Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/slab.h>
7#include <linux/blkdev.h>
8#include <linux/writeback.h>
9#include <linux/sched/mm.h>
10#include "messages.h"
11#include "misc.h"
12#include "ctree.h"
13#include "transaction.h"
14#include "btrfs_inode.h"
15#include "extent_io.h"
16#include "disk-io.h"
17#include "compression.h"
18#include "delalloc-space.h"
19#include "qgroup.h"
20#include "subpage.h"
21#include "file.h"
22#include "super.h"
23
24static struct kmem_cache *btrfs_ordered_extent_cache;
25
26static u64 entry_end(struct btrfs_ordered_extent *entry)
27{
28 if (entry->file_offset + entry->num_bytes < entry->file_offset)
29 return (u64)-1;
30 return entry->file_offset + entry->num_bytes;
31}
32
33/* returns NULL if the insertion worked, or it returns the node it did find
34 * in the tree
35 */
36static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
37 struct rb_node *node)
38{
39 struct rb_node **p = &root->rb_node;
40 struct rb_node *parent = NULL;
41 struct btrfs_ordered_extent *entry;
42
43 while (*p) {
44 parent = *p;
45 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
46
47 if (file_offset < entry->file_offset)
48 p = &(*p)->rb_left;
49 else if (file_offset >= entry_end(entry))
50 p = &(*p)->rb_right;
51 else
52 return parent;
53 }
54
55 rb_link_node(node, parent, p);
56 rb_insert_color(node, root);
57 return NULL;
58}
59
60/*
61 * look for a given offset in the tree, and if it can't be found return the
62 * first lesser offset
63 */
64static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
65 struct rb_node **prev_ret)
66{
67 struct rb_node *n = root->rb_node;
68 struct rb_node *prev = NULL;
69 struct rb_node *test;
70 struct btrfs_ordered_extent *entry;
71 struct btrfs_ordered_extent *prev_entry = NULL;
72
73 while (n) {
74 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
75 prev = n;
76 prev_entry = entry;
77
78 if (file_offset < entry->file_offset)
79 n = n->rb_left;
80 else if (file_offset >= entry_end(entry))
81 n = n->rb_right;
82 else
83 return n;
84 }
85 if (!prev_ret)
86 return NULL;
87
88 while (prev && file_offset >= entry_end(prev_entry)) {
89 test = rb_next(prev);
90 if (!test)
91 break;
92 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
93 rb_node);
94 if (file_offset < entry_end(prev_entry))
95 break;
96
97 prev = test;
98 }
99 if (prev)
100 prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
101 rb_node);
102 while (prev && file_offset < entry_end(prev_entry)) {
103 test = rb_prev(prev);
104 if (!test)
105 break;
106 prev_entry = rb_entry(test, struct btrfs_ordered_extent,
107 rb_node);
108 prev = test;
109 }
110 *prev_ret = prev;
111 return NULL;
112}
113
114static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
115 u64 len)
116{
117 if (file_offset + len <= entry->file_offset ||
118 entry->file_offset + entry->num_bytes <= file_offset)
119 return 0;
120 return 1;
121}
122
123/*
124 * look find the first ordered struct that has this offset, otherwise
125 * the first one less than this offset
126 */
127static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
128 u64 file_offset)
129{
130 struct rb_root *root = &tree->tree;
131 struct rb_node *prev = NULL;
132 struct rb_node *ret;
133 struct btrfs_ordered_extent *entry;
134
135 if (tree->last) {
136 entry = rb_entry(tree->last, struct btrfs_ordered_extent,
137 rb_node);
138 if (in_range(file_offset, entry->file_offset, entry->num_bytes))
139 return tree->last;
140 }
141 ret = __tree_search(root, file_offset, &prev);
142 if (!ret)
143 ret = prev;
144 if (ret)
145 tree->last = ret;
146 return ret;
147}
148
149/*
150 * Add an ordered extent to the per-inode tree.
151 *
152 * @inode: Inode that this extent is for.
153 * @file_offset: Logical offset in file where the extent starts.
154 * @num_bytes: Logical length of extent in file.
155 * @ram_bytes: Full length of unencoded data.
156 * @disk_bytenr: Offset of extent on disk.
157 * @disk_num_bytes: Size of extent on disk.
158 * @offset: Offset into unencoded data where file data starts.
159 * @flags: Flags specifying type of extent (1 << BTRFS_ORDERED_*).
160 * @compress_type: Compression algorithm used for data.
161 *
162 * Most of these parameters correspond to &struct btrfs_file_extent_item. The
163 * tree is given a single reference on the ordered extent that was inserted, and
164 * the returned pointer is given a second reference.
165 *
166 * Return: the new ordered extent or error pointer.
167 */
168struct btrfs_ordered_extent *btrfs_alloc_ordered_extent(
169 struct btrfs_inode *inode, u64 file_offset,
170 u64 num_bytes, u64 ram_bytes, u64 disk_bytenr,
171 u64 disk_num_bytes, u64 offset, unsigned long flags,
172 int compress_type)
173{
174 struct btrfs_root *root = inode->root;
175 struct btrfs_fs_info *fs_info = root->fs_info;
176 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
177 struct rb_node *node;
178 struct btrfs_ordered_extent *entry;
179 int ret;
180
181 if (flags &
182 ((1 << BTRFS_ORDERED_NOCOW) | (1 << BTRFS_ORDERED_PREALLOC))) {
183 /* For nocow write, we can release the qgroup rsv right now */
184 ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes);
185 if (ret < 0)
186 return ERR_PTR(ret);
187 ret = 0;
188 } else {
189 /*
190 * The ordered extent has reserved qgroup space, release now
191 * and pass the reserved number for qgroup_record to free.
192 */
193 ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes);
194 if (ret < 0)
195 return ERR_PTR(ret);
196 }
197 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
198 if (!entry)
199 return ERR_PTR(-ENOMEM);
200
201 entry->file_offset = file_offset;
202 entry->num_bytes = num_bytes;
203 entry->ram_bytes = ram_bytes;
204 entry->disk_bytenr = disk_bytenr;
205 entry->disk_num_bytes = disk_num_bytes;
206 entry->offset = offset;
207 entry->bytes_left = num_bytes;
208 entry->inode = igrab(&inode->vfs_inode);
209 entry->compress_type = compress_type;
210 entry->truncated_len = (u64)-1;
211 entry->qgroup_rsv = ret;
212 entry->physical = (u64)-1;
213
214 ASSERT((flags & ~BTRFS_ORDERED_TYPE_FLAGS) == 0);
215 entry->flags = flags;
216
217 percpu_counter_add_batch(&fs_info->ordered_bytes, num_bytes,
218 fs_info->delalloc_batch);
219
220 /* one ref for the tree */
221 refcount_set(&entry->refs, 1);
222 init_waitqueue_head(&entry->wait);
223 INIT_LIST_HEAD(&entry->list);
224 INIT_LIST_HEAD(&entry->log_list);
225 INIT_LIST_HEAD(&entry->root_extent_list);
226 INIT_LIST_HEAD(&entry->work_list);
227 init_completion(&entry->completion);
228
229 trace_btrfs_ordered_extent_add(inode, entry);
230
231 spin_lock_irq(&tree->lock);
232 node = tree_insert(&tree->tree, file_offset,
233 &entry->rb_node);
234 if (node)
235 btrfs_panic(fs_info, -EEXIST,
236 "inconsistency in ordered tree at offset %llu",
237 file_offset);
238 spin_unlock_irq(&tree->lock);
239
240 spin_lock(&root->ordered_extent_lock);
241 list_add_tail(&entry->root_extent_list,
242 &root->ordered_extents);
243 root->nr_ordered_extents++;
244 if (root->nr_ordered_extents == 1) {
245 spin_lock(&fs_info->ordered_root_lock);
246 BUG_ON(!list_empty(&root->ordered_root));
247 list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
248 spin_unlock(&fs_info->ordered_root_lock);
249 }
250 spin_unlock(&root->ordered_extent_lock);
251
252 /*
253 * We don't need the count_max_extents here, we can assume that all of
254 * that work has been done at higher layers, so this is truly the
255 * smallest the extent is going to get.
256 */
257 spin_lock(&inode->lock);
258 btrfs_mod_outstanding_extents(inode, 1);
259 spin_unlock(&inode->lock);
260
261 /* One ref for the returned entry to match semantics of lookup. */
262 refcount_inc(&entry->refs);
263
264 return entry;
265}
266
267/*
268 * Add a new btrfs_ordered_extent for the range, but drop the reference instead
269 * of returning it to the caller.
270 */
271int btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset,
272 u64 num_bytes, u64 ram_bytes, u64 disk_bytenr,
273 u64 disk_num_bytes, u64 offset, unsigned long flags,
274 int compress_type)
275{
276 struct btrfs_ordered_extent *ordered;
277
278 ordered = btrfs_alloc_ordered_extent(inode, file_offset, num_bytes,
279 ram_bytes, disk_bytenr,
280 disk_num_bytes, offset, flags,
281 compress_type);
282
283 if (IS_ERR(ordered))
284 return PTR_ERR(ordered);
285 btrfs_put_ordered_extent(ordered);
286
287 return 0;
288}
289
290/*
291 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
292 * when an ordered extent is finished. If the list covers more than one
293 * ordered extent, it is split across multiples.
294 */
295void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
296 struct btrfs_ordered_sum *sum)
297{
298 struct btrfs_ordered_inode_tree *tree;
299
300 tree = &BTRFS_I(entry->inode)->ordered_tree;
301 spin_lock_irq(&tree->lock);
302 list_add_tail(&sum->list, &entry->list);
303 spin_unlock_irq(&tree->lock);
304}
305
306static void finish_ordered_fn(struct btrfs_work *work)
307{
308 struct btrfs_ordered_extent *ordered_extent;
309
310 ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
311 btrfs_finish_ordered_io(ordered_extent);
312}
313
314/*
315 * Mark all ordered extents io inside the specified range finished.
316 *
317 * @page: The involved page for the operation.
318 * For uncompressed buffered IO, the page status also needs to be
319 * updated to indicate whether the pending ordered io is finished.
320 * Can be NULL for direct IO and compressed write.
321 * For these cases, callers are ensured they won't execute the
322 * endio function twice.
323 *
324 * This function is called for endio, thus the range must have ordered
325 * extent(s) covering it.
326 */
327void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode,
328 struct page *page, u64 file_offset,
329 u64 num_bytes, bool uptodate)
330{
331 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
332 struct btrfs_fs_info *fs_info = inode->root->fs_info;
333 struct btrfs_workqueue *wq;
334 struct rb_node *node;
335 struct btrfs_ordered_extent *entry = NULL;
336 unsigned long flags;
337 u64 cur = file_offset;
338
339 if (btrfs_is_free_space_inode(inode))
340 wq = fs_info->endio_freespace_worker;
341 else
342 wq = fs_info->endio_write_workers;
343
344 if (page)
345 ASSERT(page->mapping && page_offset(page) <= file_offset &&
346 file_offset + num_bytes <= page_offset(page) + PAGE_SIZE);
347
348 spin_lock_irqsave(&tree->lock, flags);
349 while (cur < file_offset + num_bytes) {
350 u64 entry_end;
351 u64 end;
352 u32 len;
353
354 node = tree_search(tree, cur);
355 /* No ordered extents at all */
356 if (!node)
357 break;
358
359 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
360 entry_end = entry->file_offset + entry->num_bytes;
361 /*
362 * |<-- OE --->| |
363 * cur
364 * Go to next OE.
365 */
366 if (cur >= entry_end) {
367 node = rb_next(node);
368 /* No more ordered extents, exit */
369 if (!node)
370 break;
371 entry = rb_entry(node, struct btrfs_ordered_extent,
372 rb_node);
373
374 /* Go to next ordered extent and continue */
375 cur = entry->file_offset;
376 continue;
377 }
378 /*
379 * | |<--- OE --->|
380 * cur
381 * Go to the start of OE.
382 */
383 if (cur < entry->file_offset) {
384 cur = entry->file_offset;
385 continue;
386 }
387
388 /*
389 * Now we are definitely inside one ordered extent.
390 *
391 * |<--- OE --->|
392 * |
393 * cur
394 */
395 end = min(entry->file_offset + entry->num_bytes,
396 file_offset + num_bytes) - 1;
397 ASSERT(end + 1 - cur < U32_MAX);
398 len = end + 1 - cur;
399
400 if (page) {
401 /*
402 * Ordered (Private2) bit indicates whether we still
403 * have pending io unfinished for the ordered extent.
404 *
405 * If there's no such bit, we need to skip to next range.
406 */
407 if (!btrfs_page_test_ordered(fs_info, page, cur, len)) {
408 cur += len;
409 continue;
410 }
411 btrfs_page_clear_ordered(fs_info, page, cur, len);
412 }
413
414 /* Now we're fine to update the accounting */
415 if (unlikely(len > entry->bytes_left)) {
416 WARN_ON(1);
417 btrfs_crit(fs_info,
418"bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%u left=%llu",
419 inode->root->root_key.objectid,
420 btrfs_ino(inode),
421 entry->file_offset,
422 entry->num_bytes,
423 len, entry->bytes_left);
424 entry->bytes_left = 0;
425 } else {
426 entry->bytes_left -= len;
427 }
428
429 if (!uptodate)
430 set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
431
432 /*
433 * All the IO of the ordered extent is finished, we need to queue
434 * the finish_func to be executed.
435 */
436 if (entry->bytes_left == 0) {
437 set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
438 cond_wake_up(&entry->wait);
439 refcount_inc(&entry->refs);
440 trace_btrfs_ordered_extent_mark_finished(inode, entry);
441 spin_unlock_irqrestore(&tree->lock, flags);
442 btrfs_init_work(&entry->work, finish_ordered_fn, NULL, NULL);
443 btrfs_queue_work(wq, &entry->work);
444 spin_lock_irqsave(&tree->lock, flags);
445 }
446 cur += len;
447 }
448 spin_unlock_irqrestore(&tree->lock, flags);
449}
450
451/*
452 * Finish IO for one ordered extent across a given range. The range can only
453 * contain one ordered extent.
454 *
455 * @cached: The cached ordered extent. If not NULL, we can skip the tree
456 * search and use the ordered extent directly.
457 * Will be also used to store the finished ordered extent.
458 * @file_offset: File offset for the finished IO
459 * @io_size: Length of the finish IO range
460 *
461 * Return true if the ordered extent is finished in the range, and update
462 * @cached.
463 * Return false otherwise.
464 *
465 * NOTE: The range can NOT cross multiple ordered extents.
466 * Thus caller should ensure the range doesn't cross ordered extents.
467 */
468bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
469 struct btrfs_ordered_extent **cached,
470 u64 file_offset, u64 io_size)
471{
472 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
473 struct rb_node *node;
474 struct btrfs_ordered_extent *entry = NULL;
475 unsigned long flags;
476 bool finished = false;
477
478 spin_lock_irqsave(&tree->lock, flags);
479 if (cached && *cached) {
480 entry = *cached;
481 goto have_entry;
482 }
483
484 node = tree_search(tree, file_offset);
485 if (!node)
486 goto out;
487
488 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
489have_entry:
490 if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
491 goto out;
492
493 if (io_size > entry->bytes_left)
494 btrfs_crit(inode->root->fs_info,
495 "bad ordered accounting left %llu size %llu",
496 entry->bytes_left, io_size);
497
498 entry->bytes_left -= io_size;
499
500 if (entry->bytes_left == 0) {
501 /*
502 * Ensure only one caller can set the flag and finished_ret
503 * accordingly
504 */
505 finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
506 /* test_and_set_bit implies a barrier */
507 cond_wake_up_nomb(&entry->wait);
508 }
509out:
510 if (finished && cached && entry) {
511 *cached = entry;
512 refcount_inc(&entry->refs);
513 trace_btrfs_ordered_extent_dec_test_pending(inode, entry);
514 }
515 spin_unlock_irqrestore(&tree->lock, flags);
516 return finished;
517}
518
519/*
520 * used to drop a reference on an ordered extent. This will free
521 * the extent if the last reference is dropped
522 */
523void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
524{
525 struct list_head *cur;
526 struct btrfs_ordered_sum *sum;
527
528 trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry);
529
530 if (refcount_dec_and_test(&entry->refs)) {
531 ASSERT(list_empty(&entry->root_extent_list));
532 ASSERT(list_empty(&entry->log_list));
533 ASSERT(RB_EMPTY_NODE(&entry->rb_node));
534 if (entry->inode)
535 btrfs_add_delayed_iput(BTRFS_I(entry->inode));
536 while (!list_empty(&entry->list)) {
537 cur = entry->list.next;
538 sum = list_entry(cur, struct btrfs_ordered_sum, list);
539 list_del(&sum->list);
540 kvfree(sum);
541 }
542 kmem_cache_free(btrfs_ordered_extent_cache, entry);
543 }
544}
545
546/*
547 * remove an ordered extent from the tree. No references are dropped
548 * and waiters are woken up.
549 */
550void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
551 struct btrfs_ordered_extent *entry)
552{
553 struct btrfs_ordered_inode_tree *tree;
554 struct btrfs_root *root = btrfs_inode->root;
555 struct btrfs_fs_info *fs_info = root->fs_info;
556 struct rb_node *node;
557 bool pending;
558 bool freespace_inode;
559
560 /*
561 * If this is a free space inode the thread has not acquired the ordered
562 * extents lockdep map.
563 */
564 freespace_inode = btrfs_is_free_space_inode(btrfs_inode);
565
566 btrfs_lockdep_acquire(fs_info, btrfs_trans_pending_ordered);
567 /* This is paired with btrfs_add_ordered_extent. */
568 spin_lock(&btrfs_inode->lock);
569 btrfs_mod_outstanding_extents(btrfs_inode, -1);
570 spin_unlock(&btrfs_inode->lock);
571 if (root != fs_info->tree_root) {
572 u64 release;
573
574 if (test_bit(BTRFS_ORDERED_ENCODED, &entry->flags))
575 release = entry->disk_num_bytes;
576 else
577 release = entry->num_bytes;
578 btrfs_delalloc_release_metadata(btrfs_inode, release, false);
579 }
580
581 percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes,
582 fs_info->delalloc_batch);
583
584 tree = &btrfs_inode->ordered_tree;
585 spin_lock_irq(&tree->lock);
586 node = &entry->rb_node;
587 rb_erase(node, &tree->tree);
588 RB_CLEAR_NODE(node);
589 if (tree->last == node)
590 tree->last = NULL;
591 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
592 pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
593 spin_unlock_irq(&tree->lock);
594
595 /*
596 * The current running transaction is waiting on us, we need to let it
597 * know that we're complete and wake it up.
598 */
599 if (pending) {
600 struct btrfs_transaction *trans;
601
602 /*
603 * The checks for trans are just a formality, it should be set,
604 * but if it isn't we don't want to deref/assert under the spin
605 * lock, so be nice and check if trans is set, but ASSERT() so
606 * if it isn't set a developer will notice.
607 */
608 spin_lock(&fs_info->trans_lock);
609 trans = fs_info->running_transaction;
610 if (trans)
611 refcount_inc(&trans->use_count);
612 spin_unlock(&fs_info->trans_lock);
613
614 ASSERT(trans);
615 if (trans) {
616 if (atomic_dec_and_test(&trans->pending_ordered))
617 wake_up(&trans->pending_wait);
618 btrfs_put_transaction(trans);
619 }
620 }
621
622 btrfs_lockdep_release(fs_info, btrfs_trans_pending_ordered);
623
624 spin_lock(&root->ordered_extent_lock);
625 list_del_init(&entry->root_extent_list);
626 root->nr_ordered_extents--;
627
628 trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
629
630 if (!root->nr_ordered_extents) {
631 spin_lock(&fs_info->ordered_root_lock);
632 BUG_ON(list_empty(&root->ordered_root));
633 list_del_init(&root->ordered_root);
634 spin_unlock(&fs_info->ordered_root_lock);
635 }
636 spin_unlock(&root->ordered_extent_lock);
637 wake_up(&entry->wait);
638 if (!freespace_inode)
639 btrfs_lockdep_release(fs_info, btrfs_ordered_extent);
640}
641
642static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
643{
644 struct btrfs_ordered_extent *ordered;
645
646 ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
647 btrfs_start_ordered_extent(ordered);
648 complete(&ordered->completion);
649}
650
651/*
652 * wait for all the ordered extents in a root. This is done when balancing
653 * space between drives.
654 */
655u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
656 const u64 range_start, const u64 range_len)
657{
658 struct btrfs_fs_info *fs_info = root->fs_info;
659 LIST_HEAD(splice);
660 LIST_HEAD(skipped);
661 LIST_HEAD(works);
662 struct btrfs_ordered_extent *ordered, *next;
663 u64 count = 0;
664 const u64 range_end = range_start + range_len;
665
666 mutex_lock(&root->ordered_extent_mutex);
667 spin_lock(&root->ordered_extent_lock);
668 list_splice_init(&root->ordered_extents, &splice);
669 while (!list_empty(&splice) && nr) {
670 ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
671 root_extent_list);
672
673 if (range_end <= ordered->disk_bytenr ||
674 ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
675 list_move_tail(&ordered->root_extent_list, &skipped);
676 cond_resched_lock(&root->ordered_extent_lock);
677 continue;
678 }
679
680 list_move_tail(&ordered->root_extent_list,
681 &root->ordered_extents);
682 refcount_inc(&ordered->refs);
683 spin_unlock(&root->ordered_extent_lock);
684
685 btrfs_init_work(&ordered->flush_work,
686 btrfs_run_ordered_extent_work, NULL, NULL);
687 list_add_tail(&ordered->work_list, &works);
688 btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
689
690 cond_resched();
691 spin_lock(&root->ordered_extent_lock);
692 if (nr != U64_MAX)
693 nr--;
694 count++;
695 }
696 list_splice_tail(&skipped, &root->ordered_extents);
697 list_splice_tail(&splice, &root->ordered_extents);
698 spin_unlock(&root->ordered_extent_lock);
699
700 list_for_each_entry_safe(ordered, next, &works, work_list) {
701 list_del_init(&ordered->work_list);
702 wait_for_completion(&ordered->completion);
703 btrfs_put_ordered_extent(ordered);
704 cond_resched();
705 }
706 mutex_unlock(&root->ordered_extent_mutex);
707
708 return count;
709}
710
711void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
712 const u64 range_start, const u64 range_len)
713{
714 struct btrfs_root *root;
715 struct list_head splice;
716 u64 done;
717
718 INIT_LIST_HEAD(&splice);
719
720 mutex_lock(&fs_info->ordered_operations_mutex);
721 spin_lock(&fs_info->ordered_root_lock);
722 list_splice_init(&fs_info->ordered_roots, &splice);
723 while (!list_empty(&splice) && nr) {
724 root = list_first_entry(&splice, struct btrfs_root,
725 ordered_root);
726 root = btrfs_grab_root(root);
727 BUG_ON(!root);
728 list_move_tail(&root->ordered_root,
729 &fs_info->ordered_roots);
730 spin_unlock(&fs_info->ordered_root_lock);
731
732 done = btrfs_wait_ordered_extents(root, nr,
733 range_start, range_len);
734 btrfs_put_root(root);
735
736 spin_lock(&fs_info->ordered_root_lock);
737 if (nr != U64_MAX) {
738 nr -= done;
739 }
740 }
741 list_splice_tail(&splice, &fs_info->ordered_roots);
742 spin_unlock(&fs_info->ordered_root_lock);
743 mutex_unlock(&fs_info->ordered_operations_mutex);
744}
745
746/*
747 * Start IO and wait for a given ordered extent to finish.
748 *
749 * Wait on page writeback for all the pages in the extent and the IO completion
750 * code to insert metadata into the btree corresponding to the extent.
751 */
752void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry)
753{
754 u64 start = entry->file_offset;
755 u64 end = start + entry->num_bytes - 1;
756 struct btrfs_inode *inode = BTRFS_I(entry->inode);
757 bool freespace_inode;
758
759 trace_btrfs_ordered_extent_start(inode, entry);
760
761 /*
762 * If this is a free space inode do not take the ordered extents lockdep
763 * map.
764 */
765 freespace_inode = btrfs_is_free_space_inode(inode);
766
767 /*
768 * pages in the range can be dirty, clean or writeback. We
769 * start IO on any dirty ones so the wait doesn't stall waiting
770 * for the flusher thread to find them
771 */
772 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
773 filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
774
775 if (!freespace_inode)
776 btrfs_might_wait_for_event(inode->root->fs_info, btrfs_ordered_extent);
777 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, &entry->flags));
778}
779
780/*
781 * Used to wait on ordered extents across a large range of bytes.
782 */
783int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
784{
785 int ret = 0;
786 int ret_wb = 0;
787 u64 end;
788 u64 orig_end;
789 struct btrfs_ordered_extent *ordered;
790
791 if (start + len < start) {
792 orig_end = OFFSET_MAX;
793 } else {
794 orig_end = start + len - 1;
795 if (orig_end > OFFSET_MAX)
796 orig_end = OFFSET_MAX;
797 }
798
799 /* start IO across the range first to instantiate any delalloc
800 * extents
801 */
802 ret = btrfs_fdatawrite_range(inode, start, orig_end);
803 if (ret)
804 return ret;
805
806 /*
807 * If we have a writeback error don't return immediately. Wait first
808 * for any ordered extents that haven't completed yet. This is to make
809 * sure no one can dirty the same page ranges and call writepages()
810 * before the ordered extents complete - to avoid failures (-EEXIST)
811 * when adding the new ordered extents to the ordered tree.
812 */
813 ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
814
815 end = orig_end;
816 while (1) {
817 ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end);
818 if (!ordered)
819 break;
820 if (ordered->file_offset > orig_end) {
821 btrfs_put_ordered_extent(ordered);
822 break;
823 }
824 if (ordered->file_offset + ordered->num_bytes <= start) {
825 btrfs_put_ordered_extent(ordered);
826 break;
827 }
828 btrfs_start_ordered_extent(ordered);
829 end = ordered->file_offset;
830 /*
831 * If the ordered extent had an error save the error but don't
832 * exit without waiting first for all other ordered extents in
833 * the range to complete.
834 */
835 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
836 ret = -EIO;
837 btrfs_put_ordered_extent(ordered);
838 if (end == 0 || end == start)
839 break;
840 end--;
841 }
842 return ret_wb ? ret_wb : ret;
843}
844
845/*
846 * find an ordered extent corresponding to file_offset. return NULL if
847 * nothing is found, otherwise take a reference on the extent and return it
848 */
849struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
850 u64 file_offset)
851{
852 struct btrfs_ordered_inode_tree *tree;
853 struct rb_node *node;
854 struct btrfs_ordered_extent *entry = NULL;
855 unsigned long flags;
856
857 tree = &inode->ordered_tree;
858 spin_lock_irqsave(&tree->lock, flags);
859 node = tree_search(tree, file_offset);
860 if (!node)
861 goto out;
862
863 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
864 if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
865 entry = NULL;
866 if (entry) {
867 refcount_inc(&entry->refs);
868 trace_btrfs_ordered_extent_lookup(inode, entry);
869 }
870out:
871 spin_unlock_irqrestore(&tree->lock, flags);
872 return entry;
873}
874
875/* Since the DIO code tries to lock a wide area we need to look for any ordered
876 * extents that exist in the range, rather than just the start of the range.
877 */
878struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
879 struct btrfs_inode *inode, u64 file_offset, u64 len)
880{
881 struct btrfs_ordered_inode_tree *tree;
882 struct rb_node *node;
883 struct btrfs_ordered_extent *entry = NULL;
884
885 tree = &inode->ordered_tree;
886 spin_lock_irq(&tree->lock);
887 node = tree_search(tree, file_offset);
888 if (!node) {
889 node = tree_search(tree, file_offset + len);
890 if (!node)
891 goto out;
892 }
893
894 while (1) {
895 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
896 if (range_overlaps(entry, file_offset, len))
897 break;
898
899 if (entry->file_offset >= file_offset + len) {
900 entry = NULL;
901 break;
902 }
903 entry = NULL;
904 node = rb_next(node);
905 if (!node)
906 break;
907 }
908out:
909 if (entry) {
910 refcount_inc(&entry->refs);
911 trace_btrfs_ordered_extent_lookup_range(inode, entry);
912 }
913 spin_unlock_irq(&tree->lock);
914 return entry;
915}
916
917/*
918 * Adds all ordered extents to the given list. The list ends up sorted by the
919 * file_offset of the ordered extents.
920 */
921void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
922 struct list_head *list)
923{
924 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
925 struct rb_node *n;
926
927 ASSERT(inode_is_locked(&inode->vfs_inode));
928
929 spin_lock_irq(&tree->lock);
930 for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
931 struct btrfs_ordered_extent *ordered;
932
933 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
934
935 if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
936 continue;
937
938 ASSERT(list_empty(&ordered->log_list));
939 list_add_tail(&ordered->log_list, list);
940 refcount_inc(&ordered->refs);
941 trace_btrfs_ordered_extent_lookup_for_logging(inode, ordered);
942 }
943 spin_unlock_irq(&tree->lock);
944}
945
946/*
947 * lookup and return any extent before 'file_offset'. NULL is returned
948 * if none is found
949 */
950struct btrfs_ordered_extent *
951btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
952{
953 struct btrfs_ordered_inode_tree *tree;
954 struct rb_node *node;
955 struct btrfs_ordered_extent *entry = NULL;
956
957 tree = &inode->ordered_tree;
958 spin_lock_irq(&tree->lock);
959 node = tree_search(tree, file_offset);
960 if (!node)
961 goto out;
962
963 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
964 refcount_inc(&entry->refs);
965 trace_btrfs_ordered_extent_lookup_first(inode, entry);
966out:
967 spin_unlock_irq(&tree->lock);
968 return entry;
969}
970
971/*
972 * Lookup the first ordered extent that overlaps the range
973 * [@file_offset, @file_offset + @len).
974 *
975 * The difference between this and btrfs_lookup_first_ordered_extent() is
976 * that this one won't return any ordered extent that does not overlap the range.
977 * And the difference against btrfs_lookup_ordered_extent() is, this function
978 * ensures the first ordered extent gets returned.
979 */
980struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range(
981 struct btrfs_inode *inode, u64 file_offset, u64 len)
982{
983 struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
984 struct rb_node *node;
985 struct rb_node *cur;
986 struct rb_node *prev;
987 struct rb_node *next;
988 struct btrfs_ordered_extent *entry = NULL;
989
990 spin_lock_irq(&tree->lock);
991 node = tree->tree.rb_node;
992 /*
993 * Here we don't want to use tree_search() which will use tree->last
994 * and screw up the search order.
995 * And __tree_search() can't return the adjacent ordered extents
996 * either, thus here we do our own search.
997 */
998 while (node) {
999 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
1000
1001 if (file_offset < entry->file_offset) {
1002 node = node->rb_left;
1003 } else if (file_offset >= entry_end(entry)) {
1004 node = node->rb_right;
1005 } else {
1006 /*
1007 * Direct hit, got an ordered extent that starts at
1008 * @file_offset
1009 */
1010 goto out;
1011 }
1012 }
1013 if (!entry) {
1014 /* Empty tree */
1015 goto out;
1016 }
1017
1018 cur = &entry->rb_node;
1019 /* We got an entry around @file_offset, check adjacent entries */
1020 if (entry->file_offset < file_offset) {
1021 prev = cur;
1022 next = rb_next(cur);
1023 } else {
1024 prev = rb_prev(cur);
1025 next = cur;
1026 }
1027 if (prev) {
1028 entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node);
1029 if (range_overlaps(entry, file_offset, len))
1030 goto out;
1031 }
1032 if (next) {
1033 entry = rb_entry(next, struct btrfs_ordered_extent, rb_node);
1034 if (range_overlaps(entry, file_offset, len))
1035 goto out;
1036 }
1037 /* No ordered extent in the range */
1038 entry = NULL;
1039out:
1040 if (entry) {
1041 refcount_inc(&entry->refs);
1042 trace_btrfs_ordered_extent_lookup_first_range(inode, entry);
1043 }
1044
1045 spin_unlock_irq(&tree->lock);
1046 return entry;
1047}
1048
1049/*
1050 * Lock the passed range and ensures all pending ordered extents in it are run
1051 * to completion.
1052 *
1053 * @inode: Inode whose ordered tree is to be searched
1054 * @start: Beginning of range to flush
1055 * @end: Last byte of range to lock
1056 * @cached_state: If passed, will return the extent state responsible for the
1057 * locked range. It's the caller's responsibility to free the
1058 * cached state.
1059 *
1060 * Always return with the given range locked, ensuring after it's called no
1061 * order extent can be pending.
1062 */
1063void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
1064 u64 end,
1065 struct extent_state **cached_state)
1066{
1067 struct btrfs_ordered_extent *ordered;
1068 struct extent_state *cache = NULL;
1069 struct extent_state **cachedp = &cache;
1070
1071 if (cached_state)
1072 cachedp = cached_state;
1073
1074 while (1) {
1075 lock_extent(&inode->io_tree, start, end, cachedp);
1076 ordered = btrfs_lookup_ordered_range(inode, start,
1077 end - start + 1);
1078 if (!ordered) {
1079 /*
1080 * If no external cached_state has been passed then
1081 * decrement the extra ref taken for cachedp since we
1082 * aren't exposing it outside of this function
1083 */
1084 if (!cached_state)
1085 refcount_dec(&cache->refs);
1086 break;
1087 }
1088 unlock_extent(&inode->io_tree, start, end, cachedp);
1089 btrfs_start_ordered_extent(ordered);
1090 btrfs_put_ordered_extent(ordered);
1091 }
1092}
1093
1094/*
1095 * Lock the passed range and ensure all pending ordered extents in it are run
1096 * to completion in nowait mode.
1097 *
1098 * Return true if btrfs_lock_ordered_range does not return any extents,
1099 * otherwise false.
1100 */
1101bool btrfs_try_lock_ordered_range(struct btrfs_inode *inode, u64 start, u64 end,
1102 struct extent_state **cached_state)
1103{
1104 struct btrfs_ordered_extent *ordered;
1105
1106 if (!try_lock_extent(&inode->io_tree, start, end, cached_state))
1107 return false;
1108
1109 ordered = btrfs_lookup_ordered_range(inode, start, end - start + 1);
1110 if (!ordered)
1111 return true;
1112
1113 btrfs_put_ordered_extent(ordered);
1114 unlock_extent(&inode->io_tree, start, end, cached_state);
1115
1116 return false;
1117}
1118
1119/* Split out a new ordered extent for this first @len bytes of @ordered. */
1120int btrfs_split_ordered_extent(struct btrfs_ordered_extent *ordered, u64 len)
1121{
1122 struct inode *inode = ordered->inode;
1123 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
1124 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1125 u64 file_offset = ordered->file_offset;
1126 u64 disk_bytenr = ordered->disk_bytenr;
1127 unsigned long flags = ordered->flags & BTRFS_ORDERED_TYPE_FLAGS;
1128 struct rb_node *node;
1129
1130 trace_btrfs_ordered_extent_split(BTRFS_I(inode), ordered);
1131
1132 ASSERT(!(flags & (1U << BTRFS_ORDERED_COMPRESSED)));
1133
1134 /*
1135 * The entire bio must be covered by the ordered extent, but we can't
1136 * reduce the original extent to a zero length either.
1137 */
1138 if (WARN_ON_ONCE(len >= ordered->num_bytes))
1139 return -EINVAL;
1140 /* We cannot split once ordered extent is past end_bio. */
1141 if (WARN_ON_ONCE(ordered->bytes_left != ordered->disk_num_bytes))
1142 return -EINVAL;
1143 /* We cannot split a compressed ordered extent. */
1144 if (WARN_ON_ONCE(ordered->disk_num_bytes != ordered->num_bytes))
1145 return -EINVAL;
1146 /* Checksum list should be empty. */
1147 if (WARN_ON_ONCE(!list_empty(&ordered->list)))
1148 return -EINVAL;
1149
1150 spin_lock_irq(&tree->lock);
1151 /* Remove from tree once */
1152 node = &ordered->rb_node;
1153 rb_erase(node, &tree->tree);
1154 RB_CLEAR_NODE(node);
1155 if (tree->last == node)
1156 tree->last = NULL;
1157
1158 ordered->file_offset += len;
1159 ordered->disk_bytenr += len;
1160 ordered->num_bytes -= len;
1161 ordered->disk_num_bytes -= len;
1162 ordered->bytes_left -= len;
1163
1164 /* Re-insert the node */
1165 node = tree_insert(&tree->tree, ordered->file_offset, &ordered->rb_node);
1166 if (node)
1167 btrfs_panic(fs_info, -EEXIST,
1168 "zoned: inconsistency in ordered tree at offset %llu",
1169 ordered->file_offset);
1170
1171 spin_unlock_irq(&tree->lock);
1172
1173 /*
1174 * The splitting extent is already counted and will be added again in
1175 * btrfs_add_ordered_extent(). Subtract len to avoid double counting.
1176 */
1177 percpu_counter_add_batch(&fs_info->ordered_bytes, -len, fs_info->delalloc_batch);
1178
1179 return btrfs_add_ordered_extent(BTRFS_I(inode), file_offset, len, len,
1180 disk_bytenr, len, 0, flags,
1181 ordered->compress_type);
1182}
1183
1184int __init ordered_data_init(void)
1185{
1186 btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1187 sizeof(struct btrfs_ordered_extent), 0,
1188 SLAB_MEM_SPREAD,
1189 NULL);
1190 if (!btrfs_ordered_extent_cache)
1191 return -ENOMEM;
1192
1193 return 0;
1194}
1195
1196void __cold ordered_data_exit(void)
1197{
1198 kmem_cache_destroy(btrfs_ordered_extent_cache);
1199}