Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * fs/f2fs/node.h
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8/* start node id of a node block dedicated to the given node id */
9#define START_NID(nid) (((nid) / NAT_ENTRY_PER_BLOCK) * NAT_ENTRY_PER_BLOCK)
10
11/* node block offset on the NAT area dedicated to the given start node id */
12#define NAT_BLOCK_OFFSET(start_nid) ((start_nid) / NAT_ENTRY_PER_BLOCK)
13
14/* # of pages to perform synchronous readahead before building free nids */
15#define FREE_NID_PAGES 8
16#define MAX_FREE_NIDS (NAT_ENTRY_PER_BLOCK * FREE_NID_PAGES)
17
18/* size of free nid batch when shrinking */
19#define SHRINK_NID_BATCH_SIZE 8
20
21#define DEF_RA_NID_PAGES 0 /* # of nid pages to be readaheaded */
22
23/* maximum readahead size for node during getting data blocks */
24#define MAX_RA_NODE 128
25
26/* control the memory footprint threshold (10MB per 1GB ram) */
27#define DEF_RAM_THRESHOLD 1
28
29/* control dirty nats ratio threshold (default: 10% over max nid count) */
30#define DEF_DIRTY_NAT_RATIO_THRESHOLD 10
31/* control total # of nats */
32#define DEF_NAT_CACHE_THRESHOLD 100000
33
34/* control total # of node writes used for roll-fowrad recovery */
35#define DEF_RF_NODE_BLOCKS 0
36
37/* vector size for gang look-up from nat cache that consists of radix tree */
38#define NATVEC_SIZE 64
39#define SETVEC_SIZE 32
40
41/* return value for read_node_page */
42#define LOCKED_PAGE 1
43
44/* check pinned file's alignment status of physical blocks */
45#define FILE_NOT_ALIGNED 1
46
47/* For flag in struct node_info */
48enum {
49 IS_CHECKPOINTED, /* is it checkpointed before? */
50 HAS_FSYNCED_INODE, /* is the inode fsynced before? */
51 HAS_LAST_FSYNC, /* has the latest node fsync mark? */
52 IS_DIRTY, /* this nat entry is dirty? */
53 IS_PREALLOC, /* nat entry is preallocated */
54};
55
56/*
57 * For node information
58 */
59struct node_info {
60 nid_t nid; /* node id */
61 nid_t ino; /* inode number of the node's owner */
62 block_t blk_addr; /* block address of the node */
63 unsigned char version; /* version of the node */
64 unsigned char flag; /* for node information bits */
65};
66
67struct nat_entry {
68 struct list_head list; /* for clean or dirty nat list */
69 struct node_info ni; /* in-memory node information */
70};
71
72#define nat_get_nid(nat) ((nat)->ni.nid)
73#define nat_set_nid(nat, n) ((nat)->ni.nid = (n))
74#define nat_get_blkaddr(nat) ((nat)->ni.blk_addr)
75#define nat_set_blkaddr(nat, b) ((nat)->ni.blk_addr = (b))
76#define nat_get_ino(nat) ((nat)->ni.ino)
77#define nat_set_ino(nat, i) ((nat)->ni.ino = (i))
78#define nat_get_version(nat) ((nat)->ni.version)
79#define nat_set_version(nat, v) ((nat)->ni.version = (v))
80
81#define inc_node_version(version) (++(version))
82
83static inline void copy_node_info(struct node_info *dst,
84 struct node_info *src)
85{
86 dst->nid = src->nid;
87 dst->ino = src->ino;
88 dst->blk_addr = src->blk_addr;
89 dst->version = src->version;
90 /* should not copy flag here */
91}
92
93static inline void set_nat_flag(struct nat_entry *ne,
94 unsigned int type, bool set)
95{
96 if (set)
97 ne->ni.flag |= BIT(type);
98 else
99 ne->ni.flag &= ~BIT(type);
100}
101
102static inline bool get_nat_flag(struct nat_entry *ne, unsigned int type)
103{
104 return ne->ni.flag & BIT(type);
105}
106
107static inline void nat_reset_flag(struct nat_entry *ne)
108{
109 /* these states can be set only after checkpoint was done */
110 set_nat_flag(ne, IS_CHECKPOINTED, true);
111 set_nat_flag(ne, HAS_FSYNCED_INODE, false);
112 set_nat_flag(ne, HAS_LAST_FSYNC, true);
113}
114
115static inline void node_info_from_raw_nat(struct node_info *ni,
116 struct f2fs_nat_entry *raw_ne)
117{
118 ni->ino = le32_to_cpu(raw_ne->ino);
119 ni->blk_addr = le32_to_cpu(raw_ne->block_addr);
120 ni->version = raw_ne->version;
121}
122
123static inline void raw_nat_from_node_info(struct f2fs_nat_entry *raw_ne,
124 struct node_info *ni)
125{
126 raw_ne->ino = cpu_to_le32(ni->ino);
127 raw_ne->block_addr = cpu_to_le32(ni->blk_addr);
128 raw_ne->version = ni->version;
129}
130
131static inline bool excess_dirty_nats(struct f2fs_sb_info *sbi)
132{
133 return NM_I(sbi)->nat_cnt[DIRTY_NAT] >= NM_I(sbi)->max_nid *
134 NM_I(sbi)->dirty_nats_ratio / 100;
135}
136
137static inline bool excess_cached_nats(struct f2fs_sb_info *sbi)
138{
139 return NM_I(sbi)->nat_cnt[TOTAL_NAT] >= DEF_NAT_CACHE_THRESHOLD;
140}
141
142enum mem_type {
143 FREE_NIDS, /* indicates the free nid list */
144 NAT_ENTRIES, /* indicates the cached nat entry */
145 DIRTY_DENTS, /* indicates dirty dentry pages */
146 INO_ENTRIES, /* indicates inode entries */
147 READ_EXTENT_CACHE, /* indicates read extent cache */
148 AGE_EXTENT_CACHE, /* indicates age extent cache */
149 DISCARD_CACHE, /* indicates memory of cached discard cmds */
150 COMPRESS_PAGE, /* indicates memory of cached compressed pages */
151 BASE_CHECK, /* check kernel status */
152};
153
154struct nat_entry_set {
155 struct list_head set_list; /* link with other nat sets */
156 struct list_head entry_list; /* link with dirty nat entries */
157 nid_t set; /* set number*/
158 unsigned int entry_cnt; /* the # of nat entries in set */
159};
160
161struct free_nid {
162 struct list_head list; /* for free node id list */
163 nid_t nid; /* node id */
164 int state; /* in use or not: FREE_NID or PREALLOC_NID */
165};
166
167static inline void next_free_nid(struct f2fs_sb_info *sbi, nid_t *nid)
168{
169 struct f2fs_nm_info *nm_i = NM_I(sbi);
170 struct free_nid *fnid;
171
172 spin_lock(&nm_i->nid_list_lock);
173 if (nm_i->nid_cnt[FREE_NID] <= 0) {
174 spin_unlock(&nm_i->nid_list_lock);
175 return;
176 }
177 fnid = list_first_entry(&nm_i->free_nid_list, struct free_nid, list);
178 *nid = fnid->nid;
179 spin_unlock(&nm_i->nid_list_lock);
180}
181
182/*
183 * inline functions
184 */
185static inline void get_nat_bitmap(struct f2fs_sb_info *sbi, void *addr)
186{
187 struct f2fs_nm_info *nm_i = NM_I(sbi);
188
189#ifdef CONFIG_F2FS_CHECK_FS
190 if (memcmp(nm_i->nat_bitmap, nm_i->nat_bitmap_mir,
191 nm_i->bitmap_size))
192 f2fs_bug_on(sbi, 1);
193#endif
194 memcpy(addr, nm_i->nat_bitmap, nm_i->bitmap_size);
195}
196
197static inline pgoff_t current_nat_addr(struct f2fs_sb_info *sbi, nid_t start)
198{
199 struct f2fs_nm_info *nm_i = NM_I(sbi);
200 pgoff_t block_off;
201 pgoff_t block_addr;
202
203 /*
204 * block_off = segment_off * 512 + off_in_segment
205 * OLD = (segment_off * 512) * 2 + off_in_segment
206 * NEW = 2 * (segment_off * 512 + off_in_segment) - off_in_segment
207 */
208 block_off = NAT_BLOCK_OFFSET(start);
209
210 block_addr = (pgoff_t)(nm_i->nat_blkaddr +
211 (block_off << 1) -
212 (block_off & (sbi->blocks_per_seg - 1)));
213
214 if (f2fs_test_bit(block_off, nm_i->nat_bitmap))
215 block_addr += sbi->blocks_per_seg;
216
217 return block_addr;
218}
219
220static inline pgoff_t next_nat_addr(struct f2fs_sb_info *sbi,
221 pgoff_t block_addr)
222{
223 struct f2fs_nm_info *nm_i = NM_I(sbi);
224
225 block_addr -= nm_i->nat_blkaddr;
226 block_addr ^= BIT(sbi->log_blocks_per_seg);
227 return block_addr + nm_i->nat_blkaddr;
228}
229
230static inline void set_to_next_nat(struct f2fs_nm_info *nm_i, nid_t start_nid)
231{
232 unsigned int block_off = NAT_BLOCK_OFFSET(start_nid);
233
234 f2fs_change_bit(block_off, nm_i->nat_bitmap);
235#ifdef CONFIG_F2FS_CHECK_FS
236 f2fs_change_bit(block_off, nm_i->nat_bitmap_mir);
237#endif
238}
239
240static inline nid_t ino_of_node(struct page *node_page)
241{
242 struct f2fs_node *rn = F2FS_NODE(node_page);
243 return le32_to_cpu(rn->footer.ino);
244}
245
246static inline nid_t nid_of_node(struct page *node_page)
247{
248 struct f2fs_node *rn = F2FS_NODE(node_page);
249 return le32_to_cpu(rn->footer.nid);
250}
251
252static inline unsigned int ofs_of_node(struct page *node_page)
253{
254 struct f2fs_node *rn = F2FS_NODE(node_page);
255 unsigned flag = le32_to_cpu(rn->footer.flag);
256 return flag >> OFFSET_BIT_SHIFT;
257}
258
259static inline __u64 cpver_of_node(struct page *node_page)
260{
261 struct f2fs_node *rn = F2FS_NODE(node_page);
262 return le64_to_cpu(rn->footer.cp_ver);
263}
264
265static inline block_t next_blkaddr_of_node(struct page *node_page)
266{
267 struct f2fs_node *rn = F2FS_NODE(node_page);
268 return le32_to_cpu(rn->footer.next_blkaddr);
269}
270
271static inline void fill_node_footer(struct page *page, nid_t nid,
272 nid_t ino, unsigned int ofs, bool reset)
273{
274 struct f2fs_node *rn = F2FS_NODE(page);
275 unsigned int old_flag = 0;
276
277 if (reset)
278 memset(rn, 0, sizeof(*rn));
279 else
280 old_flag = le32_to_cpu(rn->footer.flag);
281
282 rn->footer.nid = cpu_to_le32(nid);
283 rn->footer.ino = cpu_to_le32(ino);
284
285 /* should remain old flag bits such as COLD_BIT_SHIFT */
286 rn->footer.flag = cpu_to_le32((ofs << OFFSET_BIT_SHIFT) |
287 (old_flag & OFFSET_BIT_MASK));
288}
289
290static inline void copy_node_footer(struct page *dst, struct page *src)
291{
292 struct f2fs_node *src_rn = F2FS_NODE(src);
293 struct f2fs_node *dst_rn = F2FS_NODE(dst);
294 memcpy(&dst_rn->footer, &src_rn->footer, sizeof(struct node_footer));
295}
296
297static inline void fill_node_footer_blkaddr(struct page *page, block_t blkaddr)
298{
299 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
300 struct f2fs_node *rn = F2FS_NODE(page);
301 __u64 cp_ver = cur_cp_version(ckpt);
302
303 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
304 cp_ver |= (cur_cp_crc(ckpt) << 32);
305
306 rn->footer.cp_ver = cpu_to_le64(cp_ver);
307 rn->footer.next_blkaddr = cpu_to_le32(blkaddr);
308}
309
310static inline bool is_recoverable_dnode(struct page *page)
311{
312 struct f2fs_checkpoint *ckpt = F2FS_CKPT(F2FS_P_SB(page));
313 __u64 cp_ver = cur_cp_version(ckpt);
314
315 /* Don't care crc part, if fsck.f2fs sets it. */
316 if (__is_set_ckpt_flags(ckpt, CP_NOCRC_RECOVERY_FLAG))
317 return (cp_ver << 32) == (cpver_of_node(page) << 32);
318
319 if (__is_set_ckpt_flags(ckpt, CP_CRC_RECOVERY_FLAG))
320 cp_ver |= (cur_cp_crc(ckpt) << 32);
321
322 return cp_ver == cpver_of_node(page);
323}
324
325/*
326 * f2fs assigns the following node offsets described as (num).
327 * N = NIDS_PER_BLOCK
328 *
329 * Inode block (0)
330 * |- direct node (1)
331 * |- direct node (2)
332 * |- indirect node (3)
333 * | `- direct node (4 => 4 + N - 1)
334 * |- indirect node (4 + N)
335 * | `- direct node (5 + N => 5 + 2N - 1)
336 * `- double indirect node (5 + 2N)
337 * `- indirect node (6 + 2N)
338 * `- direct node
339 * ......
340 * `- indirect node ((6 + 2N) + x(N + 1))
341 * `- direct node
342 * ......
343 * `- indirect node ((6 + 2N) + (N - 1)(N + 1))
344 * `- direct node
345 */
346static inline bool IS_DNODE(struct page *node_page)
347{
348 unsigned int ofs = ofs_of_node(node_page);
349
350 if (f2fs_has_xattr_block(ofs))
351 return true;
352
353 if (ofs == 3 || ofs == 4 + NIDS_PER_BLOCK ||
354 ofs == 5 + 2 * NIDS_PER_BLOCK)
355 return false;
356 if (ofs >= 6 + 2 * NIDS_PER_BLOCK) {
357 ofs -= 6 + 2 * NIDS_PER_BLOCK;
358 if (!((long int)ofs % (NIDS_PER_BLOCK + 1)))
359 return false;
360 }
361 return true;
362}
363
364static inline int set_nid(struct page *p, int off, nid_t nid, bool i)
365{
366 struct f2fs_node *rn = F2FS_NODE(p);
367
368 f2fs_wait_on_page_writeback(p, NODE, true, true);
369
370 if (i)
371 rn->i.i_nid[off - NODE_DIR1_BLOCK] = cpu_to_le32(nid);
372 else
373 rn->in.nid[off] = cpu_to_le32(nid);
374 return set_page_dirty(p);
375}
376
377static inline nid_t get_nid(struct page *p, int off, bool i)
378{
379 struct f2fs_node *rn = F2FS_NODE(p);
380
381 if (i)
382 return le32_to_cpu(rn->i.i_nid[off - NODE_DIR1_BLOCK]);
383 return le32_to_cpu(rn->in.nid[off]);
384}
385
386/*
387 * Coldness identification:
388 * - Mark cold files in f2fs_inode_info
389 * - Mark cold node blocks in their node footer
390 * - Mark cold data pages in page cache
391 */
392
393static inline int is_node(struct page *page, int type)
394{
395 struct f2fs_node *rn = F2FS_NODE(page);
396 return le32_to_cpu(rn->footer.flag) & BIT(type);
397}
398
399#define is_cold_node(page) is_node(page, COLD_BIT_SHIFT)
400#define is_fsync_dnode(page) is_node(page, FSYNC_BIT_SHIFT)
401#define is_dent_dnode(page) is_node(page, DENT_BIT_SHIFT)
402
403static inline void set_cold_node(struct page *page, bool is_dir)
404{
405 struct f2fs_node *rn = F2FS_NODE(page);
406 unsigned int flag = le32_to_cpu(rn->footer.flag);
407
408 if (is_dir)
409 flag &= ~BIT(COLD_BIT_SHIFT);
410 else
411 flag |= BIT(COLD_BIT_SHIFT);
412 rn->footer.flag = cpu_to_le32(flag);
413}
414
415static inline void set_mark(struct page *page, int mark, int type)
416{
417 struct f2fs_node *rn = F2FS_NODE(page);
418 unsigned int flag = le32_to_cpu(rn->footer.flag);
419 if (mark)
420 flag |= BIT(type);
421 else
422 flag &= ~BIT(type);
423 rn->footer.flag = cpu_to_le32(flag);
424
425#ifdef CONFIG_F2FS_CHECK_FS
426 f2fs_inode_chksum_set(F2FS_P_SB(page), page);
427#endif
428}
429#define set_dentry_mark(page, mark) set_mark(page, mark, DENT_BIT_SHIFT)
430#define set_fsync_mark(page, mark) set_mark(page, mark, FSYNC_BIT_SHIFT)