at v6.4 47 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2/* memcontrol.h - Memory Controller 3 * 4 * Copyright IBM Corporation, 2007 5 * Author Balbir Singh <balbir@linux.vnet.ibm.com> 6 * 7 * Copyright 2007 OpenVZ SWsoft Inc 8 * Author: Pavel Emelianov <xemul@openvz.org> 9 */ 10 11#ifndef _LINUX_MEMCONTROL_H 12#define _LINUX_MEMCONTROL_H 13#include <linux/cgroup.h> 14#include <linux/vm_event_item.h> 15#include <linux/hardirq.h> 16#include <linux/jump_label.h> 17#include <linux/page_counter.h> 18#include <linux/vmpressure.h> 19#include <linux/eventfd.h> 20#include <linux/mm.h> 21#include <linux/vmstat.h> 22#include <linux/writeback.h> 23#include <linux/page-flags.h> 24 25struct mem_cgroup; 26struct obj_cgroup; 27struct page; 28struct mm_struct; 29struct kmem_cache; 30 31/* Cgroup-specific page state, on top of universal node page state */ 32enum memcg_stat_item { 33 MEMCG_SWAP = NR_VM_NODE_STAT_ITEMS, 34 MEMCG_SOCK, 35 MEMCG_PERCPU_B, 36 MEMCG_VMALLOC, 37 MEMCG_KMEM, 38 MEMCG_ZSWAP_B, 39 MEMCG_ZSWAPPED, 40 MEMCG_NR_STAT, 41}; 42 43enum memcg_memory_event { 44 MEMCG_LOW, 45 MEMCG_HIGH, 46 MEMCG_MAX, 47 MEMCG_OOM, 48 MEMCG_OOM_KILL, 49 MEMCG_OOM_GROUP_KILL, 50 MEMCG_SWAP_HIGH, 51 MEMCG_SWAP_MAX, 52 MEMCG_SWAP_FAIL, 53 MEMCG_NR_MEMORY_EVENTS, 54}; 55 56struct mem_cgroup_reclaim_cookie { 57 pg_data_t *pgdat; 58 unsigned int generation; 59}; 60 61#ifdef CONFIG_MEMCG 62 63#define MEM_CGROUP_ID_SHIFT 16 64#define MEM_CGROUP_ID_MAX USHRT_MAX 65 66struct mem_cgroup_id { 67 int id; 68 refcount_t ref; 69}; 70 71/* 72 * Per memcg event counter is incremented at every pagein/pageout. With THP, 73 * it will be incremented by the number of pages. This counter is used 74 * to trigger some periodic events. This is straightforward and better 75 * than using jiffies etc. to handle periodic memcg event. 76 */ 77enum mem_cgroup_events_target { 78 MEM_CGROUP_TARGET_THRESH, 79 MEM_CGROUP_TARGET_SOFTLIMIT, 80 MEM_CGROUP_NTARGETS, 81}; 82 83struct memcg_vmstats_percpu; 84struct memcg_vmstats; 85 86struct mem_cgroup_reclaim_iter { 87 struct mem_cgroup *position; 88 /* scan generation, increased every round-trip */ 89 unsigned int generation; 90}; 91 92/* 93 * Bitmap and deferred work of shrinker::id corresponding to memcg-aware 94 * shrinkers, which have elements charged to this memcg. 95 */ 96struct shrinker_info { 97 struct rcu_head rcu; 98 atomic_long_t *nr_deferred; 99 unsigned long *map; 100 int map_nr_max; 101}; 102 103struct lruvec_stats_percpu { 104 /* Local (CPU and cgroup) state */ 105 long state[NR_VM_NODE_STAT_ITEMS]; 106 107 /* Delta calculation for lockless upward propagation */ 108 long state_prev[NR_VM_NODE_STAT_ITEMS]; 109}; 110 111struct lruvec_stats { 112 /* Aggregated (CPU and subtree) state */ 113 long state[NR_VM_NODE_STAT_ITEMS]; 114 115 /* Pending child counts during tree propagation */ 116 long state_pending[NR_VM_NODE_STAT_ITEMS]; 117}; 118 119/* 120 * per-node information in memory controller. 121 */ 122struct mem_cgroup_per_node { 123 struct lruvec lruvec; 124 125 struct lruvec_stats_percpu __percpu *lruvec_stats_percpu; 126 struct lruvec_stats lruvec_stats; 127 128 unsigned long lru_zone_size[MAX_NR_ZONES][NR_LRU_LISTS]; 129 130 struct mem_cgroup_reclaim_iter iter; 131 132 struct shrinker_info __rcu *shrinker_info; 133 134 struct rb_node tree_node; /* RB tree node */ 135 unsigned long usage_in_excess;/* Set to the value by which */ 136 /* the soft limit is exceeded*/ 137 bool on_tree; 138 struct mem_cgroup *memcg; /* Back pointer, we cannot */ 139 /* use container_of */ 140}; 141 142struct mem_cgroup_threshold { 143 struct eventfd_ctx *eventfd; 144 unsigned long threshold; 145}; 146 147/* For threshold */ 148struct mem_cgroup_threshold_ary { 149 /* An array index points to threshold just below or equal to usage. */ 150 int current_threshold; 151 /* Size of entries[] */ 152 unsigned int size; 153 /* Array of thresholds */ 154 struct mem_cgroup_threshold entries[]; 155}; 156 157struct mem_cgroup_thresholds { 158 /* Primary thresholds array */ 159 struct mem_cgroup_threshold_ary *primary; 160 /* 161 * Spare threshold array. 162 * This is needed to make mem_cgroup_unregister_event() "never fail". 163 * It must be able to store at least primary->size - 1 entries. 164 */ 165 struct mem_cgroup_threshold_ary *spare; 166}; 167 168/* 169 * Remember four most recent foreign writebacks with dirty pages in this 170 * cgroup. Inode sharing is expected to be uncommon and, even if we miss 171 * one in a given round, we're likely to catch it later if it keeps 172 * foreign-dirtying, so a fairly low count should be enough. 173 * 174 * See mem_cgroup_track_foreign_dirty_slowpath() for details. 175 */ 176#define MEMCG_CGWB_FRN_CNT 4 177 178struct memcg_cgwb_frn { 179 u64 bdi_id; /* bdi->id of the foreign inode */ 180 int memcg_id; /* memcg->css.id of foreign inode */ 181 u64 at; /* jiffies_64 at the time of dirtying */ 182 struct wb_completion done; /* tracks in-flight foreign writebacks */ 183}; 184 185/* 186 * Bucket for arbitrarily byte-sized objects charged to a memory 187 * cgroup. The bucket can be reparented in one piece when the cgroup 188 * is destroyed, without having to round up the individual references 189 * of all live memory objects in the wild. 190 */ 191struct obj_cgroup { 192 struct percpu_ref refcnt; 193 struct mem_cgroup *memcg; 194 atomic_t nr_charged_bytes; 195 union { 196 struct list_head list; /* protected by objcg_lock */ 197 struct rcu_head rcu; 198 }; 199}; 200 201/* 202 * The memory controller data structure. The memory controller controls both 203 * page cache and RSS per cgroup. We would eventually like to provide 204 * statistics based on the statistics developed by Rik Van Riel for clock-pro, 205 * to help the administrator determine what knobs to tune. 206 */ 207struct mem_cgroup { 208 struct cgroup_subsys_state css; 209 210 /* Private memcg ID. Used to ID objects that outlive the cgroup */ 211 struct mem_cgroup_id id; 212 213 /* Accounted resources */ 214 struct page_counter memory; /* Both v1 & v2 */ 215 216 union { 217 struct page_counter swap; /* v2 only */ 218 struct page_counter memsw; /* v1 only */ 219 }; 220 221 /* Legacy consumer-oriented counters */ 222 struct page_counter kmem; /* v1 only */ 223 struct page_counter tcpmem; /* v1 only */ 224 225 /* Range enforcement for interrupt charges */ 226 struct work_struct high_work; 227 228#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 229 unsigned long zswap_max; 230#endif 231 232 unsigned long soft_limit; 233 234 /* vmpressure notifications */ 235 struct vmpressure vmpressure; 236 237 /* 238 * Should the OOM killer kill all belonging tasks, had it kill one? 239 */ 240 bool oom_group; 241 242 /* protected by memcg_oom_lock */ 243 bool oom_lock; 244 int under_oom; 245 246 int swappiness; 247 /* OOM-Killer disable */ 248 int oom_kill_disable; 249 250 /* memory.events and memory.events.local */ 251 struct cgroup_file events_file; 252 struct cgroup_file events_local_file; 253 254 /* handle for "memory.swap.events" */ 255 struct cgroup_file swap_events_file; 256 257 /* protect arrays of thresholds */ 258 struct mutex thresholds_lock; 259 260 /* thresholds for memory usage. RCU-protected */ 261 struct mem_cgroup_thresholds thresholds; 262 263 /* thresholds for mem+swap usage. RCU-protected */ 264 struct mem_cgroup_thresholds memsw_thresholds; 265 266 /* For oom notifier event fd */ 267 struct list_head oom_notify; 268 269 /* 270 * Should we move charges of a task when a task is moved into this 271 * mem_cgroup ? And what type of charges should we move ? 272 */ 273 unsigned long move_charge_at_immigrate; 274 /* taken only while moving_account > 0 */ 275 spinlock_t move_lock; 276 unsigned long move_lock_flags; 277 278 CACHELINE_PADDING(_pad1_); 279 280 /* memory.stat */ 281 struct memcg_vmstats *vmstats; 282 283 /* memory.events */ 284 atomic_long_t memory_events[MEMCG_NR_MEMORY_EVENTS]; 285 atomic_long_t memory_events_local[MEMCG_NR_MEMORY_EVENTS]; 286 287 unsigned long socket_pressure; 288 289 /* Legacy tcp memory accounting */ 290 bool tcpmem_active; 291 int tcpmem_pressure; 292 293#ifdef CONFIG_MEMCG_KMEM 294 int kmemcg_id; 295 struct obj_cgroup __rcu *objcg; 296 /* list of inherited objcgs, protected by objcg_lock */ 297 struct list_head objcg_list; 298#endif 299 300 CACHELINE_PADDING(_pad2_); 301 302 /* 303 * set > 0 if pages under this cgroup are moving to other cgroup. 304 */ 305 atomic_t moving_account; 306 struct task_struct *move_lock_task; 307 308 struct memcg_vmstats_percpu __percpu *vmstats_percpu; 309 310#ifdef CONFIG_CGROUP_WRITEBACK 311 struct list_head cgwb_list; 312 struct wb_domain cgwb_domain; 313 struct memcg_cgwb_frn cgwb_frn[MEMCG_CGWB_FRN_CNT]; 314#endif 315 316 /* List of events which userspace want to receive */ 317 struct list_head event_list; 318 spinlock_t event_list_lock; 319 320#ifdef CONFIG_TRANSPARENT_HUGEPAGE 321 struct deferred_split deferred_split_queue; 322#endif 323 324#ifdef CONFIG_LRU_GEN 325 /* per-memcg mm_struct list */ 326 struct lru_gen_mm_list mm_list; 327#endif 328 329 struct mem_cgroup_per_node *nodeinfo[]; 330}; 331 332/* 333 * size of first charge trial. 334 * TODO: maybe necessary to use big numbers in big irons or dynamic based of the 335 * workload. 336 */ 337#define MEMCG_CHARGE_BATCH 64U 338 339extern struct mem_cgroup *root_mem_cgroup; 340 341enum page_memcg_data_flags { 342 /* page->memcg_data is a pointer to an objcgs vector */ 343 MEMCG_DATA_OBJCGS = (1UL << 0), 344 /* page has been accounted as a non-slab kernel page */ 345 MEMCG_DATA_KMEM = (1UL << 1), 346 /* the next bit after the last actual flag */ 347 __NR_MEMCG_DATA_FLAGS = (1UL << 2), 348}; 349 350#define MEMCG_DATA_FLAGS_MASK (__NR_MEMCG_DATA_FLAGS - 1) 351 352static inline bool folio_memcg_kmem(struct folio *folio); 353 354/* 355 * After the initialization objcg->memcg is always pointing at 356 * a valid memcg, but can be atomically swapped to the parent memcg. 357 * 358 * The caller must ensure that the returned memcg won't be released: 359 * e.g. acquire the rcu_read_lock or css_set_lock. 360 */ 361static inline struct mem_cgroup *obj_cgroup_memcg(struct obj_cgroup *objcg) 362{ 363 return READ_ONCE(objcg->memcg); 364} 365 366/* 367 * __folio_memcg - Get the memory cgroup associated with a non-kmem folio 368 * @folio: Pointer to the folio. 369 * 370 * Returns a pointer to the memory cgroup associated with the folio, 371 * or NULL. This function assumes that the folio is known to have a 372 * proper memory cgroup pointer. It's not safe to call this function 373 * against some type of folios, e.g. slab folios or ex-slab folios or 374 * kmem folios. 375 */ 376static inline struct mem_cgroup *__folio_memcg(struct folio *folio) 377{ 378 unsigned long memcg_data = folio->memcg_data; 379 380 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio); 381 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio); 382 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_KMEM, folio); 383 384 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 385} 386 387/* 388 * __folio_objcg - get the object cgroup associated with a kmem folio. 389 * @folio: Pointer to the folio. 390 * 391 * Returns a pointer to the object cgroup associated with the folio, 392 * or NULL. This function assumes that the folio is known to have a 393 * proper object cgroup pointer. It's not safe to call this function 394 * against some type of folios, e.g. slab folios or ex-slab folios or 395 * LRU folios. 396 */ 397static inline struct obj_cgroup *__folio_objcg(struct folio *folio) 398{ 399 unsigned long memcg_data = folio->memcg_data; 400 401 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio); 402 VM_BUG_ON_FOLIO(memcg_data & MEMCG_DATA_OBJCGS, folio); 403 VM_BUG_ON_FOLIO(!(memcg_data & MEMCG_DATA_KMEM), folio); 404 405 return (struct obj_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 406} 407 408/* 409 * folio_memcg - Get the memory cgroup associated with a folio. 410 * @folio: Pointer to the folio. 411 * 412 * Returns a pointer to the memory cgroup associated with the folio, 413 * or NULL. This function assumes that the folio is known to have a 414 * proper memory cgroup pointer. It's not safe to call this function 415 * against some type of folios, e.g. slab folios or ex-slab folios. 416 * 417 * For a non-kmem folio any of the following ensures folio and memcg binding 418 * stability: 419 * 420 * - the folio lock 421 * - LRU isolation 422 * - lock_page_memcg() 423 * - exclusive reference 424 * - mem_cgroup_trylock_pages() 425 * 426 * For a kmem folio a caller should hold an rcu read lock to protect memcg 427 * associated with a kmem folio from being released. 428 */ 429static inline struct mem_cgroup *folio_memcg(struct folio *folio) 430{ 431 if (folio_memcg_kmem(folio)) 432 return obj_cgroup_memcg(__folio_objcg(folio)); 433 return __folio_memcg(folio); 434} 435 436static inline struct mem_cgroup *page_memcg(struct page *page) 437{ 438 return folio_memcg(page_folio(page)); 439} 440 441/** 442 * folio_memcg_rcu - Locklessly get the memory cgroup associated with a folio. 443 * @folio: Pointer to the folio. 444 * 445 * This function assumes that the folio is known to have a 446 * proper memory cgroup pointer. It's not safe to call this function 447 * against some type of folios, e.g. slab folios or ex-slab folios. 448 * 449 * Return: A pointer to the memory cgroup associated with the folio, 450 * or NULL. 451 */ 452static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio) 453{ 454 unsigned long memcg_data = READ_ONCE(folio->memcg_data); 455 456 VM_BUG_ON_FOLIO(folio_test_slab(folio), folio); 457 WARN_ON_ONCE(!rcu_read_lock_held()); 458 459 if (memcg_data & MEMCG_DATA_KMEM) { 460 struct obj_cgroup *objcg; 461 462 objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 463 return obj_cgroup_memcg(objcg); 464 } 465 466 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 467} 468 469/* 470 * folio_memcg_check - Get the memory cgroup associated with a folio. 471 * @folio: Pointer to the folio. 472 * 473 * Returns a pointer to the memory cgroup associated with the folio, 474 * or NULL. This function unlike folio_memcg() can take any folio 475 * as an argument. It has to be used in cases when it's not known if a folio 476 * has an associated memory cgroup pointer or an object cgroups vector or 477 * an object cgroup. 478 * 479 * For a non-kmem folio any of the following ensures folio and memcg binding 480 * stability: 481 * 482 * - the folio lock 483 * - LRU isolation 484 * - lock_folio_memcg() 485 * - exclusive reference 486 * - mem_cgroup_trylock_pages() 487 * 488 * For a kmem folio a caller should hold an rcu read lock to protect memcg 489 * associated with a kmem folio from being released. 490 */ 491static inline struct mem_cgroup *folio_memcg_check(struct folio *folio) 492{ 493 /* 494 * Because folio->memcg_data might be changed asynchronously 495 * for slabs, READ_ONCE() should be used here. 496 */ 497 unsigned long memcg_data = READ_ONCE(folio->memcg_data); 498 499 if (memcg_data & MEMCG_DATA_OBJCGS) 500 return NULL; 501 502 if (memcg_data & MEMCG_DATA_KMEM) { 503 struct obj_cgroup *objcg; 504 505 objcg = (void *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 506 return obj_cgroup_memcg(objcg); 507 } 508 509 return (struct mem_cgroup *)(memcg_data & ~MEMCG_DATA_FLAGS_MASK); 510} 511 512static inline struct mem_cgroup *page_memcg_check(struct page *page) 513{ 514 if (PageTail(page)) 515 return NULL; 516 return folio_memcg_check((struct folio *)page); 517} 518 519static inline struct mem_cgroup *get_mem_cgroup_from_objcg(struct obj_cgroup *objcg) 520{ 521 struct mem_cgroup *memcg; 522 523 rcu_read_lock(); 524retry: 525 memcg = obj_cgroup_memcg(objcg); 526 if (unlikely(!css_tryget(&memcg->css))) 527 goto retry; 528 rcu_read_unlock(); 529 530 return memcg; 531} 532 533#ifdef CONFIG_MEMCG_KMEM 534/* 535 * folio_memcg_kmem - Check if the folio has the memcg_kmem flag set. 536 * @folio: Pointer to the folio. 537 * 538 * Checks if the folio has MemcgKmem flag set. The caller must ensure 539 * that the folio has an associated memory cgroup. It's not safe to call 540 * this function against some types of folios, e.g. slab folios. 541 */ 542static inline bool folio_memcg_kmem(struct folio *folio) 543{ 544 VM_BUG_ON_PGFLAGS(PageTail(&folio->page), &folio->page); 545 VM_BUG_ON_FOLIO(folio->memcg_data & MEMCG_DATA_OBJCGS, folio); 546 return folio->memcg_data & MEMCG_DATA_KMEM; 547} 548 549 550#else 551static inline bool folio_memcg_kmem(struct folio *folio) 552{ 553 return false; 554} 555 556#endif 557 558static inline bool PageMemcgKmem(struct page *page) 559{ 560 return folio_memcg_kmem(page_folio(page)); 561} 562 563static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 564{ 565 return (memcg == root_mem_cgroup); 566} 567 568static inline bool mem_cgroup_disabled(void) 569{ 570 return !cgroup_subsys_enabled(memory_cgrp_subsys); 571} 572 573static inline void mem_cgroup_protection(struct mem_cgroup *root, 574 struct mem_cgroup *memcg, 575 unsigned long *min, 576 unsigned long *low) 577{ 578 *min = *low = 0; 579 580 if (mem_cgroup_disabled()) 581 return; 582 583 /* 584 * There is no reclaim protection applied to a targeted reclaim. 585 * We are special casing this specific case here because 586 * mem_cgroup_protected calculation is not robust enough to keep 587 * the protection invariant for calculated effective values for 588 * parallel reclaimers with different reclaim target. This is 589 * especially a problem for tail memcgs (as they have pages on LRU) 590 * which would want to have effective values 0 for targeted reclaim 591 * but a different value for external reclaim. 592 * 593 * Example 594 * Let's have global and A's reclaim in parallel: 595 * | 596 * A (low=2G, usage = 3G, max = 3G, children_low_usage = 1.5G) 597 * |\ 598 * | C (low = 1G, usage = 2.5G) 599 * B (low = 1G, usage = 0.5G) 600 * 601 * For the global reclaim 602 * A.elow = A.low 603 * B.elow = min(B.usage, B.low) because children_low_usage <= A.elow 604 * C.elow = min(C.usage, C.low) 605 * 606 * With the effective values resetting we have A reclaim 607 * A.elow = 0 608 * B.elow = B.low 609 * C.elow = C.low 610 * 611 * If the global reclaim races with A's reclaim then 612 * B.elow = C.elow = 0 because children_low_usage > A.elow) 613 * is possible and reclaiming B would be violating the protection. 614 * 615 */ 616 if (root == memcg) 617 return; 618 619 *min = READ_ONCE(memcg->memory.emin); 620 *low = READ_ONCE(memcg->memory.elow); 621} 622 623void mem_cgroup_calculate_protection(struct mem_cgroup *root, 624 struct mem_cgroup *memcg); 625 626static inline bool mem_cgroup_unprotected(struct mem_cgroup *target, 627 struct mem_cgroup *memcg) 628{ 629 /* 630 * The root memcg doesn't account charges, and doesn't support 631 * protection. The target memcg's protection is ignored, see 632 * mem_cgroup_calculate_protection() and mem_cgroup_protection() 633 */ 634 return mem_cgroup_disabled() || mem_cgroup_is_root(memcg) || 635 memcg == target; 636} 637 638static inline bool mem_cgroup_below_low(struct mem_cgroup *target, 639 struct mem_cgroup *memcg) 640{ 641 if (mem_cgroup_unprotected(target, memcg)) 642 return false; 643 644 return READ_ONCE(memcg->memory.elow) >= 645 page_counter_read(&memcg->memory); 646} 647 648static inline bool mem_cgroup_below_min(struct mem_cgroup *target, 649 struct mem_cgroup *memcg) 650{ 651 if (mem_cgroup_unprotected(target, memcg)) 652 return false; 653 654 return READ_ONCE(memcg->memory.emin) >= 655 page_counter_read(&memcg->memory); 656} 657 658int __mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, gfp_t gfp); 659 660/** 661 * mem_cgroup_charge - Charge a newly allocated folio to a cgroup. 662 * @folio: Folio to charge. 663 * @mm: mm context of the allocating task. 664 * @gfp: Reclaim mode. 665 * 666 * Try to charge @folio to the memcg that @mm belongs to, reclaiming 667 * pages according to @gfp if necessary. If @mm is NULL, try to 668 * charge to the active memcg. 669 * 670 * Do not use this for folios allocated for swapin. 671 * 672 * Return: 0 on success. Otherwise, an error code is returned. 673 */ 674static inline int mem_cgroup_charge(struct folio *folio, struct mm_struct *mm, 675 gfp_t gfp) 676{ 677 if (mem_cgroup_disabled()) 678 return 0; 679 return __mem_cgroup_charge(folio, mm, gfp); 680} 681 682int mem_cgroup_swapin_charge_folio(struct folio *folio, struct mm_struct *mm, 683 gfp_t gfp, swp_entry_t entry); 684void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry); 685 686void __mem_cgroup_uncharge(struct folio *folio); 687 688/** 689 * mem_cgroup_uncharge - Uncharge a folio. 690 * @folio: Folio to uncharge. 691 * 692 * Uncharge a folio previously charged with mem_cgroup_charge(). 693 */ 694static inline void mem_cgroup_uncharge(struct folio *folio) 695{ 696 if (mem_cgroup_disabled()) 697 return; 698 __mem_cgroup_uncharge(folio); 699} 700 701void __mem_cgroup_uncharge_list(struct list_head *page_list); 702static inline void mem_cgroup_uncharge_list(struct list_head *page_list) 703{ 704 if (mem_cgroup_disabled()) 705 return; 706 __mem_cgroup_uncharge_list(page_list); 707} 708 709void mem_cgroup_migrate(struct folio *old, struct folio *new); 710 711/** 712 * mem_cgroup_lruvec - get the lru list vector for a memcg & node 713 * @memcg: memcg of the wanted lruvec 714 * @pgdat: pglist_data 715 * 716 * Returns the lru list vector holding pages for a given @memcg & 717 * @pgdat combination. This can be the node lruvec, if the memory 718 * controller is disabled. 719 */ 720static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, 721 struct pglist_data *pgdat) 722{ 723 struct mem_cgroup_per_node *mz; 724 struct lruvec *lruvec; 725 726 if (mem_cgroup_disabled()) { 727 lruvec = &pgdat->__lruvec; 728 goto out; 729 } 730 731 if (!memcg) 732 memcg = root_mem_cgroup; 733 734 mz = memcg->nodeinfo[pgdat->node_id]; 735 lruvec = &mz->lruvec; 736out: 737 /* 738 * Since a node can be onlined after the mem_cgroup was created, 739 * we have to be prepared to initialize lruvec->pgdat here; 740 * and if offlined then reonlined, we need to reinitialize it. 741 */ 742 if (unlikely(lruvec->pgdat != pgdat)) 743 lruvec->pgdat = pgdat; 744 return lruvec; 745} 746 747/** 748 * folio_lruvec - return lruvec for isolating/putting an LRU folio 749 * @folio: Pointer to the folio. 750 * 751 * This function relies on folio->mem_cgroup being stable. 752 */ 753static inline struct lruvec *folio_lruvec(struct folio *folio) 754{ 755 struct mem_cgroup *memcg = folio_memcg(folio); 756 757 VM_WARN_ON_ONCE_FOLIO(!memcg && !mem_cgroup_disabled(), folio); 758 return mem_cgroup_lruvec(memcg, folio_pgdat(folio)); 759} 760 761struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p); 762 763struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm); 764 765struct lruvec *folio_lruvec_lock(struct folio *folio); 766struct lruvec *folio_lruvec_lock_irq(struct folio *folio); 767struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 768 unsigned long *flags); 769 770#ifdef CONFIG_DEBUG_VM 771void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio); 772#else 773static inline 774void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 775{ 776} 777#endif 778 779static inline 780struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css){ 781 return css ? container_of(css, struct mem_cgroup, css) : NULL; 782} 783 784static inline bool obj_cgroup_tryget(struct obj_cgroup *objcg) 785{ 786 return percpu_ref_tryget(&objcg->refcnt); 787} 788 789static inline void obj_cgroup_get(struct obj_cgroup *objcg) 790{ 791 percpu_ref_get(&objcg->refcnt); 792} 793 794static inline void obj_cgroup_get_many(struct obj_cgroup *objcg, 795 unsigned long nr) 796{ 797 percpu_ref_get_many(&objcg->refcnt, nr); 798} 799 800static inline void obj_cgroup_put(struct obj_cgroup *objcg) 801{ 802 percpu_ref_put(&objcg->refcnt); 803} 804 805static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg) 806{ 807 return !memcg || css_tryget(&memcg->css); 808} 809 810static inline void mem_cgroup_put(struct mem_cgroup *memcg) 811{ 812 if (memcg) 813 css_put(&memcg->css); 814} 815 816#define mem_cgroup_from_counter(counter, member) \ 817 container_of(counter, struct mem_cgroup, member) 818 819struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *, 820 struct mem_cgroup *, 821 struct mem_cgroup_reclaim_cookie *); 822void mem_cgroup_iter_break(struct mem_cgroup *, struct mem_cgroup *); 823int mem_cgroup_scan_tasks(struct mem_cgroup *, 824 int (*)(struct task_struct *, void *), void *); 825 826static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 827{ 828 if (mem_cgroup_disabled()) 829 return 0; 830 831 return memcg->id.id; 832} 833struct mem_cgroup *mem_cgroup_from_id(unsigned short id); 834 835#ifdef CONFIG_SHRINKER_DEBUG 836static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg) 837{ 838 return memcg ? cgroup_ino(memcg->css.cgroup) : 0; 839} 840 841struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino); 842#endif 843 844static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 845{ 846 return mem_cgroup_from_css(seq_css(m)); 847} 848 849static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 850{ 851 struct mem_cgroup_per_node *mz; 852 853 if (mem_cgroup_disabled()) 854 return NULL; 855 856 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 857 return mz->memcg; 858} 859 860/** 861 * parent_mem_cgroup - find the accounting parent of a memcg 862 * @memcg: memcg whose parent to find 863 * 864 * Returns the parent memcg, or NULL if this is the root or the memory 865 * controller is in legacy no-hierarchy mode. 866 */ 867static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 868{ 869 return mem_cgroup_from_css(memcg->css.parent); 870} 871 872static inline bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, 873 struct mem_cgroup *root) 874{ 875 if (root == memcg) 876 return true; 877 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup); 878} 879 880static inline bool mm_match_cgroup(struct mm_struct *mm, 881 struct mem_cgroup *memcg) 882{ 883 struct mem_cgroup *task_memcg; 884 bool match = false; 885 886 rcu_read_lock(); 887 task_memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 888 if (task_memcg) 889 match = mem_cgroup_is_descendant(task_memcg, memcg); 890 rcu_read_unlock(); 891 return match; 892} 893 894struct cgroup_subsys_state *mem_cgroup_css_from_folio(struct folio *folio); 895ino_t page_cgroup_ino(struct page *page); 896 897static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 898{ 899 if (mem_cgroup_disabled()) 900 return true; 901 return !!(memcg->css.flags & CSS_ONLINE); 902} 903 904void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru, 905 int zid, int nr_pages); 906 907static inline 908unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 909 enum lru_list lru, int zone_idx) 910{ 911 struct mem_cgroup_per_node *mz; 912 913 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 914 return READ_ONCE(mz->lru_zone_size[zone_idx][lru]); 915} 916 917void mem_cgroup_handle_over_high(void); 918 919unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg); 920 921unsigned long mem_cgroup_size(struct mem_cgroup *memcg); 922 923void mem_cgroup_print_oom_context(struct mem_cgroup *memcg, 924 struct task_struct *p); 925 926void mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg); 927 928static inline void mem_cgroup_enter_user_fault(void) 929{ 930 WARN_ON(current->in_user_fault); 931 current->in_user_fault = 1; 932} 933 934static inline void mem_cgroup_exit_user_fault(void) 935{ 936 WARN_ON(!current->in_user_fault); 937 current->in_user_fault = 0; 938} 939 940static inline bool task_in_memcg_oom(struct task_struct *p) 941{ 942 return p->memcg_in_oom; 943} 944 945bool mem_cgroup_oom_synchronize(bool wait); 946struct mem_cgroup *mem_cgroup_get_oom_group(struct task_struct *victim, 947 struct mem_cgroup *oom_domain); 948void mem_cgroup_print_oom_group(struct mem_cgroup *memcg); 949 950void folio_memcg_lock(struct folio *folio); 951void folio_memcg_unlock(struct folio *folio); 952void lock_page_memcg(struct page *page); 953void unlock_page_memcg(struct page *page); 954 955void __mod_memcg_state(struct mem_cgroup *memcg, int idx, int val); 956 957/* try to stablize folio_memcg() for all the pages in a memcg */ 958static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg) 959{ 960 rcu_read_lock(); 961 962 if (mem_cgroup_disabled() || !atomic_read(&memcg->moving_account)) 963 return true; 964 965 rcu_read_unlock(); 966 return false; 967} 968 969static inline void mem_cgroup_unlock_pages(void) 970{ 971 rcu_read_unlock(); 972} 973 974/* idx can be of type enum memcg_stat_item or node_stat_item */ 975static inline void mod_memcg_state(struct mem_cgroup *memcg, 976 int idx, int val) 977{ 978 unsigned long flags; 979 980 local_irq_save(flags); 981 __mod_memcg_state(memcg, idx, val); 982 local_irq_restore(flags); 983} 984 985static inline void mod_memcg_page_state(struct page *page, 986 int idx, int val) 987{ 988 struct mem_cgroup *memcg; 989 990 if (mem_cgroup_disabled()) 991 return; 992 993 rcu_read_lock(); 994 memcg = page_memcg(page); 995 if (memcg) 996 mod_memcg_state(memcg, idx, val); 997 rcu_read_unlock(); 998} 999 1000unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx); 1001 1002static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 1003 enum node_stat_item idx) 1004{ 1005 struct mem_cgroup_per_node *pn; 1006 long x; 1007 1008 if (mem_cgroup_disabled()) 1009 return node_page_state(lruvec_pgdat(lruvec), idx); 1010 1011 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1012 x = READ_ONCE(pn->lruvec_stats.state[idx]); 1013#ifdef CONFIG_SMP 1014 if (x < 0) 1015 x = 0; 1016#endif 1017 return x; 1018} 1019 1020static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, 1021 enum node_stat_item idx) 1022{ 1023 struct mem_cgroup_per_node *pn; 1024 long x = 0; 1025 int cpu; 1026 1027 if (mem_cgroup_disabled()) 1028 return node_page_state(lruvec_pgdat(lruvec), idx); 1029 1030 pn = container_of(lruvec, struct mem_cgroup_per_node, lruvec); 1031 for_each_possible_cpu(cpu) 1032 x += per_cpu(pn->lruvec_stats_percpu->state[idx], cpu); 1033#ifdef CONFIG_SMP 1034 if (x < 0) 1035 x = 0; 1036#endif 1037 return x; 1038} 1039 1040void mem_cgroup_flush_stats(void); 1041void mem_cgroup_flush_stats_atomic(void); 1042void mem_cgroup_flush_stats_ratelimited(void); 1043 1044void __mod_memcg_lruvec_state(struct lruvec *lruvec, enum node_stat_item idx, 1045 int val); 1046void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, int val); 1047 1048static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx, 1049 int val) 1050{ 1051 unsigned long flags; 1052 1053 local_irq_save(flags); 1054 __mod_lruvec_kmem_state(p, idx, val); 1055 local_irq_restore(flags); 1056} 1057 1058static inline void mod_memcg_lruvec_state(struct lruvec *lruvec, 1059 enum node_stat_item idx, int val) 1060{ 1061 unsigned long flags; 1062 1063 local_irq_save(flags); 1064 __mod_memcg_lruvec_state(lruvec, idx, val); 1065 local_irq_restore(flags); 1066} 1067 1068void __count_memcg_events(struct mem_cgroup *memcg, enum vm_event_item idx, 1069 unsigned long count); 1070 1071static inline void count_memcg_events(struct mem_cgroup *memcg, 1072 enum vm_event_item idx, 1073 unsigned long count) 1074{ 1075 unsigned long flags; 1076 1077 local_irq_save(flags); 1078 __count_memcg_events(memcg, idx, count); 1079 local_irq_restore(flags); 1080} 1081 1082static inline void count_memcg_page_event(struct page *page, 1083 enum vm_event_item idx) 1084{ 1085 struct mem_cgroup *memcg = page_memcg(page); 1086 1087 if (memcg) 1088 count_memcg_events(memcg, idx, 1); 1089} 1090 1091static inline void count_memcg_folio_events(struct folio *folio, 1092 enum vm_event_item idx, unsigned long nr) 1093{ 1094 struct mem_cgroup *memcg = folio_memcg(folio); 1095 1096 if (memcg) 1097 count_memcg_events(memcg, idx, nr); 1098} 1099 1100static inline void count_memcg_event_mm(struct mm_struct *mm, 1101 enum vm_event_item idx) 1102{ 1103 struct mem_cgroup *memcg; 1104 1105 if (mem_cgroup_disabled()) 1106 return; 1107 1108 rcu_read_lock(); 1109 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1110 if (likely(memcg)) 1111 count_memcg_events(memcg, idx, 1); 1112 rcu_read_unlock(); 1113} 1114 1115static inline void memcg_memory_event(struct mem_cgroup *memcg, 1116 enum memcg_memory_event event) 1117{ 1118 bool swap_event = event == MEMCG_SWAP_HIGH || event == MEMCG_SWAP_MAX || 1119 event == MEMCG_SWAP_FAIL; 1120 1121 atomic_long_inc(&memcg->memory_events_local[event]); 1122 if (!swap_event) 1123 cgroup_file_notify(&memcg->events_local_file); 1124 1125 do { 1126 atomic_long_inc(&memcg->memory_events[event]); 1127 if (swap_event) 1128 cgroup_file_notify(&memcg->swap_events_file); 1129 else 1130 cgroup_file_notify(&memcg->events_file); 1131 1132 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) 1133 break; 1134 if (cgrp_dfl_root.flags & CGRP_ROOT_MEMORY_LOCAL_EVENTS) 1135 break; 1136 } while ((memcg = parent_mem_cgroup(memcg)) && 1137 !mem_cgroup_is_root(memcg)); 1138} 1139 1140static inline void memcg_memory_event_mm(struct mm_struct *mm, 1141 enum memcg_memory_event event) 1142{ 1143 struct mem_cgroup *memcg; 1144 1145 if (mem_cgroup_disabled()) 1146 return; 1147 1148 rcu_read_lock(); 1149 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner)); 1150 if (likely(memcg)) 1151 memcg_memory_event(memcg, event); 1152 rcu_read_unlock(); 1153} 1154 1155void split_page_memcg(struct page *head, unsigned int nr); 1156 1157unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 1158 gfp_t gfp_mask, 1159 unsigned long *total_scanned); 1160 1161#else /* CONFIG_MEMCG */ 1162 1163#define MEM_CGROUP_ID_SHIFT 0 1164#define MEM_CGROUP_ID_MAX 0 1165 1166static inline struct mem_cgroup *folio_memcg(struct folio *folio) 1167{ 1168 return NULL; 1169} 1170 1171static inline struct mem_cgroup *page_memcg(struct page *page) 1172{ 1173 return NULL; 1174} 1175 1176static inline struct mem_cgroup *folio_memcg_rcu(struct folio *folio) 1177{ 1178 WARN_ON_ONCE(!rcu_read_lock_held()); 1179 return NULL; 1180} 1181 1182static inline struct mem_cgroup *folio_memcg_check(struct folio *folio) 1183{ 1184 return NULL; 1185} 1186 1187static inline struct mem_cgroup *page_memcg_check(struct page *page) 1188{ 1189 return NULL; 1190} 1191 1192static inline bool folio_memcg_kmem(struct folio *folio) 1193{ 1194 return false; 1195} 1196 1197static inline bool PageMemcgKmem(struct page *page) 1198{ 1199 return false; 1200} 1201 1202static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg) 1203{ 1204 return true; 1205} 1206 1207static inline bool mem_cgroup_disabled(void) 1208{ 1209 return true; 1210} 1211 1212static inline void memcg_memory_event(struct mem_cgroup *memcg, 1213 enum memcg_memory_event event) 1214{ 1215} 1216 1217static inline void memcg_memory_event_mm(struct mm_struct *mm, 1218 enum memcg_memory_event event) 1219{ 1220} 1221 1222static inline void mem_cgroup_protection(struct mem_cgroup *root, 1223 struct mem_cgroup *memcg, 1224 unsigned long *min, 1225 unsigned long *low) 1226{ 1227 *min = *low = 0; 1228} 1229 1230static inline void mem_cgroup_calculate_protection(struct mem_cgroup *root, 1231 struct mem_cgroup *memcg) 1232{ 1233} 1234 1235static inline bool mem_cgroup_unprotected(struct mem_cgroup *target, 1236 struct mem_cgroup *memcg) 1237{ 1238 return true; 1239} 1240static inline bool mem_cgroup_below_low(struct mem_cgroup *target, 1241 struct mem_cgroup *memcg) 1242{ 1243 return false; 1244} 1245 1246static inline bool mem_cgroup_below_min(struct mem_cgroup *target, 1247 struct mem_cgroup *memcg) 1248{ 1249 return false; 1250} 1251 1252static inline int mem_cgroup_charge(struct folio *folio, 1253 struct mm_struct *mm, gfp_t gfp) 1254{ 1255 return 0; 1256} 1257 1258static inline int mem_cgroup_swapin_charge_folio(struct folio *folio, 1259 struct mm_struct *mm, gfp_t gfp, swp_entry_t entry) 1260{ 1261 return 0; 1262} 1263 1264static inline void mem_cgroup_swapin_uncharge_swap(swp_entry_t entry) 1265{ 1266} 1267 1268static inline void mem_cgroup_uncharge(struct folio *folio) 1269{ 1270} 1271 1272static inline void mem_cgroup_uncharge_list(struct list_head *page_list) 1273{ 1274} 1275 1276static inline void mem_cgroup_migrate(struct folio *old, struct folio *new) 1277{ 1278} 1279 1280static inline struct lruvec *mem_cgroup_lruvec(struct mem_cgroup *memcg, 1281 struct pglist_data *pgdat) 1282{ 1283 return &pgdat->__lruvec; 1284} 1285 1286static inline struct lruvec *folio_lruvec(struct folio *folio) 1287{ 1288 struct pglist_data *pgdat = folio_pgdat(folio); 1289 return &pgdat->__lruvec; 1290} 1291 1292static inline 1293void lruvec_memcg_debug(struct lruvec *lruvec, struct folio *folio) 1294{ 1295} 1296 1297static inline struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg) 1298{ 1299 return NULL; 1300} 1301 1302static inline bool mm_match_cgroup(struct mm_struct *mm, 1303 struct mem_cgroup *memcg) 1304{ 1305 return true; 1306} 1307 1308static inline struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm) 1309{ 1310 return NULL; 1311} 1312 1313static inline 1314struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *css) 1315{ 1316 return NULL; 1317} 1318 1319static inline void obj_cgroup_put(struct obj_cgroup *objcg) 1320{ 1321} 1322 1323static inline bool mem_cgroup_tryget(struct mem_cgroup *memcg) 1324{ 1325 return true; 1326} 1327 1328static inline void mem_cgroup_put(struct mem_cgroup *memcg) 1329{ 1330} 1331 1332static inline struct lruvec *folio_lruvec_lock(struct folio *folio) 1333{ 1334 struct pglist_data *pgdat = folio_pgdat(folio); 1335 1336 spin_lock(&pgdat->__lruvec.lru_lock); 1337 return &pgdat->__lruvec; 1338} 1339 1340static inline struct lruvec *folio_lruvec_lock_irq(struct folio *folio) 1341{ 1342 struct pglist_data *pgdat = folio_pgdat(folio); 1343 1344 spin_lock_irq(&pgdat->__lruvec.lru_lock); 1345 return &pgdat->__lruvec; 1346} 1347 1348static inline struct lruvec *folio_lruvec_lock_irqsave(struct folio *folio, 1349 unsigned long *flagsp) 1350{ 1351 struct pglist_data *pgdat = folio_pgdat(folio); 1352 1353 spin_lock_irqsave(&pgdat->__lruvec.lru_lock, *flagsp); 1354 return &pgdat->__lruvec; 1355} 1356 1357static inline struct mem_cgroup * 1358mem_cgroup_iter(struct mem_cgroup *root, 1359 struct mem_cgroup *prev, 1360 struct mem_cgroup_reclaim_cookie *reclaim) 1361{ 1362 return NULL; 1363} 1364 1365static inline void mem_cgroup_iter_break(struct mem_cgroup *root, 1366 struct mem_cgroup *prev) 1367{ 1368} 1369 1370static inline int mem_cgroup_scan_tasks(struct mem_cgroup *memcg, 1371 int (*fn)(struct task_struct *, void *), void *arg) 1372{ 1373 return 0; 1374} 1375 1376static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg) 1377{ 1378 return 0; 1379} 1380 1381static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id) 1382{ 1383 WARN_ON_ONCE(id); 1384 /* XXX: This should always return root_mem_cgroup */ 1385 return NULL; 1386} 1387 1388#ifdef CONFIG_SHRINKER_DEBUG 1389static inline unsigned long mem_cgroup_ino(struct mem_cgroup *memcg) 1390{ 1391 return 0; 1392} 1393 1394static inline struct mem_cgroup *mem_cgroup_get_from_ino(unsigned long ino) 1395{ 1396 return NULL; 1397} 1398#endif 1399 1400static inline struct mem_cgroup *mem_cgroup_from_seq(struct seq_file *m) 1401{ 1402 return NULL; 1403} 1404 1405static inline struct mem_cgroup *lruvec_memcg(struct lruvec *lruvec) 1406{ 1407 return NULL; 1408} 1409 1410static inline bool mem_cgroup_online(struct mem_cgroup *memcg) 1411{ 1412 return true; 1413} 1414 1415static inline 1416unsigned long mem_cgroup_get_zone_lru_size(struct lruvec *lruvec, 1417 enum lru_list lru, int zone_idx) 1418{ 1419 return 0; 1420} 1421 1422static inline unsigned long mem_cgroup_get_max(struct mem_cgroup *memcg) 1423{ 1424 return 0; 1425} 1426 1427static inline unsigned long mem_cgroup_size(struct mem_cgroup *memcg) 1428{ 1429 return 0; 1430} 1431 1432static inline void 1433mem_cgroup_print_oom_context(struct mem_cgroup *memcg, struct task_struct *p) 1434{ 1435} 1436 1437static inline void 1438mem_cgroup_print_oom_meminfo(struct mem_cgroup *memcg) 1439{ 1440} 1441 1442static inline void lock_page_memcg(struct page *page) 1443{ 1444} 1445 1446static inline void unlock_page_memcg(struct page *page) 1447{ 1448} 1449 1450static inline void folio_memcg_lock(struct folio *folio) 1451{ 1452} 1453 1454static inline void folio_memcg_unlock(struct folio *folio) 1455{ 1456} 1457 1458static inline bool mem_cgroup_trylock_pages(struct mem_cgroup *memcg) 1459{ 1460 /* to match folio_memcg_rcu() */ 1461 rcu_read_lock(); 1462 return true; 1463} 1464 1465static inline void mem_cgroup_unlock_pages(void) 1466{ 1467 rcu_read_unlock(); 1468} 1469 1470static inline void mem_cgroup_handle_over_high(void) 1471{ 1472} 1473 1474static inline void mem_cgroup_enter_user_fault(void) 1475{ 1476} 1477 1478static inline void mem_cgroup_exit_user_fault(void) 1479{ 1480} 1481 1482static inline bool task_in_memcg_oom(struct task_struct *p) 1483{ 1484 return false; 1485} 1486 1487static inline bool mem_cgroup_oom_synchronize(bool wait) 1488{ 1489 return false; 1490} 1491 1492static inline struct mem_cgroup *mem_cgroup_get_oom_group( 1493 struct task_struct *victim, struct mem_cgroup *oom_domain) 1494{ 1495 return NULL; 1496} 1497 1498static inline void mem_cgroup_print_oom_group(struct mem_cgroup *memcg) 1499{ 1500} 1501 1502static inline void __mod_memcg_state(struct mem_cgroup *memcg, 1503 int idx, 1504 int nr) 1505{ 1506} 1507 1508static inline void mod_memcg_state(struct mem_cgroup *memcg, 1509 int idx, 1510 int nr) 1511{ 1512} 1513 1514static inline void mod_memcg_page_state(struct page *page, 1515 int idx, int val) 1516{ 1517} 1518 1519static inline unsigned long memcg_page_state(struct mem_cgroup *memcg, int idx) 1520{ 1521 return 0; 1522} 1523 1524static inline unsigned long lruvec_page_state(struct lruvec *lruvec, 1525 enum node_stat_item idx) 1526{ 1527 return node_page_state(lruvec_pgdat(lruvec), idx); 1528} 1529 1530static inline unsigned long lruvec_page_state_local(struct lruvec *lruvec, 1531 enum node_stat_item idx) 1532{ 1533 return node_page_state(lruvec_pgdat(lruvec), idx); 1534} 1535 1536static inline void mem_cgroup_flush_stats(void) 1537{ 1538} 1539 1540static inline void mem_cgroup_flush_stats_atomic(void) 1541{ 1542} 1543 1544static inline void mem_cgroup_flush_stats_ratelimited(void) 1545{ 1546} 1547 1548static inline void __mod_memcg_lruvec_state(struct lruvec *lruvec, 1549 enum node_stat_item idx, int val) 1550{ 1551} 1552 1553static inline void __mod_lruvec_kmem_state(void *p, enum node_stat_item idx, 1554 int val) 1555{ 1556 struct page *page = virt_to_head_page(p); 1557 1558 __mod_node_page_state(page_pgdat(page), idx, val); 1559} 1560 1561static inline void mod_lruvec_kmem_state(void *p, enum node_stat_item idx, 1562 int val) 1563{ 1564 struct page *page = virt_to_head_page(p); 1565 1566 mod_node_page_state(page_pgdat(page), idx, val); 1567} 1568 1569static inline void count_memcg_events(struct mem_cgroup *memcg, 1570 enum vm_event_item idx, 1571 unsigned long count) 1572{ 1573} 1574 1575static inline void __count_memcg_events(struct mem_cgroup *memcg, 1576 enum vm_event_item idx, 1577 unsigned long count) 1578{ 1579} 1580 1581static inline void count_memcg_page_event(struct page *page, 1582 int idx) 1583{ 1584} 1585 1586static inline void count_memcg_folio_events(struct folio *folio, 1587 enum vm_event_item idx, unsigned long nr) 1588{ 1589} 1590 1591static inline 1592void count_memcg_event_mm(struct mm_struct *mm, enum vm_event_item idx) 1593{ 1594} 1595 1596static inline void split_page_memcg(struct page *head, unsigned int nr) 1597{ 1598} 1599 1600static inline 1601unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order, 1602 gfp_t gfp_mask, 1603 unsigned long *total_scanned) 1604{ 1605 return 0; 1606} 1607#endif /* CONFIG_MEMCG */ 1608 1609static inline void __inc_lruvec_kmem_state(void *p, enum node_stat_item idx) 1610{ 1611 __mod_lruvec_kmem_state(p, idx, 1); 1612} 1613 1614static inline void __dec_lruvec_kmem_state(void *p, enum node_stat_item idx) 1615{ 1616 __mod_lruvec_kmem_state(p, idx, -1); 1617} 1618 1619static inline struct lruvec *parent_lruvec(struct lruvec *lruvec) 1620{ 1621 struct mem_cgroup *memcg; 1622 1623 memcg = lruvec_memcg(lruvec); 1624 if (!memcg) 1625 return NULL; 1626 memcg = parent_mem_cgroup(memcg); 1627 if (!memcg) 1628 return NULL; 1629 return mem_cgroup_lruvec(memcg, lruvec_pgdat(lruvec)); 1630} 1631 1632static inline void unlock_page_lruvec(struct lruvec *lruvec) 1633{ 1634 spin_unlock(&lruvec->lru_lock); 1635} 1636 1637static inline void unlock_page_lruvec_irq(struct lruvec *lruvec) 1638{ 1639 spin_unlock_irq(&lruvec->lru_lock); 1640} 1641 1642static inline void unlock_page_lruvec_irqrestore(struct lruvec *lruvec, 1643 unsigned long flags) 1644{ 1645 spin_unlock_irqrestore(&lruvec->lru_lock, flags); 1646} 1647 1648/* Test requires a stable page->memcg binding, see page_memcg() */ 1649static inline bool folio_matches_lruvec(struct folio *folio, 1650 struct lruvec *lruvec) 1651{ 1652 return lruvec_pgdat(lruvec) == folio_pgdat(folio) && 1653 lruvec_memcg(lruvec) == folio_memcg(folio); 1654} 1655 1656/* Don't lock again iff page's lruvec locked */ 1657static inline struct lruvec *folio_lruvec_relock_irq(struct folio *folio, 1658 struct lruvec *locked_lruvec) 1659{ 1660 if (locked_lruvec) { 1661 if (folio_matches_lruvec(folio, locked_lruvec)) 1662 return locked_lruvec; 1663 1664 unlock_page_lruvec_irq(locked_lruvec); 1665 } 1666 1667 return folio_lruvec_lock_irq(folio); 1668} 1669 1670/* Don't lock again iff page's lruvec locked */ 1671static inline struct lruvec *folio_lruvec_relock_irqsave(struct folio *folio, 1672 struct lruvec *locked_lruvec, unsigned long *flags) 1673{ 1674 if (locked_lruvec) { 1675 if (folio_matches_lruvec(folio, locked_lruvec)) 1676 return locked_lruvec; 1677 1678 unlock_page_lruvec_irqrestore(locked_lruvec, *flags); 1679 } 1680 1681 return folio_lruvec_lock_irqsave(folio, flags); 1682} 1683 1684#ifdef CONFIG_CGROUP_WRITEBACK 1685 1686struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb); 1687void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages, 1688 unsigned long *pheadroom, unsigned long *pdirty, 1689 unsigned long *pwriteback); 1690 1691void mem_cgroup_track_foreign_dirty_slowpath(struct folio *folio, 1692 struct bdi_writeback *wb); 1693 1694static inline void mem_cgroup_track_foreign_dirty(struct folio *folio, 1695 struct bdi_writeback *wb) 1696{ 1697 struct mem_cgroup *memcg; 1698 1699 if (mem_cgroup_disabled()) 1700 return; 1701 1702 memcg = folio_memcg(folio); 1703 if (unlikely(memcg && &memcg->css != wb->memcg_css)) 1704 mem_cgroup_track_foreign_dirty_slowpath(folio, wb); 1705} 1706 1707void mem_cgroup_flush_foreign(struct bdi_writeback *wb); 1708 1709#else /* CONFIG_CGROUP_WRITEBACK */ 1710 1711static inline struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb) 1712{ 1713 return NULL; 1714} 1715 1716static inline void mem_cgroup_wb_stats(struct bdi_writeback *wb, 1717 unsigned long *pfilepages, 1718 unsigned long *pheadroom, 1719 unsigned long *pdirty, 1720 unsigned long *pwriteback) 1721{ 1722} 1723 1724static inline void mem_cgroup_track_foreign_dirty(struct folio *folio, 1725 struct bdi_writeback *wb) 1726{ 1727} 1728 1729static inline void mem_cgroup_flush_foreign(struct bdi_writeback *wb) 1730{ 1731} 1732 1733#endif /* CONFIG_CGROUP_WRITEBACK */ 1734 1735struct sock; 1736bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages, 1737 gfp_t gfp_mask); 1738void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages); 1739#ifdef CONFIG_MEMCG 1740extern struct static_key_false memcg_sockets_enabled_key; 1741#define mem_cgroup_sockets_enabled static_branch_unlikely(&memcg_sockets_enabled_key) 1742void mem_cgroup_sk_alloc(struct sock *sk); 1743void mem_cgroup_sk_free(struct sock *sk); 1744static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1745{ 1746 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_pressure) 1747 return true; 1748 do { 1749 if (time_before(jiffies, READ_ONCE(memcg->socket_pressure))) 1750 return true; 1751 } while ((memcg = parent_mem_cgroup(memcg))); 1752 return false; 1753} 1754 1755int alloc_shrinker_info(struct mem_cgroup *memcg); 1756void free_shrinker_info(struct mem_cgroup *memcg); 1757void set_shrinker_bit(struct mem_cgroup *memcg, int nid, int shrinker_id); 1758void reparent_shrinker_deferred(struct mem_cgroup *memcg); 1759#else 1760#define mem_cgroup_sockets_enabled 0 1761static inline void mem_cgroup_sk_alloc(struct sock *sk) { }; 1762static inline void mem_cgroup_sk_free(struct sock *sk) { }; 1763static inline bool mem_cgroup_under_socket_pressure(struct mem_cgroup *memcg) 1764{ 1765 return false; 1766} 1767 1768static inline void set_shrinker_bit(struct mem_cgroup *memcg, 1769 int nid, int shrinker_id) 1770{ 1771} 1772#endif 1773 1774#ifdef CONFIG_MEMCG_KMEM 1775bool mem_cgroup_kmem_disabled(void); 1776int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, int order); 1777void __memcg_kmem_uncharge_page(struct page *page, int order); 1778 1779struct obj_cgroup *get_obj_cgroup_from_current(void); 1780struct obj_cgroup *get_obj_cgroup_from_page(struct page *page); 1781 1782int obj_cgroup_charge(struct obj_cgroup *objcg, gfp_t gfp, size_t size); 1783void obj_cgroup_uncharge(struct obj_cgroup *objcg, size_t size); 1784 1785extern struct static_key_false memcg_bpf_enabled_key; 1786static inline bool memcg_bpf_enabled(void) 1787{ 1788 return static_branch_likely(&memcg_bpf_enabled_key); 1789} 1790 1791extern struct static_key_false memcg_kmem_online_key; 1792 1793static inline bool memcg_kmem_online(void) 1794{ 1795 return static_branch_likely(&memcg_kmem_online_key); 1796} 1797 1798static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1799 int order) 1800{ 1801 if (memcg_kmem_online()) 1802 return __memcg_kmem_charge_page(page, gfp, order); 1803 return 0; 1804} 1805 1806static inline void memcg_kmem_uncharge_page(struct page *page, int order) 1807{ 1808 if (memcg_kmem_online()) 1809 __memcg_kmem_uncharge_page(page, order); 1810} 1811 1812/* 1813 * A helper for accessing memcg's kmem_id, used for getting 1814 * corresponding LRU lists. 1815 */ 1816static inline int memcg_kmem_id(struct mem_cgroup *memcg) 1817{ 1818 return memcg ? memcg->kmemcg_id : -1; 1819} 1820 1821struct mem_cgroup *mem_cgroup_from_obj(void *p); 1822struct mem_cgroup *mem_cgroup_from_slab_obj(void *p); 1823 1824static inline void count_objcg_event(struct obj_cgroup *objcg, 1825 enum vm_event_item idx) 1826{ 1827 struct mem_cgroup *memcg; 1828 1829 if (!memcg_kmem_online()) 1830 return; 1831 1832 rcu_read_lock(); 1833 memcg = obj_cgroup_memcg(objcg); 1834 count_memcg_events(memcg, idx, 1); 1835 rcu_read_unlock(); 1836} 1837 1838#else 1839static inline bool mem_cgroup_kmem_disabled(void) 1840{ 1841 return true; 1842} 1843 1844static inline int memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1845 int order) 1846{ 1847 return 0; 1848} 1849 1850static inline void memcg_kmem_uncharge_page(struct page *page, int order) 1851{ 1852} 1853 1854static inline int __memcg_kmem_charge_page(struct page *page, gfp_t gfp, 1855 int order) 1856{ 1857 return 0; 1858} 1859 1860static inline void __memcg_kmem_uncharge_page(struct page *page, int order) 1861{ 1862} 1863 1864static inline struct obj_cgroup *get_obj_cgroup_from_page(struct page *page) 1865{ 1866 return NULL; 1867} 1868 1869static inline bool memcg_bpf_enabled(void) 1870{ 1871 return false; 1872} 1873 1874static inline bool memcg_kmem_online(void) 1875{ 1876 return false; 1877} 1878 1879static inline int memcg_kmem_id(struct mem_cgroup *memcg) 1880{ 1881 return -1; 1882} 1883 1884static inline struct mem_cgroup *mem_cgroup_from_obj(void *p) 1885{ 1886 return NULL; 1887} 1888 1889static inline struct mem_cgroup *mem_cgroup_from_slab_obj(void *p) 1890{ 1891 return NULL; 1892} 1893 1894static inline void count_objcg_event(struct obj_cgroup *objcg, 1895 enum vm_event_item idx) 1896{ 1897} 1898 1899#endif /* CONFIG_MEMCG_KMEM */ 1900 1901#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_ZSWAP) 1902bool obj_cgroup_may_zswap(struct obj_cgroup *objcg); 1903void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, size_t size); 1904void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, size_t size); 1905#else 1906static inline bool obj_cgroup_may_zswap(struct obj_cgroup *objcg) 1907{ 1908 return true; 1909} 1910static inline void obj_cgroup_charge_zswap(struct obj_cgroup *objcg, 1911 size_t size) 1912{ 1913} 1914static inline void obj_cgroup_uncharge_zswap(struct obj_cgroup *objcg, 1915 size_t size) 1916{ 1917} 1918#endif 1919 1920#endif /* _LINUX_MEMCONTROL_H */