Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2008 Oracle. All rights reserved.
4 */
5
6#include <linux/kernel.h>
7#include <linux/bio.h>
8#include <linux/file.h>
9#include <linux/fs.h>
10#include <linux/pagemap.h>
11#include <linux/pagevec.h>
12#include <linux/highmem.h>
13#include <linux/kthread.h>
14#include <linux/time.h>
15#include <linux/init.h>
16#include <linux/string.h>
17#include <linux/backing-dev.h>
18#include <linux/writeback.h>
19#include <linux/psi.h>
20#include <linux/slab.h>
21#include <linux/sched/mm.h>
22#include <linux/log2.h>
23#include <crypto/hash.h>
24#include "misc.h"
25#include "ctree.h"
26#include "fs.h"
27#include "disk-io.h"
28#include "transaction.h"
29#include "btrfs_inode.h"
30#include "bio.h"
31#include "ordered-data.h"
32#include "compression.h"
33#include "extent_io.h"
34#include "extent_map.h"
35#include "subpage.h"
36#include "zoned.h"
37#include "file-item.h"
38#include "super.h"
39
40struct bio_set btrfs_compressed_bioset;
41
42static const char* const btrfs_compress_types[] = { "", "zlib", "lzo", "zstd" };
43
44const char* btrfs_compress_type2str(enum btrfs_compression_type type)
45{
46 switch (type) {
47 case BTRFS_COMPRESS_ZLIB:
48 case BTRFS_COMPRESS_LZO:
49 case BTRFS_COMPRESS_ZSTD:
50 case BTRFS_COMPRESS_NONE:
51 return btrfs_compress_types[type];
52 default:
53 break;
54 }
55
56 return NULL;
57}
58
59static inline struct compressed_bio *to_compressed_bio(struct btrfs_bio *bbio)
60{
61 return container_of(bbio, struct compressed_bio, bbio);
62}
63
64static struct compressed_bio *alloc_compressed_bio(struct btrfs_inode *inode,
65 u64 start, blk_opf_t op,
66 btrfs_bio_end_io_t end_io)
67{
68 struct btrfs_bio *bbio;
69
70 bbio = btrfs_bio(bio_alloc_bioset(NULL, BTRFS_MAX_COMPRESSED_PAGES, op,
71 GFP_NOFS, &btrfs_compressed_bioset));
72 btrfs_bio_init(bbio, inode->root->fs_info, end_io, NULL);
73 bbio->inode = inode;
74 bbio->file_offset = start;
75 return to_compressed_bio(bbio);
76}
77
78bool btrfs_compress_is_valid_type(const char *str, size_t len)
79{
80 int i;
81
82 for (i = 1; i < ARRAY_SIZE(btrfs_compress_types); i++) {
83 size_t comp_len = strlen(btrfs_compress_types[i]);
84
85 if (len < comp_len)
86 continue;
87
88 if (!strncmp(btrfs_compress_types[i], str, comp_len))
89 return true;
90 }
91 return false;
92}
93
94static int compression_compress_pages(int type, struct list_head *ws,
95 struct address_space *mapping, u64 start, struct page **pages,
96 unsigned long *out_pages, unsigned long *total_in,
97 unsigned long *total_out)
98{
99 switch (type) {
100 case BTRFS_COMPRESS_ZLIB:
101 return zlib_compress_pages(ws, mapping, start, pages,
102 out_pages, total_in, total_out);
103 case BTRFS_COMPRESS_LZO:
104 return lzo_compress_pages(ws, mapping, start, pages,
105 out_pages, total_in, total_out);
106 case BTRFS_COMPRESS_ZSTD:
107 return zstd_compress_pages(ws, mapping, start, pages,
108 out_pages, total_in, total_out);
109 case BTRFS_COMPRESS_NONE:
110 default:
111 /*
112 * This can happen when compression races with remount setting
113 * it to 'no compress', while caller doesn't call
114 * inode_need_compress() to check if we really need to
115 * compress.
116 *
117 * Not a big deal, just need to inform caller that we
118 * haven't allocated any pages yet.
119 */
120 *out_pages = 0;
121 return -E2BIG;
122 }
123}
124
125static int compression_decompress_bio(struct list_head *ws,
126 struct compressed_bio *cb)
127{
128 switch (cb->compress_type) {
129 case BTRFS_COMPRESS_ZLIB: return zlib_decompress_bio(ws, cb);
130 case BTRFS_COMPRESS_LZO: return lzo_decompress_bio(ws, cb);
131 case BTRFS_COMPRESS_ZSTD: return zstd_decompress_bio(ws, cb);
132 case BTRFS_COMPRESS_NONE:
133 default:
134 /*
135 * This can't happen, the type is validated several times
136 * before we get here.
137 */
138 BUG();
139 }
140}
141
142static int compression_decompress(int type, struct list_head *ws,
143 const u8 *data_in, struct page *dest_page,
144 unsigned long start_byte, size_t srclen, size_t destlen)
145{
146 switch (type) {
147 case BTRFS_COMPRESS_ZLIB: return zlib_decompress(ws, data_in, dest_page,
148 start_byte, srclen, destlen);
149 case BTRFS_COMPRESS_LZO: return lzo_decompress(ws, data_in, dest_page,
150 start_byte, srclen, destlen);
151 case BTRFS_COMPRESS_ZSTD: return zstd_decompress(ws, data_in, dest_page,
152 start_byte, srclen, destlen);
153 case BTRFS_COMPRESS_NONE:
154 default:
155 /*
156 * This can't happen, the type is validated several times
157 * before we get here.
158 */
159 BUG();
160 }
161}
162
163static void btrfs_free_compressed_pages(struct compressed_bio *cb)
164{
165 for (unsigned int i = 0; i < cb->nr_pages; i++)
166 put_page(cb->compressed_pages[i]);
167 kfree(cb->compressed_pages);
168}
169
170static int btrfs_decompress_bio(struct compressed_bio *cb);
171
172static void end_compressed_bio_read(struct btrfs_bio *bbio)
173{
174 struct compressed_bio *cb = to_compressed_bio(bbio);
175 blk_status_t status = bbio->bio.bi_status;
176
177 if (!status)
178 status = errno_to_blk_status(btrfs_decompress_bio(cb));
179
180 btrfs_free_compressed_pages(cb);
181 btrfs_bio_end_io(cb->orig_bbio, status);
182 bio_put(&bbio->bio);
183}
184
185/*
186 * Clear the writeback bits on all of the file
187 * pages for a compressed write
188 */
189static noinline void end_compressed_writeback(const struct compressed_bio *cb)
190{
191 struct inode *inode = &cb->bbio.inode->vfs_inode;
192 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
193 unsigned long index = cb->start >> PAGE_SHIFT;
194 unsigned long end_index = (cb->start + cb->len - 1) >> PAGE_SHIFT;
195 struct folio_batch fbatch;
196 const int errno = blk_status_to_errno(cb->bbio.bio.bi_status);
197 int i;
198 int ret;
199
200 if (errno)
201 mapping_set_error(inode->i_mapping, errno);
202
203 folio_batch_init(&fbatch);
204 while (index <= end_index) {
205 ret = filemap_get_folios(inode->i_mapping, &index, end_index,
206 &fbatch);
207
208 if (ret == 0)
209 return;
210
211 for (i = 0; i < ret; i++) {
212 struct folio *folio = fbatch.folios[i];
213
214 if (errno)
215 folio_set_error(folio);
216 btrfs_page_clamp_clear_writeback(fs_info, &folio->page,
217 cb->start, cb->len);
218 }
219 folio_batch_release(&fbatch);
220 }
221 /* the inode may be gone now */
222}
223
224static void btrfs_finish_compressed_write_work(struct work_struct *work)
225{
226 struct compressed_bio *cb =
227 container_of(work, struct compressed_bio, write_end_work);
228
229 /*
230 * Ok, we're the last bio for this extent, step one is to call back
231 * into the FS and do all the end_io operations.
232 */
233 btrfs_writepage_endio_finish_ordered(cb->bbio.inode, NULL,
234 cb->start, cb->start + cb->len - 1,
235 cb->bbio.bio.bi_status == BLK_STS_OK);
236
237 if (cb->writeback)
238 end_compressed_writeback(cb);
239 /* Note, our inode could be gone now */
240
241 btrfs_free_compressed_pages(cb);
242 bio_put(&cb->bbio.bio);
243}
244
245/*
246 * Do the cleanup once all the compressed pages hit the disk. This will clear
247 * writeback on the file pages and free the compressed pages.
248 *
249 * This also calls the writeback end hooks for the file pages so that metadata
250 * and checksums can be updated in the file.
251 */
252static void end_compressed_bio_write(struct btrfs_bio *bbio)
253{
254 struct compressed_bio *cb = to_compressed_bio(bbio);
255 struct btrfs_fs_info *fs_info = bbio->inode->root->fs_info;
256
257 queue_work(fs_info->compressed_write_workers, &cb->write_end_work);
258}
259
260static void btrfs_add_compressed_bio_pages(struct compressed_bio *cb)
261{
262 struct bio *bio = &cb->bbio.bio;
263 u32 offset = 0;
264
265 while (offset < cb->compressed_len) {
266 u32 len = min_t(u32, cb->compressed_len - offset, PAGE_SIZE);
267
268 /* Maximum compressed extent is smaller than bio size limit. */
269 __bio_add_page(bio, cb->compressed_pages[offset >> PAGE_SHIFT],
270 len, 0);
271 offset += len;
272 }
273}
274
275/*
276 * worker function to build and submit bios for previously compressed pages.
277 * The corresponding pages in the inode should be marked for writeback
278 * and the compressed pages should have a reference on them for dropping
279 * when the IO is complete.
280 *
281 * This also checksums the file bytes and gets things ready for
282 * the end io hooks.
283 */
284void btrfs_submit_compressed_write(struct btrfs_inode *inode, u64 start,
285 unsigned int len, u64 disk_start,
286 unsigned int compressed_len,
287 struct page **compressed_pages,
288 unsigned int nr_pages,
289 blk_opf_t write_flags,
290 bool writeback)
291{
292 struct btrfs_fs_info *fs_info = inode->root->fs_info;
293 struct compressed_bio *cb;
294
295 ASSERT(IS_ALIGNED(start, fs_info->sectorsize) &&
296 IS_ALIGNED(len, fs_info->sectorsize));
297
298 write_flags |= REQ_BTRFS_ONE_ORDERED;
299
300 cb = alloc_compressed_bio(inode, start, REQ_OP_WRITE | write_flags,
301 end_compressed_bio_write);
302 cb->start = start;
303 cb->len = len;
304 cb->compressed_pages = compressed_pages;
305 cb->compressed_len = compressed_len;
306 cb->writeback = writeback;
307 INIT_WORK(&cb->write_end_work, btrfs_finish_compressed_write_work);
308 cb->nr_pages = nr_pages;
309 cb->bbio.bio.bi_iter.bi_sector = disk_start >> SECTOR_SHIFT;
310 btrfs_add_compressed_bio_pages(cb);
311
312 btrfs_submit_bio(&cb->bbio, 0);
313}
314
315/*
316 * Add extra pages in the same compressed file extent so that we don't need to
317 * re-read the same extent again and again.
318 *
319 * NOTE: this won't work well for subpage, as for subpage read, we lock the
320 * full page then submit bio for each compressed/regular extents.
321 *
322 * This means, if we have several sectors in the same page points to the same
323 * on-disk compressed data, we will re-read the same extent many times and
324 * this function can only help for the next page.
325 */
326static noinline int add_ra_bio_pages(struct inode *inode,
327 u64 compressed_end,
328 struct compressed_bio *cb,
329 int *memstall, unsigned long *pflags)
330{
331 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
332 unsigned long end_index;
333 struct bio *orig_bio = &cb->orig_bbio->bio;
334 u64 cur = cb->orig_bbio->file_offset + orig_bio->bi_iter.bi_size;
335 u64 isize = i_size_read(inode);
336 int ret;
337 struct page *page;
338 struct extent_map *em;
339 struct address_space *mapping = inode->i_mapping;
340 struct extent_map_tree *em_tree;
341 struct extent_io_tree *tree;
342 int sectors_missed = 0;
343
344 em_tree = &BTRFS_I(inode)->extent_tree;
345 tree = &BTRFS_I(inode)->io_tree;
346
347 if (isize == 0)
348 return 0;
349
350 /*
351 * For current subpage support, we only support 64K page size,
352 * which means maximum compressed extent size (128K) is just 2x page
353 * size.
354 * This makes readahead less effective, so here disable readahead for
355 * subpage for now, until full compressed write is supported.
356 */
357 if (btrfs_sb(inode->i_sb)->sectorsize < PAGE_SIZE)
358 return 0;
359
360 end_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
361
362 while (cur < compressed_end) {
363 u64 page_end;
364 u64 pg_index = cur >> PAGE_SHIFT;
365 u32 add_size;
366
367 if (pg_index > end_index)
368 break;
369
370 page = xa_load(&mapping->i_pages, pg_index);
371 if (page && !xa_is_value(page)) {
372 sectors_missed += (PAGE_SIZE - offset_in_page(cur)) >>
373 fs_info->sectorsize_bits;
374
375 /* Beyond threshold, no need to continue */
376 if (sectors_missed > 4)
377 break;
378
379 /*
380 * Jump to next page start as we already have page for
381 * current offset.
382 */
383 cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
384 continue;
385 }
386
387 page = __page_cache_alloc(mapping_gfp_constraint(mapping,
388 ~__GFP_FS));
389 if (!page)
390 break;
391
392 if (add_to_page_cache_lru(page, mapping, pg_index, GFP_NOFS)) {
393 put_page(page);
394 /* There is already a page, skip to page end */
395 cur = (pg_index << PAGE_SHIFT) + PAGE_SIZE;
396 continue;
397 }
398
399 if (!*memstall && PageWorkingset(page)) {
400 psi_memstall_enter(pflags);
401 *memstall = 1;
402 }
403
404 ret = set_page_extent_mapped(page);
405 if (ret < 0) {
406 unlock_page(page);
407 put_page(page);
408 break;
409 }
410
411 page_end = (pg_index << PAGE_SHIFT) + PAGE_SIZE - 1;
412 lock_extent(tree, cur, page_end, NULL);
413 read_lock(&em_tree->lock);
414 em = lookup_extent_mapping(em_tree, cur, page_end + 1 - cur);
415 read_unlock(&em_tree->lock);
416
417 /*
418 * At this point, we have a locked page in the page cache for
419 * these bytes in the file. But, we have to make sure they map
420 * to this compressed extent on disk.
421 */
422 if (!em || cur < em->start ||
423 (cur + fs_info->sectorsize > extent_map_end(em)) ||
424 (em->block_start >> 9) != orig_bio->bi_iter.bi_sector) {
425 free_extent_map(em);
426 unlock_extent(tree, cur, page_end, NULL);
427 unlock_page(page);
428 put_page(page);
429 break;
430 }
431 free_extent_map(em);
432
433 if (page->index == end_index) {
434 size_t zero_offset = offset_in_page(isize);
435
436 if (zero_offset) {
437 int zeros;
438 zeros = PAGE_SIZE - zero_offset;
439 memzero_page(page, zero_offset, zeros);
440 }
441 }
442
443 add_size = min(em->start + em->len, page_end + 1) - cur;
444 ret = bio_add_page(orig_bio, page, add_size, offset_in_page(cur));
445 if (ret != add_size) {
446 unlock_extent(tree, cur, page_end, NULL);
447 unlock_page(page);
448 put_page(page);
449 break;
450 }
451 /*
452 * If it's subpage, we also need to increase its
453 * subpage::readers number, as at endio we will decrease
454 * subpage::readers and to unlock the page.
455 */
456 if (fs_info->sectorsize < PAGE_SIZE)
457 btrfs_subpage_start_reader(fs_info, page, cur, add_size);
458 put_page(page);
459 cur += add_size;
460 }
461 return 0;
462}
463
464/*
465 * for a compressed read, the bio we get passed has all the inode pages
466 * in it. We don't actually do IO on those pages but allocate new ones
467 * to hold the compressed pages on disk.
468 *
469 * bio->bi_iter.bi_sector points to the compressed extent on disk
470 * bio->bi_io_vec points to all of the inode pages
471 *
472 * After the compressed pages are read, we copy the bytes into the
473 * bio we were passed and then call the bio end_io calls
474 */
475void btrfs_submit_compressed_read(struct btrfs_bio *bbio, int mirror_num)
476{
477 struct btrfs_inode *inode = bbio->inode;
478 struct btrfs_fs_info *fs_info = inode->root->fs_info;
479 struct extent_map_tree *em_tree = &inode->extent_tree;
480 struct compressed_bio *cb;
481 unsigned int compressed_len;
482 u64 file_offset = bbio->file_offset;
483 u64 em_len;
484 u64 em_start;
485 struct extent_map *em;
486 unsigned long pflags;
487 int memstall = 0;
488 blk_status_t ret;
489 int ret2;
490
491 /* we need the actual starting offset of this extent in the file */
492 read_lock(&em_tree->lock);
493 em = lookup_extent_mapping(em_tree, file_offset, fs_info->sectorsize);
494 read_unlock(&em_tree->lock);
495 if (!em) {
496 ret = BLK_STS_IOERR;
497 goto out;
498 }
499
500 ASSERT(em->compress_type != BTRFS_COMPRESS_NONE);
501 compressed_len = em->block_len;
502
503 cb = alloc_compressed_bio(inode, file_offset, REQ_OP_READ,
504 end_compressed_bio_read);
505
506 cb->start = em->orig_start;
507 em_len = em->len;
508 em_start = em->start;
509
510 cb->len = bbio->bio.bi_iter.bi_size;
511 cb->compressed_len = compressed_len;
512 cb->compress_type = em->compress_type;
513 cb->orig_bbio = bbio;
514
515 free_extent_map(em);
516
517 cb->nr_pages = DIV_ROUND_UP(compressed_len, PAGE_SIZE);
518 cb->compressed_pages = kcalloc(cb->nr_pages, sizeof(struct page *), GFP_NOFS);
519 if (!cb->compressed_pages) {
520 ret = BLK_STS_RESOURCE;
521 goto out_free_bio;
522 }
523
524 ret2 = btrfs_alloc_page_array(cb->nr_pages, cb->compressed_pages);
525 if (ret2) {
526 ret = BLK_STS_RESOURCE;
527 goto out_free_compressed_pages;
528 }
529
530 add_ra_bio_pages(&inode->vfs_inode, em_start + em_len, cb, &memstall,
531 &pflags);
532
533 /* include any pages we added in add_ra-bio_pages */
534 cb->len = bbio->bio.bi_iter.bi_size;
535 cb->bbio.bio.bi_iter.bi_sector = bbio->bio.bi_iter.bi_sector;
536 btrfs_add_compressed_bio_pages(cb);
537
538 if (memstall)
539 psi_memstall_leave(&pflags);
540
541 btrfs_submit_bio(&cb->bbio, mirror_num);
542 return;
543
544out_free_compressed_pages:
545 kfree(cb->compressed_pages);
546out_free_bio:
547 bio_put(&cb->bbio.bio);
548out:
549 btrfs_bio_end_io(bbio, ret);
550}
551
552/*
553 * Heuristic uses systematic sampling to collect data from the input data
554 * range, the logic can be tuned by the following constants:
555 *
556 * @SAMPLING_READ_SIZE - how many bytes will be copied from for each sample
557 * @SAMPLING_INTERVAL - range from which the sampled data can be collected
558 */
559#define SAMPLING_READ_SIZE (16)
560#define SAMPLING_INTERVAL (256)
561
562/*
563 * For statistical analysis of the input data we consider bytes that form a
564 * Galois Field of 256 objects. Each object has an attribute count, ie. how
565 * many times the object appeared in the sample.
566 */
567#define BUCKET_SIZE (256)
568
569/*
570 * The size of the sample is based on a statistical sampling rule of thumb.
571 * The common way is to perform sampling tests as long as the number of
572 * elements in each cell is at least 5.
573 *
574 * Instead of 5, we choose 32 to obtain more accurate results.
575 * If the data contain the maximum number of symbols, which is 256, we obtain a
576 * sample size bound by 8192.
577 *
578 * For a sample of at most 8KB of data per data range: 16 consecutive bytes
579 * from up to 512 locations.
580 */
581#define MAX_SAMPLE_SIZE (BTRFS_MAX_UNCOMPRESSED * \
582 SAMPLING_READ_SIZE / SAMPLING_INTERVAL)
583
584struct bucket_item {
585 u32 count;
586};
587
588struct heuristic_ws {
589 /* Partial copy of input data */
590 u8 *sample;
591 u32 sample_size;
592 /* Buckets store counters for each byte value */
593 struct bucket_item *bucket;
594 /* Sorting buffer */
595 struct bucket_item *bucket_b;
596 struct list_head list;
597};
598
599static struct workspace_manager heuristic_wsm;
600
601static void free_heuristic_ws(struct list_head *ws)
602{
603 struct heuristic_ws *workspace;
604
605 workspace = list_entry(ws, struct heuristic_ws, list);
606
607 kvfree(workspace->sample);
608 kfree(workspace->bucket);
609 kfree(workspace->bucket_b);
610 kfree(workspace);
611}
612
613static struct list_head *alloc_heuristic_ws(unsigned int level)
614{
615 struct heuristic_ws *ws;
616
617 ws = kzalloc(sizeof(*ws), GFP_KERNEL);
618 if (!ws)
619 return ERR_PTR(-ENOMEM);
620
621 ws->sample = kvmalloc(MAX_SAMPLE_SIZE, GFP_KERNEL);
622 if (!ws->sample)
623 goto fail;
624
625 ws->bucket = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket), GFP_KERNEL);
626 if (!ws->bucket)
627 goto fail;
628
629 ws->bucket_b = kcalloc(BUCKET_SIZE, sizeof(*ws->bucket_b), GFP_KERNEL);
630 if (!ws->bucket_b)
631 goto fail;
632
633 INIT_LIST_HEAD(&ws->list);
634 return &ws->list;
635fail:
636 free_heuristic_ws(&ws->list);
637 return ERR_PTR(-ENOMEM);
638}
639
640const struct btrfs_compress_op btrfs_heuristic_compress = {
641 .workspace_manager = &heuristic_wsm,
642};
643
644static const struct btrfs_compress_op * const btrfs_compress_op[] = {
645 /* The heuristic is represented as compression type 0 */
646 &btrfs_heuristic_compress,
647 &btrfs_zlib_compress,
648 &btrfs_lzo_compress,
649 &btrfs_zstd_compress,
650};
651
652static struct list_head *alloc_workspace(int type, unsigned int level)
653{
654 switch (type) {
655 case BTRFS_COMPRESS_NONE: return alloc_heuristic_ws(level);
656 case BTRFS_COMPRESS_ZLIB: return zlib_alloc_workspace(level);
657 case BTRFS_COMPRESS_LZO: return lzo_alloc_workspace(level);
658 case BTRFS_COMPRESS_ZSTD: return zstd_alloc_workspace(level);
659 default:
660 /*
661 * This can't happen, the type is validated several times
662 * before we get here.
663 */
664 BUG();
665 }
666}
667
668static void free_workspace(int type, struct list_head *ws)
669{
670 switch (type) {
671 case BTRFS_COMPRESS_NONE: return free_heuristic_ws(ws);
672 case BTRFS_COMPRESS_ZLIB: return zlib_free_workspace(ws);
673 case BTRFS_COMPRESS_LZO: return lzo_free_workspace(ws);
674 case BTRFS_COMPRESS_ZSTD: return zstd_free_workspace(ws);
675 default:
676 /*
677 * This can't happen, the type is validated several times
678 * before we get here.
679 */
680 BUG();
681 }
682}
683
684static void btrfs_init_workspace_manager(int type)
685{
686 struct workspace_manager *wsm;
687 struct list_head *workspace;
688
689 wsm = btrfs_compress_op[type]->workspace_manager;
690 INIT_LIST_HEAD(&wsm->idle_ws);
691 spin_lock_init(&wsm->ws_lock);
692 atomic_set(&wsm->total_ws, 0);
693 init_waitqueue_head(&wsm->ws_wait);
694
695 /*
696 * Preallocate one workspace for each compression type so we can
697 * guarantee forward progress in the worst case
698 */
699 workspace = alloc_workspace(type, 0);
700 if (IS_ERR(workspace)) {
701 pr_warn(
702 "BTRFS: cannot preallocate compression workspace, will try later\n");
703 } else {
704 atomic_set(&wsm->total_ws, 1);
705 wsm->free_ws = 1;
706 list_add(workspace, &wsm->idle_ws);
707 }
708}
709
710static void btrfs_cleanup_workspace_manager(int type)
711{
712 struct workspace_manager *wsman;
713 struct list_head *ws;
714
715 wsman = btrfs_compress_op[type]->workspace_manager;
716 while (!list_empty(&wsman->idle_ws)) {
717 ws = wsman->idle_ws.next;
718 list_del(ws);
719 free_workspace(type, ws);
720 atomic_dec(&wsman->total_ws);
721 }
722}
723
724/*
725 * This finds an available workspace or allocates a new one.
726 * If it's not possible to allocate a new one, waits until there's one.
727 * Preallocation makes a forward progress guarantees and we do not return
728 * errors.
729 */
730struct list_head *btrfs_get_workspace(int type, unsigned int level)
731{
732 struct workspace_manager *wsm;
733 struct list_head *workspace;
734 int cpus = num_online_cpus();
735 unsigned nofs_flag;
736 struct list_head *idle_ws;
737 spinlock_t *ws_lock;
738 atomic_t *total_ws;
739 wait_queue_head_t *ws_wait;
740 int *free_ws;
741
742 wsm = btrfs_compress_op[type]->workspace_manager;
743 idle_ws = &wsm->idle_ws;
744 ws_lock = &wsm->ws_lock;
745 total_ws = &wsm->total_ws;
746 ws_wait = &wsm->ws_wait;
747 free_ws = &wsm->free_ws;
748
749again:
750 spin_lock(ws_lock);
751 if (!list_empty(idle_ws)) {
752 workspace = idle_ws->next;
753 list_del(workspace);
754 (*free_ws)--;
755 spin_unlock(ws_lock);
756 return workspace;
757
758 }
759 if (atomic_read(total_ws) > cpus) {
760 DEFINE_WAIT(wait);
761
762 spin_unlock(ws_lock);
763 prepare_to_wait(ws_wait, &wait, TASK_UNINTERRUPTIBLE);
764 if (atomic_read(total_ws) > cpus && !*free_ws)
765 schedule();
766 finish_wait(ws_wait, &wait);
767 goto again;
768 }
769 atomic_inc(total_ws);
770 spin_unlock(ws_lock);
771
772 /*
773 * Allocation helpers call vmalloc that can't use GFP_NOFS, so we have
774 * to turn it off here because we might get called from the restricted
775 * context of btrfs_compress_bio/btrfs_compress_pages
776 */
777 nofs_flag = memalloc_nofs_save();
778 workspace = alloc_workspace(type, level);
779 memalloc_nofs_restore(nofs_flag);
780
781 if (IS_ERR(workspace)) {
782 atomic_dec(total_ws);
783 wake_up(ws_wait);
784
785 /*
786 * Do not return the error but go back to waiting. There's a
787 * workspace preallocated for each type and the compression
788 * time is bounded so we get to a workspace eventually. This
789 * makes our caller's life easier.
790 *
791 * To prevent silent and low-probability deadlocks (when the
792 * initial preallocation fails), check if there are any
793 * workspaces at all.
794 */
795 if (atomic_read(total_ws) == 0) {
796 static DEFINE_RATELIMIT_STATE(_rs,
797 /* once per minute */ 60 * HZ,
798 /* no burst */ 1);
799
800 if (__ratelimit(&_rs)) {
801 pr_warn("BTRFS: no compression workspaces, low memory, retrying\n");
802 }
803 }
804 goto again;
805 }
806 return workspace;
807}
808
809static struct list_head *get_workspace(int type, int level)
810{
811 switch (type) {
812 case BTRFS_COMPRESS_NONE: return btrfs_get_workspace(type, level);
813 case BTRFS_COMPRESS_ZLIB: return zlib_get_workspace(level);
814 case BTRFS_COMPRESS_LZO: return btrfs_get_workspace(type, level);
815 case BTRFS_COMPRESS_ZSTD: return zstd_get_workspace(level);
816 default:
817 /*
818 * This can't happen, the type is validated several times
819 * before we get here.
820 */
821 BUG();
822 }
823}
824
825/*
826 * put a workspace struct back on the list or free it if we have enough
827 * idle ones sitting around
828 */
829void btrfs_put_workspace(int type, struct list_head *ws)
830{
831 struct workspace_manager *wsm;
832 struct list_head *idle_ws;
833 spinlock_t *ws_lock;
834 atomic_t *total_ws;
835 wait_queue_head_t *ws_wait;
836 int *free_ws;
837
838 wsm = btrfs_compress_op[type]->workspace_manager;
839 idle_ws = &wsm->idle_ws;
840 ws_lock = &wsm->ws_lock;
841 total_ws = &wsm->total_ws;
842 ws_wait = &wsm->ws_wait;
843 free_ws = &wsm->free_ws;
844
845 spin_lock(ws_lock);
846 if (*free_ws <= num_online_cpus()) {
847 list_add(ws, idle_ws);
848 (*free_ws)++;
849 spin_unlock(ws_lock);
850 goto wake;
851 }
852 spin_unlock(ws_lock);
853
854 free_workspace(type, ws);
855 atomic_dec(total_ws);
856wake:
857 cond_wake_up(ws_wait);
858}
859
860static void put_workspace(int type, struct list_head *ws)
861{
862 switch (type) {
863 case BTRFS_COMPRESS_NONE: return btrfs_put_workspace(type, ws);
864 case BTRFS_COMPRESS_ZLIB: return btrfs_put_workspace(type, ws);
865 case BTRFS_COMPRESS_LZO: return btrfs_put_workspace(type, ws);
866 case BTRFS_COMPRESS_ZSTD: return zstd_put_workspace(ws);
867 default:
868 /*
869 * This can't happen, the type is validated several times
870 * before we get here.
871 */
872 BUG();
873 }
874}
875
876/*
877 * Adjust @level according to the limits of the compression algorithm or
878 * fallback to default
879 */
880static unsigned int btrfs_compress_set_level(int type, unsigned level)
881{
882 const struct btrfs_compress_op *ops = btrfs_compress_op[type];
883
884 if (level == 0)
885 level = ops->default_level;
886 else
887 level = min(level, ops->max_level);
888
889 return level;
890}
891
892/*
893 * Given an address space and start and length, compress the bytes into @pages
894 * that are allocated on demand.
895 *
896 * @type_level is encoded algorithm and level, where level 0 means whatever
897 * default the algorithm chooses and is opaque here;
898 * - compression algo are 0-3
899 * - the level are bits 4-7
900 *
901 * @out_pages is an in/out parameter, holds maximum number of pages to allocate
902 * and returns number of actually allocated pages
903 *
904 * @total_in is used to return the number of bytes actually read. It
905 * may be smaller than the input length if we had to exit early because we
906 * ran out of room in the pages array or because we cross the
907 * max_out threshold.
908 *
909 * @total_out is an in/out parameter, must be set to the input length and will
910 * be also used to return the total number of compressed bytes
911 */
912int btrfs_compress_pages(unsigned int type_level, struct address_space *mapping,
913 u64 start, struct page **pages,
914 unsigned long *out_pages,
915 unsigned long *total_in,
916 unsigned long *total_out)
917{
918 int type = btrfs_compress_type(type_level);
919 int level = btrfs_compress_level(type_level);
920 struct list_head *workspace;
921 int ret;
922
923 level = btrfs_compress_set_level(type, level);
924 workspace = get_workspace(type, level);
925 ret = compression_compress_pages(type, workspace, mapping, start, pages,
926 out_pages, total_in, total_out);
927 put_workspace(type, workspace);
928 return ret;
929}
930
931static int btrfs_decompress_bio(struct compressed_bio *cb)
932{
933 struct list_head *workspace;
934 int ret;
935 int type = cb->compress_type;
936
937 workspace = get_workspace(type, 0);
938 ret = compression_decompress_bio(workspace, cb);
939 put_workspace(type, workspace);
940
941 if (!ret)
942 zero_fill_bio(&cb->orig_bbio->bio);
943 return ret;
944}
945
946/*
947 * a less complex decompression routine. Our compressed data fits in a
948 * single page, and we want to read a single page out of it.
949 * start_byte tells us the offset into the compressed data we're interested in
950 */
951int btrfs_decompress(int type, const u8 *data_in, struct page *dest_page,
952 unsigned long start_byte, size_t srclen, size_t destlen)
953{
954 struct list_head *workspace;
955 int ret;
956
957 workspace = get_workspace(type, 0);
958 ret = compression_decompress(type, workspace, data_in, dest_page,
959 start_byte, srclen, destlen);
960 put_workspace(type, workspace);
961
962 return ret;
963}
964
965int __init btrfs_init_compress(void)
966{
967 if (bioset_init(&btrfs_compressed_bioset, BIO_POOL_SIZE,
968 offsetof(struct compressed_bio, bbio.bio),
969 BIOSET_NEED_BVECS))
970 return -ENOMEM;
971 btrfs_init_workspace_manager(BTRFS_COMPRESS_NONE);
972 btrfs_init_workspace_manager(BTRFS_COMPRESS_ZLIB);
973 btrfs_init_workspace_manager(BTRFS_COMPRESS_LZO);
974 zstd_init_workspace_manager();
975 return 0;
976}
977
978void __cold btrfs_exit_compress(void)
979{
980 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_NONE);
981 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_ZLIB);
982 btrfs_cleanup_workspace_manager(BTRFS_COMPRESS_LZO);
983 zstd_cleanup_workspace_manager();
984 bioset_exit(&btrfs_compressed_bioset);
985}
986
987/*
988 * Copy decompressed data from working buffer to pages.
989 *
990 * @buf: The decompressed data buffer
991 * @buf_len: The decompressed data length
992 * @decompressed: Number of bytes that are already decompressed inside the
993 * compressed extent
994 * @cb: The compressed extent descriptor
995 * @orig_bio: The original bio that the caller wants to read for
996 *
997 * An easier to understand graph is like below:
998 *
999 * |<- orig_bio ->| |<- orig_bio->|
1000 * |<------- full decompressed extent ----->|
1001 * |<----------- @cb range ---->|
1002 * | |<-- @buf_len -->|
1003 * |<--- @decompressed --->|
1004 *
1005 * Note that, @cb can be a subpage of the full decompressed extent, but
1006 * @cb->start always has the same as the orig_file_offset value of the full
1007 * decompressed extent.
1008 *
1009 * When reading compressed extent, we have to read the full compressed extent,
1010 * while @orig_bio may only want part of the range.
1011 * Thus this function will ensure only data covered by @orig_bio will be copied
1012 * to.
1013 *
1014 * Return 0 if we have copied all needed contents for @orig_bio.
1015 * Return >0 if we need continue decompress.
1016 */
1017int btrfs_decompress_buf2page(const char *buf, u32 buf_len,
1018 struct compressed_bio *cb, u32 decompressed)
1019{
1020 struct bio *orig_bio = &cb->orig_bbio->bio;
1021 /* Offset inside the full decompressed extent */
1022 u32 cur_offset;
1023
1024 cur_offset = decompressed;
1025 /* The main loop to do the copy */
1026 while (cur_offset < decompressed + buf_len) {
1027 struct bio_vec bvec;
1028 size_t copy_len;
1029 u32 copy_start;
1030 /* Offset inside the full decompressed extent */
1031 u32 bvec_offset;
1032
1033 bvec = bio_iter_iovec(orig_bio, orig_bio->bi_iter);
1034 /*
1035 * cb->start may underflow, but subtracting that value can still
1036 * give us correct offset inside the full decompressed extent.
1037 */
1038 bvec_offset = page_offset(bvec.bv_page) + bvec.bv_offset - cb->start;
1039
1040 /* Haven't reached the bvec range, exit */
1041 if (decompressed + buf_len <= bvec_offset)
1042 return 1;
1043
1044 copy_start = max(cur_offset, bvec_offset);
1045 copy_len = min(bvec_offset + bvec.bv_len,
1046 decompressed + buf_len) - copy_start;
1047 ASSERT(copy_len);
1048
1049 /*
1050 * Extra range check to ensure we didn't go beyond
1051 * @buf + @buf_len.
1052 */
1053 ASSERT(copy_start - decompressed < buf_len);
1054 memcpy_to_page(bvec.bv_page, bvec.bv_offset,
1055 buf + copy_start - decompressed, copy_len);
1056 cur_offset += copy_len;
1057
1058 bio_advance(orig_bio, copy_len);
1059 /* Finished the bio */
1060 if (!orig_bio->bi_iter.bi_size)
1061 return 0;
1062 }
1063 return 1;
1064}
1065
1066/*
1067 * Shannon Entropy calculation
1068 *
1069 * Pure byte distribution analysis fails to determine compressibility of data.
1070 * Try calculating entropy to estimate the average minimum number of bits
1071 * needed to encode the sampled data.
1072 *
1073 * For convenience, return the percentage of needed bits, instead of amount of
1074 * bits directly.
1075 *
1076 * @ENTROPY_LVL_ACEPTABLE - below that threshold, sample has low byte entropy
1077 * and can be compressible with high probability
1078 *
1079 * @ENTROPY_LVL_HIGH - data are not compressible with high probability
1080 *
1081 * Use of ilog2() decreases precision, we lower the LVL to 5 to compensate.
1082 */
1083#define ENTROPY_LVL_ACEPTABLE (65)
1084#define ENTROPY_LVL_HIGH (80)
1085
1086/*
1087 * For increasead precision in shannon_entropy calculation,
1088 * let's do pow(n, M) to save more digits after comma:
1089 *
1090 * - maximum int bit length is 64
1091 * - ilog2(MAX_SAMPLE_SIZE) -> 13
1092 * - 13 * 4 = 52 < 64 -> M = 4
1093 *
1094 * So use pow(n, 4).
1095 */
1096static inline u32 ilog2_w(u64 n)
1097{
1098 return ilog2(n * n * n * n);
1099}
1100
1101static u32 shannon_entropy(struct heuristic_ws *ws)
1102{
1103 const u32 entropy_max = 8 * ilog2_w(2);
1104 u32 entropy_sum = 0;
1105 u32 p, p_base, sz_base;
1106 u32 i;
1107
1108 sz_base = ilog2_w(ws->sample_size);
1109 for (i = 0; i < BUCKET_SIZE && ws->bucket[i].count > 0; i++) {
1110 p = ws->bucket[i].count;
1111 p_base = ilog2_w(p);
1112 entropy_sum += p * (sz_base - p_base);
1113 }
1114
1115 entropy_sum /= ws->sample_size;
1116 return entropy_sum * 100 / entropy_max;
1117}
1118
1119#define RADIX_BASE 4U
1120#define COUNTERS_SIZE (1U << RADIX_BASE)
1121
1122static u8 get4bits(u64 num, int shift) {
1123 u8 low4bits;
1124
1125 num >>= shift;
1126 /* Reverse order */
1127 low4bits = (COUNTERS_SIZE - 1) - (num % COUNTERS_SIZE);
1128 return low4bits;
1129}
1130
1131/*
1132 * Use 4 bits as radix base
1133 * Use 16 u32 counters for calculating new position in buf array
1134 *
1135 * @array - array that will be sorted
1136 * @array_buf - buffer array to store sorting results
1137 * must be equal in size to @array
1138 * @num - array size
1139 */
1140static void radix_sort(struct bucket_item *array, struct bucket_item *array_buf,
1141 int num)
1142{
1143 u64 max_num;
1144 u64 buf_num;
1145 u32 counters[COUNTERS_SIZE];
1146 u32 new_addr;
1147 u32 addr;
1148 int bitlen;
1149 int shift;
1150 int i;
1151
1152 /*
1153 * Try avoid useless loop iterations for small numbers stored in big
1154 * counters. Example: 48 33 4 ... in 64bit array
1155 */
1156 max_num = array[0].count;
1157 for (i = 1; i < num; i++) {
1158 buf_num = array[i].count;
1159 if (buf_num > max_num)
1160 max_num = buf_num;
1161 }
1162
1163 buf_num = ilog2(max_num);
1164 bitlen = ALIGN(buf_num, RADIX_BASE * 2);
1165
1166 shift = 0;
1167 while (shift < bitlen) {
1168 memset(counters, 0, sizeof(counters));
1169
1170 for (i = 0; i < num; i++) {
1171 buf_num = array[i].count;
1172 addr = get4bits(buf_num, shift);
1173 counters[addr]++;
1174 }
1175
1176 for (i = 1; i < COUNTERS_SIZE; i++)
1177 counters[i] += counters[i - 1];
1178
1179 for (i = num - 1; i >= 0; i--) {
1180 buf_num = array[i].count;
1181 addr = get4bits(buf_num, shift);
1182 counters[addr]--;
1183 new_addr = counters[addr];
1184 array_buf[new_addr] = array[i];
1185 }
1186
1187 shift += RADIX_BASE;
1188
1189 /*
1190 * Normal radix expects to move data from a temporary array, to
1191 * the main one. But that requires some CPU time. Avoid that
1192 * by doing another sort iteration to original array instead of
1193 * memcpy()
1194 */
1195 memset(counters, 0, sizeof(counters));
1196
1197 for (i = 0; i < num; i ++) {
1198 buf_num = array_buf[i].count;
1199 addr = get4bits(buf_num, shift);
1200 counters[addr]++;
1201 }
1202
1203 for (i = 1; i < COUNTERS_SIZE; i++)
1204 counters[i] += counters[i - 1];
1205
1206 for (i = num - 1; i >= 0; i--) {
1207 buf_num = array_buf[i].count;
1208 addr = get4bits(buf_num, shift);
1209 counters[addr]--;
1210 new_addr = counters[addr];
1211 array[new_addr] = array_buf[i];
1212 }
1213
1214 shift += RADIX_BASE;
1215 }
1216}
1217
1218/*
1219 * Size of the core byte set - how many bytes cover 90% of the sample
1220 *
1221 * There are several types of structured binary data that use nearly all byte
1222 * values. The distribution can be uniform and counts in all buckets will be
1223 * nearly the same (eg. encrypted data). Unlikely to be compressible.
1224 *
1225 * Other possibility is normal (Gaussian) distribution, where the data could
1226 * be potentially compressible, but we have to take a few more steps to decide
1227 * how much.
1228 *
1229 * @BYTE_CORE_SET_LOW - main part of byte values repeated frequently,
1230 * compression algo can easy fix that
1231 * @BYTE_CORE_SET_HIGH - data have uniform distribution and with high
1232 * probability is not compressible
1233 */
1234#define BYTE_CORE_SET_LOW (64)
1235#define BYTE_CORE_SET_HIGH (200)
1236
1237static int byte_core_set_size(struct heuristic_ws *ws)
1238{
1239 u32 i;
1240 u32 coreset_sum = 0;
1241 const u32 core_set_threshold = ws->sample_size * 90 / 100;
1242 struct bucket_item *bucket = ws->bucket;
1243
1244 /* Sort in reverse order */
1245 radix_sort(ws->bucket, ws->bucket_b, BUCKET_SIZE);
1246
1247 for (i = 0; i < BYTE_CORE_SET_LOW; i++)
1248 coreset_sum += bucket[i].count;
1249
1250 if (coreset_sum > core_set_threshold)
1251 return i;
1252
1253 for (; i < BYTE_CORE_SET_HIGH && bucket[i].count > 0; i++) {
1254 coreset_sum += bucket[i].count;
1255 if (coreset_sum > core_set_threshold)
1256 break;
1257 }
1258
1259 return i;
1260}
1261
1262/*
1263 * Count byte values in buckets.
1264 * This heuristic can detect textual data (configs, xml, json, html, etc).
1265 * Because in most text-like data byte set is restricted to limited number of
1266 * possible characters, and that restriction in most cases makes data easy to
1267 * compress.
1268 *
1269 * @BYTE_SET_THRESHOLD - consider all data within this byte set size:
1270 * less - compressible
1271 * more - need additional analysis
1272 */
1273#define BYTE_SET_THRESHOLD (64)
1274
1275static u32 byte_set_size(const struct heuristic_ws *ws)
1276{
1277 u32 i;
1278 u32 byte_set_size = 0;
1279
1280 for (i = 0; i < BYTE_SET_THRESHOLD; i++) {
1281 if (ws->bucket[i].count > 0)
1282 byte_set_size++;
1283 }
1284
1285 /*
1286 * Continue collecting count of byte values in buckets. If the byte
1287 * set size is bigger then the threshold, it's pointless to continue,
1288 * the detection technique would fail for this type of data.
1289 */
1290 for (; i < BUCKET_SIZE; i++) {
1291 if (ws->bucket[i].count > 0) {
1292 byte_set_size++;
1293 if (byte_set_size > BYTE_SET_THRESHOLD)
1294 return byte_set_size;
1295 }
1296 }
1297
1298 return byte_set_size;
1299}
1300
1301static bool sample_repeated_patterns(struct heuristic_ws *ws)
1302{
1303 const u32 half_of_sample = ws->sample_size / 2;
1304 const u8 *data = ws->sample;
1305
1306 return memcmp(&data[0], &data[half_of_sample], half_of_sample) == 0;
1307}
1308
1309static void heuristic_collect_sample(struct inode *inode, u64 start, u64 end,
1310 struct heuristic_ws *ws)
1311{
1312 struct page *page;
1313 u64 index, index_end;
1314 u32 i, curr_sample_pos;
1315 u8 *in_data;
1316
1317 /*
1318 * Compression handles the input data by chunks of 128KiB
1319 * (defined by BTRFS_MAX_UNCOMPRESSED)
1320 *
1321 * We do the same for the heuristic and loop over the whole range.
1322 *
1323 * MAX_SAMPLE_SIZE - calculated under assumption that heuristic will
1324 * process no more than BTRFS_MAX_UNCOMPRESSED at a time.
1325 */
1326 if (end - start > BTRFS_MAX_UNCOMPRESSED)
1327 end = start + BTRFS_MAX_UNCOMPRESSED;
1328
1329 index = start >> PAGE_SHIFT;
1330 index_end = end >> PAGE_SHIFT;
1331
1332 /* Don't miss unaligned end */
1333 if (!PAGE_ALIGNED(end))
1334 index_end++;
1335
1336 curr_sample_pos = 0;
1337 while (index < index_end) {
1338 page = find_get_page(inode->i_mapping, index);
1339 in_data = kmap_local_page(page);
1340 /* Handle case where the start is not aligned to PAGE_SIZE */
1341 i = start % PAGE_SIZE;
1342 while (i < PAGE_SIZE - SAMPLING_READ_SIZE) {
1343 /* Don't sample any garbage from the last page */
1344 if (start > end - SAMPLING_READ_SIZE)
1345 break;
1346 memcpy(&ws->sample[curr_sample_pos], &in_data[i],
1347 SAMPLING_READ_SIZE);
1348 i += SAMPLING_INTERVAL;
1349 start += SAMPLING_INTERVAL;
1350 curr_sample_pos += SAMPLING_READ_SIZE;
1351 }
1352 kunmap_local(in_data);
1353 put_page(page);
1354
1355 index++;
1356 }
1357
1358 ws->sample_size = curr_sample_pos;
1359}
1360
1361/*
1362 * Compression heuristic.
1363 *
1364 * For now is's a naive and optimistic 'return true', we'll extend the logic to
1365 * quickly (compared to direct compression) detect data characteristics
1366 * (compressible/incompressible) to avoid wasting CPU time on incompressible
1367 * data.
1368 *
1369 * The following types of analysis can be performed:
1370 * - detect mostly zero data
1371 * - detect data with low "byte set" size (text, etc)
1372 * - detect data with low/high "core byte" set
1373 *
1374 * Return non-zero if the compression should be done, 0 otherwise.
1375 */
1376int btrfs_compress_heuristic(struct inode *inode, u64 start, u64 end)
1377{
1378 struct list_head *ws_list = get_workspace(0, 0);
1379 struct heuristic_ws *ws;
1380 u32 i;
1381 u8 byte;
1382 int ret = 0;
1383
1384 ws = list_entry(ws_list, struct heuristic_ws, list);
1385
1386 heuristic_collect_sample(inode, start, end, ws);
1387
1388 if (sample_repeated_patterns(ws)) {
1389 ret = 1;
1390 goto out;
1391 }
1392
1393 memset(ws->bucket, 0, sizeof(*ws->bucket)*BUCKET_SIZE);
1394
1395 for (i = 0; i < ws->sample_size; i++) {
1396 byte = ws->sample[i];
1397 ws->bucket[byte].count++;
1398 }
1399
1400 i = byte_set_size(ws);
1401 if (i < BYTE_SET_THRESHOLD) {
1402 ret = 2;
1403 goto out;
1404 }
1405
1406 i = byte_core_set_size(ws);
1407 if (i <= BYTE_CORE_SET_LOW) {
1408 ret = 3;
1409 goto out;
1410 }
1411
1412 if (i >= BYTE_CORE_SET_HIGH) {
1413 ret = 0;
1414 goto out;
1415 }
1416
1417 i = shannon_entropy(ws);
1418 if (i <= ENTROPY_LVL_ACEPTABLE) {
1419 ret = 4;
1420 goto out;
1421 }
1422
1423 /*
1424 * For the levels below ENTROPY_LVL_HIGH, additional analysis would be
1425 * needed to give green light to compression.
1426 *
1427 * For now just assume that compression at that level is not worth the
1428 * resources because:
1429 *
1430 * 1. it is possible to defrag the data later
1431 *
1432 * 2. the data would turn out to be hardly compressible, eg. 150 byte
1433 * values, every bucket has counter at level ~54. The heuristic would
1434 * be confused. This can happen when data have some internal repeated
1435 * patterns like "abbacbbc...". This can be detected by analyzing
1436 * pairs of bytes, which is too costly.
1437 */
1438 if (i < ENTROPY_LVL_HIGH) {
1439 ret = 5;
1440 goto out;
1441 } else {
1442 ret = 0;
1443 goto out;
1444 }
1445
1446out:
1447 put_workspace(0, ws_list);
1448 return ret;
1449}
1450
1451/*
1452 * Convert the compression suffix (eg. after "zlib" starting with ":") to
1453 * level, unrecognized string will set the default level
1454 */
1455unsigned int btrfs_compress_str2level(unsigned int type, const char *str)
1456{
1457 unsigned int level = 0;
1458 int ret;
1459
1460 if (!type)
1461 return 0;
1462
1463 if (str[0] == ':') {
1464 ret = kstrtouint(str + 1, 10, &level);
1465 if (ret)
1466 level = 0;
1467 }
1468
1469 level = btrfs_compress_set_level(type, level);
1470
1471 return level;
1472}