Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * fs/userfaultfd.c
4 *
5 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
6 * Copyright (C) 2008-2009 Red Hat, Inc.
7 * Copyright (C) 2015 Red Hat, Inc.
8 *
9 * Some part derived from fs/eventfd.c (anon inode setup) and
10 * mm/ksm.c (mm hashing).
11 */
12
13#include <linux/list.h>
14#include <linux/hashtable.h>
15#include <linux/sched/signal.h>
16#include <linux/sched/mm.h>
17#include <linux/mm.h>
18#include <linux/mm_inline.h>
19#include <linux/mmu_notifier.h>
20#include <linux/poll.h>
21#include <linux/slab.h>
22#include <linux/seq_file.h>
23#include <linux/file.h>
24#include <linux/bug.h>
25#include <linux/anon_inodes.h>
26#include <linux/syscalls.h>
27#include <linux/userfaultfd_k.h>
28#include <linux/mempolicy.h>
29#include <linux/ioctl.h>
30#include <linux/security.h>
31#include <linux/hugetlb.h>
32#include <linux/swapops.h>
33#include <linux/miscdevice.h>
34
35static int sysctl_unprivileged_userfaultfd __read_mostly;
36
37#ifdef CONFIG_SYSCTL
38static struct ctl_table vm_userfaultfd_table[] = {
39 {
40 .procname = "unprivileged_userfaultfd",
41 .data = &sysctl_unprivileged_userfaultfd,
42 .maxlen = sizeof(sysctl_unprivileged_userfaultfd),
43 .mode = 0644,
44 .proc_handler = proc_dointvec_minmax,
45 .extra1 = SYSCTL_ZERO,
46 .extra2 = SYSCTL_ONE,
47 },
48 { }
49};
50#endif
51
52static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
53
54/*
55 * Start with fault_pending_wqh and fault_wqh so they're more likely
56 * to be in the same cacheline.
57 *
58 * Locking order:
59 * fd_wqh.lock
60 * fault_pending_wqh.lock
61 * fault_wqh.lock
62 * event_wqh.lock
63 *
64 * To avoid deadlocks, IRQs must be disabled when taking any of the above locks,
65 * since fd_wqh.lock is taken by aio_poll() while it's holding a lock that's
66 * also taken in IRQ context.
67 */
68struct userfaultfd_ctx {
69 /* waitqueue head for the pending (i.e. not read) userfaults */
70 wait_queue_head_t fault_pending_wqh;
71 /* waitqueue head for the userfaults */
72 wait_queue_head_t fault_wqh;
73 /* waitqueue head for the pseudo fd to wakeup poll/read */
74 wait_queue_head_t fd_wqh;
75 /* waitqueue head for events */
76 wait_queue_head_t event_wqh;
77 /* a refile sequence protected by fault_pending_wqh lock */
78 seqcount_spinlock_t refile_seq;
79 /* pseudo fd refcounting */
80 refcount_t refcount;
81 /* userfaultfd syscall flags */
82 unsigned int flags;
83 /* features requested from the userspace */
84 unsigned int features;
85 /* released */
86 bool released;
87 /* memory mappings are changing because of non-cooperative event */
88 atomic_t mmap_changing;
89 /* mm with one ore more vmas attached to this userfaultfd_ctx */
90 struct mm_struct *mm;
91};
92
93struct userfaultfd_fork_ctx {
94 struct userfaultfd_ctx *orig;
95 struct userfaultfd_ctx *new;
96 struct list_head list;
97};
98
99struct userfaultfd_unmap_ctx {
100 struct userfaultfd_ctx *ctx;
101 unsigned long start;
102 unsigned long end;
103 struct list_head list;
104};
105
106struct userfaultfd_wait_queue {
107 struct uffd_msg msg;
108 wait_queue_entry_t wq;
109 struct userfaultfd_ctx *ctx;
110 bool waken;
111};
112
113struct userfaultfd_wake_range {
114 unsigned long start;
115 unsigned long len;
116};
117
118/* internal indication that UFFD_API ioctl was successfully executed */
119#define UFFD_FEATURE_INITIALIZED (1u << 31)
120
121static bool userfaultfd_is_initialized(struct userfaultfd_ctx *ctx)
122{
123 return ctx->features & UFFD_FEATURE_INITIALIZED;
124}
125
126/*
127 * Whether WP_UNPOPULATED is enabled on the uffd context. It is only
128 * meaningful when userfaultfd_wp()==true on the vma and when it's
129 * anonymous.
130 */
131bool userfaultfd_wp_unpopulated(struct vm_area_struct *vma)
132{
133 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
134
135 if (!ctx)
136 return false;
137
138 return ctx->features & UFFD_FEATURE_WP_UNPOPULATED;
139}
140
141static void userfaultfd_set_vm_flags(struct vm_area_struct *vma,
142 vm_flags_t flags)
143{
144 const bool uffd_wp_changed = (vma->vm_flags ^ flags) & VM_UFFD_WP;
145
146 vm_flags_reset(vma, flags);
147 /*
148 * For shared mappings, we want to enable writenotify while
149 * userfaultfd-wp is enabled (see vma_wants_writenotify()). We'll simply
150 * recalculate vma->vm_page_prot whenever userfaultfd-wp changes.
151 */
152 if ((vma->vm_flags & VM_SHARED) && uffd_wp_changed)
153 vma_set_page_prot(vma);
154}
155
156static int userfaultfd_wake_function(wait_queue_entry_t *wq, unsigned mode,
157 int wake_flags, void *key)
158{
159 struct userfaultfd_wake_range *range = key;
160 int ret;
161 struct userfaultfd_wait_queue *uwq;
162 unsigned long start, len;
163
164 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
165 ret = 0;
166 /* len == 0 means wake all */
167 start = range->start;
168 len = range->len;
169 if (len && (start > uwq->msg.arg.pagefault.address ||
170 start + len <= uwq->msg.arg.pagefault.address))
171 goto out;
172 WRITE_ONCE(uwq->waken, true);
173 /*
174 * The Program-Order guarantees provided by the scheduler
175 * ensure uwq->waken is visible before the task is woken.
176 */
177 ret = wake_up_state(wq->private, mode);
178 if (ret) {
179 /*
180 * Wake only once, autoremove behavior.
181 *
182 * After the effect of list_del_init is visible to the other
183 * CPUs, the waitqueue may disappear from under us, see the
184 * !list_empty_careful() in handle_userfault().
185 *
186 * try_to_wake_up() has an implicit smp_mb(), and the
187 * wq->private is read before calling the extern function
188 * "wake_up_state" (which in turns calls try_to_wake_up).
189 */
190 list_del_init(&wq->entry);
191 }
192out:
193 return ret;
194}
195
196/**
197 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
198 * context.
199 * @ctx: [in] Pointer to the userfaultfd context.
200 */
201static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
202{
203 refcount_inc(&ctx->refcount);
204}
205
206/**
207 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
208 * context.
209 * @ctx: [in] Pointer to userfaultfd context.
210 *
211 * The userfaultfd context reference must have been previously acquired either
212 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
213 */
214static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
215{
216 if (refcount_dec_and_test(&ctx->refcount)) {
217 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
218 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
219 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
220 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
221 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
222 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
223 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
224 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
225 mmdrop(ctx->mm);
226 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
227 }
228}
229
230static inline void msg_init(struct uffd_msg *msg)
231{
232 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
233 /*
234 * Must use memset to zero out the paddings or kernel data is
235 * leaked to userland.
236 */
237 memset(msg, 0, sizeof(struct uffd_msg));
238}
239
240static inline struct uffd_msg userfault_msg(unsigned long address,
241 unsigned long real_address,
242 unsigned int flags,
243 unsigned long reason,
244 unsigned int features)
245{
246 struct uffd_msg msg;
247
248 msg_init(&msg);
249 msg.event = UFFD_EVENT_PAGEFAULT;
250
251 msg.arg.pagefault.address = (features & UFFD_FEATURE_EXACT_ADDRESS) ?
252 real_address : address;
253
254 /*
255 * These flags indicate why the userfault occurred:
256 * - UFFD_PAGEFAULT_FLAG_WP indicates a write protect fault.
257 * - UFFD_PAGEFAULT_FLAG_MINOR indicates a minor fault.
258 * - Neither of these flags being set indicates a MISSING fault.
259 *
260 * Separately, UFFD_PAGEFAULT_FLAG_WRITE indicates it was a write
261 * fault. Otherwise, it was a read fault.
262 */
263 if (flags & FAULT_FLAG_WRITE)
264 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
265 if (reason & VM_UFFD_WP)
266 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
267 if (reason & VM_UFFD_MINOR)
268 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_MINOR;
269 if (features & UFFD_FEATURE_THREAD_ID)
270 msg.arg.pagefault.feat.ptid = task_pid_vnr(current);
271 return msg;
272}
273
274#ifdef CONFIG_HUGETLB_PAGE
275/*
276 * Same functionality as userfaultfd_must_wait below with modifications for
277 * hugepmd ranges.
278 */
279static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
280 struct vm_area_struct *vma,
281 unsigned long address,
282 unsigned long flags,
283 unsigned long reason)
284{
285 pte_t *ptep, pte;
286 bool ret = true;
287
288 mmap_assert_locked(ctx->mm);
289
290 ptep = hugetlb_walk(vma, address, vma_mmu_pagesize(vma));
291 if (!ptep)
292 goto out;
293
294 ret = false;
295 pte = huge_ptep_get(ptep);
296
297 /*
298 * Lockless access: we're in a wait_event so it's ok if it
299 * changes under us. PTE markers should be handled the same as none
300 * ptes here.
301 */
302 if (huge_pte_none_mostly(pte))
303 ret = true;
304 if (!huge_pte_write(pte) && (reason & VM_UFFD_WP))
305 ret = true;
306out:
307 return ret;
308}
309#else
310static inline bool userfaultfd_huge_must_wait(struct userfaultfd_ctx *ctx,
311 struct vm_area_struct *vma,
312 unsigned long address,
313 unsigned long flags,
314 unsigned long reason)
315{
316 return false; /* should never get here */
317}
318#endif /* CONFIG_HUGETLB_PAGE */
319
320/*
321 * Verify the pagetables are still not ok after having reigstered into
322 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
323 * userfault that has already been resolved, if userfaultfd_read and
324 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
325 * threads.
326 */
327static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
328 unsigned long address,
329 unsigned long flags,
330 unsigned long reason)
331{
332 struct mm_struct *mm = ctx->mm;
333 pgd_t *pgd;
334 p4d_t *p4d;
335 pud_t *pud;
336 pmd_t *pmd, _pmd;
337 pte_t *pte;
338 bool ret = true;
339
340 mmap_assert_locked(mm);
341
342 pgd = pgd_offset(mm, address);
343 if (!pgd_present(*pgd))
344 goto out;
345 p4d = p4d_offset(pgd, address);
346 if (!p4d_present(*p4d))
347 goto out;
348 pud = pud_offset(p4d, address);
349 if (!pud_present(*pud))
350 goto out;
351 pmd = pmd_offset(pud, address);
352 /*
353 * READ_ONCE must function as a barrier with narrower scope
354 * and it must be equivalent to:
355 * _pmd = *pmd; barrier();
356 *
357 * This is to deal with the instability (as in
358 * pmd_trans_unstable) of the pmd.
359 */
360 _pmd = READ_ONCE(*pmd);
361 if (pmd_none(_pmd))
362 goto out;
363
364 ret = false;
365 if (!pmd_present(_pmd))
366 goto out;
367
368 if (pmd_trans_huge(_pmd)) {
369 if (!pmd_write(_pmd) && (reason & VM_UFFD_WP))
370 ret = true;
371 goto out;
372 }
373
374 /*
375 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
376 * and use the standard pte_offset_map() instead of parsing _pmd.
377 */
378 pte = pte_offset_map(pmd, address);
379 /*
380 * Lockless access: we're in a wait_event so it's ok if it
381 * changes under us. PTE markers should be handled the same as none
382 * ptes here.
383 */
384 if (pte_none_mostly(*pte))
385 ret = true;
386 if (!pte_write(*pte) && (reason & VM_UFFD_WP))
387 ret = true;
388 pte_unmap(pte);
389
390out:
391 return ret;
392}
393
394static inline unsigned int userfaultfd_get_blocking_state(unsigned int flags)
395{
396 if (flags & FAULT_FLAG_INTERRUPTIBLE)
397 return TASK_INTERRUPTIBLE;
398
399 if (flags & FAULT_FLAG_KILLABLE)
400 return TASK_KILLABLE;
401
402 return TASK_UNINTERRUPTIBLE;
403}
404
405/*
406 * The locking rules involved in returning VM_FAULT_RETRY depending on
407 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
408 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
409 * recommendation in __lock_page_or_retry is not an understatement.
410 *
411 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_lock must be released
412 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
413 * not set.
414 *
415 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
416 * set, VM_FAULT_RETRY can still be returned if and only if there are
417 * fatal_signal_pending()s, and the mmap_lock must be released before
418 * returning it.
419 */
420vm_fault_t handle_userfault(struct vm_fault *vmf, unsigned long reason)
421{
422 struct vm_area_struct *vma = vmf->vma;
423 struct mm_struct *mm = vma->vm_mm;
424 struct userfaultfd_ctx *ctx;
425 struct userfaultfd_wait_queue uwq;
426 vm_fault_t ret = VM_FAULT_SIGBUS;
427 bool must_wait;
428 unsigned int blocking_state;
429
430 /*
431 * We don't do userfault handling for the final child pid update.
432 *
433 * We also don't do userfault handling during
434 * coredumping. hugetlbfs has the special
435 * follow_hugetlb_page() to skip missing pages in the
436 * FOLL_DUMP case, anon memory also checks for FOLL_DUMP with
437 * the no_page_table() helper in follow_page_mask(), but the
438 * shmem_vm_ops->fault method is invoked even during
439 * coredumping without mmap_lock and it ends up here.
440 */
441 if (current->flags & (PF_EXITING|PF_DUMPCORE))
442 goto out;
443
444 /*
445 * Coredumping runs without mmap_lock so we can only check that
446 * the mmap_lock is held, if PF_DUMPCORE was not set.
447 */
448 mmap_assert_locked(mm);
449
450 ctx = vma->vm_userfaultfd_ctx.ctx;
451 if (!ctx)
452 goto out;
453
454 BUG_ON(ctx->mm != mm);
455
456 /* Any unrecognized flag is a bug. */
457 VM_BUG_ON(reason & ~__VM_UFFD_FLAGS);
458 /* 0 or > 1 flags set is a bug; we expect exactly 1. */
459 VM_BUG_ON(!reason || (reason & (reason - 1)));
460
461 if (ctx->features & UFFD_FEATURE_SIGBUS)
462 goto out;
463 if (!(vmf->flags & FAULT_FLAG_USER) && (ctx->flags & UFFD_USER_MODE_ONLY))
464 goto out;
465
466 /*
467 * If it's already released don't get it. This avoids to loop
468 * in __get_user_pages if userfaultfd_release waits on the
469 * caller of handle_userfault to release the mmap_lock.
470 */
471 if (unlikely(READ_ONCE(ctx->released))) {
472 /*
473 * Don't return VM_FAULT_SIGBUS in this case, so a non
474 * cooperative manager can close the uffd after the
475 * last UFFDIO_COPY, without risking to trigger an
476 * involuntary SIGBUS if the process was starting the
477 * userfaultfd while the userfaultfd was still armed
478 * (but after the last UFFDIO_COPY). If the uffd
479 * wasn't already closed when the userfault reached
480 * this point, that would normally be solved by
481 * userfaultfd_must_wait returning 'false'.
482 *
483 * If we were to return VM_FAULT_SIGBUS here, the non
484 * cooperative manager would be instead forced to
485 * always call UFFDIO_UNREGISTER before it can safely
486 * close the uffd.
487 */
488 ret = VM_FAULT_NOPAGE;
489 goto out;
490 }
491
492 /*
493 * Check that we can return VM_FAULT_RETRY.
494 *
495 * NOTE: it should become possible to return VM_FAULT_RETRY
496 * even if FAULT_FLAG_TRIED is set without leading to gup()
497 * -EBUSY failures, if the userfaultfd is to be extended for
498 * VM_UFFD_WP tracking and we intend to arm the userfault
499 * without first stopping userland access to the memory. For
500 * VM_UFFD_MISSING userfaults this is enough for now.
501 */
502 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
503 /*
504 * Validate the invariant that nowait must allow retry
505 * to be sure not to return SIGBUS erroneously on
506 * nowait invocations.
507 */
508 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
509#ifdef CONFIG_DEBUG_VM
510 if (printk_ratelimit()) {
511 printk(KERN_WARNING
512 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
513 vmf->flags);
514 dump_stack();
515 }
516#endif
517 goto out;
518 }
519
520 /*
521 * Handle nowait, not much to do other than tell it to retry
522 * and wait.
523 */
524 ret = VM_FAULT_RETRY;
525 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
526 goto out;
527
528 /* take the reference before dropping the mmap_lock */
529 userfaultfd_ctx_get(ctx);
530
531 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
532 uwq.wq.private = current;
533 uwq.msg = userfault_msg(vmf->address, vmf->real_address, vmf->flags,
534 reason, ctx->features);
535 uwq.ctx = ctx;
536 uwq.waken = false;
537
538 blocking_state = userfaultfd_get_blocking_state(vmf->flags);
539
540 /*
541 * Take the vma lock now, in order to safely call
542 * userfaultfd_huge_must_wait() later. Since acquiring the
543 * (sleepable) vma lock can modify the current task state, that
544 * must be before explicitly calling set_current_state().
545 */
546 if (is_vm_hugetlb_page(vma))
547 hugetlb_vma_lock_read(vma);
548
549 spin_lock_irq(&ctx->fault_pending_wqh.lock);
550 /*
551 * After the __add_wait_queue the uwq is visible to userland
552 * through poll/read().
553 */
554 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
555 /*
556 * The smp_mb() after __set_current_state prevents the reads
557 * following the spin_unlock to happen before the list_add in
558 * __add_wait_queue.
559 */
560 set_current_state(blocking_state);
561 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
562
563 if (!is_vm_hugetlb_page(vma))
564 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
565 reason);
566 else
567 must_wait = userfaultfd_huge_must_wait(ctx, vma,
568 vmf->address,
569 vmf->flags, reason);
570 if (is_vm_hugetlb_page(vma))
571 hugetlb_vma_unlock_read(vma);
572 mmap_read_unlock(mm);
573
574 if (likely(must_wait && !READ_ONCE(ctx->released))) {
575 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
576 schedule();
577 }
578
579 __set_current_state(TASK_RUNNING);
580
581 /*
582 * Here we race with the list_del; list_add in
583 * userfaultfd_ctx_read(), however because we don't ever run
584 * list_del_init() to refile across the two lists, the prev
585 * and next pointers will never point to self. list_add also
586 * would never let any of the two pointers to point to
587 * self. So list_empty_careful won't risk to see both pointers
588 * pointing to self at any time during the list refile. The
589 * only case where list_del_init() is called is the full
590 * removal in the wake function and there we don't re-list_add
591 * and it's fine not to block on the spinlock. The uwq on this
592 * kernel stack can be released after the list_del_init.
593 */
594 if (!list_empty_careful(&uwq.wq.entry)) {
595 spin_lock_irq(&ctx->fault_pending_wqh.lock);
596 /*
597 * No need of list_del_init(), the uwq on the stack
598 * will be freed shortly anyway.
599 */
600 list_del(&uwq.wq.entry);
601 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
602 }
603
604 /*
605 * ctx may go away after this if the userfault pseudo fd is
606 * already released.
607 */
608 userfaultfd_ctx_put(ctx);
609
610out:
611 return ret;
612}
613
614static void userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
615 struct userfaultfd_wait_queue *ewq)
616{
617 struct userfaultfd_ctx *release_new_ctx;
618
619 if (WARN_ON_ONCE(current->flags & PF_EXITING))
620 goto out;
621
622 ewq->ctx = ctx;
623 init_waitqueue_entry(&ewq->wq, current);
624 release_new_ctx = NULL;
625
626 spin_lock_irq(&ctx->event_wqh.lock);
627 /*
628 * After the __add_wait_queue the uwq is visible to userland
629 * through poll/read().
630 */
631 __add_wait_queue(&ctx->event_wqh, &ewq->wq);
632 for (;;) {
633 set_current_state(TASK_KILLABLE);
634 if (ewq->msg.event == 0)
635 break;
636 if (READ_ONCE(ctx->released) ||
637 fatal_signal_pending(current)) {
638 /*
639 * &ewq->wq may be queued in fork_event, but
640 * __remove_wait_queue ignores the head
641 * parameter. It would be a problem if it
642 * didn't.
643 */
644 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
645 if (ewq->msg.event == UFFD_EVENT_FORK) {
646 struct userfaultfd_ctx *new;
647
648 new = (struct userfaultfd_ctx *)
649 (unsigned long)
650 ewq->msg.arg.reserved.reserved1;
651 release_new_ctx = new;
652 }
653 break;
654 }
655
656 spin_unlock_irq(&ctx->event_wqh.lock);
657
658 wake_up_poll(&ctx->fd_wqh, EPOLLIN);
659 schedule();
660
661 spin_lock_irq(&ctx->event_wqh.lock);
662 }
663 __set_current_state(TASK_RUNNING);
664 spin_unlock_irq(&ctx->event_wqh.lock);
665
666 if (release_new_ctx) {
667 struct vm_area_struct *vma;
668 struct mm_struct *mm = release_new_ctx->mm;
669 VMA_ITERATOR(vmi, mm, 0);
670
671 /* the various vma->vm_userfaultfd_ctx still points to it */
672 mmap_write_lock(mm);
673 for_each_vma(vmi, vma) {
674 if (vma->vm_userfaultfd_ctx.ctx == release_new_ctx) {
675 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
676 userfaultfd_set_vm_flags(vma,
677 vma->vm_flags & ~__VM_UFFD_FLAGS);
678 }
679 }
680 mmap_write_unlock(mm);
681
682 userfaultfd_ctx_put(release_new_ctx);
683 }
684
685 /*
686 * ctx may go away after this if the userfault pseudo fd is
687 * already released.
688 */
689out:
690 atomic_dec(&ctx->mmap_changing);
691 VM_BUG_ON(atomic_read(&ctx->mmap_changing) < 0);
692 userfaultfd_ctx_put(ctx);
693}
694
695static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
696 struct userfaultfd_wait_queue *ewq)
697{
698 ewq->msg.event = 0;
699 wake_up_locked(&ctx->event_wqh);
700 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
701}
702
703int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
704{
705 struct userfaultfd_ctx *ctx = NULL, *octx;
706 struct userfaultfd_fork_ctx *fctx;
707
708 octx = vma->vm_userfaultfd_ctx.ctx;
709 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
710 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
711 userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS);
712 return 0;
713 }
714
715 list_for_each_entry(fctx, fcs, list)
716 if (fctx->orig == octx) {
717 ctx = fctx->new;
718 break;
719 }
720
721 if (!ctx) {
722 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
723 if (!fctx)
724 return -ENOMEM;
725
726 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
727 if (!ctx) {
728 kfree(fctx);
729 return -ENOMEM;
730 }
731
732 refcount_set(&ctx->refcount, 1);
733 ctx->flags = octx->flags;
734 ctx->features = octx->features;
735 ctx->released = false;
736 atomic_set(&ctx->mmap_changing, 0);
737 ctx->mm = vma->vm_mm;
738 mmgrab(ctx->mm);
739
740 userfaultfd_ctx_get(octx);
741 atomic_inc(&octx->mmap_changing);
742 fctx->orig = octx;
743 fctx->new = ctx;
744 list_add_tail(&fctx->list, fcs);
745 }
746
747 vma->vm_userfaultfd_ctx.ctx = ctx;
748 return 0;
749}
750
751static void dup_fctx(struct userfaultfd_fork_ctx *fctx)
752{
753 struct userfaultfd_ctx *ctx = fctx->orig;
754 struct userfaultfd_wait_queue ewq;
755
756 msg_init(&ewq.msg);
757
758 ewq.msg.event = UFFD_EVENT_FORK;
759 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
760
761 userfaultfd_event_wait_completion(ctx, &ewq);
762}
763
764void dup_userfaultfd_complete(struct list_head *fcs)
765{
766 struct userfaultfd_fork_ctx *fctx, *n;
767
768 list_for_each_entry_safe(fctx, n, fcs, list) {
769 dup_fctx(fctx);
770 list_del(&fctx->list);
771 kfree(fctx);
772 }
773}
774
775void mremap_userfaultfd_prep(struct vm_area_struct *vma,
776 struct vm_userfaultfd_ctx *vm_ctx)
777{
778 struct userfaultfd_ctx *ctx;
779
780 ctx = vma->vm_userfaultfd_ctx.ctx;
781
782 if (!ctx)
783 return;
784
785 if (ctx->features & UFFD_FEATURE_EVENT_REMAP) {
786 vm_ctx->ctx = ctx;
787 userfaultfd_ctx_get(ctx);
788 atomic_inc(&ctx->mmap_changing);
789 } else {
790 /* Drop uffd context if remap feature not enabled */
791 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
792 userfaultfd_set_vm_flags(vma, vma->vm_flags & ~__VM_UFFD_FLAGS);
793 }
794}
795
796void mremap_userfaultfd_complete(struct vm_userfaultfd_ctx *vm_ctx,
797 unsigned long from, unsigned long to,
798 unsigned long len)
799{
800 struct userfaultfd_ctx *ctx = vm_ctx->ctx;
801 struct userfaultfd_wait_queue ewq;
802
803 if (!ctx)
804 return;
805
806 if (to & ~PAGE_MASK) {
807 userfaultfd_ctx_put(ctx);
808 return;
809 }
810
811 msg_init(&ewq.msg);
812
813 ewq.msg.event = UFFD_EVENT_REMAP;
814 ewq.msg.arg.remap.from = from;
815 ewq.msg.arg.remap.to = to;
816 ewq.msg.arg.remap.len = len;
817
818 userfaultfd_event_wait_completion(ctx, &ewq);
819}
820
821bool userfaultfd_remove(struct vm_area_struct *vma,
822 unsigned long start, unsigned long end)
823{
824 struct mm_struct *mm = vma->vm_mm;
825 struct userfaultfd_ctx *ctx;
826 struct userfaultfd_wait_queue ewq;
827
828 ctx = vma->vm_userfaultfd_ctx.ctx;
829 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_REMOVE))
830 return true;
831
832 userfaultfd_ctx_get(ctx);
833 atomic_inc(&ctx->mmap_changing);
834 mmap_read_unlock(mm);
835
836 msg_init(&ewq.msg);
837
838 ewq.msg.event = UFFD_EVENT_REMOVE;
839 ewq.msg.arg.remove.start = start;
840 ewq.msg.arg.remove.end = end;
841
842 userfaultfd_event_wait_completion(ctx, &ewq);
843
844 return false;
845}
846
847static bool has_unmap_ctx(struct userfaultfd_ctx *ctx, struct list_head *unmaps,
848 unsigned long start, unsigned long end)
849{
850 struct userfaultfd_unmap_ctx *unmap_ctx;
851
852 list_for_each_entry(unmap_ctx, unmaps, list)
853 if (unmap_ctx->ctx == ctx && unmap_ctx->start == start &&
854 unmap_ctx->end == end)
855 return true;
856
857 return false;
858}
859
860int userfaultfd_unmap_prep(struct mm_struct *mm, unsigned long start,
861 unsigned long end, struct list_head *unmaps)
862{
863 VMA_ITERATOR(vmi, mm, start);
864 struct vm_area_struct *vma;
865
866 for_each_vma_range(vmi, vma, end) {
867 struct userfaultfd_unmap_ctx *unmap_ctx;
868 struct userfaultfd_ctx *ctx = vma->vm_userfaultfd_ctx.ctx;
869
870 if (!ctx || !(ctx->features & UFFD_FEATURE_EVENT_UNMAP) ||
871 has_unmap_ctx(ctx, unmaps, start, end))
872 continue;
873
874 unmap_ctx = kzalloc(sizeof(*unmap_ctx), GFP_KERNEL);
875 if (!unmap_ctx)
876 return -ENOMEM;
877
878 userfaultfd_ctx_get(ctx);
879 atomic_inc(&ctx->mmap_changing);
880 unmap_ctx->ctx = ctx;
881 unmap_ctx->start = start;
882 unmap_ctx->end = end;
883 list_add_tail(&unmap_ctx->list, unmaps);
884 }
885
886 return 0;
887}
888
889void userfaultfd_unmap_complete(struct mm_struct *mm, struct list_head *uf)
890{
891 struct userfaultfd_unmap_ctx *ctx, *n;
892 struct userfaultfd_wait_queue ewq;
893
894 list_for_each_entry_safe(ctx, n, uf, list) {
895 msg_init(&ewq.msg);
896
897 ewq.msg.event = UFFD_EVENT_UNMAP;
898 ewq.msg.arg.remove.start = ctx->start;
899 ewq.msg.arg.remove.end = ctx->end;
900
901 userfaultfd_event_wait_completion(ctx->ctx, &ewq);
902
903 list_del(&ctx->list);
904 kfree(ctx);
905 }
906}
907
908static int userfaultfd_release(struct inode *inode, struct file *file)
909{
910 struct userfaultfd_ctx *ctx = file->private_data;
911 struct mm_struct *mm = ctx->mm;
912 struct vm_area_struct *vma, *prev;
913 /* len == 0 means wake all */
914 struct userfaultfd_wake_range range = { .len = 0, };
915 unsigned long new_flags;
916 VMA_ITERATOR(vmi, mm, 0);
917
918 WRITE_ONCE(ctx->released, true);
919
920 if (!mmget_not_zero(mm))
921 goto wakeup;
922
923 /*
924 * Flush page faults out of all CPUs. NOTE: all page faults
925 * must be retried without returning VM_FAULT_SIGBUS if
926 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
927 * changes while handle_userfault released the mmap_lock. So
928 * it's critical that released is set to true (above), before
929 * taking the mmap_lock for writing.
930 */
931 mmap_write_lock(mm);
932 prev = NULL;
933 for_each_vma(vmi, vma) {
934 cond_resched();
935 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
936 !!(vma->vm_flags & __VM_UFFD_FLAGS));
937 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
938 prev = vma;
939 continue;
940 }
941 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
942 prev = vma_merge(&vmi, mm, prev, vma->vm_start, vma->vm_end,
943 new_flags, vma->anon_vma,
944 vma->vm_file, vma->vm_pgoff,
945 vma_policy(vma),
946 NULL_VM_UFFD_CTX, anon_vma_name(vma));
947 if (prev) {
948 vma = prev;
949 } else {
950 prev = vma;
951 }
952
953 userfaultfd_set_vm_flags(vma, new_flags);
954 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
955 }
956 mmap_write_unlock(mm);
957 mmput(mm);
958wakeup:
959 /*
960 * After no new page faults can wait on this fault_*wqh, flush
961 * the last page faults that may have been already waiting on
962 * the fault_*wqh.
963 */
964 spin_lock_irq(&ctx->fault_pending_wqh.lock);
965 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
966 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, &range);
967 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
968
969 /* Flush pending events that may still wait on event_wqh */
970 wake_up_all(&ctx->event_wqh);
971
972 wake_up_poll(&ctx->fd_wqh, EPOLLHUP);
973 userfaultfd_ctx_put(ctx);
974 return 0;
975}
976
977/* fault_pending_wqh.lock must be hold by the caller */
978static inline struct userfaultfd_wait_queue *find_userfault_in(
979 wait_queue_head_t *wqh)
980{
981 wait_queue_entry_t *wq;
982 struct userfaultfd_wait_queue *uwq;
983
984 lockdep_assert_held(&wqh->lock);
985
986 uwq = NULL;
987 if (!waitqueue_active(wqh))
988 goto out;
989 /* walk in reverse to provide FIFO behavior to read userfaults */
990 wq = list_last_entry(&wqh->head, typeof(*wq), entry);
991 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
992out:
993 return uwq;
994}
995
996static inline struct userfaultfd_wait_queue *find_userfault(
997 struct userfaultfd_ctx *ctx)
998{
999 return find_userfault_in(&ctx->fault_pending_wqh);
1000}
1001
1002static inline struct userfaultfd_wait_queue *find_userfault_evt(
1003 struct userfaultfd_ctx *ctx)
1004{
1005 return find_userfault_in(&ctx->event_wqh);
1006}
1007
1008static __poll_t userfaultfd_poll(struct file *file, poll_table *wait)
1009{
1010 struct userfaultfd_ctx *ctx = file->private_data;
1011 __poll_t ret;
1012
1013 poll_wait(file, &ctx->fd_wqh, wait);
1014
1015 if (!userfaultfd_is_initialized(ctx))
1016 return EPOLLERR;
1017
1018 /*
1019 * poll() never guarantees that read won't block.
1020 * userfaults can be waken before they're read().
1021 */
1022 if (unlikely(!(file->f_flags & O_NONBLOCK)))
1023 return EPOLLERR;
1024 /*
1025 * lockless access to see if there are pending faults
1026 * __pollwait last action is the add_wait_queue but
1027 * the spin_unlock would allow the waitqueue_active to
1028 * pass above the actual list_add inside
1029 * add_wait_queue critical section. So use a full
1030 * memory barrier to serialize the list_add write of
1031 * add_wait_queue() with the waitqueue_active read
1032 * below.
1033 */
1034 ret = 0;
1035 smp_mb();
1036 if (waitqueue_active(&ctx->fault_pending_wqh))
1037 ret = EPOLLIN;
1038 else if (waitqueue_active(&ctx->event_wqh))
1039 ret = EPOLLIN;
1040
1041 return ret;
1042}
1043
1044static const struct file_operations userfaultfd_fops;
1045
1046static int resolve_userfault_fork(struct userfaultfd_ctx *new,
1047 struct inode *inode,
1048 struct uffd_msg *msg)
1049{
1050 int fd;
1051
1052 fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, new,
1053 O_RDONLY | (new->flags & UFFD_SHARED_FCNTL_FLAGS), inode);
1054 if (fd < 0)
1055 return fd;
1056
1057 msg->arg.reserved.reserved1 = 0;
1058 msg->arg.fork.ufd = fd;
1059 return 0;
1060}
1061
1062static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
1063 struct uffd_msg *msg, struct inode *inode)
1064{
1065 ssize_t ret;
1066 DECLARE_WAITQUEUE(wait, current);
1067 struct userfaultfd_wait_queue *uwq;
1068 /*
1069 * Handling fork event requires sleeping operations, so
1070 * we drop the event_wqh lock, then do these ops, then
1071 * lock it back and wake up the waiter. While the lock is
1072 * dropped the ewq may go away so we keep track of it
1073 * carefully.
1074 */
1075 LIST_HEAD(fork_event);
1076 struct userfaultfd_ctx *fork_nctx = NULL;
1077
1078 /* always take the fd_wqh lock before the fault_pending_wqh lock */
1079 spin_lock_irq(&ctx->fd_wqh.lock);
1080 __add_wait_queue(&ctx->fd_wqh, &wait);
1081 for (;;) {
1082 set_current_state(TASK_INTERRUPTIBLE);
1083 spin_lock(&ctx->fault_pending_wqh.lock);
1084 uwq = find_userfault(ctx);
1085 if (uwq) {
1086 /*
1087 * Use a seqcount to repeat the lockless check
1088 * in wake_userfault() to avoid missing
1089 * wakeups because during the refile both
1090 * waitqueue could become empty if this is the
1091 * only userfault.
1092 */
1093 write_seqcount_begin(&ctx->refile_seq);
1094
1095 /*
1096 * The fault_pending_wqh.lock prevents the uwq
1097 * to disappear from under us.
1098 *
1099 * Refile this userfault from
1100 * fault_pending_wqh to fault_wqh, it's not
1101 * pending anymore after we read it.
1102 *
1103 * Use list_del() by hand (as
1104 * userfaultfd_wake_function also uses
1105 * list_del_init() by hand) to be sure nobody
1106 * changes __remove_wait_queue() to use
1107 * list_del_init() in turn breaking the
1108 * !list_empty_careful() check in
1109 * handle_userfault(). The uwq->wq.head list
1110 * must never be empty at any time during the
1111 * refile, or the waitqueue could disappear
1112 * from under us. The "wait_queue_head_t"
1113 * parameter of __remove_wait_queue() is unused
1114 * anyway.
1115 */
1116 list_del(&uwq->wq.entry);
1117 add_wait_queue(&ctx->fault_wqh, &uwq->wq);
1118
1119 write_seqcount_end(&ctx->refile_seq);
1120
1121 /* careful to always initialize msg if ret == 0 */
1122 *msg = uwq->msg;
1123 spin_unlock(&ctx->fault_pending_wqh.lock);
1124 ret = 0;
1125 break;
1126 }
1127 spin_unlock(&ctx->fault_pending_wqh.lock);
1128
1129 spin_lock(&ctx->event_wqh.lock);
1130 uwq = find_userfault_evt(ctx);
1131 if (uwq) {
1132 *msg = uwq->msg;
1133
1134 if (uwq->msg.event == UFFD_EVENT_FORK) {
1135 fork_nctx = (struct userfaultfd_ctx *)
1136 (unsigned long)
1137 uwq->msg.arg.reserved.reserved1;
1138 list_move(&uwq->wq.entry, &fork_event);
1139 /*
1140 * fork_nctx can be freed as soon as
1141 * we drop the lock, unless we take a
1142 * reference on it.
1143 */
1144 userfaultfd_ctx_get(fork_nctx);
1145 spin_unlock(&ctx->event_wqh.lock);
1146 ret = 0;
1147 break;
1148 }
1149
1150 userfaultfd_event_complete(ctx, uwq);
1151 spin_unlock(&ctx->event_wqh.lock);
1152 ret = 0;
1153 break;
1154 }
1155 spin_unlock(&ctx->event_wqh.lock);
1156
1157 if (signal_pending(current)) {
1158 ret = -ERESTARTSYS;
1159 break;
1160 }
1161 if (no_wait) {
1162 ret = -EAGAIN;
1163 break;
1164 }
1165 spin_unlock_irq(&ctx->fd_wqh.lock);
1166 schedule();
1167 spin_lock_irq(&ctx->fd_wqh.lock);
1168 }
1169 __remove_wait_queue(&ctx->fd_wqh, &wait);
1170 __set_current_state(TASK_RUNNING);
1171 spin_unlock_irq(&ctx->fd_wqh.lock);
1172
1173 if (!ret && msg->event == UFFD_EVENT_FORK) {
1174 ret = resolve_userfault_fork(fork_nctx, inode, msg);
1175 spin_lock_irq(&ctx->event_wqh.lock);
1176 if (!list_empty(&fork_event)) {
1177 /*
1178 * The fork thread didn't abort, so we can
1179 * drop the temporary refcount.
1180 */
1181 userfaultfd_ctx_put(fork_nctx);
1182
1183 uwq = list_first_entry(&fork_event,
1184 typeof(*uwq),
1185 wq.entry);
1186 /*
1187 * If fork_event list wasn't empty and in turn
1188 * the event wasn't already released by fork
1189 * (the event is allocated on fork kernel
1190 * stack), put the event back to its place in
1191 * the event_wq. fork_event head will be freed
1192 * as soon as we return so the event cannot
1193 * stay queued there no matter the current
1194 * "ret" value.
1195 */
1196 list_del(&uwq->wq.entry);
1197 __add_wait_queue(&ctx->event_wqh, &uwq->wq);
1198
1199 /*
1200 * Leave the event in the waitqueue and report
1201 * error to userland if we failed to resolve
1202 * the userfault fork.
1203 */
1204 if (likely(!ret))
1205 userfaultfd_event_complete(ctx, uwq);
1206 } else {
1207 /*
1208 * Here the fork thread aborted and the
1209 * refcount from the fork thread on fork_nctx
1210 * has already been released. We still hold
1211 * the reference we took before releasing the
1212 * lock above. If resolve_userfault_fork
1213 * failed we've to drop it because the
1214 * fork_nctx has to be freed in such case. If
1215 * it succeeded we'll hold it because the new
1216 * uffd references it.
1217 */
1218 if (ret)
1219 userfaultfd_ctx_put(fork_nctx);
1220 }
1221 spin_unlock_irq(&ctx->event_wqh.lock);
1222 }
1223
1224 return ret;
1225}
1226
1227static ssize_t userfaultfd_read(struct file *file, char __user *buf,
1228 size_t count, loff_t *ppos)
1229{
1230 struct userfaultfd_ctx *ctx = file->private_data;
1231 ssize_t _ret, ret = 0;
1232 struct uffd_msg msg;
1233 int no_wait = file->f_flags & O_NONBLOCK;
1234 struct inode *inode = file_inode(file);
1235
1236 if (!userfaultfd_is_initialized(ctx))
1237 return -EINVAL;
1238
1239 for (;;) {
1240 if (count < sizeof(msg))
1241 return ret ? ret : -EINVAL;
1242 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg, inode);
1243 if (_ret < 0)
1244 return ret ? ret : _ret;
1245 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
1246 return ret ? ret : -EFAULT;
1247 ret += sizeof(msg);
1248 buf += sizeof(msg);
1249 count -= sizeof(msg);
1250 /*
1251 * Allow to read more than one fault at time but only
1252 * block if waiting for the very first one.
1253 */
1254 no_wait = O_NONBLOCK;
1255 }
1256}
1257
1258static void __wake_userfault(struct userfaultfd_ctx *ctx,
1259 struct userfaultfd_wake_range *range)
1260{
1261 spin_lock_irq(&ctx->fault_pending_wqh.lock);
1262 /* wake all in the range and autoremove */
1263 if (waitqueue_active(&ctx->fault_pending_wqh))
1264 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
1265 range);
1266 if (waitqueue_active(&ctx->fault_wqh))
1267 __wake_up(&ctx->fault_wqh, TASK_NORMAL, 1, range);
1268 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
1269}
1270
1271static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
1272 struct userfaultfd_wake_range *range)
1273{
1274 unsigned seq;
1275 bool need_wakeup;
1276
1277 /*
1278 * To be sure waitqueue_active() is not reordered by the CPU
1279 * before the pagetable update, use an explicit SMP memory
1280 * barrier here. PT lock release or mmap_read_unlock(mm) still
1281 * have release semantics that can allow the
1282 * waitqueue_active() to be reordered before the pte update.
1283 */
1284 smp_mb();
1285
1286 /*
1287 * Use waitqueue_active because it's very frequent to
1288 * change the address space atomically even if there are no
1289 * userfaults yet. So we take the spinlock only when we're
1290 * sure we've userfaults to wake.
1291 */
1292 do {
1293 seq = read_seqcount_begin(&ctx->refile_seq);
1294 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
1295 waitqueue_active(&ctx->fault_wqh);
1296 cond_resched();
1297 } while (read_seqcount_retry(&ctx->refile_seq, seq));
1298 if (need_wakeup)
1299 __wake_userfault(ctx, range);
1300}
1301
1302static __always_inline int validate_range(struct mm_struct *mm,
1303 __u64 start, __u64 len)
1304{
1305 __u64 task_size = mm->task_size;
1306
1307 if (start & ~PAGE_MASK)
1308 return -EINVAL;
1309 if (len & ~PAGE_MASK)
1310 return -EINVAL;
1311 if (!len)
1312 return -EINVAL;
1313 if (start < mmap_min_addr)
1314 return -EINVAL;
1315 if (start >= task_size)
1316 return -EINVAL;
1317 if (len > task_size - start)
1318 return -EINVAL;
1319 return 0;
1320}
1321
1322static int userfaultfd_register(struct userfaultfd_ctx *ctx,
1323 unsigned long arg)
1324{
1325 struct mm_struct *mm = ctx->mm;
1326 struct vm_area_struct *vma, *prev, *cur;
1327 int ret;
1328 struct uffdio_register uffdio_register;
1329 struct uffdio_register __user *user_uffdio_register;
1330 unsigned long vm_flags, new_flags;
1331 bool found;
1332 bool basic_ioctls;
1333 unsigned long start, end, vma_end;
1334 struct vma_iterator vmi;
1335 pgoff_t pgoff;
1336
1337 user_uffdio_register = (struct uffdio_register __user *) arg;
1338
1339 ret = -EFAULT;
1340 if (copy_from_user(&uffdio_register, user_uffdio_register,
1341 sizeof(uffdio_register)-sizeof(__u64)))
1342 goto out;
1343
1344 ret = -EINVAL;
1345 if (!uffdio_register.mode)
1346 goto out;
1347 if (uffdio_register.mode & ~UFFD_API_REGISTER_MODES)
1348 goto out;
1349 vm_flags = 0;
1350 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1351 vm_flags |= VM_UFFD_MISSING;
1352 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1353#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
1354 goto out;
1355#endif
1356 vm_flags |= VM_UFFD_WP;
1357 }
1358 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR) {
1359#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
1360 goto out;
1361#endif
1362 vm_flags |= VM_UFFD_MINOR;
1363 }
1364
1365 ret = validate_range(mm, uffdio_register.range.start,
1366 uffdio_register.range.len);
1367 if (ret)
1368 goto out;
1369
1370 start = uffdio_register.range.start;
1371 end = start + uffdio_register.range.len;
1372
1373 ret = -ENOMEM;
1374 if (!mmget_not_zero(mm))
1375 goto out;
1376
1377 ret = -EINVAL;
1378 mmap_write_lock(mm);
1379 vma_iter_init(&vmi, mm, start);
1380 vma = vma_find(&vmi, end);
1381 if (!vma)
1382 goto out_unlock;
1383
1384 /*
1385 * If the first vma contains huge pages, make sure start address
1386 * is aligned to huge page size.
1387 */
1388 if (is_vm_hugetlb_page(vma)) {
1389 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1390
1391 if (start & (vma_hpagesize - 1))
1392 goto out_unlock;
1393 }
1394
1395 /*
1396 * Search for not compatible vmas.
1397 */
1398 found = false;
1399 basic_ioctls = false;
1400 cur = vma;
1401 do {
1402 cond_resched();
1403
1404 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1405 !!(cur->vm_flags & __VM_UFFD_FLAGS));
1406
1407 /* check not compatible vmas */
1408 ret = -EINVAL;
1409 if (!vma_can_userfault(cur, vm_flags))
1410 goto out_unlock;
1411
1412 /*
1413 * UFFDIO_COPY will fill file holes even without
1414 * PROT_WRITE. This check enforces that if this is a
1415 * MAP_SHARED, the process has write permission to the backing
1416 * file. If VM_MAYWRITE is set it also enforces that on a
1417 * MAP_SHARED vma: there is no F_WRITE_SEAL and no further
1418 * F_WRITE_SEAL can be taken until the vma is destroyed.
1419 */
1420 ret = -EPERM;
1421 if (unlikely(!(cur->vm_flags & VM_MAYWRITE)))
1422 goto out_unlock;
1423
1424 /*
1425 * If this vma contains ending address, and huge pages
1426 * check alignment.
1427 */
1428 if (is_vm_hugetlb_page(cur) && end <= cur->vm_end &&
1429 end > cur->vm_start) {
1430 unsigned long vma_hpagesize = vma_kernel_pagesize(cur);
1431
1432 ret = -EINVAL;
1433
1434 if (end & (vma_hpagesize - 1))
1435 goto out_unlock;
1436 }
1437 if ((vm_flags & VM_UFFD_WP) && !(cur->vm_flags & VM_MAYWRITE))
1438 goto out_unlock;
1439
1440 /*
1441 * Check that this vma isn't already owned by a
1442 * different userfaultfd. We can't allow more than one
1443 * userfaultfd to own a single vma simultaneously or we
1444 * wouldn't know which one to deliver the userfaults to.
1445 */
1446 ret = -EBUSY;
1447 if (cur->vm_userfaultfd_ctx.ctx &&
1448 cur->vm_userfaultfd_ctx.ctx != ctx)
1449 goto out_unlock;
1450
1451 /*
1452 * Note vmas containing huge pages
1453 */
1454 if (is_vm_hugetlb_page(cur))
1455 basic_ioctls = true;
1456
1457 found = true;
1458 } for_each_vma_range(vmi, cur, end);
1459 BUG_ON(!found);
1460
1461 vma_iter_set(&vmi, start);
1462 prev = vma_prev(&vmi);
1463 if (vma->vm_start < start)
1464 prev = vma;
1465
1466 ret = 0;
1467 for_each_vma_range(vmi, vma, end) {
1468 cond_resched();
1469
1470 BUG_ON(!vma_can_userfault(vma, vm_flags));
1471 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1472 vma->vm_userfaultfd_ctx.ctx != ctx);
1473 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1474
1475 /*
1476 * Nothing to do: this vma is already registered into this
1477 * userfaultfd and with the right tracking mode too.
1478 */
1479 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1480 (vma->vm_flags & vm_flags) == vm_flags)
1481 goto skip;
1482
1483 if (vma->vm_start > start)
1484 start = vma->vm_start;
1485 vma_end = min(end, vma->vm_end);
1486
1487 new_flags = (vma->vm_flags & ~__VM_UFFD_FLAGS) | vm_flags;
1488 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
1489 prev = vma_merge(&vmi, mm, prev, start, vma_end, new_flags,
1490 vma->anon_vma, vma->vm_file, pgoff,
1491 vma_policy(vma),
1492 ((struct vm_userfaultfd_ctx){ ctx }),
1493 anon_vma_name(vma));
1494 if (prev) {
1495 /* vma_merge() invalidated the mas */
1496 vma = prev;
1497 goto next;
1498 }
1499 if (vma->vm_start < start) {
1500 ret = split_vma(&vmi, vma, start, 1);
1501 if (ret)
1502 break;
1503 }
1504 if (vma->vm_end > end) {
1505 ret = split_vma(&vmi, vma, end, 0);
1506 if (ret)
1507 break;
1508 }
1509 next:
1510 /*
1511 * In the vma_merge() successful mprotect-like case 8:
1512 * the next vma was merged into the current one and
1513 * the current one has not been updated yet.
1514 */
1515 userfaultfd_set_vm_flags(vma, new_flags);
1516 vma->vm_userfaultfd_ctx.ctx = ctx;
1517
1518 if (is_vm_hugetlb_page(vma) && uffd_disable_huge_pmd_share(vma))
1519 hugetlb_unshare_all_pmds(vma);
1520
1521 skip:
1522 prev = vma;
1523 start = vma->vm_end;
1524 }
1525
1526out_unlock:
1527 mmap_write_unlock(mm);
1528 mmput(mm);
1529 if (!ret) {
1530 __u64 ioctls_out;
1531
1532 ioctls_out = basic_ioctls ? UFFD_API_RANGE_IOCTLS_BASIC :
1533 UFFD_API_RANGE_IOCTLS;
1534
1535 /*
1536 * Declare the WP ioctl only if the WP mode is
1537 * specified and all checks passed with the range
1538 */
1539 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_WP))
1540 ioctls_out &= ~((__u64)1 << _UFFDIO_WRITEPROTECT);
1541
1542 /* CONTINUE ioctl is only supported for MINOR ranges. */
1543 if (!(uffdio_register.mode & UFFDIO_REGISTER_MODE_MINOR))
1544 ioctls_out &= ~((__u64)1 << _UFFDIO_CONTINUE);
1545
1546 /*
1547 * Now that we scanned all vmas we can already tell
1548 * userland which ioctls methods are guaranteed to
1549 * succeed on this range.
1550 */
1551 if (put_user(ioctls_out, &user_uffdio_register->ioctls))
1552 ret = -EFAULT;
1553 }
1554out:
1555 return ret;
1556}
1557
1558static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1559 unsigned long arg)
1560{
1561 struct mm_struct *mm = ctx->mm;
1562 struct vm_area_struct *vma, *prev, *cur;
1563 int ret;
1564 struct uffdio_range uffdio_unregister;
1565 unsigned long new_flags;
1566 bool found;
1567 unsigned long start, end, vma_end;
1568 const void __user *buf = (void __user *)arg;
1569 struct vma_iterator vmi;
1570 pgoff_t pgoff;
1571
1572 ret = -EFAULT;
1573 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1574 goto out;
1575
1576 ret = validate_range(mm, uffdio_unregister.start,
1577 uffdio_unregister.len);
1578 if (ret)
1579 goto out;
1580
1581 start = uffdio_unregister.start;
1582 end = start + uffdio_unregister.len;
1583
1584 ret = -ENOMEM;
1585 if (!mmget_not_zero(mm))
1586 goto out;
1587
1588 mmap_write_lock(mm);
1589 ret = -EINVAL;
1590 vma_iter_init(&vmi, mm, start);
1591 vma = vma_find(&vmi, end);
1592 if (!vma)
1593 goto out_unlock;
1594
1595 /*
1596 * If the first vma contains huge pages, make sure start address
1597 * is aligned to huge page size.
1598 */
1599 if (is_vm_hugetlb_page(vma)) {
1600 unsigned long vma_hpagesize = vma_kernel_pagesize(vma);
1601
1602 if (start & (vma_hpagesize - 1))
1603 goto out_unlock;
1604 }
1605
1606 /*
1607 * Search for not compatible vmas.
1608 */
1609 found = false;
1610 cur = vma;
1611 do {
1612 cond_resched();
1613
1614 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1615 !!(cur->vm_flags & __VM_UFFD_FLAGS));
1616
1617 /*
1618 * Check not compatible vmas, not strictly required
1619 * here as not compatible vmas cannot have an
1620 * userfaultfd_ctx registered on them, but this
1621 * provides for more strict behavior to notice
1622 * unregistration errors.
1623 */
1624 if (!vma_can_userfault(cur, cur->vm_flags))
1625 goto out_unlock;
1626
1627 found = true;
1628 } for_each_vma_range(vmi, cur, end);
1629 BUG_ON(!found);
1630
1631 vma_iter_set(&vmi, start);
1632 prev = vma_prev(&vmi);
1633 if (vma->vm_start < start)
1634 prev = vma;
1635
1636 ret = 0;
1637 for_each_vma_range(vmi, vma, end) {
1638 cond_resched();
1639
1640 BUG_ON(!vma_can_userfault(vma, vma->vm_flags));
1641
1642 /*
1643 * Nothing to do: this vma is already registered into this
1644 * userfaultfd and with the right tracking mode too.
1645 */
1646 if (!vma->vm_userfaultfd_ctx.ctx)
1647 goto skip;
1648
1649 WARN_ON(!(vma->vm_flags & VM_MAYWRITE));
1650
1651 if (vma->vm_start > start)
1652 start = vma->vm_start;
1653 vma_end = min(end, vma->vm_end);
1654
1655 if (userfaultfd_missing(vma)) {
1656 /*
1657 * Wake any concurrent pending userfault while
1658 * we unregister, so they will not hang
1659 * permanently and it avoids userland to call
1660 * UFFDIO_WAKE explicitly.
1661 */
1662 struct userfaultfd_wake_range range;
1663 range.start = start;
1664 range.len = vma_end - start;
1665 wake_userfault(vma->vm_userfaultfd_ctx.ctx, &range);
1666 }
1667
1668 /* Reset ptes for the whole vma range if wr-protected */
1669 if (userfaultfd_wp(vma))
1670 uffd_wp_range(vma, start, vma_end - start, false);
1671
1672 new_flags = vma->vm_flags & ~__VM_UFFD_FLAGS;
1673 pgoff = vma->vm_pgoff + ((start - vma->vm_start) >> PAGE_SHIFT);
1674 prev = vma_merge(&vmi, mm, prev, start, vma_end, new_flags,
1675 vma->anon_vma, vma->vm_file, pgoff,
1676 vma_policy(vma),
1677 NULL_VM_UFFD_CTX, anon_vma_name(vma));
1678 if (prev) {
1679 vma = prev;
1680 goto next;
1681 }
1682 if (vma->vm_start < start) {
1683 ret = split_vma(&vmi, vma, start, 1);
1684 if (ret)
1685 break;
1686 }
1687 if (vma->vm_end > end) {
1688 ret = split_vma(&vmi, vma, end, 0);
1689 if (ret)
1690 break;
1691 }
1692 next:
1693 /*
1694 * In the vma_merge() successful mprotect-like case 8:
1695 * the next vma was merged into the current one and
1696 * the current one has not been updated yet.
1697 */
1698 userfaultfd_set_vm_flags(vma, new_flags);
1699 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1700
1701 skip:
1702 prev = vma;
1703 start = vma->vm_end;
1704 }
1705
1706out_unlock:
1707 mmap_write_unlock(mm);
1708 mmput(mm);
1709out:
1710 return ret;
1711}
1712
1713/*
1714 * userfaultfd_wake may be used in combination with the
1715 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
1716 */
1717static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1718 unsigned long arg)
1719{
1720 int ret;
1721 struct uffdio_range uffdio_wake;
1722 struct userfaultfd_wake_range range;
1723 const void __user *buf = (void __user *)arg;
1724
1725 ret = -EFAULT;
1726 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1727 goto out;
1728
1729 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1730 if (ret)
1731 goto out;
1732
1733 range.start = uffdio_wake.start;
1734 range.len = uffdio_wake.len;
1735
1736 /*
1737 * len == 0 means wake all and we don't want to wake all here,
1738 * so check it again to be sure.
1739 */
1740 VM_BUG_ON(!range.len);
1741
1742 wake_userfault(ctx, &range);
1743 ret = 0;
1744
1745out:
1746 return ret;
1747}
1748
1749static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1750 unsigned long arg)
1751{
1752 __s64 ret;
1753 struct uffdio_copy uffdio_copy;
1754 struct uffdio_copy __user *user_uffdio_copy;
1755 struct userfaultfd_wake_range range;
1756 uffd_flags_t flags = 0;
1757
1758 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1759
1760 ret = -EAGAIN;
1761 if (atomic_read(&ctx->mmap_changing))
1762 goto out;
1763
1764 ret = -EFAULT;
1765 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1766 /* don't copy "copy" last field */
1767 sizeof(uffdio_copy)-sizeof(__s64)))
1768 goto out;
1769
1770 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1771 if (ret)
1772 goto out;
1773 /*
1774 * double check for wraparound just in case. copy_from_user()
1775 * will later check uffdio_copy.src + uffdio_copy.len to fit
1776 * in the userland range.
1777 */
1778 ret = -EINVAL;
1779 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1780 goto out;
1781 if (uffdio_copy.mode & ~(UFFDIO_COPY_MODE_DONTWAKE|UFFDIO_COPY_MODE_WP))
1782 goto out;
1783 if (uffdio_copy.mode & UFFDIO_COPY_MODE_WP)
1784 flags |= MFILL_ATOMIC_WP;
1785 if (mmget_not_zero(ctx->mm)) {
1786 ret = mfill_atomic_copy(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1787 uffdio_copy.len, &ctx->mmap_changing,
1788 flags);
1789 mmput(ctx->mm);
1790 } else {
1791 return -ESRCH;
1792 }
1793 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1794 return -EFAULT;
1795 if (ret < 0)
1796 goto out;
1797 BUG_ON(!ret);
1798 /* len == 0 would wake all */
1799 range.len = ret;
1800 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1801 range.start = uffdio_copy.dst;
1802 wake_userfault(ctx, &range);
1803 }
1804 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1805out:
1806 return ret;
1807}
1808
1809static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1810 unsigned long arg)
1811{
1812 __s64 ret;
1813 struct uffdio_zeropage uffdio_zeropage;
1814 struct uffdio_zeropage __user *user_uffdio_zeropage;
1815 struct userfaultfd_wake_range range;
1816
1817 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1818
1819 ret = -EAGAIN;
1820 if (atomic_read(&ctx->mmap_changing))
1821 goto out;
1822
1823 ret = -EFAULT;
1824 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1825 /* don't copy "zeropage" last field */
1826 sizeof(uffdio_zeropage)-sizeof(__s64)))
1827 goto out;
1828
1829 ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1830 uffdio_zeropage.range.len);
1831 if (ret)
1832 goto out;
1833 ret = -EINVAL;
1834 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1835 goto out;
1836
1837 if (mmget_not_zero(ctx->mm)) {
1838 ret = mfill_atomic_zeropage(ctx->mm, uffdio_zeropage.range.start,
1839 uffdio_zeropage.range.len,
1840 &ctx->mmap_changing);
1841 mmput(ctx->mm);
1842 } else {
1843 return -ESRCH;
1844 }
1845 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1846 return -EFAULT;
1847 if (ret < 0)
1848 goto out;
1849 /* len == 0 would wake all */
1850 BUG_ON(!ret);
1851 range.len = ret;
1852 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1853 range.start = uffdio_zeropage.range.start;
1854 wake_userfault(ctx, &range);
1855 }
1856 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1857out:
1858 return ret;
1859}
1860
1861static int userfaultfd_writeprotect(struct userfaultfd_ctx *ctx,
1862 unsigned long arg)
1863{
1864 int ret;
1865 struct uffdio_writeprotect uffdio_wp;
1866 struct uffdio_writeprotect __user *user_uffdio_wp;
1867 struct userfaultfd_wake_range range;
1868 bool mode_wp, mode_dontwake;
1869
1870 if (atomic_read(&ctx->mmap_changing))
1871 return -EAGAIN;
1872
1873 user_uffdio_wp = (struct uffdio_writeprotect __user *) arg;
1874
1875 if (copy_from_user(&uffdio_wp, user_uffdio_wp,
1876 sizeof(struct uffdio_writeprotect)))
1877 return -EFAULT;
1878
1879 ret = validate_range(ctx->mm, uffdio_wp.range.start,
1880 uffdio_wp.range.len);
1881 if (ret)
1882 return ret;
1883
1884 if (uffdio_wp.mode & ~(UFFDIO_WRITEPROTECT_MODE_DONTWAKE |
1885 UFFDIO_WRITEPROTECT_MODE_WP))
1886 return -EINVAL;
1887
1888 mode_wp = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_WP;
1889 mode_dontwake = uffdio_wp.mode & UFFDIO_WRITEPROTECT_MODE_DONTWAKE;
1890
1891 if (mode_wp && mode_dontwake)
1892 return -EINVAL;
1893
1894 if (mmget_not_zero(ctx->mm)) {
1895 ret = mwriteprotect_range(ctx->mm, uffdio_wp.range.start,
1896 uffdio_wp.range.len, mode_wp,
1897 &ctx->mmap_changing);
1898 mmput(ctx->mm);
1899 } else {
1900 return -ESRCH;
1901 }
1902
1903 if (ret)
1904 return ret;
1905
1906 if (!mode_wp && !mode_dontwake) {
1907 range.start = uffdio_wp.range.start;
1908 range.len = uffdio_wp.range.len;
1909 wake_userfault(ctx, &range);
1910 }
1911 return ret;
1912}
1913
1914static int userfaultfd_continue(struct userfaultfd_ctx *ctx, unsigned long arg)
1915{
1916 __s64 ret;
1917 struct uffdio_continue uffdio_continue;
1918 struct uffdio_continue __user *user_uffdio_continue;
1919 struct userfaultfd_wake_range range;
1920 uffd_flags_t flags = 0;
1921
1922 user_uffdio_continue = (struct uffdio_continue __user *)arg;
1923
1924 ret = -EAGAIN;
1925 if (atomic_read(&ctx->mmap_changing))
1926 goto out;
1927
1928 ret = -EFAULT;
1929 if (copy_from_user(&uffdio_continue, user_uffdio_continue,
1930 /* don't copy the output fields */
1931 sizeof(uffdio_continue) - (sizeof(__s64))))
1932 goto out;
1933
1934 ret = validate_range(ctx->mm, uffdio_continue.range.start,
1935 uffdio_continue.range.len);
1936 if (ret)
1937 goto out;
1938
1939 ret = -EINVAL;
1940 /* double check for wraparound just in case. */
1941 if (uffdio_continue.range.start + uffdio_continue.range.len <=
1942 uffdio_continue.range.start) {
1943 goto out;
1944 }
1945 if (uffdio_continue.mode & ~(UFFDIO_CONTINUE_MODE_DONTWAKE |
1946 UFFDIO_CONTINUE_MODE_WP))
1947 goto out;
1948 if (uffdio_continue.mode & UFFDIO_CONTINUE_MODE_WP)
1949 flags |= MFILL_ATOMIC_WP;
1950
1951 if (mmget_not_zero(ctx->mm)) {
1952 ret = mfill_atomic_continue(ctx->mm, uffdio_continue.range.start,
1953 uffdio_continue.range.len,
1954 &ctx->mmap_changing, flags);
1955 mmput(ctx->mm);
1956 } else {
1957 return -ESRCH;
1958 }
1959
1960 if (unlikely(put_user(ret, &user_uffdio_continue->mapped)))
1961 return -EFAULT;
1962 if (ret < 0)
1963 goto out;
1964
1965 /* len == 0 would wake all */
1966 BUG_ON(!ret);
1967 range.len = ret;
1968 if (!(uffdio_continue.mode & UFFDIO_CONTINUE_MODE_DONTWAKE)) {
1969 range.start = uffdio_continue.range.start;
1970 wake_userfault(ctx, &range);
1971 }
1972 ret = range.len == uffdio_continue.range.len ? 0 : -EAGAIN;
1973
1974out:
1975 return ret;
1976}
1977
1978static inline unsigned int uffd_ctx_features(__u64 user_features)
1979{
1980 /*
1981 * For the current set of features the bits just coincide. Set
1982 * UFFD_FEATURE_INITIALIZED to mark the features as enabled.
1983 */
1984 return (unsigned int)user_features | UFFD_FEATURE_INITIALIZED;
1985}
1986
1987/*
1988 * userland asks for a certain API version and we return which bits
1989 * and ioctl commands are implemented in this kernel for such API
1990 * version or -EINVAL if unknown.
1991 */
1992static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1993 unsigned long arg)
1994{
1995 struct uffdio_api uffdio_api;
1996 void __user *buf = (void __user *)arg;
1997 unsigned int ctx_features;
1998 int ret;
1999 __u64 features;
2000
2001 ret = -EFAULT;
2002 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
2003 goto out;
2004 features = uffdio_api.features;
2005 ret = -EINVAL;
2006 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES))
2007 goto err_out;
2008 ret = -EPERM;
2009 if ((features & UFFD_FEATURE_EVENT_FORK) && !capable(CAP_SYS_PTRACE))
2010 goto err_out;
2011 /* report all available features and ioctls to userland */
2012 uffdio_api.features = UFFD_API_FEATURES;
2013#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_MINOR
2014 uffdio_api.features &=
2015 ~(UFFD_FEATURE_MINOR_HUGETLBFS | UFFD_FEATURE_MINOR_SHMEM);
2016#endif
2017#ifndef CONFIG_HAVE_ARCH_USERFAULTFD_WP
2018 uffdio_api.features &= ~UFFD_FEATURE_PAGEFAULT_FLAG_WP;
2019#endif
2020#ifndef CONFIG_PTE_MARKER_UFFD_WP
2021 uffdio_api.features &= ~UFFD_FEATURE_WP_HUGETLBFS_SHMEM;
2022 uffdio_api.features &= ~UFFD_FEATURE_WP_UNPOPULATED;
2023#endif
2024 uffdio_api.ioctls = UFFD_API_IOCTLS;
2025 ret = -EFAULT;
2026 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
2027 goto out;
2028
2029 /* only enable the requested features for this uffd context */
2030 ctx_features = uffd_ctx_features(features);
2031 ret = -EINVAL;
2032 if (cmpxchg(&ctx->features, 0, ctx_features) != 0)
2033 goto err_out;
2034
2035 ret = 0;
2036out:
2037 return ret;
2038err_out:
2039 memset(&uffdio_api, 0, sizeof(uffdio_api));
2040 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
2041 ret = -EFAULT;
2042 goto out;
2043}
2044
2045static long userfaultfd_ioctl(struct file *file, unsigned cmd,
2046 unsigned long arg)
2047{
2048 int ret = -EINVAL;
2049 struct userfaultfd_ctx *ctx = file->private_data;
2050
2051 if (cmd != UFFDIO_API && !userfaultfd_is_initialized(ctx))
2052 return -EINVAL;
2053
2054 switch(cmd) {
2055 case UFFDIO_API:
2056 ret = userfaultfd_api(ctx, arg);
2057 break;
2058 case UFFDIO_REGISTER:
2059 ret = userfaultfd_register(ctx, arg);
2060 break;
2061 case UFFDIO_UNREGISTER:
2062 ret = userfaultfd_unregister(ctx, arg);
2063 break;
2064 case UFFDIO_WAKE:
2065 ret = userfaultfd_wake(ctx, arg);
2066 break;
2067 case UFFDIO_COPY:
2068 ret = userfaultfd_copy(ctx, arg);
2069 break;
2070 case UFFDIO_ZEROPAGE:
2071 ret = userfaultfd_zeropage(ctx, arg);
2072 break;
2073 case UFFDIO_WRITEPROTECT:
2074 ret = userfaultfd_writeprotect(ctx, arg);
2075 break;
2076 case UFFDIO_CONTINUE:
2077 ret = userfaultfd_continue(ctx, arg);
2078 break;
2079 }
2080 return ret;
2081}
2082
2083#ifdef CONFIG_PROC_FS
2084static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
2085{
2086 struct userfaultfd_ctx *ctx = f->private_data;
2087 wait_queue_entry_t *wq;
2088 unsigned long pending = 0, total = 0;
2089
2090 spin_lock_irq(&ctx->fault_pending_wqh.lock);
2091 list_for_each_entry(wq, &ctx->fault_pending_wqh.head, entry) {
2092 pending++;
2093 total++;
2094 }
2095 list_for_each_entry(wq, &ctx->fault_wqh.head, entry) {
2096 total++;
2097 }
2098 spin_unlock_irq(&ctx->fault_pending_wqh.lock);
2099
2100 /*
2101 * If more protocols will be added, there will be all shown
2102 * separated by a space. Like this:
2103 * protocols: aa:... bb:...
2104 */
2105 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
2106 pending, total, UFFD_API, ctx->features,
2107 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
2108}
2109#endif
2110
2111static const struct file_operations userfaultfd_fops = {
2112#ifdef CONFIG_PROC_FS
2113 .show_fdinfo = userfaultfd_show_fdinfo,
2114#endif
2115 .release = userfaultfd_release,
2116 .poll = userfaultfd_poll,
2117 .read = userfaultfd_read,
2118 .unlocked_ioctl = userfaultfd_ioctl,
2119 .compat_ioctl = compat_ptr_ioctl,
2120 .llseek = noop_llseek,
2121};
2122
2123static void init_once_userfaultfd_ctx(void *mem)
2124{
2125 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
2126
2127 init_waitqueue_head(&ctx->fault_pending_wqh);
2128 init_waitqueue_head(&ctx->fault_wqh);
2129 init_waitqueue_head(&ctx->event_wqh);
2130 init_waitqueue_head(&ctx->fd_wqh);
2131 seqcount_spinlock_init(&ctx->refile_seq, &ctx->fault_pending_wqh.lock);
2132}
2133
2134static int new_userfaultfd(int flags)
2135{
2136 struct userfaultfd_ctx *ctx;
2137 int fd;
2138
2139 BUG_ON(!current->mm);
2140
2141 /* Check the UFFD_* constants for consistency. */
2142 BUILD_BUG_ON(UFFD_USER_MODE_ONLY & UFFD_SHARED_FCNTL_FLAGS);
2143 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
2144 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
2145
2146 if (flags & ~(UFFD_SHARED_FCNTL_FLAGS | UFFD_USER_MODE_ONLY))
2147 return -EINVAL;
2148
2149 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
2150 if (!ctx)
2151 return -ENOMEM;
2152
2153 refcount_set(&ctx->refcount, 1);
2154 ctx->flags = flags;
2155 ctx->features = 0;
2156 ctx->released = false;
2157 atomic_set(&ctx->mmap_changing, 0);
2158 ctx->mm = current->mm;
2159 /* prevent the mm struct to be freed */
2160 mmgrab(ctx->mm);
2161
2162 fd = anon_inode_getfd_secure("[userfaultfd]", &userfaultfd_fops, ctx,
2163 O_RDONLY | (flags & UFFD_SHARED_FCNTL_FLAGS), NULL);
2164 if (fd < 0) {
2165 mmdrop(ctx->mm);
2166 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
2167 }
2168 return fd;
2169}
2170
2171static inline bool userfaultfd_syscall_allowed(int flags)
2172{
2173 /* Userspace-only page faults are always allowed */
2174 if (flags & UFFD_USER_MODE_ONLY)
2175 return true;
2176
2177 /*
2178 * The user is requesting a userfaultfd which can handle kernel faults.
2179 * Privileged users are always allowed to do this.
2180 */
2181 if (capable(CAP_SYS_PTRACE))
2182 return true;
2183
2184 /* Otherwise, access to kernel fault handling is sysctl controlled. */
2185 return sysctl_unprivileged_userfaultfd;
2186}
2187
2188SYSCALL_DEFINE1(userfaultfd, int, flags)
2189{
2190 if (!userfaultfd_syscall_allowed(flags))
2191 return -EPERM;
2192
2193 return new_userfaultfd(flags);
2194}
2195
2196static long userfaultfd_dev_ioctl(struct file *file, unsigned int cmd, unsigned long flags)
2197{
2198 if (cmd != USERFAULTFD_IOC_NEW)
2199 return -EINVAL;
2200
2201 return new_userfaultfd(flags);
2202}
2203
2204static const struct file_operations userfaultfd_dev_fops = {
2205 .unlocked_ioctl = userfaultfd_dev_ioctl,
2206 .compat_ioctl = userfaultfd_dev_ioctl,
2207 .owner = THIS_MODULE,
2208 .llseek = noop_llseek,
2209};
2210
2211static struct miscdevice userfaultfd_misc = {
2212 .minor = MISC_DYNAMIC_MINOR,
2213 .name = "userfaultfd",
2214 .fops = &userfaultfd_dev_fops
2215};
2216
2217static int __init userfaultfd_init(void)
2218{
2219 int ret;
2220
2221 ret = misc_register(&userfaultfd_misc);
2222 if (ret)
2223 return ret;
2224
2225 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
2226 sizeof(struct userfaultfd_ctx),
2227 0,
2228 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
2229 init_once_userfaultfd_ctx);
2230#ifdef CONFIG_SYSCTL
2231 register_sysctl_init("vm", vm_userfaultfd_table);
2232#endif
2233 return 0;
2234}
2235__initcall(userfaultfd_init);