Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * fs/f2fs/node.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8#include <linux/fs.h>
9#include <linux/f2fs_fs.h>
10#include <linux/mpage.h>
11#include <linux/sched/mm.h>
12#include <linux/blkdev.h>
13#include <linux/pagevec.h>
14#include <linux/swap.h>
15
16#include "f2fs.h"
17#include "node.h"
18#include "segment.h"
19#include "xattr.h"
20#include "iostat.h"
21#include <trace/events/f2fs.h>
22
23#define on_f2fs_build_free_nids(nmi) mutex_is_locked(&(nm_i)->build_lock)
24
25static struct kmem_cache *nat_entry_slab;
26static struct kmem_cache *free_nid_slab;
27static struct kmem_cache *nat_entry_set_slab;
28static struct kmem_cache *fsync_node_entry_slab;
29
30/*
31 * Check whether the given nid is within node id range.
32 */
33int f2fs_check_nid_range(struct f2fs_sb_info *sbi, nid_t nid)
34{
35 if (unlikely(nid < F2FS_ROOT_INO(sbi) || nid >= NM_I(sbi)->max_nid)) {
36 set_sbi_flag(sbi, SBI_NEED_FSCK);
37 f2fs_warn(sbi, "%s: out-of-range nid=%x, run fsck to fix.",
38 __func__, nid);
39 f2fs_handle_error(sbi, ERROR_CORRUPTED_INODE);
40 return -EFSCORRUPTED;
41 }
42 return 0;
43}
44
45bool f2fs_available_free_memory(struct f2fs_sb_info *sbi, int type)
46{
47 struct f2fs_nm_info *nm_i = NM_I(sbi);
48 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
49 struct sysinfo val;
50 unsigned long avail_ram;
51 unsigned long mem_size = 0;
52 bool res = false;
53
54 if (!nm_i)
55 return true;
56
57 si_meminfo(&val);
58
59 /* only uses low memory */
60 avail_ram = val.totalram - val.totalhigh;
61
62 /*
63 * give 25%, 25%, 50%, 50%, 25%, 25% memory for each components respectively
64 */
65 if (type == FREE_NIDS) {
66 mem_size = (nm_i->nid_cnt[FREE_NID] *
67 sizeof(struct free_nid)) >> PAGE_SHIFT;
68 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
69 } else if (type == NAT_ENTRIES) {
70 mem_size = (nm_i->nat_cnt[TOTAL_NAT] *
71 sizeof(struct nat_entry)) >> PAGE_SHIFT;
72 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
73 if (excess_cached_nats(sbi))
74 res = false;
75 } else if (type == DIRTY_DENTS) {
76 if (sbi->sb->s_bdi->wb.dirty_exceeded)
77 return false;
78 mem_size = get_pages(sbi, F2FS_DIRTY_DENTS);
79 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
80 } else if (type == INO_ENTRIES) {
81 int i;
82
83 for (i = 0; i < MAX_INO_ENTRY; i++)
84 mem_size += sbi->im[i].ino_num *
85 sizeof(struct ino_entry);
86 mem_size >>= PAGE_SHIFT;
87 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
88 } else if (type == READ_EXTENT_CACHE || type == AGE_EXTENT_CACHE) {
89 enum extent_type etype = type == READ_EXTENT_CACHE ?
90 EX_READ : EX_BLOCK_AGE;
91 struct extent_tree_info *eti = &sbi->extent_tree[etype];
92
93 mem_size = (atomic_read(&eti->total_ext_tree) *
94 sizeof(struct extent_tree) +
95 atomic_read(&eti->total_ext_node) *
96 sizeof(struct extent_node)) >> PAGE_SHIFT;
97 res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 2);
98 } else if (type == DISCARD_CACHE) {
99 mem_size = (atomic_read(&dcc->discard_cmd_cnt) *
100 sizeof(struct discard_cmd)) >> PAGE_SHIFT;
101 res = mem_size < (avail_ram * nm_i->ram_thresh / 100);
102 } else if (type == COMPRESS_PAGE) {
103#ifdef CONFIG_F2FS_FS_COMPRESSION
104 unsigned long free_ram = val.freeram;
105
106 /*
107 * free memory is lower than watermark or cached page count
108 * exceed threshold, deny caching compress page.
109 */
110 res = (free_ram > avail_ram * sbi->compress_watermark / 100) &&
111 (COMPRESS_MAPPING(sbi)->nrpages <
112 free_ram * sbi->compress_percent / 100);
113#else
114 res = false;
115#endif
116 } else {
117 if (!sbi->sb->s_bdi->wb.dirty_exceeded)
118 return true;
119 }
120 return res;
121}
122
123static void clear_node_page_dirty(struct page *page)
124{
125 if (PageDirty(page)) {
126 f2fs_clear_page_cache_dirty_tag(page);
127 clear_page_dirty_for_io(page);
128 dec_page_count(F2FS_P_SB(page), F2FS_DIRTY_NODES);
129 }
130 ClearPageUptodate(page);
131}
132
133static struct page *get_current_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
134{
135 return f2fs_get_meta_page_retry(sbi, current_nat_addr(sbi, nid));
136}
137
138static struct page *get_next_nat_page(struct f2fs_sb_info *sbi, nid_t nid)
139{
140 struct page *src_page;
141 struct page *dst_page;
142 pgoff_t dst_off;
143 void *src_addr;
144 void *dst_addr;
145 struct f2fs_nm_info *nm_i = NM_I(sbi);
146
147 dst_off = next_nat_addr(sbi, current_nat_addr(sbi, nid));
148
149 /* get current nat block page with lock */
150 src_page = get_current_nat_page(sbi, nid);
151 if (IS_ERR(src_page))
152 return src_page;
153 dst_page = f2fs_grab_meta_page(sbi, dst_off);
154 f2fs_bug_on(sbi, PageDirty(src_page));
155
156 src_addr = page_address(src_page);
157 dst_addr = page_address(dst_page);
158 memcpy(dst_addr, src_addr, PAGE_SIZE);
159 set_page_dirty(dst_page);
160 f2fs_put_page(src_page, 1);
161
162 set_to_next_nat(nm_i, nid);
163
164 return dst_page;
165}
166
167static struct nat_entry *__alloc_nat_entry(struct f2fs_sb_info *sbi,
168 nid_t nid, bool no_fail)
169{
170 struct nat_entry *new;
171
172 new = f2fs_kmem_cache_alloc(nat_entry_slab,
173 GFP_F2FS_ZERO, no_fail, sbi);
174 if (new) {
175 nat_set_nid(new, nid);
176 nat_reset_flag(new);
177 }
178 return new;
179}
180
181static void __free_nat_entry(struct nat_entry *e)
182{
183 kmem_cache_free(nat_entry_slab, e);
184}
185
186/* must be locked by nat_tree_lock */
187static struct nat_entry *__init_nat_entry(struct f2fs_nm_info *nm_i,
188 struct nat_entry *ne, struct f2fs_nat_entry *raw_ne, bool no_fail)
189{
190 if (no_fail)
191 f2fs_radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne);
192 else if (radix_tree_insert(&nm_i->nat_root, nat_get_nid(ne), ne))
193 return NULL;
194
195 if (raw_ne)
196 node_info_from_raw_nat(&ne->ni, raw_ne);
197
198 spin_lock(&nm_i->nat_list_lock);
199 list_add_tail(&ne->list, &nm_i->nat_entries);
200 spin_unlock(&nm_i->nat_list_lock);
201
202 nm_i->nat_cnt[TOTAL_NAT]++;
203 nm_i->nat_cnt[RECLAIMABLE_NAT]++;
204 return ne;
205}
206
207static struct nat_entry *__lookup_nat_cache(struct f2fs_nm_info *nm_i, nid_t n)
208{
209 struct nat_entry *ne;
210
211 ne = radix_tree_lookup(&nm_i->nat_root, n);
212
213 /* for recent accessed nat entry, move it to tail of lru list */
214 if (ne && !get_nat_flag(ne, IS_DIRTY)) {
215 spin_lock(&nm_i->nat_list_lock);
216 if (!list_empty(&ne->list))
217 list_move_tail(&ne->list, &nm_i->nat_entries);
218 spin_unlock(&nm_i->nat_list_lock);
219 }
220
221 return ne;
222}
223
224static unsigned int __gang_lookup_nat_cache(struct f2fs_nm_info *nm_i,
225 nid_t start, unsigned int nr, struct nat_entry **ep)
226{
227 return radix_tree_gang_lookup(&nm_i->nat_root, (void **)ep, start, nr);
228}
229
230static void __del_from_nat_cache(struct f2fs_nm_info *nm_i, struct nat_entry *e)
231{
232 radix_tree_delete(&nm_i->nat_root, nat_get_nid(e));
233 nm_i->nat_cnt[TOTAL_NAT]--;
234 nm_i->nat_cnt[RECLAIMABLE_NAT]--;
235 __free_nat_entry(e);
236}
237
238static struct nat_entry_set *__grab_nat_entry_set(struct f2fs_nm_info *nm_i,
239 struct nat_entry *ne)
240{
241 nid_t set = NAT_BLOCK_OFFSET(ne->ni.nid);
242 struct nat_entry_set *head;
243
244 head = radix_tree_lookup(&nm_i->nat_set_root, set);
245 if (!head) {
246 head = f2fs_kmem_cache_alloc(nat_entry_set_slab,
247 GFP_NOFS, true, NULL);
248
249 INIT_LIST_HEAD(&head->entry_list);
250 INIT_LIST_HEAD(&head->set_list);
251 head->set = set;
252 head->entry_cnt = 0;
253 f2fs_radix_tree_insert(&nm_i->nat_set_root, set, head);
254 }
255 return head;
256}
257
258static void __set_nat_cache_dirty(struct f2fs_nm_info *nm_i,
259 struct nat_entry *ne)
260{
261 struct nat_entry_set *head;
262 bool new_ne = nat_get_blkaddr(ne) == NEW_ADDR;
263
264 if (!new_ne)
265 head = __grab_nat_entry_set(nm_i, ne);
266
267 /*
268 * update entry_cnt in below condition:
269 * 1. update NEW_ADDR to valid block address;
270 * 2. update old block address to new one;
271 */
272 if (!new_ne && (get_nat_flag(ne, IS_PREALLOC) ||
273 !get_nat_flag(ne, IS_DIRTY)))
274 head->entry_cnt++;
275
276 set_nat_flag(ne, IS_PREALLOC, new_ne);
277
278 if (get_nat_flag(ne, IS_DIRTY))
279 goto refresh_list;
280
281 nm_i->nat_cnt[DIRTY_NAT]++;
282 nm_i->nat_cnt[RECLAIMABLE_NAT]--;
283 set_nat_flag(ne, IS_DIRTY, true);
284refresh_list:
285 spin_lock(&nm_i->nat_list_lock);
286 if (new_ne)
287 list_del_init(&ne->list);
288 else
289 list_move_tail(&ne->list, &head->entry_list);
290 spin_unlock(&nm_i->nat_list_lock);
291}
292
293static void __clear_nat_cache_dirty(struct f2fs_nm_info *nm_i,
294 struct nat_entry_set *set, struct nat_entry *ne)
295{
296 spin_lock(&nm_i->nat_list_lock);
297 list_move_tail(&ne->list, &nm_i->nat_entries);
298 spin_unlock(&nm_i->nat_list_lock);
299
300 set_nat_flag(ne, IS_DIRTY, false);
301 set->entry_cnt--;
302 nm_i->nat_cnt[DIRTY_NAT]--;
303 nm_i->nat_cnt[RECLAIMABLE_NAT]++;
304}
305
306static unsigned int __gang_lookup_nat_set(struct f2fs_nm_info *nm_i,
307 nid_t start, unsigned int nr, struct nat_entry_set **ep)
308{
309 return radix_tree_gang_lookup(&nm_i->nat_set_root, (void **)ep,
310 start, nr);
311}
312
313bool f2fs_in_warm_node_list(struct f2fs_sb_info *sbi, struct page *page)
314{
315 return NODE_MAPPING(sbi) == page->mapping &&
316 IS_DNODE(page) && is_cold_node(page);
317}
318
319void f2fs_init_fsync_node_info(struct f2fs_sb_info *sbi)
320{
321 spin_lock_init(&sbi->fsync_node_lock);
322 INIT_LIST_HEAD(&sbi->fsync_node_list);
323 sbi->fsync_seg_id = 0;
324 sbi->fsync_node_num = 0;
325}
326
327static unsigned int f2fs_add_fsync_node_entry(struct f2fs_sb_info *sbi,
328 struct page *page)
329{
330 struct fsync_node_entry *fn;
331 unsigned long flags;
332 unsigned int seq_id;
333
334 fn = f2fs_kmem_cache_alloc(fsync_node_entry_slab,
335 GFP_NOFS, true, NULL);
336
337 get_page(page);
338 fn->page = page;
339 INIT_LIST_HEAD(&fn->list);
340
341 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
342 list_add_tail(&fn->list, &sbi->fsync_node_list);
343 fn->seq_id = sbi->fsync_seg_id++;
344 seq_id = fn->seq_id;
345 sbi->fsync_node_num++;
346 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
347
348 return seq_id;
349}
350
351void f2fs_del_fsync_node_entry(struct f2fs_sb_info *sbi, struct page *page)
352{
353 struct fsync_node_entry *fn;
354 unsigned long flags;
355
356 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
357 list_for_each_entry(fn, &sbi->fsync_node_list, list) {
358 if (fn->page == page) {
359 list_del(&fn->list);
360 sbi->fsync_node_num--;
361 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
362 kmem_cache_free(fsync_node_entry_slab, fn);
363 put_page(page);
364 return;
365 }
366 }
367 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
368 f2fs_bug_on(sbi, 1);
369}
370
371void f2fs_reset_fsync_node_info(struct f2fs_sb_info *sbi)
372{
373 unsigned long flags;
374
375 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
376 sbi->fsync_seg_id = 0;
377 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
378}
379
380int f2fs_need_dentry_mark(struct f2fs_sb_info *sbi, nid_t nid)
381{
382 struct f2fs_nm_info *nm_i = NM_I(sbi);
383 struct nat_entry *e;
384 bool need = false;
385
386 f2fs_down_read(&nm_i->nat_tree_lock);
387 e = __lookup_nat_cache(nm_i, nid);
388 if (e) {
389 if (!get_nat_flag(e, IS_CHECKPOINTED) &&
390 !get_nat_flag(e, HAS_FSYNCED_INODE))
391 need = true;
392 }
393 f2fs_up_read(&nm_i->nat_tree_lock);
394 return need;
395}
396
397bool f2fs_is_checkpointed_node(struct f2fs_sb_info *sbi, nid_t nid)
398{
399 struct f2fs_nm_info *nm_i = NM_I(sbi);
400 struct nat_entry *e;
401 bool is_cp = true;
402
403 f2fs_down_read(&nm_i->nat_tree_lock);
404 e = __lookup_nat_cache(nm_i, nid);
405 if (e && !get_nat_flag(e, IS_CHECKPOINTED))
406 is_cp = false;
407 f2fs_up_read(&nm_i->nat_tree_lock);
408 return is_cp;
409}
410
411bool f2fs_need_inode_block_update(struct f2fs_sb_info *sbi, nid_t ino)
412{
413 struct f2fs_nm_info *nm_i = NM_I(sbi);
414 struct nat_entry *e;
415 bool need_update = true;
416
417 f2fs_down_read(&nm_i->nat_tree_lock);
418 e = __lookup_nat_cache(nm_i, ino);
419 if (e && get_nat_flag(e, HAS_LAST_FSYNC) &&
420 (get_nat_flag(e, IS_CHECKPOINTED) ||
421 get_nat_flag(e, HAS_FSYNCED_INODE)))
422 need_update = false;
423 f2fs_up_read(&nm_i->nat_tree_lock);
424 return need_update;
425}
426
427/* must be locked by nat_tree_lock */
428static void cache_nat_entry(struct f2fs_sb_info *sbi, nid_t nid,
429 struct f2fs_nat_entry *ne)
430{
431 struct f2fs_nm_info *nm_i = NM_I(sbi);
432 struct nat_entry *new, *e;
433
434 /* Let's mitigate lock contention of nat_tree_lock during checkpoint */
435 if (f2fs_rwsem_is_locked(&sbi->cp_global_sem))
436 return;
437
438 new = __alloc_nat_entry(sbi, nid, false);
439 if (!new)
440 return;
441
442 f2fs_down_write(&nm_i->nat_tree_lock);
443 e = __lookup_nat_cache(nm_i, nid);
444 if (!e)
445 e = __init_nat_entry(nm_i, new, ne, false);
446 else
447 f2fs_bug_on(sbi, nat_get_ino(e) != le32_to_cpu(ne->ino) ||
448 nat_get_blkaddr(e) !=
449 le32_to_cpu(ne->block_addr) ||
450 nat_get_version(e) != ne->version);
451 f2fs_up_write(&nm_i->nat_tree_lock);
452 if (e != new)
453 __free_nat_entry(new);
454}
455
456static void set_node_addr(struct f2fs_sb_info *sbi, struct node_info *ni,
457 block_t new_blkaddr, bool fsync_done)
458{
459 struct f2fs_nm_info *nm_i = NM_I(sbi);
460 struct nat_entry *e;
461 struct nat_entry *new = __alloc_nat_entry(sbi, ni->nid, true);
462
463 f2fs_down_write(&nm_i->nat_tree_lock);
464 e = __lookup_nat_cache(nm_i, ni->nid);
465 if (!e) {
466 e = __init_nat_entry(nm_i, new, NULL, true);
467 copy_node_info(&e->ni, ni);
468 f2fs_bug_on(sbi, ni->blk_addr == NEW_ADDR);
469 } else if (new_blkaddr == NEW_ADDR) {
470 /*
471 * when nid is reallocated,
472 * previous nat entry can be remained in nat cache.
473 * So, reinitialize it with new information.
474 */
475 copy_node_info(&e->ni, ni);
476 f2fs_bug_on(sbi, ni->blk_addr != NULL_ADDR);
477 }
478 /* let's free early to reduce memory consumption */
479 if (e != new)
480 __free_nat_entry(new);
481
482 /* sanity check */
483 f2fs_bug_on(sbi, nat_get_blkaddr(e) != ni->blk_addr);
484 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NULL_ADDR &&
485 new_blkaddr == NULL_ADDR);
486 f2fs_bug_on(sbi, nat_get_blkaddr(e) == NEW_ADDR &&
487 new_blkaddr == NEW_ADDR);
488 f2fs_bug_on(sbi, __is_valid_data_blkaddr(nat_get_blkaddr(e)) &&
489 new_blkaddr == NEW_ADDR);
490
491 /* increment version no as node is removed */
492 if (nat_get_blkaddr(e) != NEW_ADDR && new_blkaddr == NULL_ADDR) {
493 unsigned char version = nat_get_version(e);
494
495 nat_set_version(e, inc_node_version(version));
496 }
497
498 /* change address */
499 nat_set_blkaddr(e, new_blkaddr);
500 if (!__is_valid_data_blkaddr(new_blkaddr))
501 set_nat_flag(e, IS_CHECKPOINTED, false);
502 __set_nat_cache_dirty(nm_i, e);
503
504 /* update fsync_mark if its inode nat entry is still alive */
505 if (ni->nid != ni->ino)
506 e = __lookup_nat_cache(nm_i, ni->ino);
507 if (e) {
508 if (fsync_done && ni->nid == ni->ino)
509 set_nat_flag(e, HAS_FSYNCED_INODE, true);
510 set_nat_flag(e, HAS_LAST_FSYNC, fsync_done);
511 }
512 f2fs_up_write(&nm_i->nat_tree_lock);
513}
514
515int f2fs_try_to_free_nats(struct f2fs_sb_info *sbi, int nr_shrink)
516{
517 struct f2fs_nm_info *nm_i = NM_I(sbi);
518 int nr = nr_shrink;
519
520 if (!f2fs_down_write_trylock(&nm_i->nat_tree_lock))
521 return 0;
522
523 spin_lock(&nm_i->nat_list_lock);
524 while (nr_shrink) {
525 struct nat_entry *ne;
526
527 if (list_empty(&nm_i->nat_entries))
528 break;
529
530 ne = list_first_entry(&nm_i->nat_entries,
531 struct nat_entry, list);
532 list_del(&ne->list);
533 spin_unlock(&nm_i->nat_list_lock);
534
535 __del_from_nat_cache(nm_i, ne);
536 nr_shrink--;
537
538 spin_lock(&nm_i->nat_list_lock);
539 }
540 spin_unlock(&nm_i->nat_list_lock);
541
542 f2fs_up_write(&nm_i->nat_tree_lock);
543 return nr - nr_shrink;
544}
545
546int f2fs_get_node_info(struct f2fs_sb_info *sbi, nid_t nid,
547 struct node_info *ni, bool checkpoint_context)
548{
549 struct f2fs_nm_info *nm_i = NM_I(sbi);
550 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
551 struct f2fs_journal *journal = curseg->journal;
552 nid_t start_nid = START_NID(nid);
553 struct f2fs_nat_block *nat_blk;
554 struct page *page = NULL;
555 struct f2fs_nat_entry ne;
556 struct nat_entry *e;
557 pgoff_t index;
558 block_t blkaddr;
559 int i;
560
561 ni->nid = nid;
562retry:
563 /* Check nat cache */
564 f2fs_down_read(&nm_i->nat_tree_lock);
565 e = __lookup_nat_cache(nm_i, nid);
566 if (e) {
567 ni->ino = nat_get_ino(e);
568 ni->blk_addr = nat_get_blkaddr(e);
569 ni->version = nat_get_version(e);
570 f2fs_up_read(&nm_i->nat_tree_lock);
571 return 0;
572 }
573
574 /*
575 * Check current segment summary by trying to grab journal_rwsem first.
576 * This sem is on the critical path on the checkpoint requiring the above
577 * nat_tree_lock. Therefore, we should retry, if we failed to grab here
578 * while not bothering checkpoint.
579 */
580 if (!f2fs_rwsem_is_locked(&sbi->cp_global_sem) || checkpoint_context) {
581 down_read(&curseg->journal_rwsem);
582 } else if (f2fs_rwsem_is_contended(&nm_i->nat_tree_lock) ||
583 !down_read_trylock(&curseg->journal_rwsem)) {
584 f2fs_up_read(&nm_i->nat_tree_lock);
585 goto retry;
586 }
587
588 i = f2fs_lookup_journal_in_cursum(journal, NAT_JOURNAL, nid, 0);
589 if (i >= 0) {
590 ne = nat_in_journal(journal, i);
591 node_info_from_raw_nat(ni, &ne);
592 }
593 up_read(&curseg->journal_rwsem);
594 if (i >= 0) {
595 f2fs_up_read(&nm_i->nat_tree_lock);
596 goto cache;
597 }
598
599 /* Fill node_info from nat page */
600 index = current_nat_addr(sbi, nid);
601 f2fs_up_read(&nm_i->nat_tree_lock);
602
603 page = f2fs_get_meta_page(sbi, index);
604 if (IS_ERR(page))
605 return PTR_ERR(page);
606
607 nat_blk = (struct f2fs_nat_block *)page_address(page);
608 ne = nat_blk->entries[nid - start_nid];
609 node_info_from_raw_nat(ni, &ne);
610 f2fs_put_page(page, 1);
611cache:
612 blkaddr = le32_to_cpu(ne.block_addr);
613 if (__is_valid_data_blkaddr(blkaddr) &&
614 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE))
615 return -EFAULT;
616
617 /* cache nat entry */
618 cache_nat_entry(sbi, nid, &ne);
619 return 0;
620}
621
622/*
623 * readahead MAX_RA_NODE number of node pages.
624 */
625static void f2fs_ra_node_pages(struct page *parent, int start, int n)
626{
627 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
628 struct blk_plug plug;
629 int i, end;
630 nid_t nid;
631
632 blk_start_plug(&plug);
633
634 /* Then, try readahead for siblings of the desired node */
635 end = start + n;
636 end = min(end, NIDS_PER_BLOCK);
637 for (i = start; i < end; i++) {
638 nid = get_nid(parent, i, false);
639 f2fs_ra_node_page(sbi, nid);
640 }
641
642 blk_finish_plug(&plug);
643}
644
645pgoff_t f2fs_get_next_page_offset(struct dnode_of_data *dn, pgoff_t pgofs)
646{
647 const long direct_index = ADDRS_PER_INODE(dn->inode);
648 const long direct_blks = ADDRS_PER_BLOCK(dn->inode);
649 const long indirect_blks = ADDRS_PER_BLOCK(dn->inode) * NIDS_PER_BLOCK;
650 unsigned int skipped_unit = ADDRS_PER_BLOCK(dn->inode);
651 int cur_level = dn->cur_level;
652 int max_level = dn->max_level;
653 pgoff_t base = 0;
654
655 if (!dn->max_level)
656 return pgofs + 1;
657
658 while (max_level-- > cur_level)
659 skipped_unit *= NIDS_PER_BLOCK;
660
661 switch (dn->max_level) {
662 case 3:
663 base += 2 * indirect_blks;
664 fallthrough;
665 case 2:
666 base += 2 * direct_blks;
667 fallthrough;
668 case 1:
669 base += direct_index;
670 break;
671 default:
672 f2fs_bug_on(F2FS_I_SB(dn->inode), 1);
673 }
674
675 return ((pgofs - base) / skipped_unit + 1) * skipped_unit + base;
676}
677
678/*
679 * The maximum depth is four.
680 * Offset[0] will have raw inode offset.
681 */
682static int get_node_path(struct inode *inode, long block,
683 int offset[4], unsigned int noffset[4])
684{
685 const long direct_index = ADDRS_PER_INODE(inode);
686 const long direct_blks = ADDRS_PER_BLOCK(inode);
687 const long dptrs_per_blk = NIDS_PER_BLOCK;
688 const long indirect_blks = ADDRS_PER_BLOCK(inode) * NIDS_PER_BLOCK;
689 const long dindirect_blks = indirect_blks * NIDS_PER_BLOCK;
690 int n = 0;
691 int level = 0;
692
693 noffset[0] = 0;
694
695 if (block < direct_index) {
696 offset[n] = block;
697 goto got;
698 }
699 block -= direct_index;
700 if (block < direct_blks) {
701 offset[n++] = NODE_DIR1_BLOCK;
702 noffset[n] = 1;
703 offset[n] = block;
704 level = 1;
705 goto got;
706 }
707 block -= direct_blks;
708 if (block < direct_blks) {
709 offset[n++] = NODE_DIR2_BLOCK;
710 noffset[n] = 2;
711 offset[n] = block;
712 level = 1;
713 goto got;
714 }
715 block -= direct_blks;
716 if (block < indirect_blks) {
717 offset[n++] = NODE_IND1_BLOCK;
718 noffset[n] = 3;
719 offset[n++] = block / direct_blks;
720 noffset[n] = 4 + offset[n - 1];
721 offset[n] = block % direct_blks;
722 level = 2;
723 goto got;
724 }
725 block -= indirect_blks;
726 if (block < indirect_blks) {
727 offset[n++] = NODE_IND2_BLOCK;
728 noffset[n] = 4 + dptrs_per_blk;
729 offset[n++] = block / direct_blks;
730 noffset[n] = 5 + dptrs_per_blk + offset[n - 1];
731 offset[n] = block % direct_blks;
732 level = 2;
733 goto got;
734 }
735 block -= indirect_blks;
736 if (block < dindirect_blks) {
737 offset[n++] = NODE_DIND_BLOCK;
738 noffset[n] = 5 + (dptrs_per_blk * 2);
739 offset[n++] = block / indirect_blks;
740 noffset[n] = 6 + (dptrs_per_blk * 2) +
741 offset[n - 1] * (dptrs_per_blk + 1);
742 offset[n++] = (block / direct_blks) % dptrs_per_blk;
743 noffset[n] = 7 + (dptrs_per_blk * 2) +
744 offset[n - 2] * (dptrs_per_blk + 1) +
745 offset[n - 1];
746 offset[n] = block % direct_blks;
747 level = 3;
748 goto got;
749 } else {
750 return -E2BIG;
751 }
752got:
753 return level;
754}
755
756/*
757 * Caller should call f2fs_put_dnode(dn).
758 * Also, it should grab and release a rwsem by calling f2fs_lock_op() and
759 * f2fs_unlock_op() only if mode is set with ALLOC_NODE.
760 */
761int f2fs_get_dnode_of_data(struct dnode_of_data *dn, pgoff_t index, int mode)
762{
763 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
764 struct page *npage[4];
765 struct page *parent = NULL;
766 int offset[4];
767 unsigned int noffset[4];
768 nid_t nids[4];
769 int level, i = 0;
770 int err = 0;
771
772 level = get_node_path(dn->inode, index, offset, noffset);
773 if (level < 0)
774 return level;
775
776 nids[0] = dn->inode->i_ino;
777 npage[0] = dn->inode_page;
778
779 if (!npage[0]) {
780 npage[0] = f2fs_get_node_page(sbi, nids[0]);
781 if (IS_ERR(npage[0]))
782 return PTR_ERR(npage[0]);
783 }
784
785 /* if inline_data is set, should not report any block indices */
786 if (f2fs_has_inline_data(dn->inode) && index) {
787 err = -ENOENT;
788 f2fs_put_page(npage[0], 1);
789 goto release_out;
790 }
791
792 parent = npage[0];
793 if (level != 0)
794 nids[1] = get_nid(parent, offset[0], true);
795 dn->inode_page = npage[0];
796 dn->inode_page_locked = true;
797
798 /* get indirect or direct nodes */
799 for (i = 1; i <= level; i++) {
800 bool done = false;
801
802 if (!nids[i] && mode == ALLOC_NODE) {
803 /* alloc new node */
804 if (!f2fs_alloc_nid(sbi, &(nids[i]))) {
805 err = -ENOSPC;
806 goto release_pages;
807 }
808
809 dn->nid = nids[i];
810 npage[i] = f2fs_new_node_page(dn, noffset[i]);
811 if (IS_ERR(npage[i])) {
812 f2fs_alloc_nid_failed(sbi, nids[i]);
813 err = PTR_ERR(npage[i]);
814 goto release_pages;
815 }
816
817 set_nid(parent, offset[i - 1], nids[i], i == 1);
818 f2fs_alloc_nid_done(sbi, nids[i]);
819 done = true;
820 } else if (mode == LOOKUP_NODE_RA && i == level && level > 1) {
821 npage[i] = f2fs_get_node_page_ra(parent, offset[i - 1]);
822 if (IS_ERR(npage[i])) {
823 err = PTR_ERR(npage[i]);
824 goto release_pages;
825 }
826 done = true;
827 }
828 if (i == 1) {
829 dn->inode_page_locked = false;
830 unlock_page(parent);
831 } else {
832 f2fs_put_page(parent, 1);
833 }
834
835 if (!done) {
836 npage[i] = f2fs_get_node_page(sbi, nids[i]);
837 if (IS_ERR(npage[i])) {
838 err = PTR_ERR(npage[i]);
839 f2fs_put_page(npage[0], 0);
840 goto release_out;
841 }
842 }
843 if (i < level) {
844 parent = npage[i];
845 nids[i + 1] = get_nid(parent, offset[i], false);
846 }
847 }
848 dn->nid = nids[level];
849 dn->ofs_in_node = offset[level];
850 dn->node_page = npage[level];
851 dn->data_blkaddr = f2fs_data_blkaddr(dn);
852
853 if (is_inode_flag_set(dn->inode, FI_COMPRESSED_FILE) &&
854 f2fs_sb_has_readonly(sbi)) {
855 unsigned int c_len = f2fs_cluster_blocks_are_contiguous(dn);
856 block_t blkaddr;
857
858 if (!c_len)
859 goto out;
860
861 blkaddr = f2fs_data_blkaddr(dn);
862 if (blkaddr == COMPRESS_ADDR)
863 blkaddr = data_blkaddr(dn->inode, dn->node_page,
864 dn->ofs_in_node + 1);
865
866 f2fs_update_read_extent_tree_range_compressed(dn->inode,
867 index, blkaddr,
868 F2FS_I(dn->inode)->i_cluster_size,
869 c_len);
870 }
871out:
872 return 0;
873
874release_pages:
875 f2fs_put_page(parent, 1);
876 if (i > 1)
877 f2fs_put_page(npage[0], 0);
878release_out:
879 dn->inode_page = NULL;
880 dn->node_page = NULL;
881 if (err == -ENOENT) {
882 dn->cur_level = i;
883 dn->max_level = level;
884 dn->ofs_in_node = offset[level];
885 }
886 return err;
887}
888
889static int truncate_node(struct dnode_of_data *dn)
890{
891 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
892 struct node_info ni;
893 int err;
894 pgoff_t index;
895
896 err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
897 if (err)
898 return err;
899
900 /* Deallocate node address */
901 f2fs_invalidate_blocks(sbi, ni.blk_addr);
902 dec_valid_node_count(sbi, dn->inode, dn->nid == dn->inode->i_ino);
903 set_node_addr(sbi, &ni, NULL_ADDR, false);
904
905 if (dn->nid == dn->inode->i_ino) {
906 f2fs_remove_orphan_inode(sbi, dn->nid);
907 dec_valid_inode_count(sbi);
908 f2fs_inode_synced(dn->inode);
909 }
910
911 clear_node_page_dirty(dn->node_page);
912 set_sbi_flag(sbi, SBI_IS_DIRTY);
913
914 index = dn->node_page->index;
915 f2fs_put_page(dn->node_page, 1);
916
917 invalidate_mapping_pages(NODE_MAPPING(sbi),
918 index, index);
919
920 dn->node_page = NULL;
921 trace_f2fs_truncate_node(dn->inode, dn->nid, ni.blk_addr);
922
923 return 0;
924}
925
926static int truncate_dnode(struct dnode_of_data *dn)
927{
928 struct page *page;
929 int err;
930
931 if (dn->nid == 0)
932 return 1;
933
934 /* get direct node */
935 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
936 if (PTR_ERR(page) == -ENOENT)
937 return 1;
938 else if (IS_ERR(page))
939 return PTR_ERR(page);
940
941 /* Make dnode_of_data for parameter */
942 dn->node_page = page;
943 dn->ofs_in_node = 0;
944 f2fs_truncate_data_blocks(dn);
945 err = truncate_node(dn);
946 if (err)
947 return err;
948
949 return 1;
950}
951
952static int truncate_nodes(struct dnode_of_data *dn, unsigned int nofs,
953 int ofs, int depth)
954{
955 struct dnode_of_data rdn = *dn;
956 struct page *page;
957 struct f2fs_node *rn;
958 nid_t child_nid;
959 unsigned int child_nofs;
960 int freed = 0;
961 int i, ret;
962
963 if (dn->nid == 0)
964 return NIDS_PER_BLOCK + 1;
965
966 trace_f2fs_truncate_nodes_enter(dn->inode, dn->nid, dn->data_blkaddr);
967
968 page = f2fs_get_node_page(F2FS_I_SB(dn->inode), dn->nid);
969 if (IS_ERR(page)) {
970 trace_f2fs_truncate_nodes_exit(dn->inode, PTR_ERR(page));
971 return PTR_ERR(page);
972 }
973
974 f2fs_ra_node_pages(page, ofs, NIDS_PER_BLOCK);
975
976 rn = F2FS_NODE(page);
977 if (depth < 3) {
978 for (i = ofs; i < NIDS_PER_BLOCK; i++, freed++) {
979 child_nid = le32_to_cpu(rn->in.nid[i]);
980 if (child_nid == 0)
981 continue;
982 rdn.nid = child_nid;
983 ret = truncate_dnode(&rdn);
984 if (ret < 0)
985 goto out_err;
986 if (set_nid(page, i, 0, false))
987 dn->node_changed = true;
988 }
989 } else {
990 child_nofs = nofs + ofs * (NIDS_PER_BLOCK + 1) + 1;
991 for (i = ofs; i < NIDS_PER_BLOCK; i++) {
992 child_nid = le32_to_cpu(rn->in.nid[i]);
993 if (child_nid == 0) {
994 child_nofs += NIDS_PER_BLOCK + 1;
995 continue;
996 }
997 rdn.nid = child_nid;
998 ret = truncate_nodes(&rdn, child_nofs, 0, depth - 1);
999 if (ret == (NIDS_PER_BLOCK + 1)) {
1000 if (set_nid(page, i, 0, false))
1001 dn->node_changed = true;
1002 child_nofs += ret;
1003 } else if (ret < 0 && ret != -ENOENT) {
1004 goto out_err;
1005 }
1006 }
1007 freed = child_nofs;
1008 }
1009
1010 if (!ofs) {
1011 /* remove current indirect node */
1012 dn->node_page = page;
1013 ret = truncate_node(dn);
1014 if (ret)
1015 goto out_err;
1016 freed++;
1017 } else {
1018 f2fs_put_page(page, 1);
1019 }
1020 trace_f2fs_truncate_nodes_exit(dn->inode, freed);
1021 return freed;
1022
1023out_err:
1024 f2fs_put_page(page, 1);
1025 trace_f2fs_truncate_nodes_exit(dn->inode, ret);
1026 return ret;
1027}
1028
1029static int truncate_partial_nodes(struct dnode_of_data *dn,
1030 struct f2fs_inode *ri, int *offset, int depth)
1031{
1032 struct page *pages[2];
1033 nid_t nid[3];
1034 nid_t child_nid;
1035 int err = 0;
1036 int i;
1037 int idx = depth - 2;
1038
1039 nid[0] = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1040 if (!nid[0])
1041 return 0;
1042
1043 /* get indirect nodes in the path */
1044 for (i = 0; i < idx + 1; i++) {
1045 /* reference count'll be increased */
1046 pages[i] = f2fs_get_node_page(F2FS_I_SB(dn->inode), nid[i]);
1047 if (IS_ERR(pages[i])) {
1048 err = PTR_ERR(pages[i]);
1049 idx = i - 1;
1050 goto fail;
1051 }
1052 nid[i + 1] = get_nid(pages[i], offset[i + 1], false);
1053 }
1054
1055 f2fs_ra_node_pages(pages[idx], offset[idx + 1], NIDS_PER_BLOCK);
1056
1057 /* free direct nodes linked to a partial indirect node */
1058 for (i = offset[idx + 1]; i < NIDS_PER_BLOCK; i++) {
1059 child_nid = get_nid(pages[idx], i, false);
1060 if (!child_nid)
1061 continue;
1062 dn->nid = child_nid;
1063 err = truncate_dnode(dn);
1064 if (err < 0)
1065 goto fail;
1066 if (set_nid(pages[idx], i, 0, false))
1067 dn->node_changed = true;
1068 }
1069
1070 if (offset[idx + 1] == 0) {
1071 dn->node_page = pages[idx];
1072 dn->nid = nid[idx];
1073 err = truncate_node(dn);
1074 if (err)
1075 goto fail;
1076 } else {
1077 f2fs_put_page(pages[idx], 1);
1078 }
1079 offset[idx]++;
1080 offset[idx + 1] = 0;
1081 idx--;
1082fail:
1083 for (i = idx; i >= 0; i--)
1084 f2fs_put_page(pages[i], 1);
1085
1086 trace_f2fs_truncate_partial_nodes(dn->inode, nid, depth, err);
1087
1088 return err;
1089}
1090
1091/*
1092 * All the block addresses of data and nodes should be nullified.
1093 */
1094int f2fs_truncate_inode_blocks(struct inode *inode, pgoff_t from)
1095{
1096 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1097 int err = 0, cont = 1;
1098 int level, offset[4], noffset[4];
1099 unsigned int nofs = 0;
1100 struct f2fs_inode *ri;
1101 struct dnode_of_data dn;
1102 struct page *page;
1103
1104 trace_f2fs_truncate_inode_blocks_enter(inode, from);
1105
1106 level = get_node_path(inode, from, offset, noffset);
1107 if (level < 0) {
1108 trace_f2fs_truncate_inode_blocks_exit(inode, level);
1109 return level;
1110 }
1111
1112 page = f2fs_get_node_page(sbi, inode->i_ino);
1113 if (IS_ERR(page)) {
1114 trace_f2fs_truncate_inode_blocks_exit(inode, PTR_ERR(page));
1115 return PTR_ERR(page);
1116 }
1117
1118 set_new_dnode(&dn, inode, page, NULL, 0);
1119 unlock_page(page);
1120
1121 ri = F2FS_INODE(page);
1122 switch (level) {
1123 case 0:
1124 case 1:
1125 nofs = noffset[1];
1126 break;
1127 case 2:
1128 nofs = noffset[1];
1129 if (!offset[level - 1])
1130 goto skip_partial;
1131 err = truncate_partial_nodes(&dn, ri, offset, level);
1132 if (err < 0 && err != -ENOENT)
1133 goto fail;
1134 nofs += 1 + NIDS_PER_BLOCK;
1135 break;
1136 case 3:
1137 nofs = 5 + 2 * NIDS_PER_BLOCK;
1138 if (!offset[level - 1])
1139 goto skip_partial;
1140 err = truncate_partial_nodes(&dn, ri, offset, level);
1141 if (err < 0 && err != -ENOENT)
1142 goto fail;
1143 break;
1144 default:
1145 BUG();
1146 }
1147
1148skip_partial:
1149 while (cont) {
1150 dn.nid = le32_to_cpu(ri->i_nid[offset[0] - NODE_DIR1_BLOCK]);
1151 switch (offset[0]) {
1152 case NODE_DIR1_BLOCK:
1153 case NODE_DIR2_BLOCK:
1154 err = truncate_dnode(&dn);
1155 break;
1156
1157 case NODE_IND1_BLOCK:
1158 case NODE_IND2_BLOCK:
1159 err = truncate_nodes(&dn, nofs, offset[1], 2);
1160 break;
1161
1162 case NODE_DIND_BLOCK:
1163 err = truncate_nodes(&dn, nofs, offset[1], 3);
1164 cont = 0;
1165 break;
1166
1167 default:
1168 BUG();
1169 }
1170 if (err < 0 && err != -ENOENT)
1171 goto fail;
1172 if (offset[1] == 0 &&
1173 ri->i_nid[offset[0] - NODE_DIR1_BLOCK]) {
1174 lock_page(page);
1175 BUG_ON(page->mapping != NODE_MAPPING(sbi));
1176 f2fs_wait_on_page_writeback(page, NODE, true, true);
1177 ri->i_nid[offset[0] - NODE_DIR1_BLOCK] = 0;
1178 set_page_dirty(page);
1179 unlock_page(page);
1180 }
1181 offset[1] = 0;
1182 offset[0]++;
1183 nofs += err;
1184 }
1185fail:
1186 f2fs_put_page(page, 0);
1187 trace_f2fs_truncate_inode_blocks_exit(inode, err);
1188 return err > 0 ? 0 : err;
1189}
1190
1191/* caller must lock inode page */
1192int f2fs_truncate_xattr_node(struct inode *inode)
1193{
1194 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1195 nid_t nid = F2FS_I(inode)->i_xattr_nid;
1196 struct dnode_of_data dn;
1197 struct page *npage;
1198 int err;
1199
1200 if (!nid)
1201 return 0;
1202
1203 npage = f2fs_get_node_page(sbi, nid);
1204 if (IS_ERR(npage))
1205 return PTR_ERR(npage);
1206
1207 set_new_dnode(&dn, inode, NULL, npage, nid);
1208 err = truncate_node(&dn);
1209 if (err) {
1210 f2fs_put_page(npage, 1);
1211 return err;
1212 }
1213
1214 f2fs_i_xnid_write(inode, 0);
1215
1216 return 0;
1217}
1218
1219/*
1220 * Caller should grab and release a rwsem by calling f2fs_lock_op() and
1221 * f2fs_unlock_op().
1222 */
1223int f2fs_remove_inode_page(struct inode *inode)
1224{
1225 struct dnode_of_data dn;
1226 int err;
1227
1228 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1229 err = f2fs_get_dnode_of_data(&dn, 0, LOOKUP_NODE);
1230 if (err)
1231 return err;
1232
1233 err = f2fs_truncate_xattr_node(inode);
1234 if (err) {
1235 f2fs_put_dnode(&dn);
1236 return err;
1237 }
1238
1239 /* remove potential inline_data blocks */
1240 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1241 S_ISLNK(inode->i_mode))
1242 f2fs_truncate_data_blocks_range(&dn, 1);
1243
1244 /* 0 is possible, after f2fs_new_inode() has failed */
1245 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode)))) {
1246 f2fs_put_dnode(&dn);
1247 return -EIO;
1248 }
1249
1250 if (unlikely(inode->i_blocks != 0 && inode->i_blocks != 8)) {
1251 f2fs_warn(F2FS_I_SB(inode),
1252 "f2fs_remove_inode_page: inconsistent i_blocks, ino:%lu, iblocks:%llu",
1253 inode->i_ino, (unsigned long long)inode->i_blocks);
1254 set_sbi_flag(F2FS_I_SB(inode), SBI_NEED_FSCK);
1255 }
1256
1257 /* will put inode & node pages */
1258 err = truncate_node(&dn);
1259 if (err) {
1260 f2fs_put_dnode(&dn);
1261 return err;
1262 }
1263 return 0;
1264}
1265
1266struct page *f2fs_new_inode_page(struct inode *inode)
1267{
1268 struct dnode_of_data dn;
1269
1270 /* allocate inode page for new inode */
1271 set_new_dnode(&dn, inode, NULL, NULL, inode->i_ino);
1272
1273 /* caller should f2fs_put_page(page, 1); */
1274 return f2fs_new_node_page(&dn, 0);
1275}
1276
1277struct page *f2fs_new_node_page(struct dnode_of_data *dn, unsigned int ofs)
1278{
1279 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1280 struct node_info new_ni;
1281 struct page *page;
1282 int err;
1283
1284 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1285 return ERR_PTR(-EPERM);
1286
1287 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), dn->nid, false);
1288 if (!page)
1289 return ERR_PTR(-ENOMEM);
1290
1291 if (unlikely((err = inc_valid_node_count(sbi, dn->inode, !ofs))))
1292 goto fail;
1293
1294#ifdef CONFIG_F2FS_CHECK_FS
1295 err = f2fs_get_node_info(sbi, dn->nid, &new_ni, false);
1296 if (err) {
1297 dec_valid_node_count(sbi, dn->inode, !ofs);
1298 goto fail;
1299 }
1300 if (unlikely(new_ni.blk_addr != NULL_ADDR)) {
1301 err = -EFSCORRUPTED;
1302 set_sbi_flag(sbi, SBI_NEED_FSCK);
1303 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1304 goto fail;
1305 }
1306#endif
1307 new_ni.nid = dn->nid;
1308 new_ni.ino = dn->inode->i_ino;
1309 new_ni.blk_addr = NULL_ADDR;
1310 new_ni.flag = 0;
1311 new_ni.version = 0;
1312 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
1313
1314 f2fs_wait_on_page_writeback(page, NODE, true, true);
1315 fill_node_footer(page, dn->nid, dn->inode->i_ino, ofs, true);
1316 set_cold_node(page, S_ISDIR(dn->inode->i_mode));
1317 if (!PageUptodate(page))
1318 SetPageUptodate(page);
1319 if (set_page_dirty(page))
1320 dn->node_changed = true;
1321
1322 if (f2fs_has_xattr_block(ofs))
1323 f2fs_i_xnid_write(dn->inode, dn->nid);
1324
1325 if (ofs == 0)
1326 inc_valid_inode_count(sbi);
1327 return page;
1328
1329fail:
1330 clear_node_page_dirty(page);
1331 f2fs_put_page(page, 1);
1332 return ERR_PTR(err);
1333}
1334
1335/*
1336 * Caller should do after getting the following values.
1337 * 0: f2fs_put_page(page, 0)
1338 * LOCKED_PAGE or error: f2fs_put_page(page, 1)
1339 */
1340static int read_node_page(struct page *page, blk_opf_t op_flags)
1341{
1342 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1343 struct node_info ni;
1344 struct f2fs_io_info fio = {
1345 .sbi = sbi,
1346 .type = NODE,
1347 .op = REQ_OP_READ,
1348 .op_flags = op_flags,
1349 .page = page,
1350 .encrypted_page = NULL,
1351 };
1352 int err;
1353
1354 if (PageUptodate(page)) {
1355 if (!f2fs_inode_chksum_verify(sbi, page)) {
1356 ClearPageUptodate(page);
1357 return -EFSBADCRC;
1358 }
1359 return LOCKED_PAGE;
1360 }
1361
1362 err = f2fs_get_node_info(sbi, page->index, &ni, false);
1363 if (err)
1364 return err;
1365
1366 /* NEW_ADDR can be seen, after cp_error drops some dirty node pages */
1367 if (unlikely(ni.blk_addr == NULL_ADDR || ni.blk_addr == NEW_ADDR)) {
1368 ClearPageUptodate(page);
1369 return -ENOENT;
1370 }
1371
1372 fio.new_blkaddr = fio.old_blkaddr = ni.blk_addr;
1373
1374 err = f2fs_submit_page_bio(&fio);
1375
1376 if (!err)
1377 f2fs_update_iostat(sbi, NULL, FS_NODE_READ_IO, F2FS_BLKSIZE);
1378
1379 return err;
1380}
1381
1382/*
1383 * Readahead a node page
1384 */
1385void f2fs_ra_node_page(struct f2fs_sb_info *sbi, nid_t nid)
1386{
1387 struct page *apage;
1388 int err;
1389
1390 if (!nid)
1391 return;
1392 if (f2fs_check_nid_range(sbi, nid))
1393 return;
1394
1395 apage = xa_load(&NODE_MAPPING(sbi)->i_pages, nid);
1396 if (apage)
1397 return;
1398
1399 apage = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1400 if (!apage)
1401 return;
1402
1403 err = read_node_page(apage, REQ_RAHEAD);
1404 f2fs_put_page(apage, err ? 1 : 0);
1405}
1406
1407static struct page *__get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid,
1408 struct page *parent, int start)
1409{
1410 struct page *page;
1411 int err;
1412
1413 if (!nid)
1414 return ERR_PTR(-ENOENT);
1415 if (f2fs_check_nid_range(sbi, nid))
1416 return ERR_PTR(-EINVAL);
1417repeat:
1418 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), nid, false);
1419 if (!page)
1420 return ERR_PTR(-ENOMEM);
1421
1422 err = read_node_page(page, 0);
1423 if (err < 0) {
1424 goto out_put_err;
1425 } else if (err == LOCKED_PAGE) {
1426 err = 0;
1427 goto page_hit;
1428 }
1429
1430 if (parent)
1431 f2fs_ra_node_pages(parent, start + 1, MAX_RA_NODE);
1432
1433 lock_page(page);
1434
1435 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1436 f2fs_put_page(page, 1);
1437 goto repeat;
1438 }
1439
1440 if (unlikely(!PageUptodate(page))) {
1441 err = -EIO;
1442 goto out_err;
1443 }
1444
1445 if (!f2fs_inode_chksum_verify(sbi, page)) {
1446 err = -EFSBADCRC;
1447 goto out_err;
1448 }
1449page_hit:
1450 if (likely(nid == nid_of_node(page)))
1451 return page;
1452
1453 f2fs_warn(sbi, "inconsistent node block, nid:%lu, node_footer[nid:%u,ino:%u,ofs:%u,cpver:%llu,blkaddr:%u]",
1454 nid, nid_of_node(page), ino_of_node(page),
1455 ofs_of_node(page), cpver_of_node(page),
1456 next_blkaddr_of_node(page));
1457 set_sbi_flag(sbi, SBI_NEED_FSCK);
1458 err = -EINVAL;
1459out_err:
1460 ClearPageUptodate(page);
1461out_put_err:
1462 /* ENOENT comes from read_node_page which is not an error. */
1463 if (err != -ENOENT)
1464 f2fs_handle_page_eio(sbi, page->index, NODE);
1465 f2fs_put_page(page, 1);
1466 return ERR_PTR(err);
1467}
1468
1469struct page *f2fs_get_node_page(struct f2fs_sb_info *sbi, pgoff_t nid)
1470{
1471 return __get_node_page(sbi, nid, NULL, 0);
1472}
1473
1474struct page *f2fs_get_node_page_ra(struct page *parent, int start)
1475{
1476 struct f2fs_sb_info *sbi = F2FS_P_SB(parent);
1477 nid_t nid = get_nid(parent, start, false);
1478
1479 return __get_node_page(sbi, nid, parent, start);
1480}
1481
1482static void flush_inline_data(struct f2fs_sb_info *sbi, nid_t ino)
1483{
1484 struct inode *inode;
1485 struct page *page;
1486 int ret;
1487
1488 /* should flush inline_data before evict_inode */
1489 inode = ilookup(sbi->sb, ino);
1490 if (!inode)
1491 return;
1492
1493 page = f2fs_pagecache_get_page(inode->i_mapping, 0,
1494 FGP_LOCK|FGP_NOWAIT, 0);
1495 if (!page)
1496 goto iput_out;
1497
1498 if (!PageUptodate(page))
1499 goto page_out;
1500
1501 if (!PageDirty(page))
1502 goto page_out;
1503
1504 if (!clear_page_dirty_for_io(page))
1505 goto page_out;
1506
1507 ret = f2fs_write_inline_data(inode, page);
1508 inode_dec_dirty_pages(inode);
1509 f2fs_remove_dirty_inode(inode);
1510 if (ret)
1511 set_page_dirty(page);
1512page_out:
1513 f2fs_put_page(page, 1);
1514iput_out:
1515 iput(inode);
1516}
1517
1518static struct page *last_fsync_dnode(struct f2fs_sb_info *sbi, nid_t ino)
1519{
1520 pgoff_t index;
1521 struct folio_batch fbatch;
1522 struct page *last_page = NULL;
1523 int nr_folios;
1524
1525 folio_batch_init(&fbatch);
1526 index = 0;
1527
1528 while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1529 (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1530 &fbatch))) {
1531 int i;
1532
1533 for (i = 0; i < nr_folios; i++) {
1534 struct page *page = &fbatch.folios[i]->page;
1535
1536 if (unlikely(f2fs_cp_error(sbi))) {
1537 f2fs_put_page(last_page, 0);
1538 folio_batch_release(&fbatch);
1539 return ERR_PTR(-EIO);
1540 }
1541
1542 if (!IS_DNODE(page) || !is_cold_node(page))
1543 continue;
1544 if (ino_of_node(page) != ino)
1545 continue;
1546
1547 lock_page(page);
1548
1549 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1550continue_unlock:
1551 unlock_page(page);
1552 continue;
1553 }
1554 if (ino_of_node(page) != ino)
1555 goto continue_unlock;
1556
1557 if (!PageDirty(page)) {
1558 /* someone wrote it for us */
1559 goto continue_unlock;
1560 }
1561
1562 if (last_page)
1563 f2fs_put_page(last_page, 0);
1564
1565 get_page(page);
1566 last_page = page;
1567 unlock_page(page);
1568 }
1569 folio_batch_release(&fbatch);
1570 cond_resched();
1571 }
1572 return last_page;
1573}
1574
1575static int __write_node_page(struct page *page, bool atomic, bool *submitted,
1576 struct writeback_control *wbc, bool do_balance,
1577 enum iostat_type io_type, unsigned int *seq_id)
1578{
1579 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1580 nid_t nid;
1581 struct node_info ni;
1582 struct f2fs_io_info fio = {
1583 .sbi = sbi,
1584 .ino = ino_of_node(page),
1585 .type = NODE,
1586 .op = REQ_OP_WRITE,
1587 .op_flags = wbc_to_write_flags(wbc),
1588 .page = page,
1589 .encrypted_page = NULL,
1590 .submitted = 0,
1591 .io_type = io_type,
1592 .io_wbc = wbc,
1593 };
1594 unsigned int seq;
1595
1596 trace_f2fs_writepage(page, NODE);
1597
1598 if (unlikely(f2fs_cp_error(sbi))) {
1599 ClearPageUptodate(page);
1600 dec_page_count(sbi, F2FS_DIRTY_NODES);
1601 unlock_page(page);
1602 return 0;
1603 }
1604
1605 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1606 goto redirty_out;
1607
1608 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
1609 wbc->sync_mode == WB_SYNC_NONE &&
1610 IS_DNODE(page) && is_cold_node(page))
1611 goto redirty_out;
1612
1613 /* get old block addr of this node page */
1614 nid = nid_of_node(page);
1615 f2fs_bug_on(sbi, page->index != nid);
1616
1617 if (f2fs_get_node_info(sbi, nid, &ni, !do_balance))
1618 goto redirty_out;
1619
1620 if (wbc->for_reclaim) {
1621 if (!f2fs_down_read_trylock(&sbi->node_write))
1622 goto redirty_out;
1623 } else {
1624 f2fs_down_read(&sbi->node_write);
1625 }
1626
1627 /* This page is already truncated */
1628 if (unlikely(ni.blk_addr == NULL_ADDR)) {
1629 ClearPageUptodate(page);
1630 dec_page_count(sbi, F2FS_DIRTY_NODES);
1631 f2fs_up_read(&sbi->node_write);
1632 unlock_page(page);
1633 return 0;
1634 }
1635
1636 if (__is_valid_data_blkaddr(ni.blk_addr) &&
1637 !f2fs_is_valid_blkaddr(sbi, ni.blk_addr,
1638 DATA_GENERIC_ENHANCE)) {
1639 f2fs_up_read(&sbi->node_write);
1640 goto redirty_out;
1641 }
1642
1643 if (atomic && !test_opt(sbi, NOBARRIER) && !f2fs_sb_has_blkzoned(sbi))
1644 fio.op_flags |= REQ_PREFLUSH | REQ_FUA;
1645
1646 /* should add to global list before clearing PAGECACHE status */
1647 if (f2fs_in_warm_node_list(sbi, page)) {
1648 seq = f2fs_add_fsync_node_entry(sbi, page);
1649 if (seq_id)
1650 *seq_id = seq;
1651 }
1652
1653 set_page_writeback(page);
1654
1655 fio.old_blkaddr = ni.blk_addr;
1656 f2fs_do_write_node_page(nid, &fio);
1657 set_node_addr(sbi, &ni, fio.new_blkaddr, is_fsync_dnode(page));
1658 dec_page_count(sbi, F2FS_DIRTY_NODES);
1659 f2fs_up_read(&sbi->node_write);
1660
1661 if (wbc->for_reclaim) {
1662 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, NODE);
1663 submitted = NULL;
1664 }
1665
1666 unlock_page(page);
1667
1668 if (unlikely(f2fs_cp_error(sbi))) {
1669 f2fs_submit_merged_write(sbi, NODE);
1670 submitted = NULL;
1671 }
1672 if (submitted)
1673 *submitted = fio.submitted;
1674
1675 if (do_balance)
1676 f2fs_balance_fs(sbi, false);
1677 return 0;
1678
1679redirty_out:
1680 redirty_page_for_writepage(wbc, page);
1681 return AOP_WRITEPAGE_ACTIVATE;
1682}
1683
1684int f2fs_move_node_page(struct page *node_page, int gc_type)
1685{
1686 int err = 0;
1687
1688 if (gc_type == FG_GC) {
1689 struct writeback_control wbc = {
1690 .sync_mode = WB_SYNC_ALL,
1691 .nr_to_write = 1,
1692 .for_reclaim = 0,
1693 };
1694
1695 f2fs_wait_on_page_writeback(node_page, NODE, true, true);
1696
1697 set_page_dirty(node_page);
1698
1699 if (!clear_page_dirty_for_io(node_page)) {
1700 err = -EAGAIN;
1701 goto out_page;
1702 }
1703
1704 if (__write_node_page(node_page, false, NULL,
1705 &wbc, false, FS_GC_NODE_IO, NULL)) {
1706 err = -EAGAIN;
1707 unlock_page(node_page);
1708 }
1709 goto release_page;
1710 } else {
1711 /* set page dirty and write it */
1712 if (!PageWriteback(node_page))
1713 set_page_dirty(node_page);
1714 }
1715out_page:
1716 unlock_page(node_page);
1717release_page:
1718 f2fs_put_page(node_page, 0);
1719 return err;
1720}
1721
1722static int f2fs_write_node_page(struct page *page,
1723 struct writeback_control *wbc)
1724{
1725 return __write_node_page(page, false, NULL, wbc, false,
1726 FS_NODE_IO, NULL);
1727}
1728
1729int f2fs_fsync_node_pages(struct f2fs_sb_info *sbi, struct inode *inode,
1730 struct writeback_control *wbc, bool atomic,
1731 unsigned int *seq_id)
1732{
1733 pgoff_t index;
1734 struct folio_batch fbatch;
1735 int ret = 0;
1736 struct page *last_page = NULL;
1737 bool marked = false;
1738 nid_t ino = inode->i_ino;
1739 int nr_folios;
1740 int nwritten = 0;
1741
1742 if (atomic) {
1743 last_page = last_fsync_dnode(sbi, ino);
1744 if (IS_ERR_OR_NULL(last_page))
1745 return PTR_ERR_OR_ZERO(last_page);
1746 }
1747retry:
1748 folio_batch_init(&fbatch);
1749 index = 0;
1750
1751 while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1752 (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1753 &fbatch))) {
1754 int i;
1755
1756 for (i = 0; i < nr_folios; i++) {
1757 struct page *page = &fbatch.folios[i]->page;
1758 bool submitted = false;
1759
1760 if (unlikely(f2fs_cp_error(sbi))) {
1761 f2fs_put_page(last_page, 0);
1762 folio_batch_release(&fbatch);
1763 ret = -EIO;
1764 goto out;
1765 }
1766
1767 if (!IS_DNODE(page) || !is_cold_node(page))
1768 continue;
1769 if (ino_of_node(page) != ino)
1770 continue;
1771
1772 lock_page(page);
1773
1774 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1775continue_unlock:
1776 unlock_page(page);
1777 continue;
1778 }
1779 if (ino_of_node(page) != ino)
1780 goto continue_unlock;
1781
1782 if (!PageDirty(page) && page != last_page) {
1783 /* someone wrote it for us */
1784 goto continue_unlock;
1785 }
1786
1787 f2fs_wait_on_page_writeback(page, NODE, true, true);
1788
1789 set_fsync_mark(page, 0);
1790 set_dentry_mark(page, 0);
1791
1792 if (!atomic || page == last_page) {
1793 set_fsync_mark(page, 1);
1794 percpu_counter_inc(&sbi->rf_node_block_count);
1795 if (IS_INODE(page)) {
1796 if (is_inode_flag_set(inode,
1797 FI_DIRTY_INODE))
1798 f2fs_update_inode(inode, page);
1799 set_dentry_mark(page,
1800 f2fs_need_dentry_mark(sbi, ino));
1801 }
1802 /* may be written by other thread */
1803 if (!PageDirty(page))
1804 set_page_dirty(page);
1805 }
1806
1807 if (!clear_page_dirty_for_io(page))
1808 goto continue_unlock;
1809
1810 ret = __write_node_page(page, atomic &&
1811 page == last_page,
1812 &submitted, wbc, true,
1813 FS_NODE_IO, seq_id);
1814 if (ret) {
1815 unlock_page(page);
1816 f2fs_put_page(last_page, 0);
1817 break;
1818 } else if (submitted) {
1819 nwritten++;
1820 }
1821
1822 if (page == last_page) {
1823 f2fs_put_page(page, 0);
1824 marked = true;
1825 break;
1826 }
1827 }
1828 folio_batch_release(&fbatch);
1829 cond_resched();
1830
1831 if (ret || marked)
1832 break;
1833 }
1834 if (!ret && atomic && !marked) {
1835 f2fs_debug(sbi, "Retry to write fsync mark: ino=%u, idx=%lx",
1836 ino, last_page->index);
1837 lock_page(last_page);
1838 f2fs_wait_on_page_writeback(last_page, NODE, true, true);
1839 set_page_dirty(last_page);
1840 unlock_page(last_page);
1841 goto retry;
1842 }
1843out:
1844 if (nwritten)
1845 f2fs_submit_merged_write_cond(sbi, NULL, NULL, ino, NODE);
1846 return ret ? -EIO : 0;
1847}
1848
1849static int f2fs_match_ino(struct inode *inode, unsigned long ino, void *data)
1850{
1851 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1852 bool clean;
1853
1854 if (inode->i_ino != ino)
1855 return 0;
1856
1857 if (!is_inode_flag_set(inode, FI_DIRTY_INODE))
1858 return 0;
1859
1860 spin_lock(&sbi->inode_lock[DIRTY_META]);
1861 clean = list_empty(&F2FS_I(inode)->gdirty_list);
1862 spin_unlock(&sbi->inode_lock[DIRTY_META]);
1863
1864 if (clean)
1865 return 0;
1866
1867 inode = igrab(inode);
1868 if (!inode)
1869 return 0;
1870 return 1;
1871}
1872
1873static bool flush_dirty_inode(struct page *page)
1874{
1875 struct f2fs_sb_info *sbi = F2FS_P_SB(page);
1876 struct inode *inode;
1877 nid_t ino = ino_of_node(page);
1878
1879 inode = find_inode_nowait(sbi->sb, ino, f2fs_match_ino, NULL);
1880 if (!inode)
1881 return false;
1882
1883 f2fs_update_inode(inode, page);
1884 unlock_page(page);
1885
1886 iput(inode);
1887 return true;
1888}
1889
1890void f2fs_flush_inline_data(struct f2fs_sb_info *sbi)
1891{
1892 pgoff_t index = 0;
1893 struct folio_batch fbatch;
1894 int nr_folios;
1895
1896 folio_batch_init(&fbatch);
1897
1898 while ((nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi), &index,
1899 (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1900 &fbatch))) {
1901 int i;
1902
1903 for (i = 0; i < nr_folios; i++) {
1904 struct page *page = &fbatch.folios[i]->page;
1905
1906 if (!IS_DNODE(page))
1907 continue;
1908
1909 lock_page(page);
1910
1911 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1912continue_unlock:
1913 unlock_page(page);
1914 continue;
1915 }
1916
1917 if (!PageDirty(page)) {
1918 /* someone wrote it for us */
1919 goto continue_unlock;
1920 }
1921
1922 /* flush inline_data, if it's async context. */
1923 if (page_private_inline(page)) {
1924 clear_page_private_inline(page);
1925 unlock_page(page);
1926 flush_inline_data(sbi, ino_of_node(page));
1927 continue;
1928 }
1929 unlock_page(page);
1930 }
1931 folio_batch_release(&fbatch);
1932 cond_resched();
1933 }
1934}
1935
1936int f2fs_sync_node_pages(struct f2fs_sb_info *sbi,
1937 struct writeback_control *wbc,
1938 bool do_balance, enum iostat_type io_type)
1939{
1940 pgoff_t index;
1941 struct folio_batch fbatch;
1942 int step = 0;
1943 int nwritten = 0;
1944 int ret = 0;
1945 int nr_folios, done = 0;
1946
1947 folio_batch_init(&fbatch);
1948
1949next_step:
1950 index = 0;
1951
1952 while (!done && (nr_folios = filemap_get_folios_tag(NODE_MAPPING(sbi),
1953 &index, (pgoff_t)-1, PAGECACHE_TAG_DIRTY,
1954 &fbatch))) {
1955 int i;
1956
1957 for (i = 0; i < nr_folios; i++) {
1958 struct page *page = &fbatch.folios[i]->page;
1959 bool submitted = false;
1960
1961 /* give a priority to WB_SYNC threads */
1962 if (atomic_read(&sbi->wb_sync_req[NODE]) &&
1963 wbc->sync_mode == WB_SYNC_NONE) {
1964 done = 1;
1965 break;
1966 }
1967
1968 /*
1969 * flushing sequence with step:
1970 * 0. indirect nodes
1971 * 1. dentry dnodes
1972 * 2. file dnodes
1973 */
1974 if (step == 0 && IS_DNODE(page))
1975 continue;
1976 if (step == 1 && (!IS_DNODE(page) ||
1977 is_cold_node(page)))
1978 continue;
1979 if (step == 2 && (!IS_DNODE(page) ||
1980 !is_cold_node(page)))
1981 continue;
1982lock_node:
1983 if (wbc->sync_mode == WB_SYNC_ALL)
1984 lock_page(page);
1985 else if (!trylock_page(page))
1986 continue;
1987
1988 if (unlikely(page->mapping != NODE_MAPPING(sbi))) {
1989continue_unlock:
1990 unlock_page(page);
1991 continue;
1992 }
1993
1994 if (!PageDirty(page)) {
1995 /* someone wrote it for us */
1996 goto continue_unlock;
1997 }
1998
1999 /* flush inline_data/inode, if it's async context. */
2000 if (!do_balance)
2001 goto write_node;
2002
2003 /* flush inline_data */
2004 if (page_private_inline(page)) {
2005 clear_page_private_inline(page);
2006 unlock_page(page);
2007 flush_inline_data(sbi, ino_of_node(page));
2008 goto lock_node;
2009 }
2010
2011 /* flush dirty inode */
2012 if (IS_INODE(page) && flush_dirty_inode(page))
2013 goto lock_node;
2014write_node:
2015 f2fs_wait_on_page_writeback(page, NODE, true, true);
2016
2017 if (!clear_page_dirty_for_io(page))
2018 goto continue_unlock;
2019
2020 set_fsync_mark(page, 0);
2021 set_dentry_mark(page, 0);
2022
2023 ret = __write_node_page(page, false, &submitted,
2024 wbc, do_balance, io_type, NULL);
2025 if (ret)
2026 unlock_page(page);
2027 else if (submitted)
2028 nwritten++;
2029
2030 if (--wbc->nr_to_write == 0)
2031 break;
2032 }
2033 folio_batch_release(&fbatch);
2034 cond_resched();
2035
2036 if (wbc->nr_to_write == 0) {
2037 step = 2;
2038 break;
2039 }
2040 }
2041
2042 if (step < 2) {
2043 if (!is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2044 wbc->sync_mode == WB_SYNC_NONE && step == 1)
2045 goto out;
2046 step++;
2047 goto next_step;
2048 }
2049out:
2050 if (nwritten)
2051 f2fs_submit_merged_write(sbi, NODE);
2052
2053 if (unlikely(f2fs_cp_error(sbi)))
2054 return -EIO;
2055 return ret;
2056}
2057
2058int f2fs_wait_on_node_pages_writeback(struct f2fs_sb_info *sbi,
2059 unsigned int seq_id)
2060{
2061 struct fsync_node_entry *fn;
2062 struct page *page;
2063 struct list_head *head = &sbi->fsync_node_list;
2064 unsigned long flags;
2065 unsigned int cur_seq_id = 0;
2066 int ret2, ret = 0;
2067
2068 while (seq_id && cur_seq_id < seq_id) {
2069 spin_lock_irqsave(&sbi->fsync_node_lock, flags);
2070 if (list_empty(head)) {
2071 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2072 break;
2073 }
2074 fn = list_first_entry(head, struct fsync_node_entry, list);
2075 if (fn->seq_id > seq_id) {
2076 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2077 break;
2078 }
2079 cur_seq_id = fn->seq_id;
2080 page = fn->page;
2081 get_page(page);
2082 spin_unlock_irqrestore(&sbi->fsync_node_lock, flags);
2083
2084 f2fs_wait_on_page_writeback(page, NODE, true, false);
2085
2086 put_page(page);
2087
2088 if (ret)
2089 break;
2090 }
2091
2092 ret2 = filemap_check_errors(NODE_MAPPING(sbi));
2093 if (!ret)
2094 ret = ret2;
2095
2096 return ret;
2097}
2098
2099static int f2fs_write_node_pages(struct address_space *mapping,
2100 struct writeback_control *wbc)
2101{
2102 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2103 struct blk_plug plug;
2104 long diff;
2105
2106 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2107 goto skip_write;
2108
2109 /* balancing f2fs's metadata in background */
2110 f2fs_balance_fs_bg(sbi, true);
2111
2112 /* collect a number of dirty node pages and write together */
2113 if (wbc->sync_mode != WB_SYNC_ALL &&
2114 get_pages(sbi, F2FS_DIRTY_NODES) <
2115 nr_pages_to_skip(sbi, NODE))
2116 goto skip_write;
2117
2118 if (wbc->sync_mode == WB_SYNC_ALL)
2119 atomic_inc(&sbi->wb_sync_req[NODE]);
2120 else if (atomic_read(&sbi->wb_sync_req[NODE])) {
2121 /* to avoid potential deadlock */
2122 if (current->plug)
2123 blk_finish_plug(current->plug);
2124 goto skip_write;
2125 }
2126
2127 trace_f2fs_writepages(mapping->host, wbc, NODE);
2128
2129 diff = nr_pages_to_write(sbi, NODE, wbc);
2130 blk_start_plug(&plug);
2131 f2fs_sync_node_pages(sbi, wbc, true, FS_NODE_IO);
2132 blk_finish_plug(&plug);
2133 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
2134
2135 if (wbc->sync_mode == WB_SYNC_ALL)
2136 atomic_dec(&sbi->wb_sync_req[NODE]);
2137 return 0;
2138
2139skip_write:
2140 wbc->pages_skipped += get_pages(sbi, F2FS_DIRTY_NODES);
2141 trace_f2fs_writepages(mapping->host, wbc, NODE);
2142 return 0;
2143}
2144
2145static bool f2fs_dirty_node_folio(struct address_space *mapping,
2146 struct folio *folio)
2147{
2148 trace_f2fs_set_page_dirty(&folio->page, NODE);
2149
2150 if (!folio_test_uptodate(folio))
2151 folio_mark_uptodate(folio);
2152#ifdef CONFIG_F2FS_CHECK_FS
2153 if (IS_INODE(&folio->page))
2154 f2fs_inode_chksum_set(F2FS_M_SB(mapping), &folio->page);
2155#endif
2156 if (filemap_dirty_folio(mapping, folio)) {
2157 inc_page_count(F2FS_M_SB(mapping), F2FS_DIRTY_NODES);
2158 set_page_private_reference(&folio->page);
2159 return true;
2160 }
2161 return false;
2162}
2163
2164/*
2165 * Structure of the f2fs node operations
2166 */
2167const struct address_space_operations f2fs_node_aops = {
2168 .writepage = f2fs_write_node_page,
2169 .writepages = f2fs_write_node_pages,
2170 .dirty_folio = f2fs_dirty_node_folio,
2171 .invalidate_folio = f2fs_invalidate_folio,
2172 .release_folio = f2fs_release_folio,
2173 .migrate_folio = filemap_migrate_folio,
2174};
2175
2176static struct free_nid *__lookup_free_nid_list(struct f2fs_nm_info *nm_i,
2177 nid_t n)
2178{
2179 return radix_tree_lookup(&nm_i->free_nid_root, n);
2180}
2181
2182static int __insert_free_nid(struct f2fs_sb_info *sbi,
2183 struct free_nid *i)
2184{
2185 struct f2fs_nm_info *nm_i = NM_I(sbi);
2186 int err = radix_tree_insert(&nm_i->free_nid_root, i->nid, i);
2187
2188 if (err)
2189 return err;
2190
2191 nm_i->nid_cnt[FREE_NID]++;
2192 list_add_tail(&i->list, &nm_i->free_nid_list);
2193 return 0;
2194}
2195
2196static void __remove_free_nid(struct f2fs_sb_info *sbi,
2197 struct free_nid *i, enum nid_state state)
2198{
2199 struct f2fs_nm_info *nm_i = NM_I(sbi);
2200
2201 f2fs_bug_on(sbi, state != i->state);
2202 nm_i->nid_cnt[state]--;
2203 if (state == FREE_NID)
2204 list_del(&i->list);
2205 radix_tree_delete(&nm_i->free_nid_root, i->nid);
2206}
2207
2208static void __move_free_nid(struct f2fs_sb_info *sbi, struct free_nid *i,
2209 enum nid_state org_state, enum nid_state dst_state)
2210{
2211 struct f2fs_nm_info *nm_i = NM_I(sbi);
2212
2213 f2fs_bug_on(sbi, org_state != i->state);
2214 i->state = dst_state;
2215 nm_i->nid_cnt[org_state]--;
2216 nm_i->nid_cnt[dst_state]++;
2217
2218 switch (dst_state) {
2219 case PREALLOC_NID:
2220 list_del(&i->list);
2221 break;
2222 case FREE_NID:
2223 list_add_tail(&i->list, &nm_i->free_nid_list);
2224 break;
2225 default:
2226 BUG_ON(1);
2227 }
2228}
2229
2230bool f2fs_nat_bitmap_enabled(struct f2fs_sb_info *sbi)
2231{
2232 struct f2fs_nm_info *nm_i = NM_I(sbi);
2233 unsigned int i;
2234 bool ret = true;
2235
2236 f2fs_down_read(&nm_i->nat_tree_lock);
2237 for (i = 0; i < nm_i->nat_blocks; i++) {
2238 if (!test_bit_le(i, nm_i->nat_block_bitmap)) {
2239 ret = false;
2240 break;
2241 }
2242 }
2243 f2fs_up_read(&nm_i->nat_tree_lock);
2244
2245 return ret;
2246}
2247
2248static void update_free_nid_bitmap(struct f2fs_sb_info *sbi, nid_t nid,
2249 bool set, bool build)
2250{
2251 struct f2fs_nm_info *nm_i = NM_I(sbi);
2252 unsigned int nat_ofs = NAT_BLOCK_OFFSET(nid);
2253 unsigned int nid_ofs = nid - START_NID(nid);
2254
2255 if (!test_bit_le(nat_ofs, nm_i->nat_block_bitmap))
2256 return;
2257
2258 if (set) {
2259 if (test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2260 return;
2261 __set_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2262 nm_i->free_nid_count[nat_ofs]++;
2263 } else {
2264 if (!test_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]))
2265 return;
2266 __clear_bit_le(nid_ofs, nm_i->free_nid_bitmap[nat_ofs]);
2267 if (!build)
2268 nm_i->free_nid_count[nat_ofs]--;
2269 }
2270}
2271
2272/* return if the nid is recognized as free */
2273static bool add_free_nid(struct f2fs_sb_info *sbi,
2274 nid_t nid, bool build, bool update)
2275{
2276 struct f2fs_nm_info *nm_i = NM_I(sbi);
2277 struct free_nid *i, *e;
2278 struct nat_entry *ne;
2279 int err = -EINVAL;
2280 bool ret = false;
2281
2282 /* 0 nid should not be used */
2283 if (unlikely(nid == 0))
2284 return false;
2285
2286 if (unlikely(f2fs_check_nid_range(sbi, nid)))
2287 return false;
2288
2289 i = f2fs_kmem_cache_alloc(free_nid_slab, GFP_NOFS, true, NULL);
2290 i->nid = nid;
2291 i->state = FREE_NID;
2292
2293 radix_tree_preload(GFP_NOFS | __GFP_NOFAIL);
2294
2295 spin_lock(&nm_i->nid_list_lock);
2296
2297 if (build) {
2298 /*
2299 * Thread A Thread B
2300 * - f2fs_create
2301 * - f2fs_new_inode
2302 * - f2fs_alloc_nid
2303 * - __insert_nid_to_list(PREALLOC_NID)
2304 * - f2fs_balance_fs_bg
2305 * - f2fs_build_free_nids
2306 * - __f2fs_build_free_nids
2307 * - scan_nat_page
2308 * - add_free_nid
2309 * - __lookup_nat_cache
2310 * - f2fs_add_link
2311 * - f2fs_init_inode_metadata
2312 * - f2fs_new_inode_page
2313 * - f2fs_new_node_page
2314 * - set_node_addr
2315 * - f2fs_alloc_nid_done
2316 * - __remove_nid_from_list(PREALLOC_NID)
2317 * - __insert_nid_to_list(FREE_NID)
2318 */
2319 ne = __lookup_nat_cache(nm_i, nid);
2320 if (ne && (!get_nat_flag(ne, IS_CHECKPOINTED) ||
2321 nat_get_blkaddr(ne) != NULL_ADDR))
2322 goto err_out;
2323
2324 e = __lookup_free_nid_list(nm_i, nid);
2325 if (e) {
2326 if (e->state == FREE_NID)
2327 ret = true;
2328 goto err_out;
2329 }
2330 }
2331 ret = true;
2332 err = __insert_free_nid(sbi, i);
2333err_out:
2334 if (update) {
2335 update_free_nid_bitmap(sbi, nid, ret, build);
2336 if (!build)
2337 nm_i->available_nids++;
2338 }
2339 spin_unlock(&nm_i->nid_list_lock);
2340 radix_tree_preload_end();
2341
2342 if (err)
2343 kmem_cache_free(free_nid_slab, i);
2344 return ret;
2345}
2346
2347static void remove_free_nid(struct f2fs_sb_info *sbi, nid_t nid)
2348{
2349 struct f2fs_nm_info *nm_i = NM_I(sbi);
2350 struct free_nid *i;
2351 bool need_free = false;
2352
2353 spin_lock(&nm_i->nid_list_lock);
2354 i = __lookup_free_nid_list(nm_i, nid);
2355 if (i && i->state == FREE_NID) {
2356 __remove_free_nid(sbi, i, FREE_NID);
2357 need_free = true;
2358 }
2359 spin_unlock(&nm_i->nid_list_lock);
2360
2361 if (need_free)
2362 kmem_cache_free(free_nid_slab, i);
2363}
2364
2365static int scan_nat_page(struct f2fs_sb_info *sbi,
2366 struct page *nat_page, nid_t start_nid)
2367{
2368 struct f2fs_nm_info *nm_i = NM_I(sbi);
2369 struct f2fs_nat_block *nat_blk = page_address(nat_page);
2370 block_t blk_addr;
2371 unsigned int nat_ofs = NAT_BLOCK_OFFSET(start_nid);
2372 int i;
2373
2374 __set_bit_le(nat_ofs, nm_i->nat_block_bitmap);
2375
2376 i = start_nid % NAT_ENTRY_PER_BLOCK;
2377
2378 for (; i < NAT_ENTRY_PER_BLOCK; i++, start_nid++) {
2379 if (unlikely(start_nid >= nm_i->max_nid))
2380 break;
2381
2382 blk_addr = le32_to_cpu(nat_blk->entries[i].block_addr);
2383
2384 if (blk_addr == NEW_ADDR)
2385 return -EINVAL;
2386
2387 if (blk_addr == NULL_ADDR) {
2388 add_free_nid(sbi, start_nid, true, true);
2389 } else {
2390 spin_lock(&NM_I(sbi)->nid_list_lock);
2391 update_free_nid_bitmap(sbi, start_nid, false, true);
2392 spin_unlock(&NM_I(sbi)->nid_list_lock);
2393 }
2394 }
2395
2396 return 0;
2397}
2398
2399static void scan_curseg_cache(struct f2fs_sb_info *sbi)
2400{
2401 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2402 struct f2fs_journal *journal = curseg->journal;
2403 int i;
2404
2405 down_read(&curseg->journal_rwsem);
2406 for (i = 0; i < nats_in_cursum(journal); i++) {
2407 block_t addr;
2408 nid_t nid;
2409
2410 addr = le32_to_cpu(nat_in_journal(journal, i).block_addr);
2411 nid = le32_to_cpu(nid_in_journal(journal, i));
2412 if (addr == NULL_ADDR)
2413 add_free_nid(sbi, nid, true, false);
2414 else
2415 remove_free_nid(sbi, nid);
2416 }
2417 up_read(&curseg->journal_rwsem);
2418}
2419
2420static void scan_free_nid_bits(struct f2fs_sb_info *sbi)
2421{
2422 struct f2fs_nm_info *nm_i = NM_I(sbi);
2423 unsigned int i, idx;
2424 nid_t nid;
2425
2426 f2fs_down_read(&nm_i->nat_tree_lock);
2427
2428 for (i = 0; i < nm_i->nat_blocks; i++) {
2429 if (!test_bit_le(i, nm_i->nat_block_bitmap))
2430 continue;
2431 if (!nm_i->free_nid_count[i])
2432 continue;
2433 for (idx = 0; idx < NAT_ENTRY_PER_BLOCK; idx++) {
2434 idx = find_next_bit_le(nm_i->free_nid_bitmap[i],
2435 NAT_ENTRY_PER_BLOCK, idx);
2436 if (idx >= NAT_ENTRY_PER_BLOCK)
2437 break;
2438
2439 nid = i * NAT_ENTRY_PER_BLOCK + idx;
2440 add_free_nid(sbi, nid, true, false);
2441
2442 if (nm_i->nid_cnt[FREE_NID] >= MAX_FREE_NIDS)
2443 goto out;
2444 }
2445 }
2446out:
2447 scan_curseg_cache(sbi);
2448
2449 f2fs_up_read(&nm_i->nat_tree_lock);
2450}
2451
2452static int __f2fs_build_free_nids(struct f2fs_sb_info *sbi,
2453 bool sync, bool mount)
2454{
2455 struct f2fs_nm_info *nm_i = NM_I(sbi);
2456 int i = 0, ret;
2457 nid_t nid = nm_i->next_scan_nid;
2458
2459 if (unlikely(nid >= nm_i->max_nid))
2460 nid = 0;
2461
2462 if (unlikely(nid % NAT_ENTRY_PER_BLOCK))
2463 nid = NAT_BLOCK_OFFSET(nid) * NAT_ENTRY_PER_BLOCK;
2464
2465 /* Enough entries */
2466 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2467 return 0;
2468
2469 if (!sync && !f2fs_available_free_memory(sbi, FREE_NIDS))
2470 return 0;
2471
2472 if (!mount) {
2473 /* try to find free nids in free_nid_bitmap */
2474 scan_free_nid_bits(sbi);
2475
2476 if (nm_i->nid_cnt[FREE_NID] >= NAT_ENTRY_PER_BLOCK)
2477 return 0;
2478 }
2479
2480 /* readahead nat pages to be scanned */
2481 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nid), FREE_NID_PAGES,
2482 META_NAT, true);
2483
2484 f2fs_down_read(&nm_i->nat_tree_lock);
2485
2486 while (1) {
2487 if (!test_bit_le(NAT_BLOCK_OFFSET(nid),
2488 nm_i->nat_block_bitmap)) {
2489 struct page *page = get_current_nat_page(sbi, nid);
2490
2491 if (IS_ERR(page)) {
2492 ret = PTR_ERR(page);
2493 } else {
2494 ret = scan_nat_page(sbi, page, nid);
2495 f2fs_put_page(page, 1);
2496 }
2497
2498 if (ret) {
2499 f2fs_up_read(&nm_i->nat_tree_lock);
2500 f2fs_err(sbi, "NAT is corrupt, run fsck to fix it");
2501 return ret;
2502 }
2503 }
2504
2505 nid += (NAT_ENTRY_PER_BLOCK - (nid % NAT_ENTRY_PER_BLOCK));
2506 if (unlikely(nid >= nm_i->max_nid))
2507 nid = 0;
2508
2509 if (++i >= FREE_NID_PAGES)
2510 break;
2511 }
2512
2513 /* go to the next free nat pages to find free nids abundantly */
2514 nm_i->next_scan_nid = nid;
2515
2516 /* find free nids from current sum_pages */
2517 scan_curseg_cache(sbi);
2518
2519 f2fs_up_read(&nm_i->nat_tree_lock);
2520
2521 f2fs_ra_meta_pages(sbi, NAT_BLOCK_OFFSET(nm_i->next_scan_nid),
2522 nm_i->ra_nid_pages, META_NAT, false);
2523
2524 return 0;
2525}
2526
2527int f2fs_build_free_nids(struct f2fs_sb_info *sbi, bool sync, bool mount)
2528{
2529 int ret;
2530
2531 mutex_lock(&NM_I(sbi)->build_lock);
2532 ret = __f2fs_build_free_nids(sbi, sync, mount);
2533 mutex_unlock(&NM_I(sbi)->build_lock);
2534
2535 return ret;
2536}
2537
2538/*
2539 * If this function returns success, caller can obtain a new nid
2540 * from second parameter of this function.
2541 * The returned nid could be used ino as well as nid when inode is created.
2542 */
2543bool f2fs_alloc_nid(struct f2fs_sb_info *sbi, nid_t *nid)
2544{
2545 struct f2fs_nm_info *nm_i = NM_I(sbi);
2546 struct free_nid *i = NULL;
2547retry:
2548 if (time_to_inject(sbi, FAULT_ALLOC_NID))
2549 return false;
2550
2551 spin_lock(&nm_i->nid_list_lock);
2552
2553 if (unlikely(nm_i->available_nids == 0)) {
2554 spin_unlock(&nm_i->nid_list_lock);
2555 return false;
2556 }
2557
2558 /* We should not use stale free nids created by f2fs_build_free_nids */
2559 if (nm_i->nid_cnt[FREE_NID] && !on_f2fs_build_free_nids(nm_i)) {
2560 f2fs_bug_on(sbi, list_empty(&nm_i->free_nid_list));
2561 i = list_first_entry(&nm_i->free_nid_list,
2562 struct free_nid, list);
2563 *nid = i->nid;
2564
2565 __move_free_nid(sbi, i, FREE_NID, PREALLOC_NID);
2566 nm_i->available_nids--;
2567
2568 update_free_nid_bitmap(sbi, *nid, false, false);
2569
2570 spin_unlock(&nm_i->nid_list_lock);
2571 return true;
2572 }
2573 spin_unlock(&nm_i->nid_list_lock);
2574
2575 /* Let's scan nat pages and its caches to get free nids */
2576 if (!f2fs_build_free_nids(sbi, true, false))
2577 goto retry;
2578 return false;
2579}
2580
2581/*
2582 * f2fs_alloc_nid() should be called prior to this function.
2583 */
2584void f2fs_alloc_nid_done(struct f2fs_sb_info *sbi, nid_t nid)
2585{
2586 struct f2fs_nm_info *nm_i = NM_I(sbi);
2587 struct free_nid *i;
2588
2589 spin_lock(&nm_i->nid_list_lock);
2590 i = __lookup_free_nid_list(nm_i, nid);
2591 f2fs_bug_on(sbi, !i);
2592 __remove_free_nid(sbi, i, PREALLOC_NID);
2593 spin_unlock(&nm_i->nid_list_lock);
2594
2595 kmem_cache_free(free_nid_slab, i);
2596}
2597
2598/*
2599 * f2fs_alloc_nid() should be called prior to this function.
2600 */
2601void f2fs_alloc_nid_failed(struct f2fs_sb_info *sbi, nid_t nid)
2602{
2603 struct f2fs_nm_info *nm_i = NM_I(sbi);
2604 struct free_nid *i;
2605 bool need_free = false;
2606
2607 if (!nid)
2608 return;
2609
2610 spin_lock(&nm_i->nid_list_lock);
2611 i = __lookup_free_nid_list(nm_i, nid);
2612 f2fs_bug_on(sbi, !i);
2613
2614 if (!f2fs_available_free_memory(sbi, FREE_NIDS)) {
2615 __remove_free_nid(sbi, i, PREALLOC_NID);
2616 need_free = true;
2617 } else {
2618 __move_free_nid(sbi, i, PREALLOC_NID, FREE_NID);
2619 }
2620
2621 nm_i->available_nids++;
2622
2623 update_free_nid_bitmap(sbi, nid, true, false);
2624
2625 spin_unlock(&nm_i->nid_list_lock);
2626
2627 if (need_free)
2628 kmem_cache_free(free_nid_slab, i);
2629}
2630
2631int f2fs_try_to_free_nids(struct f2fs_sb_info *sbi, int nr_shrink)
2632{
2633 struct f2fs_nm_info *nm_i = NM_I(sbi);
2634 int nr = nr_shrink;
2635
2636 if (nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2637 return 0;
2638
2639 if (!mutex_trylock(&nm_i->build_lock))
2640 return 0;
2641
2642 while (nr_shrink && nm_i->nid_cnt[FREE_NID] > MAX_FREE_NIDS) {
2643 struct free_nid *i, *next;
2644 unsigned int batch = SHRINK_NID_BATCH_SIZE;
2645
2646 spin_lock(&nm_i->nid_list_lock);
2647 list_for_each_entry_safe(i, next, &nm_i->free_nid_list, list) {
2648 if (!nr_shrink || !batch ||
2649 nm_i->nid_cnt[FREE_NID] <= MAX_FREE_NIDS)
2650 break;
2651 __remove_free_nid(sbi, i, FREE_NID);
2652 kmem_cache_free(free_nid_slab, i);
2653 nr_shrink--;
2654 batch--;
2655 }
2656 spin_unlock(&nm_i->nid_list_lock);
2657 }
2658
2659 mutex_unlock(&nm_i->build_lock);
2660
2661 return nr - nr_shrink;
2662}
2663
2664int f2fs_recover_inline_xattr(struct inode *inode, struct page *page)
2665{
2666 void *src_addr, *dst_addr;
2667 size_t inline_size;
2668 struct page *ipage;
2669 struct f2fs_inode *ri;
2670
2671 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
2672 if (IS_ERR(ipage))
2673 return PTR_ERR(ipage);
2674
2675 ri = F2FS_INODE(page);
2676 if (ri->i_inline & F2FS_INLINE_XATTR) {
2677 if (!f2fs_has_inline_xattr(inode)) {
2678 set_inode_flag(inode, FI_INLINE_XATTR);
2679 stat_inc_inline_xattr(inode);
2680 }
2681 } else {
2682 if (f2fs_has_inline_xattr(inode)) {
2683 stat_dec_inline_xattr(inode);
2684 clear_inode_flag(inode, FI_INLINE_XATTR);
2685 }
2686 goto update_inode;
2687 }
2688
2689 dst_addr = inline_xattr_addr(inode, ipage);
2690 src_addr = inline_xattr_addr(inode, page);
2691 inline_size = inline_xattr_size(inode);
2692
2693 f2fs_wait_on_page_writeback(ipage, NODE, true, true);
2694 memcpy(dst_addr, src_addr, inline_size);
2695update_inode:
2696 f2fs_update_inode(inode, ipage);
2697 f2fs_put_page(ipage, 1);
2698 return 0;
2699}
2700
2701int f2fs_recover_xattr_data(struct inode *inode, struct page *page)
2702{
2703 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2704 nid_t prev_xnid = F2FS_I(inode)->i_xattr_nid;
2705 nid_t new_xnid;
2706 struct dnode_of_data dn;
2707 struct node_info ni;
2708 struct page *xpage;
2709 int err;
2710
2711 if (!prev_xnid)
2712 goto recover_xnid;
2713
2714 /* 1: invalidate the previous xattr nid */
2715 err = f2fs_get_node_info(sbi, prev_xnid, &ni, false);
2716 if (err)
2717 return err;
2718
2719 f2fs_invalidate_blocks(sbi, ni.blk_addr);
2720 dec_valid_node_count(sbi, inode, false);
2721 set_node_addr(sbi, &ni, NULL_ADDR, false);
2722
2723recover_xnid:
2724 /* 2: update xattr nid in inode */
2725 if (!f2fs_alloc_nid(sbi, &new_xnid))
2726 return -ENOSPC;
2727
2728 set_new_dnode(&dn, inode, NULL, NULL, new_xnid);
2729 xpage = f2fs_new_node_page(&dn, XATTR_NODE_OFFSET);
2730 if (IS_ERR(xpage)) {
2731 f2fs_alloc_nid_failed(sbi, new_xnid);
2732 return PTR_ERR(xpage);
2733 }
2734
2735 f2fs_alloc_nid_done(sbi, new_xnid);
2736 f2fs_update_inode_page(inode);
2737
2738 /* 3: update and set xattr node page dirty */
2739 memcpy(F2FS_NODE(xpage), F2FS_NODE(page), VALID_XATTR_BLOCK_SIZE);
2740
2741 set_page_dirty(xpage);
2742 f2fs_put_page(xpage, 1);
2743
2744 return 0;
2745}
2746
2747int f2fs_recover_inode_page(struct f2fs_sb_info *sbi, struct page *page)
2748{
2749 struct f2fs_inode *src, *dst;
2750 nid_t ino = ino_of_node(page);
2751 struct node_info old_ni, new_ni;
2752 struct page *ipage;
2753 int err;
2754
2755 err = f2fs_get_node_info(sbi, ino, &old_ni, false);
2756 if (err)
2757 return err;
2758
2759 if (unlikely(old_ni.blk_addr != NULL_ADDR))
2760 return -EINVAL;
2761retry:
2762 ipage = f2fs_grab_cache_page(NODE_MAPPING(sbi), ino, false);
2763 if (!ipage) {
2764 memalloc_retry_wait(GFP_NOFS);
2765 goto retry;
2766 }
2767
2768 /* Should not use this inode from free nid list */
2769 remove_free_nid(sbi, ino);
2770
2771 if (!PageUptodate(ipage))
2772 SetPageUptodate(ipage);
2773 fill_node_footer(ipage, ino, ino, 0, true);
2774 set_cold_node(ipage, false);
2775
2776 src = F2FS_INODE(page);
2777 dst = F2FS_INODE(ipage);
2778
2779 memcpy(dst, src, offsetof(struct f2fs_inode, i_ext));
2780 dst->i_size = 0;
2781 dst->i_blocks = cpu_to_le64(1);
2782 dst->i_links = cpu_to_le32(1);
2783 dst->i_xattr_nid = 0;
2784 dst->i_inline = src->i_inline & (F2FS_INLINE_XATTR | F2FS_EXTRA_ATTR);
2785 if (dst->i_inline & F2FS_EXTRA_ATTR) {
2786 dst->i_extra_isize = src->i_extra_isize;
2787
2788 if (f2fs_sb_has_flexible_inline_xattr(sbi) &&
2789 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2790 i_inline_xattr_size))
2791 dst->i_inline_xattr_size = src->i_inline_xattr_size;
2792
2793 if (f2fs_sb_has_project_quota(sbi) &&
2794 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2795 i_projid))
2796 dst->i_projid = src->i_projid;
2797
2798 if (f2fs_sb_has_inode_crtime(sbi) &&
2799 F2FS_FITS_IN_INODE(src, le16_to_cpu(src->i_extra_isize),
2800 i_crtime_nsec)) {
2801 dst->i_crtime = src->i_crtime;
2802 dst->i_crtime_nsec = src->i_crtime_nsec;
2803 }
2804 }
2805
2806 new_ni = old_ni;
2807 new_ni.ino = ino;
2808
2809 if (unlikely(inc_valid_node_count(sbi, NULL, true)))
2810 WARN_ON(1);
2811 set_node_addr(sbi, &new_ni, NEW_ADDR, false);
2812 inc_valid_inode_count(sbi);
2813 set_page_dirty(ipage);
2814 f2fs_put_page(ipage, 1);
2815 return 0;
2816}
2817
2818int f2fs_restore_node_summary(struct f2fs_sb_info *sbi,
2819 unsigned int segno, struct f2fs_summary_block *sum)
2820{
2821 struct f2fs_node *rn;
2822 struct f2fs_summary *sum_entry;
2823 block_t addr;
2824 int i, idx, last_offset, nrpages;
2825
2826 /* scan the node segment */
2827 last_offset = sbi->blocks_per_seg;
2828 addr = START_BLOCK(sbi, segno);
2829 sum_entry = &sum->entries[0];
2830
2831 for (i = 0; i < last_offset; i += nrpages, addr += nrpages) {
2832 nrpages = bio_max_segs(last_offset - i);
2833
2834 /* readahead node pages */
2835 f2fs_ra_meta_pages(sbi, addr, nrpages, META_POR, true);
2836
2837 for (idx = addr; idx < addr + nrpages; idx++) {
2838 struct page *page = f2fs_get_tmp_page(sbi, idx);
2839
2840 if (IS_ERR(page))
2841 return PTR_ERR(page);
2842
2843 rn = F2FS_NODE(page);
2844 sum_entry->nid = rn->footer.nid;
2845 sum_entry->version = 0;
2846 sum_entry->ofs_in_node = 0;
2847 sum_entry++;
2848 f2fs_put_page(page, 1);
2849 }
2850
2851 invalidate_mapping_pages(META_MAPPING(sbi), addr,
2852 addr + nrpages);
2853 }
2854 return 0;
2855}
2856
2857static void remove_nats_in_journal(struct f2fs_sb_info *sbi)
2858{
2859 struct f2fs_nm_info *nm_i = NM_I(sbi);
2860 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2861 struct f2fs_journal *journal = curseg->journal;
2862 int i;
2863
2864 down_write(&curseg->journal_rwsem);
2865 for (i = 0; i < nats_in_cursum(journal); i++) {
2866 struct nat_entry *ne;
2867 struct f2fs_nat_entry raw_ne;
2868 nid_t nid = le32_to_cpu(nid_in_journal(journal, i));
2869
2870 if (f2fs_check_nid_range(sbi, nid))
2871 continue;
2872
2873 raw_ne = nat_in_journal(journal, i);
2874
2875 ne = __lookup_nat_cache(nm_i, nid);
2876 if (!ne) {
2877 ne = __alloc_nat_entry(sbi, nid, true);
2878 __init_nat_entry(nm_i, ne, &raw_ne, true);
2879 }
2880
2881 /*
2882 * if a free nat in journal has not been used after last
2883 * checkpoint, we should remove it from available nids,
2884 * since later we will add it again.
2885 */
2886 if (!get_nat_flag(ne, IS_DIRTY) &&
2887 le32_to_cpu(raw_ne.block_addr) == NULL_ADDR) {
2888 spin_lock(&nm_i->nid_list_lock);
2889 nm_i->available_nids--;
2890 spin_unlock(&nm_i->nid_list_lock);
2891 }
2892
2893 __set_nat_cache_dirty(nm_i, ne);
2894 }
2895 update_nats_in_cursum(journal, -i);
2896 up_write(&curseg->journal_rwsem);
2897}
2898
2899static void __adjust_nat_entry_set(struct nat_entry_set *nes,
2900 struct list_head *head, int max)
2901{
2902 struct nat_entry_set *cur;
2903
2904 if (nes->entry_cnt >= max)
2905 goto add_out;
2906
2907 list_for_each_entry(cur, head, set_list) {
2908 if (cur->entry_cnt >= nes->entry_cnt) {
2909 list_add(&nes->set_list, cur->set_list.prev);
2910 return;
2911 }
2912 }
2913add_out:
2914 list_add_tail(&nes->set_list, head);
2915}
2916
2917static void __update_nat_bits(struct f2fs_nm_info *nm_i, unsigned int nat_ofs,
2918 unsigned int valid)
2919{
2920 if (valid == 0) {
2921 __set_bit_le(nat_ofs, nm_i->empty_nat_bits);
2922 __clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2923 return;
2924 }
2925
2926 __clear_bit_le(nat_ofs, nm_i->empty_nat_bits);
2927 if (valid == NAT_ENTRY_PER_BLOCK)
2928 __set_bit_le(nat_ofs, nm_i->full_nat_bits);
2929 else
2930 __clear_bit_le(nat_ofs, nm_i->full_nat_bits);
2931}
2932
2933static void update_nat_bits(struct f2fs_sb_info *sbi, nid_t start_nid,
2934 struct page *page)
2935{
2936 struct f2fs_nm_info *nm_i = NM_I(sbi);
2937 unsigned int nat_index = start_nid / NAT_ENTRY_PER_BLOCK;
2938 struct f2fs_nat_block *nat_blk = page_address(page);
2939 int valid = 0;
2940 int i = 0;
2941
2942 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
2943 return;
2944
2945 if (nat_index == 0) {
2946 valid = 1;
2947 i = 1;
2948 }
2949 for (; i < NAT_ENTRY_PER_BLOCK; i++) {
2950 if (le32_to_cpu(nat_blk->entries[i].block_addr) != NULL_ADDR)
2951 valid++;
2952 }
2953
2954 __update_nat_bits(nm_i, nat_index, valid);
2955}
2956
2957void f2fs_enable_nat_bits(struct f2fs_sb_info *sbi)
2958{
2959 struct f2fs_nm_info *nm_i = NM_I(sbi);
2960 unsigned int nat_ofs;
2961
2962 f2fs_down_read(&nm_i->nat_tree_lock);
2963
2964 for (nat_ofs = 0; nat_ofs < nm_i->nat_blocks; nat_ofs++) {
2965 unsigned int valid = 0, nid_ofs = 0;
2966
2967 /* handle nid zero due to it should never be used */
2968 if (unlikely(nat_ofs == 0)) {
2969 valid = 1;
2970 nid_ofs = 1;
2971 }
2972
2973 for (; nid_ofs < NAT_ENTRY_PER_BLOCK; nid_ofs++) {
2974 if (!test_bit_le(nid_ofs,
2975 nm_i->free_nid_bitmap[nat_ofs]))
2976 valid++;
2977 }
2978
2979 __update_nat_bits(nm_i, nat_ofs, valid);
2980 }
2981
2982 f2fs_up_read(&nm_i->nat_tree_lock);
2983}
2984
2985static int __flush_nat_entry_set(struct f2fs_sb_info *sbi,
2986 struct nat_entry_set *set, struct cp_control *cpc)
2987{
2988 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
2989 struct f2fs_journal *journal = curseg->journal;
2990 nid_t start_nid = set->set * NAT_ENTRY_PER_BLOCK;
2991 bool to_journal = true;
2992 struct f2fs_nat_block *nat_blk;
2993 struct nat_entry *ne, *cur;
2994 struct page *page = NULL;
2995
2996 /*
2997 * there are two steps to flush nat entries:
2998 * #1, flush nat entries to journal in current hot data summary block.
2999 * #2, flush nat entries to nat page.
3000 */
3001 if ((cpc->reason & CP_UMOUNT) ||
3002 !__has_cursum_space(journal, set->entry_cnt, NAT_JOURNAL))
3003 to_journal = false;
3004
3005 if (to_journal) {
3006 down_write(&curseg->journal_rwsem);
3007 } else {
3008 page = get_next_nat_page(sbi, start_nid);
3009 if (IS_ERR(page))
3010 return PTR_ERR(page);
3011
3012 nat_blk = page_address(page);
3013 f2fs_bug_on(sbi, !nat_blk);
3014 }
3015
3016 /* flush dirty nats in nat entry set */
3017 list_for_each_entry_safe(ne, cur, &set->entry_list, list) {
3018 struct f2fs_nat_entry *raw_ne;
3019 nid_t nid = nat_get_nid(ne);
3020 int offset;
3021
3022 f2fs_bug_on(sbi, nat_get_blkaddr(ne) == NEW_ADDR);
3023
3024 if (to_journal) {
3025 offset = f2fs_lookup_journal_in_cursum(journal,
3026 NAT_JOURNAL, nid, 1);
3027 f2fs_bug_on(sbi, offset < 0);
3028 raw_ne = &nat_in_journal(journal, offset);
3029 nid_in_journal(journal, offset) = cpu_to_le32(nid);
3030 } else {
3031 raw_ne = &nat_blk->entries[nid - start_nid];
3032 }
3033 raw_nat_from_node_info(raw_ne, &ne->ni);
3034 nat_reset_flag(ne);
3035 __clear_nat_cache_dirty(NM_I(sbi), set, ne);
3036 if (nat_get_blkaddr(ne) == NULL_ADDR) {
3037 add_free_nid(sbi, nid, false, true);
3038 } else {
3039 spin_lock(&NM_I(sbi)->nid_list_lock);
3040 update_free_nid_bitmap(sbi, nid, false, false);
3041 spin_unlock(&NM_I(sbi)->nid_list_lock);
3042 }
3043 }
3044
3045 if (to_journal) {
3046 up_write(&curseg->journal_rwsem);
3047 } else {
3048 update_nat_bits(sbi, start_nid, page);
3049 f2fs_put_page(page, 1);
3050 }
3051
3052 /* Allow dirty nats by node block allocation in write_begin */
3053 if (!set->entry_cnt) {
3054 radix_tree_delete(&NM_I(sbi)->nat_set_root, set->set);
3055 kmem_cache_free(nat_entry_set_slab, set);
3056 }
3057 return 0;
3058}
3059
3060/*
3061 * This function is called during the checkpointing process.
3062 */
3063int f2fs_flush_nat_entries(struct f2fs_sb_info *sbi, struct cp_control *cpc)
3064{
3065 struct f2fs_nm_info *nm_i = NM_I(sbi);
3066 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_HOT_DATA);
3067 struct f2fs_journal *journal = curseg->journal;
3068 struct nat_entry_set *setvec[SETVEC_SIZE];
3069 struct nat_entry_set *set, *tmp;
3070 unsigned int found;
3071 nid_t set_idx = 0;
3072 LIST_HEAD(sets);
3073 int err = 0;
3074
3075 /*
3076 * during unmount, let's flush nat_bits before checking
3077 * nat_cnt[DIRTY_NAT].
3078 */
3079 if (cpc->reason & CP_UMOUNT) {
3080 f2fs_down_write(&nm_i->nat_tree_lock);
3081 remove_nats_in_journal(sbi);
3082 f2fs_up_write(&nm_i->nat_tree_lock);
3083 }
3084
3085 if (!nm_i->nat_cnt[DIRTY_NAT])
3086 return 0;
3087
3088 f2fs_down_write(&nm_i->nat_tree_lock);
3089
3090 /*
3091 * if there are no enough space in journal to store dirty nat
3092 * entries, remove all entries from journal and merge them
3093 * into nat entry set.
3094 */
3095 if (cpc->reason & CP_UMOUNT ||
3096 !__has_cursum_space(journal,
3097 nm_i->nat_cnt[DIRTY_NAT], NAT_JOURNAL))
3098 remove_nats_in_journal(sbi);
3099
3100 while ((found = __gang_lookup_nat_set(nm_i,
3101 set_idx, SETVEC_SIZE, setvec))) {
3102 unsigned idx;
3103
3104 set_idx = setvec[found - 1]->set + 1;
3105 for (idx = 0; idx < found; idx++)
3106 __adjust_nat_entry_set(setvec[idx], &sets,
3107 MAX_NAT_JENTRIES(journal));
3108 }
3109
3110 /* flush dirty nats in nat entry set */
3111 list_for_each_entry_safe(set, tmp, &sets, set_list) {
3112 err = __flush_nat_entry_set(sbi, set, cpc);
3113 if (err)
3114 break;
3115 }
3116
3117 f2fs_up_write(&nm_i->nat_tree_lock);
3118 /* Allow dirty nats by node block allocation in write_begin */
3119
3120 return err;
3121}
3122
3123static int __get_nat_bitmaps(struct f2fs_sb_info *sbi)
3124{
3125 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3126 struct f2fs_nm_info *nm_i = NM_I(sbi);
3127 unsigned int nat_bits_bytes = nm_i->nat_blocks / BITS_PER_BYTE;
3128 unsigned int i;
3129 __u64 cp_ver = cur_cp_version(ckpt);
3130 block_t nat_bits_addr;
3131
3132 nm_i->nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3133 nm_i->nat_bits = f2fs_kvzalloc(sbi,
3134 nm_i->nat_bits_blocks << F2FS_BLKSIZE_BITS, GFP_KERNEL);
3135 if (!nm_i->nat_bits)
3136 return -ENOMEM;
3137
3138 nm_i->full_nat_bits = nm_i->nat_bits + 8;
3139 nm_i->empty_nat_bits = nm_i->full_nat_bits + nat_bits_bytes;
3140
3141 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3142 return 0;
3143
3144 nat_bits_addr = __start_cp_addr(sbi) + sbi->blocks_per_seg -
3145 nm_i->nat_bits_blocks;
3146 for (i = 0; i < nm_i->nat_bits_blocks; i++) {
3147 struct page *page;
3148
3149 page = f2fs_get_meta_page(sbi, nat_bits_addr++);
3150 if (IS_ERR(page))
3151 return PTR_ERR(page);
3152
3153 memcpy(nm_i->nat_bits + (i << F2FS_BLKSIZE_BITS),
3154 page_address(page), F2FS_BLKSIZE);
3155 f2fs_put_page(page, 1);
3156 }
3157
3158 cp_ver |= (cur_cp_crc(ckpt) << 32);
3159 if (cpu_to_le64(cp_ver) != *(__le64 *)nm_i->nat_bits) {
3160 clear_ckpt_flags(sbi, CP_NAT_BITS_FLAG);
3161 f2fs_notice(sbi, "Disable nat_bits due to incorrect cp_ver (%llu, %llu)",
3162 cp_ver, le64_to_cpu(*(__le64 *)nm_i->nat_bits));
3163 return 0;
3164 }
3165
3166 f2fs_notice(sbi, "Found nat_bits in checkpoint");
3167 return 0;
3168}
3169
3170static inline void load_free_nid_bitmap(struct f2fs_sb_info *sbi)
3171{
3172 struct f2fs_nm_info *nm_i = NM_I(sbi);
3173 unsigned int i = 0;
3174 nid_t nid, last_nid;
3175
3176 if (!is_set_ckpt_flags(sbi, CP_NAT_BITS_FLAG))
3177 return;
3178
3179 for (i = 0; i < nm_i->nat_blocks; i++) {
3180 i = find_next_bit_le(nm_i->empty_nat_bits, nm_i->nat_blocks, i);
3181 if (i >= nm_i->nat_blocks)
3182 break;
3183
3184 __set_bit_le(i, nm_i->nat_block_bitmap);
3185
3186 nid = i * NAT_ENTRY_PER_BLOCK;
3187 last_nid = nid + NAT_ENTRY_PER_BLOCK;
3188
3189 spin_lock(&NM_I(sbi)->nid_list_lock);
3190 for (; nid < last_nid; nid++)
3191 update_free_nid_bitmap(sbi, nid, true, true);
3192 spin_unlock(&NM_I(sbi)->nid_list_lock);
3193 }
3194
3195 for (i = 0; i < nm_i->nat_blocks; i++) {
3196 i = find_next_bit_le(nm_i->full_nat_bits, nm_i->nat_blocks, i);
3197 if (i >= nm_i->nat_blocks)
3198 break;
3199
3200 __set_bit_le(i, nm_i->nat_block_bitmap);
3201 }
3202}
3203
3204static int init_node_manager(struct f2fs_sb_info *sbi)
3205{
3206 struct f2fs_super_block *sb_raw = F2FS_RAW_SUPER(sbi);
3207 struct f2fs_nm_info *nm_i = NM_I(sbi);
3208 unsigned char *version_bitmap;
3209 unsigned int nat_segs;
3210 int err;
3211
3212 nm_i->nat_blkaddr = le32_to_cpu(sb_raw->nat_blkaddr);
3213
3214 /* segment_count_nat includes pair segment so divide to 2. */
3215 nat_segs = le32_to_cpu(sb_raw->segment_count_nat) >> 1;
3216 nm_i->nat_blocks = nat_segs << le32_to_cpu(sb_raw->log_blocks_per_seg);
3217 nm_i->max_nid = NAT_ENTRY_PER_BLOCK * nm_i->nat_blocks;
3218
3219 /* not used nids: 0, node, meta, (and root counted as valid node) */
3220 nm_i->available_nids = nm_i->max_nid - sbi->total_valid_node_count -
3221 F2FS_RESERVED_NODE_NUM;
3222 nm_i->nid_cnt[FREE_NID] = 0;
3223 nm_i->nid_cnt[PREALLOC_NID] = 0;
3224 nm_i->ram_thresh = DEF_RAM_THRESHOLD;
3225 nm_i->ra_nid_pages = DEF_RA_NID_PAGES;
3226 nm_i->dirty_nats_ratio = DEF_DIRTY_NAT_RATIO_THRESHOLD;
3227 nm_i->max_rf_node_blocks = DEF_RF_NODE_BLOCKS;
3228
3229 INIT_RADIX_TREE(&nm_i->free_nid_root, GFP_ATOMIC);
3230 INIT_LIST_HEAD(&nm_i->free_nid_list);
3231 INIT_RADIX_TREE(&nm_i->nat_root, GFP_NOIO);
3232 INIT_RADIX_TREE(&nm_i->nat_set_root, GFP_NOIO);
3233 INIT_LIST_HEAD(&nm_i->nat_entries);
3234 spin_lock_init(&nm_i->nat_list_lock);
3235
3236 mutex_init(&nm_i->build_lock);
3237 spin_lock_init(&nm_i->nid_list_lock);
3238 init_f2fs_rwsem(&nm_i->nat_tree_lock);
3239
3240 nm_i->next_scan_nid = le32_to_cpu(sbi->ckpt->next_free_nid);
3241 nm_i->bitmap_size = __bitmap_size(sbi, NAT_BITMAP);
3242 version_bitmap = __bitmap_ptr(sbi, NAT_BITMAP);
3243 nm_i->nat_bitmap = kmemdup(version_bitmap, nm_i->bitmap_size,
3244 GFP_KERNEL);
3245 if (!nm_i->nat_bitmap)
3246 return -ENOMEM;
3247
3248 err = __get_nat_bitmaps(sbi);
3249 if (err)
3250 return err;
3251
3252#ifdef CONFIG_F2FS_CHECK_FS
3253 nm_i->nat_bitmap_mir = kmemdup(version_bitmap, nm_i->bitmap_size,
3254 GFP_KERNEL);
3255 if (!nm_i->nat_bitmap_mir)
3256 return -ENOMEM;
3257#endif
3258
3259 return 0;
3260}
3261
3262static int init_free_nid_cache(struct f2fs_sb_info *sbi)
3263{
3264 struct f2fs_nm_info *nm_i = NM_I(sbi);
3265 int i;
3266
3267 nm_i->free_nid_bitmap =
3268 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned char *),
3269 nm_i->nat_blocks),
3270 GFP_KERNEL);
3271 if (!nm_i->free_nid_bitmap)
3272 return -ENOMEM;
3273
3274 for (i = 0; i < nm_i->nat_blocks; i++) {
3275 nm_i->free_nid_bitmap[i] = f2fs_kvzalloc(sbi,
3276 f2fs_bitmap_size(NAT_ENTRY_PER_BLOCK), GFP_KERNEL);
3277 if (!nm_i->free_nid_bitmap[i])
3278 return -ENOMEM;
3279 }
3280
3281 nm_i->nat_block_bitmap = f2fs_kvzalloc(sbi, nm_i->nat_blocks / 8,
3282 GFP_KERNEL);
3283 if (!nm_i->nat_block_bitmap)
3284 return -ENOMEM;
3285
3286 nm_i->free_nid_count =
3287 f2fs_kvzalloc(sbi, array_size(sizeof(unsigned short),
3288 nm_i->nat_blocks),
3289 GFP_KERNEL);
3290 if (!nm_i->free_nid_count)
3291 return -ENOMEM;
3292 return 0;
3293}
3294
3295int f2fs_build_node_manager(struct f2fs_sb_info *sbi)
3296{
3297 int err;
3298
3299 sbi->nm_info = f2fs_kzalloc(sbi, sizeof(struct f2fs_nm_info),
3300 GFP_KERNEL);
3301 if (!sbi->nm_info)
3302 return -ENOMEM;
3303
3304 err = init_node_manager(sbi);
3305 if (err)
3306 return err;
3307
3308 err = init_free_nid_cache(sbi);
3309 if (err)
3310 return err;
3311
3312 /* load free nid status from nat_bits table */
3313 load_free_nid_bitmap(sbi);
3314
3315 return f2fs_build_free_nids(sbi, true, true);
3316}
3317
3318void f2fs_destroy_node_manager(struct f2fs_sb_info *sbi)
3319{
3320 struct f2fs_nm_info *nm_i = NM_I(sbi);
3321 struct free_nid *i, *next_i;
3322 struct nat_entry *natvec[NATVEC_SIZE];
3323 struct nat_entry_set *setvec[SETVEC_SIZE];
3324 nid_t nid = 0;
3325 unsigned int found;
3326
3327 if (!nm_i)
3328 return;
3329
3330 /* destroy free nid list */
3331 spin_lock(&nm_i->nid_list_lock);
3332 list_for_each_entry_safe(i, next_i, &nm_i->free_nid_list, list) {
3333 __remove_free_nid(sbi, i, FREE_NID);
3334 spin_unlock(&nm_i->nid_list_lock);
3335 kmem_cache_free(free_nid_slab, i);
3336 spin_lock(&nm_i->nid_list_lock);
3337 }
3338 f2fs_bug_on(sbi, nm_i->nid_cnt[FREE_NID]);
3339 f2fs_bug_on(sbi, nm_i->nid_cnt[PREALLOC_NID]);
3340 f2fs_bug_on(sbi, !list_empty(&nm_i->free_nid_list));
3341 spin_unlock(&nm_i->nid_list_lock);
3342
3343 /* destroy nat cache */
3344 f2fs_down_write(&nm_i->nat_tree_lock);
3345 while ((found = __gang_lookup_nat_cache(nm_i,
3346 nid, NATVEC_SIZE, natvec))) {
3347 unsigned idx;
3348
3349 nid = nat_get_nid(natvec[found - 1]) + 1;
3350 for (idx = 0; idx < found; idx++) {
3351 spin_lock(&nm_i->nat_list_lock);
3352 list_del(&natvec[idx]->list);
3353 spin_unlock(&nm_i->nat_list_lock);
3354
3355 __del_from_nat_cache(nm_i, natvec[idx]);
3356 }
3357 }
3358 f2fs_bug_on(sbi, nm_i->nat_cnt[TOTAL_NAT]);
3359
3360 /* destroy nat set cache */
3361 nid = 0;
3362 while ((found = __gang_lookup_nat_set(nm_i,
3363 nid, SETVEC_SIZE, setvec))) {
3364 unsigned idx;
3365
3366 nid = setvec[found - 1]->set + 1;
3367 for (idx = 0; idx < found; idx++) {
3368 /* entry_cnt is not zero, when cp_error was occurred */
3369 f2fs_bug_on(sbi, !list_empty(&setvec[idx]->entry_list));
3370 radix_tree_delete(&nm_i->nat_set_root, setvec[idx]->set);
3371 kmem_cache_free(nat_entry_set_slab, setvec[idx]);
3372 }
3373 }
3374 f2fs_up_write(&nm_i->nat_tree_lock);
3375
3376 kvfree(nm_i->nat_block_bitmap);
3377 if (nm_i->free_nid_bitmap) {
3378 int i;
3379
3380 for (i = 0; i < nm_i->nat_blocks; i++)
3381 kvfree(nm_i->free_nid_bitmap[i]);
3382 kvfree(nm_i->free_nid_bitmap);
3383 }
3384 kvfree(nm_i->free_nid_count);
3385
3386 kvfree(nm_i->nat_bitmap);
3387 kvfree(nm_i->nat_bits);
3388#ifdef CONFIG_F2FS_CHECK_FS
3389 kvfree(nm_i->nat_bitmap_mir);
3390#endif
3391 sbi->nm_info = NULL;
3392 kfree(nm_i);
3393}
3394
3395int __init f2fs_create_node_manager_caches(void)
3396{
3397 nat_entry_slab = f2fs_kmem_cache_create("f2fs_nat_entry",
3398 sizeof(struct nat_entry));
3399 if (!nat_entry_slab)
3400 goto fail;
3401
3402 free_nid_slab = f2fs_kmem_cache_create("f2fs_free_nid",
3403 sizeof(struct free_nid));
3404 if (!free_nid_slab)
3405 goto destroy_nat_entry;
3406
3407 nat_entry_set_slab = f2fs_kmem_cache_create("f2fs_nat_entry_set",
3408 sizeof(struct nat_entry_set));
3409 if (!nat_entry_set_slab)
3410 goto destroy_free_nid;
3411
3412 fsync_node_entry_slab = f2fs_kmem_cache_create("f2fs_fsync_node_entry",
3413 sizeof(struct fsync_node_entry));
3414 if (!fsync_node_entry_slab)
3415 goto destroy_nat_entry_set;
3416 return 0;
3417
3418destroy_nat_entry_set:
3419 kmem_cache_destroy(nat_entry_set_slab);
3420destroy_free_nid:
3421 kmem_cache_destroy(free_nid_slab);
3422destroy_nat_entry:
3423 kmem_cache_destroy(nat_entry_slab);
3424fail:
3425 return -ENOMEM;
3426}
3427
3428void f2fs_destroy_node_manager_caches(void)
3429{
3430 kmem_cache_destroy(fsync_node_entry_slab);
3431 kmem_cache_destroy(nat_entry_set_slab);
3432 kmem_cache_destroy(free_nid_slab);
3433 kmem_cache_destroy(nat_entry_slab);
3434}