Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _ASM_IA64_PGTABLE_H
3#define _ASM_IA64_PGTABLE_H
4
5/*
6 * This file contains the functions and defines necessary to modify and use
7 * the IA-64 page table tree.
8 *
9 * This hopefully works with any (fixed) IA-64 page-size, as defined
10 * in <asm/page.h>.
11 *
12 * Copyright (C) 1998-2005 Hewlett-Packard Co
13 * David Mosberger-Tang <davidm@hpl.hp.com>
14 */
15
16
17#include <asm/mman.h>
18#include <asm/page.h>
19#include <asm/processor.h>
20#include <asm/types.h>
21
22#define IA64_MAX_PHYS_BITS 50 /* max. number of physical address bits (architected) */
23
24/*
25 * First, define the various bits in a PTE. Note that the PTE format
26 * matches the VHPT short format, the firt doubleword of the VHPD long
27 * format, and the first doubleword of the TLB insertion format.
28 */
29#define _PAGE_P_BIT 0
30#define _PAGE_A_BIT 5
31#define _PAGE_D_BIT 6
32
33#define _PAGE_P (1 << _PAGE_P_BIT) /* page present bit */
34#define _PAGE_MA_WB (0x0 << 2) /* write back memory attribute */
35#define _PAGE_MA_UC (0x4 << 2) /* uncacheable memory attribute */
36#define _PAGE_MA_UCE (0x5 << 2) /* UC exported attribute */
37#define _PAGE_MA_WC (0x6 << 2) /* write coalescing memory attribute */
38#define _PAGE_MA_NAT (0x7 << 2) /* not-a-thing attribute */
39#define _PAGE_MA_MASK (0x7 << 2)
40#define _PAGE_PL_0 (0 << 7) /* privilege level 0 (kernel) */
41#define _PAGE_PL_1 (1 << 7) /* privilege level 1 (unused) */
42#define _PAGE_PL_2 (2 << 7) /* privilege level 2 (unused) */
43#define _PAGE_PL_3 (3 << 7) /* privilege level 3 (user) */
44#define _PAGE_PL_MASK (3 << 7)
45#define _PAGE_AR_R (0 << 9) /* read only */
46#define _PAGE_AR_RX (1 << 9) /* read & execute */
47#define _PAGE_AR_RW (2 << 9) /* read & write */
48#define _PAGE_AR_RWX (3 << 9) /* read, write & execute */
49#define _PAGE_AR_R_RW (4 << 9) /* read / read & write */
50#define _PAGE_AR_RX_RWX (5 << 9) /* read & exec / read, write & exec */
51#define _PAGE_AR_RWX_RW (6 << 9) /* read, write & exec / read & write */
52#define _PAGE_AR_X_RX (7 << 9) /* exec & promote / read & exec */
53#define _PAGE_AR_MASK (7 << 9)
54#define _PAGE_AR_SHIFT 9
55#define _PAGE_A (1 << _PAGE_A_BIT) /* page accessed bit */
56#define _PAGE_D (1 << _PAGE_D_BIT) /* page dirty bit */
57#define _PAGE_PPN_MASK (((__IA64_UL(1) << IA64_MAX_PHYS_BITS) - 1) & ~0xfffUL)
58#define _PAGE_ED (__IA64_UL(1) << 52) /* exception deferral */
59#define _PAGE_PROTNONE (__IA64_UL(1) << 63)
60
61/* We borrow bit 7 to store the exclusive marker in swap PTEs. */
62#define _PAGE_SWP_EXCLUSIVE (1 << 7)
63
64#define _PFN_MASK _PAGE_PPN_MASK
65/* Mask of bits which may be changed by pte_modify(); the odd bits are there for _PAGE_PROTNONE */
66#define _PAGE_CHG_MASK (_PAGE_P | _PAGE_PROTNONE | _PAGE_PL_MASK | _PAGE_AR_MASK | _PAGE_ED)
67
68#define _PAGE_SIZE_4K 12
69#define _PAGE_SIZE_8K 13
70#define _PAGE_SIZE_16K 14
71#define _PAGE_SIZE_64K 16
72#define _PAGE_SIZE_256K 18
73#define _PAGE_SIZE_1M 20
74#define _PAGE_SIZE_4M 22
75#define _PAGE_SIZE_16M 24
76#define _PAGE_SIZE_64M 26
77#define _PAGE_SIZE_256M 28
78#define _PAGE_SIZE_1G 30
79#define _PAGE_SIZE_4G 32
80
81#define __ACCESS_BITS _PAGE_ED | _PAGE_A | _PAGE_P | _PAGE_MA_WB
82#define __DIRTY_BITS_NO_ED _PAGE_A | _PAGE_P | _PAGE_D | _PAGE_MA_WB
83#define __DIRTY_BITS _PAGE_ED | __DIRTY_BITS_NO_ED
84
85/*
86 * How many pointers will a page table level hold expressed in shift
87 */
88#define PTRS_PER_PTD_SHIFT (PAGE_SHIFT-3)
89
90/*
91 * Definitions for fourth level:
92 */
93#define PTRS_PER_PTE (__IA64_UL(1) << (PTRS_PER_PTD_SHIFT))
94
95/*
96 * Definitions for third level:
97 *
98 * PMD_SHIFT determines the size of the area a third-level page table
99 * can map.
100 */
101#define PMD_SHIFT (PAGE_SHIFT + (PTRS_PER_PTD_SHIFT))
102#define PMD_SIZE (1UL << PMD_SHIFT)
103#define PMD_MASK (~(PMD_SIZE-1))
104#define PTRS_PER_PMD (1UL << (PTRS_PER_PTD_SHIFT))
105
106#if CONFIG_PGTABLE_LEVELS == 4
107/*
108 * Definitions for second level:
109 *
110 * PUD_SHIFT determines the size of the area a second-level page table
111 * can map.
112 */
113#define PUD_SHIFT (PMD_SHIFT + (PTRS_PER_PTD_SHIFT))
114#define PUD_SIZE (1UL << PUD_SHIFT)
115#define PUD_MASK (~(PUD_SIZE-1))
116#define PTRS_PER_PUD (1UL << (PTRS_PER_PTD_SHIFT))
117#endif
118
119/*
120 * Definitions for first level:
121 *
122 * PGDIR_SHIFT determines what a first-level page table entry can map.
123 */
124#if CONFIG_PGTABLE_LEVELS == 4
125#define PGDIR_SHIFT (PUD_SHIFT + (PTRS_PER_PTD_SHIFT))
126#else
127#define PGDIR_SHIFT (PMD_SHIFT + (PTRS_PER_PTD_SHIFT))
128#endif
129#define PGDIR_SIZE (__IA64_UL(1) << PGDIR_SHIFT)
130#define PGDIR_MASK (~(PGDIR_SIZE-1))
131#define PTRS_PER_PGD_SHIFT PTRS_PER_PTD_SHIFT
132#define PTRS_PER_PGD (1UL << PTRS_PER_PGD_SHIFT)
133#define USER_PTRS_PER_PGD (5*PTRS_PER_PGD/8) /* regions 0-4 are user regions */
134
135/*
136 * All the normal masks have the "page accessed" bits on, as any time
137 * they are used, the page is accessed. They are cleared only by the
138 * page-out routines.
139 */
140#define PAGE_NONE __pgprot(_PAGE_PROTNONE | _PAGE_A)
141#define PAGE_SHARED __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RW)
142#define PAGE_READONLY __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_R)
143#define PAGE_COPY __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_R)
144#define PAGE_COPY_EXEC __pgprot(__ACCESS_BITS | _PAGE_PL_3 | _PAGE_AR_RX)
145#define PAGE_GATE __pgprot(__ACCESS_BITS | _PAGE_PL_0 | _PAGE_AR_X_RX)
146#define PAGE_KERNEL __pgprot(__DIRTY_BITS | _PAGE_PL_0 | _PAGE_AR_RWX)
147#define PAGE_KERNELRX __pgprot(__ACCESS_BITS | _PAGE_PL_0 | _PAGE_AR_RX)
148#define PAGE_KERNEL_UC __pgprot(__DIRTY_BITS | _PAGE_PL_0 | _PAGE_AR_RWX | \
149 _PAGE_MA_UC)
150
151# ifndef __ASSEMBLY__
152
153#include <linux/sched/mm.h> /* for mm_struct */
154#include <linux/bitops.h>
155#include <asm/cacheflush.h>
156#include <asm/mmu_context.h>
157
158/*
159 * Next come the mappings that determine how mmap() protection bits
160 * (PROT_EXEC, PROT_READ, PROT_WRITE, PROT_NONE) get implemented. The
161 * _P version gets used for a private shared memory segment, the _S
162 * version gets used for a shared memory segment with MAP_SHARED on.
163 * In a private shared memory segment, we do a copy-on-write if a task
164 * attempts to write to the page.
165 */
166 /* xwr */
167#define pgd_ERROR(e) printk("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e))
168#if CONFIG_PGTABLE_LEVELS == 4
169#define pud_ERROR(e) printk("%s:%d: bad pud %016lx.\n", __FILE__, __LINE__, pud_val(e))
170#endif
171#define pmd_ERROR(e) printk("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e))
172#define pte_ERROR(e) printk("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e))
173
174
175/*
176 * Some definitions to translate between mem_map, PTEs, and page addresses:
177 */
178
179
180/* Quick test to see if ADDR is a (potentially) valid physical address. */
181static inline long
182ia64_phys_addr_valid (unsigned long addr)
183{
184 return (addr & (local_cpu_data->unimpl_pa_mask)) == 0;
185}
186
187/*
188 * Now come the defines and routines to manage and access the three-level
189 * page table.
190 */
191
192
193#define VMALLOC_START (RGN_BASE(RGN_GATE) + 0x200000000UL)
194#if defined(CONFIG_SPARSEMEM) && defined(CONFIG_SPARSEMEM_VMEMMAP)
195/* SPARSEMEM_VMEMMAP uses half of vmalloc... */
196# define VMALLOC_END (RGN_BASE(RGN_GATE) + (1UL << (4*PAGE_SHIFT - 10)))
197# define vmemmap ((struct page *)VMALLOC_END)
198#else
199# define VMALLOC_END (RGN_BASE(RGN_GATE) + (1UL << (4*PAGE_SHIFT - 9)))
200#endif
201
202/* fs/proc/kcore.c */
203#define kc_vaddr_to_offset(v) ((v) - RGN_BASE(RGN_GATE))
204#define kc_offset_to_vaddr(o) ((o) + RGN_BASE(RGN_GATE))
205
206#define RGN_MAP_SHIFT (PGDIR_SHIFT + PTRS_PER_PGD_SHIFT - 3)
207#define RGN_MAP_LIMIT ((1UL << RGN_MAP_SHIFT) - PAGE_SIZE) /* per region addr limit */
208
209/*
210 * Conversion functions: convert page frame number (pfn) and a protection value to a page
211 * table entry (pte).
212 */
213#define pfn_pte(pfn, pgprot) \
214({ pte_t __pte; pte_val(__pte) = ((pfn) << PAGE_SHIFT) | pgprot_val(pgprot); __pte; })
215
216/* Extract pfn from pte. */
217#define pte_pfn(_pte) ((pte_val(_pte) & _PFN_MASK) >> PAGE_SHIFT)
218
219#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
220
221/* This takes a physical page address that is used by the remapping functions */
222#define mk_pte_phys(physpage, pgprot) \
223({ pte_t __pte; pte_val(__pte) = physpage + pgprot_val(pgprot); __pte; })
224
225#define pte_modify(_pte, newprot) \
226 (__pte((pte_val(_pte) & ~_PAGE_CHG_MASK) | (pgprot_val(newprot) & _PAGE_CHG_MASK)))
227
228#define pte_none(pte) (!pte_val(pte))
229#define pte_present(pte) (pte_val(pte) & (_PAGE_P | _PAGE_PROTNONE))
230#define pte_clear(mm,addr,pte) (pte_val(*(pte)) = 0UL)
231/* pte_page() returns the "struct page *" corresponding to the PTE: */
232#define pte_page(pte) virt_to_page(((pte_val(pte) & _PFN_MASK) + PAGE_OFFSET))
233
234#define pmd_none(pmd) (!pmd_val(pmd))
235#define pmd_bad(pmd) (!ia64_phys_addr_valid(pmd_val(pmd)))
236#define pmd_present(pmd) (pmd_val(pmd) != 0UL)
237#define pmd_clear(pmdp) (pmd_val(*(pmdp)) = 0UL)
238#define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_val(pmd) & _PFN_MASK))
239#define pmd_pfn(pmd) ((pmd_val(pmd) & _PFN_MASK) >> PAGE_SHIFT)
240#define pmd_page(pmd) virt_to_page((pmd_val(pmd) + PAGE_OFFSET))
241
242#define pud_none(pud) (!pud_val(pud))
243#define pud_bad(pud) (!ia64_phys_addr_valid(pud_val(pud)))
244#define pud_present(pud) (pud_val(pud) != 0UL)
245#define pud_clear(pudp) (pud_val(*(pudp)) = 0UL)
246#define pud_pgtable(pud) ((pmd_t *) __va(pud_val(pud) & _PFN_MASK))
247#define pud_page(pud) virt_to_page((pud_val(pud) + PAGE_OFFSET))
248
249#if CONFIG_PGTABLE_LEVELS == 4
250#define p4d_none(p4d) (!p4d_val(p4d))
251#define p4d_bad(p4d) (!ia64_phys_addr_valid(p4d_val(p4d)))
252#define p4d_present(p4d) (p4d_val(p4d) != 0UL)
253#define p4d_clear(p4dp) (p4d_val(*(p4dp)) = 0UL)
254#define p4d_pgtable(p4d) ((pud_t *) __va(p4d_val(p4d) & _PFN_MASK))
255#define p4d_page(p4d) virt_to_page((p4d_val(p4d) + PAGE_OFFSET))
256#endif
257
258/*
259 * The following have defined behavior only work if pte_present() is true.
260 */
261#define pte_write(pte) ((unsigned) (((pte_val(pte) & _PAGE_AR_MASK) >> _PAGE_AR_SHIFT) - 2) <= 4)
262#define pte_exec(pte) ((pte_val(pte) & _PAGE_AR_RX) != 0)
263#define pte_dirty(pte) ((pte_val(pte) & _PAGE_D) != 0)
264#define pte_young(pte) ((pte_val(pte) & _PAGE_A) != 0)
265
266/*
267 * Note: we convert AR_RWX to AR_RX and AR_RW to AR_R by clearing the 2nd bit in the
268 * access rights:
269 */
270#define pte_wrprotect(pte) (__pte(pte_val(pte) & ~_PAGE_AR_RW))
271#define pte_mkwrite(pte) (__pte(pte_val(pte) | _PAGE_AR_RW))
272#define pte_mkold(pte) (__pte(pte_val(pte) & ~_PAGE_A))
273#define pte_mkyoung(pte) (__pte(pte_val(pte) | _PAGE_A))
274#define pte_mkclean(pte) (__pte(pte_val(pte) & ~_PAGE_D))
275#define pte_mkdirty(pte) (__pte(pte_val(pte) | _PAGE_D))
276#define pte_mkhuge(pte) (__pte(pte_val(pte)))
277
278/*
279 * Because ia64's Icache and Dcache is not coherent (on a cpu), we need to
280 * sync icache and dcache when we insert *new* executable page.
281 * __ia64_sync_icache_dcache() check Pg_arch_1 bit and flush icache
282 * if necessary.
283 *
284 * set_pte() is also called by the kernel, but we can expect that the kernel
285 * flushes icache explicitly if necessary.
286 */
287#define pte_present_exec_user(pte)\
288 ((pte_val(pte) & (_PAGE_P | _PAGE_PL_MASK | _PAGE_AR_RX)) == \
289 (_PAGE_P | _PAGE_PL_3 | _PAGE_AR_RX))
290
291extern void __ia64_sync_icache_dcache(pte_t pteval);
292static inline void set_pte(pte_t *ptep, pte_t pteval)
293{
294 /* page is present && page is user && page is executable
295 * && (page swapin or new page or page migration
296 * || copy_on_write with page copying.)
297 */
298 if (pte_present_exec_user(pteval) &&
299 (!pte_present(*ptep) ||
300 pte_pfn(*ptep) != pte_pfn(pteval)))
301 /* load_module() calles flush_icache_range() explicitly*/
302 __ia64_sync_icache_dcache(pteval);
303 *ptep = pteval;
304}
305
306#define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
307
308/*
309 * Make page protection values cacheable, uncacheable, or write-
310 * combining. Note that "protection" is really a misnomer here as the
311 * protection value contains the memory attribute bits, dirty bits, and
312 * various other bits as well.
313 */
314#define pgprot_cacheable(prot) __pgprot((pgprot_val(prot) & ~_PAGE_MA_MASK) | _PAGE_MA_WB)
315#define pgprot_noncached(prot) __pgprot((pgprot_val(prot) & ~_PAGE_MA_MASK) | _PAGE_MA_UC)
316#define pgprot_writecombine(prot) __pgprot((pgprot_val(prot) & ~_PAGE_MA_MASK) | _PAGE_MA_WC)
317
318struct file;
319extern pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
320 unsigned long size, pgprot_t vma_prot);
321#define __HAVE_PHYS_MEM_ACCESS_PROT
322
323static inline unsigned long
324pgd_index (unsigned long address)
325{
326 unsigned long region = address >> 61;
327 unsigned long l1index = (address >> PGDIR_SHIFT) & ((PTRS_PER_PGD >> 3) - 1);
328
329 return (region << (PAGE_SHIFT - 6)) | l1index;
330}
331#define pgd_index pgd_index
332
333/*
334 * In the kernel's mapped region we know everything is in region number 5, so
335 * as an optimisation its PGD already points to the area for that region.
336 * However, this also means that we cannot use pgd_index() and we must
337 * never add the region here.
338 */
339#define pgd_offset_k(addr) \
340 (init_mm.pgd + (((addr) >> PGDIR_SHIFT) & (PTRS_PER_PGD - 1)))
341
342/* Look up a pgd entry in the gate area. On IA-64, the gate-area
343 resides in the kernel-mapped segment, hence we use pgd_offset_k()
344 here. */
345#define pgd_offset_gate(mm, addr) pgd_offset_k(addr)
346
347/* atomic versions of the some PTE manipulations: */
348
349static inline int
350ptep_test_and_clear_young (struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
351{
352#ifdef CONFIG_SMP
353 if (!pte_young(*ptep))
354 return 0;
355 return test_and_clear_bit(_PAGE_A_BIT, ptep);
356#else
357 pte_t pte = *ptep;
358 if (!pte_young(pte))
359 return 0;
360 set_pte_at(vma->vm_mm, addr, ptep, pte_mkold(pte));
361 return 1;
362#endif
363}
364
365static inline pte_t
366ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
367{
368#ifdef CONFIG_SMP
369 return __pte(xchg((long *) ptep, 0));
370#else
371 pte_t pte = *ptep;
372 pte_clear(mm, addr, ptep);
373 return pte;
374#endif
375}
376
377static inline void
378ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
379{
380#ifdef CONFIG_SMP
381 unsigned long new, old;
382
383 do {
384 old = pte_val(*ptep);
385 new = pte_val(pte_wrprotect(__pte (old)));
386 } while (cmpxchg((unsigned long *) ptep, old, new) != old);
387#else
388 pte_t old_pte = *ptep;
389 set_pte_at(mm, addr, ptep, pte_wrprotect(old_pte));
390#endif
391}
392
393static inline int
394pte_same (pte_t a, pte_t b)
395{
396 return pte_val(a) == pte_val(b);
397}
398
399#define update_mmu_cache(vma, address, ptep) do { } while (0)
400
401extern pgd_t swapper_pg_dir[PTRS_PER_PGD];
402extern void paging_init (void);
403
404/*
405 * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that
406 * are !pte_none() && !pte_present().
407 *
408 * Note: The macros below rely on the fact that MAX_SWAPFILES_SHIFT <= number of
409 * bits in the swap-type field of the swap pte. It would be nice to
410 * enforce that, but we can't easily include <linux/swap.h> here.
411 * (Of course, better still would be to define MAX_SWAPFILES_SHIFT here...).
412 *
413 * Format of swap pte:
414 * bit 0 : present bit (must be zero)
415 * bits 1- 6: swap type
416 * bit 7 : exclusive marker
417 * bits 8-62: swap offset
418 * bit 63 : _PAGE_PROTNONE bit
419 */
420#define __swp_type(entry) (((entry).val >> 1) & 0x3f)
421#define __swp_offset(entry) (((entry).val << 1) >> 9)
422#define __swp_entry(type, offset) ((swp_entry_t) { ((type & 0x3f) << 1) | \
423 ((long) (offset) << 8) })
424#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
425#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
426
427static inline int pte_swp_exclusive(pte_t pte)
428{
429 return pte_val(pte) & _PAGE_SWP_EXCLUSIVE;
430}
431
432static inline pte_t pte_swp_mkexclusive(pte_t pte)
433{
434 pte_val(pte) |= _PAGE_SWP_EXCLUSIVE;
435 return pte;
436}
437
438static inline pte_t pte_swp_clear_exclusive(pte_t pte)
439{
440 pte_val(pte) &= ~_PAGE_SWP_EXCLUSIVE;
441 return pte;
442}
443
444/*
445 * ZERO_PAGE is a global shared page that is always zero: used
446 * for zero-mapped memory areas etc..
447 */
448extern unsigned long empty_zero_page[PAGE_SIZE/sizeof(unsigned long)];
449extern struct page *zero_page_memmap_ptr;
450#define ZERO_PAGE(vaddr) (zero_page_memmap_ptr)
451
452/* We provide our own get_unmapped_area to cope with VA holes for userland */
453#define HAVE_ARCH_UNMAPPED_AREA
454
455#ifdef CONFIG_HUGETLB_PAGE
456#define HUGETLB_PGDIR_SHIFT (HPAGE_SHIFT + 2*(PAGE_SHIFT-3))
457#define HUGETLB_PGDIR_SIZE (__IA64_UL(1) << HUGETLB_PGDIR_SHIFT)
458#define HUGETLB_PGDIR_MASK (~(HUGETLB_PGDIR_SIZE-1))
459#endif
460
461
462#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
463/*
464 * Update PTEP with ENTRY, which is guaranteed to be a less
465 * restrictive PTE. That is, ENTRY may have the ACCESSED, DIRTY, and
466 * WRITABLE bits turned on, when the value at PTEP did not. The
467 * WRITABLE bit may only be turned if SAFELY_WRITABLE is TRUE.
468 *
469 * SAFELY_WRITABLE is TRUE if we can update the value at PTEP without
470 * having to worry about races. On SMP machines, there are only two
471 * cases where this is true:
472 *
473 * (1) *PTEP has the PRESENT bit turned OFF
474 * (2) ENTRY has the DIRTY bit turned ON
475 *
476 * On ia64, we could implement this routine with a cmpxchg()-loop
477 * which ORs in the _PAGE_A/_PAGE_D bit if they're set in ENTRY.
478 * However, like on x86, we can get a more streamlined version by
479 * observing that it is OK to drop ACCESSED bit updates when
480 * SAFELY_WRITABLE is FALSE. Besides being rare, all that would do is
481 * result in an extra Access-bit fault, which would then turn on the
482 * ACCESSED bit in the low-level fault handler (iaccess_bit or
483 * daccess_bit in ivt.S).
484 */
485#ifdef CONFIG_SMP
486# define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __safely_writable) \
487({ \
488 int __changed = !pte_same(*(__ptep), __entry); \
489 if (__changed && __safely_writable) { \
490 set_pte(__ptep, __entry); \
491 flush_tlb_page(__vma, __addr); \
492 } \
493 __changed; \
494})
495#else
496# define ptep_set_access_flags(__vma, __addr, __ptep, __entry, __safely_writable) \
497({ \
498 int __changed = !pte_same(*(__ptep), __entry); \
499 if (__changed) { \
500 set_pte_at((__vma)->vm_mm, (__addr), __ptep, __entry); \
501 flush_tlb_page(__vma, __addr); \
502 } \
503 __changed; \
504})
505#endif
506# endif /* !__ASSEMBLY__ */
507
508/*
509 * Identity-mapped regions use a large page size. We'll call such large pages
510 * "granules". If you can think of a better name that's unambiguous, let me
511 * know...
512 */
513#if defined(CONFIG_IA64_GRANULE_64MB)
514# define IA64_GRANULE_SHIFT _PAGE_SIZE_64M
515#elif defined(CONFIG_IA64_GRANULE_16MB)
516# define IA64_GRANULE_SHIFT _PAGE_SIZE_16M
517#endif
518#define IA64_GRANULE_SIZE (1 << IA64_GRANULE_SHIFT)
519/*
520 * log2() of the page size we use to map the kernel image (IA64_TR_KERNEL):
521 */
522#define KERNEL_TR_PAGE_SHIFT _PAGE_SIZE_64M
523#define KERNEL_TR_PAGE_SIZE (1 << KERNEL_TR_PAGE_SHIFT)
524
525/* These tell get_user_pages() that the first gate page is accessible from user-level. */
526#define FIXADDR_USER_START GATE_ADDR
527#ifdef HAVE_BUGGY_SEGREL
528# define FIXADDR_USER_END (GATE_ADDR + 2*PAGE_SIZE)
529#else
530# define FIXADDR_USER_END (GATE_ADDR + 2*PERCPU_PAGE_SIZE)
531#endif
532
533#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
534#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
535#define __HAVE_ARCH_PTEP_SET_WRPROTECT
536#define __HAVE_ARCH_PTE_SAME
537#define __HAVE_ARCH_PGD_OFFSET_GATE
538
539
540#if CONFIG_PGTABLE_LEVELS == 3
541#include <asm-generic/pgtable-nopud.h>
542#endif
543#include <asm-generic/pgtable-nop4d.h>
544
545#endif /* _ASM_IA64_PGTABLE_H */