Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2//
3// core.c -- Voltage/Current Regulator framework.
4//
5// Copyright 2007, 2008 Wolfson Microelectronics PLC.
6// Copyright 2008 SlimLogic Ltd.
7//
8// Author: Liam Girdwood <lrg@slimlogic.co.uk>
9
10#include <linux/kernel.h>
11#include <linux/init.h>
12#include <linux/debugfs.h>
13#include <linux/device.h>
14#include <linux/slab.h>
15#include <linux/async.h>
16#include <linux/err.h>
17#include <linux/mutex.h>
18#include <linux/suspend.h>
19#include <linux/delay.h>
20#include <linux/gpio/consumer.h>
21#include <linux/of.h>
22#include <linux/regmap.h>
23#include <linux/regulator/of_regulator.h>
24#include <linux/regulator/consumer.h>
25#include <linux/regulator/coupler.h>
26#include <linux/regulator/driver.h>
27#include <linux/regulator/machine.h>
28#include <linux/module.h>
29
30#define CREATE_TRACE_POINTS
31#include <trace/events/regulator.h>
32
33#include "dummy.h"
34#include "internal.h"
35
36static DEFINE_WW_CLASS(regulator_ww_class);
37static DEFINE_MUTEX(regulator_nesting_mutex);
38static DEFINE_MUTEX(regulator_list_mutex);
39static LIST_HEAD(regulator_map_list);
40static LIST_HEAD(regulator_ena_gpio_list);
41static LIST_HEAD(regulator_supply_alias_list);
42static LIST_HEAD(regulator_coupler_list);
43static bool has_full_constraints;
44
45static struct dentry *debugfs_root;
46
47/*
48 * struct regulator_map
49 *
50 * Used to provide symbolic supply names to devices.
51 */
52struct regulator_map {
53 struct list_head list;
54 const char *dev_name; /* The dev_name() for the consumer */
55 const char *supply;
56 struct regulator_dev *regulator;
57};
58
59/*
60 * struct regulator_enable_gpio
61 *
62 * Management for shared enable GPIO pin
63 */
64struct regulator_enable_gpio {
65 struct list_head list;
66 struct gpio_desc *gpiod;
67 u32 enable_count; /* a number of enabled shared GPIO */
68 u32 request_count; /* a number of requested shared GPIO */
69};
70
71/*
72 * struct regulator_supply_alias
73 *
74 * Used to map lookups for a supply onto an alternative device.
75 */
76struct regulator_supply_alias {
77 struct list_head list;
78 struct device *src_dev;
79 const char *src_supply;
80 struct device *alias_dev;
81 const char *alias_supply;
82};
83
84static int _regulator_is_enabled(struct regulator_dev *rdev);
85static int _regulator_disable(struct regulator *regulator);
86static int _regulator_get_error_flags(struct regulator_dev *rdev, unsigned int *flags);
87static int _regulator_get_current_limit(struct regulator_dev *rdev);
88static unsigned int _regulator_get_mode(struct regulator_dev *rdev);
89static int _notifier_call_chain(struct regulator_dev *rdev,
90 unsigned long event, void *data);
91static int _regulator_do_set_voltage(struct regulator_dev *rdev,
92 int min_uV, int max_uV);
93static int regulator_balance_voltage(struct regulator_dev *rdev,
94 suspend_state_t state);
95static struct regulator *create_regulator(struct regulator_dev *rdev,
96 struct device *dev,
97 const char *supply_name);
98static void destroy_regulator(struct regulator *regulator);
99static void _regulator_put(struct regulator *regulator);
100
101const char *rdev_get_name(struct regulator_dev *rdev)
102{
103 if (rdev->constraints && rdev->constraints->name)
104 return rdev->constraints->name;
105 else if (rdev->desc->name)
106 return rdev->desc->name;
107 else
108 return "";
109}
110EXPORT_SYMBOL_GPL(rdev_get_name);
111
112static bool have_full_constraints(void)
113{
114 return has_full_constraints || of_have_populated_dt();
115}
116
117static bool regulator_ops_is_valid(struct regulator_dev *rdev, int ops)
118{
119 if (!rdev->constraints) {
120 rdev_err(rdev, "no constraints\n");
121 return false;
122 }
123
124 if (rdev->constraints->valid_ops_mask & ops)
125 return true;
126
127 return false;
128}
129
130/**
131 * regulator_lock_nested - lock a single regulator
132 * @rdev: regulator source
133 * @ww_ctx: w/w mutex acquire context
134 *
135 * This function can be called many times by one task on
136 * a single regulator and its mutex will be locked only
137 * once. If a task, which is calling this function is other
138 * than the one, which initially locked the mutex, it will
139 * wait on mutex.
140 */
141static inline int regulator_lock_nested(struct regulator_dev *rdev,
142 struct ww_acquire_ctx *ww_ctx)
143{
144 bool lock = false;
145 int ret = 0;
146
147 mutex_lock(®ulator_nesting_mutex);
148
149 if (!ww_mutex_trylock(&rdev->mutex, ww_ctx)) {
150 if (rdev->mutex_owner == current)
151 rdev->ref_cnt++;
152 else
153 lock = true;
154
155 if (lock) {
156 mutex_unlock(®ulator_nesting_mutex);
157 ret = ww_mutex_lock(&rdev->mutex, ww_ctx);
158 mutex_lock(®ulator_nesting_mutex);
159 }
160 } else {
161 lock = true;
162 }
163
164 if (lock && ret != -EDEADLK) {
165 rdev->ref_cnt++;
166 rdev->mutex_owner = current;
167 }
168
169 mutex_unlock(®ulator_nesting_mutex);
170
171 return ret;
172}
173
174/**
175 * regulator_lock - lock a single regulator
176 * @rdev: regulator source
177 *
178 * This function can be called many times by one task on
179 * a single regulator and its mutex will be locked only
180 * once. If a task, which is calling this function is other
181 * than the one, which initially locked the mutex, it will
182 * wait on mutex.
183 */
184static void regulator_lock(struct regulator_dev *rdev)
185{
186 regulator_lock_nested(rdev, NULL);
187}
188
189/**
190 * regulator_unlock - unlock a single regulator
191 * @rdev: regulator_source
192 *
193 * This function unlocks the mutex when the
194 * reference counter reaches 0.
195 */
196static void regulator_unlock(struct regulator_dev *rdev)
197{
198 mutex_lock(®ulator_nesting_mutex);
199
200 if (--rdev->ref_cnt == 0) {
201 rdev->mutex_owner = NULL;
202 ww_mutex_unlock(&rdev->mutex);
203 }
204
205 WARN_ON_ONCE(rdev->ref_cnt < 0);
206
207 mutex_unlock(®ulator_nesting_mutex);
208}
209
210/**
211 * regulator_lock_two - lock two regulators
212 * @rdev1: first regulator
213 * @rdev2: second regulator
214 * @ww_ctx: w/w mutex acquire context
215 *
216 * Locks both rdevs using the regulator_ww_class.
217 */
218static void regulator_lock_two(struct regulator_dev *rdev1,
219 struct regulator_dev *rdev2,
220 struct ww_acquire_ctx *ww_ctx)
221{
222 struct regulator_dev *held, *contended;
223 int ret;
224
225 ww_acquire_init(ww_ctx, ®ulator_ww_class);
226
227 /* Try to just grab both of them */
228 ret = regulator_lock_nested(rdev1, ww_ctx);
229 WARN_ON(ret);
230 ret = regulator_lock_nested(rdev2, ww_ctx);
231 if (ret != -EDEADLOCK) {
232 WARN_ON(ret);
233 goto exit;
234 }
235
236 held = rdev1;
237 contended = rdev2;
238 while (true) {
239 regulator_unlock(held);
240
241 ww_mutex_lock_slow(&contended->mutex, ww_ctx);
242 contended->ref_cnt++;
243 contended->mutex_owner = current;
244 swap(held, contended);
245 ret = regulator_lock_nested(contended, ww_ctx);
246
247 if (ret != -EDEADLOCK) {
248 WARN_ON(ret);
249 break;
250 }
251 }
252
253exit:
254 ww_acquire_done(ww_ctx);
255}
256
257/**
258 * regulator_unlock_two - unlock two regulators
259 * @rdev1: first regulator
260 * @rdev2: second regulator
261 * @ww_ctx: w/w mutex acquire context
262 *
263 * The inverse of regulator_lock_two().
264 */
265
266static void regulator_unlock_two(struct regulator_dev *rdev1,
267 struct regulator_dev *rdev2,
268 struct ww_acquire_ctx *ww_ctx)
269{
270 regulator_unlock(rdev2);
271 regulator_unlock(rdev1);
272 ww_acquire_fini(ww_ctx);
273}
274
275static bool regulator_supply_is_couple(struct regulator_dev *rdev)
276{
277 struct regulator_dev *c_rdev;
278 int i;
279
280 for (i = 1; i < rdev->coupling_desc.n_coupled; i++) {
281 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
282
283 if (rdev->supply->rdev == c_rdev)
284 return true;
285 }
286
287 return false;
288}
289
290static void regulator_unlock_recursive(struct regulator_dev *rdev,
291 unsigned int n_coupled)
292{
293 struct regulator_dev *c_rdev, *supply_rdev;
294 int i, supply_n_coupled;
295
296 for (i = n_coupled; i > 0; i--) {
297 c_rdev = rdev->coupling_desc.coupled_rdevs[i - 1];
298
299 if (!c_rdev)
300 continue;
301
302 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
303 supply_rdev = c_rdev->supply->rdev;
304 supply_n_coupled = supply_rdev->coupling_desc.n_coupled;
305
306 regulator_unlock_recursive(supply_rdev,
307 supply_n_coupled);
308 }
309
310 regulator_unlock(c_rdev);
311 }
312}
313
314static int regulator_lock_recursive(struct regulator_dev *rdev,
315 struct regulator_dev **new_contended_rdev,
316 struct regulator_dev **old_contended_rdev,
317 struct ww_acquire_ctx *ww_ctx)
318{
319 struct regulator_dev *c_rdev;
320 int i, err;
321
322 for (i = 0; i < rdev->coupling_desc.n_coupled; i++) {
323 c_rdev = rdev->coupling_desc.coupled_rdevs[i];
324
325 if (!c_rdev)
326 continue;
327
328 if (c_rdev != *old_contended_rdev) {
329 err = regulator_lock_nested(c_rdev, ww_ctx);
330 if (err) {
331 if (err == -EDEADLK) {
332 *new_contended_rdev = c_rdev;
333 goto err_unlock;
334 }
335
336 /* shouldn't happen */
337 WARN_ON_ONCE(err != -EALREADY);
338 }
339 } else {
340 *old_contended_rdev = NULL;
341 }
342
343 if (c_rdev->supply && !regulator_supply_is_couple(c_rdev)) {
344 err = regulator_lock_recursive(c_rdev->supply->rdev,
345 new_contended_rdev,
346 old_contended_rdev,
347 ww_ctx);
348 if (err) {
349 regulator_unlock(c_rdev);
350 goto err_unlock;
351 }
352 }
353 }
354
355 return 0;
356
357err_unlock:
358 regulator_unlock_recursive(rdev, i);
359
360 return err;
361}
362
363/**
364 * regulator_unlock_dependent - unlock regulator's suppliers and coupled
365 * regulators
366 * @rdev: regulator source
367 * @ww_ctx: w/w mutex acquire context
368 *
369 * Unlock all regulators related with rdev by coupling or supplying.
370 */
371static void regulator_unlock_dependent(struct regulator_dev *rdev,
372 struct ww_acquire_ctx *ww_ctx)
373{
374 regulator_unlock_recursive(rdev, rdev->coupling_desc.n_coupled);
375 ww_acquire_fini(ww_ctx);
376}
377
378/**
379 * regulator_lock_dependent - lock regulator's suppliers and coupled regulators
380 * @rdev: regulator source
381 * @ww_ctx: w/w mutex acquire context
382 *
383 * This function as a wrapper on regulator_lock_recursive(), which locks
384 * all regulators related with rdev by coupling or supplying.
385 */
386static void regulator_lock_dependent(struct regulator_dev *rdev,
387 struct ww_acquire_ctx *ww_ctx)
388{
389 struct regulator_dev *new_contended_rdev = NULL;
390 struct regulator_dev *old_contended_rdev = NULL;
391 int err;
392
393 mutex_lock(®ulator_list_mutex);
394
395 ww_acquire_init(ww_ctx, ®ulator_ww_class);
396
397 do {
398 if (new_contended_rdev) {
399 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
400 old_contended_rdev = new_contended_rdev;
401 old_contended_rdev->ref_cnt++;
402 old_contended_rdev->mutex_owner = current;
403 }
404
405 err = regulator_lock_recursive(rdev,
406 &new_contended_rdev,
407 &old_contended_rdev,
408 ww_ctx);
409
410 if (old_contended_rdev)
411 regulator_unlock(old_contended_rdev);
412
413 } while (err == -EDEADLK);
414
415 ww_acquire_done(ww_ctx);
416
417 mutex_unlock(®ulator_list_mutex);
418}
419
420/**
421 * of_get_child_regulator - get a child regulator device node
422 * based on supply name
423 * @parent: Parent device node
424 * @prop_name: Combination regulator supply name and "-supply"
425 *
426 * Traverse all child nodes.
427 * Extract the child regulator device node corresponding to the supply name.
428 * returns the device node corresponding to the regulator if found, else
429 * returns NULL.
430 */
431static struct device_node *of_get_child_regulator(struct device_node *parent,
432 const char *prop_name)
433{
434 struct device_node *regnode = NULL;
435 struct device_node *child = NULL;
436
437 for_each_child_of_node(parent, child) {
438 regnode = of_parse_phandle(child, prop_name, 0);
439
440 if (!regnode) {
441 regnode = of_get_child_regulator(child, prop_name);
442 if (regnode)
443 goto err_node_put;
444 } else {
445 goto err_node_put;
446 }
447 }
448 return NULL;
449
450err_node_put:
451 of_node_put(child);
452 return regnode;
453}
454
455/**
456 * of_get_regulator - get a regulator device node based on supply name
457 * @dev: Device pointer for the consumer (of regulator) device
458 * @supply: regulator supply name
459 *
460 * Extract the regulator device node corresponding to the supply name.
461 * returns the device node corresponding to the regulator if found, else
462 * returns NULL.
463 */
464static struct device_node *of_get_regulator(struct device *dev, const char *supply)
465{
466 struct device_node *regnode = NULL;
467 char prop_name[64]; /* 64 is max size of property name */
468
469 dev_dbg(dev, "Looking up %s-supply from device tree\n", supply);
470
471 snprintf(prop_name, 64, "%s-supply", supply);
472 regnode = of_parse_phandle(dev->of_node, prop_name, 0);
473
474 if (!regnode) {
475 regnode = of_get_child_regulator(dev->of_node, prop_name);
476 if (regnode)
477 return regnode;
478
479 dev_dbg(dev, "Looking up %s property in node %pOF failed\n",
480 prop_name, dev->of_node);
481 return NULL;
482 }
483 return regnode;
484}
485
486/* Platform voltage constraint check */
487int regulator_check_voltage(struct regulator_dev *rdev,
488 int *min_uV, int *max_uV)
489{
490 BUG_ON(*min_uV > *max_uV);
491
492 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
493 rdev_err(rdev, "voltage operation not allowed\n");
494 return -EPERM;
495 }
496
497 if (*max_uV > rdev->constraints->max_uV)
498 *max_uV = rdev->constraints->max_uV;
499 if (*min_uV < rdev->constraints->min_uV)
500 *min_uV = rdev->constraints->min_uV;
501
502 if (*min_uV > *max_uV) {
503 rdev_err(rdev, "unsupportable voltage range: %d-%duV\n",
504 *min_uV, *max_uV);
505 return -EINVAL;
506 }
507
508 return 0;
509}
510
511/* return 0 if the state is valid */
512static int regulator_check_states(suspend_state_t state)
513{
514 return (state > PM_SUSPEND_MAX || state == PM_SUSPEND_TO_IDLE);
515}
516
517/* Make sure we select a voltage that suits the needs of all
518 * regulator consumers
519 */
520int regulator_check_consumers(struct regulator_dev *rdev,
521 int *min_uV, int *max_uV,
522 suspend_state_t state)
523{
524 struct regulator *regulator;
525 struct regulator_voltage *voltage;
526
527 list_for_each_entry(regulator, &rdev->consumer_list, list) {
528 voltage = ®ulator->voltage[state];
529 /*
530 * Assume consumers that didn't say anything are OK
531 * with anything in the constraint range.
532 */
533 if (!voltage->min_uV && !voltage->max_uV)
534 continue;
535
536 if (*max_uV > voltage->max_uV)
537 *max_uV = voltage->max_uV;
538 if (*min_uV < voltage->min_uV)
539 *min_uV = voltage->min_uV;
540 }
541
542 if (*min_uV > *max_uV) {
543 rdev_err(rdev, "Restricting voltage, %u-%uuV\n",
544 *min_uV, *max_uV);
545 return -EINVAL;
546 }
547
548 return 0;
549}
550
551/* current constraint check */
552static int regulator_check_current_limit(struct regulator_dev *rdev,
553 int *min_uA, int *max_uA)
554{
555 BUG_ON(*min_uA > *max_uA);
556
557 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_CURRENT)) {
558 rdev_err(rdev, "current operation not allowed\n");
559 return -EPERM;
560 }
561
562 if (*max_uA > rdev->constraints->max_uA)
563 *max_uA = rdev->constraints->max_uA;
564 if (*min_uA < rdev->constraints->min_uA)
565 *min_uA = rdev->constraints->min_uA;
566
567 if (*min_uA > *max_uA) {
568 rdev_err(rdev, "unsupportable current range: %d-%duA\n",
569 *min_uA, *max_uA);
570 return -EINVAL;
571 }
572
573 return 0;
574}
575
576/* operating mode constraint check */
577static int regulator_mode_constrain(struct regulator_dev *rdev,
578 unsigned int *mode)
579{
580 switch (*mode) {
581 case REGULATOR_MODE_FAST:
582 case REGULATOR_MODE_NORMAL:
583 case REGULATOR_MODE_IDLE:
584 case REGULATOR_MODE_STANDBY:
585 break;
586 default:
587 rdev_err(rdev, "invalid mode %x specified\n", *mode);
588 return -EINVAL;
589 }
590
591 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_MODE)) {
592 rdev_err(rdev, "mode operation not allowed\n");
593 return -EPERM;
594 }
595
596 /* The modes are bitmasks, the most power hungry modes having
597 * the lowest values. If the requested mode isn't supported
598 * try higher modes.
599 */
600 while (*mode) {
601 if (rdev->constraints->valid_modes_mask & *mode)
602 return 0;
603 *mode /= 2;
604 }
605
606 return -EINVAL;
607}
608
609static inline struct regulator_state *
610regulator_get_suspend_state(struct regulator_dev *rdev, suspend_state_t state)
611{
612 if (rdev->constraints == NULL)
613 return NULL;
614
615 switch (state) {
616 case PM_SUSPEND_STANDBY:
617 return &rdev->constraints->state_standby;
618 case PM_SUSPEND_MEM:
619 return &rdev->constraints->state_mem;
620 case PM_SUSPEND_MAX:
621 return &rdev->constraints->state_disk;
622 default:
623 return NULL;
624 }
625}
626
627static const struct regulator_state *
628regulator_get_suspend_state_check(struct regulator_dev *rdev, suspend_state_t state)
629{
630 const struct regulator_state *rstate;
631
632 rstate = regulator_get_suspend_state(rdev, state);
633 if (rstate == NULL)
634 return NULL;
635
636 /* If we have no suspend mode configuration don't set anything;
637 * only warn if the driver implements set_suspend_voltage or
638 * set_suspend_mode callback.
639 */
640 if (rstate->enabled != ENABLE_IN_SUSPEND &&
641 rstate->enabled != DISABLE_IN_SUSPEND) {
642 if (rdev->desc->ops->set_suspend_voltage ||
643 rdev->desc->ops->set_suspend_mode)
644 rdev_warn(rdev, "No configuration\n");
645 return NULL;
646 }
647
648 return rstate;
649}
650
651static ssize_t microvolts_show(struct device *dev,
652 struct device_attribute *attr, char *buf)
653{
654 struct regulator_dev *rdev = dev_get_drvdata(dev);
655 int uV;
656
657 regulator_lock(rdev);
658 uV = regulator_get_voltage_rdev(rdev);
659 regulator_unlock(rdev);
660
661 if (uV < 0)
662 return uV;
663 return sprintf(buf, "%d\n", uV);
664}
665static DEVICE_ATTR_RO(microvolts);
666
667static ssize_t microamps_show(struct device *dev,
668 struct device_attribute *attr, char *buf)
669{
670 struct regulator_dev *rdev = dev_get_drvdata(dev);
671
672 return sprintf(buf, "%d\n", _regulator_get_current_limit(rdev));
673}
674static DEVICE_ATTR_RO(microamps);
675
676static ssize_t name_show(struct device *dev, struct device_attribute *attr,
677 char *buf)
678{
679 struct regulator_dev *rdev = dev_get_drvdata(dev);
680
681 return sprintf(buf, "%s\n", rdev_get_name(rdev));
682}
683static DEVICE_ATTR_RO(name);
684
685static const char *regulator_opmode_to_str(int mode)
686{
687 switch (mode) {
688 case REGULATOR_MODE_FAST:
689 return "fast";
690 case REGULATOR_MODE_NORMAL:
691 return "normal";
692 case REGULATOR_MODE_IDLE:
693 return "idle";
694 case REGULATOR_MODE_STANDBY:
695 return "standby";
696 }
697 return "unknown";
698}
699
700static ssize_t regulator_print_opmode(char *buf, int mode)
701{
702 return sprintf(buf, "%s\n", regulator_opmode_to_str(mode));
703}
704
705static ssize_t opmode_show(struct device *dev,
706 struct device_attribute *attr, char *buf)
707{
708 struct regulator_dev *rdev = dev_get_drvdata(dev);
709
710 return regulator_print_opmode(buf, _regulator_get_mode(rdev));
711}
712static DEVICE_ATTR_RO(opmode);
713
714static ssize_t regulator_print_state(char *buf, int state)
715{
716 if (state > 0)
717 return sprintf(buf, "enabled\n");
718 else if (state == 0)
719 return sprintf(buf, "disabled\n");
720 else
721 return sprintf(buf, "unknown\n");
722}
723
724static ssize_t state_show(struct device *dev,
725 struct device_attribute *attr, char *buf)
726{
727 struct regulator_dev *rdev = dev_get_drvdata(dev);
728 ssize_t ret;
729
730 regulator_lock(rdev);
731 ret = regulator_print_state(buf, _regulator_is_enabled(rdev));
732 regulator_unlock(rdev);
733
734 return ret;
735}
736static DEVICE_ATTR_RO(state);
737
738static ssize_t status_show(struct device *dev,
739 struct device_attribute *attr, char *buf)
740{
741 struct regulator_dev *rdev = dev_get_drvdata(dev);
742 int status;
743 char *label;
744
745 status = rdev->desc->ops->get_status(rdev);
746 if (status < 0)
747 return status;
748
749 switch (status) {
750 case REGULATOR_STATUS_OFF:
751 label = "off";
752 break;
753 case REGULATOR_STATUS_ON:
754 label = "on";
755 break;
756 case REGULATOR_STATUS_ERROR:
757 label = "error";
758 break;
759 case REGULATOR_STATUS_FAST:
760 label = "fast";
761 break;
762 case REGULATOR_STATUS_NORMAL:
763 label = "normal";
764 break;
765 case REGULATOR_STATUS_IDLE:
766 label = "idle";
767 break;
768 case REGULATOR_STATUS_STANDBY:
769 label = "standby";
770 break;
771 case REGULATOR_STATUS_BYPASS:
772 label = "bypass";
773 break;
774 case REGULATOR_STATUS_UNDEFINED:
775 label = "undefined";
776 break;
777 default:
778 return -ERANGE;
779 }
780
781 return sprintf(buf, "%s\n", label);
782}
783static DEVICE_ATTR_RO(status);
784
785static ssize_t min_microamps_show(struct device *dev,
786 struct device_attribute *attr, char *buf)
787{
788 struct regulator_dev *rdev = dev_get_drvdata(dev);
789
790 if (!rdev->constraints)
791 return sprintf(buf, "constraint not defined\n");
792
793 return sprintf(buf, "%d\n", rdev->constraints->min_uA);
794}
795static DEVICE_ATTR_RO(min_microamps);
796
797static ssize_t max_microamps_show(struct device *dev,
798 struct device_attribute *attr, char *buf)
799{
800 struct regulator_dev *rdev = dev_get_drvdata(dev);
801
802 if (!rdev->constraints)
803 return sprintf(buf, "constraint not defined\n");
804
805 return sprintf(buf, "%d\n", rdev->constraints->max_uA);
806}
807static DEVICE_ATTR_RO(max_microamps);
808
809static ssize_t min_microvolts_show(struct device *dev,
810 struct device_attribute *attr, char *buf)
811{
812 struct regulator_dev *rdev = dev_get_drvdata(dev);
813
814 if (!rdev->constraints)
815 return sprintf(buf, "constraint not defined\n");
816
817 return sprintf(buf, "%d\n", rdev->constraints->min_uV);
818}
819static DEVICE_ATTR_RO(min_microvolts);
820
821static ssize_t max_microvolts_show(struct device *dev,
822 struct device_attribute *attr, char *buf)
823{
824 struct regulator_dev *rdev = dev_get_drvdata(dev);
825
826 if (!rdev->constraints)
827 return sprintf(buf, "constraint not defined\n");
828
829 return sprintf(buf, "%d\n", rdev->constraints->max_uV);
830}
831static DEVICE_ATTR_RO(max_microvolts);
832
833static ssize_t requested_microamps_show(struct device *dev,
834 struct device_attribute *attr, char *buf)
835{
836 struct regulator_dev *rdev = dev_get_drvdata(dev);
837 struct regulator *regulator;
838 int uA = 0;
839
840 regulator_lock(rdev);
841 list_for_each_entry(regulator, &rdev->consumer_list, list) {
842 if (regulator->enable_count)
843 uA += regulator->uA_load;
844 }
845 regulator_unlock(rdev);
846 return sprintf(buf, "%d\n", uA);
847}
848static DEVICE_ATTR_RO(requested_microamps);
849
850static ssize_t num_users_show(struct device *dev, struct device_attribute *attr,
851 char *buf)
852{
853 struct regulator_dev *rdev = dev_get_drvdata(dev);
854 return sprintf(buf, "%d\n", rdev->use_count);
855}
856static DEVICE_ATTR_RO(num_users);
857
858static ssize_t type_show(struct device *dev, struct device_attribute *attr,
859 char *buf)
860{
861 struct regulator_dev *rdev = dev_get_drvdata(dev);
862
863 switch (rdev->desc->type) {
864 case REGULATOR_VOLTAGE:
865 return sprintf(buf, "voltage\n");
866 case REGULATOR_CURRENT:
867 return sprintf(buf, "current\n");
868 }
869 return sprintf(buf, "unknown\n");
870}
871static DEVICE_ATTR_RO(type);
872
873static ssize_t suspend_mem_microvolts_show(struct device *dev,
874 struct device_attribute *attr, char *buf)
875{
876 struct regulator_dev *rdev = dev_get_drvdata(dev);
877
878 return sprintf(buf, "%d\n", rdev->constraints->state_mem.uV);
879}
880static DEVICE_ATTR_RO(suspend_mem_microvolts);
881
882static ssize_t suspend_disk_microvolts_show(struct device *dev,
883 struct device_attribute *attr, char *buf)
884{
885 struct regulator_dev *rdev = dev_get_drvdata(dev);
886
887 return sprintf(buf, "%d\n", rdev->constraints->state_disk.uV);
888}
889static DEVICE_ATTR_RO(suspend_disk_microvolts);
890
891static ssize_t suspend_standby_microvolts_show(struct device *dev,
892 struct device_attribute *attr, char *buf)
893{
894 struct regulator_dev *rdev = dev_get_drvdata(dev);
895
896 return sprintf(buf, "%d\n", rdev->constraints->state_standby.uV);
897}
898static DEVICE_ATTR_RO(suspend_standby_microvolts);
899
900static ssize_t suspend_mem_mode_show(struct device *dev,
901 struct device_attribute *attr, char *buf)
902{
903 struct regulator_dev *rdev = dev_get_drvdata(dev);
904
905 return regulator_print_opmode(buf,
906 rdev->constraints->state_mem.mode);
907}
908static DEVICE_ATTR_RO(suspend_mem_mode);
909
910static ssize_t suspend_disk_mode_show(struct device *dev,
911 struct device_attribute *attr, char *buf)
912{
913 struct regulator_dev *rdev = dev_get_drvdata(dev);
914
915 return regulator_print_opmode(buf,
916 rdev->constraints->state_disk.mode);
917}
918static DEVICE_ATTR_RO(suspend_disk_mode);
919
920static ssize_t suspend_standby_mode_show(struct device *dev,
921 struct device_attribute *attr, char *buf)
922{
923 struct regulator_dev *rdev = dev_get_drvdata(dev);
924
925 return regulator_print_opmode(buf,
926 rdev->constraints->state_standby.mode);
927}
928static DEVICE_ATTR_RO(suspend_standby_mode);
929
930static ssize_t suspend_mem_state_show(struct device *dev,
931 struct device_attribute *attr, char *buf)
932{
933 struct regulator_dev *rdev = dev_get_drvdata(dev);
934
935 return regulator_print_state(buf,
936 rdev->constraints->state_mem.enabled);
937}
938static DEVICE_ATTR_RO(suspend_mem_state);
939
940static ssize_t suspend_disk_state_show(struct device *dev,
941 struct device_attribute *attr, char *buf)
942{
943 struct regulator_dev *rdev = dev_get_drvdata(dev);
944
945 return regulator_print_state(buf,
946 rdev->constraints->state_disk.enabled);
947}
948static DEVICE_ATTR_RO(suspend_disk_state);
949
950static ssize_t suspend_standby_state_show(struct device *dev,
951 struct device_attribute *attr, char *buf)
952{
953 struct regulator_dev *rdev = dev_get_drvdata(dev);
954
955 return regulator_print_state(buf,
956 rdev->constraints->state_standby.enabled);
957}
958static DEVICE_ATTR_RO(suspend_standby_state);
959
960static ssize_t bypass_show(struct device *dev,
961 struct device_attribute *attr, char *buf)
962{
963 struct regulator_dev *rdev = dev_get_drvdata(dev);
964 const char *report;
965 bool bypass;
966 int ret;
967
968 ret = rdev->desc->ops->get_bypass(rdev, &bypass);
969
970 if (ret != 0)
971 report = "unknown";
972 else if (bypass)
973 report = "enabled";
974 else
975 report = "disabled";
976
977 return sprintf(buf, "%s\n", report);
978}
979static DEVICE_ATTR_RO(bypass);
980
981#define REGULATOR_ERROR_ATTR(name, bit) \
982 static ssize_t name##_show(struct device *dev, struct device_attribute *attr, \
983 char *buf) \
984 { \
985 int ret; \
986 unsigned int flags; \
987 struct regulator_dev *rdev = dev_get_drvdata(dev); \
988 ret = _regulator_get_error_flags(rdev, &flags); \
989 if (ret) \
990 return ret; \
991 return sysfs_emit(buf, "%d\n", !!(flags & (bit))); \
992 } \
993 static DEVICE_ATTR_RO(name)
994
995REGULATOR_ERROR_ATTR(under_voltage, REGULATOR_ERROR_UNDER_VOLTAGE);
996REGULATOR_ERROR_ATTR(over_current, REGULATOR_ERROR_OVER_CURRENT);
997REGULATOR_ERROR_ATTR(regulation_out, REGULATOR_ERROR_REGULATION_OUT);
998REGULATOR_ERROR_ATTR(fail, REGULATOR_ERROR_FAIL);
999REGULATOR_ERROR_ATTR(over_temp, REGULATOR_ERROR_OVER_TEMP);
1000REGULATOR_ERROR_ATTR(under_voltage_warn, REGULATOR_ERROR_UNDER_VOLTAGE_WARN);
1001REGULATOR_ERROR_ATTR(over_current_warn, REGULATOR_ERROR_OVER_CURRENT_WARN);
1002REGULATOR_ERROR_ATTR(over_voltage_warn, REGULATOR_ERROR_OVER_VOLTAGE_WARN);
1003REGULATOR_ERROR_ATTR(over_temp_warn, REGULATOR_ERROR_OVER_TEMP_WARN);
1004
1005/* Calculate the new optimum regulator operating mode based on the new total
1006 * consumer load. All locks held by caller
1007 */
1008static int drms_uA_update(struct regulator_dev *rdev)
1009{
1010 struct regulator *sibling;
1011 int current_uA = 0, output_uV, input_uV, err;
1012 unsigned int mode;
1013
1014 /*
1015 * first check to see if we can set modes at all, otherwise just
1016 * tell the consumer everything is OK.
1017 */
1018 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_DRMS)) {
1019 rdev_dbg(rdev, "DRMS operation not allowed\n");
1020 return 0;
1021 }
1022
1023 if (!rdev->desc->ops->get_optimum_mode &&
1024 !rdev->desc->ops->set_load)
1025 return 0;
1026
1027 if (!rdev->desc->ops->set_mode &&
1028 !rdev->desc->ops->set_load)
1029 return -EINVAL;
1030
1031 /* calc total requested load */
1032 list_for_each_entry(sibling, &rdev->consumer_list, list) {
1033 if (sibling->enable_count)
1034 current_uA += sibling->uA_load;
1035 }
1036
1037 current_uA += rdev->constraints->system_load;
1038
1039 if (rdev->desc->ops->set_load) {
1040 /* set the optimum mode for our new total regulator load */
1041 err = rdev->desc->ops->set_load(rdev, current_uA);
1042 if (err < 0)
1043 rdev_err(rdev, "failed to set load %d: %pe\n",
1044 current_uA, ERR_PTR(err));
1045 } else {
1046 /*
1047 * Unfortunately in some cases the constraints->valid_ops has
1048 * REGULATOR_CHANGE_DRMS but there are no valid modes listed.
1049 * That's not really legit but we won't consider it a fatal
1050 * error here. We'll treat it as if REGULATOR_CHANGE_DRMS
1051 * wasn't set.
1052 */
1053 if (!rdev->constraints->valid_modes_mask) {
1054 rdev_dbg(rdev, "Can change modes; but no valid mode\n");
1055 return 0;
1056 }
1057
1058 /* get output voltage */
1059 output_uV = regulator_get_voltage_rdev(rdev);
1060
1061 /*
1062 * Don't return an error; if regulator driver cares about
1063 * output_uV then it's up to the driver to validate.
1064 */
1065 if (output_uV <= 0)
1066 rdev_dbg(rdev, "invalid output voltage found\n");
1067
1068 /* get input voltage */
1069 input_uV = 0;
1070 if (rdev->supply)
1071 input_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
1072 if (input_uV <= 0)
1073 input_uV = rdev->constraints->input_uV;
1074
1075 /*
1076 * Don't return an error; if regulator driver cares about
1077 * input_uV then it's up to the driver to validate.
1078 */
1079 if (input_uV <= 0)
1080 rdev_dbg(rdev, "invalid input voltage found\n");
1081
1082 /* now get the optimum mode for our new total regulator load */
1083 mode = rdev->desc->ops->get_optimum_mode(rdev, input_uV,
1084 output_uV, current_uA);
1085
1086 /* check the new mode is allowed */
1087 err = regulator_mode_constrain(rdev, &mode);
1088 if (err < 0) {
1089 rdev_err(rdev, "failed to get optimum mode @ %d uA %d -> %d uV: %pe\n",
1090 current_uA, input_uV, output_uV, ERR_PTR(err));
1091 return err;
1092 }
1093
1094 err = rdev->desc->ops->set_mode(rdev, mode);
1095 if (err < 0)
1096 rdev_err(rdev, "failed to set optimum mode %x: %pe\n",
1097 mode, ERR_PTR(err));
1098 }
1099
1100 return err;
1101}
1102
1103static int __suspend_set_state(struct regulator_dev *rdev,
1104 const struct regulator_state *rstate)
1105{
1106 int ret = 0;
1107
1108 if (rstate->enabled == ENABLE_IN_SUSPEND &&
1109 rdev->desc->ops->set_suspend_enable)
1110 ret = rdev->desc->ops->set_suspend_enable(rdev);
1111 else if (rstate->enabled == DISABLE_IN_SUSPEND &&
1112 rdev->desc->ops->set_suspend_disable)
1113 ret = rdev->desc->ops->set_suspend_disable(rdev);
1114 else /* OK if set_suspend_enable or set_suspend_disable is NULL */
1115 ret = 0;
1116
1117 if (ret < 0) {
1118 rdev_err(rdev, "failed to enabled/disable: %pe\n", ERR_PTR(ret));
1119 return ret;
1120 }
1121
1122 if (rdev->desc->ops->set_suspend_voltage && rstate->uV > 0) {
1123 ret = rdev->desc->ops->set_suspend_voltage(rdev, rstate->uV);
1124 if (ret < 0) {
1125 rdev_err(rdev, "failed to set voltage: %pe\n", ERR_PTR(ret));
1126 return ret;
1127 }
1128 }
1129
1130 if (rdev->desc->ops->set_suspend_mode && rstate->mode > 0) {
1131 ret = rdev->desc->ops->set_suspend_mode(rdev, rstate->mode);
1132 if (ret < 0) {
1133 rdev_err(rdev, "failed to set mode: %pe\n", ERR_PTR(ret));
1134 return ret;
1135 }
1136 }
1137
1138 return ret;
1139}
1140
1141static int suspend_set_initial_state(struct regulator_dev *rdev)
1142{
1143 const struct regulator_state *rstate;
1144
1145 rstate = regulator_get_suspend_state_check(rdev,
1146 rdev->constraints->initial_state);
1147 if (!rstate)
1148 return 0;
1149
1150 return __suspend_set_state(rdev, rstate);
1151}
1152
1153#if defined(DEBUG) || defined(CONFIG_DYNAMIC_DEBUG)
1154static void print_constraints_debug(struct regulator_dev *rdev)
1155{
1156 struct regulation_constraints *constraints = rdev->constraints;
1157 char buf[160] = "";
1158 size_t len = sizeof(buf) - 1;
1159 int count = 0;
1160 int ret;
1161
1162 if (constraints->min_uV && constraints->max_uV) {
1163 if (constraints->min_uV == constraints->max_uV)
1164 count += scnprintf(buf + count, len - count, "%d mV ",
1165 constraints->min_uV / 1000);
1166 else
1167 count += scnprintf(buf + count, len - count,
1168 "%d <--> %d mV ",
1169 constraints->min_uV / 1000,
1170 constraints->max_uV / 1000);
1171 }
1172
1173 if (!constraints->min_uV ||
1174 constraints->min_uV != constraints->max_uV) {
1175 ret = regulator_get_voltage_rdev(rdev);
1176 if (ret > 0)
1177 count += scnprintf(buf + count, len - count,
1178 "at %d mV ", ret / 1000);
1179 }
1180
1181 if (constraints->uV_offset)
1182 count += scnprintf(buf + count, len - count, "%dmV offset ",
1183 constraints->uV_offset / 1000);
1184
1185 if (constraints->min_uA && constraints->max_uA) {
1186 if (constraints->min_uA == constraints->max_uA)
1187 count += scnprintf(buf + count, len - count, "%d mA ",
1188 constraints->min_uA / 1000);
1189 else
1190 count += scnprintf(buf + count, len - count,
1191 "%d <--> %d mA ",
1192 constraints->min_uA / 1000,
1193 constraints->max_uA / 1000);
1194 }
1195
1196 if (!constraints->min_uA ||
1197 constraints->min_uA != constraints->max_uA) {
1198 ret = _regulator_get_current_limit(rdev);
1199 if (ret > 0)
1200 count += scnprintf(buf + count, len - count,
1201 "at %d mA ", ret / 1000);
1202 }
1203
1204 if (constraints->valid_modes_mask & REGULATOR_MODE_FAST)
1205 count += scnprintf(buf + count, len - count, "fast ");
1206 if (constraints->valid_modes_mask & REGULATOR_MODE_NORMAL)
1207 count += scnprintf(buf + count, len - count, "normal ");
1208 if (constraints->valid_modes_mask & REGULATOR_MODE_IDLE)
1209 count += scnprintf(buf + count, len - count, "idle ");
1210 if (constraints->valid_modes_mask & REGULATOR_MODE_STANDBY)
1211 count += scnprintf(buf + count, len - count, "standby ");
1212
1213 if (!count)
1214 count = scnprintf(buf, len, "no parameters");
1215 else
1216 --count;
1217
1218 count += scnprintf(buf + count, len - count, ", %s",
1219 _regulator_is_enabled(rdev) ? "enabled" : "disabled");
1220
1221 rdev_dbg(rdev, "%s\n", buf);
1222}
1223#else /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1224static inline void print_constraints_debug(struct regulator_dev *rdev) {}
1225#endif /* !DEBUG && !CONFIG_DYNAMIC_DEBUG */
1226
1227static void print_constraints(struct regulator_dev *rdev)
1228{
1229 struct regulation_constraints *constraints = rdev->constraints;
1230
1231 print_constraints_debug(rdev);
1232
1233 if ((constraints->min_uV != constraints->max_uV) &&
1234 !regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
1235 rdev_warn(rdev,
1236 "Voltage range but no REGULATOR_CHANGE_VOLTAGE\n");
1237}
1238
1239static int machine_constraints_voltage(struct regulator_dev *rdev,
1240 struct regulation_constraints *constraints)
1241{
1242 const struct regulator_ops *ops = rdev->desc->ops;
1243 int ret;
1244
1245 /* do we need to apply the constraint voltage */
1246 if (rdev->constraints->apply_uV &&
1247 rdev->constraints->min_uV && rdev->constraints->max_uV) {
1248 int target_min, target_max;
1249 int current_uV = regulator_get_voltage_rdev(rdev);
1250
1251 if (current_uV == -ENOTRECOVERABLE) {
1252 /* This regulator can't be read and must be initialized */
1253 rdev_info(rdev, "Setting %d-%duV\n",
1254 rdev->constraints->min_uV,
1255 rdev->constraints->max_uV);
1256 _regulator_do_set_voltage(rdev,
1257 rdev->constraints->min_uV,
1258 rdev->constraints->max_uV);
1259 current_uV = regulator_get_voltage_rdev(rdev);
1260 }
1261
1262 if (current_uV < 0) {
1263 if (current_uV != -EPROBE_DEFER)
1264 rdev_err(rdev,
1265 "failed to get the current voltage: %pe\n",
1266 ERR_PTR(current_uV));
1267 return current_uV;
1268 }
1269
1270 /*
1271 * If we're below the minimum voltage move up to the
1272 * minimum voltage, if we're above the maximum voltage
1273 * then move down to the maximum.
1274 */
1275 target_min = current_uV;
1276 target_max = current_uV;
1277
1278 if (current_uV < rdev->constraints->min_uV) {
1279 target_min = rdev->constraints->min_uV;
1280 target_max = rdev->constraints->min_uV;
1281 }
1282
1283 if (current_uV > rdev->constraints->max_uV) {
1284 target_min = rdev->constraints->max_uV;
1285 target_max = rdev->constraints->max_uV;
1286 }
1287
1288 if (target_min != current_uV || target_max != current_uV) {
1289 rdev_info(rdev, "Bringing %duV into %d-%duV\n",
1290 current_uV, target_min, target_max);
1291 ret = _regulator_do_set_voltage(
1292 rdev, target_min, target_max);
1293 if (ret < 0) {
1294 rdev_err(rdev,
1295 "failed to apply %d-%duV constraint: %pe\n",
1296 target_min, target_max, ERR_PTR(ret));
1297 return ret;
1298 }
1299 }
1300 }
1301
1302 /* constrain machine-level voltage specs to fit
1303 * the actual range supported by this regulator.
1304 */
1305 if (ops->list_voltage && rdev->desc->n_voltages) {
1306 int count = rdev->desc->n_voltages;
1307 int i;
1308 int min_uV = INT_MAX;
1309 int max_uV = INT_MIN;
1310 int cmin = constraints->min_uV;
1311 int cmax = constraints->max_uV;
1312
1313 /* it's safe to autoconfigure fixed-voltage supplies
1314 * and the constraints are used by list_voltage.
1315 */
1316 if (count == 1 && !cmin) {
1317 cmin = 1;
1318 cmax = INT_MAX;
1319 constraints->min_uV = cmin;
1320 constraints->max_uV = cmax;
1321 }
1322
1323 /* voltage constraints are optional */
1324 if ((cmin == 0) && (cmax == 0))
1325 return 0;
1326
1327 /* else require explicit machine-level constraints */
1328 if (cmin <= 0 || cmax <= 0 || cmax < cmin) {
1329 rdev_err(rdev, "invalid voltage constraints\n");
1330 return -EINVAL;
1331 }
1332
1333 /* no need to loop voltages if range is continuous */
1334 if (rdev->desc->continuous_voltage_range)
1335 return 0;
1336
1337 /* initial: [cmin..cmax] valid, [min_uV..max_uV] not */
1338 for (i = 0; i < count; i++) {
1339 int value;
1340
1341 value = ops->list_voltage(rdev, i);
1342 if (value <= 0)
1343 continue;
1344
1345 /* maybe adjust [min_uV..max_uV] */
1346 if (value >= cmin && value < min_uV)
1347 min_uV = value;
1348 if (value <= cmax && value > max_uV)
1349 max_uV = value;
1350 }
1351
1352 /* final: [min_uV..max_uV] valid iff constraints valid */
1353 if (max_uV < min_uV) {
1354 rdev_err(rdev,
1355 "unsupportable voltage constraints %u-%uuV\n",
1356 min_uV, max_uV);
1357 return -EINVAL;
1358 }
1359
1360 /* use regulator's subset of machine constraints */
1361 if (constraints->min_uV < min_uV) {
1362 rdev_dbg(rdev, "override min_uV, %d -> %d\n",
1363 constraints->min_uV, min_uV);
1364 constraints->min_uV = min_uV;
1365 }
1366 if (constraints->max_uV > max_uV) {
1367 rdev_dbg(rdev, "override max_uV, %d -> %d\n",
1368 constraints->max_uV, max_uV);
1369 constraints->max_uV = max_uV;
1370 }
1371 }
1372
1373 return 0;
1374}
1375
1376static int machine_constraints_current(struct regulator_dev *rdev,
1377 struct regulation_constraints *constraints)
1378{
1379 const struct regulator_ops *ops = rdev->desc->ops;
1380 int ret;
1381
1382 if (!constraints->min_uA && !constraints->max_uA)
1383 return 0;
1384
1385 if (constraints->min_uA > constraints->max_uA) {
1386 rdev_err(rdev, "Invalid current constraints\n");
1387 return -EINVAL;
1388 }
1389
1390 if (!ops->set_current_limit || !ops->get_current_limit) {
1391 rdev_warn(rdev, "Operation of current configuration missing\n");
1392 return 0;
1393 }
1394
1395 /* Set regulator current in constraints range */
1396 ret = ops->set_current_limit(rdev, constraints->min_uA,
1397 constraints->max_uA);
1398 if (ret < 0) {
1399 rdev_err(rdev, "Failed to set current constraint, %d\n", ret);
1400 return ret;
1401 }
1402
1403 return 0;
1404}
1405
1406static int _regulator_do_enable(struct regulator_dev *rdev);
1407
1408static int notif_set_limit(struct regulator_dev *rdev,
1409 int (*set)(struct regulator_dev *, int, int, bool),
1410 int limit, int severity)
1411{
1412 bool enable;
1413
1414 if (limit == REGULATOR_NOTIF_LIMIT_DISABLE) {
1415 enable = false;
1416 limit = 0;
1417 } else {
1418 enable = true;
1419 }
1420
1421 if (limit == REGULATOR_NOTIF_LIMIT_ENABLE)
1422 limit = 0;
1423
1424 return set(rdev, limit, severity, enable);
1425}
1426
1427static int handle_notify_limits(struct regulator_dev *rdev,
1428 int (*set)(struct regulator_dev *, int, int, bool),
1429 struct notification_limit *limits)
1430{
1431 int ret = 0;
1432
1433 if (!set)
1434 return -EOPNOTSUPP;
1435
1436 if (limits->prot)
1437 ret = notif_set_limit(rdev, set, limits->prot,
1438 REGULATOR_SEVERITY_PROT);
1439 if (ret)
1440 return ret;
1441
1442 if (limits->err)
1443 ret = notif_set_limit(rdev, set, limits->err,
1444 REGULATOR_SEVERITY_ERR);
1445 if (ret)
1446 return ret;
1447
1448 if (limits->warn)
1449 ret = notif_set_limit(rdev, set, limits->warn,
1450 REGULATOR_SEVERITY_WARN);
1451
1452 return ret;
1453}
1454/**
1455 * set_machine_constraints - sets regulator constraints
1456 * @rdev: regulator source
1457 *
1458 * Allows platform initialisation code to define and constrain
1459 * regulator circuits e.g. valid voltage/current ranges, etc. NOTE:
1460 * Constraints *must* be set by platform code in order for some
1461 * regulator operations to proceed i.e. set_voltage, set_current_limit,
1462 * set_mode.
1463 */
1464static int set_machine_constraints(struct regulator_dev *rdev)
1465{
1466 int ret = 0;
1467 const struct regulator_ops *ops = rdev->desc->ops;
1468
1469 ret = machine_constraints_voltage(rdev, rdev->constraints);
1470 if (ret != 0)
1471 return ret;
1472
1473 ret = machine_constraints_current(rdev, rdev->constraints);
1474 if (ret != 0)
1475 return ret;
1476
1477 if (rdev->constraints->ilim_uA && ops->set_input_current_limit) {
1478 ret = ops->set_input_current_limit(rdev,
1479 rdev->constraints->ilim_uA);
1480 if (ret < 0) {
1481 rdev_err(rdev, "failed to set input limit: %pe\n", ERR_PTR(ret));
1482 return ret;
1483 }
1484 }
1485
1486 /* do we need to setup our suspend state */
1487 if (rdev->constraints->initial_state) {
1488 ret = suspend_set_initial_state(rdev);
1489 if (ret < 0) {
1490 rdev_err(rdev, "failed to set suspend state: %pe\n", ERR_PTR(ret));
1491 return ret;
1492 }
1493 }
1494
1495 if (rdev->constraints->initial_mode) {
1496 if (!ops->set_mode) {
1497 rdev_err(rdev, "no set_mode operation\n");
1498 return -EINVAL;
1499 }
1500
1501 ret = ops->set_mode(rdev, rdev->constraints->initial_mode);
1502 if (ret < 0) {
1503 rdev_err(rdev, "failed to set initial mode: %pe\n", ERR_PTR(ret));
1504 return ret;
1505 }
1506 } else if (rdev->constraints->system_load) {
1507 /*
1508 * We'll only apply the initial system load if an
1509 * initial mode wasn't specified.
1510 */
1511 drms_uA_update(rdev);
1512 }
1513
1514 if ((rdev->constraints->ramp_delay || rdev->constraints->ramp_disable)
1515 && ops->set_ramp_delay) {
1516 ret = ops->set_ramp_delay(rdev, rdev->constraints->ramp_delay);
1517 if (ret < 0) {
1518 rdev_err(rdev, "failed to set ramp_delay: %pe\n", ERR_PTR(ret));
1519 return ret;
1520 }
1521 }
1522
1523 if (rdev->constraints->pull_down && ops->set_pull_down) {
1524 ret = ops->set_pull_down(rdev);
1525 if (ret < 0) {
1526 rdev_err(rdev, "failed to set pull down: %pe\n", ERR_PTR(ret));
1527 return ret;
1528 }
1529 }
1530
1531 if (rdev->constraints->soft_start && ops->set_soft_start) {
1532 ret = ops->set_soft_start(rdev);
1533 if (ret < 0) {
1534 rdev_err(rdev, "failed to set soft start: %pe\n", ERR_PTR(ret));
1535 return ret;
1536 }
1537 }
1538
1539 /*
1540 * Existing logic does not warn if over_current_protection is given as
1541 * a constraint but driver does not support that. I think we should
1542 * warn about this type of issues as it is possible someone changes
1543 * PMIC on board to another type - and the another PMIC's driver does
1544 * not support setting protection. Board composer may happily believe
1545 * the DT limits are respected - especially if the new PMIC HW also
1546 * supports protection but the driver does not. I won't change the logic
1547 * without hearing more experienced opinion on this though.
1548 *
1549 * If warning is seen as a good idea then we can merge handling the
1550 * over-curret protection and detection and get rid of this special
1551 * handling.
1552 */
1553 if (rdev->constraints->over_current_protection
1554 && ops->set_over_current_protection) {
1555 int lim = rdev->constraints->over_curr_limits.prot;
1556
1557 ret = ops->set_over_current_protection(rdev, lim,
1558 REGULATOR_SEVERITY_PROT,
1559 true);
1560 if (ret < 0) {
1561 rdev_err(rdev, "failed to set over current protection: %pe\n",
1562 ERR_PTR(ret));
1563 return ret;
1564 }
1565 }
1566
1567 if (rdev->constraints->over_current_detection)
1568 ret = handle_notify_limits(rdev,
1569 ops->set_over_current_protection,
1570 &rdev->constraints->over_curr_limits);
1571 if (ret) {
1572 if (ret != -EOPNOTSUPP) {
1573 rdev_err(rdev, "failed to set over current limits: %pe\n",
1574 ERR_PTR(ret));
1575 return ret;
1576 }
1577 rdev_warn(rdev,
1578 "IC does not support requested over-current limits\n");
1579 }
1580
1581 if (rdev->constraints->over_voltage_detection)
1582 ret = handle_notify_limits(rdev,
1583 ops->set_over_voltage_protection,
1584 &rdev->constraints->over_voltage_limits);
1585 if (ret) {
1586 if (ret != -EOPNOTSUPP) {
1587 rdev_err(rdev, "failed to set over voltage limits %pe\n",
1588 ERR_PTR(ret));
1589 return ret;
1590 }
1591 rdev_warn(rdev,
1592 "IC does not support requested over voltage limits\n");
1593 }
1594
1595 if (rdev->constraints->under_voltage_detection)
1596 ret = handle_notify_limits(rdev,
1597 ops->set_under_voltage_protection,
1598 &rdev->constraints->under_voltage_limits);
1599 if (ret) {
1600 if (ret != -EOPNOTSUPP) {
1601 rdev_err(rdev, "failed to set under voltage limits %pe\n",
1602 ERR_PTR(ret));
1603 return ret;
1604 }
1605 rdev_warn(rdev,
1606 "IC does not support requested under voltage limits\n");
1607 }
1608
1609 if (rdev->constraints->over_temp_detection)
1610 ret = handle_notify_limits(rdev,
1611 ops->set_thermal_protection,
1612 &rdev->constraints->temp_limits);
1613 if (ret) {
1614 if (ret != -EOPNOTSUPP) {
1615 rdev_err(rdev, "failed to set temperature limits %pe\n",
1616 ERR_PTR(ret));
1617 return ret;
1618 }
1619 rdev_warn(rdev,
1620 "IC does not support requested temperature limits\n");
1621 }
1622
1623 if (rdev->constraints->active_discharge && ops->set_active_discharge) {
1624 bool ad_state = (rdev->constraints->active_discharge ==
1625 REGULATOR_ACTIVE_DISCHARGE_ENABLE) ? true : false;
1626
1627 ret = ops->set_active_discharge(rdev, ad_state);
1628 if (ret < 0) {
1629 rdev_err(rdev, "failed to set active discharge: %pe\n", ERR_PTR(ret));
1630 return ret;
1631 }
1632 }
1633
1634 /*
1635 * If there is no mechanism for controlling the regulator then
1636 * flag it as always_on so we don't end up duplicating checks
1637 * for this so much. Note that we could control the state of
1638 * a supply to control the output on a regulator that has no
1639 * direct control.
1640 */
1641 if (!rdev->ena_pin && !ops->enable) {
1642 if (rdev->supply_name && !rdev->supply)
1643 return -EPROBE_DEFER;
1644
1645 if (rdev->supply)
1646 rdev->constraints->always_on =
1647 rdev->supply->rdev->constraints->always_on;
1648 else
1649 rdev->constraints->always_on = true;
1650 }
1651
1652 /* If the constraints say the regulator should be on at this point
1653 * and we have control then make sure it is enabled.
1654 */
1655 if (rdev->constraints->always_on || rdev->constraints->boot_on) {
1656 /* If we want to enable this regulator, make sure that we know
1657 * the supplying regulator.
1658 */
1659 if (rdev->supply_name && !rdev->supply)
1660 return -EPROBE_DEFER;
1661
1662 /* If supplying regulator has already been enabled,
1663 * it's not intended to have use_count increment
1664 * when rdev is only boot-on.
1665 */
1666 if (rdev->supply &&
1667 (rdev->constraints->always_on ||
1668 !regulator_is_enabled(rdev->supply))) {
1669 ret = regulator_enable(rdev->supply);
1670 if (ret < 0) {
1671 _regulator_put(rdev->supply);
1672 rdev->supply = NULL;
1673 return ret;
1674 }
1675 }
1676
1677 ret = _regulator_do_enable(rdev);
1678 if (ret < 0 && ret != -EINVAL) {
1679 rdev_err(rdev, "failed to enable: %pe\n", ERR_PTR(ret));
1680 return ret;
1681 }
1682
1683 if (rdev->constraints->always_on)
1684 rdev->use_count++;
1685 } else if (rdev->desc->off_on_delay) {
1686 rdev->last_off = ktime_get();
1687 }
1688
1689 print_constraints(rdev);
1690 return 0;
1691}
1692
1693/**
1694 * set_supply - set regulator supply regulator
1695 * @rdev: regulator (locked)
1696 * @supply_rdev: supply regulator (locked))
1697 *
1698 * Called by platform initialisation code to set the supply regulator for this
1699 * regulator. This ensures that a regulators supply will also be enabled by the
1700 * core if it's child is enabled.
1701 */
1702static int set_supply(struct regulator_dev *rdev,
1703 struct regulator_dev *supply_rdev)
1704{
1705 int err;
1706
1707 rdev_dbg(rdev, "supplied by %s\n", rdev_get_name(supply_rdev));
1708
1709 if (!try_module_get(supply_rdev->owner))
1710 return -ENODEV;
1711
1712 rdev->supply = create_regulator(supply_rdev, &rdev->dev, "SUPPLY");
1713 if (rdev->supply == NULL) {
1714 module_put(supply_rdev->owner);
1715 err = -ENOMEM;
1716 return err;
1717 }
1718 supply_rdev->open_count++;
1719
1720 return 0;
1721}
1722
1723/**
1724 * set_consumer_device_supply - Bind a regulator to a symbolic supply
1725 * @rdev: regulator source
1726 * @consumer_dev_name: dev_name() string for device supply applies to
1727 * @supply: symbolic name for supply
1728 *
1729 * Allows platform initialisation code to map physical regulator
1730 * sources to symbolic names for supplies for use by devices. Devices
1731 * should use these symbolic names to request regulators, avoiding the
1732 * need to provide board-specific regulator names as platform data.
1733 */
1734static int set_consumer_device_supply(struct regulator_dev *rdev,
1735 const char *consumer_dev_name,
1736 const char *supply)
1737{
1738 struct regulator_map *node, *new_node;
1739 int has_dev;
1740
1741 if (supply == NULL)
1742 return -EINVAL;
1743
1744 if (consumer_dev_name != NULL)
1745 has_dev = 1;
1746 else
1747 has_dev = 0;
1748
1749 new_node = kzalloc(sizeof(struct regulator_map), GFP_KERNEL);
1750 if (new_node == NULL)
1751 return -ENOMEM;
1752
1753 new_node->regulator = rdev;
1754 new_node->supply = supply;
1755
1756 if (has_dev) {
1757 new_node->dev_name = kstrdup(consumer_dev_name, GFP_KERNEL);
1758 if (new_node->dev_name == NULL) {
1759 kfree(new_node);
1760 return -ENOMEM;
1761 }
1762 }
1763
1764 mutex_lock(®ulator_list_mutex);
1765 list_for_each_entry(node, ®ulator_map_list, list) {
1766 if (node->dev_name && consumer_dev_name) {
1767 if (strcmp(node->dev_name, consumer_dev_name) != 0)
1768 continue;
1769 } else if (node->dev_name || consumer_dev_name) {
1770 continue;
1771 }
1772
1773 if (strcmp(node->supply, supply) != 0)
1774 continue;
1775
1776 pr_debug("%s: %s/%s is '%s' supply; fail %s/%s\n",
1777 consumer_dev_name,
1778 dev_name(&node->regulator->dev),
1779 node->regulator->desc->name,
1780 supply,
1781 dev_name(&rdev->dev), rdev_get_name(rdev));
1782 goto fail;
1783 }
1784
1785 list_add(&new_node->list, ®ulator_map_list);
1786 mutex_unlock(®ulator_list_mutex);
1787
1788 return 0;
1789
1790fail:
1791 mutex_unlock(®ulator_list_mutex);
1792 kfree(new_node->dev_name);
1793 kfree(new_node);
1794 return -EBUSY;
1795}
1796
1797static void unset_regulator_supplies(struct regulator_dev *rdev)
1798{
1799 struct regulator_map *node, *n;
1800
1801 list_for_each_entry_safe(node, n, ®ulator_map_list, list) {
1802 if (rdev == node->regulator) {
1803 list_del(&node->list);
1804 kfree(node->dev_name);
1805 kfree(node);
1806 }
1807 }
1808}
1809
1810#ifdef CONFIG_DEBUG_FS
1811static ssize_t constraint_flags_read_file(struct file *file,
1812 char __user *user_buf,
1813 size_t count, loff_t *ppos)
1814{
1815 const struct regulator *regulator = file->private_data;
1816 const struct regulation_constraints *c = regulator->rdev->constraints;
1817 char *buf;
1818 ssize_t ret;
1819
1820 if (!c)
1821 return 0;
1822
1823 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
1824 if (!buf)
1825 return -ENOMEM;
1826
1827 ret = snprintf(buf, PAGE_SIZE,
1828 "always_on: %u\n"
1829 "boot_on: %u\n"
1830 "apply_uV: %u\n"
1831 "ramp_disable: %u\n"
1832 "soft_start: %u\n"
1833 "pull_down: %u\n"
1834 "over_current_protection: %u\n",
1835 c->always_on,
1836 c->boot_on,
1837 c->apply_uV,
1838 c->ramp_disable,
1839 c->soft_start,
1840 c->pull_down,
1841 c->over_current_protection);
1842
1843 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
1844 kfree(buf);
1845
1846 return ret;
1847}
1848
1849#endif
1850
1851static const struct file_operations constraint_flags_fops = {
1852#ifdef CONFIG_DEBUG_FS
1853 .open = simple_open,
1854 .read = constraint_flags_read_file,
1855 .llseek = default_llseek,
1856#endif
1857};
1858
1859#define REG_STR_SIZE 64
1860
1861static struct regulator *create_regulator(struct regulator_dev *rdev,
1862 struct device *dev,
1863 const char *supply_name)
1864{
1865 struct regulator *regulator;
1866 int err = 0;
1867
1868 lockdep_assert_held_once(&rdev->mutex.base);
1869
1870 if (dev) {
1871 char buf[REG_STR_SIZE];
1872 int size;
1873
1874 size = snprintf(buf, REG_STR_SIZE, "%s-%s",
1875 dev->kobj.name, supply_name);
1876 if (size >= REG_STR_SIZE)
1877 return NULL;
1878
1879 supply_name = kstrdup(buf, GFP_KERNEL);
1880 if (supply_name == NULL)
1881 return NULL;
1882 } else {
1883 supply_name = kstrdup_const(supply_name, GFP_KERNEL);
1884 if (supply_name == NULL)
1885 return NULL;
1886 }
1887
1888 regulator = kzalloc(sizeof(*regulator), GFP_KERNEL);
1889 if (regulator == NULL) {
1890 kfree_const(supply_name);
1891 return NULL;
1892 }
1893
1894 regulator->rdev = rdev;
1895 regulator->supply_name = supply_name;
1896
1897 list_add(®ulator->list, &rdev->consumer_list);
1898
1899 if (dev) {
1900 regulator->dev = dev;
1901
1902 /* Add a link to the device sysfs entry */
1903 err = sysfs_create_link_nowarn(&rdev->dev.kobj, &dev->kobj,
1904 supply_name);
1905 if (err) {
1906 rdev_dbg(rdev, "could not add device link %s: %pe\n",
1907 dev->kobj.name, ERR_PTR(err));
1908 /* non-fatal */
1909 }
1910 }
1911
1912 if (err != -EEXIST)
1913 regulator->debugfs = debugfs_create_dir(supply_name, rdev->debugfs);
1914 if (!regulator->debugfs) {
1915 rdev_dbg(rdev, "Failed to create debugfs directory\n");
1916 } else {
1917 debugfs_create_u32("uA_load", 0444, regulator->debugfs,
1918 ®ulator->uA_load);
1919 debugfs_create_u32("min_uV", 0444, regulator->debugfs,
1920 ®ulator->voltage[PM_SUSPEND_ON].min_uV);
1921 debugfs_create_u32("max_uV", 0444, regulator->debugfs,
1922 ®ulator->voltage[PM_SUSPEND_ON].max_uV);
1923 debugfs_create_file("constraint_flags", 0444,
1924 regulator->debugfs, regulator,
1925 &constraint_flags_fops);
1926 }
1927
1928 /*
1929 * Check now if the regulator is an always on regulator - if
1930 * it is then we don't need to do nearly so much work for
1931 * enable/disable calls.
1932 */
1933 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS) &&
1934 _regulator_is_enabled(rdev))
1935 regulator->always_on = true;
1936
1937 return regulator;
1938}
1939
1940static int _regulator_get_enable_time(struct regulator_dev *rdev)
1941{
1942 if (rdev->constraints && rdev->constraints->enable_time)
1943 return rdev->constraints->enable_time;
1944 if (rdev->desc->ops->enable_time)
1945 return rdev->desc->ops->enable_time(rdev);
1946 return rdev->desc->enable_time;
1947}
1948
1949static struct regulator_supply_alias *regulator_find_supply_alias(
1950 struct device *dev, const char *supply)
1951{
1952 struct regulator_supply_alias *map;
1953
1954 list_for_each_entry(map, ®ulator_supply_alias_list, list)
1955 if (map->src_dev == dev && strcmp(map->src_supply, supply) == 0)
1956 return map;
1957
1958 return NULL;
1959}
1960
1961static void regulator_supply_alias(struct device **dev, const char **supply)
1962{
1963 struct regulator_supply_alias *map;
1964
1965 map = regulator_find_supply_alias(*dev, *supply);
1966 if (map) {
1967 dev_dbg(*dev, "Mapping supply %s to %s,%s\n",
1968 *supply, map->alias_supply,
1969 dev_name(map->alias_dev));
1970 *dev = map->alias_dev;
1971 *supply = map->alias_supply;
1972 }
1973}
1974
1975static int regulator_match(struct device *dev, const void *data)
1976{
1977 struct regulator_dev *r = dev_to_rdev(dev);
1978
1979 return strcmp(rdev_get_name(r), data) == 0;
1980}
1981
1982static struct regulator_dev *regulator_lookup_by_name(const char *name)
1983{
1984 struct device *dev;
1985
1986 dev = class_find_device(®ulator_class, NULL, name, regulator_match);
1987
1988 return dev ? dev_to_rdev(dev) : NULL;
1989}
1990
1991/**
1992 * regulator_dev_lookup - lookup a regulator device.
1993 * @dev: device for regulator "consumer".
1994 * @supply: Supply name or regulator ID.
1995 *
1996 * If successful, returns a struct regulator_dev that corresponds to the name
1997 * @supply and with the embedded struct device refcount incremented by one.
1998 * The refcount must be dropped by calling put_device().
1999 * On failure one of the following ERR-PTR-encoded values is returned:
2000 * -ENODEV if lookup fails permanently, -EPROBE_DEFER if lookup could succeed
2001 * in the future.
2002 */
2003static struct regulator_dev *regulator_dev_lookup(struct device *dev,
2004 const char *supply)
2005{
2006 struct regulator_dev *r = NULL;
2007 struct device_node *node;
2008 struct regulator_map *map;
2009 const char *devname = NULL;
2010
2011 regulator_supply_alias(&dev, &supply);
2012
2013 /* first do a dt based lookup */
2014 if (dev && dev->of_node) {
2015 node = of_get_regulator(dev, supply);
2016 if (node) {
2017 r = of_find_regulator_by_node(node);
2018 of_node_put(node);
2019 if (r)
2020 return r;
2021
2022 /*
2023 * We have a node, but there is no device.
2024 * assume it has not registered yet.
2025 */
2026 return ERR_PTR(-EPROBE_DEFER);
2027 }
2028 }
2029
2030 /* if not found, try doing it non-dt way */
2031 if (dev)
2032 devname = dev_name(dev);
2033
2034 mutex_lock(®ulator_list_mutex);
2035 list_for_each_entry(map, ®ulator_map_list, list) {
2036 /* If the mapping has a device set up it must match */
2037 if (map->dev_name &&
2038 (!devname || strcmp(map->dev_name, devname)))
2039 continue;
2040
2041 if (strcmp(map->supply, supply) == 0 &&
2042 get_device(&map->regulator->dev)) {
2043 r = map->regulator;
2044 break;
2045 }
2046 }
2047 mutex_unlock(®ulator_list_mutex);
2048
2049 if (r)
2050 return r;
2051
2052 r = regulator_lookup_by_name(supply);
2053 if (r)
2054 return r;
2055
2056 return ERR_PTR(-ENODEV);
2057}
2058
2059static int regulator_resolve_supply(struct regulator_dev *rdev)
2060{
2061 struct regulator_dev *r;
2062 struct device *dev = rdev->dev.parent;
2063 struct ww_acquire_ctx ww_ctx;
2064 int ret = 0;
2065
2066 /* No supply to resolve? */
2067 if (!rdev->supply_name)
2068 return 0;
2069
2070 /* Supply already resolved? (fast-path without locking contention) */
2071 if (rdev->supply)
2072 return 0;
2073
2074 r = regulator_dev_lookup(dev, rdev->supply_name);
2075 if (IS_ERR(r)) {
2076 ret = PTR_ERR(r);
2077
2078 /* Did the lookup explicitly defer for us? */
2079 if (ret == -EPROBE_DEFER)
2080 goto out;
2081
2082 if (have_full_constraints()) {
2083 r = dummy_regulator_rdev;
2084 get_device(&r->dev);
2085 } else {
2086 dev_err(dev, "Failed to resolve %s-supply for %s\n",
2087 rdev->supply_name, rdev->desc->name);
2088 ret = -EPROBE_DEFER;
2089 goto out;
2090 }
2091 }
2092
2093 if (r == rdev) {
2094 dev_err(dev, "Supply for %s (%s) resolved to itself\n",
2095 rdev->desc->name, rdev->supply_name);
2096 if (!have_full_constraints()) {
2097 ret = -EINVAL;
2098 goto out;
2099 }
2100 r = dummy_regulator_rdev;
2101 get_device(&r->dev);
2102 }
2103
2104 /*
2105 * If the supply's parent device is not the same as the
2106 * regulator's parent device, then ensure the parent device
2107 * is bound before we resolve the supply, in case the parent
2108 * device get probe deferred and unregisters the supply.
2109 */
2110 if (r->dev.parent && r->dev.parent != rdev->dev.parent) {
2111 if (!device_is_bound(r->dev.parent)) {
2112 put_device(&r->dev);
2113 ret = -EPROBE_DEFER;
2114 goto out;
2115 }
2116 }
2117
2118 /* Recursively resolve the supply of the supply */
2119 ret = regulator_resolve_supply(r);
2120 if (ret < 0) {
2121 put_device(&r->dev);
2122 goto out;
2123 }
2124
2125 /*
2126 * Recheck rdev->supply with rdev->mutex lock held to avoid a race
2127 * between rdev->supply null check and setting rdev->supply in
2128 * set_supply() from concurrent tasks.
2129 */
2130 regulator_lock_two(rdev, r, &ww_ctx);
2131
2132 /* Supply just resolved by a concurrent task? */
2133 if (rdev->supply) {
2134 regulator_unlock_two(rdev, r, &ww_ctx);
2135 put_device(&r->dev);
2136 goto out;
2137 }
2138
2139 ret = set_supply(rdev, r);
2140 if (ret < 0) {
2141 regulator_unlock_two(rdev, r, &ww_ctx);
2142 put_device(&r->dev);
2143 goto out;
2144 }
2145
2146 regulator_unlock_two(rdev, r, &ww_ctx);
2147
2148 /*
2149 * In set_machine_constraints() we may have turned this regulator on
2150 * but we couldn't propagate to the supply if it hadn't been resolved
2151 * yet. Do it now.
2152 */
2153 if (rdev->use_count) {
2154 ret = regulator_enable(rdev->supply);
2155 if (ret < 0) {
2156 _regulator_put(rdev->supply);
2157 rdev->supply = NULL;
2158 goto out;
2159 }
2160 }
2161
2162out:
2163 return ret;
2164}
2165
2166/* Internal regulator request function */
2167struct regulator *_regulator_get(struct device *dev, const char *id,
2168 enum regulator_get_type get_type)
2169{
2170 struct regulator_dev *rdev;
2171 struct regulator *regulator;
2172 struct device_link *link;
2173 int ret;
2174
2175 if (get_type >= MAX_GET_TYPE) {
2176 dev_err(dev, "invalid type %d in %s\n", get_type, __func__);
2177 return ERR_PTR(-EINVAL);
2178 }
2179
2180 if (id == NULL) {
2181 pr_err("get() with no identifier\n");
2182 return ERR_PTR(-EINVAL);
2183 }
2184
2185 rdev = regulator_dev_lookup(dev, id);
2186 if (IS_ERR(rdev)) {
2187 ret = PTR_ERR(rdev);
2188
2189 /*
2190 * If regulator_dev_lookup() fails with error other
2191 * than -ENODEV our job here is done, we simply return it.
2192 */
2193 if (ret != -ENODEV)
2194 return ERR_PTR(ret);
2195
2196 if (!have_full_constraints()) {
2197 dev_warn(dev,
2198 "incomplete constraints, dummy supplies not allowed\n");
2199 return ERR_PTR(-ENODEV);
2200 }
2201
2202 switch (get_type) {
2203 case NORMAL_GET:
2204 /*
2205 * Assume that a regulator is physically present and
2206 * enabled, even if it isn't hooked up, and just
2207 * provide a dummy.
2208 */
2209 dev_warn(dev, "supply %s not found, using dummy regulator\n", id);
2210 rdev = dummy_regulator_rdev;
2211 get_device(&rdev->dev);
2212 break;
2213
2214 case EXCLUSIVE_GET:
2215 dev_warn(dev,
2216 "dummy supplies not allowed for exclusive requests\n");
2217 fallthrough;
2218
2219 default:
2220 return ERR_PTR(-ENODEV);
2221 }
2222 }
2223
2224 if (rdev->exclusive) {
2225 regulator = ERR_PTR(-EPERM);
2226 put_device(&rdev->dev);
2227 return regulator;
2228 }
2229
2230 if (get_type == EXCLUSIVE_GET && rdev->open_count) {
2231 regulator = ERR_PTR(-EBUSY);
2232 put_device(&rdev->dev);
2233 return regulator;
2234 }
2235
2236 mutex_lock(®ulator_list_mutex);
2237 ret = (rdev->coupling_desc.n_resolved != rdev->coupling_desc.n_coupled);
2238 mutex_unlock(®ulator_list_mutex);
2239
2240 if (ret != 0) {
2241 regulator = ERR_PTR(-EPROBE_DEFER);
2242 put_device(&rdev->dev);
2243 return regulator;
2244 }
2245
2246 ret = regulator_resolve_supply(rdev);
2247 if (ret < 0) {
2248 regulator = ERR_PTR(ret);
2249 put_device(&rdev->dev);
2250 return regulator;
2251 }
2252
2253 if (!try_module_get(rdev->owner)) {
2254 regulator = ERR_PTR(-EPROBE_DEFER);
2255 put_device(&rdev->dev);
2256 return regulator;
2257 }
2258
2259 regulator_lock(rdev);
2260 regulator = create_regulator(rdev, dev, id);
2261 regulator_unlock(rdev);
2262 if (regulator == NULL) {
2263 regulator = ERR_PTR(-ENOMEM);
2264 module_put(rdev->owner);
2265 put_device(&rdev->dev);
2266 return regulator;
2267 }
2268
2269 rdev->open_count++;
2270 if (get_type == EXCLUSIVE_GET) {
2271 rdev->exclusive = 1;
2272
2273 ret = _regulator_is_enabled(rdev);
2274 if (ret > 0) {
2275 rdev->use_count = 1;
2276 regulator->enable_count = 1;
2277 } else {
2278 rdev->use_count = 0;
2279 regulator->enable_count = 0;
2280 }
2281 }
2282
2283 link = device_link_add(dev, &rdev->dev, DL_FLAG_STATELESS);
2284 if (!IS_ERR_OR_NULL(link))
2285 regulator->device_link = true;
2286
2287 return regulator;
2288}
2289
2290/**
2291 * regulator_get - lookup and obtain a reference to a regulator.
2292 * @dev: device for regulator "consumer"
2293 * @id: Supply name or regulator ID.
2294 *
2295 * Returns a struct regulator corresponding to the regulator producer,
2296 * or IS_ERR() condition containing errno.
2297 *
2298 * Use of supply names configured via set_consumer_device_supply() is
2299 * strongly encouraged. It is recommended that the supply name used
2300 * should match the name used for the supply and/or the relevant
2301 * device pins in the datasheet.
2302 */
2303struct regulator *regulator_get(struct device *dev, const char *id)
2304{
2305 return _regulator_get(dev, id, NORMAL_GET);
2306}
2307EXPORT_SYMBOL_GPL(regulator_get);
2308
2309/**
2310 * regulator_get_exclusive - obtain exclusive access to a regulator.
2311 * @dev: device for regulator "consumer"
2312 * @id: Supply name or regulator ID.
2313 *
2314 * Returns a struct regulator corresponding to the regulator producer,
2315 * or IS_ERR() condition containing errno. Other consumers will be
2316 * unable to obtain this regulator while this reference is held and the
2317 * use count for the regulator will be initialised to reflect the current
2318 * state of the regulator.
2319 *
2320 * This is intended for use by consumers which cannot tolerate shared
2321 * use of the regulator such as those which need to force the
2322 * regulator off for correct operation of the hardware they are
2323 * controlling.
2324 *
2325 * Use of supply names configured via set_consumer_device_supply() is
2326 * strongly encouraged. It is recommended that the supply name used
2327 * should match the name used for the supply and/or the relevant
2328 * device pins in the datasheet.
2329 */
2330struct regulator *regulator_get_exclusive(struct device *dev, const char *id)
2331{
2332 return _regulator_get(dev, id, EXCLUSIVE_GET);
2333}
2334EXPORT_SYMBOL_GPL(regulator_get_exclusive);
2335
2336/**
2337 * regulator_get_optional - obtain optional access to a regulator.
2338 * @dev: device for regulator "consumer"
2339 * @id: Supply name or regulator ID.
2340 *
2341 * Returns a struct regulator corresponding to the regulator producer,
2342 * or IS_ERR() condition containing errno.
2343 *
2344 * This is intended for use by consumers for devices which can have
2345 * some supplies unconnected in normal use, such as some MMC devices.
2346 * It can allow the regulator core to provide stub supplies for other
2347 * supplies requested using normal regulator_get() calls without
2348 * disrupting the operation of drivers that can handle absent
2349 * supplies.
2350 *
2351 * Use of supply names configured via set_consumer_device_supply() is
2352 * strongly encouraged. It is recommended that the supply name used
2353 * should match the name used for the supply and/or the relevant
2354 * device pins in the datasheet.
2355 */
2356struct regulator *regulator_get_optional(struct device *dev, const char *id)
2357{
2358 return _regulator_get(dev, id, OPTIONAL_GET);
2359}
2360EXPORT_SYMBOL_GPL(regulator_get_optional);
2361
2362static void destroy_regulator(struct regulator *regulator)
2363{
2364 struct regulator_dev *rdev = regulator->rdev;
2365
2366 debugfs_remove_recursive(regulator->debugfs);
2367
2368 if (regulator->dev) {
2369 if (regulator->device_link)
2370 device_link_remove(regulator->dev, &rdev->dev);
2371
2372 /* remove any sysfs entries */
2373 sysfs_remove_link(&rdev->dev.kobj, regulator->supply_name);
2374 }
2375
2376 regulator_lock(rdev);
2377 list_del(®ulator->list);
2378
2379 rdev->open_count--;
2380 rdev->exclusive = 0;
2381 regulator_unlock(rdev);
2382
2383 kfree_const(regulator->supply_name);
2384 kfree(regulator);
2385}
2386
2387/* regulator_list_mutex lock held by regulator_put() */
2388static void _regulator_put(struct regulator *regulator)
2389{
2390 struct regulator_dev *rdev;
2391
2392 if (IS_ERR_OR_NULL(regulator))
2393 return;
2394
2395 lockdep_assert_held_once(®ulator_list_mutex);
2396
2397 /* Docs say you must disable before calling regulator_put() */
2398 WARN_ON(regulator->enable_count);
2399
2400 rdev = regulator->rdev;
2401
2402 destroy_regulator(regulator);
2403
2404 module_put(rdev->owner);
2405 put_device(&rdev->dev);
2406}
2407
2408/**
2409 * regulator_put - "free" the regulator source
2410 * @regulator: regulator source
2411 *
2412 * Note: drivers must ensure that all regulator_enable calls made on this
2413 * regulator source are balanced by regulator_disable calls prior to calling
2414 * this function.
2415 */
2416void regulator_put(struct regulator *regulator)
2417{
2418 mutex_lock(®ulator_list_mutex);
2419 _regulator_put(regulator);
2420 mutex_unlock(®ulator_list_mutex);
2421}
2422EXPORT_SYMBOL_GPL(regulator_put);
2423
2424/**
2425 * regulator_register_supply_alias - Provide device alias for supply lookup
2426 *
2427 * @dev: device that will be given as the regulator "consumer"
2428 * @id: Supply name or regulator ID
2429 * @alias_dev: device that should be used to lookup the supply
2430 * @alias_id: Supply name or regulator ID that should be used to lookup the
2431 * supply
2432 *
2433 * All lookups for id on dev will instead be conducted for alias_id on
2434 * alias_dev.
2435 */
2436int regulator_register_supply_alias(struct device *dev, const char *id,
2437 struct device *alias_dev,
2438 const char *alias_id)
2439{
2440 struct regulator_supply_alias *map;
2441
2442 map = regulator_find_supply_alias(dev, id);
2443 if (map)
2444 return -EEXIST;
2445
2446 map = kzalloc(sizeof(struct regulator_supply_alias), GFP_KERNEL);
2447 if (!map)
2448 return -ENOMEM;
2449
2450 map->src_dev = dev;
2451 map->src_supply = id;
2452 map->alias_dev = alias_dev;
2453 map->alias_supply = alias_id;
2454
2455 list_add(&map->list, ®ulator_supply_alias_list);
2456
2457 pr_info("Adding alias for supply %s,%s -> %s,%s\n",
2458 id, dev_name(dev), alias_id, dev_name(alias_dev));
2459
2460 return 0;
2461}
2462EXPORT_SYMBOL_GPL(regulator_register_supply_alias);
2463
2464/**
2465 * regulator_unregister_supply_alias - Remove device alias
2466 *
2467 * @dev: device that will be given as the regulator "consumer"
2468 * @id: Supply name or regulator ID
2469 *
2470 * Remove a lookup alias if one exists for id on dev.
2471 */
2472void regulator_unregister_supply_alias(struct device *dev, const char *id)
2473{
2474 struct regulator_supply_alias *map;
2475
2476 map = regulator_find_supply_alias(dev, id);
2477 if (map) {
2478 list_del(&map->list);
2479 kfree(map);
2480 }
2481}
2482EXPORT_SYMBOL_GPL(regulator_unregister_supply_alias);
2483
2484/**
2485 * regulator_bulk_register_supply_alias - register multiple aliases
2486 *
2487 * @dev: device that will be given as the regulator "consumer"
2488 * @id: List of supply names or regulator IDs
2489 * @alias_dev: device that should be used to lookup the supply
2490 * @alias_id: List of supply names or regulator IDs that should be used to
2491 * lookup the supply
2492 * @num_id: Number of aliases to register
2493 *
2494 * @return 0 on success, an errno on failure.
2495 *
2496 * This helper function allows drivers to register several supply
2497 * aliases in one operation. If any of the aliases cannot be
2498 * registered any aliases that were registered will be removed
2499 * before returning to the caller.
2500 */
2501int regulator_bulk_register_supply_alias(struct device *dev,
2502 const char *const *id,
2503 struct device *alias_dev,
2504 const char *const *alias_id,
2505 int num_id)
2506{
2507 int i;
2508 int ret;
2509
2510 for (i = 0; i < num_id; ++i) {
2511 ret = regulator_register_supply_alias(dev, id[i], alias_dev,
2512 alias_id[i]);
2513 if (ret < 0)
2514 goto err;
2515 }
2516
2517 return 0;
2518
2519err:
2520 dev_err(dev,
2521 "Failed to create supply alias %s,%s -> %s,%s\n",
2522 id[i], dev_name(dev), alias_id[i], dev_name(alias_dev));
2523
2524 while (--i >= 0)
2525 regulator_unregister_supply_alias(dev, id[i]);
2526
2527 return ret;
2528}
2529EXPORT_SYMBOL_GPL(regulator_bulk_register_supply_alias);
2530
2531/**
2532 * regulator_bulk_unregister_supply_alias - unregister multiple aliases
2533 *
2534 * @dev: device that will be given as the regulator "consumer"
2535 * @id: List of supply names or regulator IDs
2536 * @num_id: Number of aliases to unregister
2537 *
2538 * This helper function allows drivers to unregister several supply
2539 * aliases in one operation.
2540 */
2541void regulator_bulk_unregister_supply_alias(struct device *dev,
2542 const char *const *id,
2543 int num_id)
2544{
2545 int i;
2546
2547 for (i = 0; i < num_id; ++i)
2548 regulator_unregister_supply_alias(dev, id[i]);
2549}
2550EXPORT_SYMBOL_GPL(regulator_bulk_unregister_supply_alias);
2551
2552
2553/* Manage enable GPIO list. Same GPIO pin can be shared among regulators */
2554static int regulator_ena_gpio_request(struct regulator_dev *rdev,
2555 const struct regulator_config *config)
2556{
2557 struct regulator_enable_gpio *pin, *new_pin;
2558 struct gpio_desc *gpiod;
2559
2560 gpiod = config->ena_gpiod;
2561 new_pin = kzalloc(sizeof(*new_pin), GFP_KERNEL);
2562
2563 mutex_lock(®ulator_list_mutex);
2564
2565 list_for_each_entry(pin, ®ulator_ena_gpio_list, list) {
2566 if (pin->gpiod == gpiod) {
2567 rdev_dbg(rdev, "GPIO is already used\n");
2568 goto update_ena_gpio_to_rdev;
2569 }
2570 }
2571
2572 if (new_pin == NULL) {
2573 mutex_unlock(®ulator_list_mutex);
2574 return -ENOMEM;
2575 }
2576
2577 pin = new_pin;
2578 new_pin = NULL;
2579
2580 pin->gpiod = gpiod;
2581 list_add(&pin->list, ®ulator_ena_gpio_list);
2582
2583update_ena_gpio_to_rdev:
2584 pin->request_count++;
2585 rdev->ena_pin = pin;
2586
2587 mutex_unlock(®ulator_list_mutex);
2588 kfree(new_pin);
2589
2590 return 0;
2591}
2592
2593static void regulator_ena_gpio_free(struct regulator_dev *rdev)
2594{
2595 struct regulator_enable_gpio *pin, *n;
2596
2597 if (!rdev->ena_pin)
2598 return;
2599
2600 /* Free the GPIO only in case of no use */
2601 list_for_each_entry_safe(pin, n, ®ulator_ena_gpio_list, list) {
2602 if (pin != rdev->ena_pin)
2603 continue;
2604
2605 if (--pin->request_count)
2606 break;
2607
2608 gpiod_put(pin->gpiod);
2609 list_del(&pin->list);
2610 kfree(pin);
2611 break;
2612 }
2613
2614 rdev->ena_pin = NULL;
2615}
2616
2617/**
2618 * regulator_ena_gpio_ctrl - balance enable_count of each GPIO and actual GPIO pin control
2619 * @rdev: regulator_dev structure
2620 * @enable: enable GPIO at initial use?
2621 *
2622 * GPIO is enabled in case of initial use. (enable_count is 0)
2623 * GPIO is disabled when it is not shared any more. (enable_count <= 1)
2624 */
2625static int regulator_ena_gpio_ctrl(struct regulator_dev *rdev, bool enable)
2626{
2627 struct regulator_enable_gpio *pin = rdev->ena_pin;
2628
2629 if (!pin)
2630 return -EINVAL;
2631
2632 if (enable) {
2633 /* Enable GPIO at initial use */
2634 if (pin->enable_count == 0)
2635 gpiod_set_value_cansleep(pin->gpiod, 1);
2636
2637 pin->enable_count++;
2638 } else {
2639 if (pin->enable_count > 1) {
2640 pin->enable_count--;
2641 return 0;
2642 }
2643
2644 /* Disable GPIO if not used */
2645 if (pin->enable_count <= 1) {
2646 gpiod_set_value_cansleep(pin->gpiod, 0);
2647 pin->enable_count = 0;
2648 }
2649 }
2650
2651 return 0;
2652}
2653
2654/**
2655 * _regulator_delay_helper - a delay helper function
2656 * @delay: time to delay in microseconds
2657 *
2658 * Delay for the requested amount of time as per the guidelines in:
2659 *
2660 * Documentation/timers/timers-howto.rst
2661 *
2662 * The assumption here is that these regulator operations will never used in
2663 * atomic context and therefore sleeping functions can be used.
2664 */
2665static void _regulator_delay_helper(unsigned int delay)
2666{
2667 unsigned int ms = delay / 1000;
2668 unsigned int us = delay % 1000;
2669
2670 if (ms > 0) {
2671 /*
2672 * For small enough values, handle super-millisecond
2673 * delays in the usleep_range() call below.
2674 */
2675 if (ms < 20)
2676 us += ms * 1000;
2677 else
2678 msleep(ms);
2679 }
2680
2681 /*
2682 * Give the scheduler some room to coalesce with any other
2683 * wakeup sources. For delays shorter than 10 us, don't even
2684 * bother setting up high-resolution timers and just busy-
2685 * loop.
2686 */
2687 if (us >= 10)
2688 usleep_range(us, us + 100);
2689 else
2690 udelay(us);
2691}
2692
2693/**
2694 * _regulator_check_status_enabled
2695 *
2696 * A helper function to check if the regulator status can be interpreted
2697 * as 'regulator is enabled'.
2698 * @rdev: the regulator device to check
2699 *
2700 * Return:
2701 * * 1 - if status shows regulator is in enabled state
2702 * * 0 - if not enabled state
2703 * * Error Value - as received from ops->get_status()
2704 */
2705static inline int _regulator_check_status_enabled(struct regulator_dev *rdev)
2706{
2707 int ret = rdev->desc->ops->get_status(rdev);
2708
2709 if (ret < 0) {
2710 rdev_info(rdev, "get_status returned error: %d\n", ret);
2711 return ret;
2712 }
2713
2714 switch (ret) {
2715 case REGULATOR_STATUS_OFF:
2716 case REGULATOR_STATUS_ERROR:
2717 case REGULATOR_STATUS_UNDEFINED:
2718 return 0;
2719 default:
2720 return 1;
2721 }
2722}
2723
2724static int _regulator_do_enable(struct regulator_dev *rdev)
2725{
2726 int ret, delay;
2727
2728 /* Query before enabling in case configuration dependent. */
2729 ret = _regulator_get_enable_time(rdev);
2730 if (ret >= 0) {
2731 delay = ret;
2732 } else {
2733 rdev_warn(rdev, "enable_time() failed: %pe\n", ERR_PTR(ret));
2734 delay = 0;
2735 }
2736
2737 trace_regulator_enable(rdev_get_name(rdev));
2738
2739 if (rdev->desc->off_on_delay) {
2740 /* if needed, keep a distance of off_on_delay from last time
2741 * this regulator was disabled.
2742 */
2743 ktime_t end = ktime_add_us(rdev->last_off, rdev->desc->off_on_delay);
2744 s64 remaining = ktime_us_delta(end, ktime_get_boottime());
2745
2746 if (remaining > 0)
2747 _regulator_delay_helper(remaining);
2748 }
2749
2750 if (rdev->ena_pin) {
2751 if (!rdev->ena_gpio_state) {
2752 ret = regulator_ena_gpio_ctrl(rdev, true);
2753 if (ret < 0)
2754 return ret;
2755 rdev->ena_gpio_state = 1;
2756 }
2757 } else if (rdev->desc->ops->enable) {
2758 ret = rdev->desc->ops->enable(rdev);
2759 if (ret < 0)
2760 return ret;
2761 } else {
2762 return -EINVAL;
2763 }
2764
2765 /* Allow the regulator to ramp; it would be useful to extend
2766 * this for bulk operations so that the regulators can ramp
2767 * together.
2768 */
2769 trace_regulator_enable_delay(rdev_get_name(rdev));
2770
2771 /* If poll_enabled_time is set, poll upto the delay calculated
2772 * above, delaying poll_enabled_time uS to check if the regulator
2773 * actually got enabled.
2774 * If the regulator isn't enabled after our delay helper has expired,
2775 * return -ETIMEDOUT.
2776 */
2777 if (rdev->desc->poll_enabled_time) {
2778 int time_remaining = delay;
2779
2780 while (time_remaining > 0) {
2781 _regulator_delay_helper(rdev->desc->poll_enabled_time);
2782
2783 if (rdev->desc->ops->get_status) {
2784 ret = _regulator_check_status_enabled(rdev);
2785 if (ret < 0)
2786 return ret;
2787 else if (ret)
2788 break;
2789 } else if (rdev->desc->ops->is_enabled(rdev))
2790 break;
2791
2792 time_remaining -= rdev->desc->poll_enabled_time;
2793 }
2794
2795 if (time_remaining <= 0) {
2796 rdev_err(rdev, "Enabled check timed out\n");
2797 return -ETIMEDOUT;
2798 }
2799 } else {
2800 _regulator_delay_helper(delay);
2801 }
2802
2803 trace_regulator_enable_complete(rdev_get_name(rdev));
2804
2805 return 0;
2806}
2807
2808/**
2809 * _regulator_handle_consumer_enable - handle that a consumer enabled
2810 * @regulator: regulator source
2811 *
2812 * Some things on a regulator consumer (like the contribution towards total
2813 * load on the regulator) only have an effect when the consumer wants the
2814 * regulator enabled. Explained in example with two consumers of the same
2815 * regulator:
2816 * consumer A: set_load(100); => total load = 0
2817 * consumer A: regulator_enable(); => total load = 100
2818 * consumer B: set_load(1000); => total load = 100
2819 * consumer B: regulator_enable(); => total load = 1100
2820 * consumer A: regulator_disable(); => total_load = 1000
2821 *
2822 * This function (together with _regulator_handle_consumer_disable) is
2823 * responsible for keeping track of the refcount for a given regulator consumer
2824 * and applying / unapplying these things.
2825 *
2826 * Returns 0 upon no error; -error upon error.
2827 */
2828static int _regulator_handle_consumer_enable(struct regulator *regulator)
2829{
2830 int ret;
2831 struct regulator_dev *rdev = regulator->rdev;
2832
2833 lockdep_assert_held_once(&rdev->mutex.base);
2834
2835 regulator->enable_count++;
2836 if (regulator->uA_load && regulator->enable_count == 1) {
2837 ret = drms_uA_update(rdev);
2838 if (ret)
2839 regulator->enable_count--;
2840 return ret;
2841 }
2842
2843 return 0;
2844}
2845
2846/**
2847 * _regulator_handle_consumer_disable - handle that a consumer disabled
2848 * @regulator: regulator source
2849 *
2850 * The opposite of _regulator_handle_consumer_enable().
2851 *
2852 * Returns 0 upon no error; -error upon error.
2853 */
2854static int _regulator_handle_consumer_disable(struct regulator *regulator)
2855{
2856 struct regulator_dev *rdev = regulator->rdev;
2857
2858 lockdep_assert_held_once(&rdev->mutex.base);
2859
2860 if (!regulator->enable_count) {
2861 rdev_err(rdev, "Underflow of regulator enable count\n");
2862 return -EINVAL;
2863 }
2864
2865 regulator->enable_count--;
2866 if (regulator->uA_load && regulator->enable_count == 0)
2867 return drms_uA_update(rdev);
2868
2869 return 0;
2870}
2871
2872/* locks held by regulator_enable() */
2873static int _regulator_enable(struct regulator *regulator)
2874{
2875 struct regulator_dev *rdev = regulator->rdev;
2876 int ret;
2877
2878 lockdep_assert_held_once(&rdev->mutex.base);
2879
2880 if (rdev->use_count == 0 && rdev->supply) {
2881 ret = _regulator_enable(rdev->supply);
2882 if (ret < 0)
2883 return ret;
2884 }
2885
2886 /* balance only if there are regulators coupled */
2887 if (rdev->coupling_desc.n_coupled > 1) {
2888 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
2889 if (ret < 0)
2890 goto err_disable_supply;
2891 }
2892
2893 ret = _regulator_handle_consumer_enable(regulator);
2894 if (ret < 0)
2895 goto err_disable_supply;
2896
2897 if (rdev->use_count == 0) {
2898 /*
2899 * The regulator may already be enabled if it's not switchable
2900 * or was left on
2901 */
2902 ret = _regulator_is_enabled(rdev);
2903 if (ret == -EINVAL || ret == 0) {
2904 if (!regulator_ops_is_valid(rdev,
2905 REGULATOR_CHANGE_STATUS)) {
2906 ret = -EPERM;
2907 goto err_consumer_disable;
2908 }
2909
2910 ret = _regulator_do_enable(rdev);
2911 if (ret < 0)
2912 goto err_consumer_disable;
2913
2914 _notifier_call_chain(rdev, REGULATOR_EVENT_ENABLE,
2915 NULL);
2916 } else if (ret < 0) {
2917 rdev_err(rdev, "is_enabled() failed: %pe\n", ERR_PTR(ret));
2918 goto err_consumer_disable;
2919 }
2920 /* Fallthrough on positive return values - already enabled */
2921 }
2922
2923 rdev->use_count++;
2924
2925 return 0;
2926
2927err_consumer_disable:
2928 _regulator_handle_consumer_disable(regulator);
2929
2930err_disable_supply:
2931 if (rdev->use_count == 0 && rdev->supply)
2932 _regulator_disable(rdev->supply);
2933
2934 return ret;
2935}
2936
2937/**
2938 * regulator_enable - enable regulator output
2939 * @regulator: regulator source
2940 *
2941 * Request that the regulator be enabled with the regulator output at
2942 * the predefined voltage or current value. Calls to regulator_enable()
2943 * must be balanced with calls to regulator_disable().
2944 *
2945 * NOTE: the output value can be set by other drivers, boot loader or may be
2946 * hardwired in the regulator.
2947 */
2948int regulator_enable(struct regulator *regulator)
2949{
2950 struct regulator_dev *rdev = regulator->rdev;
2951 struct ww_acquire_ctx ww_ctx;
2952 int ret;
2953
2954 regulator_lock_dependent(rdev, &ww_ctx);
2955 ret = _regulator_enable(regulator);
2956 regulator_unlock_dependent(rdev, &ww_ctx);
2957
2958 return ret;
2959}
2960EXPORT_SYMBOL_GPL(regulator_enable);
2961
2962static int _regulator_do_disable(struct regulator_dev *rdev)
2963{
2964 int ret;
2965
2966 trace_regulator_disable(rdev_get_name(rdev));
2967
2968 if (rdev->ena_pin) {
2969 if (rdev->ena_gpio_state) {
2970 ret = regulator_ena_gpio_ctrl(rdev, false);
2971 if (ret < 0)
2972 return ret;
2973 rdev->ena_gpio_state = 0;
2974 }
2975
2976 } else if (rdev->desc->ops->disable) {
2977 ret = rdev->desc->ops->disable(rdev);
2978 if (ret != 0)
2979 return ret;
2980 }
2981
2982 if (rdev->desc->off_on_delay)
2983 rdev->last_off = ktime_get_boottime();
2984
2985 trace_regulator_disable_complete(rdev_get_name(rdev));
2986
2987 return 0;
2988}
2989
2990/* locks held by regulator_disable() */
2991static int _regulator_disable(struct regulator *regulator)
2992{
2993 struct regulator_dev *rdev = regulator->rdev;
2994 int ret = 0;
2995
2996 lockdep_assert_held_once(&rdev->mutex.base);
2997
2998 if (WARN(rdev->use_count <= 0,
2999 "unbalanced disables for %s\n", rdev_get_name(rdev)))
3000 return -EIO;
3001
3002 /* are we the last user and permitted to disable ? */
3003 if (rdev->use_count == 1 &&
3004 (rdev->constraints && !rdev->constraints->always_on)) {
3005
3006 /* we are last user */
3007 if (regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS)) {
3008 ret = _notifier_call_chain(rdev,
3009 REGULATOR_EVENT_PRE_DISABLE,
3010 NULL);
3011 if (ret & NOTIFY_STOP_MASK)
3012 return -EINVAL;
3013
3014 ret = _regulator_do_disable(rdev);
3015 if (ret < 0) {
3016 rdev_err(rdev, "failed to disable: %pe\n", ERR_PTR(ret));
3017 _notifier_call_chain(rdev,
3018 REGULATOR_EVENT_ABORT_DISABLE,
3019 NULL);
3020 return ret;
3021 }
3022 _notifier_call_chain(rdev, REGULATOR_EVENT_DISABLE,
3023 NULL);
3024 }
3025
3026 rdev->use_count = 0;
3027 } else if (rdev->use_count > 1) {
3028 rdev->use_count--;
3029 }
3030
3031 if (ret == 0)
3032 ret = _regulator_handle_consumer_disable(regulator);
3033
3034 if (ret == 0 && rdev->coupling_desc.n_coupled > 1)
3035 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3036
3037 if (ret == 0 && rdev->use_count == 0 && rdev->supply)
3038 ret = _regulator_disable(rdev->supply);
3039
3040 return ret;
3041}
3042
3043/**
3044 * regulator_disable - disable regulator output
3045 * @regulator: regulator source
3046 *
3047 * Disable the regulator output voltage or current. Calls to
3048 * regulator_enable() must be balanced with calls to
3049 * regulator_disable().
3050 *
3051 * NOTE: this will only disable the regulator output if no other consumer
3052 * devices have it enabled, the regulator device supports disabling and
3053 * machine constraints permit this operation.
3054 */
3055int regulator_disable(struct regulator *regulator)
3056{
3057 struct regulator_dev *rdev = regulator->rdev;
3058 struct ww_acquire_ctx ww_ctx;
3059 int ret;
3060
3061 regulator_lock_dependent(rdev, &ww_ctx);
3062 ret = _regulator_disable(regulator);
3063 regulator_unlock_dependent(rdev, &ww_ctx);
3064
3065 return ret;
3066}
3067EXPORT_SYMBOL_GPL(regulator_disable);
3068
3069/* locks held by regulator_force_disable() */
3070static int _regulator_force_disable(struct regulator_dev *rdev)
3071{
3072 int ret = 0;
3073
3074 lockdep_assert_held_once(&rdev->mutex.base);
3075
3076 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3077 REGULATOR_EVENT_PRE_DISABLE, NULL);
3078 if (ret & NOTIFY_STOP_MASK)
3079 return -EINVAL;
3080
3081 ret = _regulator_do_disable(rdev);
3082 if (ret < 0) {
3083 rdev_err(rdev, "failed to force disable: %pe\n", ERR_PTR(ret));
3084 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3085 REGULATOR_EVENT_ABORT_DISABLE, NULL);
3086 return ret;
3087 }
3088
3089 _notifier_call_chain(rdev, REGULATOR_EVENT_FORCE_DISABLE |
3090 REGULATOR_EVENT_DISABLE, NULL);
3091
3092 return 0;
3093}
3094
3095/**
3096 * regulator_force_disable - force disable regulator output
3097 * @regulator: regulator source
3098 *
3099 * Forcibly disable the regulator output voltage or current.
3100 * NOTE: this *will* disable the regulator output even if other consumer
3101 * devices have it enabled. This should be used for situations when device
3102 * damage will likely occur if the regulator is not disabled (e.g. over temp).
3103 */
3104int regulator_force_disable(struct regulator *regulator)
3105{
3106 struct regulator_dev *rdev = regulator->rdev;
3107 struct ww_acquire_ctx ww_ctx;
3108 int ret;
3109
3110 regulator_lock_dependent(rdev, &ww_ctx);
3111
3112 ret = _regulator_force_disable(regulator->rdev);
3113
3114 if (rdev->coupling_desc.n_coupled > 1)
3115 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3116
3117 if (regulator->uA_load) {
3118 regulator->uA_load = 0;
3119 ret = drms_uA_update(rdev);
3120 }
3121
3122 if (rdev->use_count != 0 && rdev->supply)
3123 _regulator_disable(rdev->supply);
3124
3125 regulator_unlock_dependent(rdev, &ww_ctx);
3126
3127 return ret;
3128}
3129EXPORT_SYMBOL_GPL(regulator_force_disable);
3130
3131static void regulator_disable_work(struct work_struct *work)
3132{
3133 struct regulator_dev *rdev = container_of(work, struct regulator_dev,
3134 disable_work.work);
3135 struct ww_acquire_ctx ww_ctx;
3136 int count, i, ret;
3137 struct regulator *regulator;
3138 int total_count = 0;
3139
3140 regulator_lock_dependent(rdev, &ww_ctx);
3141
3142 /*
3143 * Workqueue functions queue the new work instance while the previous
3144 * work instance is being processed. Cancel the queued work instance
3145 * as the work instance under processing does the job of the queued
3146 * work instance.
3147 */
3148 cancel_delayed_work(&rdev->disable_work);
3149
3150 list_for_each_entry(regulator, &rdev->consumer_list, list) {
3151 count = regulator->deferred_disables;
3152
3153 if (!count)
3154 continue;
3155
3156 total_count += count;
3157 regulator->deferred_disables = 0;
3158
3159 for (i = 0; i < count; i++) {
3160 ret = _regulator_disable(regulator);
3161 if (ret != 0)
3162 rdev_err(rdev, "Deferred disable failed: %pe\n",
3163 ERR_PTR(ret));
3164 }
3165 }
3166 WARN_ON(!total_count);
3167
3168 if (rdev->coupling_desc.n_coupled > 1)
3169 regulator_balance_voltage(rdev, PM_SUSPEND_ON);
3170
3171 regulator_unlock_dependent(rdev, &ww_ctx);
3172}
3173
3174/**
3175 * regulator_disable_deferred - disable regulator output with delay
3176 * @regulator: regulator source
3177 * @ms: milliseconds until the regulator is disabled
3178 *
3179 * Execute regulator_disable() on the regulator after a delay. This
3180 * is intended for use with devices that require some time to quiesce.
3181 *
3182 * NOTE: this will only disable the regulator output if no other consumer
3183 * devices have it enabled, the regulator device supports disabling and
3184 * machine constraints permit this operation.
3185 */
3186int regulator_disable_deferred(struct regulator *regulator, int ms)
3187{
3188 struct regulator_dev *rdev = regulator->rdev;
3189
3190 if (!ms)
3191 return regulator_disable(regulator);
3192
3193 regulator_lock(rdev);
3194 regulator->deferred_disables++;
3195 mod_delayed_work(system_power_efficient_wq, &rdev->disable_work,
3196 msecs_to_jiffies(ms));
3197 regulator_unlock(rdev);
3198
3199 return 0;
3200}
3201EXPORT_SYMBOL_GPL(regulator_disable_deferred);
3202
3203static int _regulator_is_enabled(struct regulator_dev *rdev)
3204{
3205 /* A GPIO control always takes precedence */
3206 if (rdev->ena_pin)
3207 return rdev->ena_gpio_state;
3208
3209 /* If we don't know then assume that the regulator is always on */
3210 if (!rdev->desc->ops->is_enabled)
3211 return 1;
3212
3213 return rdev->desc->ops->is_enabled(rdev);
3214}
3215
3216static int _regulator_list_voltage(struct regulator_dev *rdev,
3217 unsigned selector, int lock)
3218{
3219 const struct regulator_ops *ops = rdev->desc->ops;
3220 int ret;
3221
3222 if (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1 && !selector)
3223 return rdev->desc->fixed_uV;
3224
3225 if (ops->list_voltage) {
3226 if (selector >= rdev->desc->n_voltages)
3227 return -EINVAL;
3228 if (selector < rdev->desc->linear_min_sel)
3229 return 0;
3230 if (lock)
3231 regulator_lock(rdev);
3232 ret = ops->list_voltage(rdev, selector);
3233 if (lock)
3234 regulator_unlock(rdev);
3235 } else if (rdev->is_switch && rdev->supply) {
3236 ret = _regulator_list_voltage(rdev->supply->rdev,
3237 selector, lock);
3238 } else {
3239 return -EINVAL;
3240 }
3241
3242 if (ret > 0) {
3243 if (ret < rdev->constraints->min_uV)
3244 ret = 0;
3245 else if (ret > rdev->constraints->max_uV)
3246 ret = 0;
3247 }
3248
3249 return ret;
3250}
3251
3252/**
3253 * regulator_is_enabled - is the regulator output enabled
3254 * @regulator: regulator source
3255 *
3256 * Returns positive if the regulator driver backing the source/client
3257 * has requested that the device be enabled, zero if it hasn't, else a
3258 * negative errno code.
3259 *
3260 * Note that the device backing this regulator handle can have multiple
3261 * users, so it might be enabled even if regulator_enable() was never
3262 * called for this particular source.
3263 */
3264int regulator_is_enabled(struct regulator *regulator)
3265{
3266 int ret;
3267
3268 if (regulator->always_on)
3269 return 1;
3270
3271 regulator_lock(regulator->rdev);
3272 ret = _regulator_is_enabled(regulator->rdev);
3273 regulator_unlock(regulator->rdev);
3274
3275 return ret;
3276}
3277EXPORT_SYMBOL_GPL(regulator_is_enabled);
3278
3279/**
3280 * regulator_count_voltages - count regulator_list_voltage() selectors
3281 * @regulator: regulator source
3282 *
3283 * Returns number of selectors, or negative errno. Selectors are
3284 * numbered starting at zero, and typically correspond to bitfields
3285 * in hardware registers.
3286 */
3287int regulator_count_voltages(struct regulator *regulator)
3288{
3289 struct regulator_dev *rdev = regulator->rdev;
3290
3291 if (rdev->desc->n_voltages)
3292 return rdev->desc->n_voltages;
3293
3294 if (!rdev->is_switch || !rdev->supply)
3295 return -EINVAL;
3296
3297 return regulator_count_voltages(rdev->supply);
3298}
3299EXPORT_SYMBOL_GPL(regulator_count_voltages);
3300
3301/**
3302 * regulator_list_voltage - enumerate supported voltages
3303 * @regulator: regulator source
3304 * @selector: identify voltage to list
3305 * Context: can sleep
3306 *
3307 * Returns a voltage that can be passed to @regulator_set_voltage(),
3308 * zero if this selector code can't be used on this system, or a
3309 * negative errno.
3310 */
3311int regulator_list_voltage(struct regulator *regulator, unsigned selector)
3312{
3313 return _regulator_list_voltage(regulator->rdev, selector, 1);
3314}
3315EXPORT_SYMBOL_GPL(regulator_list_voltage);
3316
3317/**
3318 * regulator_get_regmap - get the regulator's register map
3319 * @regulator: regulator source
3320 *
3321 * Returns the register map for the given regulator, or an ERR_PTR value
3322 * if the regulator doesn't use regmap.
3323 */
3324struct regmap *regulator_get_regmap(struct regulator *regulator)
3325{
3326 struct regmap *map = regulator->rdev->regmap;
3327
3328 return map ? map : ERR_PTR(-EOPNOTSUPP);
3329}
3330
3331/**
3332 * regulator_get_hardware_vsel_register - get the HW voltage selector register
3333 * @regulator: regulator source
3334 * @vsel_reg: voltage selector register, output parameter
3335 * @vsel_mask: mask for voltage selector bitfield, output parameter
3336 *
3337 * Returns the hardware register offset and bitmask used for setting the
3338 * regulator voltage. This might be useful when configuring voltage-scaling
3339 * hardware or firmware that can make I2C requests behind the kernel's back,
3340 * for example.
3341 *
3342 * On success, the output parameters @vsel_reg and @vsel_mask are filled in
3343 * and 0 is returned, otherwise a negative errno is returned.
3344 */
3345int regulator_get_hardware_vsel_register(struct regulator *regulator,
3346 unsigned *vsel_reg,
3347 unsigned *vsel_mask)
3348{
3349 struct regulator_dev *rdev = regulator->rdev;
3350 const struct regulator_ops *ops = rdev->desc->ops;
3351
3352 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3353 return -EOPNOTSUPP;
3354
3355 *vsel_reg = rdev->desc->vsel_reg;
3356 *vsel_mask = rdev->desc->vsel_mask;
3357
3358 return 0;
3359}
3360EXPORT_SYMBOL_GPL(regulator_get_hardware_vsel_register);
3361
3362/**
3363 * regulator_list_hardware_vsel - get the HW-specific register value for a selector
3364 * @regulator: regulator source
3365 * @selector: identify voltage to list
3366 *
3367 * Converts the selector to a hardware-specific voltage selector that can be
3368 * directly written to the regulator registers. The address of the voltage
3369 * register can be determined by calling @regulator_get_hardware_vsel_register.
3370 *
3371 * On error a negative errno is returned.
3372 */
3373int regulator_list_hardware_vsel(struct regulator *regulator,
3374 unsigned selector)
3375{
3376 struct regulator_dev *rdev = regulator->rdev;
3377 const struct regulator_ops *ops = rdev->desc->ops;
3378
3379 if (selector >= rdev->desc->n_voltages)
3380 return -EINVAL;
3381 if (selector < rdev->desc->linear_min_sel)
3382 return 0;
3383 if (ops->set_voltage_sel != regulator_set_voltage_sel_regmap)
3384 return -EOPNOTSUPP;
3385
3386 return selector;
3387}
3388EXPORT_SYMBOL_GPL(regulator_list_hardware_vsel);
3389
3390/**
3391 * regulator_get_linear_step - return the voltage step size between VSEL values
3392 * @regulator: regulator source
3393 *
3394 * Returns the voltage step size between VSEL values for linear
3395 * regulators, or return 0 if the regulator isn't a linear regulator.
3396 */
3397unsigned int regulator_get_linear_step(struct regulator *regulator)
3398{
3399 struct regulator_dev *rdev = regulator->rdev;
3400
3401 return rdev->desc->uV_step;
3402}
3403EXPORT_SYMBOL_GPL(regulator_get_linear_step);
3404
3405/**
3406 * regulator_is_supported_voltage - check if a voltage range can be supported
3407 *
3408 * @regulator: Regulator to check.
3409 * @min_uV: Minimum required voltage in uV.
3410 * @max_uV: Maximum required voltage in uV.
3411 *
3412 * Returns a boolean.
3413 */
3414int regulator_is_supported_voltage(struct regulator *regulator,
3415 int min_uV, int max_uV)
3416{
3417 struct regulator_dev *rdev = regulator->rdev;
3418 int i, voltages, ret;
3419
3420 /* If we can't change voltage check the current voltage */
3421 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3422 ret = regulator_get_voltage(regulator);
3423 if (ret >= 0)
3424 return min_uV <= ret && ret <= max_uV;
3425 else
3426 return ret;
3427 }
3428
3429 /* Any voltage within constrains range is fine? */
3430 if (rdev->desc->continuous_voltage_range)
3431 return min_uV >= rdev->constraints->min_uV &&
3432 max_uV <= rdev->constraints->max_uV;
3433
3434 ret = regulator_count_voltages(regulator);
3435 if (ret < 0)
3436 return 0;
3437 voltages = ret;
3438
3439 for (i = 0; i < voltages; i++) {
3440 ret = regulator_list_voltage(regulator, i);
3441
3442 if (ret >= min_uV && ret <= max_uV)
3443 return 1;
3444 }
3445
3446 return 0;
3447}
3448EXPORT_SYMBOL_GPL(regulator_is_supported_voltage);
3449
3450static int regulator_map_voltage(struct regulator_dev *rdev, int min_uV,
3451 int max_uV)
3452{
3453 const struct regulator_desc *desc = rdev->desc;
3454
3455 if (desc->ops->map_voltage)
3456 return desc->ops->map_voltage(rdev, min_uV, max_uV);
3457
3458 if (desc->ops->list_voltage == regulator_list_voltage_linear)
3459 return regulator_map_voltage_linear(rdev, min_uV, max_uV);
3460
3461 if (desc->ops->list_voltage == regulator_list_voltage_linear_range)
3462 return regulator_map_voltage_linear_range(rdev, min_uV, max_uV);
3463
3464 if (desc->ops->list_voltage ==
3465 regulator_list_voltage_pickable_linear_range)
3466 return regulator_map_voltage_pickable_linear_range(rdev,
3467 min_uV, max_uV);
3468
3469 return regulator_map_voltage_iterate(rdev, min_uV, max_uV);
3470}
3471
3472static int _regulator_call_set_voltage(struct regulator_dev *rdev,
3473 int min_uV, int max_uV,
3474 unsigned *selector)
3475{
3476 struct pre_voltage_change_data data;
3477 int ret;
3478
3479 data.old_uV = regulator_get_voltage_rdev(rdev);
3480 data.min_uV = min_uV;
3481 data.max_uV = max_uV;
3482 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3483 &data);
3484 if (ret & NOTIFY_STOP_MASK)
3485 return -EINVAL;
3486
3487 ret = rdev->desc->ops->set_voltage(rdev, min_uV, max_uV, selector);
3488 if (ret >= 0)
3489 return ret;
3490
3491 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3492 (void *)data.old_uV);
3493
3494 return ret;
3495}
3496
3497static int _regulator_call_set_voltage_sel(struct regulator_dev *rdev,
3498 int uV, unsigned selector)
3499{
3500 struct pre_voltage_change_data data;
3501 int ret;
3502
3503 data.old_uV = regulator_get_voltage_rdev(rdev);
3504 data.min_uV = uV;
3505 data.max_uV = uV;
3506 ret = _notifier_call_chain(rdev, REGULATOR_EVENT_PRE_VOLTAGE_CHANGE,
3507 &data);
3508 if (ret & NOTIFY_STOP_MASK)
3509 return -EINVAL;
3510
3511 ret = rdev->desc->ops->set_voltage_sel(rdev, selector);
3512 if (ret >= 0)
3513 return ret;
3514
3515 _notifier_call_chain(rdev, REGULATOR_EVENT_ABORT_VOLTAGE_CHANGE,
3516 (void *)data.old_uV);
3517
3518 return ret;
3519}
3520
3521static int _regulator_set_voltage_sel_step(struct regulator_dev *rdev,
3522 int uV, int new_selector)
3523{
3524 const struct regulator_ops *ops = rdev->desc->ops;
3525 int diff, old_sel, curr_sel, ret;
3526
3527 /* Stepping is only needed if the regulator is enabled. */
3528 if (!_regulator_is_enabled(rdev))
3529 goto final_set;
3530
3531 if (!ops->get_voltage_sel)
3532 return -EINVAL;
3533
3534 old_sel = ops->get_voltage_sel(rdev);
3535 if (old_sel < 0)
3536 return old_sel;
3537
3538 diff = new_selector - old_sel;
3539 if (diff == 0)
3540 return 0; /* No change needed. */
3541
3542 if (diff > 0) {
3543 /* Stepping up. */
3544 for (curr_sel = old_sel + rdev->desc->vsel_step;
3545 curr_sel < new_selector;
3546 curr_sel += rdev->desc->vsel_step) {
3547 /*
3548 * Call the callback directly instead of using
3549 * _regulator_call_set_voltage_sel() as we don't
3550 * want to notify anyone yet. Same in the branch
3551 * below.
3552 */
3553 ret = ops->set_voltage_sel(rdev, curr_sel);
3554 if (ret)
3555 goto try_revert;
3556 }
3557 } else {
3558 /* Stepping down. */
3559 for (curr_sel = old_sel - rdev->desc->vsel_step;
3560 curr_sel > new_selector;
3561 curr_sel -= rdev->desc->vsel_step) {
3562 ret = ops->set_voltage_sel(rdev, curr_sel);
3563 if (ret)
3564 goto try_revert;
3565 }
3566 }
3567
3568final_set:
3569 /* The final selector will trigger the notifiers. */
3570 return _regulator_call_set_voltage_sel(rdev, uV, new_selector);
3571
3572try_revert:
3573 /*
3574 * At least try to return to the previous voltage if setting a new
3575 * one failed.
3576 */
3577 (void)ops->set_voltage_sel(rdev, old_sel);
3578 return ret;
3579}
3580
3581static int _regulator_set_voltage_time(struct regulator_dev *rdev,
3582 int old_uV, int new_uV)
3583{
3584 unsigned int ramp_delay = 0;
3585
3586 if (rdev->constraints->ramp_delay)
3587 ramp_delay = rdev->constraints->ramp_delay;
3588 else if (rdev->desc->ramp_delay)
3589 ramp_delay = rdev->desc->ramp_delay;
3590 else if (rdev->constraints->settling_time)
3591 return rdev->constraints->settling_time;
3592 else if (rdev->constraints->settling_time_up &&
3593 (new_uV > old_uV))
3594 return rdev->constraints->settling_time_up;
3595 else if (rdev->constraints->settling_time_down &&
3596 (new_uV < old_uV))
3597 return rdev->constraints->settling_time_down;
3598
3599 if (ramp_delay == 0)
3600 return 0;
3601
3602 return DIV_ROUND_UP(abs(new_uV - old_uV), ramp_delay);
3603}
3604
3605static int _regulator_do_set_voltage(struct regulator_dev *rdev,
3606 int min_uV, int max_uV)
3607{
3608 int ret;
3609 int delay = 0;
3610 int best_val = 0;
3611 unsigned int selector;
3612 int old_selector = -1;
3613 const struct regulator_ops *ops = rdev->desc->ops;
3614 int old_uV = regulator_get_voltage_rdev(rdev);
3615
3616 trace_regulator_set_voltage(rdev_get_name(rdev), min_uV, max_uV);
3617
3618 min_uV += rdev->constraints->uV_offset;
3619 max_uV += rdev->constraints->uV_offset;
3620
3621 /*
3622 * If we can't obtain the old selector there is not enough
3623 * info to call set_voltage_time_sel().
3624 */
3625 if (_regulator_is_enabled(rdev) &&
3626 ops->set_voltage_time_sel && ops->get_voltage_sel) {
3627 old_selector = ops->get_voltage_sel(rdev);
3628 if (old_selector < 0)
3629 return old_selector;
3630 }
3631
3632 if (ops->set_voltage) {
3633 ret = _regulator_call_set_voltage(rdev, min_uV, max_uV,
3634 &selector);
3635
3636 if (ret >= 0) {
3637 if (ops->list_voltage)
3638 best_val = ops->list_voltage(rdev,
3639 selector);
3640 else
3641 best_val = regulator_get_voltage_rdev(rdev);
3642 }
3643
3644 } else if (ops->set_voltage_sel) {
3645 ret = regulator_map_voltage(rdev, min_uV, max_uV);
3646 if (ret >= 0) {
3647 best_val = ops->list_voltage(rdev, ret);
3648 if (min_uV <= best_val && max_uV >= best_val) {
3649 selector = ret;
3650 if (old_selector == selector)
3651 ret = 0;
3652 else if (rdev->desc->vsel_step)
3653 ret = _regulator_set_voltage_sel_step(
3654 rdev, best_val, selector);
3655 else
3656 ret = _regulator_call_set_voltage_sel(
3657 rdev, best_val, selector);
3658 } else {
3659 ret = -EINVAL;
3660 }
3661 }
3662 } else {
3663 ret = -EINVAL;
3664 }
3665
3666 if (ret)
3667 goto out;
3668
3669 if (ops->set_voltage_time_sel) {
3670 /*
3671 * Call set_voltage_time_sel if successfully obtained
3672 * old_selector
3673 */
3674 if (old_selector >= 0 && old_selector != selector)
3675 delay = ops->set_voltage_time_sel(rdev, old_selector,
3676 selector);
3677 } else {
3678 if (old_uV != best_val) {
3679 if (ops->set_voltage_time)
3680 delay = ops->set_voltage_time(rdev, old_uV,
3681 best_val);
3682 else
3683 delay = _regulator_set_voltage_time(rdev,
3684 old_uV,
3685 best_val);
3686 }
3687 }
3688
3689 if (delay < 0) {
3690 rdev_warn(rdev, "failed to get delay: %pe\n", ERR_PTR(delay));
3691 delay = 0;
3692 }
3693
3694 /* Insert any necessary delays */
3695 _regulator_delay_helper(delay);
3696
3697 if (best_val >= 0) {
3698 unsigned long data = best_val;
3699
3700 _notifier_call_chain(rdev, REGULATOR_EVENT_VOLTAGE_CHANGE,
3701 (void *)data);
3702 }
3703
3704out:
3705 trace_regulator_set_voltage_complete(rdev_get_name(rdev), best_val);
3706
3707 return ret;
3708}
3709
3710static int _regulator_do_set_suspend_voltage(struct regulator_dev *rdev,
3711 int min_uV, int max_uV, suspend_state_t state)
3712{
3713 struct regulator_state *rstate;
3714 int uV, sel;
3715
3716 rstate = regulator_get_suspend_state(rdev, state);
3717 if (rstate == NULL)
3718 return -EINVAL;
3719
3720 if (min_uV < rstate->min_uV)
3721 min_uV = rstate->min_uV;
3722 if (max_uV > rstate->max_uV)
3723 max_uV = rstate->max_uV;
3724
3725 sel = regulator_map_voltage(rdev, min_uV, max_uV);
3726 if (sel < 0)
3727 return sel;
3728
3729 uV = rdev->desc->ops->list_voltage(rdev, sel);
3730 if (uV >= min_uV && uV <= max_uV)
3731 rstate->uV = uV;
3732
3733 return 0;
3734}
3735
3736static int regulator_set_voltage_unlocked(struct regulator *regulator,
3737 int min_uV, int max_uV,
3738 suspend_state_t state)
3739{
3740 struct regulator_dev *rdev = regulator->rdev;
3741 struct regulator_voltage *voltage = ®ulator->voltage[state];
3742 int ret = 0;
3743 int old_min_uV, old_max_uV;
3744 int current_uV;
3745
3746 /* If we're setting the same range as last time the change
3747 * should be a noop (some cpufreq implementations use the same
3748 * voltage for multiple frequencies, for example).
3749 */
3750 if (voltage->min_uV == min_uV && voltage->max_uV == max_uV)
3751 goto out;
3752
3753 /* If we're trying to set a range that overlaps the current voltage,
3754 * return successfully even though the regulator does not support
3755 * changing the voltage.
3756 */
3757 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE)) {
3758 current_uV = regulator_get_voltage_rdev(rdev);
3759 if (min_uV <= current_uV && current_uV <= max_uV) {
3760 voltage->min_uV = min_uV;
3761 voltage->max_uV = max_uV;
3762 goto out;
3763 }
3764 }
3765
3766 /* sanity check */
3767 if (!rdev->desc->ops->set_voltage &&
3768 !rdev->desc->ops->set_voltage_sel) {
3769 ret = -EINVAL;
3770 goto out;
3771 }
3772
3773 /* constraints check */
3774 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
3775 if (ret < 0)
3776 goto out;
3777
3778 /* restore original values in case of error */
3779 old_min_uV = voltage->min_uV;
3780 old_max_uV = voltage->max_uV;
3781 voltage->min_uV = min_uV;
3782 voltage->max_uV = max_uV;
3783
3784 /* for not coupled regulators this will just set the voltage */
3785 ret = regulator_balance_voltage(rdev, state);
3786 if (ret < 0) {
3787 voltage->min_uV = old_min_uV;
3788 voltage->max_uV = old_max_uV;
3789 }
3790
3791out:
3792 return ret;
3793}
3794
3795int regulator_set_voltage_rdev(struct regulator_dev *rdev, int min_uV,
3796 int max_uV, suspend_state_t state)
3797{
3798 int best_supply_uV = 0;
3799 int supply_change_uV = 0;
3800 int ret;
3801
3802 if (rdev->supply &&
3803 regulator_ops_is_valid(rdev->supply->rdev,
3804 REGULATOR_CHANGE_VOLTAGE) &&
3805 (rdev->desc->min_dropout_uV || !(rdev->desc->ops->get_voltage ||
3806 rdev->desc->ops->get_voltage_sel))) {
3807 int current_supply_uV;
3808 int selector;
3809
3810 selector = regulator_map_voltage(rdev, min_uV, max_uV);
3811 if (selector < 0) {
3812 ret = selector;
3813 goto out;
3814 }
3815
3816 best_supply_uV = _regulator_list_voltage(rdev, selector, 0);
3817 if (best_supply_uV < 0) {
3818 ret = best_supply_uV;
3819 goto out;
3820 }
3821
3822 best_supply_uV += rdev->desc->min_dropout_uV;
3823
3824 current_supply_uV = regulator_get_voltage_rdev(rdev->supply->rdev);
3825 if (current_supply_uV < 0) {
3826 ret = current_supply_uV;
3827 goto out;
3828 }
3829
3830 supply_change_uV = best_supply_uV - current_supply_uV;
3831 }
3832
3833 if (supply_change_uV > 0) {
3834 ret = regulator_set_voltage_unlocked(rdev->supply,
3835 best_supply_uV, INT_MAX, state);
3836 if (ret) {
3837 dev_err(&rdev->dev, "Failed to increase supply voltage: %pe\n",
3838 ERR_PTR(ret));
3839 goto out;
3840 }
3841 }
3842
3843 if (state == PM_SUSPEND_ON)
3844 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
3845 else
3846 ret = _regulator_do_set_suspend_voltage(rdev, min_uV,
3847 max_uV, state);
3848 if (ret < 0)
3849 goto out;
3850
3851 if (supply_change_uV < 0) {
3852 ret = regulator_set_voltage_unlocked(rdev->supply,
3853 best_supply_uV, INT_MAX, state);
3854 if (ret)
3855 dev_warn(&rdev->dev, "Failed to decrease supply voltage: %pe\n",
3856 ERR_PTR(ret));
3857 /* No need to fail here */
3858 ret = 0;
3859 }
3860
3861out:
3862 return ret;
3863}
3864EXPORT_SYMBOL_GPL(regulator_set_voltage_rdev);
3865
3866static int regulator_limit_voltage_step(struct regulator_dev *rdev,
3867 int *current_uV, int *min_uV)
3868{
3869 struct regulation_constraints *constraints = rdev->constraints;
3870
3871 /* Limit voltage change only if necessary */
3872 if (!constraints->max_uV_step || !_regulator_is_enabled(rdev))
3873 return 1;
3874
3875 if (*current_uV < 0) {
3876 *current_uV = regulator_get_voltage_rdev(rdev);
3877
3878 if (*current_uV < 0)
3879 return *current_uV;
3880 }
3881
3882 if (abs(*current_uV - *min_uV) <= constraints->max_uV_step)
3883 return 1;
3884
3885 /* Clamp target voltage within the given step */
3886 if (*current_uV < *min_uV)
3887 *min_uV = min(*current_uV + constraints->max_uV_step,
3888 *min_uV);
3889 else
3890 *min_uV = max(*current_uV - constraints->max_uV_step,
3891 *min_uV);
3892
3893 return 0;
3894}
3895
3896static int regulator_get_optimal_voltage(struct regulator_dev *rdev,
3897 int *current_uV,
3898 int *min_uV, int *max_uV,
3899 suspend_state_t state,
3900 int n_coupled)
3901{
3902 struct coupling_desc *c_desc = &rdev->coupling_desc;
3903 struct regulator_dev **c_rdevs = c_desc->coupled_rdevs;
3904 struct regulation_constraints *constraints = rdev->constraints;
3905 int desired_min_uV = 0, desired_max_uV = INT_MAX;
3906 int max_current_uV = 0, min_current_uV = INT_MAX;
3907 int highest_min_uV = 0, target_uV, possible_uV;
3908 int i, ret, max_spread;
3909 bool done;
3910
3911 *current_uV = -1;
3912
3913 /*
3914 * If there are no coupled regulators, simply set the voltage
3915 * demanded by consumers.
3916 */
3917 if (n_coupled == 1) {
3918 /*
3919 * If consumers don't provide any demands, set voltage
3920 * to min_uV
3921 */
3922 desired_min_uV = constraints->min_uV;
3923 desired_max_uV = constraints->max_uV;
3924
3925 ret = regulator_check_consumers(rdev,
3926 &desired_min_uV,
3927 &desired_max_uV, state);
3928 if (ret < 0)
3929 return ret;
3930
3931 possible_uV = desired_min_uV;
3932 done = true;
3933
3934 goto finish;
3935 }
3936
3937 /* Find highest min desired voltage */
3938 for (i = 0; i < n_coupled; i++) {
3939 int tmp_min = 0;
3940 int tmp_max = INT_MAX;
3941
3942 lockdep_assert_held_once(&c_rdevs[i]->mutex.base);
3943
3944 ret = regulator_check_consumers(c_rdevs[i],
3945 &tmp_min,
3946 &tmp_max, state);
3947 if (ret < 0)
3948 return ret;
3949
3950 ret = regulator_check_voltage(c_rdevs[i], &tmp_min, &tmp_max);
3951 if (ret < 0)
3952 return ret;
3953
3954 highest_min_uV = max(highest_min_uV, tmp_min);
3955
3956 if (i == 0) {
3957 desired_min_uV = tmp_min;
3958 desired_max_uV = tmp_max;
3959 }
3960 }
3961
3962 max_spread = constraints->max_spread[0];
3963
3964 /*
3965 * Let target_uV be equal to the desired one if possible.
3966 * If not, set it to minimum voltage, allowed by other coupled
3967 * regulators.
3968 */
3969 target_uV = max(desired_min_uV, highest_min_uV - max_spread);
3970
3971 /*
3972 * Find min and max voltages, which currently aren't violating
3973 * max_spread.
3974 */
3975 for (i = 1; i < n_coupled; i++) {
3976 int tmp_act;
3977
3978 if (!_regulator_is_enabled(c_rdevs[i]))
3979 continue;
3980
3981 tmp_act = regulator_get_voltage_rdev(c_rdevs[i]);
3982 if (tmp_act < 0)
3983 return tmp_act;
3984
3985 min_current_uV = min(tmp_act, min_current_uV);
3986 max_current_uV = max(tmp_act, max_current_uV);
3987 }
3988
3989 /* There aren't any other regulators enabled */
3990 if (max_current_uV == 0) {
3991 possible_uV = target_uV;
3992 } else {
3993 /*
3994 * Correct target voltage, so as it currently isn't
3995 * violating max_spread
3996 */
3997 possible_uV = max(target_uV, max_current_uV - max_spread);
3998 possible_uV = min(possible_uV, min_current_uV + max_spread);
3999 }
4000
4001 if (possible_uV > desired_max_uV)
4002 return -EINVAL;
4003
4004 done = (possible_uV == target_uV);
4005 desired_min_uV = possible_uV;
4006
4007finish:
4008 /* Apply max_uV_step constraint if necessary */
4009 if (state == PM_SUSPEND_ON) {
4010 ret = regulator_limit_voltage_step(rdev, current_uV,
4011 &desired_min_uV);
4012 if (ret < 0)
4013 return ret;
4014
4015 if (ret == 0)
4016 done = false;
4017 }
4018
4019 /* Set current_uV if wasn't done earlier in the code and if necessary */
4020 if (n_coupled > 1 && *current_uV == -1) {
4021
4022 if (_regulator_is_enabled(rdev)) {
4023 ret = regulator_get_voltage_rdev(rdev);
4024 if (ret < 0)
4025 return ret;
4026
4027 *current_uV = ret;
4028 } else {
4029 *current_uV = desired_min_uV;
4030 }
4031 }
4032
4033 *min_uV = desired_min_uV;
4034 *max_uV = desired_max_uV;
4035
4036 return done;
4037}
4038
4039int regulator_do_balance_voltage(struct regulator_dev *rdev,
4040 suspend_state_t state, bool skip_coupled)
4041{
4042 struct regulator_dev **c_rdevs;
4043 struct regulator_dev *best_rdev;
4044 struct coupling_desc *c_desc = &rdev->coupling_desc;
4045 int i, ret, n_coupled, best_min_uV, best_max_uV, best_c_rdev;
4046 unsigned int delta, best_delta;
4047 unsigned long c_rdev_done = 0;
4048 bool best_c_rdev_done;
4049
4050 c_rdevs = c_desc->coupled_rdevs;
4051 n_coupled = skip_coupled ? 1 : c_desc->n_coupled;
4052
4053 /*
4054 * Find the best possible voltage change on each loop. Leave the loop
4055 * if there isn't any possible change.
4056 */
4057 do {
4058 best_c_rdev_done = false;
4059 best_delta = 0;
4060 best_min_uV = 0;
4061 best_max_uV = 0;
4062 best_c_rdev = 0;
4063 best_rdev = NULL;
4064
4065 /*
4066 * Find highest difference between optimal voltage
4067 * and current voltage.
4068 */
4069 for (i = 0; i < n_coupled; i++) {
4070 /*
4071 * optimal_uV is the best voltage that can be set for
4072 * i-th regulator at the moment without violating
4073 * max_spread constraint in order to balance
4074 * the coupled voltages.
4075 */
4076 int optimal_uV = 0, optimal_max_uV = 0, current_uV = 0;
4077
4078 if (test_bit(i, &c_rdev_done))
4079 continue;
4080
4081 ret = regulator_get_optimal_voltage(c_rdevs[i],
4082 ¤t_uV,
4083 &optimal_uV,
4084 &optimal_max_uV,
4085 state, n_coupled);
4086 if (ret < 0)
4087 goto out;
4088
4089 delta = abs(optimal_uV - current_uV);
4090
4091 if (delta && best_delta <= delta) {
4092 best_c_rdev_done = ret;
4093 best_delta = delta;
4094 best_rdev = c_rdevs[i];
4095 best_min_uV = optimal_uV;
4096 best_max_uV = optimal_max_uV;
4097 best_c_rdev = i;
4098 }
4099 }
4100
4101 /* Nothing to change, return successfully */
4102 if (!best_rdev) {
4103 ret = 0;
4104 goto out;
4105 }
4106
4107 ret = regulator_set_voltage_rdev(best_rdev, best_min_uV,
4108 best_max_uV, state);
4109
4110 if (ret < 0)
4111 goto out;
4112
4113 if (best_c_rdev_done)
4114 set_bit(best_c_rdev, &c_rdev_done);
4115
4116 } while (n_coupled > 1);
4117
4118out:
4119 return ret;
4120}
4121
4122static int regulator_balance_voltage(struct regulator_dev *rdev,
4123 suspend_state_t state)
4124{
4125 struct coupling_desc *c_desc = &rdev->coupling_desc;
4126 struct regulator_coupler *coupler = c_desc->coupler;
4127 bool skip_coupled = false;
4128
4129 /*
4130 * If system is in a state other than PM_SUSPEND_ON, don't check
4131 * other coupled regulators.
4132 */
4133 if (state != PM_SUSPEND_ON)
4134 skip_coupled = true;
4135
4136 if (c_desc->n_resolved < c_desc->n_coupled) {
4137 rdev_err(rdev, "Not all coupled regulators registered\n");
4138 return -EPERM;
4139 }
4140
4141 /* Invoke custom balancer for customized couplers */
4142 if (coupler && coupler->balance_voltage)
4143 return coupler->balance_voltage(coupler, rdev, state);
4144
4145 return regulator_do_balance_voltage(rdev, state, skip_coupled);
4146}
4147
4148/**
4149 * regulator_set_voltage - set regulator output voltage
4150 * @regulator: regulator source
4151 * @min_uV: Minimum required voltage in uV
4152 * @max_uV: Maximum acceptable voltage in uV
4153 *
4154 * Sets a voltage regulator to the desired output voltage. This can be set
4155 * during any regulator state. IOW, regulator can be disabled or enabled.
4156 *
4157 * If the regulator is enabled then the voltage will change to the new value
4158 * immediately otherwise if the regulator is disabled the regulator will
4159 * output at the new voltage when enabled.
4160 *
4161 * NOTE: If the regulator is shared between several devices then the lowest
4162 * request voltage that meets the system constraints will be used.
4163 * Regulator system constraints must be set for this regulator before
4164 * calling this function otherwise this call will fail.
4165 */
4166int regulator_set_voltage(struct regulator *regulator, int min_uV, int max_uV)
4167{
4168 struct ww_acquire_ctx ww_ctx;
4169 int ret;
4170
4171 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4172
4173 ret = regulator_set_voltage_unlocked(regulator, min_uV, max_uV,
4174 PM_SUSPEND_ON);
4175
4176 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4177
4178 return ret;
4179}
4180EXPORT_SYMBOL_GPL(regulator_set_voltage);
4181
4182static inline int regulator_suspend_toggle(struct regulator_dev *rdev,
4183 suspend_state_t state, bool en)
4184{
4185 struct regulator_state *rstate;
4186
4187 rstate = regulator_get_suspend_state(rdev, state);
4188 if (rstate == NULL)
4189 return -EINVAL;
4190
4191 if (!rstate->changeable)
4192 return -EPERM;
4193
4194 rstate->enabled = (en) ? ENABLE_IN_SUSPEND : DISABLE_IN_SUSPEND;
4195
4196 return 0;
4197}
4198
4199int regulator_suspend_enable(struct regulator_dev *rdev,
4200 suspend_state_t state)
4201{
4202 return regulator_suspend_toggle(rdev, state, true);
4203}
4204EXPORT_SYMBOL_GPL(regulator_suspend_enable);
4205
4206int regulator_suspend_disable(struct regulator_dev *rdev,
4207 suspend_state_t state)
4208{
4209 struct regulator *regulator;
4210 struct regulator_voltage *voltage;
4211
4212 /*
4213 * if any consumer wants this regulator device keeping on in
4214 * suspend states, don't set it as disabled.
4215 */
4216 list_for_each_entry(regulator, &rdev->consumer_list, list) {
4217 voltage = ®ulator->voltage[state];
4218 if (voltage->min_uV || voltage->max_uV)
4219 return 0;
4220 }
4221
4222 return regulator_suspend_toggle(rdev, state, false);
4223}
4224EXPORT_SYMBOL_GPL(regulator_suspend_disable);
4225
4226static int _regulator_set_suspend_voltage(struct regulator *regulator,
4227 int min_uV, int max_uV,
4228 suspend_state_t state)
4229{
4230 struct regulator_dev *rdev = regulator->rdev;
4231 struct regulator_state *rstate;
4232
4233 rstate = regulator_get_suspend_state(rdev, state);
4234 if (rstate == NULL)
4235 return -EINVAL;
4236
4237 if (rstate->min_uV == rstate->max_uV) {
4238 rdev_err(rdev, "The suspend voltage can't be changed!\n");
4239 return -EPERM;
4240 }
4241
4242 return regulator_set_voltage_unlocked(regulator, min_uV, max_uV, state);
4243}
4244
4245int regulator_set_suspend_voltage(struct regulator *regulator, int min_uV,
4246 int max_uV, suspend_state_t state)
4247{
4248 struct ww_acquire_ctx ww_ctx;
4249 int ret;
4250
4251 /* PM_SUSPEND_ON is handled by regulator_set_voltage() */
4252 if (regulator_check_states(state) || state == PM_SUSPEND_ON)
4253 return -EINVAL;
4254
4255 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4256
4257 ret = _regulator_set_suspend_voltage(regulator, min_uV,
4258 max_uV, state);
4259
4260 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4261
4262 return ret;
4263}
4264EXPORT_SYMBOL_GPL(regulator_set_suspend_voltage);
4265
4266/**
4267 * regulator_set_voltage_time - get raise/fall time
4268 * @regulator: regulator source
4269 * @old_uV: starting voltage in microvolts
4270 * @new_uV: target voltage in microvolts
4271 *
4272 * Provided with the starting and ending voltage, this function attempts to
4273 * calculate the time in microseconds required to rise or fall to this new
4274 * voltage.
4275 */
4276int regulator_set_voltage_time(struct regulator *regulator,
4277 int old_uV, int new_uV)
4278{
4279 struct regulator_dev *rdev = regulator->rdev;
4280 const struct regulator_ops *ops = rdev->desc->ops;
4281 int old_sel = -1;
4282 int new_sel = -1;
4283 int voltage;
4284 int i;
4285
4286 if (ops->set_voltage_time)
4287 return ops->set_voltage_time(rdev, old_uV, new_uV);
4288 else if (!ops->set_voltage_time_sel)
4289 return _regulator_set_voltage_time(rdev, old_uV, new_uV);
4290
4291 /* Currently requires operations to do this */
4292 if (!ops->list_voltage || !rdev->desc->n_voltages)
4293 return -EINVAL;
4294
4295 for (i = 0; i < rdev->desc->n_voltages; i++) {
4296 /* We only look for exact voltage matches here */
4297 if (i < rdev->desc->linear_min_sel)
4298 continue;
4299
4300 if (old_sel >= 0 && new_sel >= 0)
4301 break;
4302
4303 voltage = regulator_list_voltage(regulator, i);
4304 if (voltage < 0)
4305 return -EINVAL;
4306 if (voltage == 0)
4307 continue;
4308 if (voltage == old_uV)
4309 old_sel = i;
4310 if (voltage == new_uV)
4311 new_sel = i;
4312 }
4313
4314 if (old_sel < 0 || new_sel < 0)
4315 return -EINVAL;
4316
4317 return ops->set_voltage_time_sel(rdev, old_sel, new_sel);
4318}
4319EXPORT_SYMBOL_GPL(regulator_set_voltage_time);
4320
4321/**
4322 * regulator_set_voltage_time_sel - get raise/fall time
4323 * @rdev: regulator source device
4324 * @old_selector: selector for starting voltage
4325 * @new_selector: selector for target voltage
4326 *
4327 * Provided with the starting and target voltage selectors, this function
4328 * returns time in microseconds required to rise or fall to this new voltage
4329 *
4330 * Drivers providing ramp_delay in regulation_constraints can use this as their
4331 * set_voltage_time_sel() operation.
4332 */
4333int regulator_set_voltage_time_sel(struct regulator_dev *rdev,
4334 unsigned int old_selector,
4335 unsigned int new_selector)
4336{
4337 int old_volt, new_volt;
4338
4339 /* sanity check */
4340 if (!rdev->desc->ops->list_voltage)
4341 return -EINVAL;
4342
4343 old_volt = rdev->desc->ops->list_voltage(rdev, old_selector);
4344 new_volt = rdev->desc->ops->list_voltage(rdev, new_selector);
4345
4346 if (rdev->desc->ops->set_voltage_time)
4347 return rdev->desc->ops->set_voltage_time(rdev, old_volt,
4348 new_volt);
4349 else
4350 return _regulator_set_voltage_time(rdev, old_volt, new_volt);
4351}
4352EXPORT_SYMBOL_GPL(regulator_set_voltage_time_sel);
4353
4354int regulator_sync_voltage_rdev(struct regulator_dev *rdev)
4355{
4356 int ret;
4357
4358 regulator_lock(rdev);
4359
4360 if (!rdev->desc->ops->set_voltage &&
4361 !rdev->desc->ops->set_voltage_sel) {
4362 ret = -EINVAL;
4363 goto out;
4364 }
4365
4366 /* balance only, if regulator is coupled */
4367 if (rdev->coupling_desc.n_coupled > 1)
4368 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4369 else
4370 ret = -EOPNOTSUPP;
4371
4372out:
4373 regulator_unlock(rdev);
4374 return ret;
4375}
4376
4377/**
4378 * regulator_sync_voltage - re-apply last regulator output voltage
4379 * @regulator: regulator source
4380 *
4381 * Re-apply the last configured voltage. This is intended to be used
4382 * where some external control source the consumer is cooperating with
4383 * has caused the configured voltage to change.
4384 */
4385int regulator_sync_voltage(struct regulator *regulator)
4386{
4387 struct regulator_dev *rdev = regulator->rdev;
4388 struct regulator_voltage *voltage = ®ulator->voltage[PM_SUSPEND_ON];
4389 int ret, min_uV, max_uV;
4390
4391 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_VOLTAGE))
4392 return 0;
4393
4394 regulator_lock(rdev);
4395
4396 if (!rdev->desc->ops->set_voltage &&
4397 !rdev->desc->ops->set_voltage_sel) {
4398 ret = -EINVAL;
4399 goto out;
4400 }
4401
4402 /* This is only going to work if we've had a voltage configured. */
4403 if (!voltage->min_uV && !voltage->max_uV) {
4404 ret = -EINVAL;
4405 goto out;
4406 }
4407
4408 min_uV = voltage->min_uV;
4409 max_uV = voltage->max_uV;
4410
4411 /* This should be a paranoia check... */
4412 ret = regulator_check_voltage(rdev, &min_uV, &max_uV);
4413 if (ret < 0)
4414 goto out;
4415
4416 ret = regulator_check_consumers(rdev, &min_uV, &max_uV, 0);
4417 if (ret < 0)
4418 goto out;
4419
4420 /* balance only, if regulator is coupled */
4421 if (rdev->coupling_desc.n_coupled > 1)
4422 ret = regulator_balance_voltage(rdev, PM_SUSPEND_ON);
4423 else
4424 ret = _regulator_do_set_voltage(rdev, min_uV, max_uV);
4425
4426out:
4427 regulator_unlock(rdev);
4428 return ret;
4429}
4430EXPORT_SYMBOL_GPL(regulator_sync_voltage);
4431
4432int regulator_get_voltage_rdev(struct regulator_dev *rdev)
4433{
4434 int sel, ret;
4435 bool bypassed;
4436
4437 if (rdev->desc->ops->get_bypass) {
4438 ret = rdev->desc->ops->get_bypass(rdev, &bypassed);
4439 if (ret < 0)
4440 return ret;
4441 if (bypassed) {
4442 /* if bypassed the regulator must have a supply */
4443 if (!rdev->supply) {
4444 rdev_err(rdev,
4445 "bypassed regulator has no supply!\n");
4446 return -EPROBE_DEFER;
4447 }
4448
4449 return regulator_get_voltage_rdev(rdev->supply->rdev);
4450 }
4451 }
4452
4453 if (rdev->desc->ops->get_voltage_sel) {
4454 sel = rdev->desc->ops->get_voltage_sel(rdev);
4455 if (sel < 0)
4456 return sel;
4457 ret = rdev->desc->ops->list_voltage(rdev, sel);
4458 } else if (rdev->desc->ops->get_voltage) {
4459 ret = rdev->desc->ops->get_voltage(rdev);
4460 } else if (rdev->desc->ops->list_voltage) {
4461 ret = rdev->desc->ops->list_voltage(rdev, 0);
4462 } else if (rdev->desc->fixed_uV && (rdev->desc->n_voltages == 1)) {
4463 ret = rdev->desc->fixed_uV;
4464 } else if (rdev->supply) {
4465 ret = regulator_get_voltage_rdev(rdev->supply->rdev);
4466 } else if (rdev->supply_name) {
4467 return -EPROBE_DEFER;
4468 } else {
4469 return -EINVAL;
4470 }
4471
4472 if (ret < 0)
4473 return ret;
4474 return ret - rdev->constraints->uV_offset;
4475}
4476EXPORT_SYMBOL_GPL(regulator_get_voltage_rdev);
4477
4478/**
4479 * regulator_get_voltage - get regulator output voltage
4480 * @regulator: regulator source
4481 *
4482 * This returns the current regulator voltage in uV.
4483 *
4484 * NOTE: If the regulator is disabled it will return the voltage value. This
4485 * function should not be used to determine regulator state.
4486 */
4487int regulator_get_voltage(struct regulator *regulator)
4488{
4489 struct ww_acquire_ctx ww_ctx;
4490 int ret;
4491
4492 regulator_lock_dependent(regulator->rdev, &ww_ctx);
4493 ret = regulator_get_voltage_rdev(regulator->rdev);
4494 regulator_unlock_dependent(regulator->rdev, &ww_ctx);
4495
4496 return ret;
4497}
4498EXPORT_SYMBOL_GPL(regulator_get_voltage);
4499
4500/**
4501 * regulator_set_current_limit - set regulator output current limit
4502 * @regulator: regulator source
4503 * @min_uA: Minimum supported current in uA
4504 * @max_uA: Maximum supported current in uA
4505 *
4506 * Sets current sink to the desired output current. This can be set during
4507 * any regulator state. IOW, regulator can be disabled or enabled.
4508 *
4509 * If the regulator is enabled then the current will change to the new value
4510 * immediately otherwise if the regulator is disabled the regulator will
4511 * output at the new current when enabled.
4512 *
4513 * NOTE: Regulator system constraints must be set for this regulator before
4514 * calling this function otherwise this call will fail.
4515 */
4516int regulator_set_current_limit(struct regulator *regulator,
4517 int min_uA, int max_uA)
4518{
4519 struct regulator_dev *rdev = regulator->rdev;
4520 int ret;
4521
4522 regulator_lock(rdev);
4523
4524 /* sanity check */
4525 if (!rdev->desc->ops->set_current_limit) {
4526 ret = -EINVAL;
4527 goto out;
4528 }
4529
4530 /* constraints check */
4531 ret = regulator_check_current_limit(rdev, &min_uA, &max_uA);
4532 if (ret < 0)
4533 goto out;
4534
4535 ret = rdev->desc->ops->set_current_limit(rdev, min_uA, max_uA);
4536out:
4537 regulator_unlock(rdev);
4538 return ret;
4539}
4540EXPORT_SYMBOL_GPL(regulator_set_current_limit);
4541
4542static int _regulator_get_current_limit_unlocked(struct regulator_dev *rdev)
4543{
4544 /* sanity check */
4545 if (!rdev->desc->ops->get_current_limit)
4546 return -EINVAL;
4547
4548 return rdev->desc->ops->get_current_limit(rdev);
4549}
4550
4551static int _regulator_get_current_limit(struct regulator_dev *rdev)
4552{
4553 int ret;
4554
4555 regulator_lock(rdev);
4556 ret = _regulator_get_current_limit_unlocked(rdev);
4557 regulator_unlock(rdev);
4558
4559 return ret;
4560}
4561
4562/**
4563 * regulator_get_current_limit - get regulator output current
4564 * @regulator: regulator source
4565 *
4566 * This returns the current supplied by the specified current sink in uA.
4567 *
4568 * NOTE: If the regulator is disabled it will return the current value. This
4569 * function should not be used to determine regulator state.
4570 */
4571int regulator_get_current_limit(struct regulator *regulator)
4572{
4573 return _regulator_get_current_limit(regulator->rdev);
4574}
4575EXPORT_SYMBOL_GPL(regulator_get_current_limit);
4576
4577/**
4578 * regulator_set_mode - set regulator operating mode
4579 * @regulator: regulator source
4580 * @mode: operating mode - one of the REGULATOR_MODE constants
4581 *
4582 * Set regulator operating mode to increase regulator efficiency or improve
4583 * regulation performance.
4584 *
4585 * NOTE: Regulator system constraints must be set for this regulator before
4586 * calling this function otherwise this call will fail.
4587 */
4588int regulator_set_mode(struct regulator *regulator, unsigned int mode)
4589{
4590 struct regulator_dev *rdev = regulator->rdev;
4591 int ret;
4592 int regulator_curr_mode;
4593
4594 regulator_lock(rdev);
4595
4596 /* sanity check */
4597 if (!rdev->desc->ops->set_mode) {
4598 ret = -EINVAL;
4599 goto out;
4600 }
4601
4602 /* return if the same mode is requested */
4603 if (rdev->desc->ops->get_mode) {
4604 regulator_curr_mode = rdev->desc->ops->get_mode(rdev);
4605 if (regulator_curr_mode == mode) {
4606 ret = 0;
4607 goto out;
4608 }
4609 }
4610
4611 /* constraints check */
4612 ret = regulator_mode_constrain(rdev, &mode);
4613 if (ret < 0)
4614 goto out;
4615
4616 ret = rdev->desc->ops->set_mode(rdev, mode);
4617out:
4618 regulator_unlock(rdev);
4619 return ret;
4620}
4621EXPORT_SYMBOL_GPL(regulator_set_mode);
4622
4623static unsigned int _regulator_get_mode_unlocked(struct regulator_dev *rdev)
4624{
4625 /* sanity check */
4626 if (!rdev->desc->ops->get_mode)
4627 return -EINVAL;
4628
4629 return rdev->desc->ops->get_mode(rdev);
4630}
4631
4632static unsigned int _regulator_get_mode(struct regulator_dev *rdev)
4633{
4634 int ret;
4635
4636 regulator_lock(rdev);
4637 ret = _regulator_get_mode_unlocked(rdev);
4638 regulator_unlock(rdev);
4639
4640 return ret;
4641}
4642
4643/**
4644 * regulator_get_mode - get regulator operating mode
4645 * @regulator: regulator source
4646 *
4647 * Get the current regulator operating mode.
4648 */
4649unsigned int regulator_get_mode(struct regulator *regulator)
4650{
4651 return _regulator_get_mode(regulator->rdev);
4652}
4653EXPORT_SYMBOL_GPL(regulator_get_mode);
4654
4655static int rdev_get_cached_err_flags(struct regulator_dev *rdev)
4656{
4657 int ret = 0;
4658
4659 if (rdev->use_cached_err) {
4660 spin_lock(&rdev->err_lock);
4661 ret = rdev->cached_err;
4662 spin_unlock(&rdev->err_lock);
4663 }
4664 return ret;
4665}
4666
4667static int _regulator_get_error_flags(struct regulator_dev *rdev,
4668 unsigned int *flags)
4669{
4670 int cached_flags, ret = 0;
4671
4672 regulator_lock(rdev);
4673
4674 cached_flags = rdev_get_cached_err_flags(rdev);
4675
4676 if (rdev->desc->ops->get_error_flags)
4677 ret = rdev->desc->ops->get_error_flags(rdev, flags);
4678 else if (!rdev->use_cached_err)
4679 ret = -EINVAL;
4680
4681 *flags |= cached_flags;
4682
4683 regulator_unlock(rdev);
4684
4685 return ret;
4686}
4687
4688/**
4689 * regulator_get_error_flags - get regulator error information
4690 * @regulator: regulator source
4691 * @flags: pointer to store error flags
4692 *
4693 * Get the current regulator error information.
4694 */
4695int regulator_get_error_flags(struct regulator *regulator,
4696 unsigned int *flags)
4697{
4698 return _regulator_get_error_flags(regulator->rdev, flags);
4699}
4700EXPORT_SYMBOL_GPL(regulator_get_error_flags);
4701
4702/**
4703 * regulator_set_load - set regulator load
4704 * @regulator: regulator source
4705 * @uA_load: load current
4706 *
4707 * Notifies the regulator core of a new device load. This is then used by
4708 * DRMS (if enabled by constraints) to set the most efficient regulator
4709 * operating mode for the new regulator loading.
4710 *
4711 * Consumer devices notify their supply regulator of the maximum power
4712 * they will require (can be taken from device datasheet in the power
4713 * consumption tables) when they change operational status and hence power
4714 * state. Examples of operational state changes that can affect power
4715 * consumption are :-
4716 *
4717 * o Device is opened / closed.
4718 * o Device I/O is about to begin or has just finished.
4719 * o Device is idling in between work.
4720 *
4721 * This information is also exported via sysfs to userspace.
4722 *
4723 * DRMS will sum the total requested load on the regulator and change
4724 * to the most efficient operating mode if platform constraints allow.
4725 *
4726 * NOTE: when a regulator consumer requests to have a regulator
4727 * disabled then any load that consumer requested no longer counts
4728 * toward the total requested load. If the regulator is re-enabled
4729 * then the previously requested load will start counting again.
4730 *
4731 * If a regulator is an always-on regulator then an individual consumer's
4732 * load will still be removed if that consumer is fully disabled.
4733 *
4734 * On error a negative errno is returned.
4735 */
4736int regulator_set_load(struct regulator *regulator, int uA_load)
4737{
4738 struct regulator_dev *rdev = regulator->rdev;
4739 int old_uA_load;
4740 int ret = 0;
4741
4742 regulator_lock(rdev);
4743 old_uA_load = regulator->uA_load;
4744 regulator->uA_load = uA_load;
4745 if (regulator->enable_count && old_uA_load != uA_load) {
4746 ret = drms_uA_update(rdev);
4747 if (ret < 0)
4748 regulator->uA_load = old_uA_load;
4749 }
4750 regulator_unlock(rdev);
4751
4752 return ret;
4753}
4754EXPORT_SYMBOL_GPL(regulator_set_load);
4755
4756/**
4757 * regulator_allow_bypass - allow the regulator to go into bypass mode
4758 *
4759 * @regulator: Regulator to configure
4760 * @enable: enable or disable bypass mode
4761 *
4762 * Allow the regulator to go into bypass mode if all other consumers
4763 * for the regulator also enable bypass mode and the machine
4764 * constraints allow this. Bypass mode means that the regulator is
4765 * simply passing the input directly to the output with no regulation.
4766 */
4767int regulator_allow_bypass(struct regulator *regulator, bool enable)
4768{
4769 struct regulator_dev *rdev = regulator->rdev;
4770 const char *name = rdev_get_name(rdev);
4771 int ret = 0;
4772
4773 if (!rdev->desc->ops->set_bypass)
4774 return 0;
4775
4776 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_BYPASS))
4777 return 0;
4778
4779 regulator_lock(rdev);
4780
4781 if (enable && !regulator->bypass) {
4782 rdev->bypass_count++;
4783
4784 if (rdev->bypass_count == rdev->open_count) {
4785 trace_regulator_bypass_enable(name);
4786
4787 ret = rdev->desc->ops->set_bypass(rdev, enable);
4788 if (ret != 0)
4789 rdev->bypass_count--;
4790 else
4791 trace_regulator_bypass_enable_complete(name);
4792 }
4793
4794 } else if (!enable && regulator->bypass) {
4795 rdev->bypass_count--;
4796
4797 if (rdev->bypass_count != rdev->open_count) {
4798 trace_regulator_bypass_disable(name);
4799
4800 ret = rdev->desc->ops->set_bypass(rdev, enable);
4801 if (ret != 0)
4802 rdev->bypass_count++;
4803 else
4804 trace_regulator_bypass_disable_complete(name);
4805 }
4806 }
4807
4808 if (ret == 0)
4809 regulator->bypass = enable;
4810
4811 regulator_unlock(rdev);
4812
4813 return ret;
4814}
4815EXPORT_SYMBOL_GPL(regulator_allow_bypass);
4816
4817/**
4818 * regulator_register_notifier - register regulator event notifier
4819 * @regulator: regulator source
4820 * @nb: notifier block
4821 *
4822 * Register notifier block to receive regulator events.
4823 */
4824int regulator_register_notifier(struct regulator *regulator,
4825 struct notifier_block *nb)
4826{
4827 return blocking_notifier_chain_register(®ulator->rdev->notifier,
4828 nb);
4829}
4830EXPORT_SYMBOL_GPL(regulator_register_notifier);
4831
4832/**
4833 * regulator_unregister_notifier - unregister regulator event notifier
4834 * @regulator: regulator source
4835 * @nb: notifier block
4836 *
4837 * Unregister regulator event notifier block.
4838 */
4839int regulator_unregister_notifier(struct regulator *regulator,
4840 struct notifier_block *nb)
4841{
4842 return blocking_notifier_chain_unregister(®ulator->rdev->notifier,
4843 nb);
4844}
4845EXPORT_SYMBOL_GPL(regulator_unregister_notifier);
4846
4847/* notify regulator consumers and downstream regulator consumers.
4848 * Note mutex must be held by caller.
4849 */
4850static int _notifier_call_chain(struct regulator_dev *rdev,
4851 unsigned long event, void *data)
4852{
4853 /* call rdev chain first */
4854 return blocking_notifier_call_chain(&rdev->notifier, event, data);
4855}
4856
4857int _regulator_bulk_get(struct device *dev, int num_consumers,
4858 struct regulator_bulk_data *consumers, enum regulator_get_type get_type)
4859{
4860 int i;
4861 int ret;
4862
4863 for (i = 0; i < num_consumers; i++)
4864 consumers[i].consumer = NULL;
4865
4866 for (i = 0; i < num_consumers; i++) {
4867 consumers[i].consumer = _regulator_get(dev,
4868 consumers[i].supply, get_type);
4869 if (IS_ERR(consumers[i].consumer)) {
4870 ret = dev_err_probe(dev, PTR_ERR(consumers[i].consumer),
4871 "Failed to get supply '%s'",
4872 consumers[i].supply);
4873 consumers[i].consumer = NULL;
4874 goto err;
4875 }
4876
4877 if (consumers[i].init_load_uA > 0) {
4878 ret = regulator_set_load(consumers[i].consumer,
4879 consumers[i].init_load_uA);
4880 if (ret) {
4881 i++;
4882 goto err;
4883 }
4884 }
4885 }
4886
4887 return 0;
4888
4889err:
4890 while (--i >= 0)
4891 regulator_put(consumers[i].consumer);
4892
4893 return ret;
4894}
4895
4896/**
4897 * regulator_bulk_get - get multiple regulator consumers
4898 *
4899 * @dev: Device to supply
4900 * @num_consumers: Number of consumers to register
4901 * @consumers: Configuration of consumers; clients are stored here.
4902 *
4903 * @return 0 on success, an errno on failure.
4904 *
4905 * This helper function allows drivers to get several regulator
4906 * consumers in one operation. If any of the regulators cannot be
4907 * acquired then any regulators that were allocated will be freed
4908 * before returning to the caller.
4909 */
4910int regulator_bulk_get(struct device *dev, int num_consumers,
4911 struct regulator_bulk_data *consumers)
4912{
4913 return _regulator_bulk_get(dev, num_consumers, consumers, NORMAL_GET);
4914}
4915EXPORT_SYMBOL_GPL(regulator_bulk_get);
4916
4917static void regulator_bulk_enable_async(void *data, async_cookie_t cookie)
4918{
4919 struct regulator_bulk_data *bulk = data;
4920
4921 bulk->ret = regulator_enable(bulk->consumer);
4922}
4923
4924/**
4925 * regulator_bulk_enable - enable multiple regulator consumers
4926 *
4927 * @num_consumers: Number of consumers
4928 * @consumers: Consumer data; clients are stored here.
4929 * @return 0 on success, an errno on failure
4930 *
4931 * This convenience API allows consumers to enable multiple regulator
4932 * clients in a single API call. If any consumers cannot be enabled
4933 * then any others that were enabled will be disabled again prior to
4934 * return.
4935 */
4936int regulator_bulk_enable(int num_consumers,
4937 struct regulator_bulk_data *consumers)
4938{
4939 ASYNC_DOMAIN_EXCLUSIVE(async_domain);
4940 int i;
4941 int ret = 0;
4942
4943 for (i = 0; i < num_consumers; i++) {
4944 async_schedule_domain(regulator_bulk_enable_async,
4945 &consumers[i], &async_domain);
4946 }
4947
4948 async_synchronize_full_domain(&async_domain);
4949
4950 /* If any consumer failed we need to unwind any that succeeded */
4951 for (i = 0; i < num_consumers; i++) {
4952 if (consumers[i].ret != 0) {
4953 ret = consumers[i].ret;
4954 goto err;
4955 }
4956 }
4957
4958 return 0;
4959
4960err:
4961 for (i = 0; i < num_consumers; i++) {
4962 if (consumers[i].ret < 0)
4963 pr_err("Failed to enable %s: %pe\n", consumers[i].supply,
4964 ERR_PTR(consumers[i].ret));
4965 else
4966 regulator_disable(consumers[i].consumer);
4967 }
4968
4969 return ret;
4970}
4971EXPORT_SYMBOL_GPL(regulator_bulk_enable);
4972
4973/**
4974 * regulator_bulk_disable - disable multiple regulator consumers
4975 *
4976 * @num_consumers: Number of consumers
4977 * @consumers: Consumer data; clients are stored here.
4978 * @return 0 on success, an errno on failure
4979 *
4980 * This convenience API allows consumers to disable multiple regulator
4981 * clients in a single API call. If any consumers cannot be disabled
4982 * then any others that were disabled will be enabled again prior to
4983 * return.
4984 */
4985int regulator_bulk_disable(int num_consumers,
4986 struct regulator_bulk_data *consumers)
4987{
4988 int i;
4989 int ret, r;
4990
4991 for (i = num_consumers - 1; i >= 0; --i) {
4992 ret = regulator_disable(consumers[i].consumer);
4993 if (ret != 0)
4994 goto err;
4995 }
4996
4997 return 0;
4998
4999err:
5000 pr_err("Failed to disable %s: %pe\n", consumers[i].supply, ERR_PTR(ret));
5001 for (++i; i < num_consumers; ++i) {
5002 r = regulator_enable(consumers[i].consumer);
5003 if (r != 0)
5004 pr_err("Failed to re-enable %s: %pe\n",
5005 consumers[i].supply, ERR_PTR(r));
5006 }
5007
5008 return ret;
5009}
5010EXPORT_SYMBOL_GPL(regulator_bulk_disable);
5011
5012/**
5013 * regulator_bulk_force_disable - force disable multiple regulator consumers
5014 *
5015 * @num_consumers: Number of consumers
5016 * @consumers: Consumer data; clients are stored here.
5017 * @return 0 on success, an errno on failure
5018 *
5019 * This convenience API allows consumers to forcibly disable multiple regulator
5020 * clients in a single API call.
5021 * NOTE: This should be used for situations when device damage will
5022 * likely occur if the regulators are not disabled (e.g. over temp).
5023 * Although regulator_force_disable function call for some consumers can
5024 * return error numbers, the function is called for all consumers.
5025 */
5026int regulator_bulk_force_disable(int num_consumers,
5027 struct regulator_bulk_data *consumers)
5028{
5029 int i;
5030 int ret = 0;
5031
5032 for (i = 0; i < num_consumers; i++) {
5033 consumers[i].ret =
5034 regulator_force_disable(consumers[i].consumer);
5035
5036 /* Store first error for reporting */
5037 if (consumers[i].ret && !ret)
5038 ret = consumers[i].ret;
5039 }
5040
5041 return ret;
5042}
5043EXPORT_SYMBOL_GPL(regulator_bulk_force_disable);
5044
5045/**
5046 * regulator_bulk_free - free multiple regulator consumers
5047 *
5048 * @num_consumers: Number of consumers
5049 * @consumers: Consumer data; clients are stored here.
5050 *
5051 * This convenience API allows consumers to free multiple regulator
5052 * clients in a single API call.
5053 */
5054void regulator_bulk_free(int num_consumers,
5055 struct regulator_bulk_data *consumers)
5056{
5057 int i;
5058
5059 for (i = 0; i < num_consumers; i++) {
5060 regulator_put(consumers[i].consumer);
5061 consumers[i].consumer = NULL;
5062 }
5063}
5064EXPORT_SYMBOL_GPL(regulator_bulk_free);
5065
5066/**
5067 * regulator_notifier_call_chain - call regulator event notifier
5068 * @rdev: regulator source
5069 * @event: notifier block
5070 * @data: callback-specific data.
5071 *
5072 * Called by regulator drivers to notify clients a regulator event has
5073 * occurred.
5074 */
5075int regulator_notifier_call_chain(struct regulator_dev *rdev,
5076 unsigned long event, void *data)
5077{
5078 _notifier_call_chain(rdev, event, data);
5079 return NOTIFY_DONE;
5080
5081}
5082EXPORT_SYMBOL_GPL(regulator_notifier_call_chain);
5083
5084/**
5085 * regulator_mode_to_status - convert a regulator mode into a status
5086 *
5087 * @mode: Mode to convert
5088 *
5089 * Convert a regulator mode into a status.
5090 */
5091int regulator_mode_to_status(unsigned int mode)
5092{
5093 switch (mode) {
5094 case REGULATOR_MODE_FAST:
5095 return REGULATOR_STATUS_FAST;
5096 case REGULATOR_MODE_NORMAL:
5097 return REGULATOR_STATUS_NORMAL;
5098 case REGULATOR_MODE_IDLE:
5099 return REGULATOR_STATUS_IDLE;
5100 case REGULATOR_MODE_STANDBY:
5101 return REGULATOR_STATUS_STANDBY;
5102 default:
5103 return REGULATOR_STATUS_UNDEFINED;
5104 }
5105}
5106EXPORT_SYMBOL_GPL(regulator_mode_to_status);
5107
5108static struct attribute *regulator_dev_attrs[] = {
5109 &dev_attr_name.attr,
5110 &dev_attr_num_users.attr,
5111 &dev_attr_type.attr,
5112 &dev_attr_microvolts.attr,
5113 &dev_attr_microamps.attr,
5114 &dev_attr_opmode.attr,
5115 &dev_attr_state.attr,
5116 &dev_attr_status.attr,
5117 &dev_attr_bypass.attr,
5118 &dev_attr_requested_microamps.attr,
5119 &dev_attr_min_microvolts.attr,
5120 &dev_attr_max_microvolts.attr,
5121 &dev_attr_min_microamps.attr,
5122 &dev_attr_max_microamps.attr,
5123 &dev_attr_under_voltage.attr,
5124 &dev_attr_over_current.attr,
5125 &dev_attr_regulation_out.attr,
5126 &dev_attr_fail.attr,
5127 &dev_attr_over_temp.attr,
5128 &dev_attr_under_voltage_warn.attr,
5129 &dev_attr_over_current_warn.attr,
5130 &dev_attr_over_voltage_warn.attr,
5131 &dev_attr_over_temp_warn.attr,
5132 &dev_attr_suspend_standby_state.attr,
5133 &dev_attr_suspend_mem_state.attr,
5134 &dev_attr_suspend_disk_state.attr,
5135 &dev_attr_suspend_standby_microvolts.attr,
5136 &dev_attr_suspend_mem_microvolts.attr,
5137 &dev_attr_suspend_disk_microvolts.attr,
5138 &dev_attr_suspend_standby_mode.attr,
5139 &dev_attr_suspend_mem_mode.attr,
5140 &dev_attr_suspend_disk_mode.attr,
5141 NULL
5142};
5143
5144/*
5145 * To avoid cluttering sysfs (and memory) with useless state, only
5146 * create attributes that can be meaningfully displayed.
5147 */
5148static umode_t regulator_attr_is_visible(struct kobject *kobj,
5149 struct attribute *attr, int idx)
5150{
5151 struct device *dev = kobj_to_dev(kobj);
5152 struct regulator_dev *rdev = dev_to_rdev(dev);
5153 const struct regulator_ops *ops = rdev->desc->ops;
5154 umode_t mode = attr->mode;
5155
5156 /* these three are always present */
5157 if (attr == &dev_attr_name.attr ||
5158 attr == &dev_attr_num_users.attr ||
5159 attr == &dev_attr_type.attr)
5160 return mode;
5161
5162 /* some attributes need specific methods to be displayed */
5163 if (attr == &dev_attr_microvolts.attr) {
5164 if ((ops->get_voltage && ops->get_voltage(rdev) >= 0) ||
5165 (ops->get_voltage_sel && ops->get_voltage_sel(rdev) >= 0) ||
5166 (ops->list_voltage && ops->list_voltage(rdev, 0) >= 0) ||
5167 (rdev->desc->fixed_uV && rdev->desc->n_voltages == 1))
5168 return mode;
5169 return 0;
5170 }
5171
5172 if (attr == &dev_attr_microamps.attr)
5173 return ops->get_current_limit ? mode : 0;
5174
5175 if (attr == &dev_attr_opmode.attr)
5176 return ops->get_mode ? mode : 0;
5177
5178 if (attr == &dev_attr_state.attr)
5179 return (rdev->ena_pin || ops->is_enabled) ? mode : 0;
5180
5181 if (attr == &dev_attr_status.attr)
5182 return ops->get_status ? mode : 0;
5183
5184 if (attr == &dev_attr_bypass.attr)
5185 return ops->get_bypass ? mode : 0;
5186
5187 if (attr == &dev_attr_under_voltage.attr ||
5188 attr == &dev_attr_over_current.attr ||
5189 attr == &dev_attr_regulation_out.attr ||
5190 attr == &dev_attr_fail.attr ||
5191 attr == &dev_attr_over_temp.attr ||
5192 attr == &dev_attr_under_voltage_warn.attr ||
5193 attr == &dev_attr_over_current_warn.attr ||
5194 attr == &dev_attr_over_voltage_warn.attr ||
5195 attr == &dev_attr_over_temp_warn.attr)
5196 return ops->get_error_flags ? mode : 0;
5197
5198 /* constraints need specific supporting methods */
5199 if (attr == &dev_attr_min_microvolts.attr ||
5200 attr == &dev_attr_max_microvolts.attr)
5201 return (ops->set_voltage || ops->set_voltage_sel) ? mode : 0;
5202
5203 if (attr == &dev_attr_min_microamps.attr ||
5204 attr == &dev_attr_max_microamps.attr)
5205 return ops->set_current_limit ? mode : 0;
5206
5207 if (attr == &dev_attr_suspend_standby_state.attr ||
5208 attr == &dev_attr_suspend_mem_state.attr ||
5209 attr == &dev_attr_suspend_disk_state.attr)
5210 return mode;
5211
5212 if (attr == &dev_attr_suspend_standby_microvolts.attr ||
5213 attr == &dev_attr_suspend_mem_microvolts.attr ||
5214 attr == &dev_attr_suspend_disk_microvolts.attr)
5215 return ops->set_suspend_voltage ? mode : 0;
5216
5217 if (attr == &dev_attr_suspend_standby_mode.attr ||
5218 attr == &dev_attr_suspend_mem_mode.attr ||
5219 attr == &dev_attr_suspend_disk_mode.attr)
5220 return ops->set_suspend_mode ? mode : 0;
5221
5222 return mode;
5223}
5224
5225static const struct attribute_group regulator_dev_group = {
5226 .attrs = regulator_dev_attrs,
5227 .is_visible = regulator_attr_is_visible,
5228};
5229
5230static const struct attribute_group *regulator_dev_groups[] = {
5231 ®ulator_dev_group,
5232 NULL
5233};
5234
5235static void regulator_dev_release(struct device *dev)
5236{
5237 struct regulator_dev *rdev = dev_get_drvdata(dev);
5238
5239 debugfs_remove_recursive(rdev->debugfs);
5240 kfree(rdev->constraints);
5241 of_node_put(rdev->dev.of_node);
5242 kfree(rdev);
5243}
5244
5245static void rdev_init_debugfs(struct regulator_dev *rdev)
5246{
5247 struct device *parent = rdev->dev.parent;
5248 const char *rname = rdev_get_name(rdev);
5249 char name[NAME_MAX];
5250
5251 /* Avoid duplicate debugfs directory names */
5252 if (parent && rname == rdev->desc->name) {
5253 snprintf(name, sizeof(name), "%s-%s", dev_name(parent),
5254 rname);
5255 rname = name;
5256 }
5257
5258 rdev->debugfs = debugfs_create_dir(rname, debugfs_root);
5259 if (IS_ERR(rdev->debugfs)) {
5260 rdev_warn(rdev, "Failed to create debugfs directory\n");
5261 return;
5262 }
5263
5264 debugfs_create_u32("use_count", 0444, rdev->debugfs,
5265 &rdev->use_count);
5266 debugfs_create_u32("open_count", 0444, rdev->debugfs,
5267 &rdev->open_count);
5268 debugfs_create_u32("bypass_count", 0444, rdev->debugfs,
5269 &rdev->bypass_count);
5270}
5271
5272static int regulator_register_resolve_supply(struct device *dev, void *data)
5273{
5274 struct regulator_dev *rdev = dev_to_rdev(dev);
5275
5276 if (regulator_resolve_supply(rdev))
5277 rdev_dbg(rdev, "unable to resolve supply\n");
5278
5279 return 0;
5280}
5281
5282int regulator_coupler_register(struct regulator_coupler *coupler)
5283{
5284 mutex_lock(®ulator_list_mutex);
5285 list_add_tail(&coupler->list, ®ulator_coupler_list);
5286 mutex_unlock(®ulator_list_mutex);
5287
5288 return 0;
5289}
5290
5291static struct regulator_coupler *
5292regulator_find_coupler(struct regulator_dev *rdev)
5293{
5294 struct regulator_coupler *coupler;
5295 int err;
5296
5297 /*
5298 * Note that regulators are appended to the list and the generic
5299 * coupler is registered first, hence it will be attached at last
5300 * if nobody cared.
5301 */
5302 list_for_each_entry_reverse(coupler, ®ulator_coupler_list, list) {
5303 err = coupler->attach_regulator(coupler, rdev);
5304 if (!err) {
5305 if (!coupler->balance_voltage &&
5306 rdev->coupling_desc.n_coupled > 2)
5307 goto err_unsupported;
5308
5309 return coupler;
5310 }
5311
5312 if (err < 0)
5313 return ERR_PTR(err);
5314
5315 if (err == 1)
5316 continue;
5317
5318 break;
5319 }
5320
5321 return ERR_PTR(-EINVAL);
5322
5323err_unsupported:
5324 if (coupler->detach_regulator)
5325 coupler->detach_regulator(coupler, rdev);
5326
5327 rdev_err(rdev,
5328 "Voltage balancing for multiple regulator couples is unimplemented\n");
5329
5330 return ERR_PTR(-EPERM);
5331}
5332
5333static void regulator_resolve_coupling(struct regulator_dev *rdev)
5334{
5335 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5336 struct coupling_desc *c_desc = &rdev->coupling_desc;
5337 int n_coupled = c_desc->n_coupled;
5338 struct regulator_dev *c_rdev;
5339 int i;
5340
5341 for (i = 1; i < n_coupled; i++) {
5342 /* already resolved */
5343 if (c_desc->coupled_rdevs[i])
5344 continue;
5345
5346 c_rdev = of_parse_coupled_regulator(rdev, i - 1);
5347
5348 if (!c_rdev)
5349 continue;
5350
5351 if (c_rdev->coupling_desc.coupler != coupler) {
5352 rdev_err(rdev, "coupler mismatch with %s\n",
5353 rdev_get_name(c_rdev));
5354 return;
5355 }
5356
5357 c_desc->coupled_rdevs[i] = c_rdev;
5358 c_desc->n_resolved++;
5359
5360 regulator_resolve_coupling(c_rdev);
5361 }
5362}
5363
5364static void regulator_remove_coupling(struct regulator_dev *rdev)
5365{
5366 struct regulator_coupler *coupler = rdev->coupling_desc.coupler;
5367 struct coupling_desc *__c_desc, *c_desc = &rdev->coupling_desc;
5368 struct regulator_dev *__c_rdev, *c_rdev;
5369 unsigned int __n_coupled, n_coupled;
5370 int i, k;
5371 int err;
5372
5373 n_coupled = c_desc->n_coupled;
5374
5375 for (i = 1; i < n_coupled; i++) {
5376 c_rdev = c_desc->coupled_rdevs[i];
5377
5378 if (!c_rdev)
5379 continue;
5380
5381 regulator_lock(c_rdev);
5382
5383 __c_desc = &c_rdev->coupling_desc;
5384 __n_coupled = __c_desc->n_coupled;
5385
5386 for (k = 1; k < __n_coupled; k++) {
5387 __c_rdev = __c_desc->coupled_rdevs[k];
5388
5389 if (__c_rdev == rdev) {
5390 __c_desc->coupled_rdevs[k] = NULL;
5391 __c_desc->n_resolved--;
5392 break;
5393 }
5394 }
5395
5396 regulator_unlock(c_rdev);
5397
5398 c_desc->coupled_rdevs[i] = NULL;
5399 c_desc->n_resolved--;
5400 }
5401
5402 if (coupler && coupler->detach_regulator) {
5403 err = coupler->detach_regulator(coupler, rdev);
5404 if (err)
5405 rdev_err(rdev, "failed to detach from coupler: %pe\n",
5406 ERR_PTR(err));
5407 }
5408
5409 kfree(rdev->coupling_desc.coupled_rdevs);
5410 rdev->coupling_desc.coupled_rdevs = NULL;
5411}
5412
5413static int regulator_init_coupling(struct regulator_dev *rdev)
5414{
5415 struct regulator_dev **coupled;
5416 int err, n_phandles;
5417
5418 if (!IS_ENABLED(CONFIG_OF))
5419 n_phandles = 0;
5420 else
5421 n_phandles = of_get_n_coupled(rdev);
5422
5423 coupled = kcalloc(n_phandles + 1, sizeof(*coupled), GFP_KERNEL);
5424 if (!coupled)
5425 return -ENOMEM;
5426
5427 rdev->coupling_desc.coupled_rdevs = coupled;
5428
5429 /*
5430 * Every regulator should always have coupling descriptor filled with
5431 * at least pointer to itself.
5432 */
5433 rdev->coupling_desc.coupled_rdevs[0] = rdev;
5434 rdev->coupling_desc.n_coupled = n_phandles + 1;
5435 rdev->coupling_desc.n_resolved++;
5436
5437 /* regulator isn't coupled */
5438 if (n_phandles == 0)
5439 return 0;
5440
5441 if (!of_check_coupling_data(rdev))
5442 return -EPERM;
5443
5444 mutex_lock(®ulator_list_mutex);
5445 rdev->coupling_desc.coupler = regulator_find_coupler(rdev);
5446 mutex_unlock(®ulator_list_mutex);
5447
5448 if (IS_ERR(rdev->coupling_desc.coupler)) {
5449 err = PTR_ERR(rdev->coupling_desc.coupler);
5450 rdev_err(rdev, "failed to get coupler: %pe\n", ERR_PTR(err));
5451 return err;
5452 }
5453
5454 return 0;
5455}
5456
5457static int generic_coupler_attach(struct regulator_coupler *coupler,
5458 struct regulator_dev *rdev)
5459{
5460 if (rdev->coupling_desc.n_coupled > 2) {
5461 rdev_err(rdev,
5462 "Voltage balancing for multiple regulator couples is unimplemented\n");
5463 return -EPERM;
5464 }
5465
5466 if (!rdev->constraints->always_on) {
5467 rdev_err(rdev,
5468 "Coupling of a non always-on regulator is unimplemented\n");
5469 return -ENOTSUPP;
5470 }
5471
5472 return 0;
5473}
5474
5475static struct regulator_coupler generic_regulator_coupler = {
5476 .attach_regulator = generic_coupler_attach,
5477};
5478
5479/**
5480 * regulator_register - register regulator
5481 * @dev: the device that drive the regulator
5482 * @regulator_desc: regulator to register
5483 * @cfg: runtime configuration for regulator
5484 *
5485 * Called by regulator drivers to register a regulator.
5486 * Returns a valid pointer to struct regulator_dev on success
5487 * or an ERR_PTR() on error.
5488 */
5489struct regulator_dev *
5490regulator_register(struct device *dev,
5491 const struct regulator_desc *regulator_desc,
5492 const struct regulator_config *cfg)
5493{
5494 const struct regulator_init_data *init_data;
5495 struct regulator_config *config = NULL;
5496 static atomic_t regulator_no = ATOMIC_INIT(-1);
5497 struct regulator_dev *rdev;
5498 bool dangling_cfg_gpiod = false;
5499 bool dangling_of_gpiod = false;
5500 int ret, i;
5501 bool resolved_early = false;
5502
5503 if (cfg == NULL)
5504 return ERR_PTR(-EINVAL);
5505 if (cfg->ena_gpiod)
5506 dangling_cfg_gpiod = true;
5507 if (regulator_desc == NULL) {
5508 ret = -EINVAL;
5509 goto rinse;
5510 }
5511
5512 WARN_ON(!dev || !cfg->dev);
5513
5514 if (regulator_desc->name == NULL || regulator_desc->ops == NULL) {
5515 ret = -EINVAL;
5516 goto rinse;
5517 }
5518
5519 if (regulator_desc->type != REGULATOR_VOLTAGE &&
5520 regulator_desc->type != REGULATOR_CURRENT) {
5521 ret = -EINVAL;
5522 goto rinse;
5523 }
5524
5525 /* Only one of each should be implemented */
5526 WARN_ON(regulator_desc->ops->get_voltage &&
5527 regulator_desc->ops->get_voltage_sel);
5528 WARN_ON(regulator_desc->ops->set_voltage &&
5529 regulator_desc->ops->set_voltage_sel);
5530
5531 /* If we're using selectors we must implement list_voltage. */
5532 if (regulator_desc->ops->get_voltage_sel &&
5533 !regulator_desc->ops->list_voltage) {
5534 ret = -EINVAL;
5535 goto rinse;
5536 }
5537 if (regulator_desc->ops->set_voltage_sel &&
5538 !regulator_desc->ops->list_voltage) {
5539 ret = -EINVAL;
5540 goto rinse;
5541 }
5542
5543 rdev = kzalloc(sizeof(struct regulator_dev), GFP_KERNEL);
5544 if (rdev == NULL) {
5545 ret = -ENOMEM;
5546 goto rinse;
5547 }
5548 device_initialize(&rdev->dev);
5549 spin_lock_init(&rdev->err_lock);
5550
5551 /*
5552 * Duplicate the config so the driver could override it after
5553 * parsing init data.
5554 */
5555 config = kmemdup(cfg, sizeof(*cfg), GFP_KERNEL);
5556 if (config == NULL) {
5557 ret = -ENOMEM;
5558 goto clean;
5559 }
5560
5561 init_data = regulator_of_get_init_data(dev, regulator_desc, config,
5562 &rdev->dev.of_node);
5563
5564 /*
5565 * Sometimes not all resources are probed already so we need to take
5566 * that into account. This happens most the time if the ena_gpiod comes
5567 * from a gpio extender or something else.
5568 */
5569 if (PTR_ERR(init_data) == -EPROBE_DEFER) {
5570 ret = -EPROBE_DEFER;
5571 goto clean;
5572 }
5573
5574 /*
5575 * We need to keep track of any GPIO descriptor coming from the
5576 * device tree until we have handled it over to the core. If the
5577 * config that was passed in to this function DOES NOT contain
5578 * a descriptor, and the config after this call DOES contain
5579 * a descriptor, we definitely got one from parsing the device
5580 * tree.
5581 */
5582 if (!cfg->ena_gpiod && config->ena_gpiod)
5583 dangling_of_gpiod = true;
5584 if (!init_data) {
5585 init_data = config->init_data;
5586 rdev->dev.of_node = of_node_get(config->of_node);
5587 }
5588
5589 ww_mutex_init(&rdev->mutex, ®ulator_ww_class);
5590 rdev->reg_data = config->driver_data;
5591 rdev->owner = regulator_desc->owner;
5592 rdev->desc = regulator_desc;
5593 if (config->regmap)
5594 rdev->regmap = config->regmap;
5595 else if (dev_get_regmap(dev, NULL))
5596 rdev->regmap = dev_get_regmap(dev, NULL);
5597 else if (dev->parent)
5598 rdev->regmap = dev_get_regmap(dev->parent, NULL);
5599 INIT_LIST_HEAD(&rdev->consumer_list);
5600 INIT_LIST_HEAD(&rdev->list);
5601 BLOCKING_INIT_NOTIFIER_HEAD(&rdev->notifier);
5602 INIT_DELAYED_WORK(&rdev->disable_work, regulator_disable_work);
5603
5604 if (init_data && init_data->supply_regulator)
5605 rdev->supply_name = init_data->supply_regulator;
5606 else if (regulator_desc->supply_name)
5607 rdev->supply_name = regulator_desc->supply_name;
5608
5609 /* register with sysfs */
5610 rdev->dev.class = ®ulator_class;
5611 rdev->dev.parent = config->dev;
5612 dev_set_name(&rdev->dev, "regulator.%lu",
5613 (unsigned long) atomic_inc_return(®ulator_no));
5614 dev_set_drvdata(&rdev->dev, rdev);
5615
5616 /* set regulator constraints */
5617 if (init_data)
5618 rdev->constraints = kmemdup(&init_data->constraints,
5619 sizeof(*rdev->constraints),
5620 GFP_KERNEL);
5621 else
5622 rdev->constraints = kzalloc(sizeof(*rdev->constraints),
5623 GFP_KERNEL);
5624 if (!rdev->constraints) {
5625 ret = -ENOMEM;
5626 goto wash;
5627 }
5628
5629 if ((rdev->supply_name && !rdev->supply) &&
5630 (rdev->constraints->always_on ||
5631 rdev->constraints->boot_on)) {
5632 ret = regulator_resolve_supply(rdev);
5633 if (ret)
5634 rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5635 ERR_PTR(ret));
5636
5637 resolved_early = true;
5638 }
5639
5640 /* perform any regulator specific init */
5641 if (init_data && init_data->regulator_init) {
5642 ret = init_data->regulator_init(rdev->reg_data);
5643 if (ret < 0)
5644 goto wash;
5645 }
5646
5647 if (config->ena_gpiod) {
5648 ret = regulator_ena_gpio_request(rdev, config);
5649 if (ret != 0) {
5650 rdev_err(rdev, "Failed to request enable GPIO: %pe\n",
5651 ERR_PTR(ret));
5652 goto wash;
5653 }
5654 /* The regulator core took over the GPIO descriptor */
5655 dangling_cfg_gpiod = false;
5656 dangling_of_gpiod = false;
5657 }
5658
5659 ret = set_machine_constraints(rdev);
5660 if (ret == -EPROBE_DEFER && !resolved_early) {
5661 /* Regulator might be in bypass mode and so needs its supply
5662 * to set the constraints
5663 */
5664 /* FIXME: this currently triggers a chicken-and-egg problem
5665 * when creating -SUPPLY symlink in sysfs to a regulator
5666 * that is just being created
5667 */
5668 rdev_dbg(rdev, "will resolve supply early: %s\n",
5669 rdev->supply_name);
5670 ret = regulator_resolve_supply(rdev);
5671 if (!ret)
5672 ret = set_machine_constraints(rdev);
5673 else
5674 rdev_dbg(rdev, "unable to resolve supply early: %pe\n",
5675 ERR_PTR(ret));
5676 }
5677 if (ret < 0)
5678 goto wash;
5679
5680 ret = regulator_init_coupling(rdev);
5681 if (ret < 0)
5682 goto wash;
5683
5684 /* add consumers devices */
5685 if (init_data) {
5686 for (i = 0; i < init_data->num_consumer_supplies; i++) {
5687 ret = set_consumer_device_supply(rdev,
5688 init_data->consumer_supplies[i].dev_name,
5689 init_data->consumer_supplies[i].supply);
5690 if (ret < 0) {
5691 dev_err(dev, "Failed to set supply %s\n",
5692 init_data->consumer_supplies[i].supply);
5693 goto unset_supplies;
5694 }
5695 }
5696 }
5697
5698 if (!rdev->desc->ops->get_voltage &&
5699 !rdev->desc->ops->list_voltage &&
5700 !rdev->desc->fixed_uV)
5701 rdev->is_switch = true;
5702
5703 ret = device_add(&rdev->dev);
5704 if (ret != 0)
5705 goto unset_supplies;
5706
5707 rdev_init_debugfs(rdev);
5708
5709 /* try to resolve regulators coupling since a new one was registered */
5710 mutex_lock(®ulator_list_mutex);
5711 regulator_resolve_coupling(rdev);
5712 mutex_unlock(®ulator_list_mutex);
5713
5714 /* try to resolve regulators supply since a new one was registered */
5715 class_for_each_device(®ulator_class, NULL, NULL,
5716 regulator_register_resolve_supply);
5717 kfree(config);
5718 return rdev;
5719
5720unset_supplies:
5721 mutex_lock(®ulator_list_mutex);
5722 unset_regulator_supplies(rdev);
5723 regulator_remove_coupling(rdev);
5724 mutex_unlock(®ulator_list_mutex);
5725wash:
5726 regulator_put(rdev->supply);
5727 kfree(rdev->coupling_desc.coupled_rdevs);
5728 mutex_lock(®ulator_list_mutex);
5729 regulator_ena_gpio_free(rdev);
5730 mutex_unlock(®ulator_list_mutex);
5731 put_device(&rdev->dev);
5732 rdev = NULL;
5733clean:
5734 if (dangling_of_gpiod)
5735 gpiod_put(config->ena_gpiod);
5736 if (rdev && rdev->dev.of_node)
5737 of_node_put(rdev->dev.of_node);
5738 kfree(rdev);
5739 kfree(config);
5740rinse:
5741 if (dangling_cfg_gpiod)
5742 gpiod_put(cfg->ena_gpiod);
5743 return ERR_PTR(ret);
5744}
5745EXPORT_SYMBOL_GPL(regulator_register);
5746
5747/**
5748 * regulator_unregister - unregister regulator
5749 * @rdev: regulator to unregister
5750 *
5751 * Called by regulator drivers to unregister a regulator.
5752 */
5753void regulator_unregister(struct regulator_dev *rdev)
5754{
5755 if (rdev == NULL)
5756 return;
5757
5758 if (rdev->supply) {
5759 while (rdev->use_count--)
5760 regulator_disable(rdev->supply);
5761 regulator_put(rdev->supply);
5762 }
5763
5764 flush_work(&rdev->disable_work.work);
5765
5766 mutex_lock(®ulator_list_mutex);
5767
5768 WARN_ON(rdev->open_count);
5769 regulator_remove_coupling(rdev);
5770 unset_regulator_supplies(rdev);
5771 list_del(&rdev->list);
5772 regulator_ena_gpio_free(rdev);
5773 device_unregister(&rdev->dev);
5774
5775 mutex_unlock(®ulator_list_mutex);
5776}
5777EXPORT_SYMBOL_GPL(regulator_unregister);
5778
5779#ifdef CONFIG_SUSPEND
5780/**
5781 * regulator_suspend - prepare regulators for system wide suspend
5782 * @dev: ``&struct device`` pointer that is passed to _regulator_suspend()
5783 *
5784 * Configure each regulator with it's suspend operating parameters for state.
5785 */
5786static int regulator_suspend(struct device *dev)
5787{
5788 struct regulator_dev *rdev = dev_to_rdev(dev);
5789 suspend_state_t state = pm_suspend_target_state;
5790 int ret;
5791 const struct regulator_state *rstate;
5792
5793 rstate = regulator_get_suspend_state_check(rdev, state);
5794 if (!rstate)
5795 return 0;
5796
5797 regulator_lock(rdev);
5798 ret = __suspend_set_state(rdev, rstate);
5799 regulator_unlock(rdev);
5800
5801 return ret;
5802}
5803
5804static int regulator_resume(struct device *dev)
5805{
5806 suspend_state_t state = pm_suspend_target_state;
5807 struct regulator_dev *rdev = dev_to_rdev(dev);
5808 struct regulator_state *rstate;
5809 int ret = 0;
5810
5811 rstate = regulator_get_suspend_state(rdev, state);
5812 if (rstate == NULL)
5813 return 0;
5814
5815 /* Avoid grabbing the lock if we don't need to */
5816 if (!rdev->desc->ops->resume)
5817 return 0;
5818
5819 regulator_lock(rdev);
5820
5821 if (rstate->enabled == ENABLE_IN_SUSPEND ||
5822 rstate->enabled == DISABLE_IN_SUSPEND)
5823 ret = rdev->desc->ops->resume(rdev);
5824
5825 regulator_unlock(rdev);
5826
5827 return ret;
5828}
5829#else /* !CONFIG_SUSPEND */
5830
5831#define regulator_suspend NULL
5832#define regulator_resume NULL
5833
5834#endif /* !CONFIG_SUSPEND */
5835
5836#ifdef CONFIG_PM
5837static const struct dev_pm_ops __maybe_unused regulator_pm_ops = {
5838 .suspend = regulator_suspend,
5839 .resume = regulator_resume,
5840};
5841#endif
5842
5843struct class regulator_class = {
5844 .name = "regulator",
5845 .dev_release = regulator_dev_release,
5846 .dev_groups = regulator_dev_groups,
5847#ifdef CONFIG_PM
5848 .pm = ®ulator_pm_ops,
5849#endif
5850};
5851/**
5852 * regulator_has_full_constraints - the system has fully specified constraints
5853 *
5854 * Calling this function will cause the regulator API to disable all
5855 * regulators which have a zero use count and don't have an always_on
5856 * constraint in a late_initcall.
5857 *
5858 * The intention is that this will become the default behaviour in a
5859 * future kernel release so users are encouraged to use this facility
5860 * now.
5861 */
5862void regulator_has_full_constraints(void)
5863{
5864 has_full_constraints = 1;
5865}
5866EXPORT_SYMBOL_GPL(regulator_has_full_constraints);
5867
5868/**
5869 * rdev_get_drvdata - get rdev regulator driver data
5870 * @rdev: regulator
5871 *
5872 * Get rdev regulator driver private data. This call can be used in the
5873 * regulator driver context.
5874 */
5875void *rdev_get_drvdata(struct regulator_dev *rdev)
5876{
5877 return rdev->reg_data;
5878}
5879EXPORT_SYMBOL_GPL(rdev_get_drvdata);
5880
5881/**
5882 * regulator_get_drvdata - get regulator driver data
5883 * @regulator: regulator
5884 *
5885 * Get regulator driver private data. This call can be used in the consumer
5886 * driver context when non API regulator specific functions need to be called.
5887 */
5888void *regulator_get_drvdata(struct regulator *regulator)
5889{
5890 return regulator->rdev->reg_data;
5891}
5892EXPORT_SYMBOL_GPL(regulator_get_drvdata);
5893
5894/**
5895 * regulator_set_drvdata - set regulator driver data
5896 * @regulator: regulator
5897 * @data: data
5898 */
5899void regulator_set_drvdata(struct regulator *regulator, void *data)
5900{
5901 regulator->rdev->reg_data = data;
5902}
5903EXPORT_SYMBOL_GPL(regulator_set_drvdata);
5904
5905/**
5906 * rdev_get_id - get regulator ID
5907 * @rdev: regulator
5908 */
5909int rdev_get_id(struct regulator_dev *rdev)
5910{
5911 return rdev->desc->id;
5912}
5913EXPORT_SYMBOL_GPL(rdev_get_id);
5914
5915struct device *rdev_get_dev(struct regulator_dev *rdev)
5916{
5917 return &rdev->dev;
5918}
5919EXPORT_SYMBOL_GPL(rdev_get_dev);
5920
5921struct regmap *rdev_get_regmap(struct regulator_dev *rdev)
5922{
5923 return rdev->regmap;
5924}
5925EXPORT_SYMBOL_GPL(rdev_get_regmap);
5926
5927void *regulator_get_init_drvdata(struct regulator_init_data *reg_init_data)
5928{
5929 return reg_init_data->driver_data;
5930}
5931EXPORT_SYMBOL_GPL(regulator_get_init_drvdata);
5932
5933#ifdef CONFIG_DEBUG_FS
5934static int supply_map_show(struct seq_file *sf, void *data)
5935{
5936 struct regulator_map *map;
5937
5938 list_for_each_entry(map, ®ulator_map_list, list) {
5939 seq_printf(sf, "%s -> %s.%s\n",
5940 rdev_get_name(map->regulator), map->dev_name,
5941 map->supply);
5942 }
5943
5944 return 0;
5945}
5946DEFINE_SHOW_ATTRIBUTE(supply_map);
5947
5948struct summary_data {
5949 struct seq_file *s;
5950 struct regulator_dev *parent;
5951 int level;
5952};
5953
5954static void regulator_summary_show_subtree(struct seq_file *s,
5955 struct regulator_dev *rdev,
5956 int level);
5957
5958static int regulator_summary_show_children(struct device *dev, void *data)
5959{
5960 struct regulator_dev *rdev = dev_to_rdev(dev);
5961 struct summary_data *summary_data = data;
5962
5963 if (rdev->supply && rdev->supply->rdev == summary_data->parent)
5964 regulator_summary_show_subtree(summary_data->s, rdev,
5965 summary_data->level + 1);
5966
5967 return 0;
5968}
5969
5970static void regulator_summary_show_subtree(struct seq_file *s,
5971 struct regulator_dev *rdev,
5972 int level)
5973{
5974 struct regulation_constraints *c;
5975 struct regulator *consumer;
5976 struct summary_data summary_data;
5977 unsigned int opmode;
5978
5979 if (!rdev)
5980 return;
5981
5982 opmode = _regulator_get_mode_unlocked(rdev);
5983 seq_printf(s, "%*s%-*s %3d %4d %6d %7s ",
5984 level * 3 + 1, "",
5985 30 - level * 3, rdev_get_name(rdev),
5986 rdev->use_count, rdev->open_count, rdev->bypass_count,
5987 regulator_opmode_to_str(opmode));
5988
5989 seq_printf(s, "%5dmV ", regulator_get_voltage_rdev(rdev) / 1000);
5990 seq_printf(s, "%5dmA ",
5991 _regulator_get_current_limit_unlocked(rdev) / 1000);
5992
5993 c = rdev->constraints;
5994 if (c) {
5995 switch (rdev->desc->type) {
5996 case REGULATOR_VOLTAGE:
5997 seq_printf(s, "%5dmV %5dmV ",
5998 c->min_uV / 1000, c->max_uV / 1000);
5999 break;
6000 case REGULATOR_CURRENT:
6001 seq_printf(s, "%5dmA %5dmA ",
6002 c->min_uA / 1000, c->max_uA / 1000);
6003 break;
6004 }
6005 }
6006
6007 seq_puts(s, "\n");
6008
6009 list_for_each_entry(consumer, &rdev->consumer_list, list) {
6010 if (consumer->dev && consumer->dev->class == ®ulator_class)
6011 continue;
6012
6013 seq_printf(s, "%*s%-*s ",
6014 (level + 1) * 3 + 1, "",
6015 30 - (level + 1) * 3,
6016 consumer->supply_name ? consumer->supply_name :
6017 consumer->dev ? dev_name(consumer->dev) : "deviceless");
6018
6019 switch (rdev->desc->type) {
6020 case REGULATOR_VOLTAGE:
6021 seq_printf(s, "%3d %33dmA%c%5dmV %5dmV",
6022 consumer->enable_count,
6023 consumer->uA_load / 1000,
6024 consumer->uA_load && !consumer->enable_count ?
6025 '*' : ' ',
6026 consumer->voltage[PM_SUSPEND_ON].min_uV / 1000,
6027 consumer->voltage[PM_SUSPEND_ON].max_uV / 1000);
6028 break;
6029 case REGULATOR_CURRENT:
6030 break;
6031 }
6032
6033 seq_puts(s, "\n");
6034 }
6035
6036 summary_data.s = s;
6037 summary_data.level = level;
6038 summary_data.parent = rdev;
6039
6040 class_for_each_device(®ulator_class, NULL, &summary_data,
6041 regulator_summary_show_children);
6042}
6043
6044struct summary_lock_data {
6045 struct ww_acquire_ctx *ww_ctx;
6046 struct regulator_dev **new_contended_rdev;
6047 struct regulator_dev **old_contended_rdev;
6048};
6049
6050static int regulator_summary_lock_one(struct device *dev, void *data)
6051{
6052 struct regulator_dev *rdev = dev_to_rdev(dev);
6053 struct summary_lock_data *lock_data = data;
6054 int ret = 0;
6055
6056 if (rdev != *lock_data->old_contended_rdev) {
6057 ret = regulator_lock_nested(rdev, lock_data->ww_ctx);
6058
6059 if (ret == -EDEADLK)
6060 *lock_data->new_contended_rdev = rdev;
6061 else
6062 WARN_ON_ONCE(ret);
6063 } else {
6064 *lock_data->old_contended_rdev = NULL;
6065 }
6066
6067 return ret;
6068}
6069
6070static int regulator_summary_unlock_one(struct device *dev, void *data)
6071{
6072 struct regulator_dev *rdev = dev_to_rdev(dev);
6073 struct summary_lock_data *lock_data = data;
6074
6075 if (lock_data) {
6076 if (rdev == *lock_data->new_contended_rdev)
6077 return -EDEADLK;
6078 }
6079
6080 regulator_unlock(rdev);
6081
6082 return 0;
6083}
6084
6085static int regulator_summary_lock_all(struct ww_acquire_ctx *ww_ctx,
6086 struct regulator_dev **new_contended_rdev,
6087 struct regulator_dev **old_contended_rdev)
6088{
6089 struct summary_lock_data lock_data;
6090 int ret;
6091
6092 lock_data.ww_ctx = ww_ctx;
6093 lock_data.new_contended_rdev = new_contended_rdev;
6094 lock_data.old_contended_rdev = old_contended_rdev;
6095
6096 ret = class_for_each_device(®ulator_class, NULL, &lock_data,
6097 regulator_summary_lock_one);
6098 if (ret)
6099 class_for_each_device(®ulator_class, NULL, &lock_data,
6100 regulator_summary_unlock_one);
6101
6102 return ret;
6103}
6104
6105static void regulator_summary_lock(struct ww_acquire_ctx *ww_ctx)
6106{
6107 struct regulator_dev *new_contended_rdev = NULL;
6108 struct regulator_dev *old_contended_rdev = NULL;
6109 int err;
6110
6111 mutex_lock(®ulator_list_mutex);
6112
6113 ww_acquire_init(ww_ctx, ®ulator_ww_class);
6114
6115 do {
6116 if (new_contended_rdev) {
6117 ww_mutex_lock_slow(&new_contended_rdev->mutex, ww_ctx);
6118 old_contended_rdev = new_contended_rdev;
6119 old_contended_rdev->ref_cnt++;
6120 old_contended_rdev->mutex_owner = current;
6121 }
6122
6123 err = regulator_summary_lock_all(ww_ctx,
6124 &new_contended_rdev,
6125 &old_contended_rdev);
6126
6127 if (old_contended_rdev)
6128 regulator_unlock(old_contended_rdev);
6129
6130 } while (err == -EDEADLK);
6131
6132 ww_acquire_done(ww_ctx);
6133}
6134
6135static void regulator_summary_unlock(struct ww_acquire_ctx *ww_ctx)
6136{
6137 class_for_each_device(®ulator_class, NULL, NULL,
6138 regulator_summary_unlock_one);
6139 ww_acquire_fini(ww_ctx);
6140
6141 mutex_unlock(®ulator_list_mutex);
6142}
6143
6144static int regulator_summary_show_roots(struct device *dev, void *data)
6145{
6146 struct regulator_dev *rdev = dev_to_rdev(dev);
6147 struct seq_file *s = data;
6148
6149 if (!rdev->supply)
6150 regulator_summary_show_subtree(s, rdev, 0);
6151
6152 return 0;
6153}
6154
6155static int regulator_summary_show(struct seq_file *s, void *data)
6156{
6157 struct ww_acquire_ctx ww_ctx;
6158
6159 seq_puts(s, " regulator use open bypass opmode voltage current min max\n");
6160 seq_puts(s, "---------------------------------------------------------------------------------------\n");
6161
6162 regulator_summary_lock(&ww_ctx);
6163
6164 class_for_each_device(®ulator_class, NULL, s,
6165 regulator_summary_show_roots);
6166
6167 regulator_summary_unlock(&ww_ctx);
6168
6169 return 0;
6170}
6171DEFINE_SHOW_ATTRIBUTE(regulator_summary);
6172#endif /* CONFIG_DEBUG_FS */
6173
6174static int __init regulator_init(void)
6175{
6176 int ret;
6177
6178 ret = class_register(®ulator_class);
6179
6180 debugfs_root = debugfs_create_dir("regulator", NULL);
6181 if (IS_ERR(debugfs_root))
6182 pr_warn("regulator: Failed to create debugfs directory\n");
6183
6184#ifdef CONFIG_DEBUG_FS
6185 debugfs_create_file("supply_map", 0444, debugfs_root, NULL,
6186 &supply_map_fops);
6187
6188 debugfs_create_file("regulator_summary", 0444, debugfs_root,
6189 NULL, ®ulator_summary_fops);
6190#endif
6191 regulator_dummy_init();
6192
6193 regulator_coupler_register(&generic_regulator_coupler);
6194
6195 return ret;
6196}
6197
6198/* init early to allow our consumers to complete system booting */
6199core_initcall(regulator_init);
6200
6201static int regulator_late_cleanup(struct device *dev, void *data)
6202{
6203 struct regulator_dev *rdev = dev_to_rdev(dev);
6204 struct regulation_constraints *c = rdev->constraints;
6205 int ret;
6206
6207 if (c && c->always_on)
6208 return 0;
6209
6210 if (!regulator_ops_is_valid(rdev, REGULATOR_CHANGE_STATUS))
6211 return 0;
6212
6213 regulator_lock(rdev);
6214
6215 if (rdev->use_count)
6216 goto unlock;
6217
6218 /* If reading the status failed, assume that it's off. */
6219 if (_regulator_is_enabled(rdev) <= 0)
6220 goto unlock;
6221
6222 if (have_full_constraints()) {
6223 /* We log since this may kill the system if it goes
6224 * wrong.
6225 */
6226 rdev_info(rdev, "disabling\n");
6227 ret = _regulator_do_disable(rdev);
6228 if (ret != 0)
6229 rdev_err(rdev, "couldn't disable: %pe\n", ERR_PTR(ret));
6230 } else {
6231 /* The intention is that in future we will
6232 * assume that full constraints are provided
6233 * so warn even if we aren't going to do
6234 * anything here.
6235 */
6236 rdev_warn(rdev, "incomplete constraints, leaving on\n");
6237 }
6238
6239unlock:
6240 regulator_unlock(rdev);
6241
6242 return 0;
6243}
6244
6245static void regulator_init_complete_work_function(struct work_struct *work)
6246{
6247 /*
6248 * Regulators may had failed to resolve their input supplies
6249 * when were registered, either because the input supply was
6250 * not registered yet or because its parent device was not
6251 * bound yet. So attempt to resolve the input supplies for
6252 * pending regulators before trying to disable unused ones.
6253 */
6254 class_for_each_device(®ulator_class, NULL, NULL,
6255 regulator_register_resolve_supply);
6256
6257 /* If we have a full configuration then disable any regulators
6258 * we have permission to change the status for and which are
6259 * not in use or always_on. This is effectively the default
6260 * for DT and ACPI as they have full constraints.
6261 */
6262 class_for_each_device(®ulator_class, NULL, NULL,
6263 regulator_late_cleanup);
6264}
6265
6266static DECLARE_DELAYED_WORK(regulator_init_complete_work,
6267 regulator_init_complete_work_function);
6268
6269static int __init regulator_init_complete(void)
6270{
6271 /*
6272 * Since DT doesn't provide an idiomatic mechanism for
6273 * enabling full constraints and since it's much more natural
6274 * with DT to provide them just assume that a DT enabled
6275 * system has full constraints.
6276 */
6277 if (of_have_populated_dt())
6278 has_full_constraints = true;
6279
6280 /*
6281 * We punt completion for an arbitrary amount of time since
6282 * systems like distros will load many drivers from userspace
6283 * so consumers might not always be ready yet, this is
6284 * particularly an issue with laptops where this might bounce
6285 * the display off then on. Ideally we'd get a notification
6286 * from userspace when this happens but we don't so just wait
6287 * a bit and hope we waited long enough. It'd be better if
6288 * we'd only do this on systems that need it, and a kernel
6289 * command line option might be useful.
6290 */
6291 schedule_delayed_work(®ulator_init_complete_work,
6292 msecs_to_jiffies(30000));
6293
6294 return 0;
6295}
6296late_initcall_sync(regulator_init_complete);