Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * fs/f2fs/data.c
4 *
5 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6 * http://www.samsung.com/
7 */
8#include <linux/fs.h>
9#include <linux/f2fs_fs.h>
10#include <linux/buffer_head.h>
11#include <linux/sched/mm.h>
12#include <linux/mpage.h>
13#include <linux/writeback.h>
14#include <linux/pagevec.h>
15#include <linux/blkdev.h>
16#include <linux/bio.h>
17#include <linux/blk-crypto.h>
18#include <linux/swap.h>
19#include <linux/prefetch.h>
20#include <linux/uio.h>
21#include <linux/sched/signal.h>
22#include <linux/fiemap.h>
23#include <linux/iomap.h>
24
25#include "f2fs.h"
26#include "node.h"
27#include "segment.h"
28#include "iostat.h"
29#include <trace/events/f2fs.h>
30
31#define NUM_PREALLOC_POST_READ_CTXS 128
32
33static struct kmem_cache *bio_post_read_ctx_cache;
34static struct kmem_cache *bio_entry_slab;
35static mempool_t *bio_post_read_ctx_pool;
36static struct bio_set f2fs_bioset;
37
38#define F2FS_BIO_POOL_SIZE NR_CURSEG_TYPE
39
40int __init f2fs_init_bioset(void)
41{
42 return bioset_init(&f2fs_bioset, F2FS_BIO_POOL_SIZE,
43 0, BIOSET_NEED_BVECS);
44}
45
46void f2fs_destroy_bioset(void)
47{
48 bioset_exit(&f2fs_bioset);
49}
50
51static bool __is_cp_guaranteed(struct page *page)
52{
53 struct address_space *mapping = page->mapping;
54 struct inode *inode;
55 struct f2fs_sb_info *sbi;
56
57 if (!mapping)
58 return false;
59
60 inode = mapping->host;
61 sbi = F2FS_I_SB(inode);
62
63 if (inode->i_ino == F2FS_META_INO(sbi) ||
64 inode->i_ino == F2FS_NODE_INO(sbi) ||
65 S_ISDIR(inode->i_mode))
66 return true;
67
68 if (f2fs_is_compressed_page(page))
69 return false;
70 if ((S_ISREG(inode->i_mode) && IS_NOQUOTA(inode)) ||
71 page_private_gcing(page))
72 return true;
73 return false;
74}
75
76static enum count_type __read_io_type(struct page *page)
77{
78 struct address_space *mapping = page_file_mapping(page);
79
80 if (mapping) {
81 struct inode *inode = mapping->host;
82 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
83
84 if (inode->i_ino == F2FS_META_INO(sbi))
85 return F2FS_RD_META;
86
87 if (inode->i_ino == F2FS_NODE_INO(sbi))
88 return F2FS_RD_NODE;
89 }
90 return F2FS_RD_DATA;
91}
92
93/* postprocessing steps for read bios */
94enum bio_post_read_step {
95#ifdef CONFIG_FS_ENCRYPTION
96 STEP_DECRYPT = BIT(0),
97#else
98 STEP_DECRYPT = 0, /* compile out the decryption-related code */
99#endif
100#ifdef CONFIG_F2FS_FS_COMPRESSION
101 STEP_DECOMPRESS = BIT(1),
102#else
103 STEP_DECOMPRESS = 0, /* compile out the decompression-related code */
104#endif
105#ifdef CONFIG_FS_VERITY
106 STEP_VERITY = BIT(2),
107#else
108 STEP_VERITY = 0, /* compile out the verity-related code */
109#endif
110};
111
112struct bio_post_read_ctx {
113 struct bio *bio;
114 struct f2fs_sb_info *sbi;
115 struct work_struct work;
116 unsigned int enabled_steps;
117 /*
118 * decompression_attempted keeps track of whether
119 * f2fs_end_read_compressed_page() has been called on the pages in the
120 * bio that belong to a compressed cluster yet.
121 */
122 bool decompression_attempted;
123 block_t fs_blkaddr;
124};
125
126/*
127 * Update and unlock a bio's pages, and free the bio.
128 *
129 * This marks pages up-to-date only if there was no error in the bio (I/O error,
130 * decryption error, or verity error), as indicated by bio->bi_status.
131 *
132 * "Compressed pages" (pagecache pages backed by a compressed cluster on-disk)
133 * aren't marked up-to-date here, as decompression is done on a per-compression-
134 * cluster basis rather than a per-bio basis. Instead, we only must do two
135 * things for each compressed page here: call f2fs_end_read_compressed_page()
136 * with failed=true if an error occurred before it would have normally gotten
137 * called (i.e., I/O error or decryption error, but *not* verity error), and
138 * release the bio's reference to the decompress_io_ctx of the page's cluster.
139 */
140static void f2fs_finish_read_bio(struct bio *bio, bool in_task)
141{
142 struct bio_vec *bv;
143 struct bvec_iter_all iter_all;
144 struct bio_post_read_ctx *ctx = bio->bi_private;
145
146 bio_for_each_segment_all(bv, bio, iter_all) {
147 struct page *page = bv->bv_page;
148
149 if (f2fs_is_compressed_page(page)) {
150 if (ctx && !ctx->decompression_attempted)
151 f2fs_end_read_compressed_page(page, true, 0,
152 in_task);
153 f2fs_put_page_dic(page, in_task);
154 continue;
155 }
156
157 if (bio->bi_status)
158 ClearPageUptodate(page);
159 else
160 SetPageUptodate(page);
161 dec_page_count(F2FS_P_SB(page), __read_io_type(page));
162 unlock_page(page);
163 }
164
165 if (ctx)
166 mempool_free(ctx, bio_post_read_ctx_pool);
167 bio_put(bio);
168}
169
170static void f2fs_verify_bio(struct work_struct *work)
171{
172 struct bio_post_read_ctx *ctx =
173 container_of(work, struct bio_post_read_ctx, work);
174 struct bio *bio = ctx->bio;
175 bool may_have_compressed_pages = (ctx->enabled_steps & STEP_DECOMPRESS);
176
177 /*
178 * fsverity_verify_bio() may call readahead() again, and while verity
179 * will be disabled for this, decryption and/or decompression may still
180 * be needed, resulting in another bio_post_read_ctx being allocated.
181 * So to prevent deadlocks we need to release the current ctx to the
182 * mempool first. This assumes that verity is the last post-read step.
183 */
184 mempool_free(ctx, bio_post_read_ctx_pool);
185 bio->bi_private = NULL;
186
187 /*
188 * Verify the bio's pages with fs-verity. Exclude compressed pages,
189 * as those were handled separately by f2fs_end_read_compressed_page().
190 */
191 if (may_have_compressed_pages) {
192 struct bio_vec *bv;
193 struct bvec_iter_all iter_all;
194
195 bio_for_each_segment_all(bv, bio, iter_all) {
196 struct page *page = bv->bv_page;
197
198 if (!f2fs_is_compressed_page(page) &&
199 !fsverity_verify_page(page)) {
200 bio->bi_status = BLK_STS_IOERR;
201 break;
202 }
203 }
204 } else {
205 fsverity_verify_bio(bio);
206 }
207
208 f2fs_finish_read_bio(bio, true);
209}
210
211/*
212 * If the bio's data needs to be verified with fs-verity, then enqueue the
213 * verity work for the bio. Otherwise finish the bio now.
214 *
215 * Note that to avoid deadlocks, the verity work can't be done on the
216 * decryption/decompression workqueue. This is because verifying the data pages
217 * can involve reading verity metadata pages from the file, and these verity
218 * metadata pages may be encrypted and/or compressed.
219 */
220static void f2fs_verify_and_finish_bio(struct bio *bio, bool in_task)
221{
222 struct bio_post_read_ctx *ctx = bio->bi_private;
223
224 if (ctx && (ctx->enabled_steps & STEP_VERITY)) {
225 INIT_WORK(&ctx->work, f2fs_verify_bio);
226 fsverity_enqueue_verify_work(&ctx->work);
227 } else {
228 f2fs_finish_read_bio(bio, in_task);
229 }
230}
231
232/*
233 * Handle STEP_DECOMPRESS by decompressing any compressed clusters whose last
234 * remaining page was read by @ctx->bio.
235 *
236 * Note that a bio may span clusters (even a mix of compressed and uncompressed
237 * clusters) or be for just part of a cluster. STEP_DECOMPRESS just indicates
238 * that the bio includes at least one compressed page. The actual decompression
239 * is done on a per-cluster basis, not a per-bio basis.
240 */
241static void f2fs_handle_step_decompress(struct bio_post_read_ctx *ctx,
242 bool in_task)
243{
244 struct bio_vec *bv;
245 struct bvec_iter_all iter_all;
246 bool all_compressed = true;
247 block_t blkaddr = ctx->fs_blkaddr;
248
249 bio_for_each_segment_all(bv, ctx->bio, iter_all) {
250 struct page *page = bv->bv_page;
251
252 if (f2fs_is_compressed_page(page))
253 f2fs_end_read_compressed_page(page, false, blkaddr,
254 in_task);
255 else
256 all_compressed = false;
257
258 blkaddr++;
259 }
260
261 ctx->decompression_attempted = true;
262
263 /*
264 * Optimization: if all the bio's pages are compressed, then scheduling
265 * the per-bio verity work is unnecessary, as verity will be fully
266 * handled at the compression cluster level.
267 */
268 if (all_compressed)
269 ctx->enabled_steps &= ~STEP_VERITY;
270}
271
272static void f2fs_post_read_work(struct work_struct *work)
273{
274 struct bio_post_read_ctx *ctx =
275 container_of(work, struct bio_post_read_ctx, work);
276 struct bio *bio = ctx->bio;
277
278 if ((ctx->enabled_steps & STEP_DECRYPT) && !fscrypt_decrypt_bio(bio)) {
279 f2fs_finish_read_bio(bio, true);
280 return;
281 }
282
283 if (ctx->enabled_steps & STEP_DECOMPRESS)
284 f2fs_handle_step_decompress(ctx, true);
285
286 f2fs_verify_and_finish_bio(bio, true);
287}
288
289static void f2fs_read_end_io(struct bio *bio)
290{
291 struct f2fs_sb_info *sbi = F2FS_P_SB(bio_first_page_all(bio));
292 struct bio_post_read_ctx *ctx;
293 bool intask = in_task();
294
295 iostat_update_and_unbind_ctx(bio);
296 ctx = bio->bi_private;
297
298 if (time_to_inject(sbi, FAULT_READ_IO))
299 bio->bi_status = BLK_STS_IOERR;
300
301 if (bio->bi_status) {
302 f2fs_finish_read_bio(bio, intask);
303 return;
304 }
305
306 if (ctx) {
307 unsigned int enabled_steps = ctx->enabled_steps &
308 (STEP_DECRYPT | STEP_DECOMPRESS);
309
310 /*
311 * If we have only decompression step between decompression and
312 * decrypt, we don't need post processing for this.
313 */
314 if (enabled_steps == STEP_DECOMPRESS &&
315 !f2fs_low_mem_mode(sbi)) {
316 f2fs_handle_step_decompress(ctx, intask);
317 } else if (enabled_steps) {
318 INIT_WORK(&ctx->work, f2fs_post_read_work);
319 queue_work(ctx->sbi->post_read_wq, &ctx->work);
320 return;
321 }
322 }
323
324 f2fs_verify_and_finish_bio(bio, intask);
325}
326
327static void f2fs_write_end_io(struct bio *bio)
328{
329 struct f2fs_sb_info *sbi;
330 struct bio_vec *bvec;
331 struct bvec_iter_all iter_all;
332
333 iostat_update_and_unbind_ctx(bio);
334 sbi = bio->bi_private;
335
336 if (time_to_inject(sbi, FAULT_WRITE_IO))
337 bio->bi_status = BLK_STS_IOERR;
338
339 bio_for_each_segment_all(bvec, bio, iter_all) {
340 struct page *page = bvec->bv_page;
341 enum count_type type = WB_DATA_TYPE(page);
342
343 if (page_private_dummy(page)) {
344 clear_page_private_dummy(page);
345 unlock_page(page);
346 mempool_free(page, sbi->write_io_dummy);
347
348 if (unlikely(bio->bi_status))
349 f2fs_stop_checkpoint(sbi, true,
350 STOP_CP_REASON_WRITE_FAIL);
351 continue;
352 }
353
354 fscrypt_finalize_bounce_page(&page);
355
356#ifdef CONFIG_F2FS_FS_COMPRESSION
357 if (f2fs_is_compressed_page(page)) {
358 f2fs_compress_write_end_io(bio, page);
359 continue;
360 }
361#endif
362
363 if (unlikely(bio->bi_status)) {
364 mapping_set_error(page->mapping, -EIO);
365 if (type == F2FS_WB_CP_DATA)
366 f2fs_stop_checkpoint(sbi, true,
367 STOP_CP_REASON_WRITE_FAIL);
368 }
369
370 f2fs_bug_on(sbi, page->mapping == NODE_MAPPING(sbi) &&
371 page->index != nid_of_node(page));
372
373 dec_page_count(sbi, type);
374 if (f2fs_in_warm_node_list(sbi, page))
375 f2fs_del_fsync_node_entry(sbi, page);
376 clear_page_private_gcing(page);
377 end_page_writeback(page);
378 }
379 if (!get_pages(sbi, F2FS_WB_CP_DATA) &&
380 wq_has_sleeper(&sbi->cp_wait))
381 wake_up(&sbi->cp_wait);
382
383 bio_put(bio);
384}
385
386struct block_device *f2fs_target_device(struct f2fs_sb_info *sbi,
387 block_t blk_addr, sector_t *sector)
388{
389 struct block_device *bdev = sbi->sb->s_bdev;
390 int i;
391
392 if (f2fs_is_multi_device(sbi)) {
393 for (i = 0; i < sbi->s_ndevs; i++) {
394 if (FDEV(i).start_blk <= blk_addr &&
395 FDEV(i).end_blk >= blk_addr) {
396 blk_addr -= FDEV(i).start_blk;
397 bdev = FDEV(i).bdev;
398 break;
399 }
400 }
401 }
402
403 if (sector)
404 *sector = SECTOR_FROM_BLOCK(blk_addr);
405 return bdev;
406}
407
408int f2fs_target_device_index(struct f2fs_sb_info *sbi, block_t blkaddr)
409{
410 int i;
411
412 if (!f2fs_is_multi_device(sbi))
413 return 0;
414
415 for (i = 0; i < sbi->s_ndevs; i++)
416 if (FDEV(i).start_blk <= blkaddr && FDEV(i).end_blk >= blkaddr)
417 return i;
418 return 0;
419}
420
421static blk_opf_t f2fs_io_flags(struct f2fs_io_info *fio)
422{
423 unsigned int temp_mask = GENMASK(NR_TEMP_TYPE - 1, 0);
424 unsigned int fua_flag, meta_flag, io_flag;
425 blk_opf_t op_flags = 0;
426
427 if (fio->op != REQ_OP_WRITE)
428 return 0;
429 if (fio->type == DATA)
430 io_flag = fio->sbi->data_io_flag;
431 else if (fio->type == NODE)
432 io_flag = fio->sbi->node_io_flag;
433 else
434 return 0;
435
436 fua_flag = io_flag & temp_mask;
437 meta_flag = (io_flag >> NR_TEMP_TYPE) & temp_mask;
438
439 /*
440 * data/node io flag bits per temp:
441 * REQ_META | REQ_FUA |
442 * 5 | 4 | 3 | 2 | 1 | 0 |
443 * Cold | Warm | Hot | Cold | Warm | Hot |
444 */
445 if (BIT(fio->temp) & meta_flag)
446 op_flags |= REQ_META;
447 if (BIT(fio->temp) & fua_flag)
448 op_flags |= REQ_FUA;
449 return op_flags;
450}
451
452static struct bio *__bio_alloc(struct f2fs_io_info *fio, int npages)
453{
454 struct f2fs_sb_info *sbi = fio->sbi;
455 struct block_device *bdev;
456 sector_t sector;
457 struct bio *bio;
458
459 bdev = f2fs_target_device(sbi, fio->new_blkaddr, §or);
460 bio = bio_alloc_bioset(bdev, npages,
461 fio->op | fio->op_flags | f2fs_io_flags(fio),
462 GFP_NOIO, &f2fs_bioset);
463 bio->bi_iter.bi_sector = sector;
464 if (is_read_io(fio->op)) {
465 bio->bi_end_io = f2fs_read_end_io;
466 bio->bi_private = NULL;
467 } else {
468 bio->bi_end_io = f2fs_write_end_io;
469 bio->bi_private = sbi;
470 }
471 iostat_alloc_and_bind_ctx(sbi, bio, NULL);
472
473 if (fio->io_wbc)
474 wbc_init_bio(fio->io_wbc, bio);
475
476 return bio;
477}
478
479static void f2fs_set_bio_crypt_ctx(struct bio *bio, const struct inode *inode,
480 pgoff_t first_idx,
481 const struct f2fs_io_info *fio,
482 gfp_t gfp_mask)
483{
484 /*
485 * The f2fs garbage collector sets ->encrypted_page when it wants to
486 * read/write raw data without encryption.
487 */
488 if (!fio || !fio->encrypted_page)
489 fscrypt_set_bio_crypt_ctx(bio, inode, first_idx, gfp_mask);
490}
491
492static bool f2fs_crypt_mergeable_bio(struct bio *bio, const struct inode *inode,
493 pgoff_t next_idx,
494 const struct f2fs_io_info *fio)
495{
496 /*
497 * The f2fs garbage collector sets ->encrypted_page when it wants to
498 * read/write raw data without encryption.
499 */
500 if (fio && fio->encrypted_page)
501 return !bio_has_crypt_ctx(bio);
502
503 return fscrypt_mergeable_bio(bio, inode, next_idx);
504}
505
506void f2fs_submit_read_bio(struct f2fs_sb_info *sbi, struct bio *bio,
507 enum page_type type)
508{
509 WARN_ON_ONCE(!is_read_io(bio_op(bio)));
510 trace_f2fs_submit_read_bio(sbi->sb, type, bio);
511
512 iostat_update_submit_ctx(bio, type);
513 submit_bio(bio);
514}
515
516static void f2fs_align_write_bio(struct f2fs_sb_info *sbi, struct bio *bio)
517{
518 unsigned int start =
519 (bio->bi_iter.bi_size >> F2FS_BLKSIZE_BITS) % F2FS_IO_SIZE(sbi);
520
521 if (start == 0)
522 return;
523
524 /* fill dummy pages */
525 for (; start < F2FS_IO_SIZE(sbi); start++) {
526 struct page *page =
527 mempool_alloc(sbi->write_io_dummy,
528 GFP_NOIO | __GFP_NOFAIL);
529 f2fs_bug_on(sbi, !page);
530
531 lock_page(page);
532
533 zero_user_segment(page, 0, PAGE_SIZE);
534 set_page_private_dummy(page);
535
536 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE)
537 f2fs_bug_on(sbi, 1);
538 }
539}
540
541static void f2fs_submit_write_bio(struct f2fs_sb_info *sbi, struct bio *bio,
542 enum page_type type)
543{
544 WARN_ON_ONCE(is_read_io(bio_op(bio)));
545
546 if (type == DATA || type == NODE) {
547 if (f2fs_lfs_mode(sbi) && current->plug)
548 blk_finish_plug(current->plug);
549
550 if (F2FS_IO_ALIGNED(sbi)) {
551 f2fs_align_write_bio(sbi, bio);
552 /*
553 * In the NODE case, we lose next block address chain.
554 * So, we need to do checkpoint in f2fs_sync_file.
555 */
556 if (type == NODE)
557 set_sbi_flag(sbi, SBI_NEED_CP);
558 }
559 }
560
561 trace_f2fs_submit_write_bio(sbi->sb, type, bio);
562 iostat_update_submit_ctx(bio, type);
563 submit_bio(bio);
564}
565
566static void __submit_merged_bio(struct f2fs_bio_info *io)
567{
568 struct f2fs_io_info *fio = &io->fio;
569
570 if (!io->bio)
571 return;
572
573 if (is_read_io(fio->op)) {
574 trace_f2fs_prepare_read_bio(io->sbi->sb, fio->type, io->bio);
575 f2fs_submit_read_bio(io->sbi, io->bio, fio->type);
576 } else {
577 trace_f2fs_prepare_write_bio(io->sbi->sb, fio->type, io->bio);
578 f2fs_submit_write_bio(io->sbi, io->bio, fio->type);
579 }
580 io->bio = NULL;
581}
582
583static bool __has_merged_page(struct bio *bio, struct inode *inode,
584 struct page *page, nid_t ino)
585{
586 struct bio_vec *bvec;
587 struct bvec_iter_all iter_all;
588
589 if (!bio)
590 return false;
591
592 if (!inode && !page && !ino)
593 return true;
594
595 bio_for_each_segment_all(bvec, bio, iter_all) {
596 struct page *target = bvec->bv_page;
597
598 if (fscrypt_is_bounce_page(target)) {
599 target = fscrypt_pagecache_page(target);
600 if (IS_ERR(target))
601 continue;
602 }
603 if (f2fs_is_compressed_page(target)) {
604 target = f2fs_compress_control_page(target);
605 if (IS_ERR(target))
606 continue;
607 }
608
609 if (inode && inode == target->mapping->host)
610 return true;
611 if (page && page == target)
612 return true;
613 if (ino && ino == ino_of_node(target))
614 return true;
615 }
616
617 return false;
618}
619
620int f2fs_init_write_merge_io(struct f2fs_sb_info *sbi)
621{
622 int i;
623
624 for (i = 0; i < NR_PAGE_TYPE; i++) {
625 int n = (i == META) ? 1 : NR_TEMP_TYPE;
626 int j;
627
628 sbi->write_io[i] = f2fs_kmalloc(sbi,
629 array_size(n, sizeof(struct f2fs_bio_info)),
630 GFP_KERNEL);
631 if (!sbi->write_io[i])
632 return -ENOMEM;
633
634 for (j = HOT; j < n; j++) {
635 init_f2fs_rwsem(&sbi->write_io[i][j].io_rwsem);
636 sbi->write_io[i][j].sbi = sbi;
637 sbi->write_io[i][j].bio = NULL;
638 spin_lock_init(&sbi->write_io[i][j].io_lock);
639 INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
640 INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list);
641 init_f2fs_rwsem(&sbi->write_io[i][j].bio_list_lock);
642 }
643 }
644
645 return 0;
646}
647
648static void __f2fs_submit_merged_write(struct f2fs_sb_info *sbi,
649 enum page_type type, enum temp_type temp)
650{
651 enum page_type btype = PAGE_TYPE_OF_BIO(type);
652 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
653
654 f2fs_down_write(&io->io_rwsem);
655
656 if (!io->bio)
657 goto unlock_out;
658
659 /* change META to META_FLUSH in the checkpoint procedure */
660 if (type >= META_FLUSH) {
661 io->fio.type = META_FLUSH;
662 io->bio->bi_opf |= REQ_META | REQ_PRIO | REQ_SYNC;
663 if (!test_opt(sbi, NOBARRIER))
664 io->bio->bi_opf |= REQ_PREFLUSH | REQ_FUA;
665 }
666 __submit_merged_bio(io);
667unlock_out:
668 f2fs_up_write(&io->io_rwsem);
669}
670
671static void __submit_merged_write_cond(struct f2fs_sb_info *sbi,
672 struct inode *inode, struct page *page,
673 nid_t ino, enum page_type type, bool force)
674{
675 enum temp_type temp;
676 bool ret = true;
677
678 for (temp = HOT; temp < NR_TEMP_TYPE; temp++) {
679 if (!force) {
680 enum page_type btype = PAGE_TYPE_OF_BIO(type);
681 struct f2fs_bio_info *io = sbi->write_io[btype] + temp;
682
683 f2fs_down_read(&io->io_rwsem);
684 ret = __has_merged_page(io->bio, inode, page, ino);
685 f2fs_up_read(&io->io_rwsem);
686 }
687 if (ret)
688 __f2fs_submit_merged_write(sbi, type, temp);
689
690 /* TODO: use HOT temp only for meta pages now. */
691 if (type >= META)
692 break;
693 }
694}
695
696void f2fs_submit_merged_write(struct f2fs_sb_info *sbi, enum page_type type)
697{
698 __submit_merged_write_cond(sbi, NULL, NULL, 0, type, true);
699}
700
701void f2fs_submit_merged_write_cond(struct f2fs_sb_info *sbi,
702 struct inode *inode, struct page *page,
703 nid_t ino, enum page_type type)
704{
705 __submit_merged_write_cond(sbi, inode, page, ino, type, false);
706}
707
708void f2fs_flush_merged_writes(struct f2fs_sb_info *sbi)
709{
710 f2fs_submit_merged_write(sbi, DATA);
711 f2fs_submit_merged_write(sbi, NODE);
712 f2fs_submit_merged_write(sbi, META);
713}
714
715/*
716 * Fill the locked page with data located in the block address.
717 * A caller needs to unlock the page on failure.
718 */
719int f2fs_submit_page_bio(struct f2fs_io_info *fio)
720{
721 struct bio *bio;
722 struct page *page = fio->encrypted_page ?
723 fio->encrypted_page : fio->page;
724
725 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
726 fio->is_por ? META_POR : (__is_meta_io(fio) ?
727 META_GENERIC : DATA_GENERIC_ENHANCE))) {
728 f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR);
729 return -EFSCORRUPTED;
730 }
731
732 trace_f2fs_submit_page_bio(page, fio);
733
734 /* Allocate a new bio */
735 bio = __bio_alloc(fio, 1);
736
737 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
738 fio->page->index, fio, GFP_NOIO);
739
740 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
741 bio_put(bio);
742 return -EFAULT;
743 }
744
745 if (fio->io_wbc && !is_read_io(fio->op))
746 wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
747
748 inc_page_count(fio->sbi, is_read_io(fio->op) ?
749 __read_io_type(page) : WB_DATA_TYPE(fio->page));
750
751 if (is_read_io(bio_op(bio)))
752 f2fs_submit_read_bio(fio->sbi, bio, fio->type);
753 else
754 f2fs_submit_write_bio(fio->sbi, bio, fio->type);
755 return 0;
756}
757
758static bool page_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
759 block_t last_blkaddr, block_t cur_blkaddr)
760{
761 if (unlikely(sbi->max_io_bytes &&
762 bio->bi_iter.bi_size >= sbi->max_io_bytes))
763 return false;
764 if (last_blkaddr + 1 != cur_blkaddr)
765 return false;
766 return bio->bi_bdev == f2fs_target_device(sbi, cur_blkaddr, NULL);
767}
768
769static bool io_type_is_mergeable(struct f2fs_bio_info *io,
770 struct f2fs_io_info *fio)
771{
772 if (io->fio.op != fio->op)
773 return false;
774 return io->fio.op_flags == fio->op_flags;
775}
776
777static bool io_is_mergeable(struct f2fs_sb_info *sbi, struct bio *bio,
778 struct f2fs_bio_info *io,
779 struct f2fs_io_info *fio,
780 block_t last_blkaddr,
781 block_t cur_blkaddr)
782{
783 if (F2FS_IO_ALIGNED(sbi) && (fio->type == DATA || fio->type == NODE)) {
784 unsigned int filled_blocks =
785 F2FS_BYTES_TO_BLK(bio->bi_iter.bi_size);
786 unsigned int io_size = F2FS_IO_SIZE(sbi);
787 unsigned int left_vecs = bio->bi_max_vecs - bio->bi_vcnt;
788
789 /* IOs in bio is aligned and left space of vectors is not enough */
790 if (!(filled_blocks % io_size) && left_vecs < io_size)
791 return false;
792 }
793 if (!page_is_mergeable(sbi, bio, last_blkaddr, cur_blkaddr))
794 return false;
795 return io_type_is_mergeable(io, fio);
796}
797
798static void add_bio_entry(struct f2fs_sb_info *sbi, struct bio *bio,
799 struct page *page, enum temp_type temp)
800{
801 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
802 struct bio_entry *be;
803
804 be = f2fs_kmem_cache_alloc(bio_entry_slab, GFP_NOFS, true, NULL);
805 be->bio = bio;
806 bio_get(bio);
807
808 if (bio_add_page(bio, page, PAGE_SIZE, 0) != PAGE_SIZE)
809 f2fs_bug_on(sbi, 1);
810
811 f2fs_down_write(&io->bio_list_lock);
812 list_add_tail(&be->list, &io->bio_list);
813 f2fs_up_write(&io->bio_list_lock);
814}
815
816static void del_bio_entry(struct bio_entry *be)
817{
818 list_del(&be->list);
819 kmem_cache_free(bio_entry_slab, be);
820}
821
822static int add_ipu_page(struct f2fs_io_info *fio, struct bio **bio,
823 struct page *page)
824{
825 struct f2fs_sb_info *sbi = fio->sbi;
826 enum temp_type temp;
827 bool found = false;
828 int ret = -EAGAIN;
829
830 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
831 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
832 struct list_head *head = &io->bio_list;
833 struct bio_entry *be;
834
835 f2fs_down_write(&io->bio_list_lock);
836 list_for_each_entry(be, head, list) {
837 if (be->bio != *bio)
838 continue;
839
840 found = true;
841
842 f2fs_bug_on(sbi, !page_is_mergeable(sbi, *bio,
843 *fio->last_block,
844 fio->new_blkaddr));
845 if (f2fs_crypt_mergeable_bio(*bio,
846 fio->page->mapping->host,
847 fio->page->index, fio) &&
848 bio_add_page(*bio, page, PAGE_SIZE, 0) ==
849 PAGE_SIZE) {
850 ret = 0;
851 break;
852 }
853
854 /* page can't be merged into bio; submit the bio */
855 del_bio_entry(be);
856 f2fs_submit_write_bio(sbi, *bio, DATA);
857 break;
858 }
859 f2fs_up_write(&io->bio_list_lock);
860 }
861
862 if (ret) {
863 bio_put(*bio);
864 *bio = NULL;
865 }
866
867 return ret;
868}
869
870void f2fs_submit_merged_ipu_write(struct f2fs_sb_info *sbi,
871 struct bio **bio, struct page *page)
872{
873 enum temp_type temp;
874 bool found = false;
875 struct bio *target = bio ? *bio : NULL;
876
877 f2fs_bug_on(sbi, !target && !page);
878
879 for (temp = HOT; temp < NR_TEMP_TYPE && !found; temp++) {
880 struct f2fs_bio_info *io = sbi->write_io[DATA] + temp;
881 struct list_head *head = &io->bio_list;
882 struct bio_entry *be;
883
884 if (list_empty(head))
885 continue;
886
887 f2fs_down_read(&io->bio_list_lock);
888 list_for_each_entry(be, head, list) {
889 if (target)
890 found = (target == be->bio);
891 else
892 found = __has_merged_page(be->bio, NULL,
893 page, 0);
894 if (found)
895 break;
896 }
897 f2fs_up_read(&io->bio_list_lock);
898
899 if (!found)
900 continue;
901
902 found = false;
903
904 f2fs_down_write(&io->bio_list_lock);
905 list_for_each_entry(be, head, list) {
906 if (target)
907 found = (target == be->bio);
908 else
909 found = __has_merged_page(be->bio, NULL,
910 page, 0);
911 if (found) {
912 target = be->bio;
913 del_bio_entry(be);
914 break;
915 }
916 }
917 f2fs_up_write(&io->bio_list_lock);
918 }
919
920 if (found)
921 f2fs_submit_write_bio(sbi, target, DATA);
922 if (bio && *bio) {
923 bio_put(*bio);
924 *bio = NULL;
925 }
926}
927
928int f2fs_merge_page_bio(struct f2fs_io_info *fio)
929{
930 struct bio *bio = *fio->bio;
931 struct page *page = fio->encrypted_page ?
932 fio->encrypted_page : fio->page;
933
934 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->new_blkaddr,
935 __is_meta_io(fio) ? META_GENERIC : DATA_GENERIC)) {
936 f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR);
937 return -EFSCORRUPTED;
938 }
939
940 trace_f2fs_submit_page_bio(page, fio);
941
942 if (bio && !page_is_mergeable(fio->sbi, bio, *fio->last_block,
943 fio->new_blkaddr))
944 f2fs_submit_merged_ipu_write(fio->sbi, &bio, NULL);
945alloc_new:
946 if (!bio) {
947 bio = __bio_alloc(fio, BIO_MAX_VECS);
948 f2fs_set_bio_crypt_ctx(bio, fio->page->mapping->host,
949 fio->page->index, fio, GFP_NOIO);
950
951 add_bio_entry(fio->sbi, bio, page, fio->temp);
952 } else {
953 if (add_ipu_page(fio, &bio, page))
954 goto alloc_new;
955 }
956
957 if (fio->io_wbc)
958 wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
959
960 inc_page_count(fio->sbi, WB_DATA_TYPE(page));
961
962 *fio->last_block = fio->new_blkaddr;
963 *fio->bio = bio;
964
965 return 0;
966}
967
968void f2fs_submit_page_write(struct f2fs_io_info *fio)
969{
970 struct f2fs_sb_info *sbi = fio->sbi;
971 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
972 struct f2fs_bio_info *io = sbi->write_io[btype] + fio->temp;
973 struct page *bio_page;
974
975 f2fs_bug_on(sbi, is_read_io(fio->op));
976
977 f2fs_down_write(&io->io_rwsem);
978next:
979 if (fio->in_list) {
980 spin_lock(&io->io_lock);
981 if (list_empty(&io->io_list)) {
982 spin_unlock(&io->io_lock);
983 goto out;
984 }
985 fio = list_first_entry(&io->io_list,
986 struct f2fs_io_info, list);
987 list_del(&fio->list);
988 spin_unlock(&io->io_lock);
989 }
990
991 verify_fio_blkaddr(fio);
992
993 if (fio->encrypted_page)
994 bio_page = fio->encrypted_page;
995 else if (fio->compressed_page)
996 bio_page = fio->compressed_page;
997 else
998 bio_page = fio->page;
999
1000 /* set submitted = true as a return value */
1001 fio->submitted = 1;
1002
1003 inc_page_count(sbi, WB_DATA_TYPE(bio_page));
1004
1005 if (io->bio &&
1006 (!io_is_mergeable(sbi, io->bio, io, fio, io->last_block_in_bio,
1007 fio->new_blkaddr) ||
1008 !f2fs_crypt_mergeable_bio(io->bio, fio->page->mapping->host,
1009 bio_page->index, fio)))
1010 __submit_merged_bio(io);
1011alloc_new:
1012 if (io->bio == NULL) {
1013 if (F2FS_IO_ALIGNED(sbi) &&
1014 (fio->type == DATA || fio->type == NODE) &&
1015 fio->new_blkaddr & F2FS_IO_SIZE_MASK(sbi)) {
1016 dec_page_count(sbi, WB_DATA_TYPE(bio_page));
1017 fio->retry = 1;
1018 goto skip;
1019 }
1020 io->bio = __bio_alloc(fio, BIO_MAX_VECS);
1021 f2fs_set_bio_crypt_ctx(io->bio, fio->page->mapping->host,
1022 bio_page->index, fio, GFP_NOIO);
1023 io->fio = *fio;
1024 }
1025
1026 if (bio_add_page(io->bio, bio_page, PAGE_SIZE, 0) < PAGE_SIZE) {
1027 __submit_merged_bio(io);
1028 goto alloc_new;
1029 }
1030
1031 if (fio->io_wbc)
1032 wbc_account_cgroup_owner(fio->io_wbc, fio->page, PAGE_SIZE);
1033
1034 io->last_block_in_bio = fio->new_blkaddr;
1035
1036 trace_f2fs_submit_page_write(fio->page, fio);
1037skip:
1038 if (fio->in_list)
1039 goto next;
1040out:
1041 if (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) ||
1042 !f2fs_is_checkpoint_ready(sbi))
1043 __submit_merged_bio(io);
1044 f2fs_up_write(&io->io_rwsem);
1045}
1046
1047static struct bio *f2fs_grab_read_bio(struct inode *inode, block_t blkaddr,
1048 unsigned nr_pages, blk_opf_t op_flag,
1049 pgoff_t first_idx, bool for_write)
1050{
1051 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1052 struct bio *bio;
1053 struct bio_post_read_ctx *ctx = NULL;
1054 unsigned int post_read_steps = 0;
1055 sector_t sector;
1056 struct block_device *bdev = f2fs_target_device(sbi, blkaddr, §or);
1057
1058 bio = bio_alloc_bioset(bdev, bio_max_segs(nr_pages),
1059 REQ_OP_READ | op_flag,
1060 for_write ? GFP_NOIO : GFP_KERNEL, &f2fs_bioset);
1061 if (!bio)
1062 return ERR_PTR(-ENOMEM);
1063 bio->bi_iter.bi_sector = sector;
1064 f2fs_set_bio_crypt_ctx(bio, inode, first_idx, NULL, GFP_NOFS);
1065 bio->bi_end_io = f2fs_read_end_io;
1066
1067 if (fscrypt_inode_uses_fs_layer_crypto(inode))
1068 post_read_steps |= STEP_DECRYPT;
1069
1070 if (f2fs_need_verity(inode, first_idx))
1071 post_read_steps |= STEP_VERITY;
1072
1073 /*
1074 * STEP_DECOMPRESS is handled specially, since a compressed file might
1075 * contain both compressed and uncompressed clusters. We'll allocate a
1076 * bio_post_read_ctx if the file is compressed, but the caller is
1077 * responsible for enabling STEP_DECOMPRESS if it's actually needed.
1078 */
1079
1080 if (post_read_steps || f2fs_compressed_file(inode)) {
1081 /* Due to the mempool, this never fails. */
1082 ctx = mempool_alloc(bio_post_read_ctx_pool, GFP_NOFS);
1083 ctx->bio = bio;
1084 ctx->sbi = sbi;
1085 ctx->enabled_steps = post_read_steps;
1086 ctx->fs_blkaddr = blkaddr;
1087 ctx->decompression_attempted = false;
1088 bio->bi_private = ctx;
1089 }
1090 iostat_alloc_and_bind_ctx(sbi, bio, ctx);
1091
1092 return bio;
1093}
1094
1095/* This can handle encryption stuffs */
1096static int f2fs_submit_page_read(struct inode *inode, struct page *page,
1097 block_t blkaddr, blk_opf_t op_flags,
1098 bool for_write)
1099{
1100 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1101 struct bio *bio;
1102
1103 bio = f2fs_grab_read_bio(inode, blkaddr, 1, op_flags,
1104 page->index, for_write);
1105 if (IS_ERR(bio))
1106 return PTR_ERR(bio);
1107
1108 /* wait for GCed page writeback via META_MAPPING */
1109 f2fs_wait_on_block_writeback(inode, blkaddr);
1110
1111 if (bio_add_page(bio, page, PAGE_SIZE, 0) < PAGE_SIZE) {
1112 bio_put(bio);
1113 return -EFAULT;
1114 }
1115 inc_page_count(sbi, F2FS_RD_DATA);
1116 f2fs_update_iostat(sbi, NULL, FS_DATA_READ_IO, F2FS_BLKSIZE);
1117 f2fs_submit_read_bio(sbi, bio, DATA);
1118 return 0;
1119}
1120
1121static void __set_data_blkaddr(struct dnode_of_data *dn)
1122{
1123 struct f2fs_node *rn = F2FS_NODE(dn->node_page);
1124 __le32 *addr_array;
1125 int base = 0;
1126
1127 if (IS_INODE(dn->node_page) && f2fs_has_extra_attr(dn->inode))
1128 base = get_extra_isize(dn->inode);
1129
1130 /* Get physical address of data block */
1131 addr_array = blkaddr_in_node(rn);
1132 addr_array[base + dn->ofs_in_node] = cpu_to_le32(dn->data_blkaddr);
1133}
1134
1135/*
1136 * Lock ordering for the change of data block address:
1137 * ->data_page
1138 * ->node_page
1139 * update block addresses in the node page
1140 */
1141void f2fs_set_data_blkaddr(struct dnode_of_data *dn)
1142{
1143 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1144 __set_data_blkaddr(dn);
1145 if (set_page_dirty(dn->node_page))
1146 dn->node_changed = true;
1147}
1148
1149void f2fs_update_data_blkaddr(struct dnode_of_data *dn, block_t blkaddr)
1150{
1151 dn->data_blkaddr = blkaddr;
1152 f2fs_set_data_blkaddr(dn);
1153 f2fs_update_read_extent_cache(dn);
1154}
1155
1156/* dn->ofs_in_node will be returned with up-to-date last block pointer */
1157int f2fs_reserve_new_blocks(struct dnode_of_data *dn, blkcnt_t count)
1158{
1159 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1160 int err;
1161
1162 if (!count)
1163 return 0;
1164
1165 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1166 return -EPERM;
1167 if (unlikely((err = inc_valid_block_count(sbi, dn->inode, &count))))
1168 return err;
1169
1170 trace_f2fs_reserve_new_blocks(dn->inode, dn->nid,
1171 dn->ofs_in_node, count);
1172
1173 f2fs_wait_on_page_writeback(dn->node_page, NODE, true, true);
1174
1175 for (; count > 0; dn->ofs_in_node++) {
1176 block_t blkaddr = f2fs_data_blkaddr(dn);
1177
1178 if (blkaddr == NULL_ADDR) {
1179 dn->data_blkaddr = NEW_ADDR;
1180 __set_data_blkaddr(dn);
1181 count--;
1182 }
1183 }
1184
1185 if (set_page_dirty(dn->node_page))
1186 dn->node_changed = true;
1187 return 0;
1188}
1189
1190/* Should keep dn->ofs_in_node unchanged */
1191int f2fs_reserve_new_block(struct dnode_of_data *dn)
1192{
1193 unsigned int ofs_in_node = dn->ofs_in_node;
1194 int ret;
1195
1196 ret = f2fs_reserve_new_blocks(dn, 1);
1197 dn->ofs_in_node = ofs_in_node;
1198 return ret;
1199}
1200
1201int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
1202{
1203 bool need_put = dn->inode_page ? false : true;
1204 int err;
1205
1206 err = f2fs_get_dnode_of_data(dn, index, ALLOC_NODE);
1207 if (err)
1208 return err;
1209
1210 if (dn->data_blkaddr == NULL_ADDR)
1211 err = f2fs_reserve_new_block(dn);
1212 if (err || need_put)
1213 f2fs_put_dnode(dn);
1214 return err;
1215}
1216
1217struct page *f2fs_get_read_data_page(struct inode *inode, pgoff_t index,
1218 blk_opf_t op_flags, bool for_write,
1219 pgoff_t *next_pgofs)
1220{
1221 struct address_space *mapping = inode->i_mapping;
1222 struct dnode_of_data dn;
1223 struct page *page;
1224 int err;
1225
1226 page = f2fs_grab_cache_page(mapping, index, for_write);
1227 if (!page)
1228 return ERR_PTR(-ENOMEM);
1229
1230 if (f2fs_lookup_read_extent_cache_block(inode, index,
1231 &dn.data_blkaddr)) {
1232 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), dn.data_blkaddr,
1233 DATA_GENERIC_ENHANCE_READ)) {
1234 err = -EFSCORRUPTED;
1235 f2fs_handle_error(F2FS_I_SB(inode),
1236 ERROR_INVALID_BLKADDR);
1237 goto put_err;
1238 }
1239 goto got_it;
1240 }
1241
1242 set_new_dnode(&dn, inode, NULL, NULL, 0);
1243 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
1244 if (err) {
1245 if (err == -ENOENT && next_pgofs)
1246 *next_pgofs = f2fs_get_next_page_offset(&dn, index);
1247 goto put_err;
1248 }
1249 f2fs_put_dnode(&dn);
1250
1251 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
1252 err = -ENOENT;
1253 if (next_pgofs)
1254 *next_pgofs = index + 1;
1255 goto put_err;
1256 }
1257 if (dn.data_blkaddr != NEW_ADDR &&
1258 !f2fs_is_valid_blkaddr(F2FS_I_SB(inode),
1259 dn.data_blkaddr,
1260 DATA_GENERIC_ENHANCE)) {
1261 err = -EFSCORRUPTED;
1262 f2fs_handle_error(F2FS_I_SB(inode),
1263 ERROR_INVALID_BLKADDR);
1264 goto put_err;
1265 }
1266got_it:
1267 if (PageUptodate(page)) {
1268 unlock_page(page);
1269 return page;
1270 }
1271
1272 /*
1273 * A new dentry page is allocated but not able to be written, since its
1274 * new inode page couldn't be allocated due to -ENOSPC.
1275 * In such the case, its blkaddr can be remained as NEW_ADDR.
1276 * see, f2fs_add_link -> f2fs_get_new_data_page ->
1277 * f2fs_init_inode_metadata.
1278 */
1279 if (dn.data_blkaddr == NEW_ADDR) {
1280 zero_user_segment(page, 0, PAGE_SIZE);
1281 if (!PageUptodate(page))
1282 SetPageUptodate(page);
1283 unlock_page(page);
1284 return page;
1285 }
1286
1287 err = f2fs_submit_page_read(inode, page, dn.data_blkaddr,
1288 op_flags, for_write);
1289 if (err)
1290 goto put_err;
1291 return page;
1292
1293put_err:
1294 f2fs_put_page(page, 1);
1295 return ERR_PTR(err);
1296}
1297
1298struct page *f2fs_find_data_page(struct inode *inode, pgoff_t index,
1299 pgoff_t *next_pgofs)
1300{
1301 struct address_space *mapping = inode->i_mapping;
1302 struct page *page;
1303
1304 page = find_get_page(mapping, index);
1305 if (page && PageUptodate(page))
1306 return page;
1307 f2fs_put_page(page, 0);
1308
1309 page = f2fs_get_read_data_page(inode, index, 0, false, next_pgofs);
1310 if (IS_ERR(page))
1311 return page;
1312
1313 if (PageUptodate(page))
1314 return page;
1315
1316 wait_on_page_locked(page);
1317 if (unlikely(!PageUptodate(page))) {
1318 f2fs_put_page(page, 0);
1319 return ERR_PTR(-EIO);
1320 }
1321 return page;
1322}
1323
1324/*
1325 * If it tries to access a hole, return an error.
1326 * Because, the callers, functions in dir.c and GC, should be able to know
1327 * whether this page exists or not.
1328 */
1329struct page *f2fs_get_lock_data_page(struct inode *inode, pgoff_t index,
1330 bool for_write)
1331{
1332 struct address_space *mapping = inode->i_mapping;
1333 struct page *page;
1334repeat:
1335 page = f2fs_get_read_data_page(inode, index, 0, for_write, NULL);
1336 if (IS_ERR(page))
1337 return page;
1338
1339 /* wait for read completion */
1340 lock_page(page);
1341 if (unlikely(page->mapping != mapping)) {
1342 f2fs_put_page(page, 1);
1343 goto repeat;
1344 }
1345 if (unlikely(!PageUptodate(page))) {
1346 f2fs_put_page(page, 1);
1347 return ERR_PTR(-EIO);
1348 }
1349 return page;
1350}
1351
1352/*
1353 * Caller ensures that this data page is never allocated.
1354 * A new zero-filled data page is allocated in the page cache.
1355 *
1356 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
1357 * f2fs_unlock_op().
1358 * Note that, ipage is set only by make_empty_dir, and if any error occur,
1359 * ipage should be released by this function.
1360 */
1361struct page *f2fs_get_new_data_page(struct inode *inode,
1362 struct page *ipage, pgoff_t index, bool new_i_size)
1363{
1364 struct address_space *mapping = inode->i_mapping;
1365 struct page *page;
1366 struct dnode_of_data dn;
1367 int err;
1368
1369 page = f2fs_grab_cache_page(mapping, index, true);
1370 if (!page) {
1371 /*
1372 * before exiting, we should make sure ipage will be released
1373 * if any error occur.
1374 */
1375 f2fs_put_page(ipage, 1);
1376 return ERR_PTR(-ENOMEM);
1377 }
1378
1379 set_new_dnode(&dn, inode, ipage, NULL, 0);
1380 err = f2fs_reserve_block(&dn, index);
1381 if (err) {
1382 f2fs_put_page(page, 1);
1383 return ERR_PTR(err);
1384 }
1385 if (!ipage)
1386 f2fs_put_dnode(&dn);
1387
1388 if (PageUptodate(page))
1389 goto got_it;
1390
1391 if (dn.data_blkaddr == NEW_ADDR) {
1392 zero_user_segment(page, 0, PAGE_SIZE);
1393 if (!PageUptodate(page))
1394 SetPageUptodate(page);
1395 } else {
1396 f2fs_put_page(page, 1);
1397
1398 /* if ipage exists, blkaddr should be NEW_ADDR */
1399 f2fs_bug_on(F2FS_I_SB(inode), ipage);
1400 page = f2fs_get_lock_data_page(inode, index, true);
1401 if (IS_ERR(page))
1402 return page;
1403 }
1404got_it:
1405 if (new_i_size && i_size_read(inode) <
1406 ((loff_t)(index + 1) << PAGE_SHIFT))
1407 f2fs_i_size_write(inode, ((loff_t)(index + 1) << PAGE_SHIFT));
1408 return page;
1409}
1410
1411static int __allocate_data_block(struct dnode_of_data *dn, int seg_type)
1412{
1413 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1414 struct f2fs_summary sum;
1415 struct node_info ni;
1416 block_t old_blkaddr;
1417 blkcnt_t count = 1;
1418 int err;
1419
1420 if (unlikely(is_inode_flag_set(dn->inode, FI_NO_ALLOC)))
1421 return -EPERM;
1422
1423 err = f2fs_get_node_info(sbi, dn->nid, &ni, false);
1424 if (err)
1425 return err;
1426
1427 dn->data_blkaddr = f2fs_data_blkaddr(dn);
1428 if (dn->data_blkaddr == NULL_ADDR) {
1429 err = inc_valid_block_count(sbi, dn->inode, &count);
1430 if (unlikely(err))
1431 return err;
1432 }
1433
1434 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
1435 old_blkaddr = dn->data_blkaddr;
1436 f2fs_allocate_data_block(sbi, NULL, old_blkaddr, &dn->data_blkaddr,
1437 &sum, seg_type, NULL);
1438 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO) {
1439 invalidate_mapping_pages(META_MAPPING(sbi),
1440 old_blkaddr, old_blkaddr);
1441 f2fs_invalidate_compress_page(sbi, old_blkaddr);
1442 }
1443 f2fs_update_data_blkaddr(dn, dn->data_blkaddr);
1444 return 0;
1445}
1446
1447static void f2fs_map_lock(struct f2fs_sb_info *sbi, int flag)
1448{
1449 if (flag == F2FS_GET_BLOCK_PRE_AIO)
1450 f2fs_down_read(&sbi->node_change);
1451 else
1452 f2fs_lock_op(sbi);
1453}
1454
1455static void f2fs_map_unlock(struct f2fs_sb_info *sbi, int flag)
1456{
1457 if (flag == F2FS_GET_BLOCK_PRE_AIO)
1458 f2fs_up_read(&sbi->node_change);
1459 else
1460 f2fs_unlock_op(sbi);
1461}
1462
1463int f2fs_get_block_locked(struct dnode_of_data *dn, pgoff_t index)
1464{
1465 struct f2fs_sb_info *sbi = F2FS_I_SB(dn->inode);
1466 int err = 0;
1467
1468 f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1469 if (!f2fs_lookup_read_extent_cache_block(dn->inode, index,
1470 &dn->data_blkaddr))
1471 err = f2fs_reserve_block(dn, index);
1472 f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
1473
1474 return err;
1475}
1476
1477static int f2fs_map_no_dnode(struct inode *inode,
1478 struct f2fs_map_blocks *map, struct dnode_of_data *dn,
1479 pgoff_t pgoff)
1480{
1481 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1482
1483 /*
1484 * There is one exceptional case that read_node_page() may return
1485 * -ENOENT due to filesystem has been shutdown or cp_error, return
1486 * -EIO in that case.
1487 */
1488 if (map->m_may_create &&
1489 (is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN) || f2fs_cp_error(sbi)))
1490 return -EIO;
1491
1492 if (map->m_next_pgofs)
1493 *map->m_next_pgofs = f2fs_get_next_page_offset(dn, pgoff);
1494 if (map->m_next_extent)
1495 *map->m_next_extent = f2fs_get_next_page_offset(dn, pgoff);
1496 return 0;
1497}
1498
1499static bool f2fs_map_blocks_cached(struct inode *inode,
1500 struct f2fs_map_blocks *map, int flag)
1501{
1502 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1503 unsigned int maxblocks = map->m_len;
1504 pgoff_t pgoff = (pgoff_t)map->m_lblk;
1505 struct extent_info ei = {};
1506
1507 if (!f2fs_lookup_read_extent_cache(inode, pgoff, &ei))
1508 return false;
1509
1510 map->m_pblk = ei.blk + pgoff - ei.fofs;
1511 map->m_len = min((pgoff_t)maxblocks, ei.fofs + ei.len - pgoff);
1512 map->m_flags = F2FS_MAP_MAPPED;
1513 if (map->m_next_extent)
1514 *map->m_next_extent = pgoff + map->m_len;
1515
1516 /* for hardware encryption, but to avoid potential issue in future */
1517 if (flag == F2FS_GET_BLOCK_DIO)
1518 f2fs_wait_on_block_writeback_range(inode,
1519 map->m_pblk, map->m_len);
1520
1521 if (f2fs_allow_multi_device_dio(sbi, flag)) {
1522 int bidx = f2fs_target_device_index(sbi, map->m_pblk);
1523 struct f2fs_dev_info *dev = &sbi->devs[bidx];
1524
1525 map->m_bdev = dev->bdev;
1526 map->m_pblk -= dev->start_blk;
1527 map->m_len = min(map->m_len, dev->end_blk + 1 - map->m_pblk);
1528 } else {
1529 map->m_bdev = inode->i_sb->s_bdev;
1530 }
1531 return true;
1532}
1533
1534/*
1535 * f2fs_map_blocks() tries to find or build mapping relationship which
1536 * maps continuous logical blocks to physical blocks, and return such
1537 * info via f2fs_map_blocks structure.
1538 */
1539int f2fs_map_blocks(struct inode *inode, struct f2fs_map_blocks *map, int flag)
1540{
1541 unsigned int maxblocks = map->m_len;
1542 struct dnode_of_data dn;
1543 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1544 int mode = map->m_may_create ? ALLOC_NODE : LOOKUP_NODE;
1545 pgoff_t pgofs, end_offset, end;
1546 int err = 0, ofs = 1;
1547 unsigned int ofs_in_node, last_ofs_in_node;
1548 blkcnt_t prealloc;
1549 block_t blkaddr;
1550 unsigned int start_pgofs;
1551 int bidx = 0;
1552 bool is_hole;
1553
1554 if (!maxblocks)
1555 return 0;
1556
1557 if (!map->m_may_create && f2fs_map_blocks_cached(inode, map, flag))
1558 goto out;
1559
1560 map->m_bdev = inode->i_sb->s_bdev;
1561 map->m_multidev_dio =
1562 f2fs_allow_multi_device_dio(F2FS_I_SB(inode), flag);
1563
1564 map->m_len = 0;
1565 map->m_flags = 0;
1566
1567 /* it only supports block size == page size */
1568 pgofs = (pgoff_t)map->m_lblk;
1569 end = pgofs + maxblocks;
1570
1571next_dnode:
1572 if (map->m_may_create)
1573 f2fs_map_lock(sbi, flag);
1574
1575 /* When reading holes, we need its node page */
1576 set_new_dnode(&dn, inode, NULL, NULL, 0);
1577 err = f2fs_get_dnode_of_data(&dn, pgofs, mode);
1578 if (err) {
1579 if (flag == F2FS_GET_BLOCK_BMAP)
1580 map->m_pblk = 0;
1581 if (err == -ENOENT)
1582 err = f2fs_map_no_dnode(inode, map, &dn, pgofs);
1583 goto unlock_out;
1584 }
1585
1586 start_pgofs = pgofs;
1587 prealloc = 0;
1588 last_ofs_in_node = ofs_in_node = dn.ofs_in_node;
1589 end_offset = ADDRS_PER_PAGE(dn.node_page, inode);
1590
1591next_block:
1592 blkaddr = f2fs_data_blkaddr(&dn);
1593 is_hole = !__is_valid_data_blkaddr(blkaddr);
1594 if (!is_hole &&
1595 !f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC_ENHANCE)) {
1596 err = -EFSCORRUPTED;
1597 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
1598 goto sync_out;
1599 }
1600
1601 /* use out-place-update for direct IO under LFS mode */
1602 if (map->m_may_create &&
1603 (is_hole || (f2fs_lfs_mode(sbi) && flag == F2FS_GET_BLOCK_DIO))) {
1604 if (unlikely(f2fs_cp_error(sbi))) {
1605 err = -EIO;
1606 goto sync_out;
1607 }
1608
1609 switch (flag) {
1610 case F2FS_GET_BLOCK_PRE_AIO:
1611 if (blkaddr == NULL_ADDR) {
1612 prealloc++;
1613 last_ofs_in_node = dn.ofs_in_node;
1614 }
1615 break;
1616 case F2FS_GET_BLOCK_PRE_DIO:
1617 case F2FS_GET_BLOCK_DIO:
1618 err = __allocate_data_block(&dn, map->m_seg_type);
1619 if (err)
1620 goto sync_out;
1621 if (flag == F2FS_GET_BLOCK_PRE_DIO)
1622 file_need_truncate(inode);
1623 set_inode_flag(inode, FI_APPEND_WRITE);
1624 break;
1625 default:
1626 WARN_ON_ONCE(1);
1627 err = -EIO;
1628 goto sync_out;
1629 }
1630
1631 blkaddr = dn.data_blkaddr;
1632 if (is_hole)
1633 map->m_flags |= F2FS_MAP_NEW;
1634 } else if (is_hole) {
1635 if (f2fs_compressed_file(inode) &&
1636 f2fs_sanity_check_cluster(&dn) &&
1637 (flag != F2FS_GET_BLOCK_FIEMAP ||
1638 IS_ENABLED(CONFIG_F2FS_CHECK_FS))) {
1639 err = -EFSCORRUPTED;
1640 f2fs_handle_error(sbi,
1641 ERROR_CORRUPTED_CLUSTER);
1642 goto sync_out;
1643 }
1644
1645 switch (flag) {
1646 case F2FS_GET_BLOCK_PRECACHE:
1647 goto sync_out;
1648 case F2FS_GET_BLOCK_BMAP:
1649 map->m_pblk = 0;
1650 goto sync_out;
1651 case F2FS_GET_BLOCK_FIEMAP:
1652 if (blkaddr == NULL_ADDR) {
1653 if (map->m_next_pgofs)
1654 *map->m_next_pgofs = pgofs + 1;
1655 goto sync_out;
1656 }
1657 break;
1658 default:
1659 /* for defragment case */
1660 if (map->m_next_pgofs)
1661 *map->m_next_pgofs = pgofs + 1;
1662 goto sync_out;
1663 }
1664 }
1665
1666 if (flag == F2FS_GET_BLOCK_PRE_AIO)
1667 goto skip;
1668
1669 if (map->m_multidev_dio)
1670 bidx = f2fs_target_device_index(sbi, blkaddr);
1671
1672 if (map->m_len == 0) {
1673 /* reserved delalloc block should be mapped for fiemap. */
1674 if (blkaddr == NEW_ADDR)
1675 map->m_flags |= F2FS_MAP_DELALLOC;
1676 map->m_flags |= F2FS_MAP_MAPPED;
1677
1678 map->m_pblk = blkaddr;
1679 map->m_len = 1;
1680
1681 if (map->m_multidev_dio)
1682 map->m_bdev = FDEV(bidx).bdev;
1683 } else if ((map->m_pblk != NEW_ADDR &&
1684 blkaddr == (map->m_pblk + ofs)) ||
1685 (map->m_pblk == NEW_ADDR && blkaddr == NEW_ADDR) ||
1686 flag == F2FS_GET_BLOCK_PRE_DIO) {
1687 if (map->m_multidev_dio && map->m_bdev != FDEV(bidx).bdev)
1688 goto sync_out;
1689 ofs++;
1690 map->m_len++;
1691 } else {
1692 goto sync_out;
1693 }
1694
1695skip:
1696 dn.ofs_in_node++;
1697 pgofs++;
1698
1699 /* preallocate blocks in batch for one dnode page */
1700 if (flag == F2FS_GET_BLOCK_PRE_AIO &&
1701 (pgofs == end || dn.ofs_in_node == end_offset)) {
1702
1703 dn.ofs_in_node = ofs_in_node;
1704 err = f2fs_reserve_new_blocks(&dn, prealloc);
1705 if (err)
1706 goto sync_out;
1707
1708 map->m_len += dn.ofs_in_node - ofs_in_node;
1709 if (prealloc && dn.ofs_in_node != last_ofs_in_node + 1) {
1710 err = -ENOSPC;
1711 goto sync_out;
1712 }
1713 dn.ofs_in_node = end_offset;
1714 }
1715
1716 if (pgofs >= end)
1717 goto sync_out;
1718 else if (dn.ofs_in_node < end_offset)
1719 goto next_block;
1720
1721 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1722 if (map->m_flags & F2FS_MAP_MAPPED) {
1723 unsigned int ofs = start_pgofs - map->m_lblk;
1724
1725 f2fs_update_read_extent_cache_range(&dn,
1726 start_pgofs, map->m_pblk + ofs,
1727 map->m_len - ofs);
1728 }
1729 }
1730
1731 f2fs_put_dnode(&dn);
1732
1733 if (map->m_may_create) {
1734 f2fs_map_unlock(sbi, flag);
1735 f2fs_balance_fs(sbi, dn.node_changed);
1736 }
1737 goto next_dnode;
1738
1739sync_out:
1740
1741 if (flag == F2FS_GET_BLOCK_DIO && map->m_flags & F2FS_MAP_MAPPED) {
1742 /*
1743 * for hardware encryption, but to avoid potential issue
1744 * in future
1745 */
1746 f2fs_wait_on_block_writeback_range(inode,
1747 map->m_pblk, map->m_len);
1748
1749 if (map->m_multidev_dio) {
1750 block_t blk_addr = map->m_pblk;
1751
1752 bidx = f2fs_target_device_index(sbi, map->m_pblk);
1753
1754 map->m_bdev = FDEV(bidx).bdev;
1755 map->m_pblk -= FDEV(bidx).start_blk;
1756
1757 if (map->m_may_create)
1758 f2fs_update_device_state(sbi, inode->i_ino,
1759 blk_addr, map->m_len);
1760
1761 f2fs_bug_on(sbi, blk_addr + map->m_len >
1762 FDEV(bidx).end_blk + 1);
1763 }
1764 }
1765
1766 if (flag == F2FS_GET_BLOCK_PRECACHE) {
1767 if (map->m_flags & F2FS_MAP_MAPPED) {
1768 unsigned int ofs = start_pgofs - map->m_lblk;
1769
1770 f2fs_update_read_extent_cache_range(&dn,
1771 start_pgofs, map->m_pblk + ofs,
1772 map->m_len - ofs);
1773 }
1774 if (map->m_next_extent)
1775 *map->m_next_extent = pgofs + 1;
1776 }
1777 f2fs_put_dnode(&dn);
1778unlock_out:
1779 if (map->m_may_create) {
1780 f2fs_map_unlock(sbi, flag);
1781 f2fs_balance_fs(sbi, dn.node_changed);
1782 }
1783out:
1784 trace_f2fs_map_blocks(inode, map, flag, err);
1785 return err;
1786}
1787
1788bool f2fs_overwrite_io(struct inode *inode, loff_t pos, size_t len)
1789{
1790 struct f2fs_map_blocks map;
1791 block_t last_lblk;
1792 int err;
1793
1794 if (pos + len > i_size_read(inode))
1795 return false;
1796
1797 map.m_lblk = F2FS_BYTES_TO_BLK(pos);
1798 map.m_next_pgofs = NULL;
1799 map.m_next_extent = NULL;
1800 map.m_seg_type = NO_CHECK_TYPE;
1801 map.m_may_create = false;
1802 last_lblk = F2FS_BLK_ALIGN(pos + len);
1803
1804 while (map.m_lblk < last_lblk) {
1805 map.m_len = last_lblk - map.m_lblk;
1806 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DEFAULT);
1807 if (err || map.m_len == 0)
1808 return false;
1809 map.m_lblk += map.m_len;
1810 }
1811 return true;
1812}
1813
1814static inline u64 bytes_to_blks(struct inode *inode, u64 bytes)
1815{
1816 return (bytes >> inode->i_blkbits);
1817}
1818
1819static inline u64 blks_to_bytes(struct inode *inode, u64 blks)
1820{
1821 return (blks << inode->i_blkbits);
1822}
1823
1824static int f2fs_xattr_fiemap(struct inode *inode,
1825 struct fiemap_extent_info *fieinfo)
1826{
1827 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1828 struct page *page;
1829 struct node_info ni;
1830 __u64 phys = 0, len;
1831 __u32 flags;
1832 nid_t xnid = F2FS_I(inode)->i_xattr_nid;
1833 int err = 0;
1834
1835 if (f2fs_has_inline_xattr(inode)) {
1836 int offset;
1837
1838 page = f2fs_grab_cache_page(NODE_MAPPING(sbi),
1839 inode->i_ino, false);
1840 if (!page)
1841 return -ENOMEM;
1842
1843 err = f2fs_get_node_info(sbi, inode->i_ino, &ni, false);
1844 if (err) {
1845 f2fs_put_page(page, 1);
1846 return err;
1847 }
1848
1849 phys = blks_to_bytes(inode, ni.blk_addr);
1850 offset = offsetof(struct f2fs_inode, i_addr) +
1851 sizeof(__le32) * (DEF_ADDRS_PER_INODE -
1852 get_inline_xattr_addrs(inode));
1853
1854 phys += offset;
1855 len = inline_xattr_size(inode);
1856
1857 f2fs_put_page(page, 1);
1858
1859 flags = FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_NOT_ALIGNED;
1860
1861 if (!xnid)
1862 flags |= FIEMAP_EXTENT_LAST;
1863
1864 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1865 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1866 if (err)
1867 return err;
1868 }
1869
1870 if (xnid) {
1871 page = f2fs_grab_cache_page(NODE_MAPPING(sbi), xnid, false);
1872 if (!page)
1873 return -ENOMEM;
1874
1875 err = f2fs_get_node_info(sbi, xnid, &ni, false);
1876 if (err) {
1877 f2fs_put_page(page, 1);
1878 return err;
1879 }
1880
1881 phys = blks_to_bytes(inode, ni.blk_addr);
1882 len = inode->i_sb->s_blocksize;
1883
1884 f2fs_put_page(page, 1);
1885
1886 flags = FIEMAP_EXTENT_LAST;
1887 }
1888
1889 if (phys) {
1890 err = fiemap_fill_next_extent(fieinfo, 0, phys, len, flags);
1891 trace_f2fs_fiemap(inode, 0, phys, len, flags, err);
1892 }
1893
1894 return (err < 0 ? err : 0);
1895}
1896
1897static loff_t max_inode_blocks(struct inode *inode)
1898{
1899 loff_t result = ADDRS_PER_INODE(inode);
1900 loff_t leaf_count = ADDRS_PER_BLOCK(inode);
1901
1902 /* two direct node blocks */
1903 result += (leaf_count * 2);
1904
1905 /* two indirect node blocks */
1906 leaf_count *= NIDS_PER_BLOCK;
1907 result += (leaf_count * 2);
1908
1909 /* one double indirect node block */
1910 leaf_count *= NIDS_PER_BLOCK;
1911 result += leaf_count;
1912
1913 return result;
1914}
1915
1916int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1917 u64 start, u64 len)
1918{
1919 struct f2fs_map_blocks map;
1920 sector_t start_blk, last_blk;
1921 pgoff_t next_pgofs;
1922 u64 logical = 0, phys = 0, size = 0;
1923 u32 flags = 0;
1924 int ret = 0;
1925 bool compr_cluster = false, compr_appended;
1926 unsigned int cluster_size = F2FS_I(inode)->i_cluster_size;
1927 unsigned int count_in_cluster = 0;
1928 loff_t maxbytes;
1929
1930 if (fieinfo->fi_flags & FIEMAP_FLAG_CACHE) {
1931 ret = f2fs_precache_extents(inode);
1932 if (ret)
1933 return ret;
1934 }
1935
1936 ret = fiemap_prep(inode, fieinfo, start, &len, FIEMAP_FLAG_XATTR);
1937 if (ret)
1938 return ret;
1939
1940 inode_lock(inode);
1941
1942 maxbytes = max_file_blocks(inode) << F2FS_BLKSIZE_BITS;
1943 if (start > maxbytes) {
1944 ret = -EFBIG;
1945 goto out;
1946 }
1947
1948 if (len > maxbytes || (maxbytes - len) < start)
1949 len = maxbytes - start;
1950
1951 if (fieinfo->fi_flags & FIEMAP_FLAG_XATTR) {
1952 ret = f2fs_xattr_fiemap(inode, fieinfo);
1953 goto out;
1954 }
1955
1956 if (f2fs_has_inline_data(inode) || f2fs_has_inline_dentry(inode)) {
1957 ret = f2fs_inline_data_fiemap(inode, fieinfo, start, len);
1958 if (ret != -EAGAIN)
1959 goto out;
1960 }
1961
1962 if (bytes_to_blks(inode, len) == 0)
1963 len = blks_to_bytes(inode, 1);
1964
1965 start_blk = bytes_to_blks(inode, start);
1966 last_blk = bytes_to_blks(inode, start + len - 1);
1967
1968next:
1969 memset(&map, 0, sizeof(map));
1970 map.m_lblk = start_blk;
1971 map.m_len = bytes_to_blks(inode, len);
1972 map.m_next_pgofs = &next_pgofs;
1973 map.m_seg_type = NO_CHECK_TYPE;
1974
1975 if (compr_cluster) {
1976 map.m_lblk += 1;
1977 map.m_len = cluster_size - count_in_cluster;
1978 }
1979
1980 ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
1981 if (ret)
1982 goto out;
1983
1984 /* HOLE */
1985 if (!compr_cluster && !(map.m_flags & F2FS_MAP_FLAGS)) {
1986 start_blk = next_pgofs;
1987
1988 if (blks_to_bytes(inode, start_blk) < blks_to_bytes(inode,
1989 max_inode_blocks(inode)))
1990 goto prep_next;
1991
1992 flags |= FIEMAP_EXTENT_LAST;
1993 }
1994
1995 compr_appended = false;
1996 /* In a case of compressed cluster, append this to the last extent */
1997 if (compr_cluster && ((map.m_flags & F2FS_MAP_DELALLOC) ||
1998 !(map.m_flags & F2FS_MAP_FLAGS))) {
1999 compr_appended = true;
2000 goto skip_fill;
2001 }
2002
2003 if (size) {
2004 flags |= FIEMAP_EXTENT_MERGED;
2005 if (IS_ENCRYPTED(inode))
2006 flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
2007
2008 ret = fiemap_fill_next_extent(fieinfo, logical,
2009 phys, size, flags);
2010 trace_f2fs_fiemap(inode, logical, phys, size, flags, ret);
2011 if (ret)
2012 goto out;
2013 size = 0;
2014 }
2015
2016 if (start_blk > last_blk)
2017 goto out;
2018
2019skip_fill:
2020 if (map.m_pblk == COMPRESS_ADDR) {
2021 compr_cluster = true;
2022 count_in_cluster = 1;
2023 } else if (compr_appended) {
2024 unsigned int appended_blks = cluster_size -
2025 count_in_cluster + 1;
2026 size += blks_to_bytes(inode, appended_blks);
2027 start_blk += appended_blks;
2028 compr_cluster = false;
2029 } else {
2030 logical = blks_to_bytes(inode, start_blk);
2031 phys = __is_valid_data_blkaddr(map.m_pblk) ?
2032 blks_to_bytes(inode, map.m_pblk) : 0;
2033 size = blks_to_bytes(inode, map.m_len);
2034 flags = 0;
2035
2036 if (compr_cluster) {
2037 flags = FIEMAP_EXTENT_ENCODED;
2038 count_in_cluster += map.m_len;
2039 if (count_in_cluster == cluster_size) {
2040 compr_cluster = false;
2041 size += blks_to_bytes(inode, 1);
2042 }
2043 } else if (map.m_flags & F2FS_MAP_DELALLOC) {
2044 flags = FIEMAP_EXTENT_UNWRITTEN;
2045 }
2046
2047 start_blk += bytes_to_blks(inode, size);
2048 }
2049
2050prep_next:
2051 cond_resched();
2052 if (fatal_signal_pending(current))
2053 ret = -EINTR;
2054 else
2055 goto next;
2056out:
2057 if (ret == 1)
2058 ret = 0;
2059
2060 inode_unlock(inode);
2061 return ret;
2062}
2063
2064static inline loff_t f2fs_readpage_limit(struct inode *inode)
2065{
2066 if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2067 return inode->i_sb->s_maxbytes;
2068
2069 return i_size_read(inode);
2070}
2071
2072static int f2fs_read_single_page(struct inode *inode, struct page *page,
2073 unsigned nr_pages,
2074 struct f2fs_map_blocks *map,
2075 struct bio **bio_ret,
2076 sector_t *last_block_in_bio,
2077 bool is_readahead)
2078{
2079 struct bio *bio = *bio_ret;
2080 const unsigned blocksize = blks_to_bytes(inode, 1);
2081 sector_t block_in_file;
2082 sector_t last_block;
2083 sector_t last_block_in_file;
2084 sector_t block_nr;
2085 int ret = 0;
2086
2087 block_in_file = (sector_t)page_index(page);
2088 last_block = block_in_file + nr_pages;
2089 last_block_in_file = bytes_to_blks(inode,
2090 f2fs_readpage_limit(inode) + blocksize - 1);
2091 if (last_block > last_block_in_file)
2092 last_block = last_block_in_file;
2093
2094 /* just zeroing out page which is beyond EOF */
2095 if (block_in_file >= last_block)
2096 goto zero_out;
2097 /*
2098 * Map blocks using the previous result first.
2099 */
2100 if ((map->m_flags & F2FS_MAP_MAPPED) &&
2101 block_in_file > map->m_lblk &&
2102 block_in_file < (map->m_lblk + map->m_len))
2103 goto got_it;
2104
2105 /*
2106 * Then do more f2fs_map_blocks() calls until we are
2107 * done with this page.
2108 */
2109 map->m_lblk = block_in_file;
2110 map->m_len = last_block - block_in_file;
2111
2112 ret = f2fs_map_blocks(inode, map, F2FS_GET_BLOCK_DEFAULT);
2113 if (ret)
2114 goto out;
2115got_it:
2116 if ((map->m_flags & F2FS_MAP_MAPPED)) {
2117 block_nr = map->m_pblk + block_in_file - map->m_lblk;
2118 SetPageMappedToDisk(page);
2119
2120 if (!f2fs_is_valid_blkaddr(F2FS_I_SB(inode), block_nr,
2121 DATA_GENERIC_ENHANCE_READ)) {
2122 ret = -EFSCORRUPTED;
2123 f2fs_handle_error(F2FS_I_SB(inode),
2124 ERROR_INVALID_BLKADDR);
2125 goto out;
2126 }
2127 } else {
2128zero_out:
2129 zero_user_segment(page, 0, PAGE_SIZE);
2130 if (f2fs_need_verity(inode, page->index) &&
2131 !fsverity_verify_page(page)) {
2132 ret = -EIO;
2133 goto out;
2134 }
2135 if (!PageUptodate(page))
2136 SetPageUptodate(page);
2137 unlock_page(page);
2138 goto out;
2139 }
2140
2141 /*
2142 * This page will go to BIO. Do we need to send this
2143 * BIO off first?
2144 */
2145 if (bio && (!page_is_mergeable(F2FS_I_SB(inode), bio,
2146 *last_block_in_bio, block_nr) ||
2147 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2148submit_and_realloc:
2149 f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2150 bio = NULL;
2151 }
2152 if (bio == NULL) {
2153 bio = f2fs_grab_read_bio(inode, block_nr, nr_pages,
2154 is_readahead ? REQ_RAHEAD : 0, page->index,
2155 false);
2156 if (IS_ERR(bio)) {
2157 ret = PTR_ERR(bio);
2158 bio = NULL;
2159 goto out;
2160 }
2161 }
2162
2163 /*
2164 * If the page is under writeback, we need to wait for
2165 * its completion to see the correct decrypted data.
2166 */
2167 f2fs_wait_on_block_writeback(inode, block_nr);
2168
2169 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2170 goto submit_and_realloc;
2171
2172 inc_page_count(F2FS_I_SB(inode), F2FS_RD_DATA);
2173 f2fs_update_iostat(F2FS_I_SB(inode), NULL, FS_DATA_READ_IO,
2174 F2FS_BLKSIZE);
2175 *last_block_in_bio = block_nr;
2176 goto out;
2177out:
2178 *bio_ret = bio;
2179 return ret;
2180}
2181
2182#ifdef CONFIG_F2FS_FS_COMPRESSION
2183int f2fs_read_multi_pages(struct compress_ctx *cc, struct bio **bio_ret,
2184 unsigned nr_pages, sector_t *last_block_in_bio,
2185 bool is_readahead, bool for_write)
2186{
2187 struct dnode_of_data dn;
2188 struct inode *inode = cc->inode;
2189 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2190 struct bio *bio = *bio_ret;
2191 unsigned int start_idx = cc->cluster_idx << cc->log_cluster_size;
2192 sector_t last_block_in_file;
2193 const unsigned blocksize = blks_to_bytes(inode, 1);
2194 struct decompress_io_ctx *dic = NULL;
2195 struct extent_info ei = {};
2196 bool from_dnode = true;
2197 int i;
2198 int ret = 0;
2199
2200 f2fs_bug_on(sbi, f2fs_cluster_is_empty(cc));
2201
2202 last_block_in_file = bytes_to_blks(inode,
2203 f2fs_readpage_limit(inode) + blocksize - 1);
2204
2205 /* get rid of pages beyond EOF */
2206 for (i = 0; i < cc->cluster_size; i++) {
2207 struct page *page = cc->rpages[i];
2208
2209 if (!page)
2210 continue;
2211 if ((sector_t)page->index >= last_block_in_file) {
2212 zero_user_segment(page, 0, PAGE_SIZE);
2213 if (!PageUptodate(page))
2214 SetPageUptodate(page);
2215 } else if (!PageUptodate(page)) {
2216 continue;
2217 }
2218 unlock_page(page);
2219 if (for_write)
2220 put_page(page);
2221 cc->rpages[i] = NULL;
2222 cc->nr_rpages--;
2223 }
2224
2225 /* we are done since all pages are beyond EOF */
2226 if (f2fs_cluster_is_empty(cc))
2227 goto out;
2228
2229 if (f2fs_lookup_read_extent_cache(inode, start_idx, &ei))
2230 from_dnode = false;
2231
2232 if (!from_dnode)
2233 goto skip_reading_dnode;
2234
2235 set_new_dnode(&dn, inode, NULL, NULL, 0);
2236 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
2237 if (ret)
2238 goto out;
2239
2240 if (unlikely(f2fs_cp_error(sbi))) {
2241 ret = -EIO;
2242 goto out_put_dnode;
2243 }
2244 f2fs_bug_on(sbi, dn.data_blkaddr != COMPRESS_ADDR);
2245
2246skip_reading_dnode:
2247 for (i = 1; i < cc->cluster_size; i++) {
2248 block_t blkaddr;
2249
2250 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2251 dn.ofs_in_node + i) :
2252 ei.blk + i - 1;
2253
2254 if (!__is_valid_data_blkaddr(blkaddr))
2255 break;
2256
2257 if (!f2fs_is_valid_blkaddr(sbi, blkaddr, DATA_GENERIC)) {
2258 ret = -EFAULT;
2259 goto out_put_dnode;
2260 }
2261 cc->nr_cpages++;
2262
2263 if (!from_dnode && i >= ei.c_len)
2264 break;
2265 }
2266
2267 /* nothing to decompress */
2268 if (cc->nr_cpages == 0) {
2269 ret = 0;
2270 goto out_put_dnode;
2271 }
2272
2273 dic = f2fs_alloc_dic(cc);
2274 if (IS_ERR(dic)) {
2275 ret = PTR_ERR(dic);
2276 goto out_put_dnode;
2277 }
2278
2279 for (i = 0; i < cc->nr_cpages; i++) {
2280 struct page *page = dic->cpages[i];
2281 block_t blkaddr;
2282 struct bio_post_read_ctx *ctx;
2283
2284 blkaddr = from_dnode ? data_blkaddr(dn.inode, dn.node_page,
2285 dn.ofs_in_node + i + 1) :
2286 ei.blk + i;
2287
2288 f2fs_wait_on_block_writeback(inode, blkaddr);
2289
2290 if (f2fs_load_compressed_page(sbi, page, blkaddr)) {
2291 if (atomic_dec_and_test(&dic->remaining_pages))
2292 f2fs_decompress_cluster(dic, true);
2293 continue;
2294 }
2295
2296 if (bio && (!page_is_mergeable(sbi, bio,
2297 *last_block_in_bio, blkaddr) ||
2298 !f2fs_crypt_mergeable_bio(bio, inode, page->index, NULL))) {
2299submit_and_realloc:
2300 f2fs_submit_read_bio(sbi, bio, DATA);
2301 bio = NULL;
2302 }
2303
2304 if (!bio) {
2305 bio = f2fs_grab_read_bio(inode, blkaddr, nr_pages,
2306 is_readahead ? REQ_RAHEAD : 0,
2307 page->index, for_write);
2308 if (IS_ERR(bio)) {
2309 ret = PTR_ERR(bio);
2310 f2fs_decompress_end_io(dic, ret, true);
2311 f2fs_put_dnode(&dn);
2312 *bio_ret = NULL;
2313 return ret;
2314 }
2315 }
2316
2317 if (bio_add_page(bio, page, blocksize, 0) < blocksize)
2318 goto submit_and_realloc;
2319
2320 ctx = get_post_read_ctx(bio);
2321 ctx->enabled_steps |= STEP_DECOMPRESS;
2322 refcount_inc(&dic->refcnt);
2323
2324 inc_page_count(sbi, F2FS_RD_DATA);
2325 f2fs_update_iostat(sbi, inode, FS_DATA_READ_IO, F2FS_BLKSIZE);
2326 *last_block_in_bio = blkaddr;
2327 }
2328
2329 if (from_dnode)
2330 f2fs_put_dnode(&dn);
2331
2332 *bio_ret = bio;
2333 return 0;
2334
2335out_put_dnode:
2336 if (from_dnode)
2337 f2fs_put_dnode(&dn);
2338out:
2339 for (i = 0; i < cc->cluster_size; i++) {
2340 if (cc->rpages[i]) {
2341 ClearPageUptodate(cc->rpages[i]);
2342 unlock_page(cc->rpages[i]);
2343 }
2344 }
2345 *bio_ret = bio;
2346 return ret;
2347}
2348#endif
2349
2350/*
2351 * This function was originally taken from fs/mpage.c, and customized for f2fs.
2352 * Major change was from block_size == page_size in f2fs by default.
2353 */
2354static int f2fs_mpage_readpages(struct inode *inode,
2355 struct readahead_control *rac, struct page *page)
2356{
2357 struct bio *bio = NULL;
2358 sector_t last_block_in_bio = 0;
2359 struct f2fs_map_blocks map;
2360#ifdef CONFIG_F2FS_FS_COMPRESSION
2361 struct compress_ctx cc = {
2362 .inode = inode,
2363 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2364 .cluster_size = F2FS_I(inode)->i_cluster_size,
2365 .cluster_idx = NULL_CLUSTER,
2366 .rpages = NULL,
2367 .cpages = NULL,
2368 .nr_rpages = 0,
2369 .nr_cpages = 0,
2370 };
2371 pgoff_t nc_cluster_idx = NULL_CLUSTER;
2372#endif
2373 unsigned nr_pages = rac ? readahead_count(rac) : 1;
2374 unsigned max_nr_pages = nr_pages;
2375 int ret = 0;
2376
2377 map.m_pblk = 0;
2378 map.m_lblk = 0;
2379 map.m_len = 0;
2380 map.m_flags = 0;
2381 map.m_next_pgofs = NULL;
2382 map.m_next_extent = NULL;
2383 map.m_seg_type = NO_CHECK_TYPE;
2384 map.m_may_create = false;
2385
2386 for (; nr_pages; nr_pages--) {
2387 if (rac) {
2388 page = readahead_page(rac);
2389 prefetchw(&page->flags);
2390 }
2391
2392#ifdef CONFIG_F2FS_FS_COMPRESSION
2393 if (f2fs_compressed_file(inode)) {
2394 /* there are remained compressed pages, submit them */
2395 if (!f2fs_cluster_can_merge_page(&cc, page->index)) {
2396 ret = f2fs_read_multi_pages(&cc, &bio,
2397 max_nr_pages,
2398 &last_block_in_bio,
2399 rac != NULL, false);
2400 f2fs_destroy_compress_ctx(&cc, false);
2401 if (ret)
2402 goto set_error_page;
2403 }
2404 if (cc.cluster_idx == NULL_CLUSTER) {
2405 if (nc_cluster_idx ==
2406 page->index >> cc.log_cluster_size) {
2407 goto read_single_page;
2408 }
2409
2410 ret = f2fs_is_compressed_cluster(inode, page->index);
2411 if (ret < 0)
2412 goto set_error_page;
2413 else if (!ret) {
2414 nc_cluster_idx =
2415 page->index >> cc.log_cluster_size;
2416 goto read_single_page;
2417 }
2418
2419 nc_cluster_idx = NULL_CLUSTER;
2420 }
2421 ret = f2fs_init_compress_ctx(&cc);
2422 if (ret)
2423 goto set_error_page;
2424
2425 f2fs_compress_ctx_add_page(&cc, page);
2426
2427 goto next_page;
2428 }
2429read_single_page:
2430#endif
2431
2432 ret = f2fs_read_single_page(inode, page, max_nr_pages, &map,
2433 &bio, &last_block_in_bio, rac);
2434 if (ret) {
2435#ifdef CONFIG_F2FS_FS_COMPRESSION
2436set_error_page:
2437#endif
2438 zero_user_segment(page, 0, PAGE_SIZE);
2439 unlock_page(page);
2440 }
2441#ifdef CONFIG_F2FS_FS_COMPRESSION
2442next_page:
2443#endif
2444 if (rac)
2445 put_page(page);
2446
2447#ifdef CONFIG_F2FS_FS_COMPRESSION
2448 if (f2fs_compressed_file(inode)) {
2449 /* last page */
2450 if (nr_pages == 1 && !f2fs_cluster_is_empty(&cc)) {
2451 ret = f2fs_read_multi_pages(&cc, &bio,
2452 max_nr_pages,
2453 &last_block_in_bio,
2454 rac != NULL, false);
2455 f2fs_destroy_compress_ctx(&cc, false);
2456 }
2457 }
2458#endif
2459 }
2460 if (bio)
2461 f2fs_submit_read_bio(F2FS_I_SB(inode), bio, DATA);
2462 return ret;
2463}
2464
2465static int f2fs_read_data_folio(struct file *file, struct folio *folio)
2466{
2467 struct page *page = &folio->page;
2468 struct inode *inode = page_file_mapping(page)->host;
2469 int ret = -EAGAIN;
2470
2471 trace_f2fs_readpage(page, DATA);
2472
2473 if (!f2fs_is_compress_backend_ready(inode)) {
2474 unlock_page(page);
2475 return -EOPNOTSUPP;
2476 }
2477
2478 /* If the file has inline data, try to read it directly */
2479 if (f2fs_has_inline_data(inode))
2480 ret = f2fs_read_inline_data(inode, page);
2481 if (ret == -EAGAIN)
2482 ret = f2fs_mpage_readpages(inode, NULL, page);
2483 return ret;
2484}
2485
2486static void f2fs_readahead(struct readahead_control *rac)
2487{
2488 struct inode *inode = rac->mapping->host;
2489
2490 trace_f2fs_readpages(inode, readahead_index(rac), readahead_count(rac));
2491
2492 if (!f2fs_is_compress_backend_ready(inode))
2493 return;
2494
2495 /* If the file has inline data, skip readahead */
2496 if (f2fs_has_inline_data(inode))
2497 return;
2498
2499 f2fs_mpage_readpages(inode, rac, NULL);
2500}
2501
2502int f2fs_encrypt_one_page(struct f2fs_io_info *fio)
2503{
2504 struct inode *inode = fio->page->mapping->host;
2505 struct page *mpage, *page;
2506 gfp_t gfp_flags = GFP_NOFS;
2507
2508 if (!f2fs_encrypted_file(inode))
2509 return 0;
2510
2511 page = fio->compressed_page ? fio->compressed_page : fio->page;
2512
2513 /* wait for GCed page writeback via META_MAPPING */
2514 f2fs_wait_on_block_writeback(inode, fio->old_blkaddr);
2515
2516 if (fscrypt_inode_uses_inline_crypto(inode))
2517 return 0;
2518
2519retry_encrypt:
2520 fio->encrypted_page = fscrypt_encrypt_pagecache_blocks(page,
2521 PAGE_SIZE, 0, gfp_flags);
2522 if (IS_ERR(fio->encrypted_page)) {
2523 /* flush pending IOs and wait for a while in the ENOMEM case */
2524 if (PTR_ERR(fio->encrypted_page) == -ENOMEM) {
2525 f2fs_flush_merged_writes(fio->sbi);
2526 memalloc_retry_wait(GFP_NOFS);
2527 gfp_flags |= __GFP_NOFAIL;
2528 goto retry_encrypt;
2529 }
2530 return PTR_ERR(fio->encrypted_page);
2531 }
2532
2533 mpage = find_lock_page(META_MAPPING(fio->sbi), fio->old_blkaddr);
2534 if (mpage) {
2535 if (PageUptodate(mpage))
2536 memcpy(page_address(mpage),
2537 page_address(fio->encrypted_page), PAGE_SIZE);
2538 f2fs_put_page(mpage, 1);
2539 }
2540 return 0;
2541}
2542
2543static inline bool check_inplace_update_policy(struct inode *inode,
2544 struct f2fs_io_info *fio)
2545{
2546 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2547
2548 if (IS_F2FS_IPU_HONOR_OPU_WRITE(sbi) &&
2549 is_inode_flag_set(inode, FI_OPU_WRITE))
2550 return false;
2551 if (IS_F2FS_IPU_FORCE(sbi))
2552 return true;
2553 if (IS_F2FS_IPU_SSR(sbi) && f2fs_need_SSR(sbi))
2554 return true;
2555 if (IS_F2FS_IPU_UTIL(sbi) && utilization(sbi) > SM_I(sbi)->min_ipu_util)
2556 return true;
2557 if (IS_F2FS_IPU_SSR_UTIL(sbi) && f2fs_need_SSR(sbi) &&
2558 utilization(sbi) > SM_I(sbi)->min_ipu_util)
2559 return true;
2560
2561 /*
2562 * IPU for rewrite async pages
2563 */
2564 if (IS_F2FS_IPU_ASYNC(sbi) && fio && fio->op == REQ_OP_WRITE &&
2565 !(fio->op_flags & REQ_SYNC) && !IS_ENCRYPTED(inode))
2566 return true;
2567
2568 /* this is only set during fdatasync */
2569 if (IS_F2FS_IPU_FSYNC(sbi) && is_inode_flag_set(inode, FI_NEED_IPU))
2570 return true;
2571
2572 if (unlikely(fio && is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2573 !f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2574 return true;
2575
2576 return false;
2577}
2578
2579bool f2fs_should_update_inplace(struct inode *inode, struct f2fs_io_info *fio)
2580{
2581 /* swap file is migrating in aligned write mode */
2582 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2583 return false;
2584
2585 if (f2fs_is_pinned_file(inode))
2586 return true;
2587
2588 /* if this is cold file, we should overwrite to avoid fragmentation */
2589 if (file_is_cold(inode) && !is_inode_flag_set(inode, FI_OPU_WRITE))
2590 return true;
2591
2592 return check_inplace_update_policy(inode, fio);
2593}
2594
2595bool f2fs_should_update_outplace(struct inode *inode, struct f2fs_io_info *fio)
2596{
2597 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2598
2599 /* The below cases were checked when setting it. */
2600 if (f2fs_is_pinned_file(inode))
2601 return false;
2602 if (fio && is_sbi_flag_set(sbi, SBI_NEED_FSCK))
2603 return true;
2604 if (f2fs_lfs_mode(sbi))
2605 return true;
2606 if (S_ISDIR(inode->i_mode))
2607 return true;
2608 if (IS_NOQUOTA(inode))
2609 return true;
2610 if (f2fs_is_atomic_file(inode))
2611 return true;
2612
2613 /* swap file is migrating in aligned write mode */
2614 if (is_inode_flag_set(inode, FI_ALIGNED_WRITE))
2615 return true;
2616
2617 if (is_inode_flag_set(inode, FI_OPU_WRITE))
2618 return true;
2619
2620 if (fio) {
2621 if (page_private_gcing(fio->page))
2622 return true;
2623 if (page_private_dummy(fio->page))
2624 return true;
2625 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED) &&
2626 f2fs_is_checkpointed_data(sbi, fio->old_blkaddr)))
2627 return true;
2628 }
2629 return false;
2630}
2631
2632static inline bool need_inplace_update(struct f2fs_io_info *fio)
2633{
2634 struct inode *inode = fio->page->mapping->host;
2635
2636 if (f2fs_should_update_outplace(inode, fio))
2637 return false;
2638
2639 return f2fs_should_update_inplace(inode, fio);
2640}
2641
2642int f2fs_do_write_data_page(struct f2fs_io_info *fio)
2643{
2644 struct page *page = fio->page;
2645 struct inode *inode = page->mapping->host;
2646 struct dnode_of_data dn;
2647 struct node_info ni;
2648 bool ipu_force = false;
2649 int err = 0;
2650
2651 /* Use COW inode to make dnode_of_data for atomic write */
2652 if (f2fs_is_atomic_file(inode))
2653 set_new_dnode(&dn, F2FS_I(inode)->cow_inode, NULL, NULL, 0);
2654 else
2655 set_new_dnode(&dn, inode, NULL, NULL, 0);
2656
2657 if (need_inplace_update(fio) &&
2658 f2fs_lookup_read_extent_cache_block(inode, page->index,
2659 &fio->old_blkaddr)) {
2660 if (!f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2661 DATA_GENERIC_ENHANCE)) {
2662 f2fs_handle_error(fio->sbi,
2663 ERROR_INVALID_BLKADDR);
2664 return -EFSCORRUPTED;
2665 }
2666
2667 ipu_force = true;
2668 fio->need_lock = LOCK_DONE;
2669 goto got_it;
2670 }
2671
2672 /* Deadlock due to between page->lock and f2fs_lock_op */
2673 if (fio->need_lock == LOCK_REQ && !f2fs_trylock_op(fio->sbi))
2674 return -EAGAIN;
2675
2676 err = f2fs_get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
2677 if (err)
2678 goto out;
2679
2680 fio->old_blkaddr = dn.data_blkaddr;
2681
2682 /* This page is already truncated */
2683 if (fio->old_blkaddr == NULL_ADDR) {
2684 ClearPageUptodate(page);
2685 clear_page_private_gcing(page);
2686 goto out_writepage;
2687 }
2688got_it:
2689 if (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2690 !f2fs_is_valid_blkaddr(fio->sbi, fio->old_blkaddr,
2691 DATA_GENERIC_ENHANCE)) {
2692 err = -EFSCORRUPTED;
2693 f2fs_handle_error(fio->sbi, ERROR_INVALID_BLKADDR);
2694 goto out_writepage;
2695 }
2696
2697 /*
2698 * If current allocation needs SSR,
2699 * it had better in-place writes for updated data.
2700 */
2701 if (ipu_force ||
2702 (__is_valid_data_blkaddr(fio->old_blkaddr) &&
2703 need_inplace_update(fio))) {
2704 err = f2fs_encrypt_one_page(fio);
2705 if (err)
2706 goto out_writepage;
2707
2708 set_page_writeback(page);
2709 f2fs_put_dnode(&dn);
2710 if (fio->need_lock == LOCK_REQ)
2711 f2fs_unlock_op(fio->sbi);
2712 err = f2fs_inplace_write_data(fio);
2713 if (err) {
2714 if (fscrypt_inode_uses_fs_layer_crypto(inode))
2715 fscrypt_finalize_bounce_page(&fio->encrypted_page);
2716 if (PageWriteback(page))
2717 end_page_writeback(page);
2718 } else {
2719 set_inode_flag(inode, FI_UPDATE_WRITE);
2720 }
2721 trace_f2fs_do_write_data_page(fio->page, IPU);
2722 return err;
2723 }
2724
2725 if (fio->need_lock == LOCK_RETRY) {
2726 if (!f2fs_trylock_op(fio->sbi)) {
2727 err = -EAGAIN;
2728 goto out_writepage;
2729 }
2730 fio->need_lock = LOCK_REQ;
2731 }
2732
2733 err = f2fs_get_node_info(fio->sbi, dn.nid, &ni, false);
2734 if (err)
2735 goto out_writepage;
2736
2737 fio->version = ni.version;
2738
2739 err = f2fs_encrypt_one_page(fio);
2740 if (err)
2741 goto out_writepage;
2742
2743 set_page_writeback(page);
2744
2745 if (fio->compr_blocks && fio->old_blkaddr == COMPRESS_ADDR)
2746 f2fs_i_compr_blocks_update(inode, fio->compr_blocks - 1, false);
2747
2748 /* LFS mode write path */
2749 f2fs_outplace_write_data(&dn, fio);
2750 trace_f2fs_do_write_data_page(page, OPU);
2751 set_inode_flag(inode, FI_APPEND_WRITE);
2752 if (page->index == 0)
2753 set_inode_flag(inode, FI_FIRST_BLOCK_WRITTEN);
2754out_writepage:
2755 f2fs_put_dnode(&dn);
2756out:
2757 if (fio->need_lock == LOCK_REQ)
2758 f2fs_unlock_op(fio->sbi);
2759 return err;
2760}
2761
2762int f2fs_write_single_data_page(struct page *page, int *submitted,
2763 struct bio **bio,
2764 sector_t *last_block,
2765 struct writeback_control *wbc,
2766 enum iostat_type io_type,
2767 int compr_blocks,
2768 bool allow_balance)
2769{
2770 struct inode *inode = page->mapping->host;
2771 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2772 loff_t i_size = i_size_read(inode);
2773 const pgoff_t end_index = ((unsigned long long)i_size)
2774 >> PAGE_SHIFT;
2775 loff_t psize = (loff_t)(page->index + 1) << PAGE_SHIFT;
2776 unsigned offset = 0;
2777 bool need_balance_fs = false;
2778 int err = 0;
2779 struct f2fs_io_info fio = {
2780 .sbi = sbi,
2781 .ino = inode->i_ino,
2782 .type = DATA,
2783 .op = REQ_OP_WRITE,
2784 .op_flags = wbc_to_write_flags(wbc),
2785 .old_blkaddr = NULL_ADDR,
2786 .page = page,
2787 .encrypted_page = NULL,
2788 .submitted = 0,
2789 .compr_blocks = compr_blocks,
2790 .need_lock = LOCK_RETRY,
2791 .post_read = f2fs_post_read_required(inode) ? 1 : 0,
2792 .io_type = io_type,
2793 .io_wbc = wbc,
2794 .bio = bio,
2795 .last_block = last_block,
2796 };
2797
2798 trace_f2fs_writepage(page, DATA);
2799
2800 /* we should bypass data pages to proceed the kworker jobs */
2801 if (unlikely(f2fs_cp_error(sbi))) {
2802 mapping_set_error(page->mapping, -EIO);
2803 /*
2804 * don't drop any dirty dentry pages for keeping lastest
2805 * directory structure.
2806 */
2807 if (S_ISDIR(inode->i_mode) &&
2808 !is_sbi_flag_set(sbi, SBI_IS_CLOSE))
2809 goto redirty_out;
2810 goto out;
2811 }
2812
2813 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
2814 goto redirty_out;
2815
2816 if (page->index < end_index ||
2817 f2fs_verity_in_progress(inode) ||
2818 compr_blocks)
2819 goto write;
2820
2821 /*
2822 * If the offset is out-of-range of file size,
2823 * this page does not have to be written to disk.
2824 */
2825 offset = i_size & (PAGE_SIZE - 1);
2826 if ((page->index >= end_index + 1) || !offset)
2827 goto out;
2828
2829 zero_user_segment(page, offset, PAGE_SIZE);
2830write:
2831 if (f2fs_is_drop_cache(inode))
2832 goto out;
2833
2834 /* Dentry/quota blocks are controlled by checkpoint */
2835 if (S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) {
2836 /*
2837 * We need to wait for node_write to avoid block allocation during
2838 * checkpoint. This can only happen to quota writes which can cause
2839 * the below discard race condition.
2840 */
2841 if (IS_NOQUOTA(inode))
2842 f2fs_down_read(&sbi->node_write);
2843
2844 fio.need_lock = LOCK_DONE;
2845 err = f2fs_do_write_data_page(&fio);
2846
2847 if (IS_NOQUOTA(inode))
2848 f2fs_up_read(&sbi->node_write);
2849
2850 goto done;
2851 }
2852
2853 if (!wbc->for_reclaim)
2854 need_balance_fs = true;
2855 else if (has_not_enough_free_secs(sbi, 0, 0))
2856 goto redirty_out;
2857 else
2858 set_inode_flag(inode, FI_HOT_DATA);
2859
2860 err = -EAGAIN;
2861 if (f2fs_has_inline_data(inode)) {
2862 err = f2fs_write_inline_data(inode, page);
2863 if (!err)
2864 goto out;
2865 }
2866
2867 if (err == -EAGAIN) {
2868 err = f2fs_do_write_data_page(&fio);
2869 if (err == -EAGAIN) {
2870 fio.need_lock = LOCK_REQ;
2871 err = f2fs_do_write_data_page(&fio);
2872 }
2873 }
2874
2875 if (err) {
2876 file_set_keep_isize(inode);
2877 } else {
2878 spin_lock(&F2FS_I(inode)->i_size_lock);
2879 if (F2FS_I(inode)->last_disk_size < psize)
2880 F2FS_I(inode)->last_disk_size = psize;
2881 spin_unlock(&F2FS_I(inode)->i_size_lock);
2882 }
2883
2884done:
2885 if (err && err != -ENOENT)
2886 goto redirty_out;
2887
2888out:
2889 inode_dec_dirty_pages(inode);
2890 if (err) {
2891 ClearPageUptodate(page);
2892 clear_page_private_gcing(page);
2893 }
2894
2895 if (wbc->for_reclaim) {
2896 f2fs_submit_merged_write_cond(sbi, NULL, page, 0, DATA);
2897 clear_inode_flag(inode, FI_HOT_DATA);
2898 f2fs_remove_dirty_inode(inode);
2899 submitted = NULL;
2900 }
2901 unlock_page(page);
2902 if (!S_ISDIR(inode->i_mode) && !IS_NOQUOTA(inode) &&
2903 !F2FS_I(inode)->wb_task && allow_balance)
2904 f2fs_balance_fs(sbi, need_balance_fs);
2905
2906 if (unlikely(f2fs_cp_error(sbi))) {
2907 f2fs_submit_merged_write(sbi, DATA);
2908 if (bio && *bio)
2909 f2fs_submit_merged_ipu_write(sbi, bio, NULL);
2910 submitted = NULL;
2911 }
2912
2913 if (submitted)
2914 *submitted = fio.submitted;
2915
2916 return 0;
2917
2918redirty_out:
2919 redirty_page_for_writepage(wbc, page);
2920 /*
2921 * pageout() in MM translates EAGAIN, so calls handle_write_error()
2922 * -> mapping_set_error() -> set_bit(AS_EIO, ...).
2923 * file_write_and_wait_range() will see EIO error, which is critical
2924 * to return value of fsync() followed by atomic_write failure to user.
2925 */
2926 if (!err || wbc->for_reclaim)
2927 return AOP_WRITEPAGE_ACTIVATE;
2928 unlock_page(page);
2929 return err;
2930}
2931
2932static int f2fs_write_data_page(struct page *page,
2933 struct writeback_control *wbc)
2934{
2935#ifdef CONFIG_F2FS_FS_COMPRESSION
2936 struct inode *inode = page->mapping->host;
2937
2938 if (unlikely(f2fs_cp_error(F2FS_I_SB(inode))))
2939 goto out;
2940
2941 if (f2fs_compressed_file(inode)) {
2942 if (f2fs_is_compressed_cluster(inode, page->index)) {
2943 redirty_page_for_writepage(wbc, page);
2944 return AOP_WRITEPAGE_ACTIVATE;
2945 }
2946 }
2947out:
2948#endif
2949
2950 return f2fs_write_single_data_page(page, NULL, NULL, NULL,
2951 wbc, FS_DATA_IO, 0, true);
2952}
2953
2954/*
2955 * This function was copied from write_cache_pages from mm/page-writeback.c.
2956 * The major change is making write step of cold data page separately from
2957 * warm/hot data page.
2958 */
2959static int f2fs_write_cache_pages(struct address_space *mapping,
2960 struct writeback_control *wbc,
2961 enum iostat_type io_type)
2962{
2963 int ret = 0;
2964 int done = 0, retry = 0;
2965 struct page *pages[F2FS_ONSTACK_PAGES];
2966 struct folio_batch fbatch;
2967 struct f2fs_sb_info *sbi = F2FS_M_SB(mapping);
2968 struct bio *bio = NULL;
2969 sector_t last_block;
2970#ifdef CONFIG_F2FS_FS_COMPRESSION
2971 struct inode *inode = mapping->host;
2972 struct compress_ctx cc = {
2973 .inode = inode,
2974 .log_cluster_size = F2FS_I(inode)->i_log_cluster_size,
2975 .cluster_size = F2FS_I(inode)->i_cluster_size,
2976 .cluster_idx = NULL_CLUSTER,
2977 .rpages = NULL,
2978 .nr_rpages = 0,
2979 .cpages = NULL,
2980 .valid_nr_cpages = 0,
2981 .rbuf = NULL,
2982 .cbuf = NULL,
2983 .rlen = PAGE_SIZE * F2FS_I(inode)->i_cluster_size,
2984 .private = NULL,
2985 };
2986#endif
2987 int nr_folios, p, idx;
2988 int nr_pages;
2989 pgoff_t index;
2990 pgoff_t end; /* Inclusive */
2991 pgoff_t done_index;
2992 int range_whole = 0;
2993 xa_mark_t tag;
2994 int nwritten = 0;
2995 int submitted = 0;
2996 int i;
2997
2998 folio_batch_init(&fbatch);
2999
3000 if (get_dirty_pages(mapping->host) <=
3001 SM_I(F2FS_M_SB(mapping))->min_hot_blocks)
3002 set_inode_flag(mapping->host, FI_HOT_DATA);
3003 else
3004 clear_inode_flag(mapping->host, FI_HOT_DATA);
3005
3006 if (wbc->range_cyclic) {
3007 index = mapping->writeback_index; /* prev offset */
3008 end = -1;
3009 } else {
3010 index = wbc->range_start >> PAGE_SHIFT;
3011 end = wbc->range_end >> PAGE_SHIFT;
3012 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3013 range_whole = 1;
3014 }
3015 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3016 tag = PAGECACHE_TAG_TOWRITE;
3017 else
3018 tag = PAGECACHE_TAG_DIRTY;
3019retry:
3020 retry = 0;
3021 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
3022 tag_pages_for_writeback(mapping, index, end);
3023 done_index = index;
3024 while (!done && !retry && (index <= end)) {
3025 nr_pages = 0;
3026again:
3027 nr_folios = filemap_get_folios_tag(mapping, &index, end,
3028 tag, &fbatch);
3029 if (nr_folios == 0) {
3030 if (nr_pages)
3031 goto write;
3032 break;
3033 }
3034
3035 for (i = 0; i < nr_folios; i++) {
3036 struct folio *folio = fbatch.folios[i];
3037
3038 idx = 0;
3039 p = folio_nr_pages(folio);
3040add_more:
3041 pages[nr_pages] = folio_page(folio, idx);
3042 folio_get(folio);
3043 if (++nr_pages == F2FS_ONSTACK_PAGES) {
3044 index = folio->index + idx + 1;
3045 folio_batch_release(&fbatch);
3046 goto write;
3047 }
3048 if (++idx < p)
3049 goto add_more;
3050 }
3051 folio_batch_release(&fbatch);
3052 goto again;
3053write:
3054 for (i = 0; i < nr_pages; i++) {
3055 struct page *page = pages[i];
3056 struct folio *folio = page_folio(page);
3057 bool need_readd;
3058readd:
3059 need_readd = false;
3060#ifdef CONFIG_F2FS_FS_COMPRESSION
3061 if (f2fs_compressed_file(inode)) {
3062 void *fsdata = NULL;
3063 struct page *pagep;
3064 int ret2;
3065
3066 ret = f2fs_init_compress_ctx(&cc);
3067 if (ret) {
3068 done = 1;
3069 break;
3070 }
3071
3072 if (!f2fs_cluster_can_merge_page(&cc,
3073 folio->index)) {
3074 ret = f2fs_write_multi_pages(&cc,
3075 &submitted, wbc, io_type);
3076 if (!ret)
3077 need_readd = true;
3078 goto result;
3079 }
3080
3081 if (unlikely(f2fs_cp_error(sbi)))
3082 goto lock_folio;
3083
3084 if (!f2fs_cluster_is_empty(&cc))
3085 goto lock_folio;
3086
3087 if (f2fs_all_cluster_page_ready(&cc,
3088 pages, i, nr_pages, true))
3089 goto lock_folio;
3090
3091 ret2 = f2fs_prepare_compress_overwrite(
3092 inode, &pagep,
3093 folio->index, &fsdata);
3094 if (ret2 < 0) {
3095 ret = ret2;
3096 done = 1;
3097 break;
3098 } else if (ret2 &&
3099 (!f2fs_compress_write_end(inode,
3100 fsdata, folio->index, 1) ||
3101 !f2fs_all_cluster_page_ready(&cc,
3102 pages, i, nr_pages,
3103 false))) {
3104 retry = 1;
3105 break;
3106 }
3107 }
3108#endif
3109 /* give a priority to WB_SYNC threads */
3110 if (atomic_read(&sbi->wb_sync_req[DATA]) &&
3111 wbc->sync_mode == WB_SYNC_NONE) {
3112 done = 1;
3113 break;
3114 }
3115#ifdef CONFIG_F2FS_FS_COMPRESSION
3116lock_folio:
3117#endif
3118 done_index = folio->index;
3119retry_write:
3120 folio_lock(folio);
3121
3122 if (unlikely(folio->mapping != mapping)) {
3123continue_unlock:
3124 folio_unlock(folio);
3125 continue;
3126 }
3127
3128 if (!folio_test_dirty(folio)) {
3129 /* someone wrote it for us */
3130 goto continue_unlock;
3131 }
3132
3133 if (folio_test_writeback(folio)) {
3134 if (wbc->sync_mode == WB_SYNC_NONE)
3135 goto continue_unlock;
3136 f2fs_wait_on_page_writeback(&folio->page, DATA, true, true);
3137 }
3138
3139 if (!folio_clear_dirty_for_io(folio))
3140 goto continue_unlock;
3141
3142#ifdef CONFIG_F2FS_FS_COMPRESSION
3143 if (f2fs_compressed_file(inode)) {
3144 folio_get(folio);
3145 f2fs_compress_ctx_add_page(&cc, &folio->page);
3146 continue;
3147 }
3148#endif
3149 ret = f2fs_write_single_data_page(&folio->page,
3150 &submitted, &bio, &last_block,
3151 wbc, io_type, 0, true);
3152 if (ret == AOP_WRITEPAGE_ACTIVATE)
3153 folio_unlock(folio);
3154#ifdef CONFIG_F2FS_FS_COMPRESSION
3155result:
3156#endif
3157 nwritten += submitted;
3158 wbc->nr_to_write -= submitted;
3159
3160 if (unlikely(ret)) {
3161 /*
3162 * keep nr_to_write, since vfs uses this to
3163 * get # of written pages.
3164 */
3165 if (ret == AOP_WRITEPAGE_ACTIVATE) {
3166 ret = 0;
3167 goto next;
3168 } else if (ret == -EAGAIN) {
3169 ret = 0;
3170 if (wbc->sync_mode == WB_SYNC_ALL) {
3171 f2fs_io_schedule_timeout(
3172 DEFAULT_IO_TIMEOUT);
3173 goto retry_write;
3174 }
3175 goto next;
3176 }
3177 done_index = folio->index +
3178 folio_nr_pages(folio);
3179 done = 1;
3180 break;
3181 }
3182
3183 if (wbc->nr_to_write <= 0 &&
3184 wbc->sync_mode == WB_SYNC_NONE) {
3185 done = 1;
3186 break;
3187 }
3188next:
3189 if (need_readd)
3190 goto readd;
3191 }
3192 release_pages(pages, nr_pages);
3193 cond_resched();
3194 }
3195#ifdef CONFIG_F2FS_FS_COMPRESSION
3196 /* flush remained pages in compress cluster */
3197 if (f2fs_compressed_file(inode) && !f2fs_cluster_is_empty(&cc)) {
3198 ret = f2fs_write_multi_pages(&cc, &submitted, wbc, io_type);
3199 nwritten += submitted;
3200 wbc->nr_to_write -= submitted;
3201 if (ret) {
3202 done = 1;
3203 retry = 0;
3204 }
3205 }
3206 if (f2fs_compressed_file(inode))
3207 f2fs_destroy_compress_ctx(&cc, false);
3208#endif
3209 if (retry) {
3210 index = 0;
3211 end = -1;
3212 goto retry;
3213 }
3214 if (wbc->range_cyclic && !done)
3215 done_index = 0;
3216 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3217 mapping->writeback_index = done_index;
3218
3219 if (nwritten)
3220 f2fs_submit_merged_write_cond(F2FS_M_SB(mapping), mapping->host,
3221 NULL, 0, DATA);
3222 /* submit cached bio of IPU write */
3223 if (bio)
3224 f2fs_submit_merged_ipu_write(sbi, &bio, NULL);
3225
3226 return ret;
3227}
3228
3229static inline bool __should_serialize_io(struct inode *inode,
3230 struct writeback_control *wbc)
3231{
3232 /* to avoid deadlock in path of data flush */
3233 if (F2FS_I(inode)->wb_task)
3234 return false;
3235
3236 if (!S_ISREG(inode->i_mode))
3237 return false;
3238 if (IS_NOQUOTA(inode))
3239 return false;
3240
3241 if (f2fs_need_compress_data(inode))
3242 return true;
3243 if (wbc->sync_mode != WB_SYNC_ALL)
3244 return true;
3245 if (get_dirty_pages(inode) >= SM_I(F2FS_I_SB(inode))->min_seq_blocks)
3246 return true;
3247 return false;
3248}
3249
3250static int __f2fs_write_data_pages(struct address_space *mapping,
3251 struct writeback_control *wbc,
3252 enum iostat_type io_type)
3253{
3254 struct inode *inode = mapping->host;
3255 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3256 struct blk_plug plug;
3257 int ret;
3258 bool locked = false;
3259
3260 /* deal with chardevs and other special file */
3261 if (!mapping->a_ops->writepage)
3262 return 0;
3263
3264 /* skip writing if there is no dirty page in this inode */
3265 if (!get_dirty_pages(inode) && wbc->sync_mode == WB_SYNC_NONE)
3266 return 0;
3267
3268 /* during POR, we don't need to trigger writepage at all. */
3269 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
3270 goto skip_write;
3271
3272 if ((S_ISDIR(inode->i_mode) || IS_NOQUOTA(inode)) &&
3273 wbc->sync_mode == WB_SYNC_NONE &&
3274 get_dirty_pages(inode) < nr_pages_to_skip(sbi, DATA) &&
3275 f2fs_available_free_memory(sbi, DIRTY_DENTS))
3276 goto skip_write;
3277
3278 /* skip writing in file defragment preparing stage */
3279 if (is_inode_flag_set(inode, FI_SKIP_WRITES))
3280 goto skip_write;
3281
3282 trace_f2fs_writepages(mapping->host, wbc, DATA);
3283
3284 /* to avoid spliting IOs due to mixed WB_SYNC_ALL and WB_SYNC_NONE */
3285 if (wbc->sync_mode == WB_SYNC_ALL)
3286 atomic_inc(&sbi->wb_sync_req[DATA]);
3287 else if (atomic_read(&sbi->wb_sync_req[DATA])) {
3288 /* to avoid potential deadlock */
3289 if (current->plug)
3290 blk_finish_plug(current->plug);
3291 goto skip_write;
3292 }
3293
3294 if (__should_serialize_io(inode, wbc)) {
3295 mutex_lock(&sbi->writepages);
3296 locked = true;
3297 }
3298
3299 blk_start_plug(&plug);
3300 ret = f2fs_write_cache_pages(mapping, wbc, io_type);
3301 blk_finish_plug(&plug);
3302
3303 if (locked)
3304 mutex_unlock(&sbi->writepages);
3305
3306 if (wbc->sync_mode == WB_SYNC_ALL)
3307 atomic_dec(&sbi->wb_sync_req[DATA]);
3308 /*
3309 * if some pages were truncated, we cannot guarantee its mapping->host
3310 * to detect pending bios.
3311 */
3312
3313 f2fs_remove_dirty_inode(inode);
3314 return ret;
3315
3316skip_write:
3317 wbc->pages_skipped += get_dirty_pages(inode);
3318 trace_f2fs_writepages(mapping->host, wbc, DATA);
3319 return 0;
3320}
3321
3322static int f2fs_write_data_pages(struct address_space *mapping,
3323 struct writeback_control *wbc)
3324{
3325 struct inode *inode = mapping->host;
3326
3327 return __f2fs_write_data_pages(mapping, wbc,
3328 F2FS_I(inode)->cp_task == current ?
3329 FS_CP_DATA_IO : FS_DATA_IO);
3330}
3331
3332void f2fs_write_failed(struct inode *inode, loff_t to)
3333{
3334 loff_t i_size = i_size_read(inode);
3335
3336 if (IS_NOQUOTA(inode))
3337 return;
3338
3339 /* In the fs-verity case, f2fs_end_enable_verity() does the truncate */
3340 if (to > i_size && !f2fs_verity_in_progress(inode)) {
3341 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3342 filemap_invalidate_lock(inode->i_mapping);
3343
3344 truncate_pagecache(inode, i_size);
3345 f2fs_truncate_blocks(inode, i_size, true);
3346
3347 filemap_invalidate_unlock(inode->i_mapping);
3348 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3349 }
3350}
3351
3352static int prepare_write_begin(struct f2fs_sb_info *sbi,
3353 struct page *page, loff_t pos, unsigned len,
3354 block_t *blk_addr, bool *node_changed)
3355{
3356 struct inode *inode = page->mapping->host;
3357 pgoff_t index = page->index;
3358 struct dnode_of_data dn;
3359 struct page *ipage;
3360 bool locked = false;
3361 int flag = F2FS_GET_BLOCK_PRE_AIO;
3362 int err = 0;
3363
3364 /*
3365 * If a whole page is being written and we already preallocated all the
3366 * blocks, then there is no need to get a block address now.
3367 */
3368 if (len == PAGE_SIZE && is_inode_flag_set(inode, FI_PREALLOCATED_ALL))
3369 return 0;
3370
3371 /* f2fs_lock_op avoids race between write CP and convert_inline_page */
3372 if (f2fs_has_inline_data(inode)) {
3373 if (pos + len > MAX_INLINE_DATA(inode))
3374 flag = F2FS_GET_BLOCK_DEFAULT;
3375 f2fs_map_lock(sbi, flag);
3376 locked = true;
3377 } else if ((pos & PAGE_MASK) >= i_size_read(inode)) {
3378 f2fs_map_lock(sbi, flag);
3379 locked = true;
3380 }
3381
3382restart:
3383 /* check inline_data */
3384 ipage = f2fs_get_node_page(sbi, inode->i_ino);
3385 if (IS_ERR(ipage)) {
3386 err = PTR_ERR(ipage);
3387 goto unlock_out;
3388 }
3389
3390 set_new_dnode(&dn, inode, ipage, ipage, 0);
3391
3392 if (f2fs_has_inline_data(inode)) {
3393 if (pos + len <= MAX_INLINE_DATA(inode)) {
3394 f2fs_do_read_inline_data(page, ipage);
3395 set_inode_flag(inode, FI_DATA_EXIST);
3396 if (inode->i_nlink)
3397 set_page_private_inline(ipage);
3398 goto out;
3399 }
3400 err = f2fs_convert_inline_page(&dn, page);
3401 if (err || dn.data_blkaddr != NULL_ADDR)
3402 goto out;
3403 }
3404
3405 if (!f2fs_lookup_read_extent_cache_block(inode, index,
3406 &dn.data_blkaddr)) {
3407 if (locked) {
3408 err = f2fs_reserve_block(&dn, index);
3409 goto out;
3410 }
3411
3412 /* hole case */
3413 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3414 if (!err && dn.data_blkaddr != NULL_ADDR)
3415 goto out;
3416 f2fs_put_dnode(&dn);
3417 f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3418 WARN_ON(flag != F2FS_GET_BLOCK_PRE_AIO);
3419 locked = true;
3420 goto restart;
3421 }
3422out:
3423 if (!err) {
3424 /* convert_inline_page can make node_changed */
3425 *blk_addr = dn.data_blkaddr;
3426 *node_changed = dn.node_changed;
3427 }
3428 f2fs_put_dnode(&dn);
3429unlock_out:
3430 if (locked)
3431 f2fs_map_unlock(sbi, flag);
3432 return err;
3433}
3434
3435static int __find_data_block(struct inode *inode, pgoff_t index,
3436 block_t *blk_addr)
3437{
3438 struct dnode_of_data dn;
3439 struct page *ipage;
3440 int err = 0;
3441
3442 ipage = f2fs_get_node_page(F2FS_I_SB(inode), inode->i_ino);
3443 if (IS_ERR(ipage))
3444 return PTR_ERR(ipage);
3445
3446 set_new_dnode(&dn, inode, ipage, ipage, 0);
3447
3448 if (!f2fs_lookup_read_extent_cache_block(inode, index,
3449 &dn.data_blkaddr)) {
3450 /* hole case */
3451 err = f2fs_get_dnode_of_data(&dn, index, LOOKUP_NODE);
3452 if (err) {
3453 dn.data_blkaddr = NULL_ADDR;
3454 err = 0;
3455 }
3456 }
3457 *blk_addr = dn.data_blkaddr;
3458 f2fs_put_dnode(&dn);
3459 return err;
3460}
3461
3462static int __reserve_data_block(struct inode *inode, pgoff_t index,
3463 block_t *blk_addr, bool *node_changed)
3464{
3465 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3466 struct dnode_of_data dn;
3467 struct page *ipage;
3468 int err = 0;
3469
3470 f2fs_map_lock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3471
3472 ipage = f2fs_get_node_page(sbi, inode->i_ino);
3473 if (IS_ERR(ipage)) {
3474 err = PTR_ERR(ipage);
3475 goto unlock_out;
3476 }
3477 set_new_dnode(&dn, inode, ipage, ipage, 0);
3478
3479 if (!f2fs_lookup_read_extent_cache_block(dn.inode, index,
3480 &dn.data_blkaddr))
3481 err = f2fs_reserve_block(&dn, index);
3482
3483 *blk_addr = dn.data_blkaddr;
3484 *node_changed = dn.node_changed;
3485 f2fs_put_dnode(&dn);
3486
3487unlock_out:
3488 f2fs_map_unlock(sbi, F2FS_GET_BLOCK_PRE_AIO);
3489 return err;
3490}
3491
3492static int prepare_atomic_write_begin(struct f2fs_sb_info *sbi,
3493 struct page *page, loff_t pos, unsigned int len,
3494 block_t *blk_addr, bool *node_changed, bool *use_cow)
3495{
3496 struct inode *inode = page->mapping->host;
3497 struct inode *cow_inode = F2FS_I(inode)->cow_inode;
3498 pgoff_t index = page->index;
3499 int err = 0;
3500 block_t ori_blk_addr = NULL_ADDR;
3501
3502 /* If pos is beyond the end of file, reserve a new block in COW inode */
3503 if ((pos & PAGE_MASK) >= i_size_read(inode))
3504 goto reserve_block;
3505
3506 /* Look for the block in COW inode first */
3507 err = __find_data_block(cow_inode, index, blk_addr);
3508 if (err) {
3509 return err;
3510 } else if (*blk_addr != NULL_ADDR) {
3511 *use_cow = true;
3512 return 0;
3513 }
3514
3515 if (is_inode_flag_set(inode, FI_ATOMIC_REPLACE))
3516 goto reserve_block;
3517
3518 /* Look for the block in the original inode */
3519 err = __find_data_block(inode, index, &ori_blk_addr);
3520 if (err)
3521 return err;
3522
3523reserve_block:
3524 /* Finally, we should reserve a new block in COW inode for the update */
3525 err = __reserve_data_block(cow_inode, index, blk_addr, node_changed);
3526 if (err)
3527 return err;
3528 inc_atomic_write_cnt(inode);
3529
3530 if (ori_blk_addr != NULL_ADDR)
3531 *blk_addr = ori_blk_addr;
3532 return 0;
3533}
3534
3535static int f2fs_write_begin(struct file *file, struct address_space *mapping,
3536 loff_t pos, unsigned len, struct page **pagep, void **fsdata)
3537{
3538 struct inode *inode = mapping->host;
3539 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3540 struct page *page = NULL;
3541 pgoff_t index = ((unsigned long long) pos) >> PAGE_SHIFT;
3542 bool need_balance = false;
3543 bool use_cow = false;
3544 block_t blkaddr = NULL_ADDR;
3545 int err = 0;
3546
3547 trace_f2fs_write_begin(inode, pos, len);
3548
3549 if (!f2fs_is_checkpoint_ready(sbi)) {
3550 err = -ENOSPC;
3551 goto fail;
3552 }
3553
3554 /*
3555 * We should check this at this moment to avoid deadlock on inode page
3556 * and #0 page. The locking rule for inline_data conversion should be:
3557 * lock_page(page #0) -> lock_page(inode_page)
3558 */
3559 if (index != 0) {
3560 err = f2fs_convert_inline_inode(inode);
3561 if (err)
3562 goto fail;
3563 }
3564
3565#ifdef CONFIG_F2FS_FS_COMPRESSION
3566 if (f2fs_compressed_file(inode)) {
3567 int ret;
3568
3569 *fsdata = NULL;
3570
3571 if (len == PAGE_SIZE && !(f2fs_is_atomic_file(inode)))
3572 goto repeat;
3573
3574 ret = f2fs_prepare_compress_overwrite(inode, pagep,
3575 index, fsdata);
3576 if (ret < 0) {
3577 err = ret;
3578 goto fail;
3579 } else if (ret) {
3580 return 0;
3581 }
3582 }
3583#endif
3584
3585repeat:
3586 /*
3587 * Do not use grab_cache_page_write_begin() to avoid deadlock due to
3588 * wait_for_stable_page. Will wait that below with our IO control.
3589 */
3590 page = f2fs_pagecache_get_page(mapping, index,
3591 FGP_LOCK | FGP_WRITE | FGP_CREAT, GFP_NOFS);
3592 if (!page) {
3593 err = -ENOMEM;
3594 goto fail;
3595 }
3596
3597 /* TODO: cluster can be compressed due to race with .writepage */
3598
3599 *pagep = page;
3600
3601 if (f2fs_is_atomic_file(inode))
3602 err = prepare_atomic_write_begin(sbi, page, pos, len,
3603 &blkaddr, &need_balance, &use_cow);
3604 else
3605 err = prepare_write_begin(sbi, page, pos, len,
3606 &blkaddr, &need_balance);
3607 if (err)
3608 goto fail;
3609
3610 if (need_balance && !IS_NOQUOTA(inode) &&
3611 has_not_enough_free_secs(sbi, 0, 0)) {
3612 unlock_page(page);
3613 f2fs_balance_fs(sbi, true);
3614 lock_page(page);
3615 if (page->mapping != mapping) {
3616 /* The page got truncated from under us */
3617 f2fs_put_page(page, 1);
3618 goto repeat;
3619 }
3620 }
3621
3622 f2fs_wait_on_page_writeback(page, DATA, false, true);
3623
3624 if (len == PAGE_SIZE || PageUptodate(page))
3625 return 0;
3626
3627 if (!(pos & (PAGE_SIZE - 1)) && (pos + len) >= i_size_read(inode) &&
3628 !f2fs_verity_in_progress(inode)) {
3629 zero_user_segment(page, len, PAGE_SIZE);
3630 return 0;
3631 }
3632
3633 if (blkaddr == NEW_ADDR) {
3634 zero_user_segment(page, 0, PAGE_SIZE);
3635 SetPageUptodate(page);
3636 } else {
3637 if (!f2fs_is_valid_blkaddr(sbi, blkaddr,
3638 DATA_GENERIC_ENHANCE_READ)) {
3639 err = -EFSCORRUPTED;
3640 f2fs_handle_error(sbi, ERROR_INVALID_BLKADDR);
3641 goto fail;
3642 }
3643 err = f2fs_submit_page_read(use_cow ?
3644 F2FS_I(inode)->cow_inode : inode, page,
3645 blkaddr, 0, true);
3646 if (err)
3647 goto fail;
3648
3649 lock_page(page);
3650 if (unlikely(page->mapping != mapping)) {
3651 f2fs_put_page(page, 1);
3652 goto repeat;
3653 }
3654 if (unlikely(!PageUptodate(page))) {
3655 err = -EIO;
3656 goto fail;
3657 }
3658 }
3659 return 0;
3660
3661fail:
3662 f2fs_put_page(page, 1);
3663 f2fs_write_failed(inode, pos + len);
3664 return err;
3665}
3666
3667static int f2fs_write_end(struct file *file,
3668 struct address_space *mapping,
3669 loff_t pos, unsigned len, unsigned copied,
3670 struct page *page, void *fsdata)
3671{
3672 struct inode *inode = page->mapping->host;
3673
3674 trace_f2fs_write_end(inode, pos, len, copied);
3675
3676 /*
3677 * This should be come from len == PAGE_SIZE, and we expect copied
3678 * should be PAGE_SIZE. Otherwise, we treat it with zero copied and
3679 * let generic_perform_write() try to copy data again through copied=0.
3680 */
3681 if (!PageUptodate(page)) {
3682 if (unlikely(copied != len))
3683 copied = 0;
3684 else
3685 SetPageUptodate(page);
3686 }
3687
3688#ifdef CONFIG_F2FS_FS_COMPRESSION
3689 /* overwrite compressed file */
3690 if (f2fs_compressed_file(inode) && fsdata) {
3691 f2fs_compress_write_end(inode, fsdata, page->index, copied);
3692 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3693
3694 if (pos + copied > i_size_read(inode) &&
3695 !f2fs_verity_in_progress(inode))
3696 f2fs_i_size_write(inode, pos + copied);
3697 return copied;
3698 }
3699#endif
3700
3701 if (!copied)
3702 goto unlock_out;
3703
3704 set_page_dirty(page);
3705
3706 if (pos + copied > i_size_read(inode) &&
3707 !f2fs_verity_in_progress(inode)) {
3708 f2fs_i_size_write(inode, pos + copied);
3709 if (f2fs_is_atomic_file(inode))
3710 f2fs_i_size_write(F2FS_I(inode)->cow_inode,
3711 pos + copied);
3712 }
3713unlock_out:
3714 f2fs_put_page(page, 1);
3715 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
3716 return copied;
3717}
3718
3719void f2fs_invalidate_folio(struct folio *folio, size_t offset, size_t length)
3720{
3721 struct inode *inode = folio->mapping->host;
3722 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3723
3724 if (inode->i_ino >= F2FS_ROOT_INO(sbi) &&
3725 (offset || length != folio_size(folio)))
3726 return;
3727
3728 if (folio_test_dirty(folio)) {
3729 if (inode->i_ino == F2FS_META_INO(sbi)) {
3730 dec_page_count(sbi, F2FS_DIRTY_META);
3731 } else if (inode->i_ino == F2FS_NODE_INO(sbi)) {
3732 dec_page_count(sbi, F2FS_DIRTY_NODES);
3733 } else {
3734 inode_dec_dirty_pages(inode);
3735 f2fs_remove_dirty_inode(inode);
3736 }
3737 }
3738 clear_page_private_all(&folio->page);
3739}
3740
3741bool f2fs_release_folio(struct folio *folio, gfp_t wait)
3742{
3743 /* If this is dirty folio, keep private data */
3744 if (folio_test_dirty(folio))
3745 return false;
3746
3747 clear_page_private_all(&folio->page);
3748 return true;
3749}
3750
3751static bool f2fs_dirty_data_folio(struct address_space *mapping,
3752 struct folio *folio)
3753{
3754 struct inode *inode = mapping->host;
3755
3756 trace_f2fs_set_page_dirty(&folio->page, DATA);
3757
3758 if (!folio_test_uptodate(folio))
3759 folio_mark_uptodate(folio);
3760 BUG_ON(folio_test_swapcache(folio));
3761
3762 if (filemap_dirty_folio(mapping, folio)) {
3763 f2fs_update_dirty_folio(inode, folio);
3764 return true;
3765 }
3766 return false;
3767}
3768
3769
3770static sector_t f2fs_bmap_compress(struct inode *inode, sector_t block)
3771{
3772#ifdef CONFIG_F2FS_FS_COMPRESSION
3773 struct dnode_of_data dn;
3774 sector_t start_idx, blknr = 0;
3775 int ret;
3776
3777 start_idx = round_down(block, F2FS_I(inode)->i_cluster_size);
3778
3779 set_new_dnode(&dn, inode, NULL, NULL, 0);
3780 ret = f2fs_get_dnode_of_data(&dn, start_idx, LOOKUP_NODE);
3781 if (ret)
3782 return 0;
3783
3784 if (dn.data_blkaddr != COMPRESS_ADDR) {
3785 dn.ofs_in_node += block - start_idx;
3786 blknr = f2fs_data_blkaddr(&dn);
3787 if (!__is_valid_data_blkaddr(blknr))
3788 blknr = 0;
3789 }
3790
3791 f2fs_put_dnode(&dn);
3792 return blknr;
3793#else
3794 return 0;
3795#endif
3796}
3797
3798
3799static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
3800{
3801 struct inode *inode = mapping->host;
3802 sector_t blknr = 0;
3803
3804 if (f2fs_has_inline_data(inode))
3805 goto out;
3806
3807 /* make sure allocating whole blocks */
3808 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
3809 filemap_write_and_wait(mapping);
3810
3811 /* Block number less than F2FS MAX BLOCKS */
3812 if (unlikely(block >= max_file_blocks(inode)))
3813 goto out;
3814
3815 if (f2fs_compressed_file(inode)) {
3816 blknr = f2fs_bmap_compress(inode, block);
3817 } else {
3818 struct f2fs_map_blocks map;
3819
3820 memset(&map, 0, sizeof(map));
3821 map.m_lblk = block;
3822 map.m_len = 1;
3823 map.m_next_pgofs = NULL;
3824 map.m_seg_type = NO_CHECK_TYPE;
3825
3826 if (!f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_BMAP))
3827 blknr = map.m_pblk;
3828 }
3829out:
3830 trace_f2fs_bmap(inode, block, blknr);
3831 return blknr;
3832}
3833
3834#ifdef CONFIG_SWAP
3835static int f2fs_migrate_blocks(struct inode *inode, block_t start_blk,
3836 unsigned int blkcnt)
3837{
3838 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3839 unsigned int blkofs;
3840 unsigned int blk_per_sec = BLKS_PER_SEC(sbi);
3841 unsigned int secidx = start_blk / blk_per_sec;
3842 unsigned int end_sec = secidx + blkcnt / blk_per_sec;
3843 int ret = 0;
3844
3845 f2fs_down_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3846 filemap_invalidate_lock(inode->i_mapping);
3847
3848 set_inode_flag(inode, FI_ALIGNED_WRITE);
3849 set_inode_flag(inode, FI_OPU_WRITE);
3850
3851 for (; secidx < end_sec; secidx++) {
3852 f2fs_down_write(&sbi->pin_sem);
3853
3854 f2fs_lock_op(sbi);
3855 f2fs_allocate_new_section(sbi, CURSEG_COLD_DATA_PINNED, false);
3856 f2fs_unlock_op(sbi);
3857
3858 set_inode_flag(inode, FI_SKIP_WRITES);
3859
3860 for (blkofs = 0; blkofs < blk_per_sec; blkofs++) {
3861 struct page *page;
3862 unsigned int blkidx = secidx * blk_per_sec + blkofs;
3863
3864 page = f2fs_get_lock_data_page(inode, blkidx, true);
3865 if (IS_ERR(page)) {
3866 f2fs_up_write(&sbi->pin_sem);
3867 ret = PTR_ERR(page);
3868 goto done;
3869 }
3870
3871 set_page_dirty(page);
3872 f2fs_put_page(page, 1);
3873 }
3874
3875 clear_inode_flag(inode, FI_SKIP_WRITES);
3876
3877 ret = filemap_fdatawrite(inode->i_mapping);
3878
3879 f2fs_up_write(&sbi->pin_sem);
3880
3881 if (ret)
3882 break;
3883 }
3884
3885done:
3886 clear_inode_flag(inode, FI_SKIP_WRITES);
3887 clear_inode_flag(inode, FI_OPU_WRITE);
3888 clear_inode_flag(inode, FI_ALIGNED_WRITE);
3889
3890 filemap_invalidate_unlock(inode->i_mapping);
3891 f2fs_up_write(&F2FS_I(inode)->i_gc_rwsem[WRITE]);
3892
3893 return ret;
3894}
3895
3896static int check_swap_activate(struct swap_info_struct *sis,
3897 struct file *swap_file, sector_t *span)
3898{
3899 struct address_space *mapping = swap_file->f_mapping;
3900 struct inode *inode = mapping->host;
3901 struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3902 sector_t cur_lblock;
3903 sector_t last_lblock;
3904 sector_t pblock;
3905 sector_t lowest_pblock = -1;
3906 sector_t highest_pblock = 0;
3907 int nr_extents = 0;
3908 unsigned long nr_pblocks;
3909 unsigned int blks_per_sec = BLKS_PER_SEC(sbi);
3910 unsigned int sec_blks_mask = BLKS_PER_SEC(sbi) - 1;
3911 unsigned int not_aligned = 0;
3912 int ret = 0;
3913
3914 /*
3915 * Map all the blocks into the extent list. This code doesn't try
3916 * to be very smart.
3917 */
3918 cur_lblock = 0;
3919 last_lblock = bytes_to_blks(inode, i_size_read(inode));
3920
3921 while (cur_lblock < last_lblock && cur_lblock < sis->max) {
3922 struct f2fs_map_blocks map;
3923retry:
3924 cond_resched();
3925
3926 memset(&map, 0, sizeof(map));
3927 map.m_lblk = cur_lblock;
3928 map.m_len = last_lblock - cur_lblock;
3929 map.m_next_pgofs = NULL;
3930 map.m_next_extent = NULL;
3931 map.m_seg_type = NO_CHECK_TYPE;
3932 map.m_may_create = false;
3933
3934 ret = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_FIEMAP);
3935 if (ret)
3936 goto out;
3937
3938 /* hole */
3939 if (!(map.m_flags & F2FS_MAP_FLAGS)) {
3940 f2fs_err(sbi, "Swapfile has holes");
3941 ret = -EINVAL;
3942 goto out;
3943 }
3944
3945 pblock = map.m_pblk;
3946 nr_pblocks = map.m_len;
3947
3948 if ((pblock - SM_I(sbi)->main_blkaddr) & sec_blks_mask ||
3949 nr_pblocks & sec_blks_mask) {
3950 not_aligned++;
3951
3952 nr_pblocks = roundup(nr_pblocks, blks_per_sec);
3953 if (cur_lblock + nr_pblocks > sis->max)
3954 nr_pblocks -= blks_per_sec;
3955
3956 if (!nr_pblocks) {
3957 /* this extent is last one */
3958 nr_pblocks = map.m_len;
3959 f2fs_warn(sbi, "Swapfile: last extent is not aligned to section");
3960 goto next;
3961 }
3962
3963 ret = f2fs_migrate_blocks(inode, cur_lblock,
3964 nr_pblocks);
3965 if (ret)
3966 goto out;
3967 goto retry;
3968 }
3969next:
3970 if (cur_lblock + nr_pblocks >= sis->max)
3971 nr_pblocks = sis->max - cur_lblock;
3972
3973 if (cur_lblock) { /* exclude the header page */
3974 if (pblock < lowest_pblock)
3975 lowest_pblock = pblock;
3976 if (pblock + nr_pblocks - 1 > highest_pblock)
3977 highest_pblock = pblock + nr_pblocks - 1;
3978 }
3979
3980 /*
3981 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
3982 */
3983 ret = add_swap_extent(sis, cur_lblock, nr_pblocks, pblock);
3984 if (ret < 0)
3985 goto out;
3986 nr_extents += ret;
3987 cur_lblock += nr_pblocks;
3988 }
3989 ret = nr_extents;
3990 *span = 1 + highest_pblock - lowest_pblock;
3991 if (cur_lblock == 0)
3992 cur_lblock = 1; /* force Empty message */
3993 sis->max = cur_lblock;
3994 sis->pages = cur_lblock - 1;
3995 sis->highest_bit = cur_lblock - 1;
3996out:
3997 if (not_aligned)
3998 f2fs_warn(sbi, "Swapfile (%u) is not align to section: 1) creat(), 2) ioctl(F2FS_IOC_SET_PIN_FILE), 3) fallocate(%u * N)",
3999 not_aligned, blks_per_sec * F2FS_BLKSIZE);
4000 return ret;
4001}
4002
4003static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4004 sector_t *span)
4005{
4006 struct inode *inode = file_inode(file);
4007 int ret;
4008
4009 if (!S_ISREG(inode->i_mode))
4010 return -EINVAL;
4011
4012 if (f2fs_readonly(F2FS_I_SB(inode)->sb))
4013 return -EROFS;
4014
4015 if (f2fs_lfs_mode(F2FS_I_SB(inode))) {
4016 f2fs_err(F2FS_I_SB(inode),
4017 "Swapfile not supported in LFS mode");
4018 return -EINVAL;
4019 }
4020
4021 ret = f2fs_convert_inline_inode(inode);
4022 if (ret)
4023 return ret;
4024
4025 if (!f2fs_disable_compressed_file(inode))
4026 return -EINVAL;
4027
4028 f2fs_precache_extents(inode);
4029
4030 ret = check_swap_activate(sis, file, span);
4031 if (ret < 0)
4032 return ret;
4033
4034 stat_inc_swapfile_inode(inode);
4035 set_inode_flag(inode, FI_PIN_FILE);
4036 f2fs_update_time(F2FS_I_SB(inode), REQ_TIME);
4037 return ret;
4038}
4039
4040static void f2fs_swap_deactivate(struct file *file)
4041{
4042 struct inode *inode = file_inode(file);
4043
4044 stat_dec_swapfile_inode(inode);
4045 clear_inode_flag(inode, FI_PIN_FILE);
4046}
4047#else
4048static int f2fs_swap_activate(struct swap_info_struct *sis, struct file *file,
4049 sector_t *span)
4050{
4051 return -EOPNOTSUPP;
4052}
4053
4054static void f2fs_swap_deactivate(struct file *file)
4055{
4056}
4057#endif
4058
4059const struct address_space_operations f2fs_dblock_aops = {
4060 .read_folio = f2fs_read_data_folio,
4061 .readahead = f2fs_readahead,
4062 .writepage = f2fs_write_data_page,
4063 .writepages = f2fs_write_data_pages,
4064 .write_begin = f2fs_write_begin,
4065 .write_end = f2fs_write_end,
4066 .dirty_folio = f2fs_dirty_data_folio,
4067 .migrate_folio = filemap_migrate_folio,
4068 .invalidate_folio = f2fs_invalidate_folio,
4069 .release_folio = f2fs_release_folio,
4070 .direct_IO = noop_direct_IO,
4071 .bmap = f2fs_bmap,
4072 .swap_activate = f2fs_swap_activate,
4073 .swap_deactivate = f2fs_swap_deactivate,
4074};
4075
4076void f2fs_clear_page_cache_dirty_tag(struct page *page)
4077{
4078 struct address_space *mapping = page_mapping(page);
4079 unsigned long flags;
4080
4081 xa_lock_irqsave(&mapping->i_pages, flags);
4082 __xa_clear_mark(&mapping->i_pages, page_index(page),
4083 PAGECACHE_TAG_DIRTY);
4084 xa_unlock_irqrestore(&mapping->i_pages, flags);
4085}
4086
4087int __init f2fs_init_post_read_processing(void)
4088{
4089 bio_post_read_ctx_cache =
4090 kmem_cache_create("f2fs_bio_post_read_ctx",
4091 sizeof(struct bio_post_read_ctx), 0, 0, NULL);
4092 if (!bio_post_read_ctx_cache)
4093 goto fail;
4094 bio_post_read_ctx_pool =
4095 mempool_create_slab_pool(NUM_PREALLOC_POST_READ_CTXS,
4096 bio_post_read_ctx_cache);
4097 if (!bio_post_read_ctx_pool)
4098 goto fail_free_cache;
4099 return 0;
4100
4101fail_free_cache:
4102 kmem_cache_destroy(bio_post_read_ctx_cache);
4103fail:
4104 return -ENOMEM;
4105}
4106
4107void f2fs_destroy_post_read_processing(void)
4108{
4109 mempool_destroy(bio_post_read_ctx_pool);
4110 kmem_cache_destroy(bio_post_read_ctx_cache);
4111}
4112
4113int f2fs_init_post_read_wq(struct f2fs_sb_info *sbi)
4114{
4115 if (!f2fs_sb_has_encrypt(sbi) &&
4116 !f2fs_sb_has_verity(sbi) &&
4117 !f2fs_sb_has_compression(sbi))
4118 return 0;
4119
4120 sbi->post_read_wq = alloc_workqueue("f2fs_post_read_wq",
4121 WQ_UNBOUND | WQ_HIGHPRI,
4122 num_online_cpus());
4123 return sbi->post_read_wq ? 0 : -ENOMEM;
4124}
4125
4126void f2fs_destroy_post_read_wq(struct f2fs_sb_info *sbi)
4127{
4128 if (sbi->post_read_wq)
4129 destroy_workqueue(sbi->post_read_wq);
4130}
4131
4132int __init f2fs_init_bio_entry_cache(void)
4133{
4134 bio_entry_slab = f2fs_kmem_cache_create("f2fs_bio_entry_slab",
4135 sizeof(struct bio_entry));
4136 return bio_entry_slab ? 0 : -ENOMEM;
4137}
4138
4139void f2fs_destroy_bio_entry_cache(void)
4140{
4141 kmem_cache_destroy(bio_entry_slab);
4142}
4143
4144static int f2fs_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
4145 unsigned int flags, struct iomap *iomap,
4146 struct iomap *srcmap)
4147{
4148 struct f2fs_map_blocks map = {};
4149 pgoff_t next_pgofs = 0;
4150 int err;
4151
4152 map.m_lblk = bytes_to_blks(inode, offset);
4153 map.m_len = bytes_to_blks(inode, offset + length - 1) - map.m_lblk + 1;
4154 map.m_next_pgofs = &next_pgofs;
4155 map.m_seg_type = f2fs_rw_hint_to_seg_type(inode->i_write_hint);
4156 if (flags & IOMAP_WRITE)
4157 map.m_may_create = true;
4158
4159 err = f2fs_map_blocks(inode, &map, F2FS_GET_BLOCK_DIO);
4160 if (err)
4161 return err;
4162
4163 iomap->offset = blks_to_bytes(inode, map.m_lblk);
4164
4165 /*
4166 * When inline encryption is enabled, sometimes I/O to an encrypted file
4167 * has to be broken up to guarantee DUN contiguity. Handle this by
4168 * limiting the length of the mapping returned.
4169 */
4170 map.m_len = fscrypt_limit_io_blocks(inode, map.m_lblk, map.m_len);
4171
4172 /*
4173 * We should never see delalloc or compressed extents here based on
4174 * prior flushing and checks.
4175 */
4176 if (WARN_ON_ONCE(map.m_pblk == NEW_ADDR))
4177 return -EINVAL;
4178 if (WARN_ON_ONCE(map.m_pblk == COMPRESS_ADDR))
4179 return -EINVAL;
4180
4181 if (map.m_pblk != NULL_ADDR) {
4182 iomap->length = blks_to_bytes(inode, map.m_len);
4183 iomap->type = IOMAP_MAPPED;
4184 iomap->flags |= IOMAP_F_MERGED;
4185 iomap->bdev = map.m_bdev;
4186 iomap->addr = blks_to_bytes(inode, map.m_pblk);
4187 } else {
4188 if (flags & IOMAP_WRITE)
4189 return -ENOTBLK;
4190 iomap->length = blks_to_bytes(inode, next_pgofs) -
4191 iomap->offset;
4192 iomap->type = IOMAP_HOLE;
4193 iomap->addr = IOMAP_NULL_ADDR;
4194 }
4195
4196 if (map.m_flags & F2FS_MAP_NEW)
4197 iomap->flags |= IOMAP_F_NEW;
4198 if ((inode->i_state & I_DIRTY_DATASYNC) ||
4199 offset + length > i_size_read(inode))
4200 iomap->flags |= IOMAP_F_DIRTY;
4201
4202 return 0;
4203}
4204
4205const struct iomap_ops f2fs_iomap_ops = {
4206 .iomap_begin = f2fs_iomap_begin,
4207};