at v6.4 512 lines 17 kB view raw
1/* SPDX-License-Identifier: GPL-2.0 */ 2#ifndef _PARISC_PGTABLE_H 3#define _PARISC_PGTABLE_H 4 5#include <asm/page.h> 6 7#if CONFIG_PGTABLE_LEVELS == 3 8#include <asm-generic/pgtable-nopud.h> 9#elif CONFIG_PGTABLE_LEVELS == 2 10#include <asm-generic/pgtable-nopmd.h> 11#endif 12 13#include <asm/fixmap.h> 14 15#ifndef __ASSEMBLY__ 16/* 17 * we simulate an x86-style page table for the linux mm code 18 */ 19 20#include <linux/bitops.h> 21#include <linux/spinlock.h> 22#include <linux/mm_types.h> 23#include <asm/processor.h> 24#include <asm/cache.h> 25 26/* This is for the serialization of PxTLB broadcasts. At least on the N class 27 * systems, only one PxTLB inter processor broadcast can be active at any one 28 * time on the Merced bus. */ 29extern spinlock_t pa_tlb_flush_lock; 30#if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 31extern int pa_serialize_tlb_flushes; 32#else 33#define pa_serialize_tlb_flushes (0) 34#endif 35 36#define purge_tlb_start(flags) do { \ 37 if (pa_serialize_tlb_flushes) \ 38 spin_lock_irqsave(&pa_tlb_flush_lock, flags); \ 39 else \ 40 local_irq_save(flags); \ 41 } while (0) 42#define purge_tlb_end(flags) do { \ 43 if (pa_serialize_tlb_flushes) \ 44 spin_unlock_irqrestore(&pa_tlb_flush_lock, flags); \ 45 else \ 46 local_irq_restore(flags); \ 47 } while (0) 48 49/* Purge data and instruction TLB entries. The TLB purge instructions 50 * are slow on SMP machines since the purge must be broadcast to all CPUs. 51 */ 52 53static inline void purge_tlb_entries(struct mm_struct *mm, unsigned long addr) 54{ 55 unsigned long flags; 56 57 purge_tlb_start(flags); 58 mtsp(mm->context.space_id, SR_TEMP1); 59 pdtlb(SR_TEMP1, addr); 60 pitlb(SR_TEMP1, addr); 61 purge_tlb_end(flags); 62} 63 64extern void __update_cache(pte_t pte); 65 66/* Certain architectures need to do special things when PTEs 67 * within a page table are directly modified. Thus, the following 68 * hook is made available. 69 */ 70#define set_pte(pteptr, pteval) \ 71 do { \ 72 *(pteptr) = (pteval); \ 73 mb(); \ 74 } while(0) 75 76#define set_pte_at(mm, addr, pteptr, pteval) \ 77 do { \ 78 if (pte_present(pteval) && \ 79 pte_user(pteval)) \ 80 __update_cache(pteval); \ 81 *(pteptr) = (pteval); \ 82 purge_tlb_entries(mm, addr); \ 83 } while (0) 84 85#endif /* !__ASSEMBLY__ */ 86 87#define pte_ERROR(e) \ 88 printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e)) 89#if CONFIG_PGTABLE_LEVELS == 3 90#define pmd_ERROR(e) \ 91 printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, (unsigned long)pmd_val(e)) 92#endif 93#define pgd_ERROR(e) \ 94 printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, (unsigned long)pgd_val(e)) 95 96/* This is the size of the initially mapped kernel memory */ 97#if defined(CONFIG_64BIT) 98#define KERNEL_INITIAL_ORDER 26 /* 1<<26 = 64MB */ 99#else 100#define KERNEL_INITIAL_ORDER 25 /* 1<<25 = 32MB */ 101#endif 102#define KERNEL_INITIAL_SIZE (1 << KERNEL_INITIAL_ORDER) 103 104#if CONFIG_PGTABLE_LEVELS == 3 105#define PMD_TABLE_ORDER 1 106#define PGD_TABLE_ORDER 0 107#else 108#define PGD_TABLE_ORDER 1 109#endif 110 111/* Definitions for 3rd level (we use PLD here for Page Lower directory 112 * because PTE_SHIFT is used lower down to mean shift that has to be 113 * done to get usable bits out of the PTE) */ 114#define PLD_SHIFT PAGE_SHIFT 115#define PLD_SIZE PAGE_SIZE 116#define BITS_PER_PTE (PAGE_SHIFT - BITS_PER_PTE_ENTRY) 117#define PTRS_PER_PTE (1UL << BITS_PER_PTE) 118 119/* Definitions for 2nd level */ 120#if CONFIG_PGTABLE_LEVELS == 3 121#define PMD_SHIFT (PLD_SHIFT + BITS_PER_PTE) 122#define PMD_SIZE (1UL << PMD_SHIFT) 123#define PMD_MASK (~(PMD_SIZE-1)) 124#define BITS_PER_PMD (PAGE_SHIFT + PMD_TABLE_ORDER - BITS_PER_PMD_ENTRY) 125#define PTRS_PER_PMD (1UL << BITS_PER_PMD) 126#else 127#define BITS_PER_PMD 0 128#endif 129 130/* Definitions for 1st level */ 131#define PGDIR_SHIFT (PLD_SHIFT + BITS_PER_PTE + BITS_PER_PMD) 132#if (PGDIR_SHIFT + PAGE_SHIFT + PGD_TABLE_ORDER - BITS_PER_PGD_ENTRY) > BITS_PER_LONG 133#define BITS_PER_PGD (BITS_PER_LONG - PGDIR_SHIFT) 134#else 135#define BITS_PER_PGD (PAGE_SHIFT + PGD_TABLE_ORDER - BITS_PER_PGD_ENTRY) 136#endif 137#define PGDIR_SIZE (1UL << PGDIR_SHIFT) 138#define PGDIR_MASK (~(PGDIR_SIZE-1)) 139#define PTRS_PER_PGD (1UL << BITS_PER_PGD) 140#define USER_PTRS_PER_PGD PTRS_PER_PGD 141 142#ifdef CONFIG_64BIT 143#define MAX_ADDRBITS (PGDIR_SHIFT + BITS_PER_PGD) 144#define MAX_ADDRESS (1UL << MAX_ADDRBITS) 145#define SPACEID_SHIFT (MAX_ADDRBITS - 32) 146#else 147#define MAX_ADDRBITS (BITS_PER_LONG) 148#define MAX_ADDRESS (1ULL << MAX_ADDRBITS) 149#define SPACEID_SHIFT 0 150#endif 151 152/* This calculates the number of initial pages we need for the initial 153 * page tables */ 154#if (KERNEL_INITIAL_ORDER) >= (PLD_SHIFT + BITS_PER_PTE) 155# define PT_INITIAL (1 << (KERNEL_INITIAL_ORDER - PLD_SHIFT - BITS_PER_PTE)) 156#else 157# define PT_INITIAL (1) /* all initial PTEs fit into one page */ 158#endif 159 160/* 161 * pgd entries used up by user/kernel: 162 */ 163 164/* NB: The tlb miss handlers make certain assumptions about the order */ 165/* of the following bits, so be careful (One example, bits 25-31 */ 166/* are moved together in one instruction). */ 167 168#define _PAGE_READ_BIT 31 /* (0x001) read access allowed */ 169#define _PAGE_WRITE_BIT 30 /* (0x002) write access allowed */ 170#define _PAGE_EXEC_BIT 29 /* (0x004) execute access allowed */ 171#define _PAGE_GATEWAY_BIT 28 /* (0x008) privilege promotion allowed */ 172#define _PAGE_DMB_BIT 27 /* (0x010) Data Memory Break enable (B bit) */ 173#define _PAGE_DIRTY_BIT 26 /* (0x020) Page Dirty (D bit) */ 174#define _PAGE_REFTRAP_BIT 25 /* (0x040) Page Ref. Trap enable (T bit) */ 175#define _PAGE_NO_CACHE_BIT 24 /* (0x080) Uncached Page (U bit) */ 176#define _PAGE_ACCESSED_BIT 23 /* (0x100) Software: Page Accessed */ 177#define _PAGE_PRESENT_BIT 22 /* (0x200) Software: translation valid */ 178#define _PAGE_HPAGE_BIT 21 /* (0x400) Software: Huge Page */ 179#define _PAGE_USER_BIT 20 /* (0x800) Software: User accessible page */ 180#ifdef CONFIG_HUGETLB_PAGE 181#define _PAGE_SPECIAL_BIT _PAGE_DMB_BIT /* DMB feature is currently unused */ 182#else 183#define _PAGE_SPECIAL_BIT _PAGE_HPAGE_BIT /* use unused HUGE PAGE bit */ 184#endif 185 186/* N.B. The bits are defined in terms of a 32 bit word above, so the */ 187/* following macro is ok for both 32 and 64 bit. */ 188 189#define xlate_pabit(x) (31 - x) 190 191/* this defines the shift to the usable bits in the PTE it is set so 192 * that the valid bits _PAGE_PRESENT_BIT and _PAGE_USER_BIT are set 193 * to zero */ 194#define PTE_SHIFT xlate_pabit(_PAGE_USER_BIT) 195 196/* PFN_PTE_SHIFT defines the shift of a PTE value to access the PFN field */ 197#define PFN_PTE_SHIFT 12 198 199#define _PAGE_READ (1 << xlate_pabit(_PAGE_READ_BIT)) 200#define _PAGE_WRITE (1 << xlate_pabit(_PAGE_WRITE_BIT)) 201#define _PAGE_RW (_PAGE_READ | _PAGE_WRITE) 202#define _PAGE_EXEC (1 << xlate_pabit(_PAGE_EXEC_BIT)) 203#define _PAGE_GATEWAY (1 << xlate_pabit(_PAGE_GATEWAY_BIT)) 204#define _PAGE_DMB (1 << xlate_pabit(_PAGE_DMB_BIT)) 205#define _PAGE_DIRTY (1 << xlate_pabit(_PAGE_DIRTY_BIT)) 206#define _PAGE_REFTRAP (1 << xlate_pabit(_PAGE_REFTRAP_BIT)) 207#define _PAGE_NO_CACHE (1 << xlate_pabit(_PAGE_NO_CACHE_BIT)) 208#define _PAGE_ACCESSED (1 << xlate_pabit(_PAGE_ACCESSED_BIT)) 209#define _PAGE_PRESENT (1 << xlate_pabit(_PAGE_PRESENT_BIT)) 210#define _PAGE_HUGE (1 << xlate_pabit(_PAGE_HPAGE_BIT)) 211#define _PAGE_USER (1 << xlate_pabit(_PAGE_USER_BIT)) 212#define _PAGE_SPECIAL (1 << xlate_pabit(_PAGE_SPECIAL_BIT)) 213 214#define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | _PAGE_DIRTY | _PAGE_ACCESSED) 215#define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_SPECIAL) 216#define _PAGE_KERNEL_RO (_PAGE_PRESENT | _PAGE_READ | _PAGE_DIRTY | _PAGE_ACCESSED) 217#define _PAGE_KERNEL_EXEC (_PAGE_KERNEL_RO | _PAGE_EXEC) 218#define _PAGE_KERNEL_RWX (_PAGE_KERNEL_EXEC | _PAGE_WRITE) 219#define _PAGE_KERNEL (_PAGE_KERNEL_RO | _PAGE_WRITE) 220 221/* We borrow bit 23 to store the exclusive marker in swap PTEs. */ 222#define _PAGE_SWP_EXCLUSIVE _PAGE_ACCESSED 223 224/* The pgd/pmd contains a ptr (in phys addr space); since all pgds/pmds 225 * are page-aligned, we don't care about the PAGE_OFFSET bits, except 226 * for a few meta-information bits, so we shift the address to be 227 * able to effectively address 40/42/44-bits of physical address space 228 * depending on 4k/16k/64k PAGE_SIZE */ 229#define _PxD_PRESENT_BIT 31 230#define _PxD_VALID_BIT 30 231 232#define PxD_FLAG_PRESENT (1 << xlate_pabit(_PxD_PRESENT_BIT)) 233#define PxD_FLAG_VALID (1 << xlate_pabit(_PxD_VALID_BIT)) 234#define PxD_FLAG_MASK (0xf) 235#define PxD_FLAG_SHIFT (4) 236#define PxD_VALUE_SHIFT (PFN_PTE_SHIFT-PxD_FLAG_SHIFT) 237 238#ifndef __ASSEMBLY__ 239 240#define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_USER) 241#define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_WRITE) 242/* Others seem to make this executable, I don't know if that's correct 243 or not. The stack is mapped this way though so this is necessary 244 in the short term - dhd@linuxcare.com, 2000-08-08 */ 245#define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ) 246#define PAGE_WRITEONLY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITE) 247#define PAGE_EXECREAD __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_EXEC) 248#define PAGE_COPY PAGE_EXECREAD 249#define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_READ | _PAGE_WRITE | _PAGE_EXEC) 250#define PAGE_KERNEL __pgprot(_PAGE_KERNEL) 251#define PAGE_KERNEL_EXEC __pgprot(_PAGE_KERNEL_EXEC) 252#define PAGE_KERNEL_RWX __pgprot(_PAGE_KERNEL_RWX) 253#define PAGE_KERNEL_RO __pgprot(_PAGE_KERNEL_RO) 254#define PAGE_KERNEL_UNC __pgprot(_PAGE_KERNEL | _PAGE_NO_CACHE) 255#define PAGE_GATEWAY __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_GATEWAY| _PAGE_READ) 256 257 258/* 259 * We could have an execute only page using "gateway - promote to priv 260 * level 3", but that is kind of silly. So, the way things are defined 261 * now, we must always have read permission for pages with execute 262 * permission. For the fun of it we'll go ahead and support write only 263 * pages. 264 */ 265 266 /*xwr*/ 267 268extern pgd_t swapper_pg_dir[]; /* declared in init_task.c */ 269 270/* initial page tables for 0-8MB for kernel */ 271 272extern pte_t pg0[]; 273 274/* zero page used for uninitialized stuff */ 275 276extern unsigned long *empty_zero_page; 277 278/* 279 * ZERO_PAGE is a global shared page that is always zero: used 280 * for zero-mapped memory areas etc.. 281 */ 282 283#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page)) 284 285#define pte_none(x) (pte_val(x) == 0) 286#define pte_present(x) (pte_val(x) & _PAGE_PRESENT) 287#define pte_user(x) (pte_val(x) & _PAGE_USER) 288#define pte_clear(mm, addr, xp) set_pte_at(mm, addr, xp, __pte(0)) 289 290#define pmd_flag(x) (pmd_val(x) & PxD_FLAG_MASK) 291#define pmd_address(x) ((unsigned long)(pmd_val(x) &~ PxD_FLAG_MASK) << PxD_VALUE_SHIFT) 292#define pud_flag(x) (pud_val(x) & PxD_FLAG_MASK) 293#define pud_address(x) ((unsigned long)(pud_val(x) &~ PxD_FLAG_MASK) << PxD_VALUE_SHIFT) 294#define pgd_flag(x) (pgd_val(x) & PxD_FLAG_MASK) 295#define pgd_address(x) ((unsigned long)(pgd_val(x) &~ PxD_FLAG_MASK) << PxD_VALUE_SHIFT) 296 297#define pmd_none(x) (!pmd_val(x)) 298#define pmd_bad(x) (!(pmd_flag(x) & PxD_FLAG_VALID)) 299#define pmd_present(x) (pmd_flag(x) & PxD_FLAG_PRESENT) 300static inline void pmd_clear(pmd_t *pmd) { 301 set_pmd(pmd, __pmd(0)); 302} 303 304 305 306#if CONFIG_PGTABLE_LEVELS == 3 307#define pud_pgtable(pud) ((pmd_t *) __va(pud_address(pud))) 308#define pud_page(pud) virt_to_page((void *)pud_pgtable(pud)) 309 310/* For 64 bit we have three level tables */ 311 312#define pud_none(x) (!pud_val(x)) 313#define pud_bad(x) (!(pud_flag(x) & PxD_FLAG_VALID)) 314#define pud_present(x) (pud_flag(x) & PxD_FLAG_PRESENT) 315static inline void pud_clear(pud_t *pud) { 316 set_pud(pud, __pud(0)); 317} 318#endif 319 320/* 321 * The following only work if pte_present() is true. 322 * Undefined behaviour if not.. 323 */ 324static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; } 325static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; } 326static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITE; } 327static inline int pte_special(pte_t pte) { return pte_val(pte) & _PAGE_SPECIAL; } 328 329static inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~_PAGE_DIRTY; return pte; } 330static inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; } 331static inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) &= ~_PAGE_WRITE; return pte; } 332static inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= _PAGE_DIRTY; return pte; } 333static inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= _PAGE_ACCESSED; return pte; } 334static inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) |= _PAGE_WRITE; return pte; } 335static inline pte_t pte_mkspecial(pte_t pte) { pte_val(pte) |= _PAGE_SPECIAL; return pte; } 336 337/* 338 * Huge pte definitions. 339 */ 340#ifdef CONFIG_HUGETLB_PAGE 341#define pte_huge(pte) (pte_val(pte) & _PAGE_HUGE) 342#define pte_mkhuge(pte) (__pte(pte_val(pte) | \ 343 (parisc_requires_coherency() ? 0 : _PAGE_HUGE))) 344#else 345#define pte_huge(pte) (0) 346#define pte_mkhuge(pte) (pte) 347#endif 348 349 350/* 351 * Conversion functions: convert a page and protection to a page entry, 352 * and a page entry and page directory to the page they refer to. 353 */ 354#define __mk_pte(addr,pgprot) \ 355({ \ 356 pte_t __pte; \ 357 \ 358 pte_val(__pte) = ((((addr)>>PAGE_SHIFT)<<PFN_PTE_SHIFT) + pgprot_val(pgprot)); \ 359 \ 360 __pte; \ 361}) 362 363#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot)) 364 365static inline pte_t pfn_pte(unsigned long pfn, pgprot_t pgprot) 366{ 367 pte_t pte; 368 pte_val(pte) = (pfn << PFN_PTE_SHIFT) | pgprot_val(pgprot); 369 return pte; 370} 371 372static inline pte_t pte_modify(pte_t pte, pgprot_t newprot) 373{ pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; } 374 375/* Permanent address of a page. On parisc we don't have highmem. */ 376 377#define pte_pfn(x) (pte_val(x) >> PFN_PTE_SHIFT) 378 379#define pte_page(pte) (pfn_to_page(pte_pfn(pte))) 380 381static inline unsigned long pmd_page_vaddr(pmd_t pmd) 382{ 383 return ((unsigned long) __va(pmd_address(pmd))); 384} 385 386#define pmd_pfn(pmd) (pmd_address(pmd) >> PAGE_SHIFT) 387#define __pmd_page(pmd) ((unsigned long) __va(pmd_address(pmd))) 388#define pmd_page(pmd) virt_to_page((void *)__pmd_page(pmd)) 389 390/* Find an entry in the second-level page table.. */ 391 392extern void paging_init (void); 393 394/* Used for deferring calls to flush_dcache_page() */ 395 396#define PG_dcache_dirty PG_arch_1 397 398#define update_mmu_cache(vms,addr,ptep) __update_cache(*ptep) 399 400/* 401 * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that 402 * are !pte_none() && !pte_present(). 403 * 404 * Format of swap PTEs (32bit): 405 * 406 * 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3 407 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 408 * <---------------- offset -----------------> P E <ofs> < type -> 409 * 410 * E is the exclusive marker that is not stored in swap entries. 411 * _PAGE_PRESENT (P) must be 0. 412 * 413 * For the 64bit version, the offset is extended by 32bit. 414 */ 415#define __swp_type(x) ((x).val & 0x1f) 416#define __swp_offset(x) ( (((x).val >> 5) & 0x7) | \ 417 (((x).val >> 10) << 3) ) 418#define __swp_entry(type, offset) ((swp_entry_t) { \ 419 ((type) & 0x1f) | \ 420 ((offset & 0x7) << 5) | \ 421 ((offset >> 3) << 10) }) 422#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) }) 423#define __swp_entry_to_pte(x) ((pte_t) { (x).val }) 424 425static inline int pte_swp_exclusive(pte_t pte) 426{ 427 return pte_val(pte) & _PAGE_SWP_EXCLUSIVE; 428} 429 430static inline pte_t pte_swp_mkexclusive(pte_t pte) 431{ 432 pte_val(pte) |= _PAGE_SWP_EXCLUSIVE; 433 return pte; 434} 435 436static inline pte_t pte_swp_clear_exclusive(pte_t pte) 437{ 438 pte_val(pte) &= ~_PAGE_SWP_EXCLUSIVE; 439 return pte; 440} 441 442static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep) 443{ 444 pte_t pte; 445 446 if (!pte_young(*ptep)) 447 return 0; 448 449 pte = *ptep; 450 if (!pte_young(pte)) { 451 return 0; 452 } 453 set_pte_at(vma->vm_mm, addr, ptep, pte_mkold(pte)); 454 return 1; 455} 456 457struct mm_struct; 458static inline pte_t ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 459{ 460 pte_t old_pte; 461 462 old_pte = *ptep; 463 set_pte_at(mm, addr, ptep, __pte(0)); 464 465 return old_pte; 466} 467 468static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep) 469{ 470 set_pte_at(mm, addr, ptep, pte_wrprotect(*ptep)); 471} 472 473#define pte_same(A,B) (pte_val(A) == pte_val(B)) 474 475struct seq_file; 476extern void arch_report_meminfo(struct seq_file *m); 477 478#endif /* !__ASSEMBLY__ */ 479 480 481/* TLB page size encoding - see table 3-1 in parisc20.pdf */ 482#define _PAGE_SIZE_ENCODING_4K 0 483#define _PAGE_SIZE_ENCODING_16K 1 484#define _PAGE_SIZE_ENCODING_64K 2 485#define _PAGE_SIZE_ENCODING_256K 3 486#define _PAGE_SIZE_ENCODING_1M 4 487#define _PAGE_SIZE_ENCODING_4M 5 488#define _PAGE_SIZE_ENCODING_16M 6 489#define _PAGE_SIZE_ENCODING_64M 7 490 491#if defined(CONFIG_PARISC_PAGE_SIZE_4KB) 492# define _PAGE_SIZE_ENCODING_DEFAULT _PAGE_SIZE_ENCODING_4K 493#elif defined(CONFIG_PARISC_PAGE_SIZE_16KB) 494# define _PAGE_SIZE_ENCODING_DEFAULT _PAGE_SIZE_ENCODING_16K 495#elif defined(CONFIG_PARISC_PAGE_SIZE_64KB) 496# define _PAGE_SIZE_ENCODING_DEFAULT _PAGE_SIZE_ENCODING_64K 497#endif 498 499 500#define pgprot_noncached(prot) __pgprot(pgprot_val(prot) | _PAGE_NO_CACHE) 501 502/* We provide our own get_unmapped_area to provide cache coherency */ 503 504#define HAVE_ARCH_UNMAPPED_AREA 505#define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN 506 507#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG 508#define __HAVE_ARCH_PTEP_GET_AND_CLEAR 509#define __HAVE_ARCH_PTEP_SET_WRPROTECT 510#define __HAVE_ARCH_PTE_SAME 511 512#endif /* _PARISC_PGTABLE_H */