Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * S390 version
4 * Copyright IBM Corp. 1999, 2000
5 * Author(s): Hartmut Penner (hp@de.ibm.com)
6 * Ulrich Weigand (weigand@de.ibm.com)
7 * Martin Schwidefsky (schwidefsky@de.ibm.com)
8 *
9 * Derived from "include/asm-i386/pgtable.h"
10 */
11
12#ifndef _ASM_S390_PGTABLE_H
13#define _ASM_S390_PGTABLE_H
14
15#include <linux/sched.h>
16#include <linux/mm_types.h>
17#include <linux/page-flags.h>
18#include <linux/radix-tree.h>
19#include <linux/atomic.h>
20#include <asm/sections.h>
21#include <asm/bug.h>
22#include <asm/page.h>
23#include <asm/uv.h>
24
25extern pgd_t swapper_pg_dir[];
26extern pgd_t invalid_pg_dir[];
27extern void paging_init(void);
28extern unsigned long s390_invalid_asce;
29
30enum {
31 PG_DIRECT_MAP_4K = 0,
32 PG_DIRECT_MAP_1M,
33 PG_DIRECT_MAP_2G,
34 PG_DIRECT_MAP_MAX
35};
36
37extern atomic_long_t __bootdata_preserved(direct_pages_count[PG_DIRECT_MAP_MAX]);
38
39static inline void update_page_count(int level, long count)
40{
41 if (IS_ENABLED(CONFIG_PROC_FS))
42 atomic_long_add(count, &direct_pages_count[level]);
43}
44
45struct seq_file;
46void arch_report_meminfo(struct seq_file *m);
47
48/*
49 * The S390 doesn't have any external MMU info: the kernel page
50 * tables contain all the necessary information.
51 */
52#define update_mmu_cache(vma, address, ptep) do { } while (0)
53#define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
54
55/*
56 * ZERO_PAGE is a global shared page that is always zero; used
57 * for zero-mapped memory areas etc..
58 */
59
60extern unsigned long empty_zero_page;
61extern unsigned long zero_page_mask;
62
63#define ZERO_PAGE(vaddr) \
64 (virt_to_page((void *)(empty_zero_page + \
65 (((unsigned long)(vaddr)) &zero_page_mask))))
66#define __HAVE_COLOR_ZERO_PAGE
67
68/* TODO: s390 cannot support io_remap_pfn_range... */
69
70#define pte_ERROR(e) \
71 pr_err("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e))
72#define pmd_ERROR(e) \
73 pr_err("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e))
74#define pud_ERROR(e) \
75 pr_err("%s:%d: bad pud %016lx.\n", __FILE__, __LINE__, pud_val(e))
76#define p4d_ERROR(e) \
77 pr_err("%s:%d: bad p4d %016lx.\n", __FILE__, __LINE__, p4d_val(e))
78#define pgd_ERROR(e) \
79 pr_err("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e))
80
81/*
82 * The vmalloc and module area will always be on the topmost area of the
83 * kernel mapping. 512GB are reserved for vmalloc by default.
84 * At the top of the vmalloc area a 2GB area is reserved where modules
85 * will reside. That makes sure that inter module branches always
86 * happen without trampolines and in addition the placement within a
87 * 2GB frame is branch prediction unit friendly.
88 */
89extern unsigned long __bootdata_preserved(VMALLOC_START);
90extern unsigned long __bootdata_preserved(VMALLOC_END);
91#define VMALLOC_DEFAULT_SIZE ((512UL << 30) - MODULES_LEN)
92extern struct page *__bootdata_preserved(vmemmap);
93extern unsigned long __bootdata_preserved(vmemmap_size);
94
95#define VMEM_MAX_PHYS ((unsigned long) vmemmap)
96
97extern unsigned long __bootdata_preserved(MODULES_VADDR);
98extern unsigned long __bootdata_preserved(MODULES_END);
99#define MODULES_VADDR MODULES_VADDR
100#define MODULES_END MODULES_END
101#define MODULES_LEN (1UL << 31)
102
103static inline int is_module_addr(void *addr)
104{
105 BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
106 if (addr < (void *)MODULES_VADDR)
107 return 0;
108 if (addr > (void *)MODULES_END)
109 return 0;
110 return 1;
111}
112
113/*
114 * A 64 bit pagetable entry of S390 has following format:
115 * | PFRA |0IPC| OS |
116 * 0000000000111111111122222222223333333333444444444455555555556666
117 * 0123456789012345678901234567890123456789012345678901234567890123
118 *
119 * I Page-Invalid Bit: Page is not available for address-translation
120 * P Page-Protection Bit: Store access not possible for page
121 * C Change-bit override: HW is not required to set change bit
122 *
123 * A 64 bit segmenttable entry of S390 has following format:
124 * | P-table origin | TT
125 * 0000000000111111111122222222223333333333444444444455555555556666
126 * 0123456789012345678901234567890123456789012345678901234567890123
127 *
128 * I Segment-Invalid Bit: Segment is not available for address-translation
129 * C Common-Segment Bit: Segment is not private (PoP 3-30)
130 * P Page-Protection Bit: Store access not possible for page
131 * TT Type 00
132 *
133 * A 64 bit region table entry of S390 has following format:
134 * | S-table origin | TF TTTL
135 * 0000000000111111111122222222223333333333444444444455555555556666
136 * 0123456789012345678901234567890123456789012345678901234567890123
137 *
138 * I Segment-Invalid Bit: Segment is not available for address-translation
139 * TT Type 01
140 * TF
141 * TL Table length
142 *
143 * The 64 bit regiontable origin of S390 has following format:
144 * | region table origon | DTTL
145 * 0000000000111111111122222222223333333333444444444455555555556666
146 * 0123456789012345678901234567890123456789012345678901234567890123
147 *
148 * X Space-Switch event:
149 * G Segment-Invalid Bit:
150 * P Private-Space Bit:
151 * S Storage-Alteration:
152 * R Real space
153 * TL Table-Length:
154 *
155 * A storage key has the following format:
156 * | ACC |F|R|C|0|
157 * 0 3 4 5 6 7
158 * ACC: access key
159 * F : fetch protection bit
160 * R : referenced bit
161 * C : changed bit
162 */
163
164/* Hardware bits in the page table entry */
165#define _PAGE_NOEXEC 0x100 /* HW no-execute bit */
166#define _PAGE_PROTECT 0x200 /* HW read-only bit */
167#define _PAGE_INVALID 0x400 /* HW invalid bit */
168#define _PAGE_LARGE 0x800 /* Bit to mark a large pte */
169
170/* Software bits in the page table entry */
171#define _PAGE_PRESENT 0x001 /* SW pte present bit */
172#define _PAGE_YOUNG 0x004 /* SW pte young bit */
173#define _PAGE_DIRTY 0x008 /* SW pte dirty bit */
174#define _PAGE_READ 0x010 /* SW pte read bit */
175#define _PAGE_WRITE 0x020 /* SW pte write bit */
176#define _PAGE_SPECIAL 0x040 /* SW associated with special page */
177#define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */
178
179#ifdef CONFIG_MEM_SOFT_DIRTY
180#define _PAGE_SOFT_DIRTY 0x002 /* SW pte soft dirty bit */
181#else
182#define _PAGE_SOFT_DIRTY 0x000
183#endif
184
185#define _PAGE_SW_BITS 0xffUL /* All SW bits */
186
187#define _PAGE_SWP_EXCLUSIVE _PAGE_LARGE /* SW pte exclusive swap bit */
188
189/* Set of bits not changed in pte_modify */
190#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
191 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
192
193/*
194 * Mask of bits that must not be changed with RDP. Allow only _PAGE_PROTECT
195 * HW bit and all SW bits.
196 */
197#define _PAGE_RDP_MASK ~(_PAGE_PROTECT | _PAGE_SW_BITS)
198
199/*
200 * handle_pte_fault uses pte_present and pte_none to find out the pte type
201 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
202 * distinguish present from not-present ptes. It is changed only with the page
203 * table lock held.
204 *
205 * The following table gives the different possible bit combinations for
206 * the pte hardware and software bits in the last 12 bits of a pte
207 * (. unassigned bit, x don't care, t swap type):
208 *
209 * 842100000000
210 * 000084210000
211 * 000000008421
212 * .IR.uswrdy.p
213 * empty .10.00000000
214 * swap .11..ttttt.0
215 * prot-none, clean, old .11.xx0000.1
216 * prot-none, clean, young .11.xx0001.1
217 * prot-none, dirty, old .11.xx0010.1
218 * prot-none, dirty, young .11.xx0011.1
219 * read-only, clean, old .11.xx0100.1
220 * read-only, clean, young .01.xx0101.1
221 * read-only, dirty, old .11.xx0110.1
222 * read-only, dirty, young .01.xx0111.1
223 * read-write, clean, old .11.xx1100.1
224 * read-write, clean, young .01.xx1101.1
225 * read-write, dirty, old .10.xx1110.1
226 * read-write, dirty, young .00.xx1111.1
227 * HW-bits: R read-only, I invalid
228 * SW-bits: p present, y young, d dirty, r read, w write, s special,
229 * u unused, l large
230 *
231 * pte_none is true for the bit pattern .10.00000000, pte == 0x400
232 * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
233 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
234 */
235
236/* Bits in the segment/region table address-space-control-element */
237#define _ASCE_ORIGIN ~0xfffUL/* region/segment table origin */
238#define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
239#define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
240#define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
241#define _ASCE_REAL_SPACE 0x20 /* real space control */
242#define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
243#define _ASCE_TYPE_REGION1 0x0c /* region first table type */
244#define _ASCE_TYPE_REGION2 0x08 /* region second table type */
245#define _ASCE_TYPE_REGION3 0x04 /* region third table type */
246#define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
247#define _ASCE_TABLE_LENGTH 0x03 /* region table length */
248
249/* Bits in the region table entry */
250#define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
251#define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */
252#define _REGION_ENTRY_NOEXEC 0x100 /* region no-execute bit */
253#define _REGION_ENTRY_OFFSET 0xc0 /* region table offset */
254#define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */
255#define _REGION_ENTRY_TYPE_MASK 0x0c /* region table type mask */
256#define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
257#define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
258#define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
259#define _REGION_ENTRY_LENGTH 0x03 /* region third length */
260
261#define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
262#define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
263#define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
264#define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
265#define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
266#define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
267
268#define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address */
269#define _REGION3_ENTRY_DIRTY 0x2000 /* SW region dirty bit */
270#define _REGION3_ENTRY_YOUNG 0x1000 /* SW region young bit */
271#define _REGION3_ENTRY_LARGE 0x0400 /* RTTE-format control, large page */
272#define _REGION3_ENTRY_READ 0x0002 /* SW region read bit */
273#define _REGION3_ENTRY_WRITE 0x0001 /* SW region write bit */
274
275#ifdef CONFIG_MEM_SOFT_DIRTY
276#define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
277#else
278#define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
279#endif
280
281#define _REGION_ENTRY_BITS 0xfffffffffffff22fUL
282
283/* Bits in the segment table entry */
284#define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL
285#define _SEGMENT_ENTRY_HARDWARE_BITS 0xfffffffffffffe30UL
286#define _SEGMENT_ENTRY_HARDWARE_BITS_LARGE 0xfffffffffff00730UL
287#define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
288#define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* page table origin */
289#define _SEGMENT_ENTRY_PROTECT 0x200 /* segment protection bit */
290#define _SEGMENT_ENTRY_NOEXEC 0x100 /* segment no-execute bit */
291#define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
292#define _SEGMENT_ENTRY_TYPE_MASK 0x0c /* segment table type mask */
293
294#define _SEGMENT_ENTRY (0)
295#define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
296
297#define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */
298#define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */
299#define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */
300#define _SEGMENT_ENTRY_WRITE 0x0002 /* SW segment write bit */
301#define _SEGMENT_ENTRY_READ 0x0001 /* SW segment read bit */
302
303#ifdef CONFIG_MEM_SOFT_DIRTY
304#define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
305#else
306#define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
307#endif
308
309#define _CRST_ENTRIES 2048 /* number of region/segment table entries */
310#define _PAGE_ENTRIES 256 /* number of page table entries */
311
312#define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8)
313#define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8)
314
315#define _REGION1_SHIFT 53
316#define _REGION2_SHIFT 42
317#define _REGION3_SHIFT 31
318#define _SEGMENT_SHIFT 20
319
320#define _REGION1_INDEX (0x7ffUL << _REGION1_SHIFT)
321#define _REGION2_INDEX (0x7ffUL << _REGION2_SHIFT)
322#define _REGION3_INDEX (0x7ffUL << _REGION3_SHIFT)
323#define _SEGMENT_INDEX (0x7ffUL << _SEGMENT_SHIFT)
324#define _PAGE_INDEX (0xffUL << _PAGE_SHIFT)
325
326#define _REGION1_SIZE (1UL << _REGION1_SHIFT)
327#define _REGION2_SIZE (1UL << _REGION2_SHIFT)
328#define _REGION3_SIZE (1UL << _REGION3_SHIFT)
329#define _SEGMENT_SIZE (1UL << _SEGMENT_SHIFT)
330
331#define _REGION1_MASK (~(_REGION1_SIZE - 1))
332#define _REGION2_MASK (~(_REGION2_SIZE - 1))
333#define _REGION3_MASK (~(_REGION3_SIZE - 1))
334#define _SEGMENT_MASK (~(_SEGMENT_SIZE - 1))
335
336#define PMD_SHIFT _SEGMENT_SHIFT
337#define PUD_SHIFT _REGION3_SHIFT
338#define P4D_SHIFT _REGION2_SHIFT
339#define PGDIR_SHIFT _REGION1_SHIFT
340
341#define PMD_SIZE _SEGMENT_SIZE
342#define PUD_SIZE _REGION3_SIZE
343#define P4D_SIZE _REGION2_SIZE
344#define PGDIR_SIZE _REGION1_SIZE
345
346#define PMD_MASK _SEGMENT_MASK
347#define PUD_MASK _REGION3_MASK
348#define P4D_MASK _REGION2_MASK
349#define PGDIR_MASK _REGION1_MASK
350
351#define PTRS_PER_PTE _PAGE_ENTRIES
352#define PTRS_PER_PMD _CRST_ENTRIES
353#define PTRS_PER_PUD _CRST_ENTRIES
354#define PTRS_PER_P4D _CRST_ENTRIES
355#define PTRS_PER_PGD _CRST_ENTRIES
356
357/*
358 * Segment table and region3 table entry encoding
359 * (R = read-only, I = invalid, y = young bit):
360 * dy..R...I...wr
361 * prot-none, clean, old 00..1...1...00
362 * prot-none, clean, young 01..1...1...00
363 * prot-none, dirty, old 10..1...1...00
364 * prot-none, dirty, young 11..1...1...00
365 * read-only, clean, old 00..1...1...01
366 * read-only, clean, young 01..1...0...01
367 * read-only, dirty, old 10..1...1...01
368 * read-only, dirty, young 11..1...0...01
369 * read-write, clean, old 00..1...1...11
370 * read-write, clean, young 01..1...0...11
371 * read-write, dirty, old 10..0...1...11
372 * read-write, dirty, young 11..0...0...11
373 * The segment table origin is used to distinguish empty (origin==0) from
374 * read-write, old segment table entries (origin!=0)
375 * HW-bits: R read-only, I invalid
376 * SW-bits: y young, d dirty, r read, w write
377 */
378
379/* Page status table bits for virtualization */
380#define PGSTE_ACC_BITS 0xf000000000000000UL
381#define PGSTE_FP_BIT 0x0800000000000000UL
382#define PGSTE_PCL_BIT 0x0080000000000000UL
383#define PGSTE_HR_BIT 0x0040000000000000UL
384#define PGSTE_HC_BIT 0x0020000000000000UL
385#define PGSTE_GR_BIT 0x0004000000000000UL
386#define PGSTE_GC_BIT 0x0002000000000000UL
387#define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */
388#define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */
389#define PGSTE_VSIE_BIT 0x0000200000000000UL /* ref'd in a shadow table */
390
391/* Guest Page State used for virtualization */
392#define _PGSTE_GPS_ZERO 0x0000000080000000UL
393#define _PGSTE_GPS_NODAT 0x0000000040000000UL
394#define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL
395#define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
396#define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
397#define _PGSTE_GPS_USAGE_POT_VOLATILE 0x0000000002000000UL
398#define _PGSTE_GPS_USAGE_VOLATILE _PGSTE_GPS_USAGE_MASK
399
400/*
401 * A user page table pointer has the space-switch-event bit, the
402 * private-space-control bit and the storage-alteration-event-control
403 * bit set. A kernel page table pointer doesn't need them.
404 */
405#define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
406 _ASCE_ALT_EVENT)
407
408/*
409 * Page protection definitions.
410 */
411#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
412#define PAGE_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | \
413 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
414#define PAGE_RX __pgprot(_PAGE_PRESENT | _PAGE_READ | \
415 _PAGE_INVALID | _PAGE_PROTECT)
416#define PAGE_RW __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
417 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
418#define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
419 _PAGE_INVALID | _PAGE_PROTECT)
420
421#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
422 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
423#define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
424 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
425#define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
426 _PAGE_PROTECT | _PAGE_NOEXEC)
427#define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
428 _PAGE_YOUNG | _PAGE_DIRTY)
429
430/*
431 * On s390 the page table entry has an invalid bit and a read-only bit.
432 * Read permission implies execute permission and write permission
433 * implies read permission.
434 */
435 /*xwr*/
436
437/*
438 * Segment entry (large page) protection definitions.
439 */
440#define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \
441 _SEGMENT_ENTRY_PROTECT)
442#define SEGMENT_RO __pgprot(_SEGMENT_ENTRY_PROTECT | \
443 _SEGMENT_ENTRY_READ | \
444 _SEGMENT_ENTRY_NOEXEC)
445#define SEGMENT_RX __pgprot(_SEGMENT_ENTRY_PROTECT | \
446 _SEGMENT_ENTRY_READ)
447#define SEGMENT_RW __pgprot(_SEGMENT_ENTRY_READ | \
448 _SEGMENT_ENTRY_WRITE | \
449 _SEGMENT_ENTRY_NOEXEC)
450#define SEGMENT_RWX __pgprot(_SEGMENT_ENTRY_READ | \
451 _SEGMENT_ENTRY_WRITE)
452#define SEGMENT_KERNEL __pgprot(_SEGMENT_ENTRY | \
453 _SEGMENT_ENTRY_LARGE | \
454 _SEGMENT_ENTRY_READ | \
455 _SEGMENT_ENTRY_WRITE | \
456 _SEGMENT_ENTRY_YOUNG | \
457 _SEGMENT_ENTRY_DIRTY | \
458 _SEGMENT_ENTRY_NOEXEC)
459#define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY | \
460 _SEGMENT_ENTRY_LARGE | \
461 _SEGMENT_ENTRY_READ | \
462 _SEGMENT_ENTRY_YOUNG | \
463 _SEGMENT_ENTRY_PROTECT | \
464 _SEGMENT_ENTRY_NOEXEC)
465#define SEGMENT_KERNEL_EXEC __pgprot(_SEGMENT_ENTRY | \
466 _SEGMENT_ENTRY_LARGE | \
467 _SEGMENT_ENTRY_READ | \
468 _SEGMENT_ENTRY_WRITE | \
469 _SEGMENT_ENTRY_YOUNG | \
470 _SEGMENT_ENTRY_DIRTY)
471
472/*
473 * Region3 entry (large page) protection definitions.
474 */
475
476#define REGION3_KERNEL __pgprot(_REGION_ENTRY_TYPE_R3 | \
477 _REGION3_ENTRY_LARGE | \
478 _REGION3_ENTRY_READ | \
479 _REGION3_ENTRY_WRITE | \
480 _REGION3_ENTRY_YOUNG | \
481 _REGION3_ENTRY_DIRTY | \
482 _REGION_ENTRY_NOEXEC)
483#define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
484 _REGION3_ENTRY_LARGE | \
485 _REGION3_ENTRY_READ | \
486 _REGION3_ENTRY_YOUNG | \
487 _REGION_ENTRY_PROTECT | \
488 _REGION_ENTRY_NOEXEC)
489#define REGION3_KERNEL_EXEC __pgprot(_REGION_ENTRY_TYPE_R3 | \
490 _REGION3_ENTRY_LARGE | \
491 _REGION3_ENTRY_READ | \
492 _REGION3_ENTRY_WRITE | \
493 _REGION3_ENTRY_YOUNG | \
494 _REGION3_ENTRY_DIRTY)
495
496static inline bool mm_p4d_folded(struct mm_struct *mm)
497{
498 return mm->context.asce_limit <= _REGION1_SIZE;
499}
500#define mm_p4d_folded(mm) mm_p4d_folded(mm)
501
502static inline bool mm_pud_folded(struct mm_struct *mm)
503{
504 return mm->context.asce_limit <= _REGION2_SIZE;
505}
506#define mm_pud_folded(mm) mm_pud_folded(mm)
507
508static inline bool mm_pmd_folded(struct mm_struct *mm)
509{
510 return mm->context.asce_limit <= _REGION3_SIZE;
511}
512#define mm_pmd_folded(mm) mm_pmd_folded(mm)
513
514static inline int mm_has_pgste(struct mm_struct *mm)
515{
516#ifdef CONFIG_PGSTE
517 if (unlikely(mm->context.has_pgste))
518 return 1;
519#endif
520 return 0;
521}
522
523static inline int mm_is_protected(struct mm_struct *mm)
524{
525#ifdef CONFIG_PGSTE
526 if (unlikely(atomic_read(&mm->context.protected_count)))
527 return 1;
528#endif
529 return 0;
530}
531
532static inline int mm_alloc_pgste(struct mm_struct *mm)
533{
534#ifdef CONFIG_PGSTE
535 if (unlikely(mm->context.alloc_pgste))
536 return 1;
537#endif
538 return 0;
539}
540
541static inline pte_t clear_pte_bit(pte_t pte, pgprot_t prot)
542{
543 return __pte(pte_val(pte) & ~pgprot_val(prot));
544}
545
546static inline pte_t set_pte_bit(pte_t pte, pgprot_t prot)
547{
548 return __pte(pte_val(pte) | pgprot_val(prot));
549}
550
551static inline pmd_t clear_pmd_bit(pmd_t pmd, pgprot_t prot)
552{
553 return __pmd(pmd_val(pmd) & ~pgprot_val(prot));
554}
555
556static inline pmd_t set_pmd_bit(pmd_t pmd, pgprot_t prot)
557{
558 return __pmd(pmd_val(pmd) | pgprot_val(prot));
559}
560
561static inline pud_t clear_pud_bit(pud_t pud, pgprot_t prot)
562{
563 return __pud(pud_val(pud) & ~pgprot_val(prot));
564}
565
566static inline pud_t set_pud_bit(pud_t pud, pgprot_t prot)
567{
568 return __pud(pud_val(pud) | pgprot_val(prot));
569}
570
571/*
572 * In the case that a guest uses storage keys
573 * faults should no longer be backed by zero pages
574 */
575#define mm_forbids_zeropage mm_has_pgste
576static inline int mm_uses_skeys(struct mm_struct *mm)
577{
578#ifdef CONFIG_PGSTE
579 if (mm->context.uses_skeys)
580 return 1;
581#endif
582 return 0;
583}
584
585static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
586{
587 union register_pair r1 = { .even = old, .odd = new, };
588 unsigned long address = (unsigned long)ptr | 1;
589
590 asm volatile(
591 " csp %[r1],%[address]"
592 : [r1] "+&d" (r1.pair), "+m" (*ptr)
593 : [address] "d" (address)
594 : "cc");
595}
596
597static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new)
598{
599 union register_pair r1 = { .even = old, .odd = new, };
600 unsigned long address = (unsigned long)ptr | 1;
601
602 asm volatile(
603 " cspg %[r1],%[address]"
604 : [r1] "+&d" (r1.pair), "+m" (*ptr)
605 : [address] "d" (address)
606 : "cc");
607}
608
609#define CRDTE_DTT_PAGE 0x00UL
610#define CRDTE_DTT_SEGMENT 0x10UL
611#define CRDTE_DTT_REGION3 0x14UL
612#define CRDTE_DTT_REGION2 0x18UL
613#define CRDTE_DTT_REGION1 0x1cUL
614
615static inline void crdte(unsigned long old, unsigned long new,
616 unsigned long *table, unsigned long dtt,
617 unsigned long address, unsigned long asce)
618{
619 union register_pair r1 = { .even = old, .odd = new, };
620 union register_pair r2 = { .even = __pa(table) | dtt, .odd = address, };
621
622 asm volatile(".insn rrf,0xb98f0000,%[r1],%[r2],%[asce],0"
623 : [r1] "+&d" (r1.pair)
624 : [r2] "d" (r2.pair), [asce] "a" (asce)
625 : "memory", "cc");
626}
627
628/*
629 * pgd/p4d/pud/pmd/pte query functions
630 */
631static inline int pgd_folded(pgd_t pgd)
632{
633 return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1;
634}
635
636static inline int pgd_present(pgd_t pgd)
637{
638 if (pgd_folded(pgd))
639 return 1;
640 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
641}
642
643static inline int pgd_none(pgd_t pgd)
644{
645 if (pgd_folded(pgd))
646 return 0;
647 return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
648}
649
650static inline int pgd_bad(pgd_t pgd)
651{
652 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1)
653 return 0;
654 return (pgd_val(pgd) & ~_REGION_ENTRY_BITS) != 0;
655}
656
657static inline unsigned long pgd_pfn(pgd_t pgd)
658{
659 unsigned long origin_mask;
660
661 origin_mask = _REGION_ENTRY_ORIGIN;
662 return (pgd_val(pgd) & origin_mask) >> PAGE_SHIFT;
663}
664
665static inline int p4d_folded(p4d_t p4d)
666{
667 return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2;
668}
669
670static inline int p4d_present(p4d_t p4d)
671{
672 if (p4d_folded(p4d))
673 return 1;
674 return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL;
675}
676
677static inline int p4d_none(p4d_t p4d)
678{
679 if (p4d_folded(p4d))
680 return 0;
681 return p4d_val(p4d) == _REGION2_ENTRY_EMPTY;
682}
683
684static inline unsigned long p4d_pfn(p4d_t p4d)
685{
686 unsigned long origin_mask;
687
688 origin_mask = _REGION_ENTRY_ORIGIN;
689 return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT;
690}
691
692static inline int pud_folded(pud_t pud)
693{
694 return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3;
695}
696
697static inline int pud_present(pud_t pud)
698{
699 if (pud_folded(pud))
700 return 1;
701 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
702}
703
704static inline int pud_none(pud_t pud)
705{
706 if (pud_folded(pud))
707 return 0;
708 return pud_val(pud) == _REGION3_ENTRY_EMPTY;
709}
710
711#define pud_leaf pud_large
712static inline int pud_large(pud_t pud)
713{
714 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
715 return 0;
716 return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
717}
718
719#define pmd_leaf pmd_large
720static inline int pmd_large(pmd_t pmd)
721{
722 return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
723}
724
725static inline int pmd_bad(pmd_t pmd)
726{
727 if ((pmd_val(pmd) & _SEGMENT_ENTRY_TYPE_MASK) > 0 || pmd_large(pmd))
728 return 1;
729 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
730}
731
732static inline int pud_bad(pud_t pud)
733{
734 unsigned long type = pud_val(pud) & _REGION_ENTRY_TYPE_MASK;
735
736 if (type > _REGION_ENTRY_TYPE_R3 || pud_large(pud))
737 return 1;
738 if (type < _REGION_ENTRY_TYPE_R3)
739 return 0;
740 return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
741}
742
743static inline int p4d_bad(p4d_t p4d)
744{
745 unsigned long type = p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK;
746
747 if (type > _REGION_ENTRY_TYPE_R2)
748 return 1;
749 if (type < _REGION_ENTRY_TYPE_R2)
750 return 0;
751 return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0;
752}
753
754static inline int pmd_present(pmd_t pmd)
755{
756 return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY;
757}
758
759static inline int pmd_none(pmd_t pmd)
760{
761 return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY;
762}
763
764#define pmd_write pmd_write
765static inline int pmd_write(pmd_t pmd)
766{
767 return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
768}
769
770#define pud_write pud_write
771static inline int pud_write(pud_t pud)
772{
773 return (pud_val(pud) & _REGION3_ENTRY_WRITE) != 0;
774}
775
776static inline int pmd_dirty(pmd_t pmd)
777{
778 return (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
779}
780
781#define pmd_young pmd_young
782static inline int pmd_young(pmd_t pmd)
783{
784 return (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
785}
786
787static inline int pte_present(pte_t pte)
788{
789 /* Bit pattern: (pte & 0x001) == 0x001 */
790 return (pte_val(pte) & _PAGE_PRESENT) != 0;
791}
792
793static inline int pte_none(pte_t pte)
794{
795 /* Bit pattern: pte == 0x400 */
796 return pte_val(pte) == _PAGE_INVALID;
797}
798
799static inline int pte_swap(pte_t pte)
800{
801 /* Bit pattern: (pte & 0x201) == 0x200 */
802 return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
803 == _PAGE_PROTECT;
804}
805
806static inline int pte_special(pte_t pte)
807{
808 return (pte_val(pte) & _PAGE_SPECIAL);
809}
810
811#define __HAVE_ARCH_PTE_SAME
812static inline int pte_same(pte_t a, pte_t b)
813{
814 return pte_val(a) == pte_val(b);
815}
816
817#ifdef CONFIG_NUMA_BALANCING
818static inline int pte_protnone(pte_t pte)
819{
820 return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
821}
822
823static inline int pmd_protnone(pmd_t pmd)
824{
825 /* pmd_large(pmd) implies pmd_present(pmd) */
826 return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
827}
828#endif
829
830static inline int pte_swp_exclusive(pte_t pte)
831{
832 return pte_val(pte) & _PAGE_SWP_EXCLUSIVE;
833}
834
835static inline pte_t pte_swp_mkexclusive(pte_t pte)
836{
837 return set_pte_bit(pte, __pgprot(_PAGE_SWP_EXCLUSIVE));
838}
839
840static inline pte_t pte_swp_clear_exclusive(pte_t pte)
841{
842 return clear_pte_bit(pte, __pgprot(_PAGE_SWP_EXCLUSIVE));
843}
844
845static inline int pte_soft_dirty(pte_t pte)
846{
847 return pte_val(pte) & _PAGE_SOFT_DIRTY;
848}
849#define pte_swp_soft_dirty pte_soft_dirty
850
851static inline pte_t pte_mksoft_dirty(pte_t pte)
852{
853 return set_pte_bit(pte, __pgprot(_PAGE_SOFT_DIRTY));
854}
855#define pte_swp_mksoft_dirty pte_mksoft_dirty
856
857static inline pte_t pte_clear_soft_dirty(pte_t pte)
858{
859 return clear_pte_bit(pte, __pgprot(_PAGE_SOFT_DIRTY));
860}
861#define pte_swp_clear_soft_dirty pte_clear_soft_dirty
862
863static inline int pmd_soft_dirty(pmd_t pmd)
864{
865 return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
866}
867
868static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
869{
870 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_SOFT_DIRTY));
871}
872
873static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
874{
875 return clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_SOFT_DIRTY));
876}
877
878/*
879 * query functions pte_write/pte_dirty/pte_young only work if
880 * pte_present() is true. Undefined behaviour if not..
881 */
882static inline int pte_write(pte_t pte)
883{
884 return (pte_val(pte) & _PAGE_WRITE) != 0;
885}
886
887static inline int pte_dirty(pte_t pte)
888{
889 return (pte_val(pte) & _PAGE_DIRTY) != 0;
890}
891
892static inline int pte_young(pte_t pte)
893{
894 return (pte_val(pte) & _PAGE_YOUNG) != 0;
895}
896
897#define __HAVE_ARCH_PTE_UNUSED
898static inline int pte_unused(pte_t pte)
899{
900 return pte_val(pte) & _PAGE_UNUSED;
901}
902
903/*
904 * Extract the pgprot value from the given pte while at the same time making it
905 * usable for kernel address space mappings where fault driven dirty and
906 * young/old accounting is not supported, i.e _PAGE_PROTECT and _PAGE_INVALID
907 * must not be set.
908 */
909static inline pgprot_t pte_pgprot(pte_t pte)
910{
911 unsigned long pte_flags = pte_val(pte) & _PAGE_CHG_MASK;
912
913 if (pte_write(pte))
914 pte_flags |= pgprot_val(PAGE_KERNEL);
915 else
916 pte_flags |= pgprot_val(PAGE_KERNEL_RO);
917 pte_flags |= pte_val(pte) & mio_wb_bit_mask;
918
919 return __pgprot(pte_flags);
920}
921
922/*
923 * pgd/pmd/pte modification functions
924 */
925
926static inline void set_pgd(pgd_t *pgdp, pgd_t pgd)
927{
928 WRITE_ONCE(*pgdp, pgd);
929}
930
931static inline void set_p4d(p4d_t *p4dp, p4d_t p4d)
932{
933 WRITE_ONCE(*p4dp, p4d);
934}
935
936static inline void set_pud(pud_t *pudp, pud_t pud)
937{
938 WRITE_ONCE(*pudp, pud);
939}
940
941static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
942{
943 WRITE_ONCE(*pmdp, pmd);
944}
945
946static inline void set_pte(pte_t *ptep, pte_t pte)
947{
948 WRITE_ONCE(*ptep, pte);
949}
950
951static inline void pgd_clear(pgd_t *pgd)
952{
953 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
954 set_pgd(pgd, __pgd(_REGION1_ENTRY_EMPTY));
955}
956
957static inline void p4d_clear(p4d_t *p4d)
958{
959 if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
960 set_p4d(p4d, __p4d(_REGION2_ENTRY_EMPTY));
961}
962
963static inline void pud_clear(pud_t *pud)
964{
965 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
966 set_pud(pud, __pud(_REGION3_ENTRY_EMPTY));
967}
968
969static inline void pmd_clear(pmd_t *pmdp)
970{
971 set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
972}
973
974static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
975{
976 set_pte(ptep, __pte(_PAGE_INVALID));
977}
978
979/*
980 * The following pte modification functions only work if
981 * pte_present() is true. Undefined behaviour if not..
982 */
983static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
984{
985 pte = clear_pte_bit(pte, __pgprot(~_PAGE_CHG_MASK));
986 pte = set_pte_bit(pte, newprot);
987 /*
988 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX
989 * has the invalid bit set, clear it again for readable, young pages
990 */
991 if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
992 pte = clear_pte_bit(pte, __pgprot(_PAGE_INVALID));
993 /*
994 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page
995 * protection bit set, clear it again for writable, dirty pages
996 */
997 if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
998 pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
999 return pte;
1000}
1001
1002static inline pte_t pte_wrprotect(pte_t pte)
1003{
1004 pte = clear_pte_bit(pte, __pgprot(_PAGE_WRITE));
1005 return set_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1006}
1007
1008static inline pte_t pte_mkwrite(pte_t pte)
1009{
1010 pte = set_pte_bit(pte, __pgprot(_PAGE_WRITE));
1011 if (pte_val(pte) & _PAGE_DIRTY)
1012 pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1013 return pte;
1014}
1015
1016static inline pte_t pte_mkclean(pte_t pte)
1017{
1018 pte = clear_pte_bit(pte, __pgprot(_PAGE_DIRTY));
1019 return set_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1020}
1021
1022static inline pte_t pte_mkdirty(pte_t pte)
1023{
1024 pte = set_pte_bit(pte, __pgprot(_PAGE_DIRTY | _PAGE_SOFT_DIRTY));
1025 if (pte_val(pte) & _PAGE_WRITE)
1026 pte = clear_pte_bit(pte, __pgprot(_PAGE_PROTECT));
1027 return pte;
1028}
1029
1030static inline pte_t pte_mkold(pte_t pte)
1031{
1032 pte = clear_pte_bit(pte, __pgprot(_PAGE_YOUNG));
1033 return set_pte_bit(pte, __pgprot(_PAGE_INVALID));
1034}
1035
1036static inline pte_t pte_mkyoung(pte_t pte)
1037{
1038 pte = set_pte_bit(pte, __pgprot(_PAGE_YOUNG));
1039 if (pte_val(pte) & _PAGE_READ)
1040 pte = clear_pte_bit(pte, __pgprot(_PAGE_INVALID));
1041 return pte;
1042}
1043
1044static inline pte_t pte_mkspecial(pte_t pte)
1045{
1046 return set_pte_bit(pte, __pgprot(_PAGE_SPECIAL));
1047}
1048
1049#ifdef CONFIG_HUGETLB_PAGE
1050static inline pte_t pte_mkhuge(pte_t pte)
1051{
1052 return set_pte_bit(pte, __pgprot(_PAGE_LARGE));
1053}
1054#endif
1055
1056#define IPTE_GLOBAL 0
1057#define IPTE_LOCAL 1
1058
1059#define IPTE_NODAT 0x400
1060#define IPTE_GUEST_ASCE 0x800
1061
1062static __always_inline void __ptep_rdp(unsigned long addr, pte_t *ptep,
1063 unsigned long opt, unsigned long asce,
1064 int local)
1065{
1066 unsigned long pto;
1067
1068 pto = __pa(ptep) & ~(PTRS_PER_PTE * sizeof(pte_t) - 1);
1069 asm volatile(".insn rrf,0xb98b0000,%[r1],%[r2],%[asce],%[m4]"
1070 : "+m" (*ptep)
1071 : [r1] "a" (pto), [r2] "a" ((addr & PAGE_MASK) | opt),
1072 [asce] "a" (asce), [m4] "i" (local));
1073}
1074
1075static __always_inline void __ptep_ipte(unsigned long address, pte_t *ptep,
1076 unsigned long opt, unsigned long asce,
1077 int local)
1078{
1079 unsigned long pto = __pa(ptep);
1080
1081 if (__builtin_constant_p(opt) && opt == 0) {
1082 /* Invalidation + TLB flush for the pte */
1083 asm volatile(
1084 " ipte %[r1],%[r2],0,%[m4]"
1085 : "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
1086 [m4] "i" (local));
1087 return;
1088 }
1089
1090 /* Invalidate ptes with options + TLB flush of the ptes */
1091 opt = opt | (asce & _ASCE_ORIGIN);
1092 asm volatile(
1093 " ipte %[r1],%[r2],%[r3],%[m4]"
1094 : [r2] "+a" (address), [r3] "+a" (opt)
1095 : [r1] "a" (pto), [m4] "i" (local) : "memory");
1096}
1097
1098static __always_inline void __ptep_ipte_range(unsigned long address, int nr,
1099 pte_t *ptep, int local)
1100{
1101 unsigned long pto = __pa(ptep);
1102
1103 /* Invalidate a range of ptes + TLB flush of the ptes */
1104 do {
1105 asm volatile(
1106 " ipte %[r1],%[r2],%[r3],%[m4]"
1107 : [r2] "+a" (address), [r3] "+a" (nr)
1108 : [r1] "a" (pto), [m4] "i" (local) : "memory");
1109 } while (nr != 255);
1110}
1111
1112/*
1113 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1114 * both clear the TLB for the unmapped pte. The reason is that
1115 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1116 * to modify an active pte. The sequence is
1117 * 1) ptep_get_and_clear
1118 * 2) set_pte_at
1119 * 3) flush_tlb_range
1120 * On s390 the tlb needs to get flushed with the modification of the pte
1121 * if the pte is active. The only way how this can be implemented is to
1122 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1123 * is a nop.
1124 */
1125pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
1126pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
1127
1128#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1129static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1130 unsigned long addr, pte_t *ptep)
1131{
1132 pte_t pte = *ptep;
1133
1134 pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
1135 return pte_young(pte);
1136}
1137
1138#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1139static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1140 unsigned long address, pte_t *ptep)
1141{
1142 return ptep_test_and_clear_young(vma, address, ptep);
1143}
1144
1145#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1146static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1147 unsigned long addr, pte_t *ptep)
1148{
1149 pte_t res;
1150
1151 res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1152 /* At this point the reference through the mapping is still present */
1153 if (mm_is_protected(mm) && pte_present(res))
1154 uv_convert_owned_from_secure(pte_val(res) & PAGE_MASK);
1155 return res;
1156}
1157
1158#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1159pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1160void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1161 pte_t *, pte_t, pte_t);
1162
1163#define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1164static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1165 unsigned long addr, pte_t *ptep)
1166{
1167 pte_t res;
1168
1169 res = ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
1170 /* At this point the reference through the mapping is still present */
1171 if (mm_is_protected(vma->vm_mm) && pte_present(res))
1172 uv_convert_owned_from_secure(pte_val(res) & PAGE_MASK);
1173 return res;
1174}
1175
1176/*
1177 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1178 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1179 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1180 * cannot be accessed while the batched unmap is running. In this case
1181 * full==1 and a simple pte_clear is enough. See tlb.h.
1182 */
1183#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1184static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1185 unsigned long addr,
1186 pte_t *ptep, int full)
1187{
1188 pte_t res;
1189
1190 if (full) {
1191 res = *ptep;
1192 set_pte(ptep, __pte(_PAGE_INVALID));
1193 } else {
1194 res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1195 }
1196 /* Nothing to do */
1197 if (!mm_is_protected(mm) || !pte_present(res))
1198 return res;
1199 /*
1200 * At this point the reference through the mapping is still present.
1201 * The notifier should have destroyed all protected vCPUs at this
1202 * point, so the destroy should be successful.
1203 */
1204 if (full && !uv_destroy_owned_page(pte_val(res) & PAGE_MASK))
1205 return res;
1206 /*
1207 * If something went wrong and the page could not be destroyed, or
1208 * if this is not a mm teardown, the slower export is used as
1209 * fallback instead.
1210 */
1211 uv_convert_owned_from_secure(pte_val(res) & PAGE_MASK);
1212 return res;
1213}
1214
1215#define __HAVE_ARCH_PTEP_SET_WRPROTECT
1216static inline void ptep_set_wrprotect(struct mm_struct *mm,
1217 unsigned long addr, pte_t *ptep)
1218{
1219 pte_t pte = *ptep;
1220
1221 if (pte_write(pte))
1222 ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
1223}
1224
1225/*
1226 * Check if PTEs only differ in _PAGE_PROTECT HW bit, but also allow SW PTE
1227 * bits in the comparison. Those might change e.g. because of dirty and young
1228 * tracking.
1229 */
1230static inline int pte_allow_rdp(pte_t old, pte_t new)
1231{
1232 /*
1233 * Only allow changes from RO to RW
1234 */
1235 if (!(pte_val(old) & _PAGE_PROTECT) || pte_val(new) & _PAGE_PROTECT)
1236 return 0;
1237
1238 return (pte_val(old) & _PAGE_RDP_MASK) == (pte_val(new) & _PAGE_RDP_MASK);
1239}
1240
1241static inline void flush_tlb_fix_spurious_fault(struct vm_area_struct *vma,
1242 unsigned long address,
1243 pte_t *ptep)
1244{
1245 /*
1246 * RDP might not have propagated the PTE protection reset to all CPUs,
1247 * so there could be spurious TLB protection faults.
1248 * NOTE: This will also be called when a racing pagetable update on
1249 * another thread already installed the correct PTE. Both cases cannot
1250 * really be distinguished.
1251 * Therefore, only do the local TLB flush when RDP can be used, and the
1252 * PTE does not have _PAGE_PROTECT set, to avoid unnecessary overhead.
1253 * A local RDP can be used to do the flush.
1254 */
1255 if (MACHINE_HAS_RDP && !(pte_val(*ptep) & _PAGE_PROTECT))
1256 __ptep_rdp(address, ptep, 0, 0, 1);
1257}
1258#define flush_tlb_fix_spurious_fault flush_tlb_fix_spurious_fault
1259
1260void ptep_reset_dat_prot(struct mm_struct *mm, unsigned long addr, pte_t *ptep,
1261 pte_t new);
1262
1263#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1264static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1265 unsigned long addr, pte_t *ptep,
1266 pte_t entry, int dirty)
1267{
1268 if (pte_same(*ptep, entry))
1269 return 0;
1270 if (MACHINE_HAS_RDP && !mm_has_pgste(vma->vm_mm) && pte_allow_rdp(*ptep, entry))
1271 ptep_reset_dat_prot(vma->vm_mm, addr, ptep, entry);
1272 else
1273 ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
1274 return 1;
1275}
1276
1277/*
1278 * Additional functions to handle KVM guest page tables
1279 */
1280void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
1281 pte_t *ptep, pte_t entry);
1282void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1283void ptep_notify(struct mm_struct *mm, unsigned long addr,
1284 pte_t *ptep, unsigned long bits);
1285int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
1286 pte_t *ptep, int prot, unsigned long bit);
1287void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
1288 pte_t *ptep , int reset);
1289void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1290int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
1291 pte_t *sptep, pte_t *tptep, pte_t pte);
1292void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
1293
1294bool ptep_test_and_clear_uc(struct mm_struct *mm, unsigned long address,
1295 pte_t *ptep);
1296int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1297 unsigned char key, bool nq);
1298int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1299 unsigned char key, unsigned char *oldkey,
1300 bool nq, bool mr, bool mc);
1301int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
1302int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1303 unsigned char *key);
1304
1305int set_pgste_bits(struct mm_struct *mm, unsigned long addr,
1306 unsigned long bits, unsigned long value);
1307int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep);
1308int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc,
1309 unsigned long *oldpte, unsigned long *oldpgste);
1310void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr);
1311void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr);
1312void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr);
1313void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr);
1314
1315#define pgprot_writecombine pgprot_writecombine
1316pgprot_t pgprot_writecombine(pgprot_t prot);
1317
1318#define pgprot_writethrough pgprot_writethrough
1319pgprot_t pgprot_writethrough(pgprot_t prot);
1320
1321/*
1322 * Certain architectures need to do special things when PTEs
1323 * within a page table are directly modified. Thus, the following
1324 * hook is made available.
1325 */
1326static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
1327 pte_t *ptep, pte_t entry)
1328{
1329 if (pte_present(entry))
1330 entry = clear_pte_bit(entry, __pgprot(_PAGE_UNUSED));
1331 if (mm_has_pgste(mm))
1332 ptep_set_pte_at(mm, addr, ptep, entry);
1333 else
1334 set_pte(ptep, entry);
1335}
1336
1337/*
1338 * Conversion functions: convert a page and protection to a page entry,
1339 * and a page entry and page directory to the page they refer to.
1340 */
1341static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1342{
1343 pte_t __pte;
1344
1345 __pte = __pte(physpage | pgprot_val(pgprot));
1346 if (!MACHINE_HAS_NX)
1347 __pte = clear_pte_bit(__pte, __pgprot(_PAGE_NOEXEC));
1348 return pte_mkyoung(__pte);
1349}
1350
1351static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1352{
1353 unsigned long physpage = page_to_phys(page);
1354 pte_t __pte = mk_pte_phys(physpage, pgprot);
1355
1356 if (pte_write(__pte) && PageDirty(page))
1357 __pte = pte_mkdirty(__pte);
1358 return __pte;
1359}
1360
1361#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1362#define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1))
1363#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1364#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1365
1366#define p4d_deref(pud) ((unsigned long)__va(p4d_val(pud) & _REGION_ENTRY_ORIGIN))
1367#define pgd_deref(pgd) ((unsigned long)__va(pgd_val(pgd) & _REGION_ENTRY_ORIGIN))
1368
1369static inline unsigned long pmd_deref(pmd_t pmd)
1370{
1371 unsigned long origin_mask;
1372
1373 origin_mask = _SEGMENT_ENTRY_ORIGIN;
1374 if (pmd_large(pmd))
1375 origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
1376 return (unsigned long)__va(pmd_val(pmd) & origin_mask);
1377}
1378
1379static inline unsigned long pmd_pfn(pmd_t pmd)
1380{
1381 return __pa(pmd_deref(pmd)) >> PAGE_SHIFT;
1382}
1383
1384static inline unsigned long pud_deref(pud_t pud)
1385{
1386 unsigned long origin_mask;
1387
1388 origin_mask = _REGION_ENTRY_ORIGIN;
1389 if (pud_large(pud))
1390 origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
1391 return (unsigned long)__va(pud_val(pud) & origin_mask);
1392}
1393
1394static inline unsigned long pud_pfn(pud_t pud)
1395{
1396 return __pa(pud_deref(pud)) >> PAGE_SHIFT;
1397}
1398
1399/*
1400 * The pgd_offset function *always* adds the index for the top-level
1401 * region/segment table. This is done to get a sequence like the
1402 * following to work:
1403 * pgdp = pgd_offset(current->mm, addr);
1404 * pgd = READ_ONCE(*pgdp);
1405 * p4dp = p4d_offset(&pgd, addr);
1406 * ...
1407 * The subsequent p4d_offset, pud_offset and pmd_offset functions
1408 * only add an index if they dereferenced the pointer.
1409 */
1410static inline pgd_t *pgd_offset_raw(pgd_t *pgd, unsigned long address)
1411{
1412 unsigned long rste;
1413 unsigned int shift;
1414
1415 /* Get the first entry of the top level table */
1416 rste = pgd_val(*pgd);
1417 /* Pick up the shift from the table type of the first entry */
1418 shift = ((rste & _REGION_ENTRY_TYPE_MASK) >> 2) * 11 + 20;
1419 return pgd + ((address >> shift) & (PTRS_PER_PGD - 1));
1420}
1421
1422#define pgd_offset(mm, address) pgd_offset_raw(READ_ONCE((mm)->pgd), address)
1423
1424static inline p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long address)
1425{
1426 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R1)
1427 return (p4d_t *) pgd_deref(pgd) + p4d_index(address);
1428 return (p4d_t *) pgdp;
1429}
1430#define p4d_offset_lockless p4d_offset_lockless
1431
1432static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long address)
1433{
1434 return p4d_offset_lockless(pgdp, *pgdp, address);
1435}
1436
1437static inline pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long address)
1438{
1439 if ((p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R2)
1440 return (pud_t *) p4d_deref(p4d) + pud_index(address);
1441 return (pud_t *) p4dp;
1442}
1443#define pud_offset_lockless pud_offset_lockless
1444
1445static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long address)
1446{
1447 return pud_offset_lockless(p4dp, *p4dp, address);
1448}
1449#define pud_offset pud_offset
1450
1451static inline pmd_t *pmd_offset_lockless(pud_t *pudp, pud_t pud, unsigned long address)
1452{
1453 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R3)
1454 return (pmd_t *) pud_deref(pud) + pmd_index(address);
1455 return (pmd_t *) pudp;
1456}
1457#define pmd_offset_lockless pmd_offset_lockless
1458
1459static inline pmd_t *pmd_offset(pud_t *pudp, unsigned long address)
1460{
1461 return pmd_offset_lockless(pudp, *pudp, address);
1462}
1463#define pmd_offset pmd_offset
1464
1465static inline unsigned long pmd_page_vaddr(pmd_t pmd)
1466{
1467 return (unsigned long) pmd_deref(pmd);
1468}
1469
1470static inline bool gup_fast_permitted(unsigned long start, unsigned long end)
1471{
1472 return end <= current->mm->context.asce_limit;
1473}
1474#define gup_fast_permitted gup_fast_permitted
1475
1476#define pfn_pte(pfn, pgprot) mk_pte_phys(((pfn) << PAGE_SHIFT), (pgprot))
1477#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1478#define pte_page(x) pfn_to_page(pte_pfn(x))
1479
1480#define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1481#define pud_page(pud) pfn_to_page(pud_pfn(pud))
1482#define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d))
1483#define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd))
1484
1485static inline pmd_t pmd_wrprotect(pmd_t pmd)
1486{
1487 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_WRITE));
1488 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1489}
1490
1491static inline pmd_t pmd_mkwrite(pmd_t pmd)
1492{
1493 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_WRITE));
1494 if (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY)
1495 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1496 return pmd;
1497}
1498
1499static inline pmd_t pmd_mkclean(pmd_t pmd)
1500{
1501 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_DIRTY));
1502 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1503}
1504
1505static inline pmd_t pmd_mkdirty(pmd_t pmd)
1506{
1507 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_SOFT_DIRTY));
1508 if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1509 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1510 return pmd;
1511}
1512
1513static inline pud_t pud_wrprotect(pud_t pud)
1514{
1515 pud = clear_pud_bit(pud, __pgprot(_REGION3_ENTRY_WRITE));
1516 return set_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1517}
1518
1519static inline pud_t pud_mkwrite(pud_t pud)
1520{
1521 pud = set_pud_bit(pud, __pgprot(_REGION3_ENTRY_WRITE));
1522 if (pud_val(pud) & _REGION3_ENTRY_DIRTY)
1523 pud = clear_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1524 return pud;
1525}
1526
1527static inline pud_t pud_mkclean(pud_t pud)
1528{
1529 pud = clear_pud_bit(pud, __pgprot(_REGION3_ENTRY_DIRTY));
1530 return set_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1531}
1532
1533static inline pud_t pud_mkdirty(pud_t pud)
1534{
1535 pud = set_pud_bit(pud, __pgprot(_REGION3_ENTRY_DIRTY | _REGION3_ENTRY_SOFT_DIRTY));
1536 if (pud_val(pud) & _REGION3_ENTRY_WRITE)
1537 pud = clear_pud_bit(pud, __pgprot(_REGION_ENTRY_PROTECT));
1538 return pud;
1539}
1540
1541#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1542static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1543{
1544 /*
1545 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX
1546 * (see __Pxxx / __Sxxx). Convert to segment table entry format.
1547 */
1548 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1549 return pgprot_val(SEGMENT_NONE);
1550 if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1551 return pgprot_val(SEGMENT_RO);
1552 if (pgprot_val(pgprot) == pgprot_val(PAGE_RX))
1553 return pgprot_val(SEGMENT_RX);
1554 if (pgprot_val(pgprot) == pgprot_val(PAGE_RW))
1555 return pgprot_val(SEGMENT_RW);
1556 return pgprot_val(SEGMENT_RWX);
1557}
1558
1559static inline pmd_t pmd_mkyoung(pmd_t pmd)
1560{
1561 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1562 if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1563 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
1564 return pmd;
1565}
1566
1567static inline pmd_t pmd_mkold(pmd_t pmd)
1568{
1569 pmd = clear_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1570 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
1571}
1572
1573static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1574{
1575 unsigned long mask;
1576
1577 mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
1578 mask |= _SEGMENT_ENTRY_DIRTY;
1579 mask |= _SEGMENT_ENTRY_YOUNG;
1580 mask |= _SEGMENT_ENTRY_LARGE;
1581 mask |= _SEGMENT_ENTRY_SOFT_DIRTY;
1582 pmd = __pmd(pmd_val(pmd) & mask);
1583 pmd = set_pmd_bit(pmd, __pgprot(massage_pgprot_pmd(newprot)));
1584 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1585 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1586 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1587 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_INVALID));
1588 return pmd;
1589}
1590
1591static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1592{
1593 return __pmd(physpage + massage_pgprot_pmd(pgprot));
1594}
1595
1596#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1597
1598static inline void __pmdp_csp(pmd_t *pmdp)
1599{
1600 csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
1601 pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1602}
1603
1604#define IDTE_GLOBAL 0
1605#define IDTE_LOCAL 1
1606
1607#define IDTE_PTOA 0x0800
1608#define IDTE_NODAT 0x1000
1609#define IDTE_GUEST_ASCE 0x2000
1610
1611static __always_inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp,
1612 unsigned long opt, unsigned long asce,
1613 int local)
1614{
1615 unsigned long sto;
1616
1617 sto = __pa(pmdp) - pmd_index(addr) * sizeof(pmd_t);
1618 if (__builtin_constant_p(opt) && opt == 0) {
1619 /* flush without guest asce */
1620 asm volatile(
1621 " idte %[r1],0,%[r2],%[m4]"
1622 : "+m" (*pmdp)
1623 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)),
1624 [m4] "i" (local)
1625 : "cc" );
1626 } else {
1627 /* flush with guest asce */
1628 asm volatile(
1629 " idte %[r1],%[r3],%[r2],%[m4]"
1630 : "+m" (*pmdp)
1631 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt),
1632 [r3] "a" (asce), [m4] "i" (local)
1633 : "cc" );
1634 }
1635}
1636
1637static __always_inline void __pudp_idte(unsigned long addr, pud_t *pudp,
1638 unsigned long opt, unsigned long asce,
1639 int local)
1640{
1641 unsigned long r3o;
1642
1643 r3o = __pa(pudp) - pud_index(addr) * sizeof(pud_t);
1644 r3o |= _ASCE_TYPE_REGION3;
1645 if (__builtin_constant_p(opt) && opt == 0) {
1646 /* flush without guest asce */
1647 asm volatile(
1648 " idte %[r1],0,%[r2],%[m4]"
1649 : "+m" (*pudp)
1650 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)),
1651 [m4] "i" (local)
1652 : "cc");
1653 } else {
1654 /* flush with guest asce */
1655 asm volatile(
1656 " idte %[r1],%[r3],%[r2],%[m4]"
1657 : "+m" (*pudp)
1658 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt),
1659 [r3] "a" (asce), [m4] "i" (local)
1660 : "cc" );
1661 }
1662}
1663
1664pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1665pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1666pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
1667
1668#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1669
1670#define __HAVE_ARCH_PGTABLE_DEPOSIT
1671void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1672 pgtable_t pgtable);
1673
1674#define __HAVE_ARCH_PGTABLE_WITHDRAW
1675pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1676
1677#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1678static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1679 unsigned long addr, pmd_t *pmdp,
1680 pmd_t entry, int dirty)
1681{
1682 VM_BUG_ON(addr & ~HPAGE_MASK);
1683
1684 entry = pmd_mkyoung(entry);
1685 if (dirty)
1686 entry = pmd_mkdirty(entry);
1687 if (pmd_val(*pmdp) == pmd_val(entry))
1688 return 0;
1689 pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1690 return 1;
1691}
1692
1693#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1694static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1695 unsigned long addr, pmd_t *pmdp)
1696{
1697 pmd_t pmd = *pmdp;
1698
1699 pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1700 return pmd_young(pmd);
1701}
1702
1703#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1704static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1705 unsigned long addr, pmd_t *pmdp)
1706{
1707 VM_BUG_ON(addr & ~HPAGE_MASK);
1708 return pmdp_test_and_clear_young(vma, addr, pmdp);
1709}
1710
1711static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1712 pmd_t *pmdp, pmd_t entry)
1713{
1714 if (!MACHINE_HAS_NX)
1715 entry = clear_pmd_bit(entry, __pgprot(_SEGMENT_ENTRY_NOEXEC));
1716 set_pmd(pmdp, entry);
1717}
1718
1719static inline pmd_t pmd_mkhuge(pmd_t pmd)
1720{
1721 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_LARGE));
1722 pmd = set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_YOUNG));
1723 return set_pmd_bit(pmd, __pgprot(_SEGMENT_ENTRY_PROTECT));
1724}
1725
1726#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1727static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1728 unsigned long addr, pmd_t *pmdp)
1729{
1730 return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1731}
1732
1733#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1734static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
1735 unsigned long addr,
1736 pmd_t *pmdp, int full)
1737{
1738 if (full) {
1739 pmd_t pmd = *pmdp;
1740 set_pmd(pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1741 return pmd;
1742 }
1743 return pmdp_xchg_lazy(vma->vm_mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1744}
1745
1746#define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
1747static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1748 unsigned long addr, pmd_t *pmdp)
1749{
1750 return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1751}
1752
1753#define __HAVE_ARCH_PMDP_INVALIDATE
1754static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma,
1755 unsigned long addr, pmd_t *pmdp)
1756{
1757 pmd_t pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1758
1759 return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd);
1760}
1761
1762#define __HAVE_ARCH_PMDP_SET_WRPROTECT
1763static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1764 unsigned long addr, pmd_t *pmdp)
1765{
1766 pmd_t pmd = *pmdp;
1767
1768 if (pmd_write(pmd))
1769 pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
1770}
1771
1772static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1773 unsigned long address,
1774 pmd_t *pmdp)
1775{
1776 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1777}
1778#define pmdp_collapse_flush pmdp_collapse_flush
1779
1780#define pfn_pmd(pfn, pgprot) mk_pmd_phys(((pfn) << PAGE_SHIFT), (pgprot))
1781#define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
1782
1783static inline int pmd_trans_huge(pmd_t pmd)
1784{
1785 return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1786}
1787
1788#define has_transparent_hugepage has_transparent_hugepage
1789static inline int has_transparent_hugepage(void)
1790{
1791 return MACHINE_HAS_EDAT1 ? 1 : 0;
1792}
1793#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1794
1795/*
1796 * 64 bit swap entry format:
1797 * A page-table entry has some bits we have to treat in a special way.
1798 * Bits 54 and 63 are used to indicate the page type. Bit 53 marks the pte
1799 * as invalid.
1800 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1801 * | offset |E11XX|type |S0|
1802 * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1803 * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1804 *
1805 * Bits 0-51 store the offset.
1806 * Bit 52 (E) is used to remember PG_anon_exclusive.
1807 * Bits 57-61 store the type.
1808 * Bit 62 (S) is used for softdirty tracking.
1809 * Bits 55 and 56 (X) are unused.
1810 */
1811
1812#define __SWP_OFFSET_MASK ((1UL << 52) - 1)
1813#define __SWP_OFFSET_SHIFT 12
1814#define __SWP_TYPE_MASK ((1UL << 5) - 1)
1815#define __SWP_TYPE_SHIFT 2
1816
1817static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1818{
1819 unsigned long pteval;
1820
1821 pteval = _PAGE_INVALID | _PAGE_PROTECT;
1822 pteval |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1823 pteval |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1824 return __pte(pteval);
1825}
1826
1827static inline unsigned long __swp_type(swp_entry_t entry)
1828{
1829 return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1830}
1831
1832static inline unsigned long __swp_offset(swp_entry_t entry)
1833{
1834 return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1835}
1836
1837static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1838{
1839 return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1840}
1841
1842#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1843#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1844
1845extern int vmem_add_mapping(unsigned long start, unsigned long size);
1846extern void vmem_remove_mapping(unsigned long start, unsigned long size);
1847extern int __vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot, bool alloc);
1848extern int vmem_map_4k_page(unsigned long addr, unsigned long phys, pgprot_t prot);
1849extern void vmem_unmap_4k_page(unsigned long addr);
1850extern pte_t *vmem_get_alloc_pte(unsigned long addr, bool alloc);
1851extern int s390_enable_sie(void);
1852extern int s390_enable_skey(void);
1853extern void s390_reset_cmma(struct mm_struct *mm);
1854
1855/* s390 has a private copy of get unmapped area to deal with cache synonyms */
1856#define HAVE_ARCH_UNMAPPED_AREA
1857#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1858
1859#define pmd_pgtable(pmd) \
1860 ((pgtable_t)__va(pmd_val(pmd) & -sizeof(pte_t)*PTRS_PER_PTE))
1861
1862#endif /* _S390_PAGE_H */