Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Generic OPP Interface
4 *
5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6 * Nishanth Menon
7 * Romit Dasgupta
8 * Kevin Hilman
9 */
10
11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13#include <linux/clk.h>
14#include <linux/errno.h>
15#include <linux/err.h>
16#include <linux/device.h>
17#include <linux/export.h>
18#include <linux/pm_domain.h>
19#include <linux/regulator/consumer.h>
20#include <linux/slab.h>
21#include <linux/xarray.h>
22
23#include "opp.h"
24
25/*
26 * The root of the list of all opp-tables. All opp_table structures branch off
27 * from here, with each opp_table containing the list of opps it supports in
28 * various states of availability.
29 */
30LIST_HEAD(opp_tables);
31
32/* OPP tables with uninitialized required OPPs */
33LIST_HEAD(lazy_opp_tables);
34
35/* Lock to allow exclusive modification to the device and opp lists */
36DEFINE_MUTEX(opp_table_lock);
37/* Flag indicating that opp_tables list is being updated at the moment */
38static bool opp_tables_busy;
39
40/* OPP ID allocator */
41static DEFINE_XARRAY_ALLOC1(opp_configs);
42
43static bool _find_opp_dev(const struct device *dev, struct opp_table *opp_table)
44{
45 struct opp_device *opp_dev;
46 bool found = false;
47
48 mutex_lock(&opp_table->lock);
49 list_for_each_entry(opp_dev, &opp_table->dev_list, node)
50 if (opp_dev->dev == dev) {
51 found = true;
52 break;
53 }
54
55 mutex_unlock(&opp_table->lock);
56 return found;
57}
58
59static struct opp_table *_find_opp_table_unlocked(struct device *dev)
60{
61 struct opp_table *opp_table;
62
63 list_for_each_entry(opp_table, &opp_tables, node) {
64 if (_find_opp_dev(dev, opp_table)) {
65 _get_opp_table_kref(opp_table);
66 return opp_table;
67 }
68 }
69
70 return ERR_PTR(-ENODEV);
71}
72
73/**
74 * _find_opp_table() - find opp_table struct using device pointer
75 * @dev: device pointer used to lookup OPP table
76 *
77 * Search OPP table for one containing matching device.
78 *
79 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
80 * -EINVAL based on type of error.
81 *
82 * The callers must call dev_pm_opp_put_opp_table() after the table is used.
83 */
84struct opp_table *_find_opp_table(struct device *dev)
85{
86 struct opp_table *opp_table;
87
88 if (IS_ERR_OR_NULL(dev)) {
89 pr_err("%s: Invalid parameters\n", __func__);
90 return ERR_PTR(-EINVAL);
91 }
92
93 mutex_lock(&opp_table_lock);
94 opp_table = _find_opp_table_unlocked(dev);
95 mutex_unlock(&opp_table_lock);
96
97 return opp_table;
98}
99
100/*
101 * Returns true if multiple clocks aren't there, else returns false with WARN.
102 *
103 * We don't force clk_count == 1 here as there are users who don't have a clock
104 * representation in the OPP table and manage the clock configuration themselves
105 * in an platform specific way.
106 */
107static bool assert_single_clk(struct opp_table *opp_table)
108{
109 return !WARN_ON(opp_table->clk_count > 1);
110}
111
112/**
113 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
114 * @opp: opp for which voltage has to be returned for
115 *
116 * Return: voltage in micro volt corresponding to the opp, else
117 * return 0
118 *
119 * This is useful only for devices with single power supply.
120 */
121unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
122{
123 if (IS_ERR_OR_NULL(opp)) {
124 pr_err("%s: Invalid parameters\n", __func__);
125 return 0;
126 }
127
128 return opp->supplies[0].u_volt;
129}
130EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
131
132/**
133 * dev_pm_opp_get_supplies() - Gets the supply information corresponding to an opp
134 * @opp: opp for which voltage has to be returned for
135 * @supplies: Placeholder for copying the supply information.
136 *
137 * Return: negative error number on failure, 0 otherwise on success after
138 * setting @supplies.
139 *
140 * This can be used for devices with any number of power supplies. The caller
141 * must ensure the @supplies array must contain space for each regulator.
142 */
143int dev_pm_opp_get_supplies(struct dev_pm_opp *opp,
144 struct dev_pm_opp_supply *supplies)
145{
146 if (IS_ERR_OR_NULL(opp) || !supplies) {
147 pr_err("%s: Invalid parameters\n", __func__);
148 return -EINVAL;
149 }
150
151 memcpy(supplies, opp->supplies,
152 sizeof(*supplies) * opp->opp_table->regulator_count);
153 return 0;
154}
155EXPORT_SYMBOL_GPL(dev_pm_opp_get_supplies);
156
157/**
158 * dev_pm_opp_get_power() - Gets the power corresponding to an opp
159 * @opp: opp for which power has to be returned for
160 *
161 * Return: power in micro watt corresponding to the opp, else
162 * return 0
163 *
164 * This is useful only for devices with single power supply.
165 */
166unsigned long dev_pm_opp_get_power(struct dev_pm_opp *opp)
167{
168 unsigned long opp_power = 0;
169 int i;
170
171 if (IS_ERR_OR_NULL(opp)) {
172 pr_err("%s: Invalid parameters\n", __func__);
173 return 0;
174 }
175 for (i = 0; i < opp->opp_table->regulator_count; i++)
176 opp_power += opp->supplies[i].u_watt;
177
178 return opp_power;
179}
180EXPORT_SYMBOL_GPL(dev_pm_opp_get_power);
181
182/**
183 * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp
184 * @opp: opp for which frequency has to be returned for
185 *
186 * Return: frequency in hertz corresponding to the opp, else
187 * return 0
188 */
189unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp)
190{
191 if (IS_ERR_OR_NULL(opp)) {
192 pr_err("%s: Invalid parameters\n", __func__);
193 return 0;
194 }
195
196 if (!assert_single_clk(opp->opp_table))
197 return 0;
198
199 return opp->rates[0];
200}
201EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq);
202
203/**
204 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
205 * @opp: opp for which level value has to be returned for
206 *
207 * Return: level read from device tree corresponding to the opp, else
208 * return 0.
209 */
210unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
211{
212 if (IS_ERR_OR_NULL(opp) || !opp->available) {
213 pr_err("%s: Invalid parameters\n", __func__);
214 return 0;
215 }
216
217 return opp->level;
218}
219EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
220
221/**
222 * dev_pm_opp_get_required_pstate() - Gets the required performance state
223 * corresponding to an available opp
224 * @opp: opp for which performance state has to be returned for
225 * @index: index of the required opp
226 *
227 * Return: performance state read from device tree corresponding to the
228 * required opp, else return 0.
229 */
230unsigned int dev_pm_opp_get_required_pstate(struct dev_pm_opp *opp,
231 unsigned int index)
232{
233 if (IS_ERR_OR_NULL(opp) || !opp->available ||
234 index >= opp->opp_table->required_opp_count) {
235 pr_err("%s: Invalid parameters\n", __func__);
236 return 0;
237 }
238
239 /* required-opps not fully initialized yet */
240 if (lazy_linking_pending(opp->opp_table))
241 return 0;
242
243 return opp->required_opps[index]->pstate;
244}
245EXPORT_SYMBOL_GPL(dev_pm_opp_get_required_pstate);
246
247/**
248 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
249 * @opp: opp for which turbo mode is being verified
250 *
251 * Turbo OPPs are not for normal use, and can be enabled (under certain
252 * conditions) for short duration of times to finish high throughput work
253 * quickly. Running on them for longer times may overheat the chip.
254 *
255 * Return: true if opp is turbo opp, else false.
256 */
257bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
258{
259 if (IS_ERR_OR_NULL(opp) || !opp->available) {
260 pr_err("%s: Invalid parameters\n", __func__);
261 return false;
262 }
263
264 return opp->turbo;
265}
266EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
267
268/**
269 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
270 * @dev: device for which we do this operation
271 *
272 * Return: This function returns the max clock latency in nanoseconds.
273 */
274unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
275{
276 struct opp_table *opp_table;
277 unsigned long clock_latency_ns;
278
279 opp_table = _find_opp_table(dev);
280 if (IS_ERR(opp_table))
281 return 0;
282
283 clock_latency_ns = opp_table->clock_latency_ns_max;
284
285 dev_pm_opp_put_opp_table(opp_table);
286
287 return clock_latency_ns;
288}
289EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
290
291/**
292 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
293 * @dev: device for which we do this operation
294 *
295 * Return: This function returns the max voltage latency in nanoseconds.
296 */
297unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
298{
299 struct opp_table *opp_table;
300 struct dev_pm_opp *opp;
301 struct regulator *reg;
302 unsigned long latency_ns = 0;
303 int ret, i, count;
304 struct {
305 unsigned long min;
306 unsigned long max;
307 } *uV;
308
309 opp_table = _find_opp_table(dev);
310 if (IS_ERR(opp_table))
311 return 0;
312
313 /* Regulator may not be required for the device */
314 if (!opp_table->regulators)
315 goto put_opp_table;
316
317 count = opp_table->regulator_count;
318
319 uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
320 if (!uV)
321 goto put_opp_table;
322
323 mutex_lock(&opp_table->lock);
324
325 for (i = 0; i < count; i++) {
326 uV[i].min = ~0;
327 uV[i].max = 0;
328
329 list_for_each_entry(opp, &opp_table->opp_list, node) {
330 if (!opp->available)
331 continue;
332
333 if (opp->supplies[i].u_volt_min < uV[i].min)
334 uV[i].min = opp->supplies[i].u_volt_min;
335 if (opp->supplies[i].u_volt_max > uV[i].max)
336 uV[i].max = opp->supplies[i].u_volt_max;
337 }
338 }
339
340 mutex_unlock(&opp_table->lock);
341
342 /*
343 * The caller needs to ensure that opp_table (and hence the regulator)
344 * isn't freed, while we are executing this routine.
345 */
346 for (i = 0; i < count; i++) {
347 reg = opp_table->regulators[i];
348 ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
349 if (ret > 0)
350 latency_ns += ret * 1000;
351 }
352
353 kfree(uV);
354put_opp_table:
355 dev_pm_opp_put_opp_table(opp_table);
356
357 return latency_ns;
358}
359EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
360
361/**
362 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
363 * nanoseconds
364 * @dev: device for which we do this operation
365 *
366 * Return: This function returns the max transition latency, in nanoseconds, to
367 * switch from one OPP to other.
368 */
369unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
370{
371 return dev_pm_opp_get_max_volt_latency(dev) +
372 dev_pm_opp_get_max_clock_latency(dev);
373}
374EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
375
376/**
377 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
378 * @dev: device for which we do this operation
379 *
380 * Return: This function returns the frequency of the OPP marked as suspend_opp
381 * if one is available, else returns 0;
382 */
383unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
384{
385 struct opp_table *opp_table;
386 unsigned long freq = 0;
387
388 opp_table = _find_opp_table(dev);
389 if (IS_ERR(opp_table))
390 return 0;
391
392 if (opp_table->suspend_opp && opp_table->suspend_opp->available)
393 freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
394
395 dev_pm_opp_put_opp_table(opp_table);
396
397 return freq;
398}
399EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
400
401int _get_opp_count(struct opp_table *opp_table)
402{
403 struct dev_pm_opp *opp;
404 int count = 0;
405
406 mutex_lock(&opp_table->lock);
407
408 list_for_each_entry(opp, &opp_table->opp_list, node) {
409 if (opp->available)
410 count++;
411 }
412
413 mutex_unlock(&opp_table->lock);
414
415 return count;
416}
417
418/**
419 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
420 * @dev: device for which we do this operation
421 *
422 * Return: This function returns the number of available opps if there are any,
423 * else returns 0 if none or the corresponding error value.
424 */
425int dev_pm_opp_get_opp_count(struct device *dev)
426{
427 struct opp_table *opp_table;
428 int count;
429
430 opp_table = _find_opp_table(dev);
431 if (IS_ERR(opp_table)) {
432 count = PTR_ERR(opp_table);
433 dev_dbg(dev, "%s: OPP table not found (%d)\n",
434 __func__, count);
435 return count;
436 }
437
438 count = _get_opp_count(opp_table);
439 dev_pm_opp_put_opp_table(opp_table);
440
441 return count;
442}
443EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
444
445/* Helpers to read keys */
446static unsigned long _read_freq(struct dev_pm_opp *opp, int index)
447{
448 return opp->rates[0];
449}
450
451static unsigned long _read_level(struct dev_pm_opp *opp, int index)
452{
453 return opp->level;
454}
455
456static unsigned long _read_bw(struct dev_pm_opp *opp, int index)
457{
458 return opp->bandwidth[index].peak;
459}
460
461/* Generic comparison helpers */
462static bool _compare_exact(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
463 unsigned long opp_key, unsigned long key)
464{
465 if (opp_key == key) {
466 *opp = temp_opp;
467 return true;
468 }
469
470 return false;
471}
472
473static bool _compare_ceil(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
474 unsigned long opp_key, unsigned long key)
475{
476 if (opp_key >= key) {
477 *opp = temp_opp;
478 return true;
479 }
480
481 return false;
482}
483
484static bool _compare_floor(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
485 unsigned long opp_key, unsigned long key)
486{
487 if (opp_key > key)
488 return true;
489
490 *opp = temp_opp;
491 return false;
492}
493
494/* Generic key finding helpers */
495static struct dev_pm_opp *_opp_table_find_key(struct opp_table *opp_table,
496 unsigned long *key, int index, bool available,
497 unsigned long (*read)(struct dev_pm_opp *opp, int index),
498 bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
499 unsigned long opp_key, unsigned long key),
500 bool (*assert)(struct opp_table *opp_table))
501{
502 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
503
504 /* Assert that the requirement is met */
505 if (assert && !assert(opp_table))
506 return ERR_PTR(-EINVAL);
507
508 mutex_lock(&opp_table->lock);
509
510 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
511 if (temp_opp->available == available) {
512 if (compare(&opp, temp_opp, read(temp_opp, index), *key))
513 break;
514 }
515 }
516
517 /* Increment the reference count of OPP */
518 if (!IS_ERR(opp)) {
519 *key = read(opp, index);
520 dev_pm_opp_get(opp);
521 }
522
523 mutex_unlock(&opp_table->lock);
524
525 return opp;
526}
527
528static struct dev_pm_opp *
529_find_key(struct device *dev, unsigned long *key, int index, bool available,
530 unsigned long (*read)(struct dev_pm_opp *opp, int index),
531 bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
532 unsigned long opp_key, unsigned long key),
533 bool (*assert)(struct opp_table *opp_table))
534{
535 struct opp_table *opp_table;
536 struct dev_pm_opp *opp;
537
538 opp_table = _find_opp_table(dev);
539 if (IS_ERR(opp_table)) {
540 dev_err(dev, "%s: OPP table not found (%ld)\n", __func__,
541 PTR_ERR(opp_table));
542 return ERR_CAST(opp_table);
543 }
544
545 opp = _opp_table_find_key(opp_table, key, index, available, read,
546 compare, assert);
547
548 dev_pm_opp_put_opp_table(opp_table);
549
550 return opp;
551}
552
553static struct dev_pm_opp *_find_key_exact(struct device *dev,
554 unsigned long key, int index, bool available,
555 unsigned long (*read)(struct dev_pm_opp *opp, int index),
556 bool (*assert)(struct opp_table *opp_table))
557{
558 /*
559 * The value of key will be updated here, but will be ignored as the
560 * caller doesn't need it.
561 */
562 return _find_key(dev, &key, index, available, read, _compare_exact,
563 assert);
564}
565
566static struct dev_pm_opp *_opp_table_find_key_ceil(struct opp_table *opp_table,
567 unsigned long *key, int index, bool available,
568 unsigned long (*read)(struct dev_pm_opp *opp, int index),
569 bool (*assert)(struct opp_table *opp_table))
570{
571 return _opp_table_find_key(opp_table, key, index, available, read,
572 _compare_ceil, assert);
573}
574
575static struct dev_pm_opp *_find_key_ceil(struct device *dev, unsigned long *key,
576 int index, bool available,
577 unsigned long (*read)(struct dev_pm_opp *opp, int index),
578 bool (*assert)(struct opp_table *opp_table))
579{
580 return _find_key(dev, key, index, available, read, _compare_ceil,
581 assert);
582}
583
584static struct dev_pm_opp *_find_key_floor(struct device *dev,
585 unsigned long *key, int index, bool available,
586 unsigned long (*read)(struct dev_pm_opp *opp, int index),
587 bool (*assert)(struct opp_table *opp_table))
588{
589 return _find_key(dev, key, index, available, read, _compare_floor,
590 assert);
591}
592
593/**
594 * dev_pm_opp_find_freq_exact() - search for an exact frequency
595 * @dev: device for which we do this operation
596 * @freq: frequency to search for
597 * @available: true/false - match for available opp
598 *
599 * Return: Searches for exact match in the opp table and returns pointer to the
600 * matching opp if found, else returns ERR_PTR in case of error and should
601 * be handled using IS_ERR. Error return values can be:
602 * EINVAL: for bad pointer
603 * ERANGE: no match found for search
604 * ENODEV: if device not found in list of registered devices
605 *
606 * Note: available is a modifier for the search. if available=true, then the
607 * match is for exact matching frequency and is available in the stored OPP
608 * table. if false, the match is for exact frequency which is not available.
609 *
610 * This provides a mechanism to enable an opp which is not available currently
611 * or the opposite as well.
612 *
613 * The callers are required to call dev_pm_opp_put() for the returned OPP after
614 * use.
615 */
616struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
617 unsigned long freq, bool available)
618{
619 return _find_key_exact(dev, freq, 0, available, _read_freq,
620 assert_single_clk);
621}
622EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
623
624static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
625 unsigned long *freq)
626{
627 return _opp_table_find_key_ceil(opp_table, freq, 0, true, _read_freq,
628 assert_single_clk);
629}
630
631/**
632 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
633 * @dev: device for which we do this operation
634 * @freq: Start frequency
635 *
636 * Search for the matching ceil *available* OPP from a starting freq
637 * for a device.
638 *
639 * Return: matching *opp and refreshes *freq accordingly, else returns
640 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
641 * values can be:
642 * EINVAL: for bad pointer
643 * ERANGE: no match found for search
644 * ENODEV: if device not found in list of registered devices
645 *
646 * The callers are required to call dev_pm_opp_put() for the returned OPP after
647 * use.
648 */
649struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
650 unsigned long *freq)
651{
652 return _find_key_ceil(dev, freq, 0, true, _read_freq, assert_single_clk);
653}
654EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
655
656/**
657 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
658 * @dev: device for which we do this operation
659 * @freq: Start frequency
660 *
661 * Search for the matching floor *available* OPP from a starting freq
662 * for a device.
663 *
664 * Return: matching *opp and refreshes *freq accordingly, else returns
665 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
666 * values can be:
667 * EINVAL: for bad pointer
668 * ERANGE: no match found for search
669 * ENODEV: if device not found in list of registered devices
670 *
671 * The callers are required to call dev_pm_opp_put() for the returned OPP after
672 * use.
673 */
674struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
675 unsigned long *freq)
676{
677 return _find_key_floor(dev, freq, 0, true, _read_freq, assert_single_clk);
678}
679EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
680
681/**
682 * dev_pm_opp_find_level_exact() - search for an exact level
683 * @dev: device for which we do this operation
684 * @level: level to search for
685 *
686 * Return: Searches for exact match in the opp table and returns pointer to the
687 * matching opp if found, else returns ERR_PTR in case of error and should
688 * be handled using IS_ERR. Error return values can be:
689 * EINVAL: for bad pointer
690 * ERANGE: no match found for search
691 * ENODEV: if device not found in list of registered devices
692 *
693 * The callers are required to call dev_pm_opp_put() for the returned OPP after
694 * use.
695 */
696struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
697 unsigned int level)
698{
699 return _find_key_exact(dev, level, 0, true, _read_level, NULL);
700}
701EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
702
703/**
704 * dev_pm_opp_find_level_ceil() - search for an rounded up level
705 * @dev: device for which we do this operation
706 * @level: level to search for
707 *
708 * Return: Searches for rounded up match in the opp table and returns pointer
709 * to the matching opp if found, else returns ERR_PTR in case of error and
710 * should be handled using IS_ERR. Error return values can be:
711 * EINVAL: for bad pointer
712 * ERANGE: no match found for search
713 * ENODEV: if device not found in list of registered devices
714 *
715 * The callers are required to call dev_pm_opp_put() for the returned OPP after
716 * use.
717 */
718struct dev_pm_opp *dev_pm_opp_find_level_ceil(struct device *dev,
719 unsigned int *level)
720{
721 unsigned long temp = *level;
722 struct dev_pm_opp *opp;
723
724 opp = _find_key_ceil(dev, &temp, 0, true, _read_level, NULL);
725 *level = temp;
726 return opp;
727}
728EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_ceil);
729
730/**
731 * dev_pm_opp_find_bw_ceil() - Search for a rounded ceil bandwidth
732 * @dev: device for which we do this operation
733 * @bw: start bandwidth
734 * @index: which bandwidth to compare, in case of OPPs with several values
735 *
736 * Search for the matching floor *available* OPP from a starting bandwidth
737 * for a device.
738 *
739 * Return: matching *opp and refreshes *bw accordingly, else returns
740 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
741 * values can be:
742 * EINVAL: for bad pointer
743 * ERANGE: no match found for search
744 * ENODEV: if device not found in list of registered devices
745 *
746 * The callers are required to call dev_pm_opp_put() for the returned OPP after
747 * use.
748 */
749struct dev_pm_opp *dev_pm_opp_find_bw_ceil(struct device *dev, unsigned int *bw,
750 int index)
751{
752 unsigned long temp = *bw;
753 struct dev_pm_opp *opp;
754
755 opp = _find_key_ceil(dev, &temp, index, true, _read_bw, NULL);
756 *bw = temp;
757 return opp;
758}
759EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_ceil);
760
761/**
762 * dev_pm_opp_find_bw_floor() - Search for a rounded floor bandwidth
763 * @dev: device for which we do this operation
764 * @bw: start bandwidth
765 * @index: which bandwidth to compare, in case of OPPs with several values
766 *
767 * Search for the matching floor *available* OPP from a starting bandwidth
768 * for a device.
769 *
770 * Return: matching *opp and refreshes *bw accordingly, else returns
771 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
772 * values can be:
773 * EINVAL: for bad pointer
774 * ERANGE: no match found for search
775 * ENODEV: if device not found in list of registered devices
776 *
777 * The callers are required to call dev_pm_opp_put() for the returned OPP after
778 * use.
779 */
780struct dev_pm_opp *dev_pm_opp_find_bw_floor(struct device *dev,
781 unsigned int *bw, int index)
782{
783 unsigned long temp = *bw;
784 struct dev_pm_opp *opp;
785
786 opp = _find_key_floor(dev, &temp, index, true, _read_bw, NULL);
787 *bw = temp;
788 return opp;
789}
790EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_floor);
791
792static int _set_opp_voltage(struct device *dev, struct regulator *reg,
793 struct dev_pm_opp_supply *supply)
794{
795 int ret;
796
797 /* Regulator not available for device */
798 if (IS_ERR(reg)) {
799 dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
800 PTR_ERR(reg));
801 return 0;
802 }
803
804 dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
805 supply->u_volt_min, supply->u_volt, supply->u_volt_max);
806
807 ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
808 supply->u_volt, supply->u_volt_max);
809 if (ret)
810 dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
811 __func__, supply->u_volt_min, supply->u_volt,
812 supply->u_volt_max, ret);
813
814 return ret;
815}
816
817static int
818_opp_config_clk_single(struct device *dev, struct opp_table *opp_table,
819 struct dev_pm_opp *opp, void *data, bool scaling_down)
820{
821 unsigned long *target = data;
822 unsigned long freq;
823 int ret;
824
825 /* One of target and opp must be available */
826 if (target) {
827 freq = *target;
828 } else if (opp) {
829 freq = opp->rates[0];
830 } else {
831 WARN_ON(1);
832 return -EINVAL;
833 }
834
835 ret = clk_set_rate(opp_table->clk, freq);
836 if (ret) {
837 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
838 ret);
839 } else {
840 opp_table->rate_clk_single = freq;
841 }
842
843 return ret;
844}
845
846/*
847 * Simple implementation for configuring multiple clocks. Configure clocks in
848 * the order in which they are present in the array while scaling up.
849 */
850int dev_pm_opp_config_clks_simple(struct device *dev,
851 struct opp_table *opp_table, struct dev_pm_opp *opp, void *data,
852 bool scaling_down)
853{
854 int ret, i;
855
856 if (scaling_down) {
857 for (i = opp_table->clk_count - 1; i >= 0; i--) {
858 ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
859 if (ret) {
860 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
861 ret);
862 return ret;
863 }
864 }
865 } else {
866 for (i = 0; i < opp_table->clk_count; i++) {
867 ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
868 if (ret) {
869 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
870 ret);
871 return ret;
872 }
873 }
874 }
875
876 return 0;
877}
878EXPORT_SYMBOL_GPL(dev_pm_opp_config_clks_simple);
879
880static int _opp_config_regulator_single(struct device *dev,
881 struct dev_pm_opp *old_opp, struct dev_pm_opp *new_opp,
882 struct regulator **regulators, unsigned int count)
883{
884 struct regulator *reg = regulators[0];
885 int ret;
886
887 /* This function only supports single regulator per device */
888 if (WARN_ON(count > 1)) {
889 dev_err(dev, "multiple regulators are not supported\n");
890 return -EINVAL;
891 }
892
893 ret = _set_opp_voltage(dev, reg, new_opp->supplies);
894 if (ret)
895 return ret;
896
897 /*
898 * Enable the regulator after setting its voltages, otherwise it breaks
899 * some boot-enabled regulators.
900 */
901 if (unlikely(!new_opp->opp_table->enabled)) {
902 ret = regulator_enable(reg);
903 if (ret < 0)
904 dev_warn(dev, "Failed to enable regulator: %d", ret);
905 }
906
907 return 0;
908}
909
910static int _set_opp_bw(const struct opp_table *opp_table,
911 struct dev_pm_opp *opp, struct device *dev)
912{
913 u32 avg, peak;
914 int i, ret;
915
916 if (!opp_table->paths)
917 return 0;
918
919 for (i = 0; i < opp_table->path_count; i++) {
920 if (!opp) {
921 avg = 0;
922 peak = 0;
923 } else {
924 avg = opp->bandwidth[i].avg;
925 peak = opp->bandwidth[i].peak;
926 }
927 ret = icc_set_bw(opp_table->paths[i], avg, peak);
928 if (ret) {
929 dev_err(dev, "Failed to %s bandwidth[%d]: %d\n",
930 opp ? "set" : "remove", i, ret);
931 return ret;
932 }
933 }
934
935 return 0;
936}
937
938static int _set_performance_state(struct device *dev, struct device *pd_dev,
939 struct dev_pm_opp *opp, int i)
940{
941 unsigned int pstate = likely(opp) ? opp->required_opps[i]->pstate : 0;
942 int ret;
943
944 if (!pd_dev)
945 return 0;
946
947 ret = dev_pm_genpd_set_performance_state(pd_dev, pstate);
948 if (ret) {
949 dev_err(dev, "Failed to set performance state of %s: %d (%d)\n",
950 dev_name(pd_dev), pstate, ret);
951 }
952
953 return ret;
954}
955
956static int _opp_set_required_opps_generic(struct device *dev,
957 struct opp_table *opp_table, struct dev_pm_opp *opp, bool scaling_down)
958{
959 dev_err(dev, "setting required-opps isn't supported for non-genpd devices\n");
960 return -ENOENT;
961}
962
963static int _opp_set_required_opps_genpd(struct device *dev,
964 struct opp_table *opp_table, struct dev_pm_opp *opp, bool scaling_down)
965{
966 struct device **genpd_virt_devs =
967 opp_table->genpd_virt_devs ? opp_table->genpd_virt_devs : &dev;
968 int i, ret = 0;
969
970 /*
971 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev
972 * after it is freed from another thread.
973 */
974 mutex_lock(&opp_table->genpd_virt_dev_lock);
975
976 /* Scaling up? Set required OPPs in normal order, else reverse */
977 if (!scaling_down) {
978 for (i = 0; i < opp_table->required_opp_count; i++) {
979 ret = _set_performance_state(dev, genpd_virt_devs[i], opp, i);
980 if (ret)
981 break;
982 }
983 } else {
984 for (i = opp_table->required_opp_count - 1; i >= 0; i--) {
985 ret = _set_performance_state(dev, genpd_virt_devs[i], opp, i);
986 if (ret)
987 break;
988 }
989 }
990
991 mutex_unlock(&opp_table->genpd_virt_dev_lock);
992
993 return ret;
994}
995
996/* This is only called for PM domain for now */
997static int _set_required_opps(struct device *dev, struct opp_table *opp_table,
998 struct dev_pm_opp *opp, bool up)
999{
1000 /* required-opps not fully initialized yet */
1001 if (lazy_linking_pending(opp_table))
1002 return -EBUSY;
1003
1004 if (opp_table->set_required_opps)
1005 return opp_table->set_required_opps(dev, opp_table, opp, up);
1006
1007 return 0;
1008}
1009
1010/* Update set_required_opps handler */
1011void _update_set_required_opps(struct opp_table *opp_table)
1012{
1013 /* Already set */
1014 if (opp_table->set_required_opps)
1015 return;
1016
1017 /* All required OPPs will belong to genpd or none */
1018 if (opp_table->required_opp_tables[0]->is_genpd)
1019 opp_table->set_required_opps = _opp_set_required_opps_genpd;
1020 else
1021 opp_table->set_required_opps = _opp_set_required_opps_generic;
1022}
1023
1024static void _find_current_opp(struct device *dev, struct opp_table *opp_table)
1025{
1026 struct dev_pm_opp *opp = ERR_PTR(-ENODEV);
1027 unsigned long freq;
1028
1029 if (!IS_ERR(opp_table->clk)) {
1030 freq = clk_get_rate(opp_table->clk);
1031 opp = _find_freq_ceil(opp_table, &freq);
1032 }
1033
1034 /*
1035 * Unable to find the current OPP ? Pick the first from the list since
1036 * it is in ascending order, otherwise rest of the code will need to
1037 * make special checks to validate current_opp.
1038 */
1039 if (IS_ERR(opp)) {
1040 mutex_lock(&opp_table->lock);
1041 opp = list_first_entry(&opp_table->opp_list, struct dev_pm_opp, node);
1042 dev_pm_opp_get(opp);
1043 mutex_unlock(&opp_table->lock);
1044 }
1045
1046 opp_table->current_opp = opp;
1047}
1048
1049static int _disable_opp_table(struct device *dev, struct opp_table *opp_table)
1050{
1051 int ret;
1052
1053 if (!opp_table->enabled)
1054 return 0;
1055
1056 /*
1057 * Some drivers need to support cases where some platforms may
1058 * have OPP table for the device, while others don't and
1059 * opp_set_rate() just needs to behave like clk_set_rate().
1060 */
1061 if (!_get_opp_count(opp_table))
1062 return 0;
1063
1064 ret = _set_opp_bw(opp_table, NULL, dev);
1065 if (ret)
1066 return ret;
1067
1068 if (opp_table->regulators)
1069 regulator_disable(opp_table->regulators[0]);
1070
1071 ret = _set_required_opps(dev, opp_table, NULL, false);
1072
1073 opp_table->enabled = false;
1074 return ret;
1075}
1076
1077static int _set_opp(struct device *dev, struct opp_table *opp_table,
1078 struct dev_pm_opp *opp, void *clk_data, bool forced)
1079{
1080 struct dev_pm_opp *old_opp;
1081 int scaling_down, ret;
1082
1083 if (unlikely(!opp))
1084 return _disable_opp_table(dev, opp_table);
1085
1086 /* Find the currently set OPP if we don't know already */
1087 if (unlikely(!opp_table->current_opp))
1088 _find_current_opp(dev, opp_table);
1089
1090 old_opp = opp_table->current_opp;
1091
1092 /* Return early if nothing to do */
1093 if (!forced && old_opp == opp && opp_table->enabled) {
1094 dev_dbg(dev, "%s: OPPs are same, nothing to do\n", __func__);
1095 return 0;
1096 }
1097
1098 dev_dbg(dev, "%s: switching OPP: Freq %lu -> %lu Hz, Level %u -> %u, Bw %u -> %u\n",
1099 __func__, old_opp->rates[0], opp->rates[0], old_opp->level,
1100 opp->level, old_opp->bandwidth ? old_opp->bandwidth[0].peak : 0,
1101 opp->bandwidth ? opp->bandwidth[0].peak : 0);
1102
1103 scaling_down = _opp_compare_key(opp_table, old_opp, opp);
1104 if (scaling_down == -1)
1105 scaling_down = 0;
1106
1107 /* Scaling up? Configure required OPPs before frequency */
1108 if (!scaling_down) {
1109 ret = _set_required_opps(dev, opp_table, opp, true);
1110 if (ret) {
1111 dev_err(dev, "Failed to set required opps: %d\n", ret);
1112 return ret;
1113 }
1114
1115 ret = _set_opp_bw(opp_table, opp, dev);
1116 if (ret) {
1117 dev_err(dev, "Failed to set bw: %d\n", ret);
1118 return ret;
1119 }
1120
1121 if (opp_table->config_regulators) {
1122 ret = opp_table->config_regulators(dev, old_opp, opp,
1123 opp_table->regulators,
1124 opp_table->regulator_count);
1125 if (ret) {
1126 dev_err(dev, "Failed to set regulator voltages: %d\n",
1127 ret);
1128 return ret;
1129 }
1130 }
1131 }
1132
1133 if (opp_table->config_clks) {
1134 ret = opp_table->config_clks(dev, opp_table, opp, clk_data, scaling_down);
1135 if (ret)
1136 return ret;
1137 }
1138
1139 /* Scaling down? Configure required OPPs after frequency */
1140 if (scaling_down) {
1141 if (opp_table->config_regulators) {
1142 ret = opp_table->config_regulators(dev, old_opp, opp,
1143 opp_table->regulators,
1144 opp_table->regulator_count);
1145 if (ret) {
1146 dev_err(dev, "Failed to set regulator voltages: %d\n",
1147 ret);
1148 return ret;
1149 }
1150 }
1151
1152 ret = _set_opp_bw(opp_table, opp, dev);
1153 if (ret) {
1154 dev_err(dev, "Failed to set bw: %d\n", ret);
1155 return ret;
1156 }
1157
1158 ret = _set_required_opps(dev, opp_table, opp, false);
1159 if (ret) {
1160 dev_err(dev, "Failed to set required opps: %d\n", ret);
1161 return ret;
1162 }
1163 }
1164
1165 opp_table->enabled = true;
1166 dev_pm_opp_put(old_opp);
1167
1168 /* Make sure current_opp doesn't get freed */
1169 dev_pm_opp_get(opp);
1170 opp_table->current_opp = opp;
1171
1172 return ret;
1173}
1174
1175/**
1176 * dev_pm_opp_set_rate() - Configure new OPP based on frequency
1177 * @dev: device for which we do this operation
1178 * @target_freq: frequency to achieve
1179 *
1180 * This configures the power-supplies to the levels specified by the OPP
1181 * corresponding to the target_freq, and programs the clock to a value <=
1182 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
1183 * provided by the opp, should have already rounded to the target OPP's
1184 * frequency.
1185 */
1186int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
1187{
1188 struct opp_table *opp_table;
1189 unsigned long freq = 0, temp_freq;
1190 struct dev_pm_opp *opp = NULL;
1191 bool forced = false;
1192 int ret;
1193
1194 opp_table = _find_opp_table(dev);
1195 if (IS_ERR(opp_table)) {
1196 dev_err(dev, "%s: device's opp table doesn't exist\n", __func__);
1197 return PTR_ERR(opp_table);
1198 }
1199
1200 if (target_freq) {
1201 /*
1202 * For IO devices which require an OPP on some platforms/SoCs
1203 * while just needing to scale the clock on some others
1204 * we look for empty OPP tables with just a clock handle and
1205 * scale only the clk. This makes dev_pm_opp_set_rate()
1206 * equivalent to a clk_set_rate()
1207 */
1208 if (!_get_opp_count(opp_table)) {
1209 ret = opp_table->config_clks(dev, opp_table, NULL,
1210 &target_freq, false);
1211 goto put_opp_table;
1212 }
1213
1214 freq = clk_round_rate(opp_table->clk, target_freq);
1215 if ((long)freq <= 0)
1216 freq = target_freq;
1217
1218 /*
1219 * The clock driver may support finer resolution of the
1220 * frequencies than the OPP table, don't update the frequency we
1221 * pass to clk_set_rate() here.
1222 */
1223 temp_freq = freq;
1224 opp = _find_freq_ceil(opp_table, &temp_freq);
1225 if (IS_ERR(opp)) {
1226 ret = PTR_ERR(opp);
1227 dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
1228 __func__, freq, ret);
1229 goto put_opp_table;
1230 }
1231
1232 /*
1233 * An OPP entry specifies the highest frequency at which other
1234 * properties of the OPP entry apply. Even if the new OPP is
1235 * same as the old one, we may still reach here for a different
1236 * value of the frequency. In such a case, do not abort but
1237 * configure the hardware to the desired frequency forcefully.
1238 */
1239 forced = opp_table->rate_clk_single != target_freq;
1240 }
1241
1242 ret = _set_opp(dev, opp_table, opp, &target_freq, forced);
1243
1244 if (target_freq)
1245 dev_pm_opp_put(opp);
1246
1247put_opp_table:
1248 dev_pm_opp_put_opp_table(opp_table);
1249 return ret;
1250}
1251EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
1252
1253/**
1254 * dev_pm_opp_set_opp() - Configure device for OPP
1255 * @dev: device for which we do this operation
1256 * @opp: OPP to set to
1257 *
1258 * This configures the device based on the properties of the OPP passed to this
1259 * routine.
1260 *
1261 * Return: 0 on success, a negative error number otherwise.
1262 */
1263int dev_pm_opp_set_opp(struct device *dev, struct dev_pm_opp *opp)
1264{
1265 struct opp_table *opp_table;
1266 int ret;
1267
1268 opp_table = _find_opp_table(dev);
1269 if (IS_ERR(opp_table)) {
1270 dev_err(dev, "%s: device opp doesn't exist\n", __func__);
1271 return PTR_ERR(opp_table);
1272 }
1273
1274 ret = _set_opp(dev, opp_table, opp, NULL, false);
1275 dev_pm_opp_put_opp_table(opp_table);
1276
1277 return ret;
1278}
1279EXPORT_SYMBOL_GPL(dev_pm_opp_set_opp);
1280
1281/* OPP-dev Helpers */
1282static void _remove_opp_dev(struct opp_device *opp_dev,
1283 struct opp_table *opp_table)
1284{
1285 opp_debug_unregister(opp_dev, opp_table);
1286 list_del(&opp_dev->node);
1287 kfree(opp_dev);
1288}
1289
1290struct opp_device *_add_opp_dev(const struct device *dev,
1291 struct opp_table *opp_table)
1292{
1293 struct opp_device *opp_dev;
1294
1295 opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
1296 if (!opp_dev)
1297 return NULL;
1298
1299 /* Initialize opp-dev */
1300 opp_dev->dev = dev;
1301
1302 mutex_lock(&opp_table->lock);
1303 list_add(&opp_dev->node, &opp_table->dev_list);
1304 mutex_unlock(&opp_table->lock);
1305
1306 /* Create debugfs entries for the opp_table */
1307 opp_debug_register(opp_dev, opp_table);
1308
1309 return opp_dev;
1310}
1311
1312static struct opp_table *_allocate_opp_table(struct device *dev, int index)
1313{
1314 struct opp_table *opp_table;
1315 struct opp_device *opp_dev;
1316 int ret;
1317
1318 /*
1319 * Allocate a new OPP table. In the infrequent case where a new
1320 * device is needed to be added, we pay this penalty.
1321 */
1322 opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
1323 if (!opp_table)
1324 return ERR_PTR(-ENOMEM);
1325
1326 mutex_init(&opp_table->lock);
1327 mutex_init(&opp_table->genpd_virt_dev_lock);
1328 INIT_LIST_HEAD(&opp_table->dev_list);
1329 INIT_LIST_HEAD(&opp_table->lazy);
1330
1331 opp_table->clk = ERR_PTR(-ENODEV);
1332
1333 /* Mark regulator count uninitialized */
1334 opp_table->regulator_count = -1;
1335
1336 opp_dev = _add_opp_dev(dev, opp_table);
1337 if (!opp_dev) {
1338 ret = -ENOMEM;
1339 goto err;
1340 }
1341
1342 _of_init_opp_table(opp_table, dev, index);
1343
1344 /* Find interconnect path(s) for the device */
1345 ret = dev_pm_opp_of_find_icc_paths(dev, opp_table);
1346 if (ret) {
1347 if (ret == -EPROBE_DEFER)
1348 goto remove_opp_dev;
1349
1350 dev_warn(dev, "%s: Error finding interconnect paths: %d\n",
1351 __func__, ret);
1352 }
1353
1354 BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
1355 INIT_LIST_HEAD(&opp_table->opp_list);
1356 kref_init(&opp_table->kref);
1357
1358 return opp_table;
1359
1360remove_opp_dev:
1361 _remove_opp_dev(opp_dev, opp_table);
1362err:
1363 kfree(opp_table);
1364 return ERR_PTR(ret);
1365}
1366
1367void _get_opp_table_kref(struct opp_table *opp_table)
1368{
1369 kref_get(&opp_table->kref);
1370}
1371
1372static struct opp_table *_update_opp_table_clk(struct device *dev,
1373 struct opp_table *opp_table,
1374 bool getclk)
1375{
1376 int ret;
1377
1378 /*
1379 * Return early if we don't need to get clk or we have already done it
1380 * earlier.
1381 */
1382 if (!getclk || IS_ERR(opp_table) || !IS_ERR(opp_table->clk) ||
1383 opp_table->clks)
1384 return opp_table;
1385
1386 /* Find clk for the device */
1387 opp_table->clk = clk_get(dev, NULL);
1388
1389 ret = PTR_ERR_OR_ZERO(opp_table->clk);
1390 if (!ret) {
1391 opp_table->config_clks = _opp_config_clk_single;
1392 opp_table->clk_count = 1;
1393 return opp_table;
1394 }
1395
1396 if (ret == -ENOENT) {
1397 /*
1398 * There are few platforms which don't want the OPP core to
1399 * manage device's clock settings. In such cases neither the
1400 * platform provides the clks explicitly to us, nor the DT
1401 * contains a valid clk entry. The OPP nodes in DT may still
1402 * contain "opp-hz" property though, which we need to parse and
1403 * allow the platform to find an OPP based on freq later on.
1404 *
1405 * This is a simple solution to take care of such corner cases,
1406 * i.e. make the clk_count 1, which lets us allocate space for
1407 * frequency in opp->rates and also parse the entries in DT.
1408 */
1409 opp_table->clk_count = 1;
1410
1411 dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret);
1412 return opp_table;
1413 }
1414
1415 dev_pm_opp_put_opp_table(opp_table);
1416 dev_err_probe(dev, ret, "Couldn't find clock\n");
1417
1418 return ERR_PTR(ret);
1419}
1420
1421/*
1422 * We need to make sure that the OPP table for a device doesn't get added twice,
1423 * if this routine gets called in parallel with the same device pointer.
1424 *
1425 * The simplest way to enforce that is to perform everything (find existing
1426 * table and if not found, create a new one) under the opp_table_lock, so only
1427 * one creator gets access to the same. But that expands the critical section
1428 * under the lock and may end up causing circular dependencies with frameworks
1429 * like debugfs, interconnect or clock framework as they may be direct or
1430 * indirect users of OPP core.
1431 *
1432 * And for that reason we have to go for a bit tricky implementation here, which
1433 * uses the opp_tables_busy flag to indicate if another creator is in the middle
1434 * of adding an OPP table and others should wait for it to finish.
1435 */
1436struct opp_table *_add_opp_table_indexed(struct device *dev, int index,
1437 bool getclk)
1438{
1439 struct opp_table *opp_table;
1440
1441again:
1442 mutex_lock(&opp_table_lock);
1443
1444 opp_table = _find_opp_table_unlocked(dev);
1445 if (!IS_ERR(opp_table))
1446 goto unlock;
1447
1448 /*
1449 * The opp_tables list or an OPP table's dev_list is getting updated by
1450 * another user, wait for it to finish.
1451 */
1452 if (unlikely(opp_tables_busy)) {
1453 mutex_unlock(&opp_table_lock);
1454 cpu_relax();
1455 goto again;
1456 }
1457
1458 opp_tables_busy = true;
1459 opp_table = _managed_opp(dev, index);
1460
1461 /* Drop the lock to reduce the size of critical section */
1462 mutex_unlock(&opp_table_lock);
1463
1464 if (opp_table) {
1465 if (!_add_opp_dev(dev, opp_table)) {
1466 dev_pm_opp_put_opp_table(opp_table);
1467 opp_table = ERR_PTR(-ENOMEM);
1468 }
1469
1470 mutex_lock(&opp_table_lock);
1471 } else {
1472 opp_table = _allocate_opp_table(dev, index);
1473
1474 mutex_lock(&opp_table_lock);
1475 if (!IS_ERR(opp_table))
1476 list_add(&opp_table->node, &opp_tables);
1477 }
1478
1479 opp_tables_busy = false;
1480
1481unlock:
1482 mutex_unlock(&opp_table_lock);
1483
1484 return _update_opp_table_clk(dev, opp_table, getclk);
1485}
1486
1487static struct opp_table *_add_opp_table(struct device *dev, bool getclk)
1488{
1489 return _add_opp_table_indexed(dev, 0, getclk);
1490}
1491
1492struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1493{
1494 return _find_opp_table(dev);
1495}
1496EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1497
1498static void _opp_table_kref_release(struct kref *kref)
1499{
1500 struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1501 struct opp_device *opp_dev, *temp;
1502 int i;
1503
1504 /* Drop the lock as soon as we can */
1505 list_del(&opp_table->node);
1506 mutex_unlock(&opp_table_lock);
1507
1508 if (opp_table->current_opp)
1509 dev_pm_opp_put(opp_table->current_opp);
1510
1511 _of_clear_opp_table(opp_table);
1512
1513 /* Release automatically acquired single clk */
1514 if (!IS_ERR(opp_table->clk))
1515 clk_put(opp_table->clk);
1516
1517 if (opp_table->paths) {
1518 for (i = 0; i < opp_table->path_count; i++)
1519 icc_put(opp_table->paths[i]);
1520 kfree(opp_table->paths);
1521 }
1522
1523 WARN_ON(!list_empty(&opp_table->opp_list));
1524
1525 list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) {
1526 /*
1527 * The OPP table is getting removed, drop the performance state
1528 * constraints.
1529 */
1530 if (opp_table->genpd_performance_state)
1531 dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0);
1532
1533 _remove_opp_dev(opp_dev, opp_table);
1534 }
1535
1536 mutex_destroy(&opp_table->genpd_virt_dev_lock);
1537 mutex_destroy(&opp_table->lock);
1538 kfree(opp_table);
1539}
1540
1541void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1542{
1543 kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1544 &opp_table_lock);
1545}
1546EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1547
1548void _opp_free(struct dev_pm_opp *opp)
1549{
1550 kfree(opp);
1551}
1552
1553static void _opp_kref_release(struct kref *kref)
1554{
1555 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1556 struct opp_table *opp_table = opp->opp_table;
1557
1558 list_del(&opp->node);
1559 mutex_unlock(&opp_table->lock);
1560
1561 /*
1562 * Notify the changes in the availability of the operable
1563 * frequency/voltage list.
1564 */
1565 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1566 _of_clear_opp(opp_table, opp);
1567 opp_debug_remove_one(opp);
1568 kfree(opp);
1569}
1570
1571void dev_pm_opp_get(struct dev_pm_opp *opp)
1572{
1573 kref_get(&opp->kref);
1574}
1575
1576void dev_pm_opp_put(struct dev_pm_opp *opp)
1577{
1578 kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock);
1579}
1580EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1581
1582/**
1583 * dev_pm_opp_remove() - Remove an OPP from OPP table
1584 * @dev: device for which we do this operation
1585 * @freq: OPP to remove with matching 'freq'
1586 *
1587 * This function removes an opp from the opp table.
1588 */
1589void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1590{
1591 struct dev_pm_opp *opp = NULL, *iter;
1592 struct opp_table *opp_table;
1593
1594 opp_table = _find_opp_table(dev);
1595 if (IS_ERR(opp_table))
1596 return;
1597
1598 if (!assert_single_clk(opp_table))
1599 goto put_table;
1600
1601 mutex_lock(&opp_table->lock);
1602
1603 list_for_each_entry(iter, &opp_table->opp_list, node) {
1604 if (iter->rates[0] == freq) {
1605 opp = iter;
1606 break;
1607 }
1608 }
1609
1610 mutex_unlock(&opp_table->lock);
1611
1612 if (opp) {
1613 dev_pm_opp_put(opp);
1614
1615 /* Drop the reference taken by dev_pm_opp_add() */
1616 dev_pm_opp_put_opp_table(opp_table);
1617 } else {
1618 dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1619 __func__, freq);
1620 }
1621
1622put_table:
1623 /* Drop the reference taken by _find_opp_table() */
1624 dev_pm_opp_put_opp_table(opp_table);
1625}
1626EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1627
1628static struct dev_pm_opp *_opp_get_next(struct opp_table *opp_table,
1629 bool dynamic)
1630{
1631 struct dev_pm_opp *opp = NULL, *temp;
1632
1633 mutex_lock(&opp_table->lock);
1634 list_for_each_entry(temp, &opp_table->opp_list, node) {
1635 /*
1636 * Refcount must be dropped only once for each OPP by OPP core,
1637 * do that with help of "removed" flag.
1638 */
1639 if (!temp->removed && dynamic == temp->dynamic) {
1640 opp = temp;
1641 break;
1642 }
1643 }
1644
1645 mutex_unlock(&opp_table->lock);
1646 return opp;
1647}
1648
1649/*
1650 * Can't call dev_pm_opp_put() from under the lock as debugfs removal needs to
1651 * happen lock less to avoid circular dependency issues. This routine must be
1652 * called without the opp_table->lock held.
1653 */
1654static void _opp_remove_all(struct opp_table *opp_table, bool dynamic)
1655{
1656 struct dev_pm_opp *opp;
1657
1658 while ((opp = _opp_get_next(opp_table, dynamic))) {
1659 opp->removed = true;
1660 dev_pm_opp_put(opp);
1661
1662 /* Drop the references taken by dev_pm_opp_add() */
1663 if (dynamic)
1664 dev_pm_opp_put_opp_table(opp_table);
1665 }
1666}
1667
1668bool _opp_remove_all_static(struct opp_table *opp_table)
1669{
1670 mutex_lock(&opp_table->lock);
1671
1672 if (!opp_table->parsed_static_opps) {
1673 mutex_unlock(&opp_table->lock);
1674 return false;
1675 }
1676
1677 if (--opp_table->parsed_static_opps) {
1678 mutex_unlock(&opp_table->lock);
1679 return true;
1680 }
1681
1682 mutex_unlock(&opp_table->lock);
1683
1684 _opp_remove_all(opp_table, false);
1685 return true;
1686}
1687
1688/**
1689 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1690 * @dev: device for which we do this operation
1691 *
1692 * This function removes all dynamically created OPPs from the opp table.
1693 */
1694void dev_pm_opp_remove_all_dynamic(struct device *dev)
1695{
1696 struct opp_table *opp_table;
1697
1698 opp_table = _find_opp_table(dev);
1699 if (IS_ERR(opp_table))
1700 return;
1701
1702 _opp_remove_all(opp_table, true);
1703
1704 /* Drop the reference taken by _find_opp_table() */
1705 dev_pm_opp_put_opp_table(opp_table);
1706}
1707EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1708
1709struct dev_pm_opp *_opp_allocate(struct opp_table *opp_table)
1710{
1711 struct dev_pm_opp *opp;
1712 int supply_count, supply_size, icc_size, clk_size;
1713
1714 /* Allocate space for at least one supply */
1715 supply_count = opp_table->regulator_count > 0 ?
1716 opp_table->regulator_count : 1;
1717 supply_size = sizeof(*opp->supplies) * supply_count;
1718 clk_size = sizeof(*opp->rates) * opp_table->clk_count;
1719 icc_size = sizeof(*opp->bandwidth) * opp_table->path_count;
1720
1721 /* allocate new OPP node and supplies structures */
1722 opp = kzalloc(sizeof(*opp) + supply_size + clk_size + icc_size, GFP_KERNEL);
1723 if (!opp)
1724 return NULL;
1725
1726 /* Put the supplies, bw and clock at the end of the OPP structure */
1727 opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1728
1729 opp->rates = (unsigned long *)(opp->supplies + supply_count);
1730
1731 if (icc_size)
1732 opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->rates + opp_table->clk_count);
1733
1734 INIT_LIST_HEAD(&opp->node);
1735
1736 return opp;
1737}
1738
1739static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1740 struct opp_table *opp_table)
1741{
1742 struct regulator *reg;
1743 int i;
1744
1745 if (!opp_table->regulators)
1746 return true;
1747
1748 for (i = 0; i < opp_table->regulator_count; i++) {
1749 reg = opp_table->regulators[i];
1750
1751 if (!regulator_is_supported_voltage(reg,
1752 opp->supplies[i].u_volt_min,
1753 opp->supplies[i].u_volt_max)) {
1754 pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1755 __func__, opp->supplies[i].u_volt_min,
1756 opp->supplies[i].u_volt_max);
1757 return false;
1758 }
1759 }
1760
1761 return true;
1762}
1763
1764static int _opp_compare_rate(struct opp_table *opp_table,
1765 struct dev_pm_opp *opp1, struct dev_pm_opp *opp2)
1766{
1767 int i;
1768
1769 for (i = 0; i < opp_table->clk_count; i++) {
1770 if (opp1->rates[i] != opp2->rates[i])
1771 return opp1->rates[i] < opp2->rates[i] ? -1 : 1;
1772 }
1773
1774 /* Same rates for both OPPs */
1775 return 0;
1776}
1777
1778static int _opp_compare_bw(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1779 struct dev_pm_opp *opp2)
1780{
1781 int i;
1782
1783 for (i = 0; i < opp_table->path_count; i++) {
1784 if (opp1->bandwidth[i].peak != opp2->bandwidth[i].peak)
1785 return opp1->bandwidth[i].peak < opp2->bandwidth[i].peak ? -1 : 1;
1786 }
1787
1788 /* Same bw for both OPPs */
1789 return 0;
1790}
1791
1792/*
1793 * Returns
1794 * 0: opp1 == opp2
1795 * 1: opp1 > opp2
1796 * -1: opp1 < opp2
1797 */
1798int _opp_compare_key(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1799 struct dev_pm_opp *opp2)
1800{
1801 int ret;
1802
1803 ret = _opp_compare_rate(opp_table, opp1, opp2);
1804 if (ret)
1805 return ret;
1806
1807 ret = _opp_compare_bw(opp_table, opp1, opp2);
1808 if (ret)
1809 return ret;
1810
1811 if (opp1->level != opp2->level)
1812 return opp1->level < opp2->level ? -1 : 1;
1813
1814 /* Duplicate OPPs */
1815 return 0;
1816}
1817
1818static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1819 struct opp_table *opp_table,
1820 struct list_head **head)
1821{
1822 struct dev_pm_opp *opp;
1823 int opp_cmp;
1824
1825 /*
1826 * Insert new OPP in order of increasing frequency and discard if
1827 * already present.
1828 *
1829 * Need to use &opp_table->opp_list in the condition part of the 'for'
1830 * loop, don't replace it with head otherwise it will become an infinite
1831 * loop.
1832 */
1833 list_for_each_entry(opp, &opp_table->opp_list, node) {
1834 opp_cmp = _opp_compare_key(opp_table, new_opp, opp);
1835 if (opp_cmp > 0) {
1836 *head = &opp->node;
1837 continue;
1838 }
1839
1840 if (opp_cmp < 0)
1841 return 0;
1842
1843 /* Duplicate OPPs */
1844 dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1845 __func__, opp->rates[0], opp->supplies[0].u_volt,
1846 opp->available, new_opp->rates[0],
1847 new_opp->supplies[0].u_volt, new_opp->available);
1848
1849 /* Should we compare voltages for all regulators here ? */
1850 return opp->available &&
1851 new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1852 }
1853
1854 return 0;
1855}
1856
1857void _required_opps_available(struct dev_pm_opp *opp, int count)
1858{
1859 int i;
1860
1861 for (i = 0; i < count; i++) {
1862 if (opp->required_opps[i]->available)
1863 continue;
1864
1865 opp->available = false;
1866 pr_warn("%s: OPP not supported by required OPP %pOF (%lu)\n",
1867 __func__, opp->required_opps[i]->np, opp->rates[0]);
1868 return;
1869 }
1870}
1871
1872/*
1873 * Returns:
1874 * 0: On success. And appropriate error message for duplicate OPPs.
1875 * -EBUSY: For OPP with same freq/volt and is available. The callers of
1876 * _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1877 * sure we don't print error messages unnecessarily if different parts of
1878 * kernel try to initialize the OPP table.
1879 * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1880 * should be considered an error by the callers of _opp_add().
1881 */
1882int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1883 struct opp_table *opp_table)
1884{
1885 struct list_head *head;
1886 int ret;
1887
1888 mutex_lock(&opp_table->lock);
1889 head = &opp_table->opp_list;
1890
1891 ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
1892 if (ret) {
1893 mutex_unlock(&opp_table->lock);
1894 return ret;
1895 }
1896
1897 list_add(&new_opp->node, head);
1898 mutex_unlock(&opp_table->lock);
1899
1900 new_opp->opp_table = opp_table;
1901 kref_init(&new_opp->kref);
1902
1903 opp_debug_create_one(new_opp, opp_table);
1904
1905 if (!_opp_supported_by_regulators(new_opp, opp_table)) {
1906 new_opp->available = false;
1907 dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
1908 __func__, new_opp->rates[0]);
1909 }
1910
1911 /* required-opps not fully initialized yet */
1912 if (lazy_linking_pending(opp_table))
1913 return 0;
1914
1915 _required_opps_available(new_opp, opp_table->required_opp_count);
1916
1917 return 0;
1918}
1919
1920/**
1921 * _opp_add_v1() - Allocate a OPP based on v1 bindings.
1922 * @opp_table: OPP table
1923 * @dev: device for which we do this operation
1924 * @freq: Frequency in Hz for this OPP
1925 * @u_volt: Voltage in uVolts for this OPP
1926 * @dynamic: Dynamically added OPPs.
1927 *
1928 * This function adds an opp definition to the opp table and returns status.
1929 * The opp is made available by default and it can be controlled using
1930 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
1931 *
1932 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
1933 * and freed by dev_pm_opp_of_remove_table.
1934 *
1935 * Return:
1936 * 0 On success OR
1937 * Duplicate OPPs (both freq and volt are same) and opp->available
1938 * -EEXIST Freq are same and volt are different OR
1939 * Duplicate OPPs (both freq and volt are same) and !opp->available
1940 * -ENOMEM Memory allocation failure
1941 */
1942int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
1943 unsigned long freq, long u_volt, bool dynamic)
1944{
1945 struct dev_pm_opp *new_opp;
1946 unsigned long tol;
1947 int ret;
1948
1949 if (!assert_single_clk(opp_table))
1950 return -EINVAL;
1951
1952 new_opp = _opp_allocate(opp_table);
1953 if (!new_opp)
1954 return -ENOMEM;
1955
1956 /* populate the opp table */
1957 new_opp->rates[0] = freq;
1958 tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
1959 new_opp->supplies[0].u_volt = u_volt;
1960 new_opp->supplies[0].u_volt_min = u_volt - tol;
1961 new_opp->supplies[0].u_volt_max = u_volt + tol;
1962 new_opp->available = true;
1963 new_opp->dynamic = dynamic;
1964
1965 ret = _opp_add(dev, new_opp, opp_table);
1966 if (ret) {
1967 /* Don't return error for duplicate OPPs */
1968 if (ret == -EBUSY)
1969 ret = 0;
1970 goto free_opp;
1971 }
1972
1973 /*
1974 * Notify the changes in the availability of the operable
1975 * frequency/voltage list.
1976 */
1977 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
1978 return 0;
1979
1980free_opp:
1981 _opp_free(new_opp);
1982
1983 return ret;
1984}
1985
1986/**
1987 * _opp_set_supported_hw() - Set supported platforms
1988 * @dev: Device for which supported-hw has to be set.
1989 * @versions: Array of hierarchy of versions to match.
1990 * @count: Number of elements in the array.
1991 *
1992 * This is required only for the V2 bindings, and it enables a platform to
1993 * specify the hierarchy of versions it supports. OPP layer will then enable
1994 * OPPs, which are available for those versions, based on its 'opp-supported-hw'
1995 * property.
1996 */
1997static int _opp_set_supported_hw(struct opp_table *opp_table,
1998 const u32 *versions, unsigned int count)
1999{
2000 /* Another CPU that shares the OPP table has set the property ? */
2001 if (opp_table->supported_hw)
2002 return 0;
2003
2004 opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
2005 GFP_KERNEL);
2006 if (!opp_table->supported_hw)
2007 return -ENOMEM;
2008
2009 opp_table->supported_hw_count = count;
2010
2011 return 0;
2012}
2013
2014/**
2015 * _opp_put_supported_hw() - Releases resources blocked for supported hw
2016 * @opp_table: OPP table returned by _opp_set_supported_hw().
2017 *
2018 * This is required only for the V2 bindings, and is called for a matching
2019 * _opp_set_supported_hw(). Until this is called, the opp_table structure
2020 * will not be freed.
2021 */
2022static void _opp_put_supported_hw(struct opp_table *opp_table)
2023{
2024 if (opp_table->supported_hw) {
2025 kfree(opp_table->supported_hw);
2026 opp_table->supported_hw = NULL;
2027 opp_table->supported_hw_count = 0;
2028 }
2029}
2030
2031/**
2032 * _opp_set_prop_name() - Set prop-extn name
2033 * @dev: Device for which the prop-name has to be set.
2034 * @name: name to postfix to properties.
2035 *
2036 * This is required only for the V2 bindings, and it enables a platform to
2037 * specify the extn to be used for certain property names. The properties to
2038 * which the extension will apply are opp-microvolt and opp-microamp. OPP core
2039 * should postfix the property name with -<name> while looking for them.
2040 */
2041static int _opp_set_prop_name(struct opp_table *opp_table, const char *name)
2042{
2043 /* Another CPU that shares the OPP table has set the property ? */
2044 if (!opp_table->prop_name) {
2045 opp_table->prop_name = kstrdup(name, GFP_KERNEL);
2046 if (!opp_table->prop_name)
2047 return -ENOMEM;
2048 }
2049
2050 return 0;
2051}
2052
2053/**
2054 * _opp_put_prop_name() - Releases resources blocked for prop-name
2055 * @opp_table: OPP table returned by _opp_set_prop_name().
2056 *
2057 * This is required only for the V2 bindings, and is called for a matching
2058 * _opp_set_prop_name(). Until this is called, the opp_table structure
2059 * will not be freed.
2060 */
2061static void _opp_put_prop_name(struct opp_table *opp_table)
2062{
2063 if (opp_table->prop_name) {
2064 kfree(opp_table->prop_name);
2065 opp_table->prop_name = NULL;
2066 }
2067}
2068
2069/**
2070 * _opp_set_regulators() - Set regulator names for the device
2071 * @dev: Device for which regulator name is being set.
2072 * @names: Array of pointers to the names of the regulator.
2073 * @count: Number of regulators.
2074 *
2075 * In order to support OPP switching, OPP layer needs to know the name of the
2076 * device's regulators, as the core would be required to switch voltages as
2077 * well.
2078 *
2079 * This must be called before any OPPs are initialized for the device.
2080 */
2081static int _opp_set_regulators(struct opp_table *opp_table, struct device *dev,
2082 const char * const names[])
2083{
2084 const char * const *temp = names;
2085 struct regulator *reg;
2086 int count = 0, ret, i;
2087
2088 /* Count number of regulators */
2089 while (*temp++)
2090 count++;
2091
2092 if (!count)
2093 return -EINVAL;
2094
2095 /* Another CPU that shares the OPP table has set the regulators ? */
2096 if (opp_table->regulators)
2097 return 0;
2098
2099 opp_table->regulators = kmalloc_array(count,
2100 sizeof(*opp_table->regulators),
2101 GFP_KERNEL);
2102 if (!opp_table->regulators)
2103 return -ENOMEM;
2104
2105 for (i = 0; i < count; i++) {
2106 reg = regulator_get_optional(dev, names[i]);
2107 if (IS_ERR(reg)) {
2108 ret = dev_err_probe(dev, PTR_ERR(reg),
2109 "%s: no regulator (%s) found\n",
2110 __func__, names[i]);
2111 goto free_regulators;
2112 }
2113
2114 opp_table->regulators[i] = reg;
2115 }
2116
2117 opp_table->regulator_count = count;
2118
2119 /* Set generic config_regulators() for single regulators here */
2120 if (count == 1)
2121 opp_table->config_regulators = _opp_config_regulator_single;
2122
2123 return 0;
2124
2125free_regulators:
2126 while (i != 0)
2127 regulator_put(opp_table->regulators[--i]);
2128
2129 kfree(opp_table->regulators);
2130 opp_table->regulators = NULL;
2131 opp_table->regulator_count = -1;
2132
2133 return ret;
2134}
2135
2136/**
2137 * _opp_put_regulators() - Releases resources blocked for regulator
2138 * @opp_table: OPP table returned from _opp_set_regulators().
2139 */
2140static void _opp_put_regulators(struct opp_table *opp_table)
2141{
2142 int i;
2143
2144 if (!opp_table->regulators)
2145 return;
2146
2147 if (opp_table->enabled) {
2148 for (i = opp_table->regulator_count - 1; i >= 0; i--)
2149 regulator_disable(opp_table->regulators[i]);
2150 }
2151
2152 for (i = opp_table->regulator_count - 1; i >= 0; i--)
2153 regulator_put(opp_table->regulators[i]);
2154
2155 kfree(opp_table->regulators);
2156 opp_table->regulators = NULL;
2157 opp_table->regulator_count = -1;
2158}
2159
2160static void _put_clks(struct opp_table *opp_table, int count)
2161{
2162 int i;
2163
2164 for (i = count - 1; i >= 0; i--)
2165 clk_put(opp_table->clks[i]);
2166
2167 kfree(opp_table->clks);
2168 opp_table->clks = NULL;
2169}
2170
2171/**
2172 * _opp_set_clknames() - Set clk names for the device
2173 * @dev: Device for which clk names is being set.
2174 * @names: Clk names.
2175 *
2176 * In order to support OPP switching, OPP layer needs to get pointers to the
2177 * clocks for the device. Simple cases work fine without using this routine
2178 * (i.e. by passing connection-id as NULL), but for a device with multiple
2179 * clocks available, the OPP core needs to know the exact names of the clks to
2180 * use.
2181 *
2182 * This must be called before any OPPs are initialized for the device.
2183 */
2184static int _opp_set_clknames(struct opp_table *opp_table, struct device *dev,
2185 const char * const names[],
2186 config_clks_t config_clks)
2187{
2188 const char * const *temp = names;
2189 int count = 0, ret, i;
2190 struct clk *clk;
2191
2192 /* Count number of clks */
2193 while (*temp++)
2194 count++;
2195
2196 /*
2197 * This is a special case where we have a single clock, whose connection
2198 * id name is NULL, i.e. first two entries are NULL in the array.
2199 */
2200 if (!count && !names[1])
2201 count = 1;
2202
2203 /* Fail early for invalid configurations */
2204 if (!count || (!config_clks && count > 1))
2205 return -EINVAL;
2206
2207 /* Another CPU that shares the OPP table has set the clkname ? */
2208 if (opp_table->clks)
2209 return 0;
2210
2211 opp_table->clks = kmalloc_array(count, sizeof(*opp_table->clks),
2212 GFP_KERNEL);
2213 if (!opp_table->clks)
2214 return -ENOMEM;
2215
2216 /* Find clks for the device */
2217 for (i = 0; i < count; i++) {
2218 clk = clk_get(dev, names[i]);
2219 if (IS_ERR(clk)) {
2220 ret = dev_err_probe(dev, PTR_ERR(clk),
2221 "%s: Couldn't find clock with name: %s\n",
2222 __func__, names[i]);
2223 goto free_clks;
2224 }
2225
2226 opp_table->clks[i] = clk;
2227 }
2228
2229 opp_table->clk_count = count;
2230 opp_table->config_clks = config_clks;
2231
2232 /* Set generic single clk set here */
2233 if (count == 1) {
2234 if (!opp_table->config_clks)
2235 opp_table->config_clks = _opp_config_clk_single;
2236
2237 /*
2238 * We could have just dropped the "clk" field and used "clks"
2239 * everywhere. Instead we kept the "clk" field around for
2240 * following reasons:
2241 *
2242 * - avoiding clks[0] everywhere else.
2243 * - not running single clk helpers for multiple clk usecase by
2244 * mistake.
2245 *
2246 * Since this is single-clk case, just update the clk pointer
2247 * too.
2248 */
2249 opp_table->clk = opp_table->clks[0];
2250 }
2251
2252 return 0;
2253
2254free_clks:
2255 _put_clks(opp_table, i);
2256 return ret;
2257}
2258
2259/**
2260 * _opp_put_clknames() - Releases resources blocked for clks.
2261 * @opp_table: OPP table returned from _opp_set_clknames().
2262 */
2263static void _opp_put_clknames(struct opp_table *opp_table)
2264{
2265 if (!opp_table->clks)
2266 return;
2267
2268 opp_table->config_clks = NULL;
2269 opp_table->clk = ERR_PTR(-ENODEV);
2270
2271 _put_clks(opp_table, opp_table->clk_count);
2272}
2273
2274/**
2275 * _opp_set_config_regulators_helper() - Register custom set regulator helper.
2276 * @dev: Device for which the helper is getting registered.
2277 * @config_regulators: Custom set regulator helper.
2278 *
2279 * This is useful to support platforms with multiple regulators per device.
2280 *
2281 * This must be called before any OPPs are initialized for the device.
2282 */
2283static int _opp_set_config_regulators_helper(struct opp_table *opp_table,
2284 struct device *dev, config_regulators_t config_regulators)
2285{
2286 /* Another CPU that shares the OPP table has set the helper ? */
2287 if (!opp_table->config_regulators)
2288 opp_table->config_regulators = config_regulators;
2289
2290 return 0;
2291}
2292
2293/**
2294 * _opp_put_config_regulators_helper() - Releases resources blocked for
2295 * config_regulators helper.
2296 * @opp_table: OPP table returned from _opp_set_config_regulators_helper().
2297 *
2298 * Release resources blocked for platform specific config_regulators helper.
2299 */
2300static void _opp_put_config_regulators_helper(struct opp_table *opp_table)
2301{
2302 if (opp_table->config_regulators)
2303 opp_table->config_regulators = NULL;
2304}
2305
2306static void _detach_genpd(struct opp_table *opp_table)
2307{
2308 int index;
2309
2310 if (!opp_table->genpd_virt_devs)
2311 return;
2312
2313 for (index = 0; index < opp_table->required_opp_count; index++) {
2314 if (!opp_table->genpd_virt_devs[index])
2315 continue;
2316
2317 dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false);
2318 opp_table->genpd_virt_devs[index] = NULL;
2319 }
2320
2321 kfree(opp_table->genpd_virt_devs);
2322 opp_table->genpd_virt_devs = NULL;
2323}
2324
2325/**
2326 * _opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer
2327 * @dev: Consumer device for which the genpd is getting attached.
2328 * @names: Null terminated array of pointers containing names of genpd to attach.
2329 * @virt_devs: Pointer to return the array of virtual devices.
2330 *
2331 * Multiple generic power domains for a device are supported with the help of
2332 * virtual genpd devices, which are created for each consumer device - genpd
2333 * pair. These are the device structures which are attached to the power domain
2334 * and are required by the OPP core to set the performance state of the genpd.
2335 * The same API also works for the case where single genpd is available and so
2336 * we don't need to support that separately.
2337 *
2338 * This helper will normally be called by the consumer driver of the device
2339 * "dev", as only that has details of the genpd names.
2340 *
2341 * This helper needs to be called once with a list of all genpd to attach.
2342 * Otherwise the original device structure will be used instead by the OPP core.
2343 *
2344 * The order of entries in the names array must match the order in which
2345 * "required-opps" are added in DT.
2346 */
2347static int _opp_attach_genpd(struct opp_table *opp_table, struct device *dev,
2348 const char * const *names, struct device ***virt_devs)
2349{
2350 struct device *virt_dev;
2351 int index = 0, ret = -EINVAL;
2352 const char * const *name = names;
2353
2354 if (opp_table->genpd_virt_devs)
2355 return 0;
2356
2357 /*
2358 * If the genpd's OPP table isn't already initialized, parsing of the
2359 * required-opps fail for dev. We should retry this after genpd's OPP
2360 * table is added.
2361 */
2362 if (!opp_table->required_opp_count)
2363 return -EPROBE_DEFER;
2364
2365 mutex_lock(&opp_table->genpd_virt_dev_lock);
2366
2367 opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count,
2368 sizeof(*opp_table->genpd_virt_devs),
2369 GFP_KERNEL);
2370 if (!opp_table->genpd_virt_devs)
2371 goto unlock;
2372
2373 while (*name) {
2374 if (index >= opp_table->required_opp_count) {
2375 dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
2376 *name, opp_table->required_opp_count, index);
2377 goto err;
2378 }
2379
2380 virt_dev = dev_pm_domain_attach_by_name(dev, *name);
2381 if (IS_ERR_OR_NULL(virt_dev)) {
2382 ret = PTR_ERR(virt_dev) ? : -ENODEV;
2383 dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
2384 goto err;
2385 }
2386
2387 opp_table->genpd_virt_devs[index] = virt_dev;
2388 index++;
2389 name++;
2390 }
2391
2392 if (virt_devs)
2393 *virt_devs = opp_table->genpd_virt_devs;
2394 mutex_unlock(&opp_table->genpd_virt_dev_lock);
2395
2396 return 0;
2397
2398err:
2399 _detach_genpd(opp_table);
2400unlock:
2401 mutex_unlock(&opp_table->genpd_virt_dev_lock);
2402 return ret;
2403
2404}
2405
2406/**
2407 * _opp_detach_genpd() - Detach genpd(s) from the device.
2408 * @opp_table: OPP table returned by _opp_attach_genpd().
2409 *
2410 * This detaches the genpd(s), resets the virtual device pointers, and puts the
2411 * OPP table.
2412 */
2413static void _opp_detach_genpd(struct opp_table *opp_table)
2414{
2415 /*
2416 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting
2417 * used in parallel.
2418 */
2419 mutex_lock(&opp_table->genpd_virt_dev_lock);
2420 _detach_genpd(opp_table);
2421 mutex_unlock(&opp_table->genpd_virt_dev_lock);
2422}
2423
2424static void _opp_clear_config(struct opp_config_data *data)
2425{
2426 if (data->flags & OPP_CONFIG_GENPD)
2427 _opp_detach_genpd(data->opp_table);
2428 if (data->flags & OPP_CONFIG_REGULATOR)
2429 _opp_put_regulators(data->opp_table);
2430 if (data->flags & OPP_CONFIG_SUPPORTED_HW)
2431 _opp_put_supported_hw(data->opp_table);
2432 if (data->flags & OPP_CONFIG_REGULATOR_HELPER)
2433 _opp_put_config_regulators_helper(data->opp_table);
2434 if (data->flags & OPP_CONFIG_PROP_NAME)
2435 _opp_put_prop_name(data->opp_table);
2436 if (data->flags & OPP_CONFIG_CLK)
2437 _opp_put_clknames(data->opp_table);
2438
2439 dev_pm_opp_put_opp_table(data->opp_table);
2440 kfree(data);
2441}
2442
2443/**
2444 * dev_pm_opp_set_config() - Set OPP configuration for the device.
2445 * @dev: Device for which configuration is being set.
2446 * @config: OPP configuration.
2447 *
2448 * This allows all device OPP configurations to be performed at once.
2449 *
2450 * This must be called before any OPPs are initialized for the device. This may
2451 * be called multiple times for the same OPP table, for example once for each
2452 * CPU that share the same table. This must be balanced by the same number of
2453 * calls to dev_pm_opp_clear_config() in order to free the OPP table properly.
2454 *
2455 * This returns a token to the caller, which must be passed to
2456 * dev_pm_opp_clear_config() to free the resources later. The value of the
2457 * returned token will be >= 1 for success and negative for errors. The minimum
2458 * value of 1 is chosen here to make it easy for callers to manage the resource.
2459 */
2460int dev_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2461{
2462 struct opp_table *opp_table;
2463 struct opp_config_data *data;
2464 unsigned int id;
2465 int ret;
2466
2467 data = kmalloc(sizeof(*data), GFP_KERNEL);
2468 if (!data)
2469 return -ENOMEM;
2470
2471 opp_table = _add_opp_table(dev, false);
2472 if (IS_ERR(opp_table)) {
2473 kfree(data);
2474 return PTR_ERR(opp_table);
2475 }
2476
2477 data->opp_table = opp_table;
2478 data->flags = 0;
2479
2480 /* This should be called before OPPs are initialized */
2481 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
2482 ret = -EBUSY;
2483 goto err;
2484 }
2485
2486 /* Configure clocks */
2487 if (config->clk_names) {
2488 ret = _opp_set_clknames(opp_table, dev, config->clk_names,
2489 config->config_clks);
2490 if (ret)
2491 goto err;
2492
2493 data->flags |= OPP_CONFIG_CLK;
2494 } else if (config->config_clks) {
2495 /* Don't allow config callback without clocks */
2496 ret = -EINVAL;
2497 goto err;
2498 }
2499
2500 /* Configure property names */
2501 if (config->prop_name) {
2502 ret = _opp_set_prop_name(opp_table, config->prop_name);
2503 if (ret)
2504 goto err;
2505
2506 data->flags |= OPP_CONFIG_PROP_NAME;
2507 }
2508
2509 /* Configure config_regulators helper */
2510 if (config->config_regulators) {
2511 ret = _opp_set_config_regulators_helper(opp_table, dev,
2512 config->config_regulators);
2513 if (ret)
2514 goto err;
2515
2516 data->flags |= OPP_CONFIG_REGULATOR_HELPER;
2517 }
2518
2519 /* Configure supported hardware */
2520 if (config->supported_hw) {
2521 ret = _opp_set_supported_hw(opp_table, config->supported_hw,
2522 config->supported_hw_count);
2523 if (ret)
2524 goto err;
2525
2526 data->flags |= OPP_CONFIG_SUPPORTED_HW;
2527 }
2528
2529 /* Configure supplies */
2530 if (config->regulator_names) {
2531 ret = _opp_set_regulators(opp_table, dev,
2532 config->regulator_names);
2533 if (ret)
2534 goto err;
2535
2536 data->flags |= OPP_CONFIG_REGULATOR;
2537 }
2538
2539 /* Attach genpds */
2540 if (config->genpd_names) {
2541 ret = _opp_attach_genpd(opp_table, dev, config->genpd_names,
2542 config->virt_devs);
2543 if (ret)
2544 goto err;
2545
2546 data->flags |= OPP_CONFIG_GENPD;
2547 }
2548
2549 ret = xa_alloc(&opp_configs, &id, data, XA_LIMIT(1, INT_MAX),
2550 GFP_KERNEL);
2551 if (ret)
2552 goto err;
2553
2554 return id;
2555
2556err:
2557 _opp_clear_config(data);
2558 return ret;
2559}
2560EXPORT_SYMBOL_GPL(dev_pm_opp_set_config);
2561
2562/**
2563 * dev_pm_opp_clear_config() - Releases resources blocked for OPP configuration.
2564 * @opp_table: OPP table returned from dev_pm_opp_set_config().
2565 *
2566 * This allows all device OPP configurations to be cleared at once. This must be
2567 * called once for each call made to dev_pm_opp_set_config(), in order to free
2568 * the OPPs properly.
2569 *
2570 * Currently the first call itself ends up freeing all the OPP configurations,
2571 * while the later ones only drop the OPP table reference. This works well for
2572 * now as we would never want to use an half initialized OPP table and want to
2573 * remove the configurations together.
2574 */
2575void dev_pm_opp_clear_config(int token)
2576{
2577 struct opp_config_data *data;
2578
2579 /*
2580 * This lets the callers call this unconditionally and keep their code
2581 * simple.
2582 */
2583 if (unlikely(token <= 0))
2584 return;
2585
2586 data = xa_erase(&opp_configs, token);
2587 if (WARN_ON(!data))
2588 return;
2589
2590 _opp_clear_config(data);
2591}
2592EXPORT_SYMBOL_GPL(dev_pm_opp_clear_config);
2593
2594static void devm_pm_opp_config_release(void *token)
2595{
2596 dev_pm_opp_clear_config((unsigned long)token);
2597}
2598
2599/**
2600 * devm_pm_opp_set_config() - Set OPP configuration for the device.
2601 * @dev: Device for which configuration is being set.
2602 * @config: OPP configuration.
2603 *
2604 * This allows all device OPP configurations to be performed at once.
2605 * This is a resource-managed variant of dev_pm_opp_set_config().
2606 *
2607 * Return: 0 on success and errorno otherwise.
2608 */
2609int devm_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2610{
2611 int token = dev_pm_opp_set_config(dev, config);
2612
2613 if (token < 0)
2614 return token;
2615
2616 return devm_add_action_or_reset(dev, devm_pm_opp_config_release,
2617 (void *) ((unsigned long) token));
2618}
2619EXPORT_SYMBOL_GPL(devm_pm_opp_set_config);
2620
2621/**
2622 * dev_pm_opp_xlate_required_opp() - Find required OPP for @src_table OPP.
2623 * @src_table: OPP table which has @dst_table as one of its required OPP table.
2624 * @dst_table: Required OPP table of the @src_table.
2625 * @src_opp: OPP from the @src_table.
2626 *
2627 * This function returns the OPP (present in @dst_table) pointed out by the
2628 * "required-opps" property of the @src_opp (present in @src_table).
2629 *
2630 * The callers are required to call dev_pm_opp_put() for the returned OPP after
2631 * use.
2632 *
2633 * Return: pointer to 'struct dev_pm_opp' on success and errorno otherwise.
2634 */
2635struct dev_pm_opp *dev_pm_opp_xlate_required_opp(struct opp_table *src_table,
2636 struct opp_table *dst_table,
2637 struct dev_pm_opp *src_opp)
2638{
2639 struct dev_pm_opp *opp, *dest_opp = ERR_PTR(-ENODEV);
2640 int i;
2641
2642 if (!src_table || !dst_table || !src_opp ||
2643 !src_table->required_opp_tables)
2644 return ERR_PTR(-EINVAL);
2645
2646 /* required-opps not fully initialized yet */
2647 if (lazy_linking_pending(src_table))
2648 return ERR_PTR(-EBUSY);
2649
2650 for (i = 0; i < src_table->required_opp_count; i++) {
2651 if (src_table->required_opp_tables[i] == dst_table) {
2652 mutex_lock(&src_table->lock);
2653
2654 list_for_each_entry(opp, &src_table->opp_list, node) {
2655 if (opp == src_opp) {
2656 dest_opp = opp->required_opps[i];
2657 dev_pm_opp_get(dest_opp);
2658 break;
2659 }
2660 }
2661
2662 mutex_unlock(&src_table->lock);
2663 break;
2664 }
2665 }
2666
2667 if (IS_ERR(dest_opp)) {
2668 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__,
2669 src_table, dst_table);
2670 }
2671
2672 return dest_opp;
2673}
2674EXPORT_SYMBOL_GPL(dev_pm_opp_xlate_required_opp);
2675
2676/**
2677 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
2678 * @src_table: OPP table which has dst_table as one of its required OPP table.
2679 * @dst_table: Required OPP table of the src_table.
2680 * @pstate: Current performance state of the src_table.
2681 *
2682 * This Returns pstate of the OPP (present in @dst_table) pointed out by the
2683 * "required-opps" property of the OPP (present in @src_table) which has
2684 * performance state set to @pstate.
2685 *
2686 * Return: Zero or positive performance state on success, otherwise negative
2687 * value on errors.
2688 */
2689int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
2690 struct opp_table *dst_table,
2691 unsigned int pstate)
2692{
2693 struct dev_pm_opp *opp;
2694 int dest_pstate = -EINVAL;
2695 int i;
2696
2697 /*
2698 * Normally the src_table will have the "required_opps" property set to
2699 * point to one of the OPPs in the dst_table, but in some cases the
2700 * genpd and its master have one to one mapping of performance states
2701 * and so none of them have the "required-opps" property set. Return the
2702 * pstate of the src_table as it is in such cases.
2703 */
2704 if (!src_table || !src_table->required_opp_count)
2705 return pstate;
2706
2707 /* required-opps not fully initialized yet */
2708 if (lazy_linking_pending(src_table))
2709 return -EBUSY;
2710
2711 for (i = 0; i < src_table->required_opp_count; i++) {
2712 if (src_table->required_opp_tables[i]->np == dst_table->np)
2713 break;
2714 }
2715
2716 if (unlikely(i == src_table->required_opp_count)) {
2717 pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
2718 __func__, src_table, dst_table);
2719 return -EINVAL;
2720 }
2721
2722 mutex_lock(&src_table->lock);
2723
2724 list_for_each_entry(opp, &src_table->opp_list, node) {
2725 if (opp->pstate == pstate) {
2726 dest_pstate = opp->required_opps[i]->pstate;
2727 goto unlock;
2728 }
2729 }
2730
2731 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
2732 dst_table);
2733
2734unlock:
2735 mutex_unlock(&src_table->lock);
2736
2737 return dest_pstate;
2738}
2739
2740/**
2741 * dev_pm_opp_add() - Add an OPP table from a table definitions
2742 * @dev: device for which we do this operation
2743 * @freq: Frequency in Hz for this OPP
2744 * @u_volt: Voltage in uVolts for this OPP
2745 *
2746 * This function adds an opp definition to the opp table and returns status.
2747 * The opp is made available by default and it can be controlled using
2748 * dev_pm_opp_enable/disable functions.
2749 *
2750 * Return:
2751 * 0 On success OR
2752 * Duplicate OPPs (both freq and volt are same) and opp->available
2753 * -EEXIST Freq are same and volt are different OR
2754 * Duplicate OPPs (both freq and volt are same) and !opp->available
2755 * -ENOMEM Memory allocation failure
2756 */
2757int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt)
2758{
2759 struct opp_table *opp_table;
2760 int ret;
2761
2762 opp_table = _add_opp_table(dev, true);
2763 if (IS_ERR(opp_table))
2764 return PTR_ERR(opp_table);
2765
2766 /* Fix regulator count for dynamic OPPs */
2767 opp_table->regulator_count = 1;
2768
2769 ret = _opp_add_v1(opp_table, dev, freq, u_volt, true);
2770 if (ret)
2771 dev_pm_opp_put_opp_table(opp_table);
2772
2773 return ret;
2774}
2775EXPORT_SYMBOL_GPL(dev_pm_opp_add);
2776
2777/**
2778 * _opp_set_availability() - helper to set the availability of an opp
2779 * @dev: device for which we do this operation
2780 * @freq: OPP frequency to modify availability
2781 * @availability_req: availability status requested for this opp
2782 *
2783 * Set the availability of an OPP, opp_{enable,disable} share a common logic
2784 * which is isolated here.
2785 *
2786 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2787 * copy operation, returns 0 if no modification was done OR modification was
2788 * successful.
2789 */
2790static int _opp_set_availability(struct device *dev, unsigned long freq,
2791 bool availability_req)
2792{
2793 struct opp_table *opp_table;
2794 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2795 int r = 0;
2796
2797 /* Find the opp_table */
2798 opp_table = _find_opp_table(dev);
2799 if (IS_ERR(opp_table)) {
2800 r = PTR_ERR(opp_table);
2801 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2802 return r;
2803 }
2804
2805 if (!assert_single_clk(opp_table)) {
2806 r = -EINVAL;
2807 goto put_table;
2808 }
2809
2810 mutex_lock(&opp_table->lock);
2811
2812 /* Do we have the frequency? */
2813 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2814 if (tmp_opp->rates[0] == freq) {
2815 opp = tmp_opp;
2816 break;
2817 }
2818 }
2819
2820 if (IS_ERR(opp)) {
2821 r = PTR_ERR(opp);
2822 goto unlock;
2823 }
2824
2825 /* Is update really needed? */
2826 if (opp->available == availability_req)
2827 goto unlock;
2828
2829 opp->available = availability_req;
2830
2831 dev_pm_opp_get(opp);
2832 mutex_unlock(&opp_table->lock);
2833
2834 /* Notify the change of the OPP availability */
2835 if (availability_req)
2836 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2837 opp);
2838 else
2839 blocking_notifier_call_chain(&opp_table->head,
2840 OPP_EVENT_DISABLE, opp);
2841
2842 dev_pm_opp_put(opp);
2843 goto put_table;
2844
2845unlock:
2846 mutex_unlock(&opp_table->lock);
2847put_table:
2848 dev_pm_opp_put_opp_table(opp_table);
2849 return r;
2850}
2851
2852/**
2853 * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2854 * @dev: device for which we do this operation
2855 * @freq: OPP frequency to adjust voltage of
2856 * @u_volt: new OPP target voltage
2857 * @u_volt_min: new OPP min voltage
2858 * @u_volt_max: new OPP max voltage
2859 *
2860 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2861 * copy operation, returns 0 if no modifcation was done OR modification was
2862 * successful.
2863 */
2864int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2865 unsigned long u_volt, unsigned long u_volt_min,
2866 unsigned long u_volt_max)
2867
2868{
2869 struct opp_table *opp_table;
2870 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2871 int r = 0;
2872
2873 /* Find the opp_table */
2874 opp_table = _find_opp_table(dev);
2875 if (IS_ERR(opp_table)) {
2876 r = PTR_ERR(opp_table);
2877 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2878 return r;
2879 }
2880
2881 if (!assert_single_clk(opp_table)) {
2882 r = -EINVAL;
2883 goto put_table;
2884 }
2885
2886 mutex_lock(&opp_table->lock);
2887
2888 /* Do we have the frequency? */
2889 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2890 if (tmp_opp->rates[0] == freq) {
2891 opp = tmp_opp;
2892 break;
2893 }
2894 }
2895
2896 if (IS_ERR(opp)) {
2897 r = PTR_ERR(opp);
2898 goto adjust_unlock;
2899 }
2900
2901 /* Is update really needed? */
2902 if (opp->supplies->u_volt == u_volt)
2903 goto adjust_unlock;
2904
2905 opp->supplies->u_volt = u_volt;
2906 opp->supplies->u_volt_min = u_volt_min;
2907 opp->supplies->u_volt_max = u_volt_max;
2908
2909 dev_pm_opp_get(opp);
2910 mutex_unlock(&opp_table->lock);
2911
2912 /* Notify the voltage change of the OPP */
2913 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
2914 opp);
2915
2916 dev_pm_opp_put(opp);
2917 goto put_table;
2918
2919adjust_unlock:
2920 mutex_unlock(&opp_table->lock);
2921put_table:
2922 dev_pm_opp_put_opp_table(opp_table);
2923 return r;
2924}
2925EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage);
2926
2927/**
2928 * dev_pm_opp_enable() - Enable a specific OPP
2929 * @dev: device for which we do this operation
2930 * @freq: OPP frequency to enable
2931 *
2932 * Enables a provided opp. If the operation is valid, this returns 0, else the
2933 * corresponding error value. It is meant to be used for users an OPP available
2934 * after being temporarily made unavailable with dev_pm_opp_disable.
2935 *
2936 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2937 * copy operation, returns 0 if no modification was done OR modification was
2938 * successful.
2939 */
2940int dev_pm_opp_enable(struct device *dev, unsigned long freq)
2941{
2942 return _opp_set_availability(dev, freq, true);
2943}
2944EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
2945
2946/**
2947 * dev_pm_opp_disable() - Disable a specific OPP
2948 * @dev: device for which we do this operation
2949 * @freq: OPP frequency to disable
2950 *
2951 * Disables a provided opp. If the operation is valid, this returns
2952 * 0, else the corresponding error value. It is meant to be a temporary
2953 * control by users to make this OPP not available until the circumstances are
2954 * right to make it available again (with a call to dev_pm_opp_enable).
2955 *
2956 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2957 * copy operation, returns 0 if no modification was done OR modification was
2958 * successful.
2959 */
2960int dev_pm_opp_disable(struct device *dev, unsigned long freq)
2961{
2962 return _opp_set_availability(dev, freq, false);
2963}
2964EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
2965
2966/**
2967 * dev_pm_opp_register_notifier() - Register OPP notifier for the device
2968 * @dev: Device for which notifier needs to be registered
2969 * @nb: Notifier block to be registered
2970 *
2971 * Return: 0 on success or a negative error value.
2972 */
2973int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
2974{
2975 struct opp_table *opp_table;
2976 int ret;
2977
2978 opp_table = _find_opp_table(dev);
2979 if (IS_ERR(opp_table))
2980 return PTR_ERR(opp_table);
2981
2982 ret = blocking_notifier_chain_register(&opp_table->head, nb);
2983
2984 dev_pm_opp_put_opp_table(opp_table);
2985
2986 return ret;
2987}
2988EXPORT_SYMBOL(dev_pm_opp_register_notifier);
2989
2990/**
2991 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
2992 * @dev: Device for which notifier needs to be unregistered
2993 * @nb: Notifier block to be unregistered
2994 *
2995 * Return: 0 on success or a negative error value.
2996 */
2997int dev_pm_opp_unregister_notifier(struct device *dev,
2998 struct notifier_block *nb)
2999{
3000 struct opp_table *opp_table;
3001 int ret;
3002
3003 opp_table = _find_opp_table(dev);
3004 if (IS_ERR(opp_table))
3005 return PTR_ERR(opp_table);
3006
3007 ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
3008
3009 dev_pm_opp_put_opp_table(opp_table);
3010
3011 return ret;
3012}
3013EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
3014
3015/**
3016 * dev_pm_opp_remove_table() - Free all OPPs associated with the device
3017 * @dev: device pointer used to lookup OPP table.
3018 *
3019 * Free both OPPs created using static entries present in DT and the
3020 * dynamically added entries.
3021 */
3022void dev_pm_opp_remove_table(struct device *dev)
3023{
3024 struct opp_table *opp_table;
3025
3026 /* Check for existing table for 'dev' */
3027 opp_table = _find_opp_table(dev);
3028 if (IS_ERR(opp_table)) {
3029 int error = PTR_ERR(opp_table);
3030
3031 if (error != -ENODEV)
3032 WARN(1, "%s: opp_table: %d\n",
3033 IS_ERR_OR_NULL(dev) ?
3034 "Invalid device" : dev_name(dev),
3035 error);
3036 return;
3037 }
3038
3039 /*
3040 * Drop the extra reference only if the OPP table was successfully added
3041 * with dev_pm_opp_of_add_table() earlier.
3042 **/
3043 if (_opp_remove_all_static(opp_table))
3044 dev_pm_opp_put_opp_table(opp_table);
3045
3046 /* Drop reference taken by _find_opp_table() */
3047 dev_pm_opp_put_opp_table(opp_table);
3048}
3049EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);
3050
3051/**
3052 * dev_pm_opp_sync_regulators() - Sync state of voltage regulators
3053 * @dev: device for which we do this operation
3054 *
3055 * Sync voltage state of the OPP table regulators.
3056 *
3057 * Return: 0 on success or a negative error value.
3058 */
3059int dev_pm_opp_sync_regulators(struct device *dev)
3060{
3061 struct opp_table *opp_table;
3062 struct regulator *reg;
3063 int i, ret = 0;
3064
3065 /* Device may not have OPP table */
3066 opp_table = _find_opp_table(dev);
3067 if (IS_ERR(opp_table))
3068 return 0;
3069
3070 /* Regulator may not be required for the device */
3071 if (unlikely(!opp_table->regulators))
3072 goto put_table;
3073
3074 /* Nothing to sync if voltage wasn't changed */
3075 if (!opp_table->enabled)
3076 goto put_table;
3077
3078 for (i = 0; i < opp_table->regulator_count; i++) {
3079 reg = opp_table->regulators[i];
3080 ret = regulator_sync_voltage(reg);
3081 if (ret)
3082 break;
3083 }
3084put_table:
3085 /* Drop reference taken by _find_opp_table() */
3086 dev_pm_opp_put_opp_table(opp_table);
3087
3088 return ret;
3089}
3090EXPORT_SYMBOL_GPL(dev_pm_opp_sync_regulators);