Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/fs/pipe.c
4 *
5 * Copyright (C) 1991, 1992, 1999 Linus Torvalds
6 */
7
8#include <linux/mm.h>
9#include <linux/file.h>
10#include <linux/poll.h>
11#include <linux/slab.h>
12#include <linux/module.h>
13#include <linux/init.h>
14#include <linux/fs.h>
15#include <linux/log2.h>
16#include <linux/mount.h>
17#include <linux/pseudo_fs.h>
18#include <linux/magic.h>
19#include <linux/pipe_fs_i.h>
20#include <linux/uio.h>
21#include <linux/highmem.h>
22#include <linux/pagemap.h>
23#include <linux/audit.h>
24#include <linux/syscalls.h>
25#include <linux/fcntl.h>
26#include <linux/memcontrol.h>
27#include <linux/watch_queue.h>
28#include <linux/sysctl.h>
29
30#include <linux/uaccess.h>
31#include <asm/ioctls.h>
32
33#include "internal.h"
34
35/*
36 * New pipe buffers will be restricted to this size while the user is exceeding
37 * their pipe buffer quota. The general pipe use case needs at least two
38 * buffers: one for data yet to be read, and one for new data. If this is less
39 * than two, then a write to a non-empty pipe may block even if the pipe is not
40 * full. This can occur with GNU make jobserver or similar uses of pipes as
41 * semaphores: multiple processes may be waiting to write tokens back to the
42 * pipe before reading tokens: https://lore.kernel.org/lkml/1628086770.5rn8p04n6j.none@localhost/.
43 *
44 * Users can reduce their pipe buffers with F_SETPIPE_SZ below this at their
45 * own risk, namely: pipe writes to non-full pipes may block until the pipe is
46 * emptied.
47 */
48#define PIPE_MIN_DEF_BUFFERS 2
49
50/*
51 * The max size that a non-root user is allowed to grow the pipe. Can
52 * be set by root in /proc/sys/fs/pipe-max-size
53 */
54static unsigned int pipe_max_size = 1048576;
55
56/* Maximum allocatable pages per user. Hard limit is unset by default, soft
57 * matches default values.
58 */
59static unsigned long pipe_user_pages_hard;
60static unsigned long pipe_user_pages_soft = PIPE_DEF_BUFFERS * INR_OPEN_CUR;
61
62/*
63 * We use head and tail indices that aren't masked off, except at the point of
64 * dereference, but rather they're allowed to wrap naturally. This means there
65 * isn't a dead spot in the buffer, but the ring has to be a power of two and
66 * <= 2^31.
67 * -- David Howells 2019-09-23.
68 *
69 * Reads with count = 0 should always return 0.
70 * -- Julian Bradfield 1999-06-07.
71 *
72 * FIFOs and Pipes now generate SIGIO for both readers and writers.
73 * -- Jeremy Elson <jelson@circlemud.org> 2001-08-16
74 *
75 * pipe_read & write cleanup
76 * -- Manfred Spraul <manfred@colorfullife.com> 2002-05-09
77 */
78
79static void pipe_lock_nested(struct pipe_inode_info *pipe, int subclass)
80{
81 if (pipe->files)
82 mutex_lock_nested(&pipe->mutex, subclass);
83}
84
85void pipe_lock(struct pipe_inode_info *pipe)
86{
87 /*
88 * pipe_lock() nests non-pipe inode locks (for writing to a file)
89 */
90 pipe_lock_nested(pipe, I_MUTEX_PARENT);
91}
92EXPORT_SYMBOL(pipe_lock);
93
94void pipe_unlock(struct pipe_inode_info *pipe)
95{
96 if (pipe->files)
97 mutex_unlock(&pipe->mutex);
98}
99EXPORT_SYMBOL(pipe_unlock);
100
101static inline void __pipe_lock(struct pipe_inode_info *pipe)
102{
103 mutex_lock_nested(&pipe->mutex, I_MUTEX_PARENT);
104}
105
106static inline void __pipe_unlock(struct pipe_inode_info *pipe)
107{
108 mutex_unlock(&pipe->mutex);
109}
110
111void pipe_double_lock(struct pipe_inode_info *pipe1,
112 struct pipe_inode_info *pipe2)
113{
114 BUG_ON(pipe1 == pipe2);
115
116 if (pipe1 < pipe2) {
117 pipe_lock_nested(pipe1, I_MUTEX_PARENT);
118 pipe_lock_nested(pipe2, I_MUTEX_CHILD);
119 } else {
120 pipe_lock_nested(pipe2, I_MUTEX_PARENT);
121 pipe_lock_nested(pipe1, I_MUTEX_CHILD);
122 }
123}
124
125static void anon_pipe_buf_release(struct pipe_inode_info *pipe,
126 struct pipe_buffer *buf)
127{
128 struct page *page = buf->page;
129
130 /*
131 * If nobody else uses this page, and we don't already have a
132 * temporary page, let's keep track of it as a one-deep
133 * allocation cache. (Otherwise just release our reference to it)
134 */
135 if (page_count(page) == 1 && !pipe->tmp_page)
136 pipe->tmp_page = page;
137 else
138 put_page(page);
139}
140
141static bool anon_pipe_buf_try_steal(struct pipe_inode_info *pipe,
142 struct pipe_buffer *buf)
143{
144 struct page *page = buf->page;
145
146 if (page_count(page) != 1)
147 return false;
148 memcg_kmem_uncharge_page(page, 0);
149 __SetPageLocked(page);
150 return true;
151}
152
153/**
154 * generic_pipe_buf_try_steal - attempt to take ownership of a &pipe_buffer
155 * @pipe: the pipe that the buffer belongs to
156 * @buf: the buffer to attempt to steal
157 *
158 * Description:
159 * This function attempts to steal the &struct page attached to
160 * @buf. If successful, this function returns 0 and returns with
161 * the page locked. The caller may then reuse the page for whatever
162 * he wishes; the typical use is insertion into a different file
163 * page cache.
164 */
165bool generic_pipe_buf_try_steal(struct pipe_inode_info *pipe,
166 struct pipe_buffer *buf)
167{
168 struct page *page = buf->page;
169
170 /*
171 * A reference of one is golden, that means that the owner of this
172 * page is the only one holding a reference to it. lock the page
173 * and return OK.
174 */
175 if (page_count(page) == 1) {
176 lock_page(page);
177 return true;
178 }
179 return false;
180}
181EXPORT_SYMBOL(generic_pipe_buf_try_steal);
182
183/**
184 * generic_pipe_buf_get - get a reference to a &struct pipe_buffer
185 * @pipe: the pipe that the buffer belongs to
186 * @buf: the buffer to get a reference to
187 *
188 * Description:
189 * This function grabs an extra reference to @buf. It's used in
190 * the tee() system call, when we duplicate the buffers in one
191 * pipe into another.
192 */
193bool generic_pipe_buf_get(struct pipe_inode_info *pipe, struct pipe_buffer *buf)
194{
195 return try_get_page(buf->page);
196}
197EXPORT_SYMBOL(generic_pipe_buf_get);
198
199/**
200 * generic_pipe_buf_release - put a reference to a &struct pipe_buffer
201 * @pipe: the pipe that the buffer belongs to
202 * @buf: the buffer to put a reference to
203 *
204 * Description:
205 * This function releases a reference to @buf.
206 */
207void generic_pipe_buf_release(struct pipe_inode_info *pipe,
208 struct pipe_buffer *buf)
209{
210 put_page(buf->page);
211}
212EXPORT_SYMBOL(generic_pipe_buf_release);
213
214static const struct pipe_buf_operations anon_pipe_buf_ops = {
215 .release = anon_pipe_buf_release,
216 .try_steal = anon_pipe_buf_try_steal,
217 .get = generic_pipe_buf_get,
218};
219
220/* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
221static inline bool pipe_readable(const struct pipe_inode_info *pipe)
222{
223 unsigned int head = READ_ONCE(pipe->head);
224 unsigned int tail = READ_ONCE(pipe->tail);
225 unsigned int writers = READ_ONCE(pipe->writers);
226
227 return !pipe_empty(head, tail) || !writers;
228}
229
230static ssize_t
231pipe_read(struct kiocb *iocb, struct iov_iter *to)
232{
233 size_t total_len = iov_iter_count(to);
234 struct file *filp = iocb->ki_filp;
235 struct pipe_inode_info *pipe = filp->private_data;
236 bool was_full, wake_next_reader = false;
237 ssize_t ret;
238
239 /* Null read succeeds. */
240 if (unlikely(total_len == 0))
241 return 0;
242
243 ret = 0;
244 __pipe_lock(pipe);
245
246 /*
247 * We only wake up writers if the pipe was full when we started
248 * reading in order to avoid unnecessary wakeups.
249 *
250 * But when we do wake up writers, we do so using a sync wakeup
251 * (WF_SYNC), because we want them to get going and generate more
252 * data for us.
253 */
254 was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
255 for (;;) {
256 /* Read ->head with a barrier vs post_one_notification() */
257 unsigned int head = smp_load_acquire(&pipe->head);
258 unsigned int tail = pipe->tail;
259 unsigned int mask = pipe->ring_size - 1;
260
261#ifdef CONFIG_WATCH_QUEUE
262 if (pipe->note_loss) {
263 struct watch_notification n;
264
265 if (total_len < 8) {
266 if (ret == 0)
267 ret = -ENOBUFS;
268 break;
269 }
270
271 n.type = WATCH_TYPE_META;
272 n.subtype = WATCH_META_LOSS_NOTIFICATION;
273 n.info = watch_sizeof(n);
274 if (copy_to_iter(&n, sizeof(n), to) != sizeof(n)) {
275 if (ret == 0)
276 ret = -EFAULT;
277 break;
278 }
279 ret += sizeof(n);
280 total_len -= sizeof(n);
281 pipe->note_loss = false;
282 }
283#endif
284
285 if (!pipe_empty(head, tail)) {
286 struct pipe_buffer *buf = &pipe->bufs[tail & mask];
287 size_t chars = buf->len;
288 size_t written;
289 int error;
290
291 if (chars > total_len) {
292 if (buf->flags & PIPE_BUF_FLAG_WHOLE) {
293 if (ret == 0)
294 ret = -ENOBUFS;
295 break;
296 }
297 chars = total_len;
298 }
299
300 error = pipe_buf_confirm(pipe, buf);
301 if (error) {
302 if (!ret)
303 ret = error;
304 break;
305 }
306
307 written = copy_page_to_iter(buf->page, buf->offset, chars, to);
308 if (unlikely(written < chars)) {
309 if (!ret)
310 ret = -EFAULT;
311 break;
312 }
313 ret += chars;
314 buf->offset += chars;
315 buf->len -= chars;
316
317 /* Was it a packet buffer? Clean up and exit */
318 if (buf->flags & PIPE_BUF_FLAG_PACKET) {
319 total_len = chars;
320 buf->len = 0;
321 }
322
323 if (!buf->len) {
324 pipe_buf_release(pipe, buf);
325 spin_lock_irq(&pipe->rd_wait.lock);
326#ifdef CONFIG_WATCH_QUEUE
327 if (buf->flags & PIPE_BUF_FLAG_LOSS)
328 pipe->note_loss = true;
329#endif
330 tail++;
331 pipe->tail = tail;
332 spin_unlock_irq(&pipe->rd_wait.lock);
333 }
334 total_len -= chars;
335 if (!total_len)
336 break; /* common path: read succeeded */
337 if (!pipe_empty(head, tail)) /* More to do? */
338 continue;
339 }
340
341 if (!pipe->writers)
342 break;
343 if (ret)
344 break;
345 if ((filp->f_flags & O_NONBLOCK) ||
346 (iocb->ki_flags & IOCB_NOWAIT)) {
347 ret = -EAGAIN;
348 break;
349 }
350 __pipe_unlock(pipe);
351
352 /*
353 * We only get here if we didn't actually read anything.
354 *
355 * However, we could have seen (and removed) a zero-sized
356 * pipe buffer, and might have made space in the buffers
357 * that way.
358 *
359 * You can't make zero-sized pipe buffers by doing an empty
360 * write (not even in packet mode), but they can happen if
361 * the writer gets an EFAULT when trying to fill a buffer
362 * that already got allocated and inserted in the buffer
363 * array.
364 *
365 * So we still need to wake up any pending writers in the
366 * _very_ unlikely case that the pipe was full, but we got
367 * no data.
368 */
369 if (unlikely(was_full))
370 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
371 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
372
373 /*
374 * But because we didn't read anything, at this point we can
375 * just return directly with -ERESTARTSYS if we're interrupted,
376 * since we've done any required wakeups and there's no need
377 * to mark anything accessed. And we've dropped the lock.
378 */
379 if (wait_event_interruptible_exclusive(pipe->rd_wait, pipe_readable(pipe)) < 0)
380 return -ERESTARTSYS;
381
382 __pipe_lock(pipe);
383 was_full = pipe_full(pipe->head, pipe->tail, pipe->max_usage);
384 wake_next_reader = true;
385 }
386 if (pipe_empty(pipe->head, pipe->tail))
387 wake_next_reader = false;
388 __pipe_unlock(pipe);
389
390 if (was_full)
391 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
392 if (wake_next_reader)
393 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
394 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
395 if (ret > 0)
396 file_accessed(filp);
397 return ret;
398}
399
400static inline int is_packetized(struct file *file)
401{
402 return (file->f_flags & O_DIRECT) != 0;
403}
404
405/* Done while waiting without holding the pipe lock - thus the READ_ONCE() */
406static inline bool pipe_writable(const struct pipe_inode_info *pipe)
407{
408 unsigned int head = READ_ONCE(pipe->head);
409 unsigned int tail = READ_ONCE(pipe->tail);
410 unsigned int max_usage = READ_ONCE(pipe->max_usage);
411
412 return !pipe_full(head, tail, max_usage) ||
413 !READ_ONCE(pipe->readers);
414}
415
416static ssize_t
417pipe_write(struct kiocb *iocb, struct iov_iter *from)
418{
419 struct file *filp = iocb->ki_filp;
420 struct pipe_inode_info *pipe = filp->private_data;
421 unsigned int head;
422 ssize_t ret = 0;
423 size_t total_len = iov_iter_count(from);
424 ssize_t chars;
425 bool was_empty = false;
426 bool wake_next_writer = false;
427
428 /* Null write succeeds. */
429 if (unlikely(total_len == 0))
430 return 0;
431
432 __pipe_lock(pipe);
433
434 if (!pipe->readers) {
435 send_sig(SIGPIPE, current, 0);
436 ret = -EPIPE;
437 goto out;
438 }
439
440#ifdef CONFIG_WATCH_QUEUE
441 if (pipe->watch_queue) {
442 ret = -EXDEV;
443 goto out;
444 }
445#endif
446
447 /*
448 * If it wasn't empty we try to merge new data into
449 * the last buffer.
450 *
451 * That naturally merges small writes, but it also
452 * page-aligns the rest of the writes for large writes
453 * spanning multiple pages.
454 */
455 head = pipe->head;
456 was_empty = pipe_empty(head, pipe->tail);
457 chars = total_len & (PAGE_SIZE-1);
458 if (chars && !was_empty) {
459 unsigned int mask = pipe->ring_size - 1;
460 struct pipe_buffer *buf = &pipe->bufs[(head - 1) & mask];
461 int offset = buf->offset + buf->len;
462
463 if ((buf->flags & PIPE_BUF_FLAG_CAN_MERGE) &&
464 offset + chars <= PAGE_SIZE) {
465 ret = pipe_buf_confirm(pipe, buf);
466 if (ret)
467 goto out;
468
469 ret = copy_page_from_iter(buf->page, offset, chars, from);
470 if (unlikely(ret < chars)) {
471 ret = -EFAULT;
472 goto out;
473 }
474
475 buf->len += ret;
476 if (!iov_iter_count(from))
477 goto out;
478 }
479 }
480
481 for (;;) {
482 if (!pipe->readers) {
483 send_sig(SIGPIPE, current, 0);
484 if (!ret)
485 ret = -EPIPE;
486 break;
487 }
488
489 head = pipe->head;
490 if (!pipe_full(head, pipe->tail, pipe->max_usage)) {
491 unsigned int mask = pipe->ring_size - 1;
492 struct pipe_buffer *buf = &pipe->bufs[head & mask];
493 struct page *page = pipe->tmp_page;
494 int copied;
495
496 if (!page) {
497 page = alloc_page(GFP_HIGHUSER | __GFP_ACCOUNT);
498 if (unlikely(!page)) {
499 ret = ret ? : -ENOMEM;
500 break;
501 }
502 pipe->tmp_page = page;
503 }
504
505 /* Allocate a slot in the ring in advance and attach an
506 * empty buffer. If we fault or otherwise fail to use
507 * it, either the reader will consume it or it'll still
508 * be there for the next write.
509 */
510 spin_lock_irq(&pipe->rd_wait.lock);
511
512 head = pipe->head;
513 if (pipe_full(head, pipe->tail, pipe->max_usage)) {
514 spin_unlock_irq(&pipe->rd_wait.lock);
515 continue;
516 }
517
518 pipe->head = head + 1;
519 spin_unlock_irq(&pipe->rd_wait.lock);
520
521 /* Insert it into the buffer array */
522 buf = &pipe->bufs[head & mask];
523 buf->page = page;
524 buf->ops = &anon_pipe_buf_ops;
525 buf->offset = 0;
526 buf->len = 0;
527 if (is_packetized(filp))
528 buf->flags = PIPE_BUF_FLAG_PACKET;
529 else
530 buf->flags = PIPE_BUF_FLAG_CAN_MERGE;
531 pipe->tmp_page = NULL;
532
533 copied = copy_page_from_iter(page, 0, PAGE_SIZE, from);
534 if (unlikely(copied < PAGE_SIZE && iov_iter_count(from))) {
535 if (!ret)
536 ret = -EFAULT;
537 break;
538 }
539 ret += copied;
540 buf->offset = 0;
541 buf->len = copied;
542
543 if (!iov_iter_count(from))
544 break;
545 }
546
547 if (!pipe_full(head, pipe->tail, pipe->max_usage))
548 continue;
549
550 /* Wait for buffer space to become available. */
551 if ((filp->f_flags & O_NONBLOCK) ||
552 (iocb->ki_flags & IOCB_NOWAIT)) {
553 if (!ret)
554 ret = -EAGAIN;
555 break;
556 }
557 if (signal_pending(current)) {
558 if (!ret)
559 ret = -ERESTARTSYS;
560 break;
561 }
562
563 /*
564 * We're going to release the pipe lock and wait for more
565 * space. We wake up any readers if necessary, and then
566 * after waiting we need to re-check whether the pipe
567 * become empty while we dropped the lock.
568 */
569 __pipe_unlock(pipe);
570 if (was_empty)
571 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
572 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
573 wait_event_interruptible_exclusive(pipe->wr_wait, pipe_writable(pipe));
574 __pipe_lock(pipe);
575 was_empty = pipe_empty(pipe->head, pipe->tail);
576 wake_next_writer = true;
577 }
578out:
579 if (pipe_full(pipe->head, pipe->tail, pipe->max_usage))
580 wake_next_writer = false;
581 __pipe_unlock(pipe);
582
583 /*
584 * If we do do a wakeup event, we do a 'sync' wakeup, because we
585 * want the reader to start processing things asap, rather than
586 * leave the data pending.
587 *
588 * This is particularly important for small writes, because of
589 * how (for example) the GNU make jobserver uses small writes to
590 * wake up pending jobs
591 *
592 * Epoll nonsensically wants a wakeup whether the pipe
593 * was already empty or not.
594 */
595 if (was_empty || pipe->poll_usage)
596 wake_up_interruptible_sync_poll(&pipe->rd_wait, EPOLLIN | EPOLLRDNORM);
597 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
598 if (wake_next_writer)
599 wake_up_interruptible_sync_poll(&pipe->wr_wait, EPOLLOUT | EPOLLWRNORM);
600 if (ret > 0 && sb_start_write_trylock(file_inode(filp)->i_sb)) {
601 int err = file_update_time(filp);
602 if (err)
603 ret = err;
604 sb_end_write(file_inode(filp)->i_sb);
605 }
606 return ret;
607}
608
609static long pipe_ioctl(struct file *filp, unsigned int cmd, unsigned long arg)
610{
611 struct pipe_inode_info *pipe = filp->private_data;
612 unsigned int count, head, tail, mask;
613
614 switch (cmd) {
615 case FIONREAD:
616 __pipe_lock(pipe);
617 count = 0;
618 head = pipe->head;
619 tail = pipe->tail;
620 mask = pipe->ring_size - 1;
621
622 while (tail != head) {
623 count += pipe->bufs[tail & mask].len;
624 tail++;
625 }
626 __pipe_unlock(pipe);
627
628 return put_user(count, (int __user *)arg);
629
630#ifdef CONFIG_WATCH_QUEUE
631 case IOC_WATCH_QUEUE_SET_SIZE: {
632 int ret;
633 __pipe_lock(pipe);
634 ret = watch_queue_set_size(pipe, arg);
635 __pipe_unlock(pipe);
636 return ret;
637 }
638
639 case IOC_WATCH_QUEUE_SET_FILTER:
640 return watch_queue_set_filter(
641 pipe, (struct watch_notification_filter __user *)arg);
642#endif
643
644 default:
645 return -ENOIOCTLCMD;
646 }
647}
648
649/* No kernel lock held - fine */
650static __poll_t
651pipe_poll(struct file *filp, poll_table *wait)
652{
653 __poll_t mask;
654 struct pipe_inode_info *pipe = filp->private_data;
655 unsigned int head, tail;
656
657 /* Epoll has some historical nasty semantics, this enables them */
658 WRITE_ONCE(pipe->poll_usage, true);
659
660 /*
661 * Reading pipe state only -- no need for acquiring the semaphore.
662 *
663 * But because this is racy, the code has to add the
664 * entry to the poll table _first_ ..
665 */
666 if (filp->f_mode & FMODE_READ)
667 poll_wait(filp, &pipe->rd_wait, wait);
668 if (filp->f_mode & FMODE_WRITE)
669 poll_wait(filp, &pipe->wr_wait, wait);
670
671 /*
672 * .. and only then can you do the racy tests. That way,
673 * if something changes and you got it wrong, the poll
674 * table entry will wake you up and fix it.
675 */
676 head = READ_ONCE(pipe->head);
677 tail = READ_ONCE(pipe->tail);
678
679 mask = 0;
680 if (filp->f_mode & FMODE_READ) {
681 if (!pipe_empty(head, tail))
682 mask |= EPOLLIN | EPOLLRDNORM;
683 if (!pipe->writers && filp->f_version != pipe->w_counter)
684 mask |= EPOLLHUP;
685 }
686
687 if (filp->f_mode & FMODE_WRITE) {
688 if (!pipe_full(head, tail, pipe->max_usage))
689 mask |= EPOLLOUT | EPOLLWRNORM;
690 /*
691 * Most Unices do not set EPOLLERR for FIFOs but on Linux they
692 * behave exactly like pipes for poll().
693 */
694 if (!pipe->readers)
695 mask |= EPOLLERR;
696 }
697
698 return mask;
699}
700
701static void put_pipe_info(struct inode *inode, struct pipe_inode_info *pipe)
702{
703 int kill = 0;
704
705 spin_lock(&inode->i_lock);
706 if (!--pipe->files) {
707 inode->i_pipe = NULL;
708 kill = 1;
709 }
710 spin_unlock(&inode->i_lock);
711
712 if (kill)
713 free_pipe_info(pipe);
714}
715
716static int
717pipe_release(struct inode *inode, struct file *file)
718{
719 struct pipe_inode_info *pipe = file->private_data;
720
721 __pipe_lock(pipe);
722 if (file->f_mode & FMODE_READ)
723 pipe->readers--;
724 if (file->f_mode & FMODE_WRITE)
725 pipe->writers--;
726
727 /* Was that the last reader or writer, but not the other side? */
728 if (!pipe->readers != !pipe->writers) {
729 wake_up_interruptible_all(&pipe->rd_wait);
730 wake_up_interruptible_all(&pipe->wr_wait);
731 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
732 kill_fasync(&pipe->fasync_writers, SIGIO, POLL_OUT);
733 }
734 __pipe_unlock(pipe);
735
736 put_pipe_info(inode, pipe);
737 return 0;
738}
739
740static int
741pipe_fasync(int fd, struct file *filp, int on)
742{
743 struct pipe_inode_info *pipe = filp->private_data;
744 int retval = 0;
745
746 __pipe_lock(pipe);
747 if (filp->f_mode & FMODE_READ)
748 retval = fasync_helper(fd, filp, on, &pipe->fasync_readers);
749 if ((filp->f_mode & FMODE_WRITE) && retval >= 0) {
750 retval = fasync_helper(fd, filp, on, &pipe->fasync_writers);
751 if (retval < 0 && (filp->f_mode & FMODE_READ))
752 /* this can happen only if on == T */
753 fasync_helper(-1, filp, 0, &pipe->fasync_readers);
754 }
755 __pipe_unlock(pipe);
756 return retval;
757}
758
759unsigned long account_pipe_buffers(struct user_struct *user,
760 unsigned long old, unsigned long new)
761{
762 return atomic_long_add_return(new - old, &user->pipe_bufs);
763}
764
765bool too_many_pipe_buffers_soft(unsigned long user_bufs)
766{
767 unsigned long soft_limit = READ_ONCE(pipe_user_pages_soft);
768
769 return soft_limit && user_bufs > soft_limit;
770}
771
772bool too_many_pipe_buffers_hard(unsigned long user_bufs)
773{
774 unsigned long hard_limit = READ_ONCE(pipe_user_pages_hard);
775
776 return hard_limit && user_bufs > hard_limit;
777}
778
779bool pipe_is_unprivileged_user(void)
780{
781 return !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN);
782}
783
784struct pipe_inode_info *alloc_pipe_info(void)
785{
786 struct pipe_inode_info *pipe;
787 unsigned long pipe_bufs = PIPE_DEF_BUFFERS;
788 struct user_struct *user = get_current_user();
789 unsigned long user_bufs;
790 unsigned int max_size = READ_ONCE(pipe_max_size);
791
792 pipe = kzalloc(sizeof(struct pipe_inode_info), GFP_KERNEL_ACCOUNT);
793 if (pipe == NULL)
794 goto out_free_uid;
795
796 if (pipe_bufs * PAGE_SIZE > max_size && !capable(CAP_SYS_RESOURCE))
797 pipe_bufs = max_size >> PAGE_SHIFT;
798
799 user_bufs = account_pipe_buffers(user, 0, pipe_bufs);
800
801 if (too_many_pipe_buffers_soft(user_bufs) && pipe_is_unprivileged_user()) {
802 user_bufs = account_pipe_buffers(user, pipe_bufs, PIPE_MIN_DEF_BUFFERS);
803 pipe_bufs = PIPE_MIN_DEF_BUFFERS;
804 }
805
806 if (too_many_pipe_buffers_hard(user_bufs) && pipe_is_unprivileged_user())
807 goto out_revert_acct;
808
809 pipe->bufs = kcalloc(pipe_bufs, sizeof(struct pipe_buffer),
810 GFP_KERNEL_ACCOUNT);
811
812 if (pipe->bufs) {
813 init_waitqueue_head(&pipe->rd_wait);
814 init_waitqueue_head(&pipe->wr_wait);
815 pipe->r_counter = pipe->w_counter = 1;
816 pipe->max_usage = pipe_bufs;
817 pipe->ring_size = pipe_bufs;
818 pipe->nr_accounted = pipe_bufs;
819 pipe->user = user;
820 mutex_init(&pipe->mutex);
821 return pipe;
822 }
823
824out_revert_acct:
825 (void) account_pipe_buffers(user, pipe_bufs, 0);
826 kfree(pipe);
827out_free_uid:
828 free_uid(user);
829 return NULL;
830}
831
832void free_pipe_info(struct pipe_inode_info *pipe)
833{
834 unsigned int i;
835
836#ifdef CONFIG_WATCH_QUEUE
837 if (pipe->watch_queue)
838 watch_queue_clear(pipe->watch_queue);
839#endif
840
841 (void) account_pipe_buffers(pipe->user, pipe->nr_accounted, 0);
842 free_uid(pipe->user);
843 for (i = 0; i < pipe->ring_size; i++) {
844 struct pipe_buffer *buf = pipe->bufs + i;
845 if (buf->ops)
846 pipe_buf_release(pipe, buf);
847 }
848#ifdef CONFIG_WATCH_QUEUE
849 if (pipe->watch_queue)
850 put_watch_queue(pipe->watch_queue);
851#endif
852 if (pipe->tmp_page)
853 __free_page(pipe->tmp_page);
854 kfree(pipe->bufs);
855 kfree(pipe);
856}
857
858static struct vfsmount *pipe_mnt __read_mostly;
859
860/*
861 * pipefs_dname() is called from d_path().
862 */
863static char *pipefs_dname(struct dentry *dentry, char *buffer, int buflen)
864{
865 return dynamic_dname(buffer, buflen, "pipe:[%lu]",
866 d_inode(dentry)->i_ino);
867}
868
869static const struct dentry_operations pipefs_dentry_operations = {
870 .d_dname = pipefs_dname,
871};
872
873static struct inode * get_pipe_inode(void)
874{
875 struct inode *inode = new_inode_pseudo(pipe_mnt->mnt_sb);
876 struct pipe_inode_info *pipe;
877
878 if (!inode)
879 goto fail_inode;
880
881 inode->i_ino = get_next_ino();
882
883 pipe = alloc_pipe_info();
884 if (!pipe)
885 goto fail_iput;
886
887 inode->i_pipe = pipe;
888 pipe->files = 2;
889 pipe->readers = pipe->writers = 1;
890 inode->i_fop = &pipefifo_fops;
891
892 /*
893 * Mark the inode dirty from the very beginning,
894 * that way it will never be moved to the dirty
895 * list because "mark_inode_dirty()" will think
896 * that it already _is_ on the dirty list.
897 */
898 inode->i_state = I_DIRTY;
899 inode->i_mode = S_IFIFO | S_IRUSR | S_IWUSR;
900 inode->i_uid = current_fsuid();
901 inode->i_gid = current_fsgid();
902 inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
903
904 return inode;
905
906fail_iput:
907 iput(inode);
908
909fail_inode:
910 return NULL;
911}
912
913int create_pipe_files(struct file **res, int flags)
914{
915 struct inode *inode = get_pipe_inode();
916 struct file *f;
917 int error;
918
919 if (!inode)
920 return -ENFILE;
921
922 if (flags & O_NOTIFICATION_PIPE) {
923 error = watch_queue_init(inode->i_pipe);
924 if (error) {
925 free_pipe_info(inode->i_pipe);
926 iput(inode);
927 return error;
928 }
929 }
930
931 f = alloc_file_pseudo(inode, pipe_mnt, "",
932 O_WRONLY | (flags & (O_NONBLOCK | O_DIRECT)),
933 &pipefifo_fops);
934 if (IS_ERR(f)) {
935 free_pipe_info(inode->i_pipe);
936 iput(inode);
937 return PTR_ERR(f);
938 }
939
940 f->private_data = inode->i_pipe;
941
942 res[0] = alloc_file_clone(f, O_RDONLY | (flags & O_NONBLOCK),
943 &pipefifo_fops);
944 if (IS_ERR(res[0])) {
945 put_pipe_info(inode, inode->i_pipe);
946 fput(f);
947 return PTR_ERR(res[0]);
948 }
949 res[0]->private_data = inode->i_pipe;
950 res[1] = f;
951 stream_open(inode, res[0]);
952 stream_open(inode, res[1]);
953 return 0;
954}
955
956static int __do_pipe_flags(int *fd, struct file **files, int flags)
957{
958 int error;
959 int fdw, fdr;
960
961 if (flags & ~(O_CLOEXEC | O_NONBLOCK | O_DIRECT | O_NOTIFICATION_PIPE))
962 return -EINVAL;
963
964 error = create_pipe_files(files, flags);
965 if (error)
966 return error;
967
968 error = get_unused_fd_flags(flags);
969 if (error < 0)
970 goto err_read_pipe;
971 fdr = error;
972
973 error = get_unused_fd_flags(flags);
974 if (error < 0)
975 goto err_fdr;
976 fdw = error;
977
978 audit_fd_pair(fdr, fdw);
979 fd[0] = fdr;
980 fd[1] = fdw;
981 /* pipe groks IOCB_NOWAIT */
982 files[0]->f_mode |= FMODE_NOWAIT;
983 files[1]->f_mode |= FMODE_NOWAIT;
984 return 0;
985
986 err_fdr:
987 put_unused_fd(fdr);
988 err_read_pipe:
989 fput(files[0]);
990 fput(files[1]);
991 return error;
992}
993
994int do_pipe_flags(int *fd, int flags)
995{
996 struct file *files[2];
997 int error = __do_pipe_flags(fd, files, flags);
998 if (!error) {
999 fd_install(fd[0], files[0]);
1000 fd_install(fd[1], files[1]);
1001 }
1002 return error;
1003}
1004
1005/*
1006 * sys_pipe() is the normal C calling standard for creating
1007 * a pipe. It's not the way Unix traditionally does this, though.
1008 */
1009static int do_pipe2(int __user *fildes, int flags)
1010{
1011 struct file *files[2];
1012 int fd[2];
1013 int error;
1014
1015 error = __do_pipe_flags(fd, files, flags);
1016 if (!error) {
1017 if (unlikely(copy_to_user(fildes, fd, sizeof(fd)))) {
1018 fput(files[0]);
1019 fput(files[1]);
1020 put_unused_fd(fd[0]);
1021 put_unused_fd(fd[1]);
1022 error = -EFAULT;
1023 } else {
1024 fd_install(fd[0], files[0]);
1025 fd_install(fd[1], files[1]);
1026 }
1027 }
1028 return error;
1029}
1030
1031SYSCALL_DEFINE2(pipe2, int __user *, fildes, int, flags)
1032{
1033 return do_pipe2(fildes, flags);
1034}
1035
1036SYSCALL_DEFINE1(pipe, int __user *, fildes)
1037{
1038 return do_pipe2(fildes, 0);
1039}
1040
1041/*
1042 * This is the stupid "wait for pipe to be readable or writable"
1043 * model.
1044 *
1045 * See pipe_read/write() for the proper kind of exclusive wait,
1046 * but that requires that we wake up any other readers/writers
1047 * if we then do not end up reading everything (ie the whole
1048 * "wake_next_reader/writer" logic in pipe_read/write()).
1049 */
1050void pipe_wait_readable(struct pipe_inode_info *pipe)
1051{
1052 pipe_unlock(pipe);
1053 wait_event_interruptible(pipe->rd_wait, pipe_readable(pipe));
1054 pipe_lock(pipe);
1055}
1056
1057void pipe_wait_writable(struct pipe_inode_info *pipe)
1058{
1059 pipe_unlock(pipe);
1060 wait_event_interruptible(pipe->wr_wait, pipe_writable(pipe));
1061 pipe_lock(pipe);
1062}
1063
1064/*
1065 * This depends on both the wait (here) and the wakeup (wake_up_partner)
1066 * holding the pipe lock, so "*cnt" is stable and we know a wakeup cannot
1067 * race with the count check and waitqueue prep.
1068 *
1069 * Normally in order to avoid races, you'd do the prepare_to_wait() first,
1070 * then check the condition you're waiting for, and only then sleep. But
1071 * because of the pipe lock, we can check the condition before being on
1072 * the wait queue.
1073 *
1074 * We use the 'rd_wait' waitqueue for pipe partner waiting.
1075 */
1076static int wait_for_partner(struct pipe_inode_info *pipe, unsigned int *cnt)
1077{
1078 DEFINE_WAIT(rdwait);
1079 int cur = *cnt;
1080
1081 while (cur == *cnt) {
1082 prepare_to_wait(&pipe->rd_wait, &rdwait, TASK_INTERRUPTIBLE);
1083 pipe_unlock(pipe);
1084 schedule();
1085 finish_wait(&pipe->rd_wait, &rdwait);
1086 pipe_lock(pipe);
1087 if (signal_pending(current))
1088 break;
1089 }
1090 return cur == *cnt ? -ERESTARTSYS : 0;
1091}
1092
1093static void wake_up_partner(struct pipe_inode_info *pipe)
1094{
1095 wake_up_interruptible_all(&pipe->rd_wait);
1096}
1097
1098static int fifo_open(struct inode *inode, struct file *filp)
1099{
1100 struct pipe_inode_info *pipe;
1101 bool is_pipe = inode->i_sb->s_magic == PIPEFS_MAGIC;
1102 int ret;
1103
1104 filp->f_version = 0;
1105
1106 spin_lock(&inode->i_lock);
1107 if (inode->i_pipe) {
1108 pipe = inode->i_pipe;
1109 pipe->files++;
1110 spin_unlock(&inode->i_lock);
1111 } else {
1112 spin_unlock(&inode->i_lock);
1113 pipe = alloc_pipe_info();
1114 if (!pipe)
1115 return -ENOMEM;
1116 pipe->files = 1;
1117 spin_lock(&inode->i_lock);
1118 if (unlikely(inode->i_pipe)) {
1119 inode->i_pipe->files++;
1120 spin_unlock(&inode->i_lock);
1121 free_pipe_info(pipe);
1122 pipe = inode->i_pipe;
1123 } else {
1124 inode->i_pipe = pipe;
1125 spin_unlock(&inode->i_lock);
1126 }
1127 }
1128 filp->private_data = pipe;
1129 /* OK, we have a pipe and it's pinned down */
1130
1131 __pipe_lock(pipe);
1132
1133 /* We can only do regular read/write on fifos */
1134 stream_open(inode, filp);
1135
1136 switch (filp->f_mode & (FMODE_READ | FMODE_WRITE)) {
1137 case FMODE_READ:
1138 /*
1139 * O_RDONLY
1140 * POSIX.1 says that O_NONBLOCK means return with the FIFO
1141 * opened, even when there is no process writing the FIFO.
1142 */
1143 pipe->r_counter++;
1144 if (pipe->readers++ == 0)
1145 wake_up_partner(pipe);
1146
1147 if (!is_pipe && !pipe->writers) {
1148 if ((filp->f_flags & O_NONBLOCK)) {
1149 /* suppress EPOLLHUP until we have
1150 * seen a writer */
1151 filp->f_version = pipe->w_counter;
1152 } else {
1153 if (wait_for_partner(pipe, &pipe->w_counter))
1154 goto err_rd;
1155 }
1156 }
1157 break;
1158
1159 case FMODE_WRITE:
1160 /*
1161 * O_WRONLY
1162 * POSIX.1 says that O_NONBLOCK means return -1 with
1163 * errno=ENXIO when there is no process reading the FIFO.
1164 */
1165 ret = -ENXIO;
1166 if (!is_pipe && (filp->f_flags & O_NONBLOCK) && !pipe->readers)
1167 goto err;
1168
1169 pipe->w_counter++;
1170 if (!pipe->writers++)
1171 wake_up_partner(pipe);
1172
1173 if (!is_pipe && !pipe->readers) {
1174 if (wait_for_partner(pipe, &pipe->r_counter))
1175 goto err_wr;
1176 }
1177 break;
1178
1179 case FMODE_READ | FMODE_WRITE:
1180 /*
1181 * O_RDWR
1182 * POSIX.1 leaves this case "undefined" when O_NONBLOCK is set.
1183 * This implementation will NEVER block on a O_RDWR open, since
1184 * the process can at least talk to itself.
1185 */
1186
1187 pipe->readers++;
1188 pipe->writers++;
1189 pipe->r_counter++;
1190 pipe->w_counter++;
1191 if (pipe->readers == 1 || pipe->writers == 1)
1192 wake_up_partner(pipe);
1193 break;
1194
1195 default:
1196 ret = -EINVAL;
1197 goto err;
1198 }
1199
1200 /* Ok! */
1201 __pipe_unlock(pipe);
1202 return 0;
1203
1204err_rd:
1205 if (!--pipe->readers)
1206 wake_up_interruptible(&pipe->wr_wait);
1207 ret = -ERESTARTSYS;
1208 goto err;
1209
1210err_wr:
1211 if (!--pipe->writers)
1212 wake_up_interruptible_all(&pipe->rd_wait);
1213 ret = -ERESTARTSYS;
1214 goto err;
1215
1216err:
1217 __pipe_unlock(pipe);
1218
1219 put_pipe_info(inode, pipe);
1220 return ret;
1221}
1222
1223const struct file_operations pipefifo_fops = {
1224 .open = fifo_open,
1225 .llseek = no_llseek,
1226 .read_iter = pipe_read,
1227 .write_iter = pipe_write,
1228 .poll = pipe_poll,
1229 .unlocked_ioctl = pipe_ioctl,
1230 .release = pipe_release,
1231 .fasync = pipe_fasync,
1232 .splice_write = iter_file_splice_write,
1233};
1234
1235/*
1236 * Currently we rely on the pipe array holding a power-of-2 number
1237 * of pages. Returns 0 on error.
1238 */
1239unsigned int round_pipe_size(unsigned long size)
1240{
1241 if (size > (1U << 31))
1242 return 0;
1243
1244 /* Minimum pipe size, as required by POSIX */
1245 if (size < PAGE_SIZE)
1246 return PAGE_SIZE;
1247
1248 return roundup_pow_of_two(size);
1249}
1250
1251/*
1252 * Resize the pipe ring to a number of slots.
1253 *
1254 * Note the pipe can be reduced in capacity, but only if the current
1255 * occupancy doesn't exceed nr_slots; if it does, EBUSY will be
1256 * returned instead.
1257 */
1258int pipe_resize_ring(struct pipe_inode_info *pipe, unsigned int nr_slots)
1259{
1260 struct pipe_buffer *bufs;
1261 unsigned int head, tail, mask, n;
1262
1263 bufs = kcalloc(nr_slots, sizeof(*bufs),
1264 GFP_KERNEL_ACCOUNT | __GFP_NOWARN);
1265 if (unlikely(!bufs))
1266 return -ENOMEM;
1267
1268 spin_lock_irq(&pipe->rd_wait.lock);
1269 mask = pipe->ring_size - 1;
1270 head = pipe->head;
1271 tail = pipe->tail;
1272
1273 n = pipe_occupancy(head, tail);
1274 if (nr_slots < n) {
1275 spin_unlock_irq(&pipe->rd_wait.lock);
1276 kfree(bufs);
1277 return -EBUSY;
1278 }
1279
1280 /*
1281 * The pipe array wraps around, so just start the new one at zero
1282 * and adjust the indices.
1283 */
1284 if (n > 0) {
1285 unsigned int h = head & mask;
1286 unsigned int t = tail & mask;
1287 if (h > t) {
1288 memcpy(bufs, pipe->bufs + t,
1289 n * sizeof(struct pipe_buffer));
1290 } else {
1291 unsigned int tsize = pipe->ring_size - t;
1292 if (h > 0)
1293 memcpy(bufs + tsize, pipe->bufs,
1294 h * sizeof(struct pipe_buffer));
1295 memcpy(bufs, pipe->bufs + t,
1296 tsize * sizeof(struct pipe_buffer));
1297 }
1298 }
1299
1300 head = n;
1301 tail = 0;
1302
1303 kfree(pipe->bufs);
1304 pipe->bufs = bufs;
1305 pipe->ring_size = nr_slots;
1306 if (pipe->max_usage > nr_slots)
1307 pipe->max_usage = nr_slots;
1308 pipe->tail = tail;
1309 pipe->head = head;
1310
1311 spin_unlock_irq(&pipe->rd_wait.lock);
1312
1313 /* This might have made more room for writers */
1314 wake_up_interruptible(&pipe->wr_wait);
1315 return 0;
1316}
1317
1318/*
1319 * Allocate a new array of pipe buffers and copy the info over. Returns the
1320 * pipe size if successful, or return -ERROR on error.
1321 */
1322static long pipe_set_size(struct pipe_inode_info *pipe, unsigned long arg)
1323{
1324 unsigned long user_bufs;
1325 unsigned int nr_slots, size;
1326 long ret = 0;
1327
1328#ifdef CONFIG_WATCH_QUEUE
1329 if (pipe->watch_queue)
1330 return -EBUSY;
1331#endif
1332
1333 size = round_pipe_size(arg);
1334 nr_slots = size >> PAGE_SHIFT;
1335
1336 if (!nr_slots)
1337 return -EINVAL;
1338
1339 /*
1340 * If trying to increase the pipe capacity, check that an
1341 * unprivileged user is not trying to exceed various limits
1342 * (soft limit check here, hard limit check just below).
1343 * Decreasing the pipe capacity is always permitted, even
1344 * if the user is currently over a limit.
1345 */
1346 if (nr_slots > pipe->max_usage &&
1347 size > pipe_max_size && !capable(CAP_SYS_RESOURCE))
1348 return -EPERM;
1349
1350 user_bufs = account_pipe_buffers(pipe->user, pipe->nr_accounted, nr_slots);
1351
1352 if (nr_slots > pipe->max_usage &&
1353 (too_many_pipe_buffers_hard(user_bufs) ||
1354 too_many_pipe_buffers_soft(user_bufs)) &&
1355 pipe_is_unprivileged_user()) {
1356 ret = -EPERM;
1357 goto out_revert_acct;
1358 }
1359
1360 ret = pipe_resize_ring(pipe, nr_slots);
1361 if (ret < 0)
1362 goto out_revert_acct;
1363
1364 pipe->max_usage = nr_slots;
1365 pipe->nr_accounted = nr_slots;
1366 return pipe->max_usage * PAGE_SIZE;
1367
1368out_revert_acct:
1369 (void) account_pipe_buffers(pipe->user, nr_slots, pipe->nr_accounted);
1370 return ret;
1371}
1372
1373/*
1374 * Note that i_pipe and i_cdev share the same location, so checking ->i_pipe is
1375 * not enough to verify that this is a pipe.
1376 */
1377struct pipe_inode_info *get_pipe_info(struct file *file, bool for_splice)
1378{
1379 struct pipe_inode_info *pipe = file->private_data;
1380
1381 if (file->f_op != &pipefifo_fops || !pipe)
1382 return NULL;
1383#ifdef CONFIG_WATCH_QUEUE
1384 if (for_splice && pipe->watch_queue)
1385 return NULL;
1386#endif
1387 return pipe;
1388}
1389
1390long pipe_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1391{
1392 struct pipe_inode_info *pipe;
1393 long ret;
1394
1395 pipe = get_pipe_info(file, false);
1396 if (!pipe)
1397 return -EBADF;
1398
1399 __pipe_lock(pipe);
1400
1401 switch (cmd) {
1402 case F_SETPIPE_SZ:
1403 ret = pipe_set_size(pipe, arg);
1404 break;
1405 case F_GETPIPE_SZ:
1406 ret = pipe->max_usage * PAGE_SIZE;
1407 break;
1408 default:
1409 ret = -EINVAL;
1410 break;
1411 }
1412
1413 __pipe_unlock(pipe);
1414 return ret;
1415}
1416
1417static const struct super_operations pipefs_ops = {
1418 .destroy_inode = free_inode_nonrcu,
1419 .statfs = simple_statfs,
1420};
1421
1422/*
1423 * pipefs should _never_ be mounted by userland - too much of security hassle,
1424 * no real gain from having the whole whorehouse mounted. So we don't need
1425 * any operations on the root directory. However, we need a non-trivial
1426 * d_name - pipe: will go nicely and kill the special-casing in procfs.
1427 */
1428
1429static int pipefs_init_fs_context(struct fs_context *fc)
1430{
1431 struct pseudo_fs_context *ctx = init_pseudo(fc, PIPEFS_MAGIC);
1432 if (!ctx)
1433 return -ENOMEM;
1434 ctx->ops = &pipefs_ops;
1435 ctx->dops = &pipefs_dentry_operations;
1436 return 0;
1437}
1438
1439static struct file_system_type pipe_fs_type = {
1440 .name = "pipefs",
1441 .init_fs_context = pipefs_init_fs_context,
1442 .kill_sb = kill_anon_super,
1443};
1444
1445#ifdef CONFIG_SYSCTL
1446static int do_proc_dopipe_max_size_conv(unsigned long *lvalp,
1447 unsigned int *valp,
1448 int write, void *data)
1449{
1450 if (write) {
1451 unsigned int val;
1452
1453 val = round_pipe_size(*lvalp);
1454 if (val == 0)
1455 return -EINVAL;
1456
1457 *valp = val;
1458 } else {
1459 unsigned int val = *valp;
1460 *lvalp = (unsigned long) val;
1461 }
1462
1463 return 0;
1464}
1465
1466static int proc_dopipe_max_size(struct ctl_table *table, int write,
1467 void *buffer, size_t *lenp, loff_t *ppos)
1468{
1469 return do_proc_douintvec(table, write, buffer, lenp, ppos,
1470 do_proc_dopipe_max_size_conv, NULL);
1471}
1472
1473static struct ctl_table fs_pipe_sysctls[] = {
1474 {
1475 .procname = "pipe-max-size",
1476 .data = &pipe_max_size,
1477 .maxlen = sizeof(pipe_max_size),
1478 .mode = 0644,
1479 .proc_handler = proc_dopipe_max_size,
1480 },
1481 {
1482 .procname = "pipe-user-pages-hard",
1483 .data = &pipe_user_pages_hard,
1484 .maxlen = sizeof(pipe_user_pages_hard),
1485 .mode = 0644,
1486 .proc_handler = proc_doulongvec_minmax,
1487 },
1488 {
1489 .procname = "pipe-user-pages-soft",
1490 .data = &pipe_user_pages_soft,
1491 .maxlen = sizeof(pipe_user_pages_soft),
1492 .mode = 0644,
1493 .proc_handler = proc_doulongvec_minmax,
1494 },
1495 { }
1496};
1497#endif
1498
1499static int __init init_pipe_fs(void)
1500{
1501 int err = register_filesystem(&pipe_fs_type);
1502
1503 if (!err) {
1504 pipe_mnt = kern_mount(&pipe_fs_type);
1505 if (IS_ERR(pipe_mnt)) {
1506 err = PTR_ERR(pipe_mnt);
1507 unregister_filesystem(&pipe_fs_type);
1508 }
1509 }
1510#ifdef CONFIG_SYSCTL
1511 register_sysctl_init("fs", fs_pipe_sysctls);
1512#endif
1513 return err;
1514}
1515
1516fs_initcall(init_pipe_fs);