at v6.4 1862 lines 57 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2/* 3 * S390 version 4 * Copyright IBM Corp. 1999, 2000 5 * Author(s): Hartmut Penner (hp@de.ibm.com) 6 * Ulrich Weigand (weigand@de.ibm.com) 7 * Martin Schwidefsky (schwidefsky@de.ibm.com) 8 * 9 * Derived from "include/asm-i386/pgtable.h" 10 */ 11 12#ifndef _ASM_S390_PGTABLE_H 13#define _ASM_S390_PGTABLE_H 14 15#include <linux/sched.h> 16#include <linux/mm_types.h> 17#include <linux/page-flags.h> 18#include <linux/radix-tree.h> 19#include <linux/atomic.h> 20#include <asm/sections.h> 21#include <asm/bug.h> 22#include <asm/page.h> 23#include <asm/uv.h> 24 25extern pgd_t swapper_pg_dir[]; 26extern pgd_t invalid_pg_dir[]; 27extern void paging_init(void); 28extern unsigned long s390_invalid_asce; 29 30enum { 31 PG_DIRECT_MAP_4K = 0, 32 PG_DIRECT_MAP_1M, 33 PG_DIRECT_MAP_2G, 34 PG_DIRECT_MAP_MAX 35}; 36 37extern atomic_long_t __bootdata_preserved(direct_pages_count[PG_DIRECT_MAP_MAX]); 38 39static inline void update_page_count(int level, long count) 40{ 41 if (IS_ENABLED(CONFIG_PROC_FS)) 42 atomic_long_add(count, &direct_pages_count[level]); 43} 44 45struct seq_file; 46void arch_report_meminfo(struct seq_file *m); 47 48/* 49 * The S390 doesn't have any external MMU info: the kernel page 50 * tables contain all the necessary information. 51 */ 52#define update_mmu_cache(vma, address, ptep) do { } while (0) 53#define update_mmu_cache_pmd(vma, address, ptep) do { } while (0) 54 55/* 56 * ZERO_PAGE is a global shared page that is always zero; used 57 * for zero-mapped memory areas etc.. 58 */ 59 60extern unsigned long empty_zero_page; 61extern unsigned long zero_page_mask; 62 63#define ZERO_PAGE(vaddr) \ 64 (virt_to_page((void *)(empty_zero_page + \ 65 (((unsigned long)(vaddr)) &zero_page_mask)))) 66#define __HAVE_COLOR_ZERO_PAGE 67 68/* TODO: s390 cannot support io_remap_pfn_range... */ 69 70#define pte_ERROR(e) \ 71 pr_err("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e)) 72#define pmd_ERROR(e) \ 73 pr_err("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e)) 74#define pud_ERROR(e) \ 75 pr_err("%s:%d: bad pud %016lx.\n", __FILE__, __LINE__, pud_val(e)) 76#define p4d_ERROR(e) \ 77 pr_err("%s:%d: bad p4d %016lx.\n", __FILE__, __LINE__, p4d_val(e)) 78#define pgd_ERROR(e) \ 79 pr_err("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e)) 80 81/* 82 * The vmalloc and module area will always be on the topmost area of the 83 * kernel mapping. 512GB are reserved for vmalloc by default. 84 * At the top of the vmalloc area a 2GB area is reserved where modules 85 * will reside. That makes sure that inter module branches always 86 * happen without trampolines and in addition the placement within a 87 * 2GB frame is branch prediction unit friendly. 88 */ 89extern unsigned long __bootdata_preserved(VMALLOC_START); 90extern unsigned long __bootdata_preserved(VMALLOC_END); 91#define VMALLOC_DEFAULT_SIZE ((512UL << 30) - MODULES_LEN) 92extern struct page *__bootdata_preserved(vmemmap); 93extern unsigned long __bootdata_preserved(vmemmap_size); 94 95#define VMEM_MAX_PHYS ((unsigned long) vmemmap) 96 97extern unsigned long __bootdata_preserved(MODULES_VADDR); 98extern unsigned long __bootdata_preserved(MODULES_END); 99#define MODULES_VADDR MODULES_VADDR 100#define MODULES_END MODULES_END 101#define MODULES_LEN (1UL << 31) 102 103static inline int is_module_addr(void *addr) 104{ 105 BUILD_BUG_ON(MODULES_LEN > (1UL << 31)); 106 if (addr < (void *)MODULES_VADDR) 107 return 0; 108 if (addr > (void *)MODULES_END) 109 return 0; 110 return 1; 111} 112 113/* 114 * A 64 bit pagetable entry of S390 has following format: 115 * | PFRA |0IPC| OS | 116 * 0000000000111111111122222222223333333333444444444455555555556666 117 * 0123456789012345678901234567890123456789012345678901234567890123 118 * 119 * I Page-Invalid Bit: Page is not available for address-translation 120 * P Page-Protection Bit: Store access not possible for page 121 * C Change-bit override: HW is not required to set change bit 122 * 123 * A 64 bit segmenttable entry of S390 has following format: 124 * | P-table origin | TT 125 * 0000000000111111111122222222223333333333444444444455555555556666 126 * 0123456789012345678901234567890123456789012345678901234567890123 127 * 128 * I Segment-Invalid Bit: Segment is not available for address-translation 129 * C Common-Segment Bit: Segment is not private (PoP 3-30) 130 * P Page-Protection Bit: Store access not possible for page 131 * TT Type 00 132 * 133 * A 64 bit region table entry of S390 has following format: 134 * | S-table origin | TF TTTL 135 * 0000000000111111111122222222223333333333444444444455555555556666 136 * 0123456789012345678901234567890123456789012345678901234567890123 137 * 138 * I Segment-Invalid Bit: Segment is not available for address-translation 139 * TT Type 01 140 * TF 141 * TL Table length 142 * 143 * The 64 bit regiontable origin of S390 has following format: 144 * | region table origon | DTTL 145 * 0000000000111111111122222222223333333333444444444455555555556666 146 * 0123456789012345678901234567890123456789012345678901234567890123 147 * 148 * X Space-Switch event: 149 * G Segment-Invalid Bit: 150 * P Private-Space Bit: 151 * S Storage-Alteration: 152 * R Real space 153 * TL Table-Length: 154 * 155 * A storage key has the following format: 156 * | ACC |F|R|C|0| 157 * 0 3 4 5 6 7 158 * ACC: access key 159 * F : fetch protection bit 160 * R : referenced bit 161 * C : changed bit 162 */ 163 164/* Hardware bits in the page table entry */ 165#define _PAGE_NOEXEC 0x100 /* HW no-execute bit */ 166#define _PAGE_PROTECT 0x200 /* HW read-only bit */ 167#define _PAGE_INVALID 0x400 /* HW invalid bit */ 168#define _PAGE_LARGE 0x800 /* Bit to mark a large pte */ 169 170/* Software bits in the page table entry */ 171#define _PAGE_PRESENT 0x001 /* SW pte present bit */ 172#define _PAGE_YOUNG 0x004 /* SW pte young bit */ 173#define _PAGE_DIRTY 0x008 /* SW pte dirty bit */ 174#define _PAGE_READ 0x010 /* SW pte read bit */ 175#define _PAGE_WRITE 0x020 /* SW pte write bit */ 176#define _PAGE_SPECIAL 0x040 /* SW associated with special page */ 177#define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */ 178 179#ifdef CONFIG_MEM_SOFT_DIRTY 180#define _PAGE_SOFT_DIRTY 0x002 /* SW pte soft dirty bit */ 181#else 182#define _PAGE_SOFT_DIRTY 0x000 183#endif 184 185#define _PAGE_SW_BITS 0xffUL /* All SW bits */ 186 187#define _PAGE_SWP_EXCLUSIVE _PAGE_LARGE /* SW pte exclusive swap bit */ 188 189/* Set of bits not changed in pte_modify */ 190#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \ 191 _PAGE_YOUNG | _PAGE_SOFT_DIRTY) 192 193/* 194 * Mask of bits that must not be changed with RDP. Allow only _PAGE_PROTECT 195 * HW bit and all SW bits. 196 */ 197#define _PAGE_RDP_MASK ~(_PAGE_PROTECT | _PAGE_SW_BITS) 198 199/* 200 * handle_pte_fault uses pte_present and pte_none to find out the pte type 201 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to 202 * distinguish present from not-present ptes. It is changed only with the page 203 * table lock held. 204 * 205 * The following table gives the different possible bit combinations for 206 * the pte hardware and software bits in the last 12 bits of a pte 207 * (. unassigned bit, x don't care, t swap type): 208 * 209 * 842100000000 210 * 000084210000 211 * 000000008421 212 * .IR.uswrdy.p 213 * empty .10.00000000 214 * swap .11..ttttt.0 215 * prot-none, clean, old .11.xx0000.1 216 * prot-none, clean, young .11.xx0001.1 217 * prot-none, dirty, old .11.xx0010.1 218 * prot-none, dirty, young .11.xx0011.1 219 * read-only, clean, old .11.xx0100.1 220 * read-only, clean, young .01.xx0101.1 221 * read-only, dirty, old .11.xx0110.1 222 * read-only, dirty, young .01.xx0111.1 223 * read-write, clean, old .11.xx1100.1 224 * read-write, clean, young .01.xx1101.1 225 * read-write, dirty, old .10.xx1110.1 226 * read-write, dirty, young .00.xx1111.1 227 * HW-bits: R read-only, I invalid 228 * SW-bits: p present, y young, d dirty, r read, w write, s special, 229 * u unused, l large 230 * 231 * pte_none is true for the bit pattern .10.00000000, pte == 0x400 232 * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200 233 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001 234 */ 235 236/* Bits in the segment/region table address-space-control-element */ 237#define _ASCE_ORIGIN ~0xfffUL/* region/segment table origin */ 238#define _ASCE_PRIVATE_SPACE 0x100 /* private space control */ 239#define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */ 240#define _ASCE_SPACE_SWITCH 0x40 /* space switch event */ 241#define _ASCE_REAL_SPACE 0x20 /* real space control */ 242#define _ASCE_TYPE_MASK 0x0c /* asce table type mask */ 243#define _ASCE_TYPE_REGION1 0x0c /* region first table type */ 244#define _ASCE_TYPE_REGION2 0x08 /* region second table type */ 245#define _ASCE_TYPE_REGION3 0x04 /* region third table type */ 246#define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */ 247#define _ASCE_TABLE_LENGTH 0x03 /* region table length */ 248 249/* Bits in the region table entry */ 250#define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */ 251#define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */ 252#define _REGION_ENTRY_NOEXEC 0x100 /* region no-execute bit */ 253#define _REGION_ENTRY_OFFSET 0xc0 /* region table offset */ 254#define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */ 255#define _REGION_ENTRY_TYPE_MASK 0x0c /* region table type mask */ 256#define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */ 257#define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */ 258#define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */ 259#define _REGION_ENTRY_LENGTH 0x03 /* region third length */ 260 261#define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH) 262#define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID) 263#define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH) 264#define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID) 265#define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH) 266#define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID) 267 268#define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address */ 269#define _REGION3_ENTRY_DIRTY 0x2000 /* SW region dirty bit */ 270#define _REGION3_ENTRY_YOUNG 0x1000 /* SW region young bit */ 271#define _REGION3_ENTRY_LARGE 0x0400 /* RTTE-format control, large page */ 272#define _REGION3_ENTRY_READ 0x0002 /* SW region read bit */ 273#define _REGION3_ENTRY_WRITE 0x0001 /* SW region write bit */ 274 275#ifdef CONFIG_MEM_SOFT_DIRTY 276#define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */ 277#else 278#define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */ 279#endif 280 281#define _REGION_ENTRY_BITS 0xfffffffffffff22fUL 282 283/* Bits in the segment table entry */ 284#define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL 285#define _SEGMENT_ENTRY_HARDWARE_BITS 0xfffffffffffffe30UL 286#define _SEGMENT_ENTRY_HARDWARE_BITS_LARGE 0xfffffffffff00730UL 287#define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */ 288#define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* page table origin */ 289#define _SEGMENT_ENTRY_PROTECT 0x200 /* segment protection bit */ 290#define _SEGMENT_ENTRY_NOEXEC 0x100 /* segment no-execute bit */ 291#define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */ 292#define _SEGMENT_ENTRY_TYPE_MASK 0x0c /* segment table type mask */ 293 294#define _SEGMENT_ENTRY (0) 295#define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID) 296 297#define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */ 298#define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */ 299#define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */ 300#define _SEGMENT_ENTRY_WRITE 0x0002 /* SW segment write bit */ 301#define _SEGMENT_ENTRY_READ 0x0001 /* SW segment read bit */ 302 303#ifdef CONFIG_MEM_SOFT_DIRTY 304#define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */ 305#else 306#define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */ 307#endif 308 309#define _CRST_ENTRIES 2048 /* number of region/segment table entries */ 310#define _PAGE_ENTRIES 256 /* number of page table entries */ 311 312#define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8) 313#define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8) 314 315#define _REGION1_SHIFT 53 316#define _REGION2_SHIFT 42 317#define _REGION3_SHIFT 31 318#define _SEGMENT_SHIFT 20 319 320#define _REGION1_INDEX (0x7ffUL << _REGION1_SHIFT) 321#define _REGION2_INDEX (0x7ffUL << _REGION2_SHIFT) 322#define _REGION3_INDEX (0x7ffUL << _REGION3_SHIFT) 323#define _SEGMENT_INDEX (0x7ffUL << _SEGMENT_SHIFT) 324#define _PAGE_INDEX (0xffUL << _PAGE_SHIFT) 325 326#define _REGION1_SIZE (1UL << _REGION1_SHIFT) 327#define _REGION2_SIZE (1UL << _REGION2_SHIFT) 328#define _REGION3_SIZE (1UL << _REGION3_SHIFT) 329#define _SEGMENT_SIZE (1UL << _SEGMENT_SHIFT) 330 331#define _REGION1_MASK (~(_REGION1_SIZE - 1)) 332#define _REGION2_MASK (~(_REGION2_SIZE - 1)) 333#define _REGION3_MASK (~(_REGION3_SIZE - 1)) 334#define _SEGMENT_MASK (~(_SEGMENT_SIZE - 1)) 335 336#define PMD_SHIFT _SEGMENT_SHIFT 337#define PUD_SHIFT _REGION3_SHIFT 338#define P4D_SHIFT _REGION2_SHIFT 339#define PGDIR_SHIFT _REGION1_SHIFT 340 341#define PMD_SIZE _SEGMENT_SIZE 342#define PUD_SIZE _REGION3_SIZE 343#define P4D_SIZE _REGION2_SIZE 344#define PGDIR_SIZE _REGION1_SIZE 345 346#define PMD_MASK _SEGMENT_MASK 347#define PUD_MASK _REGION3_MASK 348#define P4D_MASK _REGION2_MASK 349#define PGDIR_MASK _REGION1_MASK 350 351#define PTRS_PER_PTE _PAGE_ENTRIES 352#define PTRS_PER_PMD _CRST_ENTRIES 353#define PTRS_PER_PUD _CRST_ENTRIES 354#define PTRS_PER_P4D _CRST_ENTRIES 355#define PTRS_PER_PGD _CRST_ENTRIES 356 357/* 358 * Segment table and region3 table entry encoding 359 * (R = read-only, I = invalid, y = young bit): 360 * dy..R...I...wr 361 * prot-none, clean, old 00..1...1...00 362 * prot-none, clean, young 01..1...1...00 363 * prot-none, dirty, old 10..1...1...00 364 * prot-none, dirty, young 11..1...1...00 365 * read-only, clean, old 00..1...1...01 366 * read-only, clean, young 01..1...0...01 367 * read-only, dirty, old 10..1...1...01 368 * read-only, dirty, young 11..1...0...01 369 * read-write, clean, old 00..1...1...11 370 * read-write, clean, young 01..1...0...11 371 * read-write, dirty, old 10..0...1...11 372 * read-write, dirty, young 11..0...0...11 373 * The segment table origin is used to distinguish empty (origin==0) from 374 * read-write, old segment table entries (origin!=0) 375 * HW-bits: R read-only, I invalid 376 * SW-bits: y young, d dirty, r read, w write 377 */ 378 379/* Page status table bits for virtualization */ 380#define PGSTE_ACC_BITS 0xf000000000000000UL 381#define PGSTE_FP_BIT 0x0800000000000000UL 382#define PGSTE_PCL_BIT 0x0080000000000000UL 383#define PGSTE_HR_BIT 0x0040000000000000UL 384#define PGSTE_HC_BIT 0x0020000000000000UL 385#define PGSTE_GR_BIT 0x0004000000000000UL 386#define PGSTE_GC_BIT 0x0002000000000000UL 387#define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */ 388#define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */ 389#define PGSTE_VSIE_BIT 0x0000200000000000UL /* ref'd in a shadow table */ 390 391/* Guest Page State used for virtualization */ 392#define _PGSTE_GPS_ZERO 0x0000000080000000UL 393#define _PGSTE_GPS_NODAT 0x0000000040000000UL 394#define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL 395#define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL 396#define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL 397#define _PGSTE_GPS_USAGE_POT_VOLATILE 0x0000000002000000UL 398#define _PGSTE_GPS_USAGE_VOLATILE _PGSTE_GPS_USAGE_MASK 399 400/* 401 * A user page table pointer has the space-switch-event bit, the 402 * private-space-control bit and the storage-alteration-event-control 403 * bit set. A kernel page table pointer doesn't need them. 404 */ 405#define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \ 406 _ASCE_ALT_EVENT) 407 408/* 409 * Page protection definitions. 410 */ 411#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT) 412#define PAGE_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | \ 413 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT) 414#define PAGE_RX __pgprot(_PAGE_PRESENT | _PAGE_READ | \ 415 _PAGE_INVALID | _PAGE_PROTECT) 416#define PAGE_RW __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 417 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT) 418#define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 419 _PAGE_INVALID | _PAGE_PROTECT) 420 421#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 422 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC) 423#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 424 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC) 425#define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \ 426 _PAGE_PROTECT | _PAGE_NOEXEC) 427#define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \ 428 _PAGE_YOUNG | _PAGE_DIRTY) 429 430/* 431 * On s390 the page table entry has an invalid bit and a read-only bit. 432 * Read permission implies execute permission and write permission 433 * implies read permission. 434 */ 435 /*xwr*/ 436 437/* 438 * Segment entry (large page) protection definitions. 439 */ 440#define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \ 441 _SEGMENT_ENTRY_PROTECT) 442#define SEGMENT_RO __pgprot(_SEGMENT_ENTRY_PROTECT | \ 443 _SEGMENT_ENTRY_READ | \ 444 _SEGMENT_ENTRY_NOEXEC) 445#define SEGMENT_RX __pgprot(_SEGMENT_ENTRY_PROTECT | \ 446 _SEGMENT_ENTRY_READ) 447#define SEGMENT_RW __pgprot(_SEGMENT_ENTRY_READ | \ 448 _SEGMENT_ENTRY_WRITE | \ 449 _SEGMENT_ENTRY_NOEXEC) 450#define SEGMENT_RWX __pgprot(_SEGMENT_ENTRY_READ | \ 451 _SEGMENT_ENTRY_WRITE) 452#define SEGMENT_KERNEL __pgprot(_SEGMENT_ENTRY | \ 453 _SEGMENT_ENTRY_LARGE | \ 454 _SEGMENT_ENTRY_READ | \ 455 _SEGMENT_ENTRY_WRITE | \ 456 _SEGMENT_ENTRY_YOUNG | \ 457 _SEGMENT_ENTRY_DIRTY | \ 458 _SEGMENT_ENTRY_NOEXEC) 459#define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY | \ 460 _SEGMENT_ENTRY_LARGE | \ 461 _SEGMENT_ENTRY_READ | \ 462 _SEGMENT_ENTRY_YOUNG | \ 463 _SEGMENT_ENTRY_PROTECT | \ 464 _SEGMENT_ENTRY_NOEXEC) 465#define SEGMENT_KERNEL_EXEC __pgprot(_SEGMENT_ENTRY | \ 466 _SEGMENT_ENTRY_LARGE | \ 467 _SEGMENT_ENTRY_READ | \ 468 _SEGMENT_ENTRY_WRITE | \ 469 _SEGMENT_ENTRY_YOUNG | \ 470 _SEGMENT_ENTRY_DIRTY) 471 472/* 473 * Region3 entry (large page) protection definitions. 474 */ 475 476#define REGION3_KERNEL __pgprot(_REGION_ENTRY_TYPE_R3 | \ 477 _REGION3_ENTRY_LARGE | \ 478 _REGION3_ENTRY_READ | \ 479 _REGION3_ENTRY_WRITE | \ 480 _REGION3_ENTRY_YOUNG | \ 481 _REGION3_ENTRY_DIRTY | \ 482 _REGION_ENTRY_NOEXEC) 483#define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \ 484 _REGION3_ENTRY_LARGE | \ 485 _REGION3_ENTRY_READ | \ 486 _REGION3_ENTRY_YOUNG | \ 487 _REGION_ENTRY_PROTECT | \ 488 _REGION_ENTRY_NOEXEC) 489#define REGION3_KERNEL_EXEC __pgprot(_REGION_ENTRY_TYPE_R3 | \ 490 _REGION3_ENTRY_LARGE | \ 491 _REGION3_ENTRY_READ | \ 492 _REGION3_ENTRY_WRITE | \ 493 _REGION3_ENTRY_YOUNG | \ 494 _REGION3_ENTRY_DIRTY) 495 496static inline bool mm_p4d_folded(struct mm_struct *mm) 497{ 498 return mm->context.asce_limit <= _REGION1_SIZE; 499} 500#define mm_p4d_folded(mm) mm_p4d_folded(mm) 501 502static inline bool mm_pud_folded(struct mm_struct *mm) 503{ 504 return mm->context.asce_limit <= _REGION2_SIZE; 505} 506#define mm_pud_folded(mm) mm_pud_folded(mm) 507 508static inline bool mm_pmd_folded(struct mm_struct *mm) 509{ 510 return mm->context.asce_limit <= _REGION3_SIZE; 511} 512#define mm_pmd_folded(mm) mm_pmd_folded(mm) 513 514static inline int mm_has_pgste(struct mm_struct *mm) 515{ 516#ifdef CONFIG_PGSTE 517 if (unlikely(mm->context.has_pgste)) 518 return 1; 519#endif 520 return 0; 521} 522 523static inline int mm_is_protected(struct mm_struct *mm) 524{ 525#ifdef CONFIG_PGSTE 526 if (unlikely(atomic_read(&mm->context.protected_count))) 527 return 1; 528#endif 529 return 0; 530} 531 532static inline int mm_alloc_pgste(struct mm_struct *mm) 533{ 534#ifdef CONFIG_PGSTE 535 if (unlikely(mm->context.alloc_pgste)) 536 return 1; 537#endif 538 return 0; 539} 540 541static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot) 542{ 543 return __pte(pte_val(pte) & ~pgprot_val(prot)); 544} 545 546static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot) 547{ 548 return __pte(pte_val(pte) | pgprot_val(prot)); 549} 550 551static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot) 552{ 553 return __pmd(pmd_val(pmd) & ~pgprot_val(prot)); 554} 555 556static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot) 557{ 558 return __pmd(pmd_val(pmd) | pgprot_val(prot)); 559} 560 561static inline pud_t clear_pud_bit(pud_t pud, pgprot_t prot) 562{ 563 return __pud(pud_val(pud) & ~pgprot_val(prot)); 564} 565 566static inline pud_t set_pud_bit(pud_t pud, pgprot_t prot) 567{ 568 return __pud(pud_val(pud) | pgprot_val(prot)); 569} 570 571/* 572 * In the case that a guest uses storage keys 573 * faults should no longer be backed by zero pages 574 */ 575#define mm_forbids_zeropage mm_has_pgste 576static inline int mm_uses_skeys(struct mm_struct *mm) 577{ 578#ifdef CONFIG_PGSTE 579 if (mm->context.uses_skeys) 580 return 1; 581#endif 582 return 0; 583} 584 585static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new) 586{ 587 union register_pair r1 = { .even = old, .odd = new, }; 588 unsigned long address = (unsigned long)ptr | 1; 589 590 asm volatile( 591 " csp %[r1],%[address]" 592 : [r1] "+&d" (r1.pair), "+m" (*ptr) 593 : [address] "d" (address) 594 : "cc"); 595} 596 597static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new) 598{ 599 union register_pair r1 = { .even = old, .odd = new, }; 600 unsigned long address = (unsigned long)ptr | 1; 601 602 asm volatile( 603 " cspg %[r1],%[address]" 604 : [r1] "+&d" (r1.pair), "+m" (*ptr) 605 : [address] "d" (address) 606 : "cc"); 607} 608 609#define CRDTE_DTT_PAGE 0x00UL 610#define CRDTE_DTT_SEGMENT 0x10UL 611#define CRDTE_DTT_REGION3 0x14UL 612#define CRDTE_DTT_REGION2 0x18UL 613#define CRDTE_DTT_REGION1 0x1cUL 614 615static inline void crdte(unsigned long old, unsigned long new, 616 unsigned long *table, unsigned long dtt, 617 unsigned long address, unsigned long asce) 618{ 619 union register_pair r1 = { .even = old, .odd = new, }; 620 union register_pair r2 = { .even = __pa(table) | dtt, .odd = address, }; 621 622 asm volatile(".insn rrf,0xb98f0000,%[r1],%[r2],%[asce],0" 623 : [r1] "+&d" (r1.pair) 624 : [r2] "d" (r2.pair), [asce] "a" (asce) 625 : "memory", "cc"); 626} 627 628/* 629 * pgd/p4d/pud/pmd/pte query functions 630 */ 631static inline int pgd_folded(pgd_t pgd) 632{ 633 return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1; 634} 635 636static inline int pgd_present(pgd_t pgd) 637{ 638 if (pgd_folded(pgd)) 639 return 1; 640 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL; 641} 642 643static inline int pgd_none(pgd_t pgd) 644{ 645 if (pgd_folded(pgd)) 646 return 0; 647 return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL; 648} 649 650static inline int pgd_bad(pgd_t pgd) 651{ 652 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1) 653 return 0; 654 return (pgd_val(pgd) & ~_REGION_ENTRY_BITS) != 0; 655} 656 657static inline unsigned long pgd_pfn(pgd_t pgd) 658{ 659 unsigned long origin_mask; 660 661 origin_mask = _REGION_ENTRY_ORIGIN; 662 return (pgd_val(pgd) & origin_mask) >> PAGE_SHIFT; 663} 664 665static inline int p4d_folded(p4d_t p4d) 666{ 667 return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2; 668} 669 670static inline int p4d_present(p4d_t p4d) 671{ 672 if (p4d_folded(p4d)) 673 return 1; 674 return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL; 675} 676 677static inline int p4d_none(p4d_t p4d) 678{ 679 if (p4d_folded(p4d)) 680 return 0; 681 return p4d_val(p4d) == _REGION2_ENTRY_EMPTY; 682} 683 684static inline unsigned long p4d_pfn(p4d_t p4d) 685{ 686 unsigned long origin_mask; 687 688 origin_mask = _REGION_ENTRY_ORIGIN; 689 return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT; 690} 691 692static inline int pud_folded(pud_t pud) 693{ 694 return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3; 695} 696 697static inline int pud_present(pud_t pud) 698{ 699 if (pud_folded(pud)) 700 return 1; 701 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL; 702} 703 704static inline int pud_none(pud_t pud) 705{ 706 if (pud_folded(pud)) 707 return 0; 708 return pud_val(pud) == _REGION3_ENTRY_EMPTY; 709} 710 711#define pud_leaf pud_large 712static inline int pud_large(pud_t pud) 713{ 714 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3) 715 return 0; 716 return !!(pud_val(pud) & _REGION3_ENTRY_LARGE); 717} 718 719#define pmd_leaf pmd_large 720static inline int pmd_large(pmd_t pmd) 721{ 722 return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0; 723} 724 725static inline int pmd_bad(pmd_t pmd) 726{ 727 if ((pmd_val(pmd) & _SEGMENT_ENTRY_TYPE_MASK) > 0 || pmd_large(pmd)) 728 return 1; 729 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0; 730} 731 732static inline int pud_bad(pud_t pud) 733{ 734 unsigned long type = pud_val(pud) & _REGION_ENTRY_TYPE_MASK; 735 736 if (type > _REGION_ENTRY_TYPE_R3 || pud_large(pud)) 737 return 1; 738 if (type < _REGION_ENTRY_TYPE_R3) 739 return 0; 740 return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0; 741} 742 743static inline int p4d_bad(p4d_t p4d) 744{ 745 unsigned long type = p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK; 746 747 if (type > _REGION_ENTRY_TYPE_R2) 748 return 1; 749 if (type < _REGION_ENTRY_TYPE_R2) 750 return 0; 751 return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0; 752} 753 754static inline int pmd_present(pmd_t pmd) 755{ 756 return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY; 757} 758 759static inline int pmd_none(pmd_t pmd) 760{ 761 return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY; 762} 763 764#define pmd_write pmd_write 765static inline int pmd_write(pmd_t pmd) 766{ 767 return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0; 768} 769 770#define pud_write pud_write 771static inline int pud_write(pud_t pud) 772{ 773 return (pud_val(pud) & _REGION3_ENTRY_WRITE) != 0; 774} 775 776static inline int pmd_dirty(pmd_t pmd) 777{ 778 return (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0; 779} 780 781#define pmd_young pmd_young 782static inline int pmd_young(pmd_t pmd) 783{ 784 return (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0; 785} 786 787static inline int pte_present(pte_t pte) 788{ 789 /* Bit pattern: (pte & 0x001) == 0x001 */ 790 return (pte_val(pte) & _PAGE_PRESENT) != 0; 791} 792 793static inline int pte_none(pte_t pte) 794{ 795 /* Bit pattern: pte == 0x400 */ 796 return pte_val(pte) == _PAGE_INVALID; 797} 798 799static inline int pte_swap(pte_t pte) 800{ 801 /* Bit pattern: (pte & 0x201) == 0x200 */ 802 return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT)) 803 == _PAGE_PROTECT; 804} 805 806static inline int pte_special(pte_t pte) 807{ 808 return (pte_val(pte) & _PAGE_SPECIAL); 809} 810 811#define __HAVE_ARCH_PTE_SAME 812static inline int pte_same(pte_t a, pte_t b) 813{ 814 return pte_val(a) == pte_val(b); 815} 816 817#ifdef CONFIG_NUMA_BALANCING 818static inline int pte_protnone(pte_t pte) 819{ 820 return pte_present(pte) && !(pte_val(pte) & _PAGE_READ); 821} 822 823static inline int pmd_protnone(pmd_t pmd) 824{ 825 /* pmd_large(pmd) implies pmd_present(pmd) */ 826 return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ); 827} 828#endif 829 830static inline int pte_swp_exclusive(pte_t pte) 831{ 832 return pte_val(pte) & _PAGE_SWP_EXCLUSIVE; 833} 834 835static inline pte_t pte_swp_mkexclusive(pte_t pte) 836{ 837 return set_pte_bit(pte, __pgprot(_PAGE_SWP_EXCLUSIVE)); 838} 839 840static inline pte_t pte_swp_clear_exclusive(pte_t pte) 841{ 842 return clear_pte_bit(pte, __pgprot(_PAGE_SWP_EXCLUSIVE)); 843} 844 845static inline int pte_soft_dirty(pte_t pte) 846{ 847 return pte_val(pte) & _PAGE_SOFT_DIRTY; 848} 849#define pte_swp_soft_dirty pte_soft_dirty 850 851static inline pte_t pte_mksoft_dirty(pte_t pte) 852{ 853 return set_pte_bit(pte, __pgprot(_PAGE_SOFT_DIRTY)); 854} 855#define pte_swp_mksoft_dirty pte_mksoft_dirty 856 857static inline pte_t pte_clear_soft_dirty(pte_t pte) 858{ 859 return clear_pte_bit(pte, __pgprot(_PAGE_SOFT_DIRTY)); 860} 861#define pte_swp_clear_soft_dirty pte_clear_soft_dirty 862 863static inline int pmd_soft_dirty(pmd_t pmd) 864{ 865 return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY; 866} 867 868static inline pmd_t pmd_mksoft_dirty(pmd_t pmd) 869{ 870 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_SOFT_DIRTY)); 871} 872 873static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd) 874{ 875 return clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_SOFT_DIRTY)); 876} 877 878/* 879 * query functions pte_write/pte_dirty/pte_young only work if 880 * pte_present() is true. Undefined behaviour if not.. 881 */ 882static inline int pte_write(pte_t pte) 883{ 884 return (pte_val(pte) & _PAGE_WRITE) != 0; 885} 886 887static inline int pte_dirty(pte_t pte) 888{ 889 return (pte_val(pte) & _PAGE_DIRTY) != 0; 890} 891 892static inline int pte_young(pte_t pte) 893{ 894 return (pte_val(pte) & _PAGE_YOUNG) != 0; 895} 896 897#define __HAVE_ARCH_PTE_UNUSED 898static inline int pte_unused(pte_t pte) 899{ 900 return pte_val(pte) & _PAGE_UNUSED; 901} 902 903/* 904 * Extract the pgprot value from the given pte while at the same time making it 905 * usable for kernel address space mappings where fault driven dirty and 906 * young/old accounting is not supported, i.e _PAGE_PROTECT and _PAGE_INVALID 907 * must not be set. 908 */ 909static inline pgprot_t pte_pgprot(pte_t pte) 910{ 911 unsigned long pte_flags = pte_val(pte) & _PAGE_CHG_MASK; 912 913 if (pte_write(pte)) 914 pte_flags |= pgprot_val(PAGE_KERNEL); 915 else 916 pte_flags |= pgprot_val(PAGE_KERNEL_RO); 917 pte_flags |= pte_val(pte) & mio_wb_bit_mask; 918 919 return __pgprot(pte_flags); 920} 921 922/* 923 * pgd/pmd/pte modification functions 924 */ 925 926static inline void set_pgd(pgd_t *pgdp, pgd_t pgd) 927{ 928 WRITE_ONCE(*pgdp, pgd); 929} 930 931static inline void set_p4d(p4d_t *p4dp, p4d_t p4d) 932{ 933 WRITE_ONCE(*p4dp, p4d); 934} 935 936static inline void set_pud(pud_t *pudp, pud_t pud) 937{ 938 WRITE_ONCE(*pudp, pud); 939} 940 941static inline void set_pmd(pmd_t *pmdp, pmd_t pmd) 942{ 943 WRITE_ONCE(*pmdp, pmd); 944} 945 946static inline void set_pte(pte_t *ptep, pte_t pte) 947{ 948 WRITE_ONCE(*ptep, pte); 949} 950 951static inline void pgd_clear(pgd_t *pgd) 952{ 953 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1) 954 set_pgd(pgd, __pgd(_REGION1_ENTRY_EMPTY)); 955} 956 957static inline void p4d_clear(p4d_t *p4d) 958{ 959 if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2) 960 set_p4d(p4d, __p4d(_REGION2_ENTRY_EMPTY)); 961} 962 963static inline void pud_clear(pud_t *pud) 964{ 965 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3) 966 set_pud(pud, __pud(_REGION3_ENTRY_EMPTY)); 967} 968 969static inline void pmd_clear(pmd_t *pmdp) 970{ 971 set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY)); 972} 973 974static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 975{ 976 set_pte(ptep, __pte(_PAGE_INVALID)); 977} 978 979/* 980 * The following pte modification functions only work if 981 * pte_present() is true. Undefined behaviour if not.. 982 */ 983static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 984{ 985 pte = clear_pte_bit(pte, __pgprot(~_PAGE_CHG_MASK)); 986 pte = set_pte_bit(pte, newprot); 987 /* 988 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX 989 * has the invalid bit set, clear it again for readable, young pages 990 */ 991 if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ)) 992 pte = clear_pte_bit(pte, __pgprot(_PAGE_INVALID)); 993 /* 994 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page 995 * protection bit set, clear it again for writable, dirty pages 996 */ 997 if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE)) 998 pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT)); 999 return pte; 1000} 1001 1002static inline pte_t pte_wrprotect(pte_t pte) 1003{ 1004 pte = clear_pte_bit(pte, __pgprot(_PAGE_WRITE)); 1005 return set_pte_bit(pte, __pgprot(_PAGE_PROTECT)); 1006} 1007 1008static inline pte_t pte_mkwrite(pte_t pte) 1009{ 1010 pte = set_pte_bit(pte, __pgprot(_PAGE_WRITE)); 1011 if (pte_val(pte) & _PAGE_DIRTY) 1012 pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT)); 1013 return pte; 1014} 1015 1016static inline pte_t pte_mkclean(pte_t pte) 1017{ 1018 pte = clear_pte_bit(pte, __pgprot(_PAGE_DIRTY)); 1019 return set_pte_bit(pte, __pgprot(_PAGE_PROTECT)); 1020} 1021 1022static inline pte_t pte_mkdirty(pte_t pte) 1023{ 1024 pte = set_pte_bit(pte, __pgprot(_PAGE_DIRTY | _PAGE_SOFT_DIRTY)); 1025 if (pte_val(pte) & _PAGE_WRITE) 1026 pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT)); 1027 return pte; 1028} 1029 1030static inline pte_t pte_mkold(pte_t pte) 1031{ 1032 pte = clear_pte_bit(pte, __pgprot(_PAGE_YOUNG)); 1033 return set_pte_bit(pte, __pgprot(_PAGE_INVALID)); 1034} 1035 1036static inline pte_t pte_mkyoung(pte_t pte) 1037{ 1038 pte = set_pte_bit(pte, __pgprot(_PAGE_YOUNG)); 1039 if (pte_val(pte) & _PAGE_READ) 1040 pte = clear_pte_bit(pte, __pgprot(_PAGE_INVALID)); 1041 return pte; 1042} 1043 1044static inline pte_t pte_mkspecial(pte_t pte) 1045{ 1046 return set_pte_bit(pte, __pgprot(_PAGE_SPECIAL)); 1047} 1048 1049#ifdef CONFIG_HUGETLB_PAGE 1050static inline pte_t pte_mkhuge(pte_t pte) 1051{ 1052 return set_pte_bit(pte, __pgprot(_PAGE_LARGE)); 1053} 1054#endif 1055 1056#define IPTE_GLOBAL 0 1057#define IPTE_LOCAL 1 1058 1059#define IPTE_NODAT 0x400 1060#define IPTE_GUEST_ASCE 0x800 1061 1062static __always_inline void __ptep_rdp(unsigned long addr, pte_t *ptep, 1063 unsigned long opt, unsigned long asce, 1064 int local) 1065{ 1066 unsigned long pto; 1067 1068 pto = __pa(ptep) & ~(PTRS_PER_PTE * sizeof(pte_t) - 1); 1069 asm volatile(".insn rrf,0xb98b0000,%[r1],%[r2],%[asce],%[m4]" 1070 : "+m" (*ptep) 1071 : [r1] "a" (pto), [r2] "a" ((addr & PAGE_MASK) | opt), 1072 [asce] "a" (asce), [m4] "i" (local)); 1073} 1074 1075static __always_inline void __ptep_ipte(unsigned long address, pte_t *ptep, 1076 unsigned long opt, unsigned long asce, 1077 int local) 1078{ 1079 unsigned long pto = __pa(ptep); 1080 1081 if (__builtin_constant_p(opt) && opt == 0) { 1082 /* Invalidation + TLB flush for the pte */ 1083 asm volatile( 1084 " ipte %[r1],%[r2],0,%[m4]" 1085 : "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address), 1086 [m4] "i" (local)); 1087 return; 1088 } 1089 1090 /* Invalidate ptes with options + TLB flush of the ptes */ 1091 opt = opt | (asce & _ASCE_ORIGIN); 1092 asm volatile( 1093 " ipte %[r1],%[r2],%[r3],%[m4]" 1094 : [r2] "+a" (address), [r3] "+a" (opt) 1095 : [r1] "a" (pto), [m4] "i" (local) : "memory"); 1096} 1097 1098static __always_inline void __ptep_ipte_range(unsigned long address, int nr, 1099 pte_t *ptep, int local) 1100{ 1101 unsigned long pto = __pa(ptep); 1102 1103 /* Invalidate a range of ptes + TLB flush of the ptes */ 1104 do { 1105 asm volatile( 1106 " ipte %[r1],%[r2],%[r3],%[m4]" 1107 : [r2] "+a" (address), [r3] "+a" (nr) 1108 : [r1] "a" (pto), [m4] "i" (local) : "memory"); 1109 } while (nr != 255); 1110} 1111 1112/* 1113 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush 1114 * both clear the TLB for the unmapped pte. The reason is that 1115 * ptep_get_and_clear is used in common code (e.g. change_pte_range) 1116 * to modify an active pte. The sequence is 1117 * 1) ptep_get_and_clear 1118 * 2) set_pte_at 1119 * 3) flush_tlb_range 1120 * On s390 the tlb needs to get flushed with the modification of the pte 1121 * if the pte is active. The only way how this can be implemented is to 1122 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range 1123 * is a nop. 1124 */ 1125pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t); 1126pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t); 1127 1128#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 1129static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 1130 unsigned long addr, pte_t *ptep) 1131{ 1132 pte_t pte = *ptep; 1133 1134 pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte)); 1135 return pte_young(pte); 1136} 1137 1138#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 1139static inline int ptep_clear_flush_young(struct vm_area_struct *vma, 1140 unsigned long address, pte_t *ptep) 1141{ 1142 return ptep_test_and_clear_young(vma, address, ptep); 1143} 1144 1145#define __HAVE_ARCH_PTEP_GET_AND_CLEAR 1146static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 1147 unsigned long addr, pte_t *ptep) 1148{ 1149 pte_t res; 1150 1151 res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID)); 1152 /* At this point the reference through the mapping is still present */ 1153 if (mm_is_protected(mm) && pte_present(res)) 1154 uv_convert_owned_from_secure(pte_val(res) & PAGE_MASK); 1155 return res; 1156} 1157 1158#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION 1159pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *); 1160void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long, 1161 pte_t *, pte_t, pte_t); 1162 1163#define __HAVE_ARCH_PTEP_CLEAR_FLUSH 1164static inline pte_t ptep_clear_flush(struct vm_area_struct *vma, 1165 unsigned long addr, pte_t *ptep) 1166{ 1167 pte_t res; 1168 1169 res = ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID)); 1170 /* At this point the reference through the mapping is still present */ 1171 if (mm_is_protected(vma->vm_mm) && pte_present(res)) 1172 uv_convert_owned_from_secure(pte_val(res) & PAGE_MASK); 1173 return res; 1174} 1175 1176/* 1177 * The batched pte unmap code uses ptep_get_and_clear_full to clear the 1178 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all 1179 * tlbs of an mm if it can guarantee that the ptes of the mm_struct 1180 * cannot be accessed while the batched unmap is running. In this case 1181 * full==1 and a simple pte_clear is enough. See tlb.h. 1182 */ 1183#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL 1184static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm, 1185 unsigned long addr, 1186 pte_t *ptep, int full) 1187{ 1188 pte_t res; 1189 1190 if (full) { 1191 res = *ptep; 1192 set_pte(ptep, __pte(_PAGE_INVALID)); 1193 } else { 1194 res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID)); 1195 } 1196 /* Nothing to do */ 1197 if (!mm_is_protected(mm) || !pte_present(res)) 1198 return res; 1199 /* 1200 * At this point the reference through the mapping is still present. 1201 * The notifier should have destroyed all protected vCPUs at this 1202 * point, so the destroy should be successful. 1203 */ 1204 if (full && !uv_destroy_owned_page(pte_val(res) & PAGE_MASK)) 1205 return res; 1206 /* 1207 * If something went wrong and the page could not be destroyed, or 1208 * if this is not a mm teardown, the slower export is used as 1209 * fallback instead. 1210 */ 1211 uv_convert_owned_from_secure(pte_val(res) & PAGE_MASK); 1212 return res; 1213} 1214 1215#define __HAVE_ARCH_PTEP_SET_WRPROTECT 1216static inline void ptep_set_wrprotect(struct mm_struct *mm, 1217 unsigned long addr, pte_t *ptep) 1218{ 1219 pte_t pte = *ptep; 1220 1221 if (pte_write(pte)) 1222 ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte)); 1223} 1224 1225/* 1226 * Check if PTEs only differ in _PAGE_PROTECT HW bit, but also allow SW PTE 1227 * bits in the comparison. Those might change e.g. because of dirty and young 1228 * tracking. 1229 */ 1230static inline int pte_allow_rdp(pte_t old, pte_t new) 1231{ 1232 /* 1233 * Only allow changes from RO to RW 1234 */ 1235 if (!(pte_val(old) & _PAGE_PROTECT) || pte_val(new) & _PAGE_PROTECT) 1236 return 0; 1237 1238 return (pte_val(old) & _PAGE_RDP_MASK) == (pte_val(new) & _PAGE_RDP_MASK); 1239} 1240 1241static inline void flush_tlb_fix_spurious_fault(struct vm_area_struct *vma, 1242 unsigned long address, 1243 pte_t *ptep) 1244{ 1245 /* 1246 * RDP might not have propagated the PTE protection reset to all CPUs, 1247 * so there could be spurious TLB protection faults. 1248 * NOTE: This will also be called when a racing pagetable update on 1249 * another thread already installed the correct PTE. Both cases cannot 1250 * really be distinguished. 1251 * Therefore, only do the local TLB flush when RDP can be used, and the 1252 * PTE does not have _PAGE_PROTECT set, to avoid unnecessary overhead. 1253 * A local RDP can be used to do the flush. 1254 */ 1255 if (MACHINE_HAS_RDP && !(pte_val(*ptep) & _PAGE_PROTECT)) 1256 __ptep_rdp(address, ptep, 0, 0, 1); 1257} 1258#define flush_tlb_fix_spurious_fault flush_tlb_fix_spurious_fault 1259 1260void ptep_reset_dat_prot(struct mm_struct *mm, unsigned long addr, pte_t *ptep, 1261 pte_t new); 1262 1263#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 1264static inline int ptep_set_access_flags(struct vm_area_struct *vma, 1265 unsigned long addr, pte_t *ptep, 1266 pte_t entry, int dirty) 1267{ 1268 if (pte_same(*ptep, entry)) 1269 return 0; 1270 if (MACHINE_HAS_RDP && !mm_has_pgste(vma->vm_mm) && pte_allow_rdp(*ptep, entry)) 1271 ptep_reset_dat_prot(vma->vm_mm, addr, ptep, entry); 1272 else 1273 ptep_xchg_direct(vma->vm_mm, addr, ptep, entry); 1274 return 1; 1275} 1276 1277/* 1278 * Additional functions to handle KVM guest page tables 1279 */ 1280void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr, 1281 pte_t *ptep, pte_t entry); 1282void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep); 1283void ptep_notify(struct mm_struct *mm, unsigned long addr, 1284 pte_t *ptep, unsigned long bits); 1285int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr, 1286 pte_t *ptep, int prot, unsigned long bit); 1287void ptep_zap_unused(struct mm_struct *mm, unsigned long addr, 1288 pte_t *ptep , int reset); 1289void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep); 1290int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr, 1291 pte_t *sptep, pte_t *tptep, pte_t pte); 1292void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep); 1293 1294bool ptep_test_and_clear_uc(struct mm_struct *mm, unsigned long address, 1295 pte_t *ptep); 1296int set_guest_storage_key(struct mm_struct *mm, unsigned long addr, 1297 unsigned char key, bool nq); 1298int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr, 1299 unsigned char key, unsigned char *oldkey, 1300 bool nq, bool mr, bool mc); 1301int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr); 1302int get_guest_storage_key(struct mm_struct *mm, unsigned long addr, 1303 unsigned char *key); 1304 1305int set_pgste_bits(struct mm_struct *mm, unsigned long addr, 1306 unsigned long bits, unsigned long value); 1307int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep); 1308int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc, 1309 unsigned long *oldpte, unsigned long *oldpgste); 1310void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr); 1311void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr); 1312void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr); 1313void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr); 1314 1315#define pgprot_writecombine pgprot_writecombine 1316pgprot_t pgprot_writecombine(pgprot_t prot); 1317 1318#define pgprot_writethrough pgprot_writethrough 1319pgprot_t pgprot_writethrough(pgprot_t prot); 1320 1321/* 1322 * Certain architectures need to do special things when PTEs 1323 * within a page table are directly modified. Thus, the following 1324 * hook is made available. 1325 */ 1326static inline void set_pte_at(struct mm_struct *mm, unsigned long addr, 1327 pte_t *ptep, pte_t entry) 1328{ 1329 if (pte_present(entry)) 1330 entry = clear_pte_bit(entry, __pgprot(_PAGE_UNUSED)); 1331 if (mm_has_pgste(mm)) 1332 ptep_set_pte_at(mm, addr, ptep, entry); 1333 else 1334 set_pte(ptep, entry); 1335} 1336 1337/* 1338 * Conversion functions: convert a page and protection to a page entry, 1339 * and a page entry and page directory to the page they refer to. 1340 */ 1341static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot) 1342{ 1343 pte_t __pte; 1344 1345 __pte = __pte(physpage | pgprot_val(pgprot)); 1346 if (!MACHINE_HAS_NX) 1347 __pte = clear_pte_bit(__pte, __pgprot(_PAGE_NOEXEC)); 1348 return pte_mkyoung(__pte); 1349} 1350 1351static inline pte_t mk_pte(struct page *page, pgprot_t pgprot) 1352{ 1353 unsigned long physpage = page_to_phys(page); 1354 pte_t __pte = mk_pte_phys(physpage, pgprot); 1355 1356 if (pte_write(__pte) && PageDirty(page)) 1357 __pte = pte_mkdirty(__pte); 1358 return __pte; 1359} 1360 1361#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1)) 1362#define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1)) 1363#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1)) 1364#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1)) 1365 1366#define p4d_deref(pud) ((unsigned long)__va(p4d_val(pud) & _REGION_ENTRY_ORIGIN)) 1367#define pgd_deref(pgd) ((unsigned long)__va(pgd_val(pgd) & _REGION_ENTRY_ORIGIN)) 1368 1369static inline unsigned long pmd_deref(pmd_t pmd) 1370{ 1371 unsigned long origin_mask; 1372 1373 origin_mask = _SEGMENT_ENTRY_ORIGIN; 1374 if (pmd_large(pmd)) 1375 origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE; 1376 return (unsigned long)__va(pmd_val(pmd) & origin_mask); 1377} 1378 1379static inline unsigned long pmd_pfn(pmd_t pmd) 1380{ 1381 return __pa(pmd_deref(pmd)) >> PAGE_SHIFT; 1382} 1383 1384static inline unsigned long pud_deref(pud_t pud) 1385{ 1386 unsigned long origin_mask; 1387 1388 origin_mask = _REGION_ENTRY_ORIGIN; 1389 if (pud_large(pud)) 1390 origin_mask = _REGION3_ENTRY_ORIGIN_LARGE; 1391 return (unsigned long)__va(pud_val(pud) & origin_mask); 1392} 1393 1394static inline unsigned long pud_pfn(pud_t pud) 1395{ 1396 return __pa(pud_deref(pud)) >> PAGE_SHIFT; 1397} 1398 1399/* 1400 * The pgd_offset function *always* adds the index for the top-level 1401 * region/segment table. This is done to get a sequence like the 1402 * following to work: 1403 * pgdp = pgd_offset(current->mm, addr); 1404 * pgd = READ_ONCE(*pgdp); 1405 * p4dp = p4d_offset(&pgd, addr); 1406 * ... 1407 * The subsequent p4d_offset, pud_offset and pmd_offset functions 1408 * only add an index if they dereferenced the pointer. 1409 */ 1410static inline pgd_t *pgd_offset_raw(pgd_t *pgd, unsigned long address) 1411{ 1412 unsigned long rste; 1413 unsigned int shift; 1414 1415 /* Get the first entry of the top level table */ 1416 rste = pgd_val(*pgd); 1417 /* Pick up the shift from the table type of the first entry */ 1418 shift = ((rste & _REGION_ENTRY_TYPE_MASK) >> 2) * 11 + 20; 1419 return pgd + ((address >> shift) & (PTRS_PER_PGD - 1)); 1420} 1421 1422#define pgd_offset(mm, address) pgd_offset_raw(READ_ONCE((mm)->pgd), address) 1423 1424static inline p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long address) 1425{ 1426 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R1) 1427 return (p4d_t *) pgd_deref(pgd) + p4d_index(address); 1428 return (p4d_t *) pgdp; 1429} 1430#define p4d_offset_lockless p4d_offset_lockless 1431 1432static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long address) 1433{ 1434 return p4d_offset_lockless(pgdp, *pgdp, address); 1435} 1436 1437static inline pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long address) 1438{ 1439 if ((p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R2) 1440 return (pud_t *) p4d_deref(p4d) + pud_index(address); 1441 return (pud_t *) p4dp; 1442} 1443#define pud_offset_lockless pud_offset_lockless 1444 1445static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long address) 1446{ 1447 return pud_offset_lockless(p4dp, *p4dp, address); 1448} 1449#define pud_offset pud_offset 1450 1451static inline pmd_t *pmd_offset_lockless(pud_t *pudp, pud_t pud, unsigned long address) 1452{ 1453 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R3) 1454 return (pmd_t *) pud_deref(pud) + pmd_index(address); 1455 return (pmd_t *) pudp; 1456} 1457#define pmd_offset_lockless pmd_offset_lockless 1458 1459static inline pmd_t *pmd_offset(pud_t *pudp, unsigned long address) 1460{ 1461 return pmd_offset_lockless(pudp, *pudp, address); 1462} 1463#define pmd_offset pmd_offset 1464 1465static inline unsigned long pmd_page_vaddr(pmd_t pmd) 1466{ 1467 return (unsigned long) pmd_deref(pmd); 1468} 1469 1470static inline bool gup_fast_permitted(unsigned long start, unsigned long end) 1471{ 1472 return end <= current->mm->context.asce_limit; 1473} 1474#define gup_fast_permitted gup_fast_permitted 1475 1476#define pfn_pte(pfn, pgprot) mk_pte_phys(((pfn) << PAGE_SHIFT), (pgprot)) 1477#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT) 1478#define pte_page(x) pfn_to_page(pte_pfn(x)) 1479 1480#define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd)) 1481#define pud_page(pud) pfn_to_page(pud_pfn(pud)) 1482#define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d)) 1483#define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd)) 1484 1485static inline pmd_t pmd_wrprotect(pmd_t pmd) 1486{ 1487 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_WRITE)); 1488 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT)); 1489} 1490 1491static inline pmd_t pmd_mkwrite(pmd_t pmd) 1492{ 1493 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_WRITE)); 1494 if (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) 1495 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT)); 1496 return pmd; 1497} 1498 1499static inline pmd_t pmd_mkclean(pmd_t pmd) 1500{ 1501 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_DIRTY)); 1502 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT)); 1503} 1504 1505static inline pmd_t pmd_mkdirty(pmd_t pmd) 1506{ 1507 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_SOFT_DIRTY)); 1508 if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) 1509 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT)); 1510 return pmd; 1511} 1512 1513static inline pud_t pud_wrprotect(pud_t pud) 1514{ 1515 pud = clear_pud_bit(pud, __pgprot(_REGION3_ENTRY_WRITE)); 1516 return set_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT)); 1517} 1518 1519static inline pud_t pud_mkwrite(pud_t pud) 1520{ 1521 pud = set_pud_bit(pud, __pgprot(_REGION3_ENTRY_WRITE)); 1522 if (pud_val(pud) & _REGION3_ENTRY_DIRTY) 1523 pud = clear_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT)); 1524 return pud; 1525} 1526 1527static inline pud_t pud_mkclean(pud_t pud) 1528{ 1529 pud = clear_pud_bit(pud, __pgprot(_REGION3_ENTRY_DIRTY)); 1530 return set_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT)); 1531} 1532 1533static inline pud_t pud_mkdirty(pud_t pud) 1534{ 1535 pud = set_pud_bit(pud, __pgprot(_REGION3_ENTRY_DIRTY | _REGION3_ENTRY_SOFT_DIRTY)); 1536 if (pud_val(pud) & _REGION3_ENTRY_WRITE) 1537 pud = clear_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT)); 1538 return pud; 1539} 1540 1541#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE) 1542static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot) 1543{ 1544 /* 1545 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX 1546 * (see __Pxxx / __Sxxx). Convert to segment table entry format. 1547 */ 1548 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE)) 1549 return pgprot_val(SEGMENT_NONE); 1550 if (pgprot_val(pgprot) == pgprot_val(PAGE_RO)) 1551 return pgprot_val(SEGMENT_RO); 1552 if (pgprot_val(pgprot) == pgprot_val(PAGE_RX)) 1553 return pgprot_val(SEGMENT_RX); 1554 if (pgprot_val(pgprot) == pgprot_val(PAGE_RW)) 1555 return pgprot_val(SEGMENT_RW); 1556 return pgprot_val(SEGMENT_RWX); 1557} 1558 1559static inline pmd_t pmd_mkyoung(pmd_t pmd) 1560{ 1561 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG)); 1562 if (pmd_val(pmd) & _SEGMENT_ENTRY_READ) 1563 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID)); 1564 return pmd; 1565} 1566 1567static inline pmd_t pmd_mkold(pmd_t pmd) 1568{ 1569 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG)); 1570 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID)); 1571} 1572 1573static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) 1574{ 1575 unsigned long mask; 1576 1577 mask = _SEGMENT_ENTRY_ORIGIN_LARGE; 1578 mask |= _SEGMENT_ENTRY_DIRTY; 1579 mask |= _SEGMENT_ENTRY_YOUNG; 1580 mask |= _SEGMENT_ENTRY_LARGE; 1581 mask |= _SEGMENT_ENTRY_SOFT_DIRTY; 1582 pmd = __pmd(pmd_val(pmd) & mask); 1583 pmd = set_pmd_bit(pmd, __pgprot(massage_pgprot_pmd(newprot))); 1584 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY)) 1585 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT)); 1586 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG)) 1587 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID)); 1588 return pmd; 1589} 1590 1591static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot) 1592{ 1593 return __pmd(physpage + massage_pgprot_pmd(pgprot)); 1594} 1595 1596#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */ 1597 1598static inline void __pmdp_csp(pmd_t *pmdp) 1599{ 1600 csp((unsigned int *)pmdp + 1, pmd_val(*pmdp), 1601 pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID); 1602} 1603 1604#define IDTE_GLOBAL 0 1605#define IDTE_LOCAL 1 1606 1607#define IDTE_PTOA 0x0800 1608#define IDTE_NODAT 0x1000 1609#define IDTE_GUEST_ASCE 0x2000 1610 1611static __always_inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp, 1612 unsigned long opt, unsigned long asce, 1613 int local) 1614{ 1615 unsigned long sto; 1616 1617 sto = __pa(pmdp) - pmd_index(addr) * sizeof(pmd_t); 1618 if (__builtin_constant_p(opt) && opt == 0) { 1619 /* flush without guest asce */ 1620 asm volatile( 1621 " idte %[r1],0,%[r2],%[m4]" 1622 : "+m" (*pmdp) 1623 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)), 1624 [m4] "i" (local) 1625 : "cc" ); 1626 } else { 1627 /* flush with guest asce */ 1628 asm volatile( 1629 " idte %[r1],%[r3],%[r2],%[m4]" 1630 : "+m" (*pmdp) 1631 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt), 1632 [r3] "a" (asce), [m4] "i" (local) 1633 : "cc" ); 1634 } 1635} 1636 1637static __always_inline void __pudp_idte(unsigned long addr, pud_t *pudp, 1638 unsigned long opt, unsigned long asce, 1639 int local) 1640{ 1641 unsigned long r3o; 1642 1643 r3o = __pa(pudp) - pud_index(addr) * sizeof(pud_t); 1644 r3o |= _ASCE_TYPE_REGION3; 1645 if (__builtin_constant_p(opt) && opt == 0) { 1646 /* flush without guest asce */ 1647 asm volatile( 1648 " idte %[r1],0,%[r2],%[m4]" 1649 : "+m" (*pudp) 1650 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)), 1651 [m4] "i" (local) 1652 : "cc"); 1653 } else { 1654 /* flush with guest asce */ 1655 asm volatile( 1656 " idte %[r1],%[r3],%[r2],%[m4]" 1657 : "+m" (*pudp) 1658 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt), 1659 [r3] "a" (asce), [m4] "i" (local) 1660 : "cc" ); 1661 } 1662} 1663 1664pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t); 1665pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t); 1666pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t); 1667 1668#ifdef CONFIG_TRANSPARENT_HUGEPAGE 1669 1670#define __HAVE_ARCH_PGTABLE_DEPOSIT 1671void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp, 1672 pgtable_t pgtable); 1673 1674#define __HAVE_ARCH_PGTABLE_WITHDRAW 1675pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp); 1676 1677#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 1678static inline int pmdp_set_access_flags(struct vm_area_struct *vma, 1679 unsigned long addr, pmd_t *pmdp, 1680 pmd_t entry, int dirty) 1681{ 1682 VM_BUG_ON(addr & ~HPAGE_MASK); 1683 1684 entry = pmd_mkyoung(entry); 1685 if (dirty) 1686 entry = pmd_mkdirty(entry); 1687 if (pmd_val(*pmdp) == pmd_val(entry)) 1688 return 0; 1689 pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry); 1690 return 1; 1691} 1692 1693#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 1694static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 1695 unsigned long addr, pmd_t *pmdp) 1696{ 1697 pmd_t pmd = *pmdp; 1698 1699 pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd)); 1700 return pmd_young(pmd); 1701} 1702 1703#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH 1704static inline int pmdp_clear_flush_young(struct vm_area_struct *vma, 1705 unsigned long addr, pmd_t *pmdp) 1706{ 1707 VM_BUG_ON(addr & ~HPAGE_MASK); 1708 return pmdp_test_and_clear_young(vma, addr, pmdp); 1709} 1710 1711static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr, 1712 pmd_t *pmdp, pmd_t entry) 1713{ 1714 if (!MACHINE_HAS_NX) 1715 entry = clear_pmd_bit(entry, __pgprot(_SEGMENT_ENTRY_NOEXEC)); 1716 set_pmd(pmdp, entry); 1717} 1718 1719static inline pmd_t pmd_mkhuge(pmd_t pmd) 1720{ 1721 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_LARGE)); 1722 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG)); 1723 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT)); 1724} 1725 1726#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 1727static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, 1728 unsigned long addr, pmd_t *pmdp) 1729{ 1730 return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY)); 1731} 1732 1733#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL 1734static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma, 1735 unsigned long addr, 1736 pmd_t *pmdp, int full) 1737{ 1738 if (full) { 1739 pmd_t pmd = *pmdp; 1740 set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY)); 1741 return pmd; 1742 } 1743 return pmdp_xchg_lazy(vma->vm_mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY)); 1744} 1745 1746#define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH 1747static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma, 1748 unsigned long addr, pmd_t *pmdp) 1749{ 1750 return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp); 1751} 1752 1753#define __HAVE_ARCH_PMDP_INVALIDATE 1754static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma, 1755 unsigned long addr, pmd_t *pmdp) 1756{ 1757 pmd_t pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID); 1758 1759 return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd); 1760} 1761 1762#define __HAVE_ARCH_PMDP_SET_WRPROTECT 1763static inline void pmdp_set_wrprotect(struct mm_struct *mm, 1764 unsigned long addr, pmd_t *pmdp) 1765{ 1766 pmd_t pmd = *pmdp; 1767 1768 if (pmd_write(pmd)) 1769 pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd)); 1770} 1771 1772static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, 1773 unsigned long address, 1774 pmd_t *pmdp) 1775{ 1776 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp); 1777} 1778#define pmdp_collapse_flush pmdp_collapse_flush 1779 1780#define pfn_pmd(pfn, pgprot) mk_pmd_phys(((pfn) << PAGE_SHIFT), (pgprot)) 1781#define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot)) 1782 1783static inline int pmd_trans_huge(pmd_t pmd) 1784{ 1785 return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE; 1786} 1787 1788#define has_transparent_hugepage has_transparent_hugepage 1789static inline int has_transparent_hugepage(void) 1790{ 1791 return MACHINE_HAS_EDAT1 ? 1 : 0; 1792} 1793#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 1794 1795/* 1796 * 64 bit swap entry format: 1797 * A page-table entry has some bits we have to treat in a special way. 1798 * Bits 54 and 63 are used to indicate the page type. Bit 53 marks the pte 1799 * as invalid. 1800 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200 1801 * | offset |E11XX|type |S0| 1802 * |0000000000111111111122222222223333333333444444444455|55555|55566|66| 1803 * |0123456789012345678901234567890123456789012345678901|23456|78901|23| 1804 * 1805 * Bits 0-51 store the offset. 1806 * Bit 52 (E) is used to remember PG_anon_exclusive. 1807 * Bits 57-61 store the type. 1808 * Bit 62 (S) is used for softdirty tracking. 1809 * Bits 55 and 56 (X) are unused. 1810 */ 1811 1812#define __SWP_OFFSET_MASK ((1UL << 52) - 1) 1813#define __SWP_OFFSET_SHIFT 12 1814#define __SWP_TYPE_MASK ((1UL << 5) - 1) 1815#define __SWP_TYPE_SHIFT 2 1816 1817static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset) 1818{ 1819 unsigned long pteval; 1820 1821 pteval = _PAGE_INVALID | _PAGE_PROTECT; 1822 pteval |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT; 1823 pteval |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT; 1824 return __pte(pteval); 1825} 1826 1827static inline unsigned long __swp_type(swp_entry_t entry) 1828{ 1829 return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK; 1830} 1831 1832static inline unsigned long __swp_offset(swp_entry_t entry) 1833{ 1834 return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK; 1835} 1836 1837static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset) 1838{ 1839 return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) }; 1840} 1841 1842#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 1843#define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 1844 1845extern int vmem_add_mapping(unsigned long start, unsigned long size); 1846extern void vmem_remove_mapping(unsigned long start, unsigned long size); 1847extern int __vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot, bool alloc); 1848extern int vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot); 1849extern void vmem_unmap_4k_page(unsigned long addr); 1850extern pte_t *vmem_get_alloc_pte(unsigned long addr, bool alloc); 1851extern int s390_enable_sie(void); 1852extern int s390_enable_skey(void); 1853extern void s390_reset_cmma(struct mm_struct *mm); 1854 1855/* s390 has a private copy of get unmapped area to deal with cache synonyms */ 1856#define HAVE_ARCH_UNMAPPED_AREA 1857#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 1858 1859#define pmd_pgtable(pmd) \ 1860 ((pgtable_t)__va(pmd_val(pmd) & -sizeof(pte_t)*PTRS_PER_PTE)) 1861 1862#endif /* _S390_PAGE_H */