at v6.4 20 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _LINUX_DMA_MAPPING_H 3#define _LINUX_DMA_MAPPING_H 4 5#include <linux/sizes.h> 6#include <linux/string.h> 7#include <linux/device.h> 8#include <linux/err.h> 9#include <linux/dma-direction.h> 10#include <linux/scatterlist.h> 11#include <linux/bug.h> 12#include <linux/mem_encrypt.h> 13 14/** 15 * List of possible attributes associated with a DMA mapping. The semantics 16 * of each attribute should be defined in Documentation/core-api/dma-attributes.rst. 17 */ 18 19/* 20 * DMA_ATTR_WEAK_ORDERING: Specifies that reads and writes to the mapping 21 * may be weakly ordered, that is that reads and writes may pass each other. 22 */ 23#define DMA_ATTR_WEAK_ORDERING (1UL << 1) 24/* 25 * DMA_ATTR_WRITE_COMBINE: Specifies that writes to the mapping may be 26 * buffered to improve performance. 27 */ 28#define DMA_ATTR_WRITE_COMBINE (1UL << 2) 29/* 30 * DMA_ATTR_NO_KERNEL_MAPPING: Lets the platform to avoid creating a kernel 31 * virtual mapping for the allocated buffer. 32 */ 33#define DMA_ATTR_NO_KERNEL_MAPPING (1UL << 4) 34/* 35 * DMA_ATTR_SKIP_CPU_SYNC: Allows platform code to skip synchronization of 36 * the CPU cache for the given buffer assuming that it has been already 37 * transferred to 'device' domain. 38 */ 39#define DMA_ATTR_SKIP_CPU_SYNC (1UL << 5) 40/* 41 * DMA_ATTR_FORCE_CONTIGUOUS: Forces contiguous allocation of the buffer 42 * in physical memory. 43 */ 44#define DMA_ATTR_FORCE_CONTIGUOUS (1UL << 6) 45/* 46 * DMA_ATTR_ALLOC_SINGLE_PAGES: This is a hint to the DMA-mapping subsystem 47 * that it's probably not worth the time to try to allocate memory to in a way 48 * that gives better TLB efficiency. 49 */ 50#define DMA_ATTR_ALLOC_SINGLE_PAGES (1UL << 7) 51/* 52 * DMA_ATTR_NO_WARN: This tells the DMA-mapping subsystem to suppress 53 * allocation failure reports (similarly to __GFP_NOWARN). 54 */ 55#define DMA_ATTR_NO_WARN (1UL << 8) 56 57/* 58 * DMA_ATTR_PRIVILEGED: used to indicate that the buffer is fully 59 * accessible at an elevated privilege level (and ideally inaccessible or 60 * at least read-only at lesser-privileged levels). 61 */ 62#define DMA_ATTR_PRIVILEGED (1UL << 9) 63 64/* 65 * A dma_addr_t can hold any valid DMA or bus address for the platform. It can 66 * be given to a device to use as a DMA source or target. It is specific to a 67 * given device and there may be a translation between the CPU physical address 68 * space and the bus address space. 69 * 70 * DMA_MAPPING_ERROR is the magic error code if a mapping failed. It should not 71 * be used directly in drivers, but checked for using dma_mapping_error() 72 * instead. 73 */ 74#define DMA_MAPPING_ERROR (~(dma_addr_t)0) 75 76#define DMA_BIT_MASK(n) (((n) == 64) ? ~0ULL : ((1ULL<<(n))-1)) 77 78#ifdef CONFIG_DMA_API_DEBUG 79void debug_dma_mapping_error(struct device *dev, dma_addr_t dma_addr); 80void debug_dma_map_single(struct device *dev, const void *addr, 81 unsigned long len); 82#else 83static inline void debug_dma_mapping_error(struct device *dev, 84 dma_addr_t dma_addr) 85{ 86} 87static inline void debug_dma_map_single(struct device *dev, const void *addr, 88 unsigned long len) 89{ 90} 91#endif /* CONFIG_DMA_API_DEBUG */ 92 93#ifdef CONFIG_HAS_DMA 94static inline int dma_mapping_error(struct device *dev, dma_addr_t dma_addr) 95{ 96 debug_dma_mapping_error(dev, dma_addr); 97 98 if (unlikely(dma_addr == DMA_MAPPING_ERROR)) 99 return -ENOMEM; 100 return 0; 101} 102 103dma_addr_t dma_map_page_attrs(struct device *dev, struct page *page, 104 size_t offset, size_t size, enum dma_data_direction dir, 105 unsigned long attrs); 106void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, size_t size, 107 enum dma_data_direction dir, unsigned long attrs); 108unsigned int dma_map_sg_attrs(struct device *dev, struct scatterlist *sg, 109 int nents, enum dma_data_direction dir, unsigned long attrs); 110void dma_unmap_sg_attrs(struct device *dev, struct scatterlist *sg, 111 int nents, enum dma_data_direction dir, 112 unsigned long attrs); 113int dma_map_sgtable(struct device *dev, struct sg_table *sgt, 114 enum dma_data_direction dir, unsigned long attrs); 115dma_addr_t dma_map_resource(struct device *dev, phys_addr_t phys_addr, 116 size_t size, enum dma_data_direction dir, unsigned long attrs); 117void dma_unmap_resource(struct device *dev, dma_addr_t addr, size_t size, 118 enum dma_data_direction dir, unsigned long attrs); 119void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size, 120 enum dma_data_direction dir); 121void dma_sync_single_for_device(struct device *dev, dma_addr_t addr, 122 size_t size, enum dma_data_direction dir); 123void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg, 124 int nelems, enum dma_data_direction dir); 125void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg, 126 int nelems, enum dma_data_direction dir); 127void *dma_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle, 128 gfp_t flag, unsigned long attrs); 129void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr, 130 dma_addr_t dma_handle, unsigned long attrs); 131void *dmam_alloc_attrs(struct device *dev, size_t size, dma_addr_t *dma_handle, 132 gfp_t gfp, unsigned long attrs); 133void dmam_free_coherent(struct device *dev, size_t size, void *vaddr, 134 dma_addr_t dma_handle); 135int dma_get_sgtable_attrs(struct device *dev, struct sg_table *sgt, 136 void *cpu_addr, dma_addr_t dma_addr, size_t size, 137 unsigned long attrs); 138int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma, 139 void *cpu_addr, dma_addr_t dma_addr, size_t size, 140 unsigned long attrs); 141bool dma_can_mmap(struct device *dev); 142bool dma_pci_p2pdma_supported(struct device *dev); 143int dma_set_mask(struct device *dev, u64 mask); 144int dma_set_coherent_mask(struct device *dev, u64 mask); 145u64 dma_get_required_mask(struct device *dev); 146size_t dma_max_mapping_size(struct device *dev); 147size_t dma_opt_mapping_size(struct device *dev); 148bool dma_need_sync(struct device *dev, dma_addr_t dma_addr); 149unsigned long dma_get_merge_boundary(struct device *dev); 150struct sg_table *dma_alloc_noncontiguous(struct device *dev, size_t size, 151 enum dma_data_direction dir, gfp_t gfp, unsigned long attrs); 152void dma_free_noncontiguous(struct device *dev, size_t size, 153 struct sg_table *sgt, enum dma_data_direction dir); 154void *dma_vmap_noncontiguous(struct device *dev, size_t size, 155 struct sg_table *sgt); 156void dma_vunmap_noncontiguous(struct device *dev, void *vaddr); 157int dma_mmap_noncontiguous(struct device *dev, struct vm_area_struct *vma, 158 size_t size, struct sg_table *sgt); 159#else /* CONFIG_HAS_DMA */ 160static inline dma_addr_t dma_map_page_attrs(struct device *dev, 161 struct page *page, size_t offset, size_t size, 162 enum dma_data_direction dir, unsigned long attrs) 163{ 164 return DMA_MAPPING_ERROR; 165} 166static inline void dma_unmap_page_attrs(struct device *dev, dma_addr_t addr, 167 size_t size, enum dma_data_direction dir, unsigned long attrs) 168{ 169} 170static inline unsigned int dma_map_sg_attrs(struct device *dev, 171 struct scatterlist *sg, int nents, enum dma_data_direction dir, 172 unsigned long attrs) 173{ 174 return 0; 175} 176static inline void dma_unmap_sg_attrs(struct device *dev, 177 struct scatterlist *sg, int nents, enum dma_data_direction dir, 178 unsigned long attrs) 179{ 180} 181static inline int dma_map_sgtable(struct device *dev, struct sg_table *sgt, 182 enum dma_data_direction dir, unsigned long attrs) 183{ 184 return -EOPNOTSUPP; 185} 186static inline dma_addr_t dma_map_resource(struct device *dev, 187 phys_addr_t phys_addr, size_t size, enum dma_data_direction dir, 188 unsigned long attrs) 189{ 190 return DMA_MAPPING_ERROR; 191} 192static inline void dma_unmap_resource(struct device *dev, dma_addr_t addr, 193 size_t size, enum dma_data_direction dir, unsigned long attrs) 194{ 195} 196static inline void dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, 197 size_t size, enum dma_data_direction dir) 198{ 199} 200static inline void dma_sync_single_for_device(struct device *dev, 201 dma_addr_t addr, size_t size, enum dma_data_direction dir) 202{ 203} 204static inline void dma_sync_sg_for_cpu(struct device *dev, 205 struct scatterlist *sg, int nelems, enum dma_data_direction dir) 206{ 207} 208static inline void dma_sync_sg_for_device(struct device *dev, 209 struct scatterlist *sg, int nelems, enum dma_data_direction dir) 210{ 211} 212static inline int dma_mapping_error(struct device *dev, dma_addr_t dma_addr) 213{ 214 return -ENOMEM; 215} 216static inline void *dma_alloc_attrs(struct device *dev, size_t size, 217 dma_addr_t *dma_handle, gfp_t flag, unsigned long attrs) 218{ 219 return NULL; 220} 221static void dma_free_attrs(struct device *dev, size_t size, void *cpu_addr, 222 dma_addr_t dma_handle, unsigned long attrs) 223{ 224} 225static inline void *dmam_alloc_attrs(struct device *dev, size_t size, 226 dma_addr_t *dma_handle, gfp_t gfp, unsigned long attrs) 227{ 228 return NULL; 229} 230static inline void dmam_free_coherent(struct device *dev, size_t size, 231 void *vaddr, dma_addr_t dma_handle) 232{ 233} 234static inline int dma_get_sgtable_attrs(struct device *dev, 235 struct sg_table *sgt, void *cpu_addr, dma_addr_t dma_addr, 236 size_t size, unsigned long attrs) 237{ 238 return -ENXIO; 239} 240static inline int dma_mmap_attrs(struct device *dev, struct vm_area_struct *vma, 241 void *cpu_addr, dma_addr_t dma_addr, size_t size, 242 unsigned long attrs) 243{ 244 return -ENXIO; 245} 246static inline bool dma_can_mmap(struct device *dev) 247{ 248 return false; 249} 250static inline bool dma_pci_p2pdma_supported(struct device *dev) 251{ 252 return false; 253} 254static inline int dma_set_mask(struct device *dev, u64 mask) 255{ 256 return -EIO; 257} 258static inline int dma_set_coherent_mask(struct device *dev, u64 mask) 259{ 260 return -EIO; 261} 262static inline u64 dma_get_required_mask(struct device *dev) 263{ 264 return 0; 265} 266static inline size_t dma_max_mapping_size(struct device *dev) 267{ 268 return 0; 269} 270static inline size_t dma_opt_mapping_size(struct device *dev) 271{ 272 return 0; 273} 274static inline bool dma_need_sync(struct device *dev, dma_addr_t dma_addr) 275{ 276 return false; 277} 278static inline unsigned long dma_get_merge_boundary(struct device *dev) 279{ 280 return 0; 281} 282static inline struct sg_table *dma_alloc_noncontiguous(struct device *dev, 283 size_t size, enum dma_data_direction dir, gfp_t gfp, 284 unsigned long attrs) 285{ 286 return NULL; 287} 288static inline void dma_free_noncontiguous(struct device *dev, size_t size, 289 struct sg_table *sgt, enum dma_data_direction dir) 290{ 291} 292static inline void *dma_vmap_noncontiguous(struct device *dev, size_t size, 293 struct sg_table *sgt) 294{ 295 return NULL; 296} 297static inline void dma_vunmap_noncontiguous(struct device *dev, void *vaddr) 298{ 299} 300static inline int dma_mmap_noncontiguous(struct device *dev, 301 struct vm_area_struct *vma, size_t size, struct sg_table *sgt) 302{ 303 return -EINVAL; 304} 305#endif /* CONFIG_HAS_DMA */ 306 307struct page *dma_alloc_pages(struct device *dev, size_t size, 308 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp); 309void dma_free_pages(struct device *dev, size_t size, struct page *page, 310 dma_addr_t dma_handle, enum dma_data_direction dir); 311int dma_mmap_pages(struct device *dev, struct vm_area_struct *vma, 312 size_t size, struct page *page); 313 314static inline void *dma_alloc_noncoherent(struct device *dev, size_t size, 315 dma_addr_t *dma_handle, enum dma_data_direction dir, gfp_t gfp) 316{ 317 struct page *page = dma_alloc_pages(dev, size, dma_handle, dir, gfp); 318 return page ? page_address(page) : NULL; 319} 320 321static inline void dma_free_noncoherent(struct device *dev, size_t size, 322 void *vaddr, dma_addr_t dma_handle, enum dma_data_direction dir) 323{ 324 dma_free_pages(dev, size, virt_to_page(vaddr), dma_handle, dir); 325} 326 327static inline dma_addr_t dma_map_single_attrs(struct device *dev, void *ptr, 328 size_t size, enum dma_data_direction dir, unsigned long attrs) 329{ 330 /* DMA must never operate on areas that might be remapped. */ 331 if (dev_WARN_ONCE(dev, is_vmalloc_addr(ptr), 332 "rejecting DMA map of vmalloc memory\n")) 333 return DMA_MAPPING_ERROR; 334 debug_dma_map_single(dev, ptr, size); 335 return dma_map_page_attrs(dev, virt_to_page(ptr), offset_in_page(ptr), 336 size, dir, attrs); 337} 338 339static inline void dma_unmap_single_attrs(struct device *dev, dma_addr_t addr, 340 size_t size, enum dma_data_direction dir, unsigned long attrs) 341{ 342 return dma_unmap_page_attrs(dev, addr, size, dir, attrs); 343} 344 345static inline void dma_sync_single_range_for_cpu(struct device *dev, 346 dma_addr_t addr, unsigned long offset, size_t size, 347 enum dma_data_direction dir) 348{ 349 return dma_sync_single_for_cpu(dev, addr + offset, size, dir); 350} 351 352static inline void dma_sync_single_range_for_device(struct device *dev, 353 dma_addr_t addr, unsigned long offset, size_t size, 354 enum dma_data_direction dir) 355{ 356 return dma_sync_single_for_device(dev, addr + offset, size, dir); 357} 358 359/** 360 * dma_unmap_sgtable - Unmap the given buffer for DMA 361 * @dev: The device for which to perform the DMA operation 362 * @sgt: The sg_table object describing the buffer 363 * @dir: DMA direction 364 * @attrs: Optional DMA attributes for the unmap operation 365 * 366 * Unmaps a buffer described by a scatterlist stored in the given sg_table 367 * object for the @dir DMA operation by the @dev device. After this function 368 * the ownership of the buffer is transferred back to the CPU domain. 369 */ 370static inline void dma_unmap_sgtable(struct device *dev, struct sg_table *sgt, 371 enum dma_data_direction dir, unsigned long attrs) 372{ 373 dma_unmap_sg_attrs(dev, sgt->sgl, sgt->orig_nents, dir, attrs); 374} 375 376/** 377 * dma_sync_sgtable_for_cpu - Synchronize the given buffer for CPU access 378 * @dev: The device for which to perform the DMA operation 379 * @sgt: The sg_table object describing the buffer 380 * @dir: DMA direction 381 * 382 * Performs the needed cache synchronization and moves the ownership of the 383 * buffer back to the CPU domain, so it is safe to perform any access to it 384 * by the CPU. Before doing any further DMA operations, one has to transfer 385 * the ownership of the buffer back to the DMA domain by calling the 386 * dma_sync_sgtable_for_device(). 387 */ 388static inline void dma_sync_sgtable_for_cpu(struct device *dev, 389 struct sg_table *sgt, enum dma_data_direction dir) 390{ 391 dma_sync_sg_for_cpu(dev, sgt->sgl, sgt->orig_nents, dir); 392} 393 394/** 395 * dma_sync_sgtable_for_device - Synchronize the given buffer for DMA 396 * @dev: The device for which to perform the DMA operation 397 * @sgt: The sg_table object describing the buffer 398 * @dir: DMA direction 399 * 400 * Performs the needed cache synchronization and moves the ownership of the 401 * buffer back to the DMA domain, so it is safe to perform the DMA operation. 402 * Once finished, one has to call dma_sync_sgtable_for_cpu() or 403 * dma_unmap_sgtable(). 404 */ 405static inline void dma_sync_sgtable_for_device(struct device *dev, 406 struct sg_table *sgt, enum dma_data_direction dir) 407{ 408 dma_sync_sg_for_device(dev, sgt->sgl, sgt->orig_nents, dir); 409} 410 411#define dma_map_single(d, a, s, r) dma_map_single_attrs(d, a, s, r, 0) 412#define dma_unmap_single(d, a, s, r) dma_unmap_single_attrs(d, a, s, r, 0) 413#define dma_map_sg(d, s, n, r) dma_map_sg_attrs(d, s, n, r, 0) 414#define dma_unmap_sg(d, s, n, r) dma_unmap_sg_attrs(d, s, n, r, 0) 415#define dma_map_page(d, p, o, s, r) dma_map_page_attrs(d, p, o, s, r, 0) 416#define dma_unmap_page(d, a, s, r) dma_unmap_page_attrs(d, a, s, r, 0) 417#define dma_get_sgtable(d, t, v, h, s) dma_get_sgtable_attrs(d, t, v, h, s, 0) 418#define dma_mmap_coherent(d, v, c, h, s) dma_mmap_attrs(d, v, c, h, s, 0) 419 420static inline void *dma_alloc_coherent(struct device *dev, size_t size, 421 dma_addr_t *dma_handle, gfp_t gfp) 422{ 423 return dma_alloc_attrs(dev, size, dma_handle, gfp, 424 (gfp & __GFP_NOWARN) ? DMA_ATTR_NO_WARN : 0); 425} 426 427static inline void dma_free_coherent(struct device *dev, size_t size, 428 void *cpu_addr, dma_addr_t dma_handle) 429{ 430 return dma_free_attrs(dev, size, cpu_addr, dma_handle, 0); 431} 432 433 434static inline u64 dma_get_mask(struct device *dev) 435{ 436 if (dev->dma_mask && *dev->dma_mask) 437 return *dev->dma_mask; 438 return DMA_BIT_MASK(32); 439} 440 441/* 442 * Set both the DMA mask and the coherent DMA mask to the same thing. 443 * Note that we don't check the return value from dma_set_coherent_mask() 444 * as the DMA API guarantees that the coherent DMA mask can be set to 445 * the same or smaller than the streaming DMA mask. 446 */ 447static inline int dma_set_mask_and_coherent(struct device *dev, u64 mask) 448{ 449 int rc = dma_set_mask(dev, mask); 450 if (rc == 0) 451 dma_set_coherent_mask(dev, mask); 452 return rc; 453} 454 455/* 456 * Similar to the above, except it deals with the case where the device 457 * does not have dev->dma_mask appropriately setup. 458 */ 459static inline int dma_coerce_mask_and_coherent(struct device *dev, u64 mask) 460{ 461 dev->dma_mask = &dev->coherent_dma_mask; 462 return dma_set_mask_and_coherent(dev, mask); 463} 464 465/** 466 * dma_addressing_limited - return if the device is addressing limited 467 * @dev: device to check 468 * 469 * Return %true if the devices DMA mask is too small to address all memory in 470 * the system, else %false. Lack of addressing bits is the prime reason for 471 * bounce buffering, but might not be the only one. 472 */ 473static inline bool dma_addressing_limited(struct device *dev) 474{ 475 return min_not_zero(dma_get_mask(dev), dev->bus_dma_limit) < 476 dma_get_required_mask(dev); 477} 478 479static inline unsigned int dma_get_max_seg_size(struct device *dev) 480{ 481 if (dev->dma_parms && dev->dma_parms->max_segment_size) 482 return dev->dma_parms->max_segment_size; 483 return SZ_64K; 484} 485 486static inline int dma_set_max_seg_size(struct device *dev, unsigned int size) 487{ 488 if (dev->dma_parms) { 489 dev->dma_parms->max_segment_size = size; 490 return 0; 491 } 492 return -EIO; 493} 494 495static inline unsigned long dma_get_seg_boundary(struct device *dev) 496{ 497 if (dev->dma_parms && dev->dma_parms->segment_boundary_mask) 498 return dev->dma_parms->segment_boundary_mask; 499 return ULONG_MAX; 500} 501 502/** 503 * dma_get_seg_boundary_nr_pages - return the segment boundary in "page" units 504 * @dev: device to guery the boundary for 505 * @page_shift: ilog() of the IOMMU page size 506 * 507 * Return the segment boundary in IOMMU page units (which may be different from 508 * the CPU page size) for the passed in device. 509 * 510 * If @dev is NULL a boundary of U32_MAX is assumed, this case is just for 511 * non-DMA API callers. 512 */ 513static inline unsigned long dma_get_seg_boundary_nr_pages(struct device *dev, 514 unsigned int page_shift) 515{ 516 if (!dev) 517 return (U32_MAX >> page_shift) + 1; 518 return (dma_get_seg_boundary(dev) >> page_shift) + 1; 519} 520 521static inline int dma_set_seg_boundary(struct device *dev, unsigned long mask) 522{ 523 if (dev->dma_parms) { 524 dev->dma_parms->segment_boundary_mask = mask; 525 return 0; 526 } 527 return -EIO; 528} 529 530static inline unsigned int dma_get_min_align_mask(struct device *dev) 531{ 532 if (dev->dma_parms) 533 return dev->dma_parms->min_align_mask; 534 return 0; 535} 536 537static inline int dma_set_min_align_mask(struct device *dev, 538 unsigned int min_align_mask) 539{ 540 if (WARN_ON_ONCE(!dev->dma_parms)) 541 return -EIO; 542 dev->dma_parms->min_align_mask = min_align_mask; 543 return 0; 544} 545 546static inline int dma_get_cache_alignment(void) 547{ 548#ifdef ARCH_DMA_MINALIGN 549 return ARCH_DMA_MINALIGN; 550#endif 551 return 1; 552} 553 554static inline void *dmam_alloc_coherent(struct device *dev, size_t size, 555 dma_addr_t *dma_handle, gfp_t gfp) 556{ 557 return dmam_alloc_attrs(dev, size, dma_handle, gfp, 558 (gfp & __GFP_NOWARN) ? DMA_ATTR_NO_WARN : 0); 559} 560 561static inline void *dma_alloc_wc(struct device *dev, size_t size, 562 dma_addr_t *dma_addr, gfp_t gfp) 563{ 564 unsigned long attrs = DMA_ATTR_WRITE_COMBINE; 565 566 if (gfp & __GFP_NOWARN) 567 attrs |= DMA_ATTR_NO_WARN; 568 569 return dma_alloc_attrs(dev, size, dma_addr, gfp, attrs); 570} 571 572static inline void dma_free_wc(struct device *dev, size_t size, 573 void *cpu_addr, dma_addr_t dma_addr) 574{ 575 return dma_free_attrs(dev, size, cpu_addr, dma_addr, 576 DMA_ATTR_WRITE_COMBINE); 577} 578 579static inline int dma_mmap_wc(struct device *dev, 580 struct vm_area_struct *vma, 581 void *cpu_addr, dma_addr_t dma_addr, 582 size_t size) 583{ 584 return dma_mmap_attrs(dev, vma, cpu_addr, dma_addr, size, 585 DMA_ATTR_WRITE_COMBINE); 586} 587 588#ifdef CONFIG_NEED_DMA_MAP_STATE 589#define DEFINE_DMA_UNMAP_ADDR(ADDR_NAME) dma_addr_t ADDR_NAME 590#define DEFINE_DMA_UNMAP_LEN(LEN_NAME) __u32 LEN_NAME 591#define dma_unmap_addr(PTR, ADDR_NAME) ((PTR)->ADDR_NAME) 592#define dma_unmap_addr_set(PTR, ADDR_NAME, VAL) (((PTR)->ADDR_NAME) = (VAL)) 593#define dma_unmap_len(PTR, LEN_NAME) ((PTR)->LEN_NAME) 594#define dma_unmap_len_set(PTR, LEN_NAME, VAL) (((PTR)->LEN_NAME) = (VAL)) 595#else 596#define DEFINE_DMA_UNMAP_ADDR(ADDR_NAME) 597#define DEFINE_DMA_UNMAP_LEN(LEN_NAME) 598#define dma_unmap_addr(PTR, ADDR_NAME) (0) 599#define dma_unmap_addr_set(PTR, ADDR_NAME, VAL) do { } while (0) 600#define dma_unmap_len(PTR, LEN_NAME) (0) 601#define dma_unmap_len_set(PTR, LEN_NAME, VAL) do { } while (0) 602#endif 603 604#endif /* _LINUX_DMA_MAPPING_H */