Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0-only */
2/*
3 * Copyright (C) 2012 Regents of the University of California
4 */
5
6#ifndef _ASM_RISCV_PGTABLE_H
7#define _ASM_RISCV_PGTABLE_H
8
9#include <linux/mmzone.h>
10#include <linux/sizes.h>
11
12#include <asm/pgtable-bits.h>
13
14#ifndef CONFIG_MMU
15#define KERNEL_LINK_ADDR PAGE_OFFSET
16#define KERN_VIRT_SIZE (UL(-1))
17#else
18
19#define ADDRESS_SPACE_END (UL(-1))
20
21#ifdef CONFIG_64BIT
22/* Leave 2GB for kernel and BPF at the end of the address space */
23#define KERNEL_LINK_ADDR (ADDRESS_SPACE_END - SZ_2G + 1)
24#else
25#define KERNEL_LINK_ADDR PAGE_OFFSET
26#endif
27
28/* Number of entries in the page global directory */
29#define PTRS_PER_PGD (PAGE_SIZE / sizeof(pgd_t))
30/* Number of entries in the page table */
31#define PTRS_PER_PTE (PAGE_SIZE / sizeof(pte_t))
32
33/*
34 * Half of the kernel address space (1/4 of the entries of the page global
35 * directory) is for the direct mapping.
36 */
37#define KERN_VIRT_SIZE ((PTRS_PER_PGD / 2 * PGDIR_SIZE) / 2)
38
39#define VMALLOC_SIZE (KERN_VIRT_SIZE >> 1)
40#define VMALLOC_END PAGE_OFFSET
41#define VMALLOC_START (PAGE_OFFSET - VMALLOC_SIZE)
42
43#define BPF_JIT_REGION_SIZE (SZ_128M)
44#ifdef CONFIG_64BIT
45#define BPF_JIT_REGION_START (BPF_JIT_REGION_END - BPF_JIT_REGION_SIZE)
46#define BPF_JIT_REGION_END (MODULES_END)
47#else
48#define BPF_JIT_REGION_START (PAGE_OFFSET - BPF_JIT_REGION_SIZE)
49#define BPF_JIT_REGION_END (VMALLOC_END)
50#endif
51
52/* Modules always live before the kernel */
53#ifdef CONFIG_64BIT
54/* This is used to define the end of the KASAN shadow region */
55#define MODULES_LOWEST_VADDR (KERNEL_LINK_ADDR - SZ_2G)
56#define MODULES_VADDR (PFN_ALIGN((unsigned long)&_end) - SZ_2G)
57#define MODULES_END (PFN_ALIGN((unsigned long)&_start))
58#endif
59
60/*
61 * Roughly size the vmemmap space to be large enough to fit enough
62 * struct pages to map half the virtual address space. Then
63 * position vmemmap directly below the VMALLOC region.
64 */
65#ifdef CONFIG_64BIT
66#define VA_BITS (pgtable_l5_enabled ? \
67 57 : (pgtable_l4_enabled ? 48 : 39))
68#else
69#define VA_BITS 32
70#endif
71
72#define VMEMMAP_SHIFT \
73 (VA_BITS - PAGE_SHIFT - 1 + STRUCT_PAGE_MAX_SHIFT)
74#define VMEMMAP_SIZE BIT(VMEMMAP_SHIFT)
75#define VMEMMAP_END VMALLOC_START
76#define VMEMMAP_START (VMALLOC_START - VMEMMAP_SIZE)
77
78/*
79 * Define vmemmap for pfn_to_page & page_to_pfn calls. Needed if kernel
80 * is configured with CONFIG_SPARSEMEM_VMEMMAP enabled.
81 */
82#define vmemmap ((struct page *)VMEMMAP_START)
83
84#define PCI_IO_SIZE SZ_16M
85#define PCI_IO_END VMEMMAP_START
86#define PCI_IO_START (PCI_IO_END - PCI_IO_SIZE)
87
88#define FIXADDR_TOP PCI_IO_START
89#ifdef CONFIG_64BIT
90#define MAX_FDT_SIZE PMD_SIZE
91#define FIX_FDT_SIZE (MAX_FDT_SIZE + SZ_2M)
92#define FIXADDR_SIZE (PMD_SIZE + FIX_FDT_SIZE)
93#else
94#define MAX_FDT_SIZE PGDIR_SIZE
95#define FIX_FDT_SIZE MAX_FDT_SIZE
96#define FIXADDR_SIZE (PGDIR_SIZE + FIX_FDT_SIZE)
97#endif
98#define FIXADDR_START (FIXADDR_TOP - FIXADDR_SIZE)
99
100#endif
101
102#ifdef CONFIG_XIP_KERNEL
103#define XIP_OFFSET SZ_32M
104#define XIP_OFFSET_MASK (SZ_32M - 1)
105#else
106#define XIP_OFFSET 0
107#endif
108
109#ifndef __ASSEMBLY__
110
111#include <asm/page.h>
112#include <asm/tlbflush.h>
113#include <linux/mm_types.h>
114
115#define __page_val_to_pfn(_val) (((_val) & _PAGE_PFN_MASK) >> _PAGE_PFN_SHIFT)
116
117#ifdef CONFIG_64BIT
118#include <asm/pgtable-64.h>
119#else
120#include <asm/pgtable-32.h>
121#endif /* CONFIG_64BIT */
122
123#include <linux/page_table_check.h>
124
125#ifdef CONFIG_XIP_KERNEL
126#define XIP_FIXUP(addr) ({ \
127 uintptr_t __a = (uintptr_t)(addr); \
128 (__a >= CONFIG_XIP_PHYS_ADDR && \
129 __a < CONFIG_XIP_PHYS_ADDR + XIP_OFFSET * 2) ? \
130 __a - CONFIG_XIP_PHYS_ADDR + CONFIG_PHYS_RAM_BASE - XIP_OFFSET :\
131 __a; \
132 })
133#else
134#define XIP_FIXUP(addr) (addr)
135#endif /* CONFIG_XIP_KERNEL */
136
137struct pt_alloc_ops {
138 pte_t *(*get_pte_virt)(phys_addr_t pa);
139 phys_addr_t (*alloc_pte)(uintptr_t va);
140#ifndef __PAGETABLE_PMD_FOLDED
141 pmd_t *(*get_pmd_virt)(phys_addr_t pa);
142 phys_addr_t (*alloc_pmd)(uintptr_t va);
143 pud_t *(*get_pud_virt)(phys_addr_t pa);
144 phys_addr_t (*alloc_pud)(uintptr_t va);
145 p4d_t *(*get_p4d_virt)(phys_addr_t pa);
146 phys_addr_t (*alloc_p4d)(uintptr_t va);
147#endif
148};
149
150extern struct pt_alloc_ops pt_ops __initdata;
151
152#ifdef CONFIG_MMU
153/* Number of PGD entries that a user-mode program can use */
154#define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
155
156/* Page protection bits */
157#define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_USER)
158
159#define PAGE_NONE __pgprot(_PAGE_PROT_NONE | _PAGE_READ)
160#define PAGE_READ __pgprot(_PAGE_BASE | _PAGE_READ)
161#define PAGE_WRITE __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_WRITE)
162#define PAGE_EXEC __pgprot(_PAGE_BASE | _PAGE_EXEC)
163#define PAGE_READ_EXEC __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC)
164#define PAGE_WRITE_EXEC __pgprot(_PAGE_BASE | _PAGE_READ | \
165 _PAGE_EXEC | _PAGE_WRITE)
166
167#define PAGE_COPY PAGE_READ
168#define PAGE_COPY_EXEC PAGE_READ_EXEC
169#define PAGE_SHARED PAGE_WRITE
170#define PAGE_SHARED_EXEC PAGE_WRITE_EXEC
171
172#define _PAGE_KERNEL (_PAGE_READ \
173 | _PAGE_WRITE \
174 | _PAGE_PRESENT \
175 | _PAGE_ACCESSED \
176 | _PAGE_DIRTY \
177 | _PAGE_GLOBAL)
178
179#define PAGE_KERNEL __pgprot(_PAGE_KERNEL)
180#define PAGE_KERNEL_READ __pgprot(_PAGE_KERNEL & ~_PAGE_WRITE)
181#define PAGE_KERNEL_EXEC __pgprot(_PAGE_KERNEL | _PAGE_EXEC)
182#define PAGE_KERNEL_READ_EXEC __pgprot((_PAGE_KERNEL & ~_PAGE_WRITE) \
183 | _PAGE_EXEC)
184
185#define PAGE_TABLE __pgprot(_PAGE_TABLE)
186
187#define _PAGE_IOREMAP ((_PAGE_KERNEL & ~_PAGE_MTMASK) | _PAGE_IO)
188#define PAGE_KERNEL_IO __pgprot(_PAGE_IOREMAP)
189
190extern pgd_t swapper_pg_dir[];
191
192#ifdef CONFIG_TRANSPARENT_HUGEPAGE
193static inline int pmd_present(pmd_t pmd)
194{
195 /*
196 * Checking for _PAGE_LEAF is needed too because:
197 * When splitting a THP, split_huge_page() will temporarily clear
198 * the present bit, in this situation, pmd_present() and
199 * pmd_trans_huge() still needs to return true.
200 */
201 return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE | _PAGE_LEAF));
202}
203#else
204static inline int pmd_present(pmd_t pmd)
205{
206 return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
207}
208#endif
209
210static inline int pmd_none(pmd_t pmd)
211{
212 return (pmd_val(pmd) == 0);
213}
214
215static inline int pmd_bad(pmd_t pmd)
216{
217 return !pmd_present(pmd) || (pmd_val(pmd) & _PAGE_LEAF);
218}
219
220#define pmd_leaf pmd_leaf
221static inline int pmd_leaf(pmd_t pmd)
222{
223 return pmd_present(pmd) && (pmd_val(pmd) & _PAGE_LEAF);
224}
225
226static inline void set_pmd(pmd_t *pmdp, pmd_t pmd)
227{
228 *pmdp = pmd;
229}
230
231static inline void pmd_clear(pmd_t *pmdp)
232{
233 set_pmd(pmdp, __pmd(0));
234}
235
236static inline pgd_t pfn_pgd(unsigned long pfn, pgprot_t prot)
237{
238 unsigned long prot_val = pgprot_val(prot);
239
240 ALT_THEAD_PMA(prot_val);
241
242 return __pgd((pfn << _PAGE_PFN_SHIFT) | prot_val);
243}
244
245static inline unsigned long _pgd_pfn(pgd_t pgd)
246{
247 return __page_val_to_pfn(pgd_val(pgd));
248}
249
250static inline struct page *pmd_page(pmd_t pmd)
251{
252 return pfn_to_page(__page_val_to_pfn(pmd_val(pmd)));
253}
254
255static inline unsigned long pmd_page_vaddr(pmd_t pmd)
256{
257 return (unsigned long)pfn_to_virt(__page_val_to_pfn(pmd_val(pmd)));
258}
259
260static inline pte_t pmd_pte(pmd_t pmd)
261{
262 return __pte(pmd_val(pmd));
263}
264
265static inline pte_t pud_pte(pud_t pud)
266{
267 return __pte(pud_val(pud));
268}
269
270#ifdef CONFIG_RISCV_ISA_SVNAPOT
271
272static __always_inline bool has_svnapot(void)
273{
274 return riscv_has_extension_likely(RISCV_ISA_EXT_SVNAPOT);
275}
276
277static inline unsigned long pte_napot(pte_t pte)
278{
279 return pte_val(pte) & _PAGE_NAPOT;
280}
281
282static inline pte_t pte_mknapot(pte_t pte, unsigned int order)
283{
284 int pos = order - 1 + _PAGE_PFN_SHIFT;
285 unsigned long napot_bit = BIT(pos);
286 unsigned long napot_mask = ~GENMASK(pos, _PAGE_PFN_SHIFT);
287
288 return __pte((pte_val(pte) & napot_mask) | napot_bit | _PAGE_NAPOT);
289}
290
291#else
292
293static __always_inline bool has_svnapot(void) { return false; }
294
295static inline unsigned long pte_napot(pte_t pte)
296{
297 return 0;
298}
299
300#endif /* CONFIG_RISCV_ISA_SVNAPOT */
301
302/* Yields the page frame number (PFN) of a page table entry */
303static inline unsigned long pte_pfn(pte_t pte)
304{
305 unsigned long res = __page_val_to_pfn(pte_val(pte));
306
307 if (has_svnapot() && pte_napot(pte))
308 res = res & (res - 1UL);
309
310 return res;
311}
312
313#define pte_page(x) pfn_to_page(pte_pfn(x))
314
315/* Constructs a page table entry */
316static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot)
317{
318 unsigned long prot_val = pgprot_val(prot);
319
320 ALT_THEAD_PMA(prot_val);
321
322 return __pte((pfn << _PAGE_PFN_SHIFT) | prot_val);
323}
324
325#define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot)
326
327static inline int pte_present(pte_t pte)
328{
329 return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE));
330}
331
332static inline int pte_none(pte_t pte)
333{
334 return (pte_val(pte) == 0);
335}
336
337static inline int pte_write(pte_t pte)
338{
339 return pte_val(pte) & _PAGE_WRITE;
340}
341
342static inline int pte_exec(pte_t pte)
343{
344 return pte_val(pte) & _PAGE_EXEC;
345}
346
347static inline int pte_user(pte_t pte)
348{
349 return pte_val(pte) & _PAGE_USER;
350}
351
352static inline int pte_huge(pte_t pte)
353{
354 return pte_present(pte) && (pte_val(pte) & _PAGE_LEAF);
355}
356
357static inline int pte_dirty(pte_t pte)
358{
359 return pte_val(pte) & _PAGE_DIRTY;
360}
361
362static inline int pte_young(pte_t pte)
363{
364 return pte_val(pte) & _PAGE_ACCESSED;
365}
366
367static inline int pte_special(pte_t pte)
368{
369 return pte_val(pte) & _PAGE_SPECIAL;
370}
371
372/* static inline pte_t pte_rdprotect(pte_t pte) */
373
374static inline pte_t pte_wrprotect(pte_t pte)
375{
376 return __pte(pte_val(pte) & ~(_PAGE_WRITE));
377}
378
379/* static inline pte_t pte_mkread(pte_t pte) */
380
381static inline pte_t pte_mkwrite(pte_t pte)
382{
383 return __pte(pte_val(pte) | _PAGE_WRITE);
384}
385
386/* static inline pte_t pte_mkexec(pte_t pte) */
387
388static inline pte_t pte_mkdirty(pte_t pte)
389{
390 return __pte(pte_val(pte) | _PAGE_DIRTY);
391}
392
393static inline pte_t pte_mkclean(pte_t pte)
394{
395 return __pte(pte_val(pte) & ~(_PAGE_DIRTY));
396}
397
398static inline pte_t pte_mkyoung(pte_t pte)
399{
400 return __pte(pte_val(pte) | _PAGE_ACCESSED);
401}
402
403static inline pte_t pte_mkold(pte_t pte)
404{
405 return __pte(pte_val(pte) & ~(_PAGE_ACCESSED));
406}
407
408static inline pte_t pte_mkspecial(pte_t pte)
409{
410 return __pte(pte_val(pte) | _PAGE_SPECIAL);
411}
412
413static inline pte_t pte_mkhuge(pte_t pte)
414{
415 return pte;
416}
417
418#ifdef CONFIG_NUMA_BALANCING
419/*
420 * See the comment in include/asm-generic/pgtable.h
421 */
422static inline int pte_protnone(pte_t pte)
423{
424 return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE)) == _PAGE_PROT_NONE;
425}
426
427static inline int pmd_protnone(pmd_t pmd)
428{
429 return pte_protnone(pmd_pte(pmd));
430}
431#endif
432
433/* Modify page protection bits */
434static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
435{
436 unsigned long newprot_val = pgprot_val(newprot);
437
438 ALT_THEAD_PMA(newprot_val);
439
440 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | newprot_val);
441}
442
443#define pgd_ERROR(e) \
444 pr_err("%s:%d: bad pgd " PTE_FMT ".\n", __FILE__, __LINE__, pgd_val(e))
445
446
447/* Commit new configuration to MMU hardware */
448static inline void update_mmu_cache(struct vm_area_struct *vma,
449 unsigned long address, pte_t *ptep)
450{
451 /*
452 * The kernel assumes that TLBs don't cache invalid entries, but
453 * in RISC-V, SFENCE.VMA specifies an ordering constraint, not a
454 * cache flush; it is necessary even after writing invalid entries.
455 * Relying on flush_tlb_fix_spurious_fault would suffice, but
456 * the extra traps reduce performance. So, eagerly SFENCE.VMA.
457 */
458 local_flush_tlb_page(address);
459}
460
461#define __HAVE_ARCH_UPDATE_MMU_TLB
462#define update_mmu_tlb update_mmu_cache
463
464static inline void update_mmu_cache_pmd(struct vm_area_struct *vma,
465 unsigned long address, pmd_t *pmdp)
466{
467 pte_t *ptep = (pte_t *)pmdp;
468
469 update_mmu_cache(vma, address, ptep);
470}
471
472#define __HAVE_ARCH_PTE_SAME
473static inline int pte_same(pte_t pte_a, pte_t pte_b)
474{
475 return pte_val(pte_a) == pte_val(pte_b);
476}
477
478/*
479 * Certain architectures need to do special things when PTEs within
480 * a page table are directly modified. Thus, the following hook is
481 * made available.
482 */
483static inline void set_pte(pte_t *ptep, pte_t pteval)
484{
485 *ptep = pteval;
486}
487
488void flush_icache_pte(pte_t pte);
489
490static inline void __set_pte_at(struct mm_struct *mm,
491 unsigned long addr, pte_t *ptep, pte_t pteval)
492{
493 if (pte_present(pteval) && pte_exec(pteval))
494 flush_icache_pte(pteval);
495
496 set_pte(ptep, pteval);
497}
498
499static inline void set_pte_at(struct mm_struct *mm,
500 unsigned long addr, pte_t *ptep, pte_t pteval)
501{
502 page_table_check_pte_set(mm, addr, ptep, pteval);
503 __set_pte_at(mm, addr, ptep, pteval);
504}
505
506static inline void pte_clear(struct mm_struct *mm,
507 unsigned long addr, pte_t *ptep)
508{
509 __set_pte_at(mm, addr, ptep, __pte(0));
510}
511
512#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
513static inline int ptep_set_access_flags(struct vm_area_struct *vma,
514 unsigned long address, pte_t *ptep,
515 pte_t entry, int dirty)
516{
517 if (!pte_same(*ptep, entry))
518 set_pte_at(vma->vm_mm, address, ptep, entry);
519 /*
520 * update_mmu_cache will unconditionally execute, handling both
521 * the case that the PTE changed and the spurious fault case.
522 */
523 return true;
524}
525
526#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
527static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
528 unsigned long address, pte_t *ptep)
529{
530 pte_t pte = __pte(atomic_long_xchg((atomic_long_t *)ptep, 0));
531
532 page_table_check_pte_clear(mm, address, pte);
533
534 return pte;
535}
536
537#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
538static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
539 unsigned long address,
540 pte_t *ptep)
541{
542 if (!pte_young(*ptep))
543 return 0;
544 return test_and_clear_bit(_PAGE_ACCESSED_OFFSET, &pte_val(*ptep));
545}
546
547#define __HAVE_ARCH_PTEP_SET_WRPROTECT
548static inline void ptep_set_wrprotect(struct mm_struct *mm,
549 unsigned long address, pte_t *ptep)
550{
551 atomic_long_and(~(unsigned long)_PAGE_WRITE, (atomic_long_t *)ptep);
552}
553
554#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
555static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
556 unsigned long address, pte_t *ptep)
557{
558 /*
559 * This comment is borrowed from x86, but applies equally to RISC-V:
560 *
561 * Clearing the accessed bit without a TLB flush
562 * doesn't cause data corruption. [ It could cause incorrect
563 * page aging and the (mistaken) reclaim of hot pages, but the
564 * chance of that should be relatively low. ]
565 *
566 * So as a performance optimization don't flush the TLB when
567 * clearing the accessed bit, it will eventually be flushed by
568 * a context switch or a VM operation anyway. [ In the rare
569 * event of it not getting flushed for a long time the delay
570 * shouldn't really matter because there's no real memory
571 * pressure for swapout to react to. ]
572 */
573 return ptep_test_and_clear_young(vma, address, ptep);
574}
575
576#define pgprot_noncached pgprot_noncached
577static inline pgprot_t pgprot_noncached(pgprot_t _prot)
578{
579 unsigned long prot = pgprot_val(_prot);
580
581 prot &= ~_PAGE_MTMASK;
582 prot |= _PAGE_IO;
583
584 return __pgprot(prot);
585}
586
587#define pgprot_writecombine pgprot_writecombine
588static inline pgprot_t pgprot_writecombine(pgprot_t _prot)
589{
590 unsigned long prot = pgprot_val(_prot);
591
592 prot &= ~_PAGE_MTMASK;
593 prot |= _PAGE_NOCACHE;
594
595 return __pgprot(prot);
596}
597
598/*
599 * THP functions
600 */
601static inline pmd_t pte_pmd(pte_t pte)
602{
603 return __pmd(pte_val(pte));
604}
605
606static inline pmd_t pmd_mkhuge(pmd_t pmd)
607{
608 return pmd;
609}
610
611static inline pmd_t pmd_mkinvalid(pmd_t pmd)
612{
613 return __pmd(pmd_val(pmd) & ~(_PAGE_PRESENT|_PAGE_PROT_NONE));
614}
615
616#define __pmd_to_phys(pmd) (__page_val_to_pfn(pmd_val(pmd)) << PAGE_SHIFT)
617
618static inline unsigned long pmd_pfn(pmd_t pmd)
619{
620 return ((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT);
621}
622
623#define __pud_to_phys(pud) (__page_val_to_pfn(pud_val(pud)) << PAGE_SHIFT)
624
625static inline unsigned long pud_pfn(pud_t pud)
626{
627 return ((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT);
628}
629
630static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
631{
632 return pte_pmd(pte_modify(pmd_pte(pmd), newprot));
633}
634
635#define pmd_write pmd_write
636static inline int pmd_write(pmd_t pmd)
637{
638 return pte_write(pmd_pte(pmd));
639}
640
641static inline int pmd_dirty(pmd_t pmd)
642{
643 return pte_dirty(pmd_pte(pmd));
644}
645
646#define pmd_young pmd_young
647static inline int pmd_young(pmd_t pmd)
648{
649 return pte_young(pmd_pte(pmd));
650}
651
652static inline int pmd_user(pmd_t pmd)
653{
654 return pte_user(pmd_pte(pmd));
655}
656
657static inline pmd_t pmd_mkold(pmd_t pmd)
658{
659 return pte_pmd(pte_mkold(pmd_pte(pmd)));
660}
661
662static inline pmd_t pmd_mkyoung(pmd_t pmd)
663{
664 return pte_pmd(pte_mkyoung(pmd_pte(pmd)));
665}
666
667static inline pmd_t pmd_mkwrite(pmd_t pmd)
668{
669 return pte_pmd(pte_mkwrite(pmd_pte(pmd)));
670}
671
672static inline pmd_t pmd_wrprotect(pmd_t pmd)
673{
674 return pte_pmd(pte_wrprotect(pmd_pte(pmd)));
675}
676
677static inline pmd_t pmd_mkclean(pmd_t pmd)
678{
679 return pte_pmd(pte_mkclean(pmd_pte(pmd)));
680}
681
682static inline pmd_t pmd_mkdirty(pmd_t pmd)
683{
684 return pte_pmd(pte_mkdirty(pmd_pte(pmd)));
685}
686
687static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
688 pmd_t *pmdp, pmd_t pmd)
689{
690 page_table_check_pmd_set(mm, addr, pmdp, pmd);
691 return __set_pte_at(mm, addr, (pte_t *)pmdp, pmd_pte(pmd));
692}
693
694static inline void set_pud_at(struct mm_struct *mm, unsigned long addr,
695 pud_t *pudp, pud_t pud)
696{
697 page_table_check_pud_set(mm, addr, pudp, pud);
698 return __set_pte_at(mm, addr, (pte_t *)pudp, pud_pte(pud));
699}
700
701#ifdef CONFIG_PAGE_TABLE_CHECK
702static inline bool pte_user_accessible_page(pte_t pte)
703{
704 return pte_present(pte) && pte_user(pte);
705}
706
707static inline bool pmd_user_accessible_page(pmd_t pmd)
708{
709 return pmd_leaf(pmd) && pmd_user(pmd);
710}
711
712static inline bool pud_user_accessible_page(pud_t pud)
713{
714 return pud_leaf(pud) && pud_user(pud);
715}
716#endif
717
718#ifdef CONFIG_TRANSPARENT_HUGEPAGE
719static inline int pmd_trans_huge(pmd_t pmd)
720{
721 return pmd_leaf(pmd);
722}
723
724#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
725static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
726 unsigned long address, pmd_t *pmdp,
727 pmd_t entry, int dirty)
728{
729 return ptep_set_access_flags(vma, address, (pte_t *)pmdp, pmd_pte(entry), dirty);
730}
731
732#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
733static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
734 unsigned long address, pmd_t *pmdp)
735{
736 return ptep_test_and_clear_young(vma, address, (pte_t *)pmdp);
737}
738
739#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
740static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
741 unsigned long address, pmd_t *pmdp)
742{
743 pmd_t pmd = __pmd(atomic_long_xchg((atomic_long_t *)pmdp, 0));
744
745 page_table_check_pmd_clear(mm, address, pmd);
746
747 return pmd;
748}
749
750#define __HAVE_ARCH_PMDP_SET_WRPROTECT
751static inline void pmdp_set_wrprotect(struct mm_struct *mm,
752 unsigned long address, pmd_t *pmdp)
753{
754 ptep_set_wrprotect(mm, address, (pte_t *)pmdp);
755}
756
757#define pmdp_establish pmdp_establish
758static inline pmd_t pmdp_establish(struct vm_area_struct *vma,
759 unsigned long address, pmd_t *pmdp, pmd_t pmd)
760{
761 page_table_check_pmd_set(vma->vm_mm, address, pmdp, pmd);
762 return __pmd(atomic_long_xchg((atomic_long_t *)pmdp, pmd_val(pmd)));
763}
764
765#define pmdp_collapse_flush pmdp_collapse_flush
766extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
767 unsigned long address, pmd_t *pmdp);
768#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
769
770/*
771 * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that
772 * are !pte_none() && !pte_present().
773 *
774 * Format of swap PTE:
775 * bit 0: _PAGE_PRESENT (zero)
776 * bit 1 to 3: _PAGE_LEAF (zero)
777 * bit 5: _PAGE_PROT_NONE (zero)
778 * bit 6: exclusive marker
779 * bits 7 to 11: swap type
780 * bits 11 to XLEN-1: swap offset
781 */
782#define __SWP_TYPE_SHIFT 7
783#define __SWP_TYPE_BITS 5
784#define __SWP_TYPE_MASK ((1UL << __SWP_TYPE_BITS) - 1)
785#define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT)
786
787#define MAX_SWAPFILES_CHECK() \
788 BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS)
789
790#define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK)
791#define __swp_offset(x) ((x).val >> __SWP_OFFSET_SHIFT)
792#define __swp_entry(type, offset) ((swp_entry_t) \
793 { (((type) & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT) | \
794 ((offset) << __SWP_OFFSET_SHIFT) })
795
796#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
797#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
798
799static inline int pte_swp_exclusive(pte_t pte)
800{
801 return pte_val(pte) & _PAGE_SWP_EXCLUSIVE;
802}
803
804static inline pte_t pte_swp_mkexclusive(pte_t pte)
805{
806 return __pte(pte_val(pte) | _PAGE_SWP_EXCLUSIVE);
807}
808
809static inline pte_t pte_swp_clear_exclusive(pte_t pte)
810{
811 return __pte(pte_val(pte) & ~_PAGE_SWP_EXCLUSIVE);
812}
813
814#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
815#define __pmd_to_swp_entry(pmd) ((swp_entry_t) { pmd_val(pmd) })
816#define __swp_entry_to_pmd(swp) __pmd((swp).val)
817#endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */
818
819/*
820 * In the RV64 Linux scheme, we give the user half of the virtual-address space
821 * and give the kernel the other (upper) half.
822 */
823#ifdef CONFIG_64BIT
824#define KERN_VIRT_START (-(BIT(VA_BITS)) + TASK_SIZE)
825#else
826#define KERN_VIRT_START FIXADDR_START
827#endif
828
829/*
830 * Task size is 0x4000000000 for RV64 or 0x9fc00000 for RV32.
831 * Note that PGDIR_SIZE must evenly divide TASK_SIZE.
832 * Task size is:
833 * - 0x9fc00000 (~2.5GB) for RV32.
834 * - 0x4000000000 ( 256GB) for RV64 using SV39 mmu
835 * - 0x800000000000 ( 128TB) for RV64 using SV48 mmu
836 *
837 * Note that PGDIR_SIZE must evenly divide TASK_SIZE since "RISC-V
838 * Instruction Set Manual Volume II: Privileged Architecture" states that
839 * "load and store effective addresses, which are 64bits, must have bits
840 * 63–48 all equal to bit 47, or else a page-fault exception will occur."
841 */
842#ifdef CONFIG_64BIT
843#define TASK_SIZE_64 (PGDIR_SIZE * PTRS_PER_PGD / 2)
844#define TASK_SIZE_MIN (PGDIR_SIZE_L3 * PTRS_PER_PGD / 2)
845
846#ifdef CONFIG_COMPAT
847#define TASK_SIZE_32 (_AC(0x80000000, UL) - PAGE_SIZE)
848#define TASK_SIZE (test_thread_flag(TIF_32BIT) ? \
849 TASK_SIZE_32 : TASK_SIZE_64)
850#else
851#define TASK_SIZE TASK_SIZE_64
852#endif
853
854#else
855#define TASK_SIZE FIXADDR_START
856#define TASK_SIZE_MIN TASK_SIZE
857#endif
858
859#else /* CONFIG_MMU */
860
861#define PAGE_SHARED __pgprot(0)
862#define PAGE_KERNEL __pgprot(0)
863#define swapper_pg_dir NULL
864#define TASK_SIZE 0xffffffffUL
865#define VMALLOC_START 0
866#define VMALLOC_END TASK_SIZE
867
868#endif /* !CONFIG_MMU */
869
870extern char _start[];
871extern void *_dtb_early_va;
872extern uintptr_t _dtb_early_pa;
873#if defined(CONFIG_XIP_KERNEL) && defined(CONFIG_MMU)
874#define dtb_early_va (*(void **)XIP_FIXUP(&_dtb_early_va))
875#define dtb_early_pa (*(uintptr_t *)XIP_FIXUP(&_dtb_early_pa))
876#else
877#define dtb_early_va _dtb_early_va
878#define dtb_early_pa _dtb_early_pa
879#endif /* CONFIG_XIP_KERNEL */
880extern u64 satp_mode;
881extern bool pgtable_l4_enabled;
882
883void paging_init(void);
884void misc_mem_init(void);
885
886/*
887 * ZERO_PAGE is a global shared page that is always zero,
888 * used for zero-mapped memory areas, etc.
889 */
890extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)];
891#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
892
893#endif /* !__ASSEMBLY__ */
894
895#endif /* _ASM_RISCV_PGTABLE_H */