at v6.4 895 lines 23 kB view raw
1/* SPDX-License-Identifier: GPL-2.0-only */ 2/* 3 * Copyright (C) 2012 Regents of the University of California 4 */ 5 6#ifndef _ASM_RISCV_PGTABLE_H 7#define _ASM_RISCV_PGTABLE_H 8 9#include <linux/mmzone.h> 10#include <linux/sizes.h> 11 12#include <asm/pgtable-bits.h> 13 14#ifndef CONFIG_MMU 15#define KERNEL_LINK_ADDR PAGE_OFFSET 16#define KERN_VIRT_SIZE (UL(-1)) 17#else 18 19#define ADDRESS_SPACE_END (UL(-1)) 20 21#ifdef CONFIG_64BIT 22/* Leave 2GB for kernel and BPF at the end of the address space */ 23#define KERNEL_LINK_ADDR (ADDRESS_SPACE_END - SZ_2G + 1) 24#else 25#define KERNEL_LINK_ADDR PAGE_OFFSET 26#endif 27 28/* Number of entries in the page global directory */ 29#define PTRS_PER_PGD (PAGE_SIZE / sizeof(pgd_t)) 30/* Number of entries in the page table */ 31#define PTRS_PER_PTE (PAGE_SIZE / sizeof(pte_t)) 32 33/* 34 * Half of the kernel address space (1/4 of the entries of the page global 35 * directory) is for the direct mapping. 36 */ 37#define KERN_VIRT_SIZE ((PTRS_PER_PGD / 2 * PGDIR_SIZE) / 2) 38 39#define VMALLOC_SIZE (KERN_VIRT_SIZE >> 1) 40#define VMALLOC_END PAGE_OFFSET 41#define VMALLOC_START (PAGE_OFFSET - VMALLOC_SIZE) 42 43#define BPF_JIT_REGION_SIZE (SZ_128M) 44#ifdef CONFIG_64BIT 45#define BPF_JIT_REGION_START (BPF_JIT_REGION_END - BPF_JIT_REGION_SIZE) 46#define BPF_JIT_REGION_END (MODULES_END) 47#else 48#define BPF_JIT_REGION_START (PAGE_OFFSET - BPF_JIT_REGION_SIZE) 49#define BPF_JIT_REGION_END (VMALLOC_END) 50#endif 51 52/* Modules always live before the kernel */ 53#ifdef CONFIG_64BIT 54/* This is used to define the end of the KASAN shadow region */ 55#define MODULES_LOWEST_VADDR (KERNEL_LINK_ADDR - SZ_2G) 56#define MODULES_VADDR (PFN_ALIGN((unsigned long)&_end) - SZ_2G) 57#define MODULES_END (PFN_ALIGN((unsigned long)&_start)) 58#endif 59 60/* 61 * Roughly size the vmemmap space to be large enough to fit enough 62 * struct pages to map half the virtual address space. Then 63 * position vmemmap directly below the VMALLOC region. 64 */ 65#ifdef CONFIG_64BIT 66#define VA_BITS (pgtable_l5_enabled ? \ 67 57 : (pgtable_l4_enabled ? 48 : 39)) 68#else 69#define VA_BITS 32 70#endif 71 72#define VMEMMAP_SHIFT \ 73 (VA_BITS - PAGE_SHIFT - 1 + STRUCT_PAGE_MAX_SHIFT) 74#define VMEMMAP_SIZE BIT(VMEMMAP_SHIFT) 75#define VMEMMAP_END VMALLOC_START 76#define VMEMMAP_START (VMALLOC_START - VMEMMAP_SIZE) 77 78/* 79 * Define vmemmap for pfn_to_page & page_to_pfn calls. Needed if kernel 80 * is configured with CONFIG_SPARSEMEM_VMEMMAP enabled. 81 */ 82#define vmemmap ((struct page *)VMEMMAP_START) 83 84#define PCI_IO_SIZE SZ_16M 85#define PCI_IO_END VMEMMAP_START 86#define PCI_IO_START (PCI_IO_END - PCI_IO_SIZE) 87 88#define FIXADDR_TOP PCI_IO_START 89#ifdef CONFIG_64BIT 90#define MAX_FDT_SIZE PMD_SIZE 91#define FIX_FDT_SIZE (MAX_FDT_SIZE + SZ_2M) 92#define FIXADDR_SIZE (PMD_SIZE + FIX_FDT_SIZE) 93#else 94#define MAX_FDT_SIZE PGDIR_SIZE 95#define FIX_FDT_SIZE MAX_FDT_SIZE 96#define FIXADDR_SIZE (PGDIR_SIZE + FIX_FDT_SIZE) 97#endif 98#define FIXADDR_START (FIXADDR_TOP - FIXADDR_SIZE) 99 100#endif 101 102#ifdef CONFIG_XIP_KERNEL 103#define XIP_OFFSET SZ_32M 104#define XIP_OFFSET_MASK (SZ_32M - 1) 105#else 106#define XIP_OFFSET 0 107#endif 108 109#ifndef __ASSEMBLY__ 110 111#include <asm/page.h> 112#include <asm/tlbflush.h> 113#include <linux/mm_types.h> 114 115#define __page_val_to_pfn(_val) (((_val) & _PAGE_PFN_MASK) >> _PAGE_PFN_SHIFT) 116 117#ifdef CONFIG_64BIT 118#include <asm/pgtable-64.h> 119#else 120#include <asm/pgtable-32.h> 121#endif /* CONFIG_64BIT */ 122 123#include <linux/page_table_check.h> 124 125#ifdef CONFIG_XIP_KERNEL 126#define XIP_FIXUP(addr) ({ \ 127 uintptr_t __a = (uintptr_t)(addr); \ 128 (__a >= CONFIG_XIP_PHYS_ADDR && \ 129 __a < CONFIG_XIP_PHYS_ADDR + XIP_OFFSET * 2) ? \ 130 __a - CONFIG_XIP_PHYS_ADDR + CONFIG_PHYS_RAM_BASE - XIP_OFFSET :\ 131 __a; \ 132 }) 133#else 134#define XIP_FIXUP(addr) (addr) 135#endif /* CONFIG_XIP_KERNEL */ 136 137struct pt_alloc_ops { 138 pte_t *(*get_pte_virt)(phys_addr_t pa); 139 phys_addr_t (*alloc_pte)(uintptr_t va); 140#ifndef __PAGETABLE_PMD_FOLDED 141 pmd_t *(*get_pmd_virt)(phys_addr_t pa); 142 phys_addr_t (*alloc_pmd)(uintptr_t va); 143 pud_t *(*get_pud_virt)(phys_addr_t pa); 144 phys_addr_t (*alloc_pud)(uintptr_t va); 145 p4d_t *(*get_p4d_virt)(phys_addr_t pa); 146 phys_addr_t (*alloc_p4d)(uintptr_t va); 147#endif 148}; 149 150extern struct pt_alloc_ops pt_ops __initdata; 151 152#ifdef CONFIG_MMU 153/* Number of PGD entries that a user-mode program can use */ 154#define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE) 155 156/* Page protection bits */ 157#define _PAGE_BASE (_PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_USER) 158 159#define PAGE_NONE __pgprot(_PAGE_PROT_NONE | _PAGE_READ) 160#define PAGE_READ __pgprot(_PAGE_BASE | _PAGE_READ) 161#define PAGE_WRITE __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_WRITE) 162#define PAGE_EXEC __pgprot(_PAGE_BASE | _PAGE_EXEC) 163#define PAGE_READ_EXEC __pgprot(_PAGE_BASE | _PAGE_READ | _PAGE_EXEC) 164#define PAGE_WRITE_EXEC __pgprot(_PAGE_BASE | _PAGE_READ | \ 165 _PAGE_EXEC | _PAGE_WRITE) 166 167#define PAGE_COPY PAGE_READ 168#define PAGE_COPY_EXEC PAGE_READ_EXEC 169#define PAGE_SHARED PAGE_WRITE 170#define PAGE_SHARED_EXEC PAGE_WRITE_EXEC 171 172#define _PAGE_KERNEL (_PAGE_READ \ 173 | _PAGE_WRITE \ 174 | _PAGE_PRESENT \ 175 | _PAGE_ACCESSED \ 176 | _PAGE_DIRTY \ 177 | _PAGE_GLOBAL) 178 179#define PAGE_KERNEL __pgprot(_PAGE_KERNEL) 180#define PAGE_KERNEL_READ __pgprot(_PAGE_KERNEL & ~_PAGE_WRITE) 181#define PAGE_KERNEL_EXEC __pgprot(_PAGE_KERNEL | _PAGE_EXEC) 182#define PAGE_KERNEL_READ_EXEC __pgprot((_PAGE_KERNEL & ~_PAGE_WRITE) \ 183 | _PAGE_EXEC) 184 185#define PAGE_TABLE __pgprot(_PAGE_TABLE) 186 187#define _PAGE_IOREMAP ((_PAGE_KERNEL & ~_PAGE_MTMASK) | _PAGE_IO) 188#define PAGE_KERNEL_IO __pgprot(_PAGE_IOREMAP) 189 190extern pgd_t swapper_pg_dir[]; 191 192#ifdef CONFIG_TRANSPARENT_HUGEPAGE 193static inline int pmd_present(pmd_t pmd) 194{ 195 /* 196 * Checking for _PAGE_LEAF is needed too because: 197 * When splitting a THP, split_huge_page() will temporarily clear 198 * the present bit, in this situation, pmd_present() and 199 * pmd_trans_huge() still needs to return true. 200 */ 201 return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE | _PAGE_LEAF)); 202} 203#else 204static inline int pmd_present(pmd_t pmd) 205{ 206 return (pmd_val(pmd) & (_PAGE_PRESENT | _PAGE_PROT_NONE)); 207} 208#endif 209 210static inline int pmd_none(pmd_t pmd) 211{ 212 return (pmd_val(pmd) == 0); 213} 214 215static inline int pmd_bad(pmd_t pmd) 216{ 217 return !pmd_present(pmd) || (pmd_val(pmd) & _PAGE_LEAF); 218} 219 220#define pmd_leaf pmd_leaf 221static inline int pmd_leaf(pmd_t pmd) 222{ 223 return pmd_present(pmd) && (pmd_val(pmd) & _PAGE_LEAF); 224} 225 226static inline void set_pmd(pmd_t *pmdp, pmd_t pmd) 227{ 228 *pmdp = pmd; 229} 230 231static inline void pmd_clear(pmd_t *pmdp) 232{ 233 set_pmd(pmdp, __pmd(0)); 234} 235 236static inline pgd_t pfn_pgd(unsigned long pfn, pgprot_t prot) 237{ 238 unsigned long prot_val = pgprot_val(prot); 239 240 ALT_THEAD_PMA(prot_val); 241 242 return __pgd((pfn << _PAGE_PFN_SHIFT) | prot_val); 243} 244 245static inline unsigned long _pgd_pfn(pgd_t pgd) 246{ 247 return __page_val_to_pfn(pgd_val(pgd)); 248} 249 250static inline struct page *pmd_page(pmd_t pmd) 251{ 252 return pfn_to_page(__page_val_to_pfn(pmd_val(pmd))); 253} 254 255static inline unsigned long pmd_page_vaddr(pmd_t pmd) 256{ 257 return (unsigned long)pfn_to_virt(__page_val_to_pfn(pmd_val(pmd))); 258} 259 260static inline pte_t pmd_pte(pmd_t pmd) 261{ 262 return __pte(pmd_val(pmd)); 263} 264 265static inline pte_t pud_pte(pud_t pud) 266{ 267 return __pte(pud_val(pud)); 268} 269 270#ifdef CONFIG_RISCV_ISA_SVNAPOT 271 272static __always_inline bool has_svnapot(void) 273{ 274 return riscv_has_extension_likely(RISCV_ISA_EXT_SVNAPOT); 275} 276 277static inline unsigned long pte_napot(pte_t pte) 278{ 279 return pte_val(pte) & _PAGE_NAPOT; 280} 281 282static inline pte_t pte_mknapot(pte_t pte, unsigned int order) 283{ 284 int pos = order - 1 + _PAGE_PFN_SHIFT; 285 unsigned long napot_bit = BIT(pos); 286 unsigned long napot_mask = ~GENMASK(pos, _PAGE_PFN_SHIFT); 287 288 return __pte((pte_val(pte) & napot_mask) | napot_bit | _PAGE_NAPOT); 289} 290 291#else 292 293static __always_inline bool has_svnapot(void) { return false; } 294 295static inline unsigned long pte_napot(pte_t pte) 296{ 297 return 0; 298} 299 300#endif /* CONFIG_RISCV_ISA_SVNAPOT */ 301 302/* Yields the page frame number (PFN) of a page table entry */ 303static inline unsigned long pte_pfn(pte_t pte) 304{ 305 unsigned long res = __page_val_to_pfn(pte_val(pte)); 306 307 if (has_svnapot() && pte_napot(pte)) 308 res = res & (res - 1UL); 309 310 return res; 311} 312 313#define pte_page(x) pfn_to_page(pte_pfn(x)) 314 315/* Constructs a page table entry */ 316static inline pte_t pfn_pte(unsigned long pfn, pgprot_t prot) 317{ 318 unsigned long prot_val = pgprot_val(prot); 319 320 ALT_THEAD_PMA(prot_val); 321 322 return __pte((pfn << _PAGE_PFN_SHIFT) | prot_val); 323} 324 325#define mk_pte(page, prot) pfn_pte(page_to_pfn(page), prot) 326 327static inline int pte_present(pte_t pte) 328{ 329 return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE)); 330} 331 332static inline int pte_none(pte_t pte) 333{ 334 return (pte_val(pte) == 0); 335} 336 337static inline int pte_write(pte_t pte) 338{ 339 return pte_val(pte) & _PAGE_WRITE; 340} 341 342static inline int pte_exec(pte_t pte) 343{ 344 return pte_val(pte) & _PAGE_EXEC; 345} 346 347static inline int pte_user(pte_t pte) 348{ 349 return pte_val(pte) & _PAGE_USER; 350} 351 352static inline int pte_huge(pte_t pte) 353{ 354 return pte_present(pte) && (pte_val(pte) & _PAGE_LEAF); 355} 356 357static inline int pte_dirty(pte_t pte) 358{ 359 return pte_val(pte) & _PAGE_DIRTY; 360} 361 362static inline int pte_young(pte_t pte) 363{ 364 return pte_val(pte) & _PAGE_ACCESSED; 365} 366 367static inline int pte_special(pte_t pte) 368{ 369 return pte_val(pte) & _PAGE_SPECIAL; 370} 371 372/* static inline pte_t pte_rdprotect(pte_t pte) */ 373 374static inline pte_t pte_wrprotect(pte_t pte) 375{ 376 return __pte(pte_val(pte) & ~(_PAGE_WRITE)); 377} 378 379/* static inline pte_t pte_mkread(pte_t pte) */ 380 381static inline pte_t pte_mkwrite(pte_t pte) 382{ 383 return __pte(pte_val(pte) | _PAGE_WRITE); 384} 385 386/* static inline pte_t pte_mkexec(pte_t pte) */ 387 388static inline pte_t pte_mkdirty(pte_t pte) 389{ 390 return __pte(pte_val(pte) | _PAGE_DIRTY); 391} 392 393static inline pte_t pte_mkclean(pte_t pte) 394{ 395 return __pte(pte_val(pte) & ~(_PAGE_DIRTY)); 396} 397 398static inline pte_t pte_mkyoung(pte_t pte) 399{ 400 return __pte(pte_val(pte) | _PAGE_ACCESSED); 401} 402 403static inline pte_t pte_mkold(pte_t pte) 404{ 405 return __pte(pte_val(pte) & ~(_PAGE_ACCESSED)); 406} 407 408static inline pte_t pte_mkspecial(pte_t pte) 409{ 410 return __pte(pte_val(pte) | _PAGE_SPECIAL); 411} 412 413static inline pte_t pte_mkhuge(pte_t pte) 414{ 415 return pte; 416} 417 418#ifdef CONFIG_NUMA_BALANCING 419/* 420 * See the comment in include/asm-generic/pgtable.h 421 */ 422static inline int pte_protnone(pte_t pte) 423{ 424 return (pte_val(pte) & (_PAGE_PRESENT | _PAGE_PROT_NONE)) == _PAGE_PROT_NONE; 425} 426 427static inline int pmd_protnone(pmd_t pmd) 428{ 429 return pte_protnone(pmd_pte(pmd)); 430} 431#endif 432 433/* Modify page protection bits */ 434static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 435{ 436 unsigned long newprot_val = pgprot_val(newprot); 437 438 ALT_THEAD_PMA(newprot_val); 439 440 return __pte((pte_val(pte) & _PAGE_CHG_MASK) | newprot_val); 441} 442 443#define pgd_ERROR(e) \ 444 pr_err("%s:%d: bad pgd " PTE_FMT ".\n", __FILE__, __LINE__, pgd_val(e)) 445 446 447/* Commit new configuration to MMU hardware */ 448static inline void update_mmu_cache(struct vm_area_struct *vma, 449 unsigned long address, pte_t *ptep) 450{ 451 /* 452 * The kernel assumes that TLBs don't cache invalid entries, but 453 * in RISC-V, SFENCE.VMA specifies an ordering constraint, not a 454 * cache flush; it is necessary even after writing invalid entries. 455 * Relying on flush_tlb_fix_spurious_fault would suffice, but 456 * the extra traps reduce performance. So, eagerly SFENCE.VMA. 457 */ 458 local_flush_tlb_page(address); 459} 460 461#define __HAVE_ARCH_UPDATE_MMU_TLB 462#define update_mmu_tlb update_mmu_cache 463 464static inline void update_mmu_cache_pmd(struct vm_area_struct *vma, 465 unsigned long address, pmd_t *pmdp) 466{ 467 pte_t *ptep = (pte_t *)pmdp; 468 469 update_mmu_cache(vma, address, ptep); 470} 471 472#define __HAVE_ARCH_PTE_SAME 473static inline int pte_same(pte_t pte_a, pte_t pte_b) 474{ 475 return pte_val(pte_a) == pte_val(pte_b); 476} 477 478/* 479 * Certain architectures need to do special things when PTEs within 480 * a page table are directly modified. Thus, the following hook is 481 * made available. 482 */ 483static inline void set_pte(pte_t *ptep, pte_t pteval) 484{ 485 *ptep = pteval; 486} 487 488void flush_icache_pte(pte_t pte); 489 490static inline void __set_pte_at(struct mm_struct *mm, 491 unsigned long addr, pte_t *ptep, pte_t pteval) 492{ 493 if (pte_present(pteval) && pte_exec(pteval)) 494 flush_icache_pte(pteval); 495 496 set_pte(ptep, pteval); 497} 498 499static inline void set_pte_at(struct mm_struct *mm, 500 unsigned long addr, pte_t *ptep, pte_t pteval) 501{ 502 page_table_check_pte_set(mm, addr, ptep, pteval); 503 __set_pte_at(mm, addr, ptep, pteval); 504} 505 506static inline void pte_clear(struct mm_struct *mm, 507 unsigned long addr, pte_t *ptep) 508{ 509 __set_pte_at(mm, addr, ptep, __pte(0)); 510} 511 512#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS 513static inline int ptep_set_access_flags(struct vm_area_struct *vma, 514 unsigned long address, pte_t *ptep, 515 pte_t entry, int dirty) 516{ 517 if (!pte_same(*ptep, entry)) 518 set_pte_at(vma->vm_mm, address, ptep, entry); 519 /* 520 * update_mmu_cache will unconditionally execute, handling both 521 * the case that the PTE changed and the spurious fault case. 522 */ 523 return true; 524} 525 526#define __HAVE_ARCH_PTEP_GET_AND_CLEAR 527static inline pte_t ptep_get_and_clear(struct mm_struct *mm, 528 unsigned long address, pte_t *ptep) 529{ 530 pte_t pte = __pte(atomic_long_xchg((atomic_long_t *)ptep, 0)); 531 532 page_table_check_pte_clear(mm, address, pte); 533 534 return pte; 535} 536 537#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 538static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, 539 unsigned long address, 540 pte_t *ptep) 541{ 542 if (!pte_young(*ptep)) 543 return 0; 544 return test_and_clear_bit(_PAGE_ACCESSED_OFFSET, &pte_val(*ptep)); 545} 546 547#define __HAVE_ARCH_PTEP_SET_WRPROTECT 548static inline void ptep_set_wrprotect(struct mm_struct *mm, 549 unsigned long address, pte_t *ptep) 550{ 551 atomic_long_and(~(unsigned long)_PAGE_WRITE, (atomic_long_t *)ptep); 552} 553 554#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH 555static inline int ptep_clear_flush_young(struct vm_area_struct *vma, 556 unsigned long address, pte_t *ptep) 557{ 558 /* 559 * This comment is borrowed from x86, but applies equally to RISC-V: 560 * 561 * Clearing the accessed bit without a TLB flush 562 * doesn't cause data corruption. [ It could cause incorrect 563 * page aging and the (mistaken) reclaim of hot pages, but the 564 * chance of that should be relatively low. ] 565 * 566 * So as a performance optimization don't flush the TLB when 567 * clearing the accessed bit, it will eventually be flushed by 568 * a context switch or a VM operation anyway. [ In the rare 569 * event of it not getting flushed for a long time the delay 570 * shouldn't really matter because there's no real memory 571 * pressure for swapout to react to. ] 572 */ 573 return ptep_test_and_clear_young(vma, address, ptep); 574} 575 576#define pgprot_noncached pgprot_noncached 577static inline pgprot_t pgprot_noncached(pgprot_t _prot) 578{ 579 unsigned long prot = pgprot_val(_prot); 580 581 prot &= ~_PAGE_MTMASK; 582 prot |= _PAGE_IO; 583 584 return __pgprot(prot); 585} 586 587#define pgprot_writecombine pgprot_writecombine 588static inline pgprot_t pgprot_writecombine(pgprot_t _prot) 589{ 590 unsigned long prot = pgprot_val(_prot); 591 592 prot &= ~_PAGE_MTMASK; 593 prot |= _PAGE_NOCACHE; 594 595 return __pgprot(prot); 596} 597 598/* 599 * THP functions 600 */ 601static inline pmd_t pte_pmd(pte_t pte) 602{ 603 return __pmd(pte_val(pte)); 604} 605 606static inline pmd_t pmd_mkhuge(pmd_t pmd) 607{ 608 return pmd; 609} 610 611static inline pmd_t pmd_mkinvalid(pmd_t pmd) 612{ 613 return __pmd(pmd_val(pmd) & ~(_PAGE_PRESENT|_PAGE_PROT_NONE)); 614} 615 616#define __pmd_to_phys(pmd) (__page_val_to_pfn(pmd_val(pmd)) << PAGE_SHIFT) 617 618static inline unsigned long pmd_pfn(pmd_t pmd) 619{ 620 return ((__pmd_to_phys(pmd) & PMD_MASK) >> PAGE_SHIFT); 621} 622 623#define __pud_to_phys(pud) (__page_val_to_pfn(pud_val(pud)) << PAGE_SHIFT) 624 625static inline unsigned long pud_pfn(pud_t pud) 626{ 627 return ((__pud_to_phys(pud) & PUD_MASK) >> PAGE_SHIFT); 628} 629 630static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot) 631{ 632 return pte_pmd(pte_modify(pmd_pte(pmd), newprot)); 633} 634 635#define pmd_write pmd_write 636static inline int pmd_write(pmd_t pmd) 637{ 638 return pte_write(pmd_pte(pmd)); 639} 640 641static inline int pmd_dirty(pmd_t pmd) 642{ 643 return pte_dirty(pmd_pte(pmd)); 644} 645 646#define pmd_young pmd_young 647static inline int pmd_young(pmd_t pmd) 648{ 649 return pte_young(pmd_pte(pmd)); 650} 651 652static inline int pmd_user(pmd_t pmd) 653{ 654 return pte_user(pmd_pte(pmd)); 655} 656 657static inline pmd_t pmd_mkold(pmd_t pmd) 658{ 659 return pte_pmd(pte_mkold(pmd_pte(pmd))); 660} 661 662static inline pmd_t pmd_mkyoung(pmd_t pmd) 663{ 664 return pte_pmd(pte_mkyoung(pmd_pte(pmd))); 665} 666 667static inline pmd_t pmd_mkwrite(pmd_t pmd) 668{ 669 return pte_pmd(pte_mkwrite(pmd_pte(pmd))); 670} 671 672static inline pmd_t pmd_wrprotect(pmd_t pmd) 673{ 674 return pte_pmd(pte_wrprotect(pmd_pte(pmd))); 675} 676 677static inline pmd_t pmd_mkclean(pmd_t pmd) 678{ 679 return pte_pmd(pte_mkclean(pmd_pte(pmd))); 680} 681 682static inline pmd_t pmd_mkdirty(pmd_t pmd) 683{ 684 return pte_pmd(pte_mkdirty(pmd_pte(pmd))); 685} 686 687static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr, 688 pmd_t *pmdp, pmd_t pmd) 689{ 690 page_table_check_pmd_set(mm, addr, pmdp, pmd); 691 return __set_pte_at(mm, addr, (pte_t *)pmdp, pmd_pte(pmd)); 692} 693 694static inline void set_pud_at(struct mm_struct *mm, unsigned long addr, 695 pud_t *pudp, pud_t pud) 696{ 697 page_table_check_pud_set(mm, addr, pudp, pud); 698 return __set_pte_at(mm, addr, (pte_t *)pudp, pud_pte(pud)); 699} 700 701#ifdef CONFIG_PAGE_TABLE_CHECK 702static inline bool pte_user_accessible_page(pte_t pte) 703{ 704 return pte_present(pte) && pte_user(pte); 705} 706 707static inline bool pmd_user_accessible_page(pmd_t pmd) 708{ 709 return pmd_leaf(pmd) && pmd_user(pmd); 710} 711 712static inline bool pud_user_accessible_page(pud_t pud) 713{ 714 return pud_leaf(pud) && pud_user(pud); 715} 716#endif 717 718#ifdef CONFIG_TRANSPARENT_HUGEPAGE 719static inline int pmd_trans_huge(pmd_t pmd) 720{ 721 return pmd_leaf(pmd); 722} 723 724#define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS 725static inline int pmdp_set_access_flags(struct vm_area_struct *vma, 726 unsigned long address, pmd_t *pmdp, 727 pmd_t entry, int dirty) 728{ 729 return ptep_set_access_flags(vma, address, (pte_t *)pmdp, pmd_pte(entry), dirty); 730} 731 732#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG 733static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma, 734 unsigned long address, pmd_t *pmdp) 735{ 736 return ptep_test_and_clear_young(vma, address, (pte_t *)pmdp); 737} 738 739#define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR 740static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm, 741 unsigned long address, pmd_t *pmdp) 742{ 743 pmd_t pmd = __pmd(atomic_long_xchg((atomic_long_t *)pmdp, 0)); 744 745 page_table_check_pmd_clear(mm, address, pmd); 746 747 return pmd; 748} 749 750#define __HAVE_ARCH_PMDP_SET_WRPROTECT 751static inline void pmdp_set_wrprotect(struct mm_struct *mm, 752 unsigned long address, pmd_t *pmdp) 753{ 754 ptep_set_wrprotect(mm, address, (pte_t *)pmdp); 755} 756 757#define pmdp_establish pmdp_establish 758static inline pmd_t pmdp_establish(struct vm_area_struct *vma, 759 unsigned long address, pmd_t *pmdp, pmd_t pmd) 760{ 761 page_table_check_pmd_set(vma->vm_mm, address, pmdp, pmd); 762 return __pmd(atomic_long_xchg((atomic_long_t *)pmdp, pmd_val(pmd))); 763} 764 765#define pmdp_collapse_flush pmdp_collapse_flush 766extern pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, 767 unsigned long address, pmd_t *pmdp); 768#endif /* CONFIG_TRANSPARENT_HUGEPAGE */ 769 770/* 771 * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that 772 * are !pte_none() && !pte_present(). 773 * 774 * Format of swap PTE: 775 * bit 0: _PAGE_PRESENT (zero) 776 * bit 1 to 3: _PAGE_LEAF (zero) 777 * bit 5: _PAGE_PROT_NONE (zero) 778 * bit 6: exclusive marker 779 * bits 7 to 11: swap type 780 * bits 11 to XLEN-1: swap offset 781 */ 782#define __SWP_TYPE_SHIFT 7 783#define __SWP_TYPE_BITS 5 784#define __SWP_TYPE_MASK ((1UL << __SWP_TYPE_BITS) - 1) 785#define __SWP_OFFSET_SHIFT (__SWP_TYPE_BITS + __SWP_TYPE_SHIFT) 786 787#define MAX_SWAPFILES_CHECK() \ 788 BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > __SWP_TYPE_BITS) 789 790#define __swp_type(x) (((x).val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK) 791#define __swp_offset(x) ((x).val >> __SWP_OFFSET_SHIFT) 792#define __swp_entry(type, offset) ((swp_entry_t) \ 793 { (((type) & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT) | \ 794 ((offset) << __SWP_OFFSET_SHIFT) }) 795 796#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 797#define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 798 799static inline int pte_swp_exclusive(pte_t pte) 800{ 801 return pte_val(pte) & _PAGE_SWP_EXCLUSIVE; 802} 803 804static inline pte_t pte_swp_mkexclusive(pte_t pte) 805{ 806 return __pte(pte_val(pte) | _PAGE_SWP_EXCLUSIVE); 807} 808 809static inline pte_t pte_swp_clear_exclusive(pte_t pte) 810{ 811 return __pte(pte_val(pte) & ~_PAGE_SWP_EXCLUSIVE); 812} 813 814#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION 815#define __pmd_to_swp_entry(pmd) ((swp_entry_t) { pmd_val(pmd) }) 816#define __swp_entry_to_pmd(swp) __pmd((swp).val) 817#endif /* CONFIG_ARCH_ENABLE_THP_MIGRATION */ 818 819/* 820 * In the RV64 Linux scheme, we give the user half of the virtual-address space 821 * and give the kernel the other (upper) half. 822 */ 823#ifdef CONFIG_64BIT 824#define KERN_VIRT_START (-(BIT(VA_BITS)) + TASK_SIZE) 825#else 826#define KERN_VIRT_START FIXADDR_START 827#endif 828 829/* 830 * Task size is 0x4000000000 for RV64 or 0x9fc00000 for RV32. 831 * Note that PGDIR_SIZE must evenly divide TASK_SIZE. 832 * Task size is: 833 * - 0x9fc00000 (~2.5GB) for RV32. 834 * - 0x4000000000 ( 256GB) for RV64 using SV39 mmu 835 * - 0x800000000000 ( 128TB) for RV64 using SV48 mmu 836 * 837 * Note that PGDIR_SIZE must evenly divide TASK_SIZE since "RISC-V 838 * Instruction Set Manual Volume II: Privileged Architecture" states that 839 * "load and store effective addresses, which are 64bits, must have bits 840 * 63–48 all equal to bit 47, or else a page-fault exception will occur." 841 */ 842#ifdef CONFIG_64BIT 843#define TASK_SIZE_64 (PGDIR_SIZE * PTRS_PER_PGD / 2) 844#define TASK_SIZE_MIN (PGDIR_SIZE_L3 * PTRS_PER_PGD / 2) 845 846#ifdef CONFIG_COMPAT 847#define TASK_SIZE_32 (_AC(0x80000000, UL) - PAGE_SIZE) 848#define TASK_SIZE (test_thread_flag(TIF_32BIT) ? \ 849 TASK_SIZE_32 : TASK_SIZE_64) 850#else 851#define TASK_SIZE TASK_SIZE_64 852#endif 853 854#else 855#define TASK_SIZE FIXADDR_START 856#define TASK_SIZE_MIN TASK_SIZE 857#endif 858 859#else /* CONFIG_MMU */ 860 861#define PAGE_SHARED __pgprot(0) 862#define PAGE_KERNEL __pgprot(0) 863#define swapper_pg_dir NULL 864#define TASK_SIZE 0xffffffffUL 865#define VMALLOC_START 0 866#define VMALLOC_END TASK_SIZE 867 868#endif /* !CONFIG_MMU */ 869 870extern char _start[]; 871extern void *_dtb_early_va; 872extern uintptr_t _dtb_early_pa; 873#if defined(CONFIG_XIP_KERNEL) && defined(CONFIG_MMU) 874#define dtb_early_va (*(void **)XIP_FIXUP(&_dtb_early_va)) 875#define dtb_early_pa (*(uintptr_t *)XIP_FIXUP(&_dtb_early_pa)) 876#else 877#define dtb_early_va _dtb_early_va 878#define dtb_early_pa _dtb_early_pa 879#endif /* CONFIG_XIP_KERNEL */ 880extern u64 satp_mode; 881extern bool pgtable_l4_enabled; 882 883void paging_init(void); 884void misc_mem_init(void); 885 886/* 887 * ZERO_PAGE is a global shared page that is always zero, 888 * used for zero-mapped memory areas, etc. 889 */ 890extern unsigned long empty_zero_page[PAGE_SIZE / sizeof(unsigned long)]; 891#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) 892 893#endif /* !__ASSEMBLY__ */ 894 895#endif /* _ASM_RISCV_PGTABLE_H */