cgroup *get_obj_cgroup_from_page(struct page *page);
1781
1782int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size);
1783void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size);
1784
1785extern struct static_key_false memcg_bpf_enabled_key;
1786static inline bool memcg_bpf_enabled(void)
1787{
1788 return static_branch_likely(&memcg_bpf_enabled_key);
1789}
1790
1791extern struct static_key_false memcg_kmem_online_key;
1792
1793static inline bool memcg_kmem_online(void)
1794{
1795 return static_branch_likely(&memcg_kmem_online_key);
1796}
1797
1798static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1799 int order)
1800{
1801 if (memcg_kmem_online())
1802 return __memcg_kmem_charge_page(page, gfp, order);
1803 return 0;
1804}
1805
1806static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1807{
1808 if (memcg_kmem_online())
1809 __memcg_kmem_uncharge_page(page, order);
1810}
1811
1812/*
1813 * A helper for accessing memcg's kmem_id, used for getting
1814 * corresponding LRU lists.
1815 */
1816static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1817{
1818 return memcg ? memcg->kmemcg_id : -1;
1819}
1820
1821struct mem_cgroup *mem_cgroup_from_obj(void *p);
1822struct mem_cgroup *mem_cgroup_from_slab_obj(void *p);
1823
1824static inline void count_objcg_event(struct obj_cgroup *objcg,
1825 enum vm_event_item idx)
1826{
1827 struct mem_cgroup *memcg;
1828
1829 if (!memcg_kmem_online())
1830 return;
1831
1832 rcu_read_lock();
1833 memcg = obj_cgroup_memcg(objcg);
1834 count_memcg_events(memcg, idx, 1);
1835 rcu_read_unlock();
1836}
1837
1838#else
1839static inline bool mem_cgroup_kmem_disabled(void)
1840{
1841 return true;
1842}
1843
1844static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1845 int order)
1846{
1847 return 0;
1848}
1849
1850static inline void memcg_kmem_uncharge_page(struct page *page, int order)
1851{
1852}
1853
1854static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp,
1855 int order)
1856{
1857 return 0;
1858}
1859
1860static inline void __memcg_kmem_uncharge_page(struct page *page, int order)
1861{
1862}
1863
1864static inline struct obj_cgroup *get_obj_cgroup_from_page(struct page *page)
1865{
1866 return NULL;
1867}
1868
1869static inline bool memcg_bpf_enabled(void)
1870{
1871 return false;
1872}
1873
1874static inline bool memcg_kmem_online(void)
1875{
1876 return false;
1877}
1878
1879static inline int memcg_kmem_id(struct mem_cgroup *memcg)
1880{
1881 return -1;
1882}
1883
1884static inline struct mem_cgroup *mem_cgroup_from_obj(void *p)
1885{
1886 return NULL;
1887}
1888
1889static inline struct mem_cgroup *mem_cgroup_from_slab_obj(void *p)
1890{
1891 return NULL;
1892}
1893
1894static inline void count_objcg_event(struct obj_cgroup *objcg,
1895 enum vm_event_item idx)
1896{
1897}
1898
1899#endif /* CONFIG_MEMCG_KMEM */
1900
1901#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP)
1902bool obj_cgroup_may_zswap(struct obj_cgroup *objcg);
1903void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size);
1904void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size);
1905#else
1906static inline bool obj_cgroup_may_zswap(struct obj_cgroup *objcg)
1907{
1908 return true;
1909}
1910static inline void obj_cgroup_charge_zswap(struct obj_cgroup *objcg,
1911 size_t size)
1912{
1913}
1914static inline void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg,
1915 size_t size)
1916{
1917}
1918#endif
1919
1920#endif /* _LINUX_MEMCONTROL_H */