Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
2
3/*
4 * Common eBPF ELF object loading operations.
5 *
6 * Copyright (C) 2013-2015 Alexei Starovoitov <ast@kernel.org>
7 * Copyright (C) 2015 Wang Nan <wangnan0@huawei.com>
8 * Copyright (C) 2015 Huawei Inc.
9 * Copyright (C) 2017 Nicira, Inc.
10 * Copyright (C) 2019 Isovalent, Inc.
11 */
12
13#ifndef _GNU_SOURCE
14#define _GNU_SOURCE
15#endif
16#include <stdlib.h>
17#include <stdio.h>
18#include <stdarg.h>
19#include <libgen.h>
20#include <inttypes.h>
21#include <limits.h>
22#include <string.h>
23#include <unistd.h>
24#include <endian.h>
25#include <fcntl.h>
26#include <errno.h>
27#include <ctype.h>
28#include <asm/unistd.h>
29#include <linux/err.h>
30#include <linux/kernel.h>
31#include <linux/bpf.h>
32#include <linux/btf.h>
33#include <linux/filter.h>
34#include <linux/limits.h>
35#include <linux/perf_event.h>
36#include <linux/ring_buffer.h>
37#include <sys/epoll.h>
38#include <sys/ioctl.h>
39#include <sys/mman.h>
40#include <sys/stat.h>
41#include <sys/types.h>
42#include <sys/vfs.h>
43#include <sys/utsname.h>
44#include <sys/resource.h>
45#include <libelf.h>
46#include <gelf.h>
47#include <zlib.h>
48
49#include "libbpf.h"
50#include "bpf.h"
51#include "btf.h"
52#include "str_error.h"
53#include "libbpf_internal.h"
54#include "hashmap.h"
55#include "bpf_gen_internal.h"
56#include "zip.h"
57
58#ifndef BPF_FS_MAGIC
59#define BPF_FS_MAGIC 0xcafe4a11
60#endif
61
62#define BPF_INSN_SZ (sizeof(struct bpf_insn))
63
64/* vsprintf() in __base_pr() uses nonliteral format string. It may break
65 * compilation if user enables corresponding warning. Disable it explicitly.
66 */
67#pragma GCC diagnostic ignored "-Wformat-nonliteral"
68
69#define __printf(a, b) __attribute__((format(printf, a, b)))
70
71static struct bpf_map *bpf_object__add_map(struct bpf_object *obj);
72static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog);
73
74static const char * const attach_type_name[] = {
75 [BPF_CGROUP_INET_INGRESS] = "cgroup_inet_ingress",
76 [BPF_CGROUP_INET_EGRESS] = "cgroup_inet_egress",
77 [BPF_CGROUP_INET_SOCK_CREATE] = "cgroup_inet_sock_create",
78 [BPF_CGROUP_INET_SOCK_RELEASE] = "cgroup_inet_sock_release",
79 [BPF_CGROUP_SOCK_OPS] = "cgroup_sock_ops",
80 [BPF_CGROUP_DEVICE] = "cgroup_device",
81 [BPF_CGROUP_INET4_BIND] = "cgroup_inet4_bind",
82 [BPF_CGROUP_INET6_BIND] = "cgroup_inet6_bind",
83 [BPF_CGROUP_INET4_CONNECT] = "cgroup_inet4_connect",
84 [BPF_CGROUP_INET6_CONNECT] = "cgroup_inet6_connect",
85 [BPF_CGROUP_INET4_POST_BIND] = "cgroup_inet4_post_bind",
86 [BPF_CGROUP_INET6_POST_BIND] = "cgroup_inet6_post_bind",
87 [BPF_CGROUP_INET4_GETPEERNAME] = "cgroup_inet4_getpeername",
88 [BPF_CGROUP_INET6_GETPEERNAME] = "cgroup_inet6_getpeername",
89 [BPF_CGROUP_INET4_GETSOCKNAME] = "cgroup_inet4_getsockname",
90 [BPF_CGROUP_INET6_GETSOCKNAME] = "cgroup_inet6_getsockname",
91 [BPF_CGROUP_UDP4_SENDMSG] = "cgroup_udp4_sendmsg",
92 [BPF_CGROUP_UDP6_SENDMSG] = "cgroup_udp6_sendmsg",
93 [BPF_CGROUP_SYSCTL] = "cgroup_sysctl",
94 [BPF_CGROUP_UDP4_RECVMSG] = "cgroup_udp4_recvmsg",
95 [BPF_CGROUP_UDP6_RECVMSG] = "cgroup_udp6_recvmsg",
96 [BPF_CGROUP_GETSOCKOPT] = "cgroup_getsockopt",
97 [BPF_CGROUP_SETSOCKOPT] = "cgroup_setsockopt",
98 [BPF_SK_SKB_STREAM_PARSER] = "sk_skb_stream_parser",
99 [BPF_SK_SKB_STREAM_VERDICT] = "sk_skb_stream_verdict",
100 [BPF_SK_SKB_VERDICT] = "sk_skb_verdict",
101 [BPF_SK_MSG_VERDICT] = "sk_msg_verdict",
102 [BPF_LIRC_MODE2] = "lirc_mode2",
103 [BPF_FLOW_DISSECTOR] = "flow_dissector",
104 [BPF_TRACE_RAW_TP] = "trace_raw_tp",
105 [BPF_TRACE_FENTRY] = "trace_fentry",
106 [BPF_TRACE_FEXIT] = "trace_fexit",
107 [BPF_MODIFY_RETURN] = "modify_return",
108 [BPF_LSM_MAC] = "lsm_mac",
109 [BPF_LSM_CGROUP] = "lsm_cgroup",
110 [BPF_SK_LOOKUP] = "sk_lookup",
111 [BPF_TRACE_ITER] = "trace_iter",
112 [BPF_XDP_DEVMAP] = "xdp_devmap",
113 [BPF_XDP_CPUMAP] = "xdp_cpumap",
114 [BPF_XDP] = "xdp",
115 [BPF_SK_REUSEPORT_SELECT] = "sk_reuseport_select",
116 [BPF_SK_REUSEPORT_SELECT_OR_MIGRATE] = "sk_reuseport_select_or_migrate",
117 [BPF_PERF_EVENT] = "perf_event",
118 [BPF_TRACE_KPROBE_MULTI] = "trace_kprobe_multi",
119 [BPF_STRUCT_OPS] = "struct_ops",
120};
121
122static const char * const link_type_name[] = {
123 [BPF_LINK_TYPE_UNSPEC] = "unspec",
124 [BPF_LINK_TYPE_RAW_TRACEPOINT] = "raw_tracepoint",
125 [BPF_LINK_TYPE_TRACING] = "tracing",
126 [BPF_LINK_TYPE_CGROUP] = "cgroup",
127 [BPF_LINK_TYPE_ITER] = "iter",
128 [BPF_LINK_TYPE_NETNS] = "netns",
129 [BPF_LINK_TYPE_XDP] = "xdp",
130 [BPF_LINK_TYPE_PERF_EVENT] = "perf_event",
131 [BPF_LINK_TYPE_KPROBE_MULTI] = "kprobe_multi",
132 [BPF_LINK_TYPE_STRUCT_OPS] = "struct_ops",
133 [BPF_LINK_TYPE_NETFILTER] = "netfilter",
134};
135
136static const char * const map_type_name[] = {
137 [BPF_MAP_TYPE_UNSPEC] = "unspec",
138 [BPF_MAP_TYPE_HASH] = "hash",
139 [BPF_MAP_TYPE_ARRAY] = "array",
140 [BPF_MAP_TYPE_PROG_ARRAY] = "prog_array",
141 [BPF_MAP_TYPE_PERF_EVENT_ARRAY] = "perf_event_array",
142 [BPF_MAP_TYPE_PERCPU_HASH] = "percpu_hash",
143 [BPF_MAP_TYPE_PERCPU_ARRAY] = "percpu_array",
144 [BPF_MAP_TYPE_STACK_TRACE] = "stack_trace",
145 [BPF_MAP_TYPE_CGROUP_ARRAY] = "cgroup_array",
146 [BPF_MAP_TYPE_LRU_HASH] = "lru_hash",
147 [BPF_MAP_TYPE_LRU_PERCPU_HASH] = "lru_percpu_hash",
148 [BPF_MAP_TYPE_LPM_TRIE] = "lpm_trie",
149 [BPF_MAP_TYPE_ARRAY_OF_MAPS] = "array_of_maps",
150 [BPF_MAP_TYPE_HASH_OF_MAPS] = "hash_of_maps",
151 [BPF_MAP_TYPE_DEVMAP] = "devmap",
152 [BPF_MAP_TYPE_DEVMAP_HASH] = "devmap_hash",
153 [BPF_MAP_TYPE_SOCKMAP] = "sockmap",
154 [BPF_MAP_TYPE_CPUMAP] = "cpumap",
155 [BPF_MAP_TYPE_XSKMAP] = "xskmap",
156 [BPF_MAP_TYPE_SOCKHASH] = "sockhash",
157 [BPF_MAP_TYPE_CGROUP_STORAGE] = "cgroup_storage",
158 [BPF_MAP_TYPE_REUSEPORT_SOCKARRAY] = "reuseport_sockarray",
159 [BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE] = "percpu_cgroup_storage",
160 [BPF_MAP_TYPE_QUEUE] = "queue",
161 [BPF_MAP_TYPE_STACK] = "stack",
162 [BPF_MAP_TYPE_SK_STORAGE] = "sk_storage",
163 [BPF_MAP_TYPE_STRUCT_OPS] = "struct_ops",
164 [BPF_MAP_TYPE_RINGBUF] = "ringbuf",
165 [BPF_MAP_TYPE_INODE_STORAGE] = "inode_storage",
166 [BPF_MAP_TYPE_TASK_STORAGE] = "task_storage",
167 [BPF_MAP_TYPE_BLOOM_FILTER] = "bloom_filter",
168 [BPF_MAP_TYPE_USER_RINGBUF] = "user_ringbuf",
169 [BPF_MAP_TYPE_CGRP_STORAGE] = "cgrp_storage",
170};
171
172static const char * const prog_type_name[] = {
173 [BPF_PROG_TYPE_UNSPEC] = "unspec",
174 [BPF_PROG_TYPE_SOCKET_FILTER] = "socket_filter",
175 [BPF_PROG_TYPE_KPROBE] = "kprobe",
176 [BPF_PROG_TYPE_SCHED_CLS] = "sched_cls",
177 [BPF_PROG_TYPE_SCHED_ACT] = "sched_act",
178 [BPF_PROG_TYPE_TRACEPOINT] = "tracepoint",
179 [BPF_PROG_TYPE_XDP] = "xdp",
180 [BPF_PROG_TYPE_PERF_EVENT] = "perf_event",
181 [BPF_PROG_TYPE_CGROUP_SKB] = "cgroup_skb",
182 [BPF_PROG_TYPE_CGROUP_SOCK] = "cgroup_sock",
183 [BPF_PROG_TYPE_LWT_IN] = "lwt_in",
184 [BPF_PROG_TYPE_LWT_OUT] = "lwt_out",
185 [BPF_PROG_TYPE_LWT_XMIT] = "lwt_xmit",
186 [BPF_PROG_TYPE_SOCK_OPS] = "sock_ops",
187 [BPF_PROG_TYPE_SK_SKB] = "sk_skb",
188 [BPF_PROG_TYPE_CGROUP_DEVICE] = "cgroup_device",
189 [BPF_PROG_TYPE_SK_MSG] = "sk_msg",
190 [BPF_PROG_TYPE_RAW_TRACEPOINT] = "raw_tracepoint",
191 [BPF_PROG_TYPE_CGROUP_SOCK_ADDR] = "cgroup_sock_addr",
192 [BPF_PROG_TYPE_LWT_SEG6LOCAL] = "lwt_seg6local",
193 [BPF_PROG_TYPE_LIRC_MODE2] = "lirc_mode2",
194 [BPF_PROG_TYPE_SK_REUSEPORT] = "sk_reuseport",
195 [BPF_PROG_TYPE_FLOW_DISSECTOR] = "flow_dissector",
196 [BPF_PROG_TYPE_CGROUP_SYSCTL] = "cgroup_sysctl",
197 [BPF_PROG_TYPE_RAW_TRACEPOINT_WRITABLE] = "raw_tracepoint_writable",
198 [BPF_PROG_TYPE_CGROUP_SOCKOPT] = "cgroup_sockopt",
199 [BPF_PROG_TYPE_TRACING] = "tracing",
200 [BPF_PROG_TYPE_STRUCT_OPS] = "struct_ops",
201 [BPF_PROG_TYPE_EXT] = "ext",
202 [BPF_PROG_TYPE_LSM] = "lsm",
203 [BPF_PROG_TYPE_SK_LOOKUP] = "sk_lookup",
204 [BPF_PROG_TYPE_SYSCALL] = "syscall",
205 [BPF_PROG_TYPE_NETFILTER] = "netfilter",
206};
207
208static int __base_pr(enum libbpf_print_level level, const char *format,
209 va_list args)
210{
211 if (level == LIBBPF_DEBUG)
212 return 0;
213
214 return vfprintf(stderr, format, args);
215}
216
217static libbpf_print_fn_t __libbpf_pr = __base_pr;
218
219libbpf_print_fn_t libbpf_set_print(libbpf_print_fn_t fn)
220{
221 libbpf_print_fn_t old_print_fn;
222
223 old_print_fn = __atomic_exchange_n(&__libbpf_pr, fn, __ATOMIC_RELAXED);
224
225 return old_print_fn;
226}
227
228__printf(2, 3)
229void libbpf_print(enum libbpf_print_level level, const char *format, ...)
230{
231 va_list args;
232 int old_errno;
233 libbpf_print_fn_t print_fn;
234
235 print_fn = __atomic_load_n(&__libbpf_pr, __ATOMIC_RELAXED);
236 if (!print_fn)
237 return;
238
239 old_errno = errno;
240
241 va_start(args, format);
242 __libbpf_pr(level, format, args);
243 va_end(args);
244
245 errno = old_errno;
246}
247
248static void pr_perm_msg(int err)
249{
250 struct rlimit limit;
251 char buf[100];
252
253 if (err != -EPERM || geteuid() != 0)
254 return;
255
256 err = getrlimit(RLIMIT_MEMLOCK, &limit);
257 if (err)
258 return;
259
260 if (limit.rlim_cur == RLIM_INFINITY)
261 return;
262
263 if (limit.rlim_cur < 1024)
264 snprintf(buf, sizeof(buf), "%zu bytes", (size_t)limit.rlim_cur);
265 else if (limit.rlim_cur < 1024*1024)
266 snprintf(buf, sizeof(buf), "%.1f KiB", (double)limit.rlim_cur / 1024);
267 else
268 snprintf(buf, sizeof(buf), "%.1f MiB", (double)limit.rlim_cur / (1024*1024));
269
270 pr_warn("permission error while running as root; try raising 'ulimit -l'? current value: %s\n",
271 buf);
272}
273
274#define STRERR_BUFSIZE 128
275
276/* Copied from tools/perf/util/util.h */
277#ifndef zfree
278# define zfree(ptr) ({ free(*ptr); *ptr = NULL; })
279#endif
280
281#ifndef zclose
282# define zclose(fd) ({ \
283 int ___err = 0; \
284 if ((fd) >= 0) \
285 ___err = close((fd)); \
286 fd = -1; \
287 ___err; })
288#endif
289
290static inline __u64 ptr_to_u64(const void *ptr)
291{
292 return (__u64) (unsigned long) ptr;
293}
294
295int libbpf_set_strict_mode(enum libbpf_strict_mode mode)
296{
297 /* as of v1.0 libbpf_set_strict_mode() is a no-op */
298 return 0;
299}
300
301__u32 libbpf_major_version(void)
302{
303 return LIBBPF_MAJOR_VERSION;
304}
305
306__u32 libbpf_minor_version(void)
307{
308 return LIBBPF_MINOR_VERSION;
309}
310
311const char *libbpf_version_string(void)
312{
313#define __S(X) #X
314#define _S(X) __S(X)
315 return "v" _S(LIBBPF_MAJOR_VERSION) "." _S(LIBBPF_MINOR_VERSION);
316#undef _S
317#undef __S
318}
319
320enum reloc_type {
321 RELO_LD64,
322 RELO_CALL,
323 RELO_DATA,
324 RELO_EXTERN_LD64,
325 RELO_EXTERN_CALL,
326 RELO_SUBPROG_ADDR,
327 RELO_CORE,
328};
329
330struct reloc_desc {
331 enum reloc_type type;
332 int insn_idx;
333 union {
334 const struct bpf_core_relo *core_relo; /* used when type == RELO_CORE */
335 struct {
336 int map_idx;
337 int sym_off;
338 int ext_idx;
339 };
340 };
341};
342
343/* stored as sec_def->cookie for all libbpf-supported SEC()s */
344enum sec_def_flags {
345 SEC_NONE = 0,
346 /* expected_attach_type is optional, if kernel doesn't support that */
347 SEC_EXP_ATTACH_OPT = 1,
348 /* legacy, only used by libbpf_get_type_names() and
349 * libbpf_attach_type_by_name(), not used by libbpf itself at all.
350 * This used to be associated with cgroup (and few other) BPF programs
351 * that were attachable through BPF_PROG_ATTACH command. Pretty
352 * meaningless nowadays, though.
353 */
354 SEC_ATTACHABLE = 2,
355 SEC_ATTACHABLE_OPT = SEC_ATTACHABLE | SEC_EXP_ATTACH_OPT,
356 /* attachment target is specified through BTF ID in either kernel or
357 * other BPF program's BTF object
358 */
359 SEC_ATTACH_BTF = 4,
360 /* BPF program type allows sleeping/blocking in kernel */
361 SEC_SLEEPABLE = 8,
362 /* BPF program support non-linear XDP buffer */
363 SEC_XDP_FRAGS = 16,
364};
365
366struct bpf_sec_def {
367 char *sec;
368 enum bpf_prog_type prog_type;
369 enum bpf_attach_type expected_attach_type;
370 long cookie;
371 int handler_id;
372
373 libbpf_prog_setup_fn_t prog_setup_fn;
374 libbpf_prog_prepare_load_fn_t prog_prepare_load_fn;
375 libbpf_prog_attach_fn_t prog_attach_fn;
376};
377
378/*
379 * bpf_prog should be a better name but it has been used in
380 * linux/filter.h.
381 */
382struct bpf_program {
383 char *name;
384 char *sec_name;
385 size_t sec_idx;
386 const struct bpf_sec_def *sec_def;
387 /* this program's instruction offset (in number of instructions)
388 * within its containing ELF section
389 */
390 size_t sec_insn_off;
391 /* number of original instructions in ELF section belonging to this
392 * program, not taking into account subprogram instructions possible
393 * appended later during relocation
394 */
395 size_t sec_insn_cnt;
396 /* Offset (in number of instructions) of the start of instruction
397 * belonging to this BPF program within its containing main BPF
398 * program. For the entry-point (main) BPF program, this is always
399 * zero. For a sub-program, this gets reset before each of main BPF
400 * programs are processed and relocated and is used to determined
401 * whether sub-program was already appended to the main program, and
402 * if yes, at which instruction offset.
403 */
404 size_t sub_insn_off;
405
406 /* instructions that belong to BPF program; insns[0] is located at
407 * sec_insn_off instruction within its ELF section in ELF file, so
408 * when mapping ELF file instruction index to the local instruction,
409 * one needs to subtract sec_insn_off; and vice versa.
410 */
411 struct bpf_insn *insns;
412 /* actual number of instruction in this BPF program's image; for
413 * entry-point BPF programs this includes the size of main program
414 * itself plus all the used sub-programs, appended at the end
415 */
416 size_t insns_cnt;
417
418 struct reloc_desc *reloc_desc;
419 int nr_reloc;
420
421 /* BPF verifier log settings */
422 char *log_buf;
423 size_t log_size;
424 __u32 log_level;
425
426 struct bpf_object *obj;
427
428 int fd;
429 bool autoload;
430 bool autoattach;
431 bool mark_btf_static;
432 enum bpf_prog_type type;
433 enum bpf_attach_type expected_attach_type;
434
435 int prog_ifindex;
436 __u32 attach_btf_obj_fd;
437 __u32 attach_btf_id;
438 __u32 attach_prog_fd;
439
440 void *func_info;
441 __u32 func_info_rec_size;
442 __u32 func_info_cnt;
443
444 void *line_info;
445 __u32 line_info_rec_size;
446 __u32 line_info_cnt;
447 __u32 prog_flags;
448};
449
450struct bpf_struct_ops {
451 const char *tname;
452 const struct btf_type *type;
453 struct bpf_program **progs;
454 __u32 *kern_func_off;
455 /* e.g. struct tcp_congestion_ops in bpf_prog's btf format */
456 void *data;
457 /* e.g. struct bpf_struct_ops_tcp_congestion_ops in
458 * btf_vmlinux's format.
459 * struct bpf_struct_ops_tcp_congestion_ops {
460 * [... some other kernel fields ...]
461 * struct tcp_congestion_ops data;
462 * }
463 * kern_vdata-size == sizeof(struct bpf_struct_ops_tcp_congestion_ops)
464 * bpf_map__init_kern_struct_ops() will populate the "kern_vdata"
465 * from "data".
466 */
467 void *kern_vdata;
468 __u32 type_id;
469};
470
471#define DATA_SEC ".data"
472#define BSS_SEC ".bss"
473#define RODATA_SEC ".rodata"
474#define KCONFIG_SEC ".kconfig"
475#define KSYMS_SEC ".ksyms"
476#define STRUCT_OPS_SEC ".struct_ops"
477#define STRUCT_OPS_LINK_SEC ".struct_ops.link"
478
479enum libbpf_map_type {
480 LIBBPF_MAP_UNSPEC,
481 LIBBPF_MAP_DATA,
482 LIBBPF_MAP_BSS,
483 LIBBPF_MAP_RODATA,
484 LIBBPF_MAP_KCONFIG,
485};
486
487struct bpf_map_def {
488 unsigned int type;
489 unsigned int key_size;
490 unsigned int value_size;
491 unsigned int max_entries;
492 unsigned int map_flags;
493};
494
495struct bpf_map {
496 struct bpf_object *obj;
497 char *name;
498 /* real_name is defined for special internal maps (.rodata*,
499 * .data*, .bss, .kconfig) and preserves their original ELF section
500 * name. This is important to be able to find corresponding BTF
501 * DATASEC information.
502 */
503 char *real_name;
504 int fd;
505 int sec_idx;
506 size_t sec_offset;
507 int map_ifindex;
508 int inner_map_fd;
509 struct bpf_map_def def;
510 __u32 numa_node;
511 __u32 btf_var_idx;
512 __u32 btf_key_type_id;
513 __u32 btf_value_type_id;
514 __u32 btf_vmlinux_value_type_id;
515 enum libbpf_map_type libbpf_type;
516 void *mmaped;
517 struct bpf_struct_ops *st_ops;
518 struct bpf_map *inner_map;
519 void **init_slots;
520 int init_slots_sz;
521 char *pin_path;
522 bool pinned;
523 bool reused;
524 bool autocreate;
525 __u64 map_extra;
526};
527
528enum extern_type {
529 EXT_UNKNOWN,
530 EXT_KCFG,
531 EXT_KSYM,
532};
533
534enum kcfg_type {
535 KCFG_UNKNOWN,
536 KCFG_CHAR,
537 KCFG_BOOL,
538 KCFG_INT,
539 KCFG_TRISTATE,
540 KCFG_CHAR_ARR,
541};
542
543struct extern_desc {
544 enum extern_type type;
545 int sym_idx;
546 int btf_id;
547 int sec_btf_id;
548 const char *name;
549 bool is_set;
550 bool is_weak;
551 union {
552 struct {
553 enum kcfg_type type;
554 int sz;
555 int align;
556 int data_off;
557 bool is_signed;
558 } kcfg;
559 struct {
560 unsigned long long addr;
561
562 /* target btf_id of the corresponding kernel var. */
563 int kernel_btf_obj_fd;
564 int kernel_btf_id;
565
566 /* local btf_id of the ksym extern's type. */
567 __u32 type_id;
568 /* BTF fd index to be patched in for insn->off, this is
569 * 0 for vmlinux BTF, index in obj->fd_array for module
570 * BTF
571 */
572 __s16 btf_fd_idx;
573 } ksym;
574 };
575};
576
577struct module_btf {
578 struct btf *btf;
579 char *name;
580 __u32 id;
581 int fd;
582 int fd_array_idx;
583};
584
585enum sec_type {
586 SEC_UNUSED = 0,
587 SEC_RELO,
588 SEC_BSS,
589 SEC_DATA,
590 SEC_RODATA,
591};
592
593struct elf_sec_desc {
594 enum sec_type sec_type;
595 Elf64_Shdr *shdr;
596 Elf_Data *data;
597};
598
599struct elf_state {
600 int fd;
601 const void *obj_buf;
602 size_t obj_buf_sz;
603 Elf *elf;
604 Elf64_Ehdr *ehdr;
605 Elf_Data *symbols;
606 Elf_Data *st_ops_data;
607 Elf_Data *st_ops_link_data;
608 size_t shstrndx; /* section index for section name strings */
609 size_t strtabidx;
610 struct elf_sec_desc *secs;
611 size_t sec_cnt;
612 int btf_maps_shndx;
613 __u32 btf_maps_sec_btf_id;
614 int text_shndx;
615 int symbols_shndx;
616 int st_ops_shndx;
617 int st_ops_link_shndx;
618};
619
620struct usdt_manager;
621
622struct bpf_object {
623 char name[BPF_OBJ_NAME_LEN];
624 char license[64];
625 __u32 kern_version;
626
627 struct bpf_program *programs;
628 size_t nr_programs;
629 struct bpf_map *maps;
630 size_t nr_maps;
631 size_t maps_cap;
632
633 char *kconfig;
634 struct extern_desc *externs;
635 int nr_extern;
636 int kconfig_map_idx;
637
638 bool loaded;
639 bool has_subcalls;
640 bool has_rodata;
641
642 struct bpf_gen *gen_loader;
643
644 /* Information when doing ELF related work. Only valid if efile.elf is not NULL */
645 struct elf_state efile;
646
647 struct btf *btf;
648 struct btf_ext *btf_ext;
649
650 /* Parse and load BTF vmlinux if any of the programs in the object need
651 * it at load time.
652 */
653 struct btf *btf_vmlinux;
654 /* Path to the custom BTF to be used for BPF CO-RE relocations as an
655 * override for vmlinux BTF.
656 */
657 char *btf_custom_path;
658 /* vmlinux BTF override for CO-RE relocations */
659 struct btf *btf_vmlinux_override;
660 /* Lazily initialized kernel module BTFs */
661 struct module_btf *btf_modules;
662 bool btf_modules_loaded;
663 size_t btf_module_cnt;
664 size_t btf_module_cap;
665
666 /* optional log settings passed to BPF_BTF_LOAD and BPF_PROG_LOAD commands */
667 char *log_buf;
668 size_t log_size;
669 __u32 log_level;
670
671 int *fd_array;
672 size_t fd_array_cap;
673 size_t fd_array_cnt;
674
675 struct usdt_manager *usdt_man;
676
677 char path[];
678};
679
680static const char *elf_sym_str(const struct bpf_object *obj, size_t off);
681static const char *elf_sec_str(const struct bpf_object *obj, size_t off);
682static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx);
683static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name);
684static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn);
685static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn);
686static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn);
687static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx);
688static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx);
689
690void bpf_program__unload(struct bpf_program *prog)
691{
692 if (!prog)
693 return;
694
695 zclose(prog->fd);
696
697 zfree(&prog->func_info);
698 zfree(&prog->line_info);
699}
700
701static void bpf_program__exit(struct bpf_program *prog)
702{
703 if (!prog)
704 return;
705
706 bpf_program__unload(prog);
707 zfree(&prog->name);
708 zfree(&prog->sec_name);
709 zfree(&prog->insns);
710 zfree(&prog->reloc_desc);
711
712 prog->nr_reloc = 0;
713 prog->insns_cnt = 0;
714 prog->sec_idx = -1;
715}
716
717static bool insn_is_subprog_call(const struct bpf_insn *insn)
718{
719 return BPF_CLASS(insn->code) == BPF_JMP &&
720 BPF_OP(insn->code) == BPF_CALL &&
721 BPF_SRC(insn->code) == BPF_K &&
722 insn->src_reg == BPF_PSEUDO_CALL &&
723 insn->dst_reg == 0 &&
724 insn->off == 0;
725}
726
727static bool is_call_insn(const struct bpf_insn *insn)
728{
729 return insn->code == (BPF_JMP | BPF_CALL);
730}
731
732static bool insn_is_pseudo_func(struct bpf_insn *insn)
733{
734 return is_ldimm64_insn(insn) && insn->src_reg == BPF_PSEUDO_FUNC;
735}
736
737static int
738bpf_object__init_prog(struct bpf_object *obj, struct bpf_program *prog,
739 const char *name, size_t sec_idx, const char *sec_name,
740 size_t sec_off, void *insn_data, size_t insn_data_sz)
741{
742 if (insn_data_sz == 0 || insn_data_sz % BPF_INSN_SZ || sec_off % BPF_INSN_SZ) {
743 pr_warn("sec '%s': corrupted program '%s', offset %zu, size %zu\n",
744 sec_name, name, sec_off, insn_data_sz);
745 return -EINVAL;
746 }
747
748 memset(prog, 0, sizeof(*prog));
749 prog->obj = obj;
750
751 prog->sec_idx = sec_idx;
752 prog->sec_insn_off = sec_off / BPF_INSN_SZ;
753 prog->sec_insn_cnt = insn_data_sz / BPF_INSN_SZ;
754 /* insns_cnt can later be increased by appending used subprograms */
755 prog->insns_cnt = prog->sec_insn_cnt;
756
757 prog->type = BPF_PROG_TYPE_UNSPEC;
758 prog->fd = -1;
759
760 /* libbpf's convention for SEC("?abc...") is that it's just like
761 * SEC("abc...") but the corresponding bpf_program starts out with
762 * autoload set to false.
763 */
764 if (sec_name[0] == '?') {
765 prog->autoload = false;
766 /* from now on forget there was ? in section name */
767 sec_name++;
768 } else {
769 prog->autoload = true;
770 }
771
772 prog->autoattach = true;
773
774 /* inherit object's log_level */
775 prog->log_level = obj->log_level;
776
777 prog->sec_name = strdup(sec_name);
778 if (!prog->sec_name)
779 goto errout;
780
781 prog->name = strdup(name);
782 if (!prog->name)
783 goto errout;
784
785 prog->insns = malloc(insn_data_sz);
786 if (!prog->insns)
787 goto errout;
788 memcpy(prog->insns, insn_data, insn_data_sz);
789
790 return 0;
791errout:
792 pr_warn("sec '%s': failed to allocate memory for prog '%s'\n", sec_name, name);
793 bpf_program__exit(prog);
794 return -ENOMEM;
795}
796
797static int
798bpf_object__add_programs(struct bpf_object *obj, Elf_Data *sec_data,
799 const char *sec_name, int sec_idx)
800{
801 Elf_Data *symbols = obj->efile.symbols;
802 struct bpf_program *prog, *progs;
803 void *data = sec_data->d_buf;
804 size_t sec_sz = sec_data->d_size, sec_off, prog_sz, nr_syms;
805 int nr_progs, err, i;
806 const char *name;
807 Elf64_Sym *sym;
808
809 progs = obj->programs;
810 nr_progs = obj->nr_programs;
811 nr_syms = symbols->d_size / sizeof(Elf64_Sym);
812
813 for (i = 0; i < nr_syms; i++) {
814 sym = elf_sym_by_idx(obj, i);
815
816 if (sym->st_shndx != sec_idx)
817 continue;
818 if (ELF64_ST_TYPE(sym->st_info) != STT_FUNC)
819 continue;
820
821 prog_sz = sym->st_size;
822 sec_off = sym->st_value;
823
824 name = elf_sym_str(obj, sym->st_name);
825 if (!name) {
826 pr_warn("sec '%s': failed to get symbol name for offset %zu\n",
827 sec_name, sec_off);
828 return -LIBBPF_ERRNO__FORMAT;
829 }
830
831 if (sec_off + prog_sz > sec_sz) {
832 pr_warn("sec '%s': program at offset %zu crosses section boundary\n",
833 sec_name, sec_off);
834 return -LIBBPF_ERRNO__FORMAT;
835 }
836
837 if (sec_idx != obj->efile.text_shndx && ELF64_ST_BIND(sym->st_info) == STB_LOCAL) {
838 pr_warn("sec '%s': program '%s' is static and not supported\n", sec_name, name);
839 return -ENOTSUP;
840 }
841
842 pr_debug("sec '%s': found program '%s' at insn offset %zu (%zu bytes), code size %zu insns (%zu bytes)\n",
843 sec_name, name, sec_off / BPF_INSN_SZ, sec_off, prog_sz / BPF_INSN_SZ, prog_sz);
844
845 progs = libbpf_reallocarray(progs, nr_progs + 1, sizeof(*progs));
846 if (!progs) {
847 /*
848 * In this case the original obj->programs
849 * is still valid, so don't need special treat for
850 * bpf_close_object().
851 */
852 pr_warn("sec '%s': failed to alloc memory for new program '%s'\n",
853 sec_name, name);
854 return -ENOMEM;
855 }
856 obj->programs = progs;
857
858 prog = &progs[nr_progs];
859
860 err = bpf_object__init_prog(obj, prog, name, sec_idx, sec_name,
861 sec_off, data + sec_off, prog_sz);
862 if (err)
863 return err;
864
865 /* if function is a global/weak symbol, but has restricted
866 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF FUNC
867 * as static to enable more permissive BPF verification mode
868 * with more outside context available to BPF verifier
869 */
870 if (ELF64_ST_BIND(sym->st_info) != STB_LOCAL
871 && (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
872 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL))
873 prog->mark_btf_static = true;
874
875 nr_progs++;
876 obj->nr_programs = nr_progs;
877 }
878
879 return 0;
880}
881
882static const struct btf_member *
883find_member_by_offset(const struct btf_type *t, __u32 bit_offset)
884{
885 struct btf_member *m;
886 int i;
887
888 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
889 if (btf_member_bit_offset(t, i) == bit_offset)
890 return m;
891 }
892
893 return NULL;
894}
895
896static const struct btf_member *
897find_member_by_name(const struct btf *btf, const struct btf_type *t,
898 const char *name)
899{
900 struct btf_member *m;
901 int i;
902
903 for (i = 0, m = btf_members(t); i < btf_vlen(t); i++, m++) {
904 if (!strcmp(btf__name_by_offset(btf, m->name_off), name))
905 return m;
906 }
907
908 return NULL;
909}
910
911#define STRUCT_OPS_VALUE_PREFIX "bpf_struct_ops_"
912static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
913 const char *name, __u32 kind);
914
915static int
916find_struct_ops_kern_types(const struct btf *btf, const char *tname,
917 const struct btf_type **type, __u32 *type_id,
918 const struct btf_type **vtype, __u32 *vtype_id,
919 const struct btf_member **data_member)
920{
921 const struct btf_type *kern_type, *kern_vtype;
922 const struct btf_member *kern_data_member;
923 __s32 kern_vtype_id, kern_type_id;
924 __u32 i;
925
926 kern_type_id = btf__find_by_name_kind(btf, tname, BTF_KIND_STRUCT);
927 if (kern_type_id < 0) {
928 pr_warn("struct_ops init_kern: struct %s is not found in kernel BTF\n",
929 tname);
930 return kern_type_id;
931 }
932 kern_type = btf__type_by_id(btf, kern_type_id);
933
934 /* Find the corresponding "map_value" type that will be used
935 * in map_update(BPF_MAP_TYPE_STRUCT_OPS). For example,
936 * find "struct bpf_struct_ops_tcp_congestion_ops" from the
937 * btf_vmlinux.
938 */
939 kern_vtype_id = find_btf_by_prefix_kind(btf, STRUCT_OPS_VALUE_PREFIX,
940 tname, BTF_KIND_STRUCT);
941 if (kern_vtype_id < 0) {
942 pr_warn("struct_ops init_kern: struct %s%s is not found in kernel BTF\n",
943 STRUCT_OPS_VALUE_PREFIX, tname);
944 return kern_vtype_id;
945 }
946 kern_vtype = btf__type_by_id(btf, kern_vtype_id);
947
948 /* Find "struct tcp_congestion_ops" from
949 * struct bpf_struct_ops_tcp_congestion_ops {
950 * [ ... ]
951 * struct tcp_congestion_ops data;
952 * }
953 */
954 kern_data_member = btf_members(kern_vtype);
955 for (i = 0; i < btf_vlen(kern_vtype); i++, kern_data_member++) {
956 if (kern_data_member->type == kern_type_id)
957 break;
958 }
959 if (i == btf_vlen(kern_vtype)) {
960 pr_warn("struct_ops init_kern: struct %s data is not found in struct %s%s\n",
961 tname, STRUCT_OPS_VALUE_PREFIX, tname);
962 return -EINVAL;
963 }
964
965 *type = kern_type;
966 *type_id = kern_type_id;
967 *vtype = kern_vtype;
968 *vtype_id = kern_vtype_id;
969 *data_member = kern_data_member;
970
971 return 0;
972}
973
974static bool bpf_map__is_struct_ops(const struct bpf_map *map)
975{
976 return map->def.type == BPF_MAP_TYPE_STRUCT_OPS;
977}
978
979/* Init the map's fields that depend on kern_btf */
980static int bpf_map__init_kern_struct_ops(struct bpf_map *map,
981 const struct btf *btf,
982 const struct btf *kern_btf)
983{
984 const struct btf_member *member, *kern_member, *kern_data_member;
985 const struct btf_type *type, *kern_type, *kern_vtype;
986 __u32 i, kern_type_id, kern_vtype_id, kern_data_off;
987 struct bpf_struct_ops *st_ops;
988 void *data, *kern_data;
989 const char *tname;
990 int err;
991
992 st_ops = map->st_ops;
993 type = st_ops->type;
994 tname = st_ops->tname;
995 err = find_struct_ops_kern_types(kern_btf, tname,
996 &kern_type, &kern_type_id,
997 &kern_vtype, &kern_vtype_id,
998 &kern_data_member);
999 if (err)
1000 return err;
1001
1002 pr_debug("struct_ops init_kern %s: type_id:%u kern_type_id:%u kern_vtype_id:%u\n",
1003 map->name, st_ops->type_id, kern_type_id, kern_vtype_id);
1004
1005 map->def.value_size = kern_vtype->size;
1006 map->btf_vmlinux_value_type_id = kern_vtype_id;
1007
1008 st_ops->kern_vdata = calloc(1, kern_vtype->size);
1009 if (!st_ops->kern_vdata)
1010 return -ENOMEM;
1011
1012 data = st_ops->data;
1013 kern_data_off = kern_data_member->offset / 8;
1014 kern_data = st_ops->kern_vdata + kern_data_off;
1015
1016 member = btf_members(type);
1017 for (i = 0; i < btf_vlen(type); i++, member++) {
1018 const struct btf_type *mtype, *kern_mtype;
1019 __u32 mtype_id, kern_mtype_id;
1020 void *mdata, *kern_mdata;
1021 __s64 msize, kern_msize;
1022 __u32 moff, kern_moff;
1023 __u32 kern_member_idx;
1024 const char *mname;
1025
1026 mname = btf__name_by_offset(btf, member->name_off);
1027 kern_member = find_member_by_name(kern_btf, kern_type, mname);
1028 if (!kern_member) {
1029 pr_warn("struct_ops init_kern %s: Cannot find member %s in kernel BTF\n",
1030 map->name, mname);
1031 return -ENOTSUP;
1032 }
1033
1034 kern_member_idx = kern_member - btf_members(kern_type);
1035 if (btf_member_bitfield_size(type, i) ||
1036 btf_member_bitfield_size(kern_type, kern_member_idx)) {
1037 pr_warn("struct_ops init_kern %s: bitfield %s is not supported\n",
1038 map->name, mname);
1039 return -ENOTSUP;
1040 }
1041
1042 moff = member->offset / 8;
1043 kern_moff = kern_member->offset / 8;
1044
1045 mdata = data + moff;
1046 kern_mdata = kern_data + kern_moff;
1047
1048 mtype = skip_mods_and_typedefs(btf, member->type, &mtype_id);
1049 kern_mtype = skip_mods_and_typedefs(kern_btf, kern_member->type,
1050 &kern_mtype_id);
1051 if (BTF_INFO_KIND(mtype->info) !=
1052 BTF_INFO_KIND(kern_mtype->info)) {
1053 pr_warn("struct_ops init_kern %s: Unmatched member type %s %u != %u(kernel)\n",
1054 map->name, mname, BTF_INFO_KIND(mtype->info),
1055 BTF_INFO_KIND(kern_mtype->info));
1056 return -ENOTSUP;
1057 }
1058
1059 if (btf_is_ptr(mtype)) {
1060 struct bpf_program *prog;
1061
1062 prog = st_ops->progs[i];
1063 if (!prog)
1064 continue;
1065
1066 kern_mtype = skip_mods_and_typedefs(kern_btf,
1067 kern_mtype->type,
1068 &kern_mtype_id);
1069
1070 /* mtype->type must be a func_proto which was
1071 * guaranteed in bpf_object__collect_st_ops_relos(),
1072 * so only check kern_mtype for func_proto here.
1073 */
1074 if (!btf_is_func_proto(kern_mtype)) {
1075 pr_warn("struct_ops init_kern %s: kernel member %s is not a func ptr\n",
1076 map->name, mname);
1077 return -ENOTSUP;
1078 }
1079
1080 prog->attach_btf_id = kern_type_id;
1081 prog->expected_attach_type = kern_member_idx;
1082
1083 st_ops->kern_func_off[i] = kern_data_off + kern_moff;
1084
1085 pr_debug("struct_ops init_kern %s: func ptr %s is set to prog %s from data(+%u) to kern_data(+%u)\n",
1086 map->name, mname, prog->name, moff,
1087 kern_moff);
1088
1089 continue;
1090 }
1091
1092 msize = btf__resolve_size(btf, mtype_id);
1093 kern_msize = btf__resolve_size(kern_btf, kern_mtype_id);
1094 if (msize < 0 || kern_msize < 0 || msize != kern_msize) {
1095 pr_warn("struct_ops init_kern %s: Error in size of member %s: %zd != %zd(kernel)\n",
1096 map->name, mname, (ssize_t)msize,
1097 (ssize_t)kern_msize);
1098 return -ENOTSUP;
1099 }
1100
1101 pr_debug("struct_ops init_kern %s: copy %s %u bytes from data(+%u) to kern_data(+%u)\n",
1102 map->name, mname, (unsigned int)msize,
1103 moff, kern_moff);
1104 memcpy(kern_mdata, mdata, msize);
1105 }
1106
1107 return 0;
1108}
1109
1110static int bpf_object__init_kern_struct_ops_maps(struct bpf_object *obj)
1111{
1112 struct bpf_map *map;
1113 size_t i;
1114 int err;
1115
1116 for (i = 0; i < obj->nr_maps; i++) {
1117 map = &obj->maps[i];
1118
1119 if (!bpf_map__is_struct_ops(map))
1120 continue;
1121
1122 err = bpf_map__init_kern_struct_ops(map, obj->btf,
1123 obj->btf_vmlinux);
1124 if (err)
1125 return err;
1126 }
1127
1128 return 0;
1129}
1130
1131static int init_struct_ops_maps(struct bpf_object *obj, const char *sec_name,
1132 int shndx, Elf_Data *data, __u32 map_flags)
1133{
1134 const struct btf_type *type, *datasec;
1135 const struct btf_var_secinfo *vsi;
1136 struct bpf_struct_ops *st_ops;
1137 const char *tname, *var_name;
1138 __s32 type_id, datasec_id;
1139 const struct btf *btf;
1140 struct bpf_map *map;
1141 __u32 i;
1142
1143 if (shndx == -1)
1144 return 0;
1145
1146 btf = obj->btf;
1147 datasec_id = btf__find_by_name_kind(btf, sec_name,
1148 BTF_KIND_DATASEC);
1149 if (datasec_id < 0) {
1150 pr_warn("struct_ops init: DATASEC %s not found\n",
1151 sec_name);
1152 return -EINVAL;
1153 }
1154
1155 datasec = btf__type_by_id(btf, datasec_id);
1156 vsi = btf_var_secinfos(datasec);
1157 for (i = 0; i < btf_vlen(datasec); i++, vsi++) {
1158 type = btf__type_by_id(obj->btf, vsi->type);
1159 var_name = btf__name_by_offset(obj->btf, type->name_off);
1160
1161 type_id = btf__resolve_type(obj->btf, vsi->type);
1162 if (type_id < 0) {
1163 pr_warn("struct_ops init: Cannot resolve var type_id %u in DATASEC %s\n",
1164 vsi->type, sec_name);
1165 return -EINVAL;
1166 }
1167
1168 type = btf__type_by_id(obj->btf, type_id);
1169 tname = btf__name_by_offset(obj->btf, type->name_off);
1170 if (!tname[0]) {
1171 pr_warn("struct_ops init: anonymous type is not supported\n");
1172 return -ENOTSUP;
1173 }
1174 if (!btf_is_struct(type)) {
1175 pr_warn("struct_ops init: %s is not a struct\n", tname);
1176 return -EINVAL;
1177 }
1178
1179 map = bpf_object__add_map(obj);
1180 if (IS_ERR(map))
1181 return PTR_ERR(map);
1182
1183 map->sec_idx = shndx;
1184 map->sec_offset = vsi->offset;
1185 map->name = strdup(var_name);
1186 if (!map->name)
1187 return -ENOMEM;
1188
1189 map->def.type = BPF_MAP_TYPE_STRUCT_OPS;
1190 map->def.key_size = sizeof(int);
1191 map->def.value_size = type->size;
1192 map->def.max_entries = 1;
1193 map->def.map_flags = map_flags;
1194
1195 map->st_ops = calloc(1, sizeof(*map->st_ops));
1196 if (!map->st_ops)
1197 return -ENOMEM;
1198 st_ops = map->st_ops;
1199 st_ops->data = malloc(type->size);
1200 st_ops->progs = calloc(btf_vlen(type), sizeof(*st_ops->progs));
1201 st_ops->kern_func_off = malloc(btf_vlen(type) *
1202 sizeof(*st_ops->kern_func_off));
1203 if (!st_ops->data || !st_ops->progs || !st_ops->kern_func_off)
1204 return -ENOMEM;
1205
1206 if (vsi->offset + type->size > data->d_size) {
1207 pr_warn("struct_ops init: var %s is beyond the end of DATASEC %s\n",
1208 var_name, sec_name);
1209 return -EINVAL;
1210 }
1211
1212 memcpy(st_ops->data,
1213 data->d_buf + vsi->offset,
1214 type->size);
1215 st_ops->tname = tname;
1216 st_ops->type = type;
1217 st_ops->type_id = type_id;
1218
1219 pr_debug("struct_ops init: struct %s(type_id=%u) %s found at offset %u\n",
1220 tname, type_id, var_name, vsi->offset);
1221 }
1222
1223 return 0;
1224}
1225
1226static int bpf_object_init_struct_ops(struct bpf_object *obj)
1227{
1228 int err;
1229
1230 err = init_struct_ops_maps(obj, STRUCT_OPS_SEC, obj->efile.st_ops_shndx,
1231 obj->efile.st_ops_data, 0);
1232 err = err ?: init_struct_ops_maps(obj, STRUCT_OPS_LINK_SEC,
1233 obj->efile.st_ops_link_shndx,
1234 obj->efile.st_ops_link_data,
1235 BPF_F_LINK);
1236 return err;
1237}
1238
1239static struct bpf_object *bpf_object__new(const char *path,
1240 const void *obj_buf,
1241 size_t obj_buf_sz,
1242 const char *obj_name)
1243{
1244 struct bpf_object *obj;
1245 char *end;
1246
1247 obj = calloc(1, sizeof(struct bpf_object) + strlen(path) + 1);
1248 if (!obj) {
1249 pr_warn("alloc memory failed for %s\n", path);
1250 return ERR_PTR(-ENOMEM);
1251 }
1252
1253 strcpy(obj->path, path);
1254 if (obj_name) {
1255 libbpf_strlcpy(obj->name, obj_name, sizeof(obj->name));
1256 } else {
1257 /* Using basename() GNU version which doesn't modify arg. */
1258 libbpf_strlcpy(obj->name, basename((void *)path), sizeof(obj->name));
1259 end = strchr(obj->name, '.');
1260 if (end)
1261 *end = 0;
1262 }
1263
1264 obj->efile.fd = -1;
1265 /*
1266 * Caller of this function should also call
1267 * bpf_object__elf_finish() after data collection to return
1268 * obj_buf to user. If not, we should duplicate the buffer to
1269 * avoid user freeing them before elf finish.
1270 */
1271 obj->efile.obj_buf = obj_buf;
1272 obj->efile.obj_buf_sz = obj_buf_sz;
1273 obj->efile.btf_maps_shndx = -1;
1274 obj->efile.st_ops_shndx = -1;
1275 obj->efile.st_ops_link_shndx = -1;
1276 obj->kconfig_map_idx = -1;
1277
1278 obj->kern_version = get_kernel_version();
1279 obj->loaded = false;
1280
1281 return obj;
1282}
1283
1284static void bpf_object__elf_finish(struct bpf_object *obj)
1285{
1286 if (!obj->efile.elf)
1287 return;
1288
1289 elf_end(obj->efile.elf);
1290 obj->efile.elf = NULL;
1291 obj->efile.symbols = NULL;
1292 obj->efile.st_ops_data = NULL;
1293 obj->efile.st_ops_link_data = NULL;
1294
1295 zfree(&obj->efile.secs);
1296 obj->efile.sec_cnt = 0;
1297 zclose(obj->efile.fd);
1298 obj->efile.obj_buf = NULL;
1299 obj->efile.obj_buf_sz = 0;
1300}
1301
1302static int bpf_object__elf_init(struct bpf_object *obj)
1303{
1304 Elf64_Ehdr *ehdr;
1305 int err = 0;
1306 Elf *elf;
1307
1308 if (obj->efile.elf) {
1309 pr_warn("elf: init internal error\n");
1310 return -LIBBPF_ERRNO__LIBELF;
1311 }
1312
1313 if (obj->efile.obj_buf_sz > 0) {
1314 /* obj_buf should have been validated by bpf_object__open_mem(). */
1315 elf = elf_memory((char *)obj->efile.obj_buf, obj->efile.obj_buf_sz);
1316 } else {
1317 obj->efile.fd = open(obj->path, O_RDONLY | O_CLOEXEC);
1318 if (obj->efile.fd < 0) {
1319 char errmsg[STRERR_BUFSIZE], *cp;
1320
1321 err = -errno;
1322 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
1323 pr_warn("elf: failed to open %s: %s\n", obj->path, cp);
1324 return err;
1325 }
1326
1327 elf = elf_begin(obj->efile.fd, ELF_C_READ_MMAP, NULL);
1328 }
1329
1330 if (!elf) {
1331 pr_warn("elf: failed to open %s as ELF file: %s\n", obj->path, elf_errmsg(-1));
1332 err = -LIBBPF_ERRNO__LIBELF;
1333 goto errout;
1334 }
1335
1336 obj->efile.elf = elf;
1337
1338 if (elf_kind(elf) != ELF_K_ELF) {
1339 err = -LIBBPF_ERRNO__FORMAT;
1340 pr_warn("elf: '%s' is not a proper ELF object\n", obj->path);
1341 goto errout;
1342 }
1343
1344 if (gelf_getclass(elf) != ELFCLASS64) {
1345 err = -LIBBPF_ERRNO__FORMAT;
1346 pr_warn("elf: '%s' is not a 64-bit ELF object\n", obj->path);
1347 goto errout;
1348 }
1349
1350 obj->efile.ehdr = ehdr = elf64_getehdr(elf);
1351 if (!obj->efile.ehdr) {
1352 pr_warn("elf: failed to get ELF header from %s: %s\n", obj->path, elf_errmsg(-1));
1353 err = -LIBBPF_ERRNO__FORMAT;
1354 goto errout;
1355 }
1356
1357 if (elf_getshdrstrndx(elf, &obj->efile.shstrndx)) {
1358 pr_warn("elf: failed to get section names section index for %s: %s\n",
1359 obj->path, elf_errmsg(-1));
1360 err = -LIBBPF_ERRNO__FORMAT;
1361 goto errout;
1362 }
1363
1364 /* ELF is corrupted/truncated, avoid calling elf_strptr. */
1365 if (!elf_rawdata(elf_getscn(elf, obj->efile.shstrndx), NULL)) {
1366 pr_warn("elf: failed to get section names strings from %s: %s\n",
1367 obj->path, elf_errmsg(-1));
1368 err = -LIBBPF_ERRNO__FORMAT;
1369 goto errout;
1370 }
1371
1372 /* Old LLVM set e_machine to EM_NONE */
1373 if (ehdr->e_type != ET_REL || (ehdr->e_machine && ehdr->e_machine != EM_BPF)) {
1374 pr_warn("elf: %s is not a valid eBPF object file\n", obj->path);
1375 err = -LIBBPF_ERRNO__FORMAT;
1376 goto errout;
1377 }
1378
1379 return 0;
1380errout:
1381 bpf_object__elf_finish(obj);
1382 return err;
1383}
1384
1385static int bpf_object__check_endianness(struct bpf_object *obj)
1386{
1387#if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
1388 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2LSB)
1389 return 0;
1390#elif __BYTE_ORDER__ == __ORDER_BIG_ENDIAN__
1391 if (obj->efile.ehdr->e_ident[EI_DATA] == ELFDATA2MSB)
1392 return 0;
1393#else
1394# error "Unrecognized __BYTE_ORDER__"
1395#endif
1396 pr_warn("elf: endianness mismatch in %s.\n", obj->path);
1397 return -LIBBPF_ERRNO__ENDIAN;
1398}
1399
1400static int
1401bpf_object__init_license(struct bpf_object *obj, void *data, size_t size)
1402{
1403 if (!data) {
1404 pr_warn("invalid license section in %s\n", obj->path);
1405 return -LIBBPF_ERRNO__FORMAT;
1406 }
1407 /* libbpf_strlcpy() only copies first N - 1 bytes, so size + 1 won't
1408 * go over allowed ELF data section buffer
1409 */
1410 libbpf_strlcpy(obj->license, data, min(size + 1, sizeof(obj->license)));
1411 pr_debug("license of %s is %s\n", obj->path, obj->license);
1412 return 0;
1413}
1414
1415static int
1416bpf_object__init_kversion(struct bpf_object *obj, void *data, size_t size)
1417{
1418 __u32 kver;
1419
1420 if (!data || size != sizeof(kver)) {
1421 pr_warn("invalid kver section in %s\n", obj->path);
1422 return -LIBBPF_ERRNO__FORMAT;
1423 }
1424 memcpy(&kver, data, sizeof(kver));
1425 obj->kern_version = kver;
1426 pr_debug("kernel version of %s is %x\n", obj->path, obj->kern_version);
1427 return 0;
1428}
1429
1430static bool bpf_map_type__is_map_in_map(enum bpf_map_type type)
1431{
1432 if (type == BPF_MAP_TYPE_ARRAY_OF_MAPS ||
1433 type == BPF_MAP_TYPE_HASH_OF_MAPS)
1434 return true;
1435 return false;
1436}
1437
1438static int find_elf_sec_sz(const struct bpf_object *obj, const char *name, __u32 *size)
1439{
1440 Elf_Data *data;
1441 Elf_Scn *scn;
1442
1443 if (!name)
1444 return -EINVAL;
1445
1446 scn = elf_sec_by_name(obj, name);
1447 data = elf_sec_data(obj, scn);
1448 if (data) {
1449 *size = data->d_size;
1450 return 0; /* found it */
1451 }
1452
1453 return -ENOENT;
1454}
1455
1456static Elf64_Sym *find_elf_var_sym(const struct bpf_object *obj, const char *name)
1457{
1458 Elf_Data *symbols = obj->efile.symbols;
1459 const char *sname;
1460 size_t si;
1461
1462 for (si = 0; si < symbols->d_size / sizeof(Elf64_Sym); si++) {
1463 Elf64_Sym *sym = elf_sym_by_idx(obj, si);
1464
1465 if (ELF64_ST_TYPE(sym->st_info) != STT_OBJECT)
1466 continue;
1467
1468 if (ELF64_ST_BIND(sym->st_info) != STB_GLOBAL &&
1469 ELF64_ST_BIND(sym->st_info) != STB_WEAK)
1470 continue;
1471
1472 sname = elf_sym_str(obj, sym->st_name);
1473 if (!sname) {
1474 pr_warn("failed to get sym name string for var %s\n", name);
1475 return ERR_PTR(-EIO);
1476 }
1477 if (strcmp(name, sname) == 0)
1478 return sym;
1479 }
1480
1481 return ERR_PTR(-ENOENT);
1482}
1483
1484static struct bpf_map *bpf_object__add_map(struct bpf_object *obj)
1485{
1486 struct bpf_map *map;
1487 int err;
1488
1489 err = libbpf_ensure_mem((void **)&obj->maps, &obj->maps_cap,
1490 sizeof(*obj->maps), obj->nr_maps + 1);
1491 if (err)
1492 return ERR_PTR(err);
1493
1494 map = &obj->maps[obj->nr_maps++];
1495 map->obj = obj;
1496 map->fd = -1;
1497 map->inner_map_fd = -1;
1498 map->autocreate = true;
1499
1500 return map;
1501}
1502
1503static size_t bpf_map_mmap_sz(const struct bpf_map *map)
1504{
1505 long page_sz = sysconf(_SC_PAGE_SIZE);
1506 size_t map_sz;
1507
1508 map_sz = (size_t)roundup(map->def.value_size, 8) * map->def.max_entries;
1509 map_sz = roundup(map_sz, page_sz);
1510 return map_sz;
1511}
1512
1513static char *internal_map_name(struct bpf_object *obj, const char *real_name)
1514{
1515 char map_name[BPF_OBJ_NAME_LEN], *p;
1516 int pfx_len, sfx_len = max((size_t)7, strlen(real_name));
1517
1518 /* This is one of the more confusing parts of libbpf for various
1519 * reasons, some of which are historical. The original idea for naming
1520 * internal names was to include as much of BPF object name prefix as
1521 * possible, so that it can be distinguished from similar internal
1522 * maps of a different BPF object.
1523 * As an example, let's say we have bpf_object named 'my_object_name'
1524 * and internal map corresponding to '.rodata' ELF section. The final
1525 * map name advertised to user and to the kernel will be
1526 * 'my_objec.rodata', taking first 8 characters of object name and
1527 * entire 7 characters of '.rodata'.
1528 * Somewhat confusingly, if internal map ELF section name is shorter
1529 * than 7 characters, e.g., '.bss', we still reserve 7 characters
1530 * for the suffix, even though we only have 4 actual characters, and
1531 * resulting map will be called 'my_objec.bss', not even using all 15
1532 * characters allowed by the kernel. Oh well, at least the truncated
1533 * object name is somewhat consistent in this case. But if the map
1534 * name is '.kconfig', we'll still have entirety of '.kconfig' added
1535 * (8 chars) and thus will be left with only first 7 characters of the
1536 * object name ('my_obje'). Happy guessing, user, that the final map
1537 * name will be "my_obje.kconfig".
1538 * Now, with libbpf starting to support arbitrarily named .rodata.*
1539 * and .data.* data sections, it's possible that ELF section name is
1540 * longer than allowed 15 chars, so we now need to be careful to take
1541 * only up to 15 first characters of ELF name, taking no BPF object
1542 * name characters at all. So '.rodata.abracadabra' will result in
1543 * '.rodata.abracad' kernel and user-visible name.
1544 * We need to keep this convoluted logic intact for .data, .bss and
1545 * .rodata maps, but for new custom .data.custom and .rodata.custom
1546 * maps we use their ELF names as is, not prepending bpf_object name
1547 * in front. We still need to truncate them to 15 characters for the
1548 * kernel. Full name can be recovered for such maps by using DATASEC
1549 * BTF type associated with such map's value type, though.
1550 */
1551 if (sfx_len >= BPF_OBJ_NAME_LEN)
1552 sfx_len = BPF_OBJ_NAME_LEN - 1;
1553
1554 /* if there are two or more dots in map name, it's a custom dot map */
1555 if (strchr(real_name + 1, '.') != NULL)
1556 pfx_len = 0;
1557 else
1558 pfx_len = min((size_t)BPF_OBJ_NAME_LEN - sfx_len - 1, strlen(obj->name));
1559
1560 snprintf(map_name, sizeof(map_name), "%.*s%.*s", pfx_len, obj->name,
1561 sfx_len, real_name);
1562
1563 /* sanitise map name to characters allowed by kernel */
1564 for (p = map_name; *p && p < map_name + sizeof(map_name); p++)
1565 if (!isalnum(*p) && *p != '_' && *p != '.')
1566 *p = '_';
1567
1568 return strdup(map_name);
1569}
1570
1571static int
1572map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map);
1573
1574/* Internal BPF map is mmap()'able only if at least one of corresponding
1575 * DATASEC's VARs are to be exposed through BPF skeleton. I.e., it's a GLOBAL
1576 * variable and it's not marked as __hidden (which turns it into, effectively,
1577 * a STATIC variable).
1578 */
1579static bool map_is_mmapable(struct bpf_object *obj, struct bpf_map *map)
1580{
1581 const struct btf_type *t, *vt;
1582 struct btf_var_secinfo *vsi;
1583 int i, n;
1584
1585 if (!map->btf_value_type_id)
1586 return false;
1587
1588 t = btf__type_by_id(obj->btf, map->btf_value_type_id);
1589 if (!btf_is_datasec(t))
1590 return false;
1591
1592 vsi = btf_var_secinfos(t);
1593 for (i = 0, n = btf_vlen(t); i < n; i++, vsi++) {
1594 vt = btf__type_by_id(obj->btf, vsi->type);
1595 if (!btf_is_var(vt))
1596 continue;
1597
1598 if (btf_var(vt)->linkage != BTF_VAR_STATIC)
1599 return true;
1600 }
1601
1602 return false;
1603}
1604
1605static int
1606bpf_object__init_internal_map(struct bpf_object *obj, enum libbpf_map_type type,
1607 const char *real_name, int sec_idx, void *data, size_t data_sz)
1608{
1609 struct bpf_map_def *def;
1610 struct bpf_map *map;
1611 int err;
1612
1613 map = bpf_object__add_map(obj);
1614 if (IS_ERR(map))
1615 return PTR_ERR(map);
1616
1617 map->libbpf_type = type;
1618 map->sec_idx = sec_idx;
1619 map->sec_offset = 0;
1620 map->real_name = strdup(real_name);
1621 map->name = internal_map_name(obj, real_name);
1622 if (!map->real_name || !map->name) {
1623 zfree(&map->real_name);
1624 zfree(&map->name);
1625 return -ENOMEM;
1626 }
1627
1628 def = &map->def;
1629 def->type = BPF_MAP_TYPE_ARRAY;
1630 def->key_size = sizeof(int);
1631 def->value_size = data_sz;
1632 def->max_entries = 1;
1633 def->map_flags = type == LIBBPF_MAP_RODATA || type == LIBBPF_MAP_KCONFIG
1634 ? BPF_F_RDONLY_PROG : 0;
1635
1636 /* failures are fine because of maps like .rodata.str1.1 */
1637 (void) map_fill_btf_type_info(obj, map);
1638
1639 if (map_is_mmapable(obj, map))
1640 def->map_flags |= BPF_F_MMAPABLE;
1641
1642 pr_debug("map '%s' (global data): at sec_idx %d, offset %zu, flags %x.\n",
1643 map->name, map->sec_idx, map->sec_offset, def->map_flags);
1644
1645 map->mmaped = mmap(NULL, bpf_map_mmap_sz(map), PROT_READ | PROT_WRITE,
1646 MAP_SHARED | MAP_ANONYMOUS, -1, 0);
1647 if (map->mmaped == MAP_FAILED) {
1648 err = -errno;
1649 map->mmaped = NULL;
1650 pr_warn("failed to alloc map '%s' content buffer: %d\n",
1651 map->name, err);
1652 zfree(&map->real_name);
1653 zfree(&map->name);
1654 return err;
1655 }
1656
1657 if (data)
1658 memcpy(map->mmaped, data, data_sz);
1659
1660 pr_debug("map %td is \"%s\"\n", map - obj->maps, map->name);
1661 return 0;
1662}
1663
1664static int bpf_object__init_global_data_maps(struct bpf_object *obj)
1665{
1666 struct elf_sec_desc *sec_desc;
1667 const char *sec_name;
1668 int err = 0, sec_idx;
1669
1670 /*
1671 * Populate obj->maps with libbpf internal maps.
1672 */
1673 for (sec_idx = 1; sec_idx < obj->efile.sec_cnt; sec_idx++) {
1674 sec_desc = &obj->efile.secs[sec_idx];
1675
1676 /* Skip recognized sections with size 0. */
1677 if (!sec_desc->data || sec_desc->data->d_size == 0)
1678 continue;
1679
1680 switch (sec_desc->sec_type) {
1681 case SEC_DATA:
1682 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1683 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_DATA,
1684 sec_name, sec_idx,
1685 sec_desc->data->d_buf,
1686 sec_desc->data->d_size);
1687 break;
1688 case SEC_RODATA:
1689 obj->has_rodata = true;
1690 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1691 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_RODATA,
1692 sec_name, sec_idx,
1693 sec_desc->data->d_buf,
1694 sec_desc->data->d_size);
1695 break;
1696 case SEC_BSS:
1697 sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, sec_idx));
1698 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_BSS,
1699 sec_name, sec_idx,
1700 NULL,
1701 sec_desc->data->d_size);
1702 break;
1703 default:
1704 /* skip */
1705 break;
1706 }
1707 if (err)
1708 return err;
1709 }
1710 return 0;
1711}
1712
1713
1714static struct extern_desc *find_extern_by_name(const struct bpf_object *obj,
1715 const void *name)
1716{
1717 int i;
1718
1719 for (i = 0; i < obj->nr_extern; i++) {
1720 if (strcmp(obj->externs[i].name, name) == 0)
1721 return &obj->externs[i];
1722 }
1723 return NULL;
1724}
1725
1726static int set_kcfg_value_tri(struct extern_desc *ext, void *ext_val,
1727 char value)
1728{
1729 switch (ext->kcfg.type) {
1730 case KCFG_BOOL:
1731 if (value == 'm') {
1732 pr_warn("extern (kcfg) '%s': value '%c' implies tristate or char type\n",
1733 ext->name, value);
1734 return -EINVAL;
1735 }
1736 *(bool *)ext_val = value == 'y' ? true : false;
1737 break;
1738 case KCFG_TRISTATE:
1739 if (value == 'y')
1740 *(enum libbpf_tristate *)ext_val = TRI_YES;
1741 else if (value == 'm')
1742 *(enum libbpf_tristate *)ext_val = TRI_MODULE;
1743 else /* value == 'n' */
1744 *(enum libbpf_tristate *)ext_val = TRI_NO;
1745 break;
1746 case KCFG_CHAR:
1747 *(char *)ext_val = value;
1748 break;
1749 case KCFG_UNKNOWN:
1750 case KCFG_INT:
1751 case KCFG_CHAR_ARR:
1752 default:
1753 pr_warn("extern (kcfg) '%s': value '%c' implies bool, tristate, or char type\n",
1754 ext->name, value);
1755 return -EINVAL;
1756 }
1757 ext->is_set = true;
1758 return 0;
1759}
1760
1761static int set_kcfg_value_str(struct extern_desc *ext, char *ext_val,
1762 const char *value)
1763{
1764 size_t len;
1765
1766 if (ext->kcfg.type != KCFG_CHAR_ARR) {
1767 pr_warn("extern (kcfg) '%s': value '%s' implies char array type\n",
1768 ext->name, value);
1769 return -EINVAL;
1770 }
1771
1772 len = strlen(value);
1773 if (value[len - 1] != '"') {
1774 pr_warn("extern (kcfg) '%s': invalid string config '%s'\n",
1775 ext->name, value);
1776 return -EINVAL;
1777 }
1778
1779 /* strip quotes */
1780 len -= 2;
1781 if (len >= ext->kcfg.sz) {
1782 pr_warn("extern (kcfg) '%s': long string '%s' of (%zu bytes) truncated to %d bytes\n",
1783 ext->name, value, len, ext->kcfg.sz - 1);
1784 len = ext->kcfg.sz - 1;
1785 }
1786 memcpy(ext_val, value + 1, len);
1787 ext_val[len] = '\0';
1788 ext->is_set = true;
1789 return 0;
1790}
1791
1792static int parse_u64(const char *value, __u64 *res)
1793{
1794 char *value_end;
1795 int err;
1796
1797 errno = 0;
1798 *res = strtoull(value, &value_end, 0);
1799 if (errno) {
1800 err = -errno;
1801 pr_warn("failed to parse '%s' as integer: %d\n", value, err);
1802 return err;
1803 }
1804 if (*value_end) {
1805 pr_warn("failed to parse '%s' as integer completely\n", value);
1806 return -EINVAL;
1807 }
1808 return 0;
1809}
1810
1811static bool is_kcfg_value_in_range(const struct extern_desc *ext, __u64 v)
1812{
1813 int bit_sz = ext->kcfg.sz * 8;
1814
1815 if (ext->kcfg.sz == 8)
1816 return true;
1817
1818 /* Validate that value stored in u64 fits in integer of `ext->sz`
1819 * bytes size without any loss of information. If the target integer
1820 * is signed, we rely on the following limits of integer type of
1821 * Y bits and subsequent transformation:
1822 *
1823 * -2^(Y-1) <= X <= 2^(Y-1) - 1
1824 * 0 <= X + 2^(Y-1) <= 2^Y - 1
1825 * 0 <= X + 2^(Y-1) < 2^Y
1826 *
1827 * For unsigned target integer, check that all the (64 - Y) bits are
1828 * zero.
1829 */
1830 if (ext->kcfg.is_signed)
1831 return v + (1ULL << (bit_sz - 1)) < (1ULL << bit_sz);
1832 else
1833 return (v >> bit_sz) == 0;
1834}
1835
1836static int set_kcfg_value_num(struct extern_desc *ext, void *ext_val,
1837 __u64 value)
1838{
1839 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR &&
1840 ext->kcfg.type != KCFG_BOOL) {
1841 pr_warn("extern (kcfg) '%s': value '%llu' implies integer, char, or boolean type\n",
1842 ext->name, (unsigned long long)value);
1843 return -EINVAL;
1844 }
1845 if (ext->kcfg.type == KCFG_BOOL && value > 1) {
1846 pr_warn("extern (kcfg) '%s': value '%llu' isn't boolean compatible\n",
1847 ext->name, (unsigned long long)value);
1848 return -EINVAL;
1849
1850 }
1851 if (!is_kcfg_value_in_range(ext, value)) {
1852 pr_warn("extern (kcfg) '%s': value '%llu' doesn't fit in %d bytes\n",
1853 ext->name, (unsigned long long)value, ext->kcfg.sz);
1854 return -ERANGE;
1855 }
1856 switch (ext->kcfg.sz) {
1857 case 1:
1858 *(__u8 *)ext_val = value;
1859 break;
1860 case 2:
1861 *(__u16 *)ext_val = value;
1862 break;
1863 case 4:
1864 *(__u32 *)ext_val = value;
1865 break;
1866 case 8:
1867 *(__u64 *)ext_val = value;
1868 break;
1869 default:
1870 return -EINVAL;
1871 }
1872 ext->is_set = true;
1873 return 0;
1874}
1875
1876static int bpf_object__process_kconfig_line(struct bpf_object *obj,
1877 char *buf, void *data)
1878{
1879 struct extern_desc *ext;
1880 char *sep, *value;
1881 int len, err = 0;
1882 void *ext_val;
1883 __u64 num;
1884
1885 if (!str_has_pfx(buf, "CONFIG_"))
1886 return 0;
1887
1888 sep = strchr(buf, '=');
1889 if (!sep) {
1890 pr_warn("failed to parse '%s': no separator\n", buf);
1891 return -EINVAL;
1892 }
1893
1894 /* Trim ending '\n' */
1895 len = strlen(buf);
1896 if (buf[len - 1] == '\n')
1897 buf[len - 1] = '\0';
1898 /* Split on '=' and ensure that a value is present. */
1899 *sep = '\0';
1900 if (!sep[1]) {
1901 *sep = '=';
1902 pr_warn("failed to parse '%s': no value\n", buf);
1903 return -EINVAL;
1904 }
1905
1906 ext = find_extern_by_name(obj, buf);
1907 if (!ext || ext->is_set)
1908 return 0;
1909
1910 ext_val = data + ext->kcfg.data_off;
1911 value = sep + 1;
1912
1913 switch (*value) {
1914 case 'y': case 'n': case 'm':
1915 err = set_kcfg_value_tri(ext, ext_val, *value);
1916 break;
1917 case '"':
1918 err = set_kcfg_value_str(ext, ext_val, value);
1919 break;
1920 default:
1921 /* assume integer */
1922 err = parse_u64(value, &num);
1923 if (err) {
1924 pr_warn("extern (kcfg) '%s': value '%s' isn't a valid integer\n", ext->name, value);
1925 return err;
1926 }
1927 if (ext->kcfg.type != KCFG_INT && ext->kcfg.type != KCFG_CHAR) {
1928 pr_warn("extern (kcfg) '%s': value '%s' implies integer type\n", ext->name, value);
1929 return -EINVAL;
1930 }
1931 err = set_kcfg_value_num(ext, ext_val, num);
1932 break;
1933 }
1934 if (err)
1935 return err;
1936 pr_debug("extern (kcfg) '%s': set to %s\n", ext->name, value);
1937 return 0;
1938}
1939
1940static int bpf_object__read_kconfig_file(struct bpf_object *obj, void *data)
1941{
1942 char buf[PATH_MAX];
1943 struct utsname uts;
1944 int len, err = 0;
1945 gzFile file;
1946
1947 uname(&uts);
1948 len = snprintf(buf, PATH_MAX, "/boot/config-%s", uts.release);
1949 if (len < 0)
1950 return -EINVAL;
1951 else if (len >= PATH_MAX)
1952 return -ENAMETOOLONG;
1953
1954 /* gzopen also accepts uncompressed files. */
1955 file = gzopen(buf, "r");
1956 if (!file)
1957 file = gzopen("/proc/config.gz", "r");
1958
1959 if (!file) {
1960 pr_warn("failed to open system Kconfig\n");
1961 return -ENOENT;
1962 }
1963
1964 while (gzgets(file, buf, sizeof(buf))) {
1965 err = bpf_object__process_kconfig_line(obj, buf, data);
1966 if (err) {
1967 pr_warn("error parsing system Kconfig line '%s': %d\n",
1968 buf, err);
1969 goto out;
1970 }
1971 }
1972
1973out:
1974 gzclose(file);
1975 return err;
1976}
1977
1978static int bpf_object__read_kconfig_mem(struct bpf_object *obj,
1979 const char *config, void *data)
1980{
1981 char buf[PATH_MAX];
1982 int err = 0;
1983 FILE *file;
1984
1985 file = fmemopen((void *)config, strlen(config), "r");
1986 if (!file) {
1987 err = -errno;
1988 pr_warn("failed to open in-memory Kconfig: %d\n", err);
1989 return err;
1990 }
1991
1992 while (fgets(buf, sizeof(buf), file)) {
1993 err = bpf_object__process_kconfig_line(obj, buf, data);
1994 if (err) {
1995 pr_warn("error parsing in-memory Kconfig line '%s': %d\n",
1996 buf, err);
1997 break;
1998 }
1999 }
2000
2001 fclose(file);
2002 return err;
2003}
2004
2005static int bpf_object__init_kconfig_map(struct bpf_object *obj)
2006{
2007 struct extern_desc *last_ext = NULL, *ext;
2008 size_t map_sz;
2009 int i, err;
2010
2011 for (i = 0; i < obj->nr_extern; i++) {
2012 ext = &obj->externs[i];
2013 if (ext->type == EXT_KCFG)
2014 last_ext = ext;
2015 }
2016
2017 if (!last_ext)
2018 return 0;
2019
2020 map_sz = last_ext->kcfg.data_off + last_ext->kcfg.sz;
2021 err = bpf_object__init_internal_map(obj, LIBBPF_MAP_KCONFIG,
2022 ".kconfig", obj->efile.symbols_shndx,
2023 NULL, map_sz);
2024 if (err)
2025 return err;
2026
2027 obj->kconfig_map_idx = obj->nr_maps - 1;
2028
2029 return 0;
2030}
2031
2032const struct btf_type *
2033skip_mods_and_typedefs(const struct btf *btf, __u32 id, __u32 *res_id)
2034{
2035 const struct btf_type *t = btf__type_by_id(btf, id);
2036
2037 if (res_id)
2038 *res_id = id;
2039
2040 while (btf_is_mod(t) || btf_is_typedef(t)) {
2041 if (res_id)
2042 *res_id = t->type;
2043 t = btf__type_by_id(btf, t->type);
2044 }
2045
2046 return t;
2047}
2048
2049static const struct btf_type *
2050resolve_func_ptr(const struct btf *btf, __u32 id, __u32 *res_id)
2051{
2052 const struct btf_type *t;
2053
2054 t = skip_mods_and_typedefs(btf, id, NULL);
2055 if (!btf_is_ptr(t))
2056 return NULL;
2057
2058 t = skip_mods_and_typedefs(btf, t->type, res_id);
2059
2060 return btf_is_func_proto(t) ? t : NULL;
2061}
2062
2063static const char *__btf_kind_str(__u16 kind)
2064{
2065 switch (kind) {
2066 case BTF_KIND_UNKN: return "void";
2067 case BTF_KIND_INT: return "int";
2068 case BTF_KIND_PTR: return "ptr";
2069 case BTF_KIND_ARRAY: return "array";
2070 case BTF_KIND_STRUCT: return "struct";
2071 case BTF_KIND_UNION: return "union";
2072 case BTF_KIND_ENUM: return "enum";
2073 case BTF_KIND_FWD: return "fwd";
2074 case BTF_KIND_TYPEDEF: return "typedef";
2075 case BTF_KIND_VOLATILE: return "volatile";
2076 case BTF_KIND_CONST: return "const";
2077 case BTF_KIND_RESTRICT: return "restrict";
2078 case BTF_KIND_FUNC: return "func";
2079 case BTF_KIND_FUNC_PROTO: return "func_proto";
2080 case BTF_KIND_VAR: return "var";
2081 case BTF_KIND_DATASEC: return "datasec";
2082 case BTF_KIND_FLOAT: return "float";
2083 case BTF_KIND_DECL_TAG: return "decl_tag";
2084 case BTF_KIND_TYPE_TAG: return "type_tag";
2085 case BTF_KIND_ENUM64: return "enum64";
2086 default: return "unknown";
2087 }
2088}
2089
2090const char *btf_kind_str(const struct btf_type *t)
2091{
2092 return __btf_kind_str(btf_kind(t));
2093}
2094
2095/*
2096 * Fetch integer attribute of BTF map definition. Such attributes are
2097 * represented using a pointer to an array, in which dimensionality of array
2098 * encodes specified integer value. E.g., int (*type)[BPF_MAP_TYPE_ARRAY];
2099 * encodes `type => BPF_MAP_TYPE_ARRAY` key/value pair completely using BTF
2100 * type definition, while using only sizeof(void *) space in ELF data section.
2101 */
2102static bool get_map_field_int(const char *map_name, const struct btf *btf,
2103 const struct btf_member *m, __u32 *res)
2104{
2105 const struct btf_type *t = skip_mods_and_typedefs(btf, m->type, NULL);
2106 const char *name = btf__name_by_offset(btf, m->name_off);
2107 const struct btf_array *arr_info;
2108 const struct btf_type *arr_t;
2109
2110 if (!btf_is_ptr(t)) {
2111 pr_warn("map '%s': attr '%s': expected PTR, got %s.\n",
2112 map_name, name, btf_kind_str(t));
2113 return false;
2114 }
2115
2116 arr_t = btf__type_by_id(btf, t->type);
2117 if (!arr_t) {
2118 pr_warn("map '%s': attr '%s': type [%u] not found.\n",
2119 map_name, name, t->type);
2120 return false;
2121 }
2122 if (!btf_is_array(arr_t)) {
2123 pr_warn("map '%s': attr '%s': expected ARRAY, got %s.\n",
2124 map_name, name, btf_kind_str(arr_t));
2125 return false;
2126 }
2127 arr_info = btf_array(arr_t);
2128 *res = arr_info->nelems;
2129 return true;
2130}
2131
2132static int pathname_concat(char *buf, size_t buf_sz, const char *path, const char *name)
2133{
2134 int len;
2135
2136 len = snprintf(buf, buf_sz, "%s/%s", path, name);
2137 if (len < 0)
2138 return -EINVAL;
2139 if (len >= buf_sz)
2140 return -ENAMETOOLONG;
2141
2142 return 0;
2143}
2144
2145static int build_map_pin_path(struct bpf_map *map, const char *path)
2146{
2147 char buf[PATH_MAX];
2148 int err;
2149
2150 if (!path)
2151 path = "/sys/fs/bpf";
2152
2153 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
2154 if (err)
2155 return err;
2156
2157 return bpf_map__set_pin_path(map, buf);
2158}
2159
2160/* should match definition in bpf_helpers.h */
2161enum libbpf_pin_type {
2162 LIBBPF_PIN_NONE,
2163 /* PIN_BY_NAME: pin maps by name (in /sys/fs/bpf by default) */
2164 LIBBPF_PIN_BY_NAME,
2165};
2166
2167int parse_btf_map_def(const char *map_name, struct btf *btf,
2168 const struct btf_type *def_t, bool strict,
2169 struct btf_map_def *map_def, struct btf_map_def *inner_def)
2170{
2171 const struct btf_type *t;
2172 const struct btf_member *m;
2173 bool is_inner = inner_def == NULL;
2174 int vlen, i;
2175
2176 vlen = btf_vlen(def_t);
2177 m = btf_members(def_t);
2178 for (i = 0; i < vlen; i++, m++) {
2179 const char *name = btf__name_by_offset(btf, m->name_off);
2180
2181 if (!name) {
2182 pr_warn("map '%s': invalid field #%d.\n", map_name, i);
2183 return -EINVAL;
2184 }
2185 if (strcmp(name, "type") == 0) {
2186 if (!get_map_field_int(map_name, btf, m, &map_def->map_type))
2187 return -EINVAL;
2188 map_def->parts |= MAP_DEF_MAP_TYPE;
2189 } else if (strcmp(name, "max_entries") == 0) {
2190 if (!get_map_field_int(map_name, btf, m, &map_def->max_entries))
2191 return -EINVAL;
2192 map_def->parts |= MAP_DEF_MAX_ENTRIES;
2193 } else if (strcmp(name, "map_flags") == 0) {
2194 if (!get_map_field_int(map_name, btf, m, &map_def->map_flags))
2195 return -EINVAL;
2196 map_def->parts |= MAP_DEF_MAP_FLAGS;
2197 } else if (strcmp(name, "numa_node") == 0) {
2198 if (!get_map_field_int(map_name, btf, m, &map_def->numa_node))
2199 return -EINVAL;
2200 map_def->parts |= MAP_DEF_NUMA_NODE;
2201 } else if (strcmp(name, "key_size") == 0) {
2202 __u32 sz;
2203
2204 if (!get_map_field_int(map_name, btf, m, &sz))
2205 return -EINVAL;
2206 if (map_def->key_size && map_def->key_size != sz) {
2207 pr_warn("map '%s': conflicting key size %u != %u.\n",
2208 map_name, map_def->key_size, sz);
2209 return -EINVAL;
2210 }
2211 map_def->key_size = sz;
2212 map_def->parts |= MAP_DEF_KEY_SIZE;
2213 } else if (strcmp(name, "key") == 0) {
2214 __s64 sz;
2215
2216 t = btf__type_by_id(btf, m->type);
2217 if (!t) {
2218 pr_warn("map '%s': key type [%d] not found.\n",
2219 map_name, m->type);
2220 return -EINVAL;
2221 }
2222 if (!btf_is_ptr(t)) {
2223 pr_warn("map '%s': key spec is not PTR: %s.\n",
2224 map_name, btf_kind_str(t));
2225 return -EINVAL;
2226 }
2227 sz = btf__resolve_size(btf, t->type);
2228 if (sz < 0) {
2229 pr_warn("map '%s': can't determine key size for type [%u]: %zd.\n",
2230 map_name, t->type, (ssize_t)sz);
2231 return sz;
2232 }
2233 if (map_def->key_size && map_def->key_size != sz) {
2234 pr_warn("map '%s': conflicting key size %u != %zd.\n",
2235 map_name, map_def->key_size, (ssize_t)sz);
2236 return -EINVAL;
2237 }
2238 map_def->key_size = sz;
2239 map_def->key_type_id = t->type;
2240 map_def->parts |= MAP_DEF_KEY_SIZE | MAP_DEF_KEY_TYPE;
2241 } else if (strcmp(name, "value_size") == 0) {
2242 __u32 sz;
2243
2244 if (!get_map_field_int(map_name, btf, m, &sz))
2245 return -EINVAL;
2246 if (map_def->value_size && map_def->value_size != sz) {
2247 pr_warn("map '%s': conflicting value size %u != %u.\n",
2248 map_name, map_def->value_size, sz);
2249 return -EINVAL;
2250 }
2251 map_def->value_size = sz;
2252 map_def->parts |= MAP_DEF_VALUE_SIZE;
2253 } else if (strcmp(name, "value") == 0) {
2254 __s64 sz;
2255
2256 t = btf__type_by_id(btf, m->type);
2257 if (!t) {
2258 pr_warn("map '%s': value type [%d] not found.\n",
2259 map_name, m->type);
2260 return -EINVAL;
2261 }
2262 if (!btf_is_ptr(t)) {
2263 pr_warn("map '%s': value spec is not PTR: %s.\n",
2264 map_name, btf_kind_str(t));
2265 return -EINVAL;
2266 }
2267 sz = btf__resolve_size(btf, t->type);
2268 if (sz < 0) {
2269 pr_warn("map '%s': can't determine value size for type [%u]: %zd.\n",
2270 map_name, t->type, (ssize_t)sz);
2271 return sz;
2272 }
2273 if (map_def->value_size && map_def->value_size != sz) {
2274 pr_warn("map '%s': conflicting value size %u != %zd.\n",
2275 map_name, map_def->value_size, (ssize_t)sz);
2276 return -EINVAL;
2277 }
2278 map_def->value_size = sz;
2279 map_def->value_type_id = t->type;
2280 map_def->parts |= MAP_DEF_VALUE_SIZE | MAP_DEF_VALUE_TYPE;
2281 }
2282 else if (strcmp(name, "values") == 0) {
2283 bool is_map_in_map = bpf_map_type__is_map_in_map(map_def->map_type);
2284 bool is_prog_array = map_def->map_type == BPF_MAP_TYPE_PROG_ARRAY;
2285 const char *desc = is_map_in_map ? "map-in-map inner" : "prog-array value";
2286 char inner_map_name[128];
2287 int err;
2288
2289 if (is_inner) {
2290 pr_warn("map '%s': multi-level inner maps not supported.\n",
2291 map_name);
2292 return -ENOTSUP;
2293 }
2294 if (i != vlen - 1) {
2295 pr_warn("map '%s': '%s' member should be last.\n",
2296 map_name, name);
2297 return -EINVAL;
2298 }
2299 if (!is_map_in_map && !is_prog_array) {
2300 pr_warn("map '%s': should be map-in-map or prog-array.\n",
2301 map_name);
2302 return -ENOTSUP;
2303 }
2304 if (map_def->value_size && map_def->value_size != 4) {
2305 pr_warn("map '%s': conflicting value size %u != 4.\n",
2306 map_name, map_def->value_size);
2307 return -EINVAL;
2308 }
2309 map_def->value_size = 4;
2310 t = btf__type_by_id(btf, m->type);
2311 if (!t) {
2312 pr_warn("map '%s': %s type [%d] not found.\n",
2313 map_name, desc, m->type);
2314 return -EINVAL;
2315 }
2316 if (!btf_is_array(t) || btf_array(t)->nelems) {
2317 pr_warn("map '%s': %s spec is not a zero-sized array.\n",
2318 map_name, desc);
2319 return -EINVAL;
2320 }
2321 t = skip_mods_and_typedefs(btf, btf_array(t)->type, NULL);
2322 if (!btf_is_ptr(t)) {
2323 pr_warn("map '%s': %s def is of unexpected kind %s.\n",
2324 map_name, desc, btf_kind_str(t));
2325 return -EINVAL;
2326 }
2327 t = skip_mods_and_typedefs(btf, t->type, NULL);
2328 if (is_prog_array) {
2329 if (!btf_is_func_proto(t)) {
2330 pr_warn("map '%s': prog-array value def is of unexpected kind %s.\n",
2331 map_name, btf_kind_str(t));
2332 return -EINVAL;
2333 }
2334 continue;
2335 }
2336 if (!btf_is_struct(t)) {
2337 pr_warn("map '%s': map-in-map inner def is of unexpected kind %s.\n",
2338 map_name, btf_kind_str(t));
2339 return -EINVAL;
2340 }
2341
2342 snprintf(inner_map_name, sizeof(inner_map_name), "%s.inner", map_name);
2343 err = parse_btf_map_def(inner_map_name, btf, t, strict, inner_def, NULL);
2344 if (err)
2345 return err;
2346
2347 map_def->parts |= MAP_DEF_INNER_MAP;
2348 } else if (strcmp(name, "pinning") == 0) {
2349 __u32 val;
2350
2351 if (is_inner) {
2352 pr_warn("map '%s': inner def can't be pinned.\n", map_name);
2353 return -EINVAL;
2354 }
2355 if (!get_map_field_int(map_name, btf, m, &val))
2356 return -EINVAL;
2357 if (val != LIBBPF_PIN_NONE && val != LIBBPF_PIN_BY_NAME) {
2358 pr_warn("map '%s': invalid pinning value %u.\n",
2359 map_name, val);
2360 return -EINVAL;
2361 }
2362 map_def->pinning = val;
2363 map_def->parts |= MAP_DEF_PINNING;
2364 } else if (strcmp(name, "map_extra") == 0) {
2365 __u32 map_extra;
2366
2367 if (!get_map_field_int(map_name, btf, m, &map_extra))
2368 return -EINVAL;
2369 map_def->map_extra = map_extra;
2370 map_def->parts |= MAP_DEF_MAP_EXTRA;
2371 } else {
2372 if (strict) {
2373 pr_warn("map '%s': unknown field '%s'.\n", map_name, name);
2374 return -ENOTSUP;
2375 }
2376 pr_debug("map '%s': ignoring unknown field '%s'.\n", map_name, name);
2377 }
2378 }
2379
2380 if (map_def->map_type == BPF_MAP_TYPE_UNSPEC) {
2381 pr_warn("map '%s': map type isn't specified.\n", map_name);
2382 return -EINVAL;
2383 }
2384
2385 return 0;
2386}
2387
2388static size_t adjust_ringbuf_sz(size_t sz)
2389{
2390 __u32 page_sz = sysconf(_SC_PAGE_SIZE);
2391 __u32 mul;
2392
2393 /* if user forgot to set any size, make sure they see error */
2394 if (sz == 0)
2395 return 0;
2396 /* Kernel expects BPF_MAP_TYPE_RINGBUF's max_entries to be
2397 * a power-of-2 multiple of kernel's page size. If user diligently
2398 * satisified these conditions, pass the size through.
2399 */
2400 if ((sz % page_sz) == 0 && is_pow_of_2(sz / page_sz))
2401 return sz;
2402
2403 /* Otherwise find closest (page_sz * power_of_2) product bigger than
2404 * user-set size to satisfy both user size request and kernel
2405 * requirements and substitute correct max_entries for map creation.
2406 */
2407 for (mul = 1; mul <= UINT_MAX / page_sz; mul <<= 1) {
2408 if (mul * page_sz > sz)
2409 return mul * page_sz;
2410 }
2411
2412 /* if it's impossible to satisfy the conditions (i.e., user size is
2413 * very close to UINT_MAX but is not a power-of-2 multiple of
2414 * page_size) then just return original size and let kernel reject it
2415 */
2416 return sz;
2417}
2418
2419static bool map_is_ringbuf(const struct bpf_map *map)
2420{
2421 return map->def.type == BPF_MAP_TYPE_RINGBUF ||
2422 map->def.type == BPF_MAP_TYPE_USER_RINGBUF;
2423}
2424
2425static void fill_map_from_def(struct bpf_map *map, const struct btf_map_def *def)
2426{
2427 map->def.type = def->map_type;
2428 map->def.key_size = def->key_size;
2429 map->def.value_size = def->value_size;
2430 map->def.max_entries = def->max_entries;
2431 map->def.map_flags = def->map_flags;
2432 map->map_extra = def->map_extra;
2433
2434 map->numa_node = def->numa_node;
2435 map->btf_key_type_id = def->key_type_id;
2436 map->btf_value_type_id = def->value_type_id;
2437
2438 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
2439 if (map_is_ringbuf(map))
2440 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
2441
2442 if (def->parts & MAP_DEF_MAP_TYPE)
2443 pr_debug("map '%s': found type = %u.\n", map->name, def->map_type);
2444
2445 if (def->parts & MAP_DEF_KEY_TYPE)
2446 pr_debug("map '%s': found key [%u], sz = %u.\n",
2447 map->name, def->key_type_id, def->key_size);
2448 else if (def->parts & MAP_DEF_KEY_SIZE)
2449 pr_debug("map '%s': found key_size = %u.\n", map->name, def->key_size);
2450
2451 if (def->parts & MAP_DEF_VALUE_TYPE)
2452 pr_debug("map '%s': found value [%u], sz = %u.\n",
2453 map->name, def->value_type_id, def->value_size);
2454 else if (def->parts & MAP_DEF_VALUE_SIZE)
2455 pr_debug("map '%s': found value_size = %u.\n", map->name, def->value_size);
2456
2457 if (def->parts & MAP_DEF_MAX_ENTRIES)
2458 pr_debug("map '%s': found max_entries = %u.\n", map->name, def->max_entries);
2459 if (def->parts & MAP_DEF_MAP_FLAGS)
2460 pr_debug("map '%s': found map_flags = 0x%x.\n", map->name, def->map_flags);
2461 if (def->parts & MAP_DEF_MAP_EXTRA)
2462 pr_debug("map '%s': found map_extra = 0x%llx.\n", map->name,
2463 (unsigned long long)def->map_extra);
2464 if (def->parts & MAP_DEF_PINNING)
2465 pr_debug("map '%s': found pinning = %u.\n", map->name, def->pinning);
2466 if (def->parts & MAP_DEF_NUMA_NODE)
2467 pr_debug("map '%s': found numa_node = %u.\n", map->name, def->numa_node);
2468
2469 if (def->parts & MAP_DEF_INNER_MAP)
2470 pr_debug("map '%s': found inner map definition.\n", map->name);
2471}
2472
2473static const char *btf_var_linkage_str(__u32 linkage)
2474{
2475 switch (linkage) {
2476 case BTF_VAR_STATIC: return "static";
2477 case BTF_VAR_GLOBAL_ALLOCATED: return "global";
2478 case BTF_VAR_GLOBAL_EXTERN: return "extern";
2479 default: return "unknown";
2480 }
2481}
2482
2483static int bpf_object__init_user_btf_map(struct bpf_object *obj,
2484 const struct btf_type *sec,
2485 int var_idx, int sec_idx,
2486 const Elf_Data *data, bool strict,
2487 const char *pin_root_path)
2488{
2489 struct btf_map_def map_def = {}, inner_def = {};
2490 const struct btf_type *var, *def;
2491 const struct btf_var_secinfo *vi;
2492 const struct btf_var *var_extra;
2493 const char *map_name;
2494 struct bpf_map *map;
2495 int err;
2496
2497 vi = btf_var_secinfos(sec) + var_idx;
2498 var = btf__type_by_id(obj->btf, vi->type);
2499 var_extra = btf_var(var);
2500 map_name = btf__name_by_offset(obj->btf, var->name_off);
2501
2502 if (map_name == NULL || map_name[0] == '\0') {
2503 pr_warn("map #%d: empty name.\n", var_idx);
2504 return -EINVAL;
2505 }
2506 if ((__u64)vi->offset + vi->size > data->d_size) {
2507 pr_warn("map '%s' BTF data is corrupted.\n", map_name);
2508 return -EINVAL;
2509 }
2510 if (!btf_is_var(var)) {
2511 pr_warn("map '%s': unexpected var kind %s.\n",
2512 map_name, btf_kind_str(var));
2513 return -EINVAL;
2514 }
2515 if (var_extra->linkage != BTF_VAR_GLOBAL_ALLOCATED) {
2516 pr_warn("map '%s': unsupported map linkage %s.\n",
2517 map_name, btf_var_linkage_str(var_extra->linkage));
2518 return -EOPNOTSUPP;
2519 }
2520
2521 def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
2522 if (!btf_is_struct(def)) {
2523 pr_warn("map '%s': unexpected def kind %s.\n",
2524 map_name, btf_kind_str(var));
2525 return -EINVAL;
2526 }
2527 if (def->size > vi->size) {
2528 pr_warn("map '%s': invalid def size.\n", map_name);
2529 return -EINVAL;
2530 }
2531
2532 map = bpf_object__add_map(obj);
2533 if (IS_ERR(map))
2534 return PTR_ERR(map);
2535 map->name = strdup(map_name);
2536 if (!map->name) {
2537 pr_warn("map '%s': failed to alloc map name.\n", map_name);
2538 return -ENOMEM;
2539 }
2540 map->libbpf_type = LIBBPF_MAP_UNSPEC;
2541 map->def.type = BPF_MAP_TYPE_UNSPEC;
2542 map->sec_idx = sec_idx;
2543 map->sec_offset = vi->offset;
2544 map->btf_var_idx = var_idx;
2545 pr_debug("map '%s': at sec_idx %d, offset %zu.\n",
2546 map_name, map->sec_idx, map->sec_offset);
2547
2548 err = parse_btf_map_def(map->name, obj->btf, def, strict, &map_def, &inner_def);
2549 if (err)
2550 return err;
2551
2552 fill_map_from_def(map, &map_def);
2553
2554 if (map_def.pinning == LIBBPF_PIN_BY_NAME) {
2555 err = build_map_pin_path(map, pin_root_path);
2556 if (err) {
2557 pr_warn("map '%s': couldn't build pin path.\n", map->name);
2558 return err;
2559 }
2560 }
2561
2562 if (map_def.parts & MAP_DEF_INNER_MAP) {
2563 map->inner_map = calloc(1, sizeof(*map->inner_map));
2564 if (!map->inner_map)
2565 return -ENOMEM;
2566 map->inner_map->fd = -1;
2567 map->inner_map->sec_idx = sec_idx;
2568 map->inner_map->name = malloc(strlen(map_name) + sizeof(".inner") + 1);
2569 if (!map->inner_map->name)
2570 return -ENOMEM;
2571 sprintf(map->inner_map->name, "%s.inner", map_name);
2572
2573 fill_map_from_def(map->inner_map, &inner_def);
2574 }
2575
2576 err = map_fill_btf_type_info(obj, map);
2577 if (err)
2578 return err;
2579
2580 return 0;
2581}
2582
2583static int bpf_object__init_user_btf_maps(struct bpf_object *obj, bool strict,
2584 const char *pin_root_path)
2585{
2586 const struct btf_type *sec = NULL;
2587 int nr_types, i, vlen, err;
2588 const struct btf_type *t;
2589 const char *name;
2590 Elf_Data *data;
2591 Elf_Scn *scn;
2592
2593 if (obj->efile.btf_maps_shndx < 0)
2594 return 0;
2595
2596 scn = elf_sec_by_idx(obj, obj->efile.btf_maps_shndx);
2597 data = elf_sec_data(obj, scn);
2598 if (!scn || !data) {
2599 pr_warn("elf: failed to get %s map definitions for %s\n",
2600 MAPS_ELF_SEC, obj->path);
2601 return -EINVAL;
2602 }
2603
2604 nr_types = btf__type_cnt(obj->btf);
2605 for (i = 1; i < nr_types; i++) {
2606 t = btf__type_by_id(obj->btf, i);
2607 if (!btf_is_datasec(t))
2608 continue;
2609 name = btf__name_by_offset(obj->btf, t->name_off);
2610 if (strcmp(name, MAPS_ELF_SEC) == 0) {
2611 sec = t;
2612 obj->efile.btf_maps_sec_btf_id = i;
2613 break;
2614 }
2615 }
2616
2617 if (!sec) {
2618 pr_warn("DATASEC '%s' not found.\n", MAPS_ELF_SEC);
2619 return -ENOENT;
2620 }
2621
2622 vlen = btf_vlen(sec);
2623 for (i = 0; i < vlen; i++) {
2624 err = bpf_object__init_user_btf_map(obj, sec, i,
2625 obj->efile.btf_maps_shndx,
2626 data, strict,
2627 pin_root_path);
2628 if (err)
2629 return err;
2630 }
2631
2632 return 0;
2633}
2634
2635static int bpf_object__init_maps(struct bpf_object *obj,
2636 const struct bpf_object_open_opts *opts)
2637{
2638 const char *pin_root_path;
2639 bool strict;
2640 int err = 0;
2641
2642 strict = !OPTS_GET(opts, relaxed_maps, false);
2643 pin_root_path = OPTS_GET(opts, pin_root_path, NULL);
2644
2645 err = bpf_object__init_user_btf_maps(obj, strict, pin_root_path);
2646 err = err ?: bpf_object__init_global_data_maps(obj);
2647 err = err ?: bpf_object__init_kconfig_map(obj);
2648 err = err ?: bpf_object_init_struct_ops(obj);
2649
2650 return err;
2651}
2652
2653static bool section_have_execinstr(struct bpf_object *obj, int idx)
2654{
2655 Elf64_Shdr *sh;
2656
2657 sh = elf_sec_hdr(obj, elf_sec_by_idx(obj, idx));
2658 if (!sh)
2659 return false;
2660
2661 return sh->sh_flags & SHF_EXECINSTR;
2662}
2663
2664static bool btf_needs_sanitization(struct bpf_object *obj)
2665{
2666 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
2667 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
2668 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
2669 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
2670 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
2671 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
2672 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
2673
2674 return !has_func || !has_datasec || !has_func_global || !has_float ||
2675 !has_decl_tag || !has_type_tag || !has_enum64;
2676}
2677
2678static int bpf_object__sanitize_btf(struct bpf_object *obj, struct btf *btf)
2679{
2680 bool has_func_global = kernel_supports(obj, FEAT_BTF_GLOBAL_FUNC);
2681 bool has_datasec = kernel_supports(obj, FEAT_BTF_DATASEC);
2682 bool has_float = kernel_supports(obj, FEAT_BTF_FLOAT);
2683 bool has_func = kernel_supports(obj, FEAT_BTF_FUNC);
2684 bool has_decl_tag = kernel_supports(obj, FEAT_BTF_DECL_TAG);
2685 bool has_type_tag = kernel_supports(obj, FEAT_BTF_TYPE_TAG);
2686 bool has_enum64 = kernel_supports(obj, FEAT_BTF_ENUM64);
2687 int enum64_placeholder_id = 0;
2688 struct btf_type *t;
2689 int i, j, vlen;
2690
2691 for (i = 1; i < btf__type_cnt(btf); i++) {
2692 t = (struct btf_type *)btf__type_by_id(btf, i);
2693
2694 if ((!has_datasec && btf_is_var(t)) || (!has_decl_tag && btf_is_decl_tag(t))) {
2695 /* replace VAR/DECL_TAG with INT */
2696 t->info = BTF_INFO_ENC(BTF_KIND_INT, 0, 0);
2697 /*
2698 * using size = 1 is the safest choice, 4 will be too
2699 * big and cause kernel BTF validation failure if
2700 * original variable took less than 4 bytes
2701 */
2702 t->size = 1;
2703 *(int *)(t + 1) = BTF_INT_ENC(0, 0, 8);
2704 } else if (!has_datasec && btf_is_datasec(t)) {
2705 /* replace DATASEC with STRUCT */
2706 const struct btf_var_secinfo *v = btf_var_secinfos(t);
2707 struct btf_member *m = btf_members(t);
2708 struct btf_type *vt;
2709 char *name;
2710
2711 name = (char *)btf__name_by_offset(btf, t->name_off);
2712 while (*name) {
2713 if (*name == '.')
2714 *name = '_';
2715 name++;
2716 }
2717
2718 vlen = btf_vlen(t);
2719 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, vlen);
2720 for (j = 0; j < vlen; j++, v++, m++) {
2721 /* order of field assignments is important */
2722 m->offset = v->offset * 8;
2723 m->type = v->type;
2724 /* preserve variable name as member name */
2725 vt = (void *)btf__type_by_id(btf, v->type);
2726 m->name_off = vt->name_off;
2727 }
2728 } else if (!has_func && btf_is_func_proto(t)) {
2729 /* replace FUNC_PROTO with ENUM */
2730 vlen = btf_vlen(t);
2731 t->info = BTF_INFO_ENC(BTF_KIND_ENUM, 0, vlen);
2732 t->size = sizeof(__u32); /* kernel enforced */
2733 } else if (!has_func && btf_is_func(t)) {
2734 /* replace FUNC with TYPEDEF */
2735 t->info = BTF_INFO_ENC(BTF_KIND_TYPEDEF, 0, 0);
2736 } else if (!has_func_global && btf_is_func(t)) {
2737 /* replace BTF_FUNC_GLOBAL with BTF_FUNC_STATIC */
2738 t->info = BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0);
2739 } else if (!has_float && btf_is_float(t)) {
2740 /* replace FLOAT with an equally-sized empty STRUCT;
2741 * since C compilers do not accept e.g. "float" as a
2742 * valid struct name, make it anonymous
2743 */
2744 t->name_off = 0;
2745 t->info = BTF_INFO_ENC(BTF_KIND_STRUCT, 0, 0);
2746 } else if (!has_type_tag && btf_is_type_tag(t)) {
2747 /* replace TYPE_TAG with a CONST */
2748 t->name_off = 0;
2749 t->info = BTF_INFO_ENC(BTF_KIND_CONST, 0, 0);
2750 } else if (!has_enum64 && btf_is_enum(t)) {
2751 /* clear the kflag */
2752 t->info = btf_type_info(btf_kind(t), btf_vlen(t), false);
2753 } else if (!has_enum64 && btf_is_enum64(t)) {
2754 /* replace ENUM64 with a union */
2755 struct btf_member *m;
2756
2757 if (enum64_placeholder_id == 0) {
2758 enum64_placeholder_id = btf__add_int(btf, "enum64_placeholder", 1, 0);
2759 if (enum64_placeholder_id < 0)
2760 return enum64_placeholder_id;
2761
2762 t = (struct btf_type *)btf__type_by_id(btf, i);
2763 }
2764
2765 m = btf_members(t);
2766 vlen = btf_vlen(t);
2767 t->info = BTF_INFO_ENC(BTF_KIND_UNION, 0, vlen);
2768 for (j = 0; j < vlen; j++, m++) {
2769 m->type = enum64_placeholder_id;
2770 m->offset = 0;
2771 }
2772 }
2773 }
2774
2775 return 0;
2776}
2777
2778static bool libbpf_needs_btf(const struct bpf_object *obj)
2779{
2780 return obj->efile.btf_maps_shndx >= 0 ||
2781 obj->efile.st_ops_shndx >= 0 ||
2782 obj->efile.st_ops_link_shndx >= 0 ||
2783 obj->nr_extern > 0;
2784}
2785
2786static bool kernel_needs_btf(const struct bpf_object *obj)
2787{
2788 return obj->efile.st_ops_shndx >= 0 || obj->efile.st_ops_link_shndx >= 0;
2789}
2790
2791static int bpf_object__init_btf(struct bpf_object *obj,
2792 Elf_Data *btf_data,
2793 Elf_Data *btf_ext_data)
2794{
2795 int err = -ENOENT;
2796
2797 if (btf_data) {
2798 obj->btf = btf__new(btf_data->d_buf, btf_data->d_size);
2799 err = libbpf_get_error(obj->btf);
2800 if (err) {
2801 obj->btf = NULL;
2802 pr_warn("Error loading ELF section %s: %d.\n", BTF_ELF_SEC, err);
2803 goto out;
2804 }
2805 /* enforce 8-byte pointers for BPF-targeted BTFs */
2806 btf__set_pointer_size(obj->btf, 8);
2807 }
2808 if (btf_ext_data) {
2809 struct btf_ext_info *ext_segs[3];
2810 int seg_num, sec_num;
2811
2812 if (!obj->btf) {
2813 pr_debug("Ignore ELF section %s because its depending ELF section %s is not found.\n",
2814 BTF_EXT_ELF_SEC, BTF_ELF_SEC);
2815 goto out;
2816 }
2817 obj->btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
2818 err = libbpf_get_error(obj->btf_ext);
2819 if (err) {
2820 pr_warn("Error loading ELF section %s: %d. Ignored and continue.\n",
2821 BTF_EXT_ELF_SEC, err);
2822 obj->btf_ext = NULL;
2823 goto out;
2824 }
2825
2826 /* setup .BTF.ext to ELF section mapping */
2827 ext_segs[0] = &obj->btf_ext->func_info;
2828 ext_segs[1] = &obj->btf_ext->line_info;
2829 ext_segs[2] = &obj->btf_ext->core_relo_info;
2830 for (seg_num = 0; seg_num < ARRAY_SIZE(ext_segs); seg_num++) {
2831 struct btf_ext_info *seg = ext_segs[seg_num];
2832 const struct btf_ext_info_sec *sec;
2833 const char *sec_name;
2834 Elf_Scn *scn;
2835
2836 if (seg->sec_cnt == 0)
2837 continue;
2838
2839 seg->sec_idxs = calloc(seg->sec_cnt, sizeof(*seg->sec_idxs));
2840 if (!seg->sec_idxs) {
2841 err = -ENOMEM;
2842 goto out;
2843 }
2844
2845 sec_num = 0;
2846 for_each_btf_ext_sec(seg, sec) {
2847 /* preventively increment index to avoid doing
2848 * this before every continue below
2849 */
2850 sec_num++;
2851
2852 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
2853 if (str_is_empty(sec_name))
2854 continue;
2855 scn = elf_sec_by_name(obj, sec_name);
2856 if (!scn)
2857 continue;
2858
2859 seg->sec_idxs[sec_num - 1] = elf_ndxscn(scn);
2860 }
2861 }
2862 }
2863out:
2864 if (err && libbpf_needs_btf(obj)) {
2865 pr_warn("BTF is required, but is missing or corrupted.\n");
2866 return err;
2867 }
2868 return 0;
2869}
2870
2871static int compare_vsi_off(const void *_a, const void *_b)
2872{
2873 const struct btf_var_secinfo *a = _a;
2874 const struct btf_var_secinfo *b = _b;
2875
2876 return a->offset - b->offset;
2877}
2878
2879static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
2880 struct btf_type *t)
2881{
2882 __u32 size = 0, i, vars = btf_vlen(t);
2883 const char *sec_name = btf__name_by_offset(btf, t->name_off);
2884 struct btf_var_secinfo *vsi;
2885 bool fixup_offsets = false;
2886 int err;
2887
2888 if (!sec_name) {
2889 pr_debug("No name found in string section for DATASEC kind.\n");
2890 return -ENOENT;
2891 }
2892
2893 /* Extern-backing datasecs (.ksyms, .kconfig) have their size and
2894 * variable offsets set at the previous step. Further, not every
2895 * extern BTF VAR has corresponding ELF symbol preserved, so we skip
2896 * all fixups altogether for such sections and go straight to sorting
2897 * VARs within their DATASEC.
2898 */
2899 if (strcmp(sec_name, KCONFIG_SEC) == 0 || strcmp(sec_name, KSYMS_SEC) == 0)
2900 goto sort_vars;
2901
2902 /* Clang leaves DATASEC size and VAR offsets as zeroes, so we need to
2903 * fix this up. But BPF static linker already fixes this up and fills
2904 * all the sizes and offsets during static linking. So this step has
2905 * to be optional. But the STV_HIDDEN handling is non-optional for any
2906 * non-extern DATASEC, so the variable fixup loop below handles both
2907 * functions at the same time, paying the cost of BTF VAR <-> ELF
2908 * symbol matching just once.
2909 */
2910 if (t->size == 0) {
2911 err = find_elf_sec_sz(obj, sec_name, &size);
2912 if (err || !size) {
2913 pr_debug("sec '%s': failed to determine size from ELF: size %u, err %d\n",
2914 sec_name, size, err);
2915 return -ENOENT;
2916 }
2917
2918 t->size = size;
2919 fixup_offsets = true;
2920 }
2921
2922 for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
2923 const struct btf_type *t_var;
2924 struct btf_var *var;
2925 const char *var_name;
2926 Elf64_Sym *sym;
2927
2928 t_var = btf__type_by_id(btf, vsi->type);
2929 if (!t_var || !btf_is_var(t_var)) {
2930 pr_debug("sec '%s': unexpected non-VAR type found\n", sec_name);
2931 return -EINVAL;
2932 }
2933
2934 var = btf_var(t_var);
2935 if (var->linkage == BTF_VAR_STATIC || var->linkage == BTF_VAR_GLOBAL_EXTERN)
2936 continue;
2937
2938 var_name = btf__name_by_offset(btf, t_var->name_off);
2939 if (!var_name) {
2940 pr_debug("sec '%s': failed to find name of DATASEC's member #%d\n",
2941 sec_name, i);
2942 return -ENOENT;
2943 }
2944
2945 sym = find_elf_var_sym(obj, var_name);
2946 if (IS_ERR(sym)) {
2947 pr_debug("sec '%s': failed to find ELF symbol for VAR '%s'\n",
2948 sec_name, var_name);
2949 return -ENOENT;
2950 }
2951
2952 if (fixup_offsets)
2953 vsi->offset = sym->st_value;
2954
2955 /* if variable is a global/weak symbol, but has restricted
2956 * (STV_HIDDEN or STV_INTERNAL) visibility, mark its BTF VAR
2957 * as static. This follows similar logic for functions (BPF
2958 * subprogs) and influences libbpf's further decisions about
2959 * whether to make global data BPF array maps as
2960 * BPF_F_MMAPABLE.
2961 */
2962 if (ELF64_ST_VISIBILITY(sym->st_other) == STV_HIDDEN
2963 || ELF64_ST_VISIBILITY(sym->st_other) == STV_INTERNAL)
2964 var->linkage = BTF_VAR_STATIC;
2965 }
2966
2967sort_vars:
2968 qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
2969 return 0;
2970}
2971
2972static int bpf_object_fixup_btf(struct bpf_object *obj)
2973{
2974 int i, n, err = 0;
2975
2976 if (!obj->btf)
2977 return 0;
2978
2979 n = btf__type_cnt(obj->btf);
2980 for (i = 1; i < n; i++) {
2981 struct btf_type *t = btf_type_by_id(obj->btf, i);
2982
2983 /* Loader needs to fix up some of the things compiler
2984 * couldn't get its hands on while emitting BTF. This
2985 * is section size and global variable offset. We use
2986 * the info from the ELF itself for this purpose.
2987 */
2988 if (btf_is_datasec(t)) {
2989 err = btf_fixup_datasec(obj, obj->btf, t);
2990 if (err)
2991 return err;
2992 }
2993 }
2994
2995 return 0;
2996}
2997
2998static bool prog_needs_vmlinux_btf(struct bpf_program *prog)
2999{
3000 if (prog->type == BPF_PROG_TYPE_STRUCT_OPS ||
3001 prog->type == BPF_PROG_TYPE_LSM)
3002 return true;
3003
3004 /* BPF_PROG_TYPE_TRACING programs which do not attach to other programs
3005 * also need vmlinux BTF
3006 */
3007 if (prog->type == BPF_PROG_TYPE_TRACING && !prog->attach_prog_fd)
3008 return true;
3009
3010 return false;
3011}
3012
3013static bool obj_needs_vmlinux_btf(const struct bpf_object *obj)
3014{
3015 struct bpf_program *prog;
3016 int i;
3017
3018 /* CO-RE relocations need kernel BTF, only when btf_custom_path
3019 * is not specified
3020 */
3021 if (obj->btf_ext && obj->btf_ext->core_relo_info.len && !obj->btf_custom_path)
3022 return true;
3023
3024 /* Support for typed ksyms needs kernel BTF */
3025 for (i = 0; i < obj->nr_extern; i++) {
3026 const struct extern_desc *ext;
3027
3028 ext = &obj->externs[i];
3029 if (ext->type == EXT_KSYM && ext->ksym.type_id)
3030 return true;
3031 }
3032
3033 bpf_object__for_each_program(prog, obj) {
3034 if (!prog->autoload)
3035 continue;
3036 if (prog_needs_vmlinux_btf(prog))
3037 return true;
3038 }
3039
3040 return false;
3041}
3042
3043static int bpf_object__load_vmlinux_btf(struct bpf_object *obj, bool force)
3044{
3045 int err;
3046
3047 /* btf_vmlinux could be loaded earlier */
3048 if (obj->btf_vmlinux || obj->gen_loader)
3049 return 0;
3050
3051 if (!force && !obj_needs_vmlinux_btf(obj))
3052 return 0;
3053
3054 obj->btf_vmlinux = btf__load_vmlinux_btf();
3055 err = libbpf_get_error(obj->btf_vmlinux);
3056 if (err) {
3057 pr_warn("Error loading vmlinux BTF: %d\n", err);
3058 obj->btf_vmlinux = NULL;
3059 return err;
3060 }
3061 return 0;
3062}
3063
3064static int bpf_object__sanitize_and_load_btf(struct bpf_object *obj)
3065{
3066 struct btf *kern_btf = obj->btf;
3067 bool btf_mandatory, sanitize;
3068 int i, err = 0;
3069
3070 if (!obj->btf)
3071 return 0;
3072
3073 if (!kernel_supports(obj, FEAT_BTF)) {
3074 if (kernel_needs_btf(obj)) {
3075 err = -EOPNOTSUPP;
3076 goto report;
3077 }
3078 pr_debug("Kernel doesn't support BTF, skipping uploading it.\n");
3079 return 0;
3080 }
3081
3082 /* Even though some subprogs are global/weak, user might prefer more
3083 * permissive BPF verification process that BPF verifier performs for
3084 * static functions, taking into account more context from the caller
3085 * functions. In such case, they need to mark such subprogs with
3086 * __attribute__((visibility("hidden"))) and libbpf will adjust
3087 * corresponding FUNC BTF type to be marked as static and trigger more
3088 * involved BPF verification process.
3089 */
3090 for (i = 0; i < obj->nr_programs; i++) {
3091 struct bpf_program *prog = &obj->programs[i];
3092 struct btf_type *t;
3093 const char *name;
3094 int j, n;
3095
3096 if (!prog->mark_btf_static || !prog_is_subprog(obj, prog))
3097 continue;
3098
3099 n = btf__type_cnt(obj->btf);
3100 for (j = 1; j < n; j++) {
3101 t = btf_type_by_id(obj->btf, j);
3102 if (!btf_is_func(t) || btf_func_linkage(t) != BTF_FUNC_GLOBAL)
3103 continue;
3104
3105 name = btf__str_by_offset(obj->btf, t->name_off);
3106 if (strcmp(name, prog->name) != 0)
3107 continue;
3108
3109 t->info = btf_type_info(BTF_KIND_FUNC, BTF_FUNC_STATIC, 0);
3110 break;
3111 }
3112 }
3113
3114 sanitize = btf_needs_sanitization(obj);
3115 if (sanitize) {
3116 const void *raw_data;
3117 __u32 sz;
3118
3119 /* clone BTF to sanitize a copy and leave the original intact */
3120 raw_data = btf__raw_data(obj->btf, &sz);
3121 kern_btf = btf__new(raw_data, sz);
3122 err = libbpf_get_error(kern_btf);
3123 if (err)
3124 return err;
3125
3126 /* enforce 8-byte pointers for BPF-targeted BTFs */
3127 btf__set_pointer_size(obj->btf, 8);
3128 err = bpf_object__sanitize_btf(obj, kern_btf);
3129 if (err)
3130 return err;
3131 }
3132
3133 if (obj->gen_loader) {
3134 __u32 raw_size = 0;
3135 const void *raw_data = btf__raw_data(kern_btf, &raw_size);
3136
3137 if (!raw_data)
3138 return -ENOMEM;
3139 bpf_gen__load_btf(obj->gen_loader, raw_data, raw_size);
3140 /* Pretend to have valid FD to pass various fd >= 0 checks.
3141 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
3142 */
3143 btf__set_fd(kern_btf, 0);
3144 } else {
3145 /* currently BPF_BTF_LOAD only supports log_level 1 */
3146 err = btf_load_into_kernel(kern_btf, obj->log_buf, obj->log_size,
3147 obj->log_level ? 1 : 0);
3148 }
3149 if (sanitize) {
3150 if (!err) {
3151 /* move fd to libbpf's BTF */
3152 btf__set_fd(obj->btf, btf__fd(kern_btf));
3153 btf__set_fd(kern_btf, -1);
3154 }
3155 btf__free(kern_btf);
3156 }
3157report:
3158 if (err) {
3159 btf_mandatory = kernel_needs_btf(obj);
3160 pr_warn("Error loading .BTF into kernel: %d. %s\n", err,
3161 btf_mandatory ? "BTF is mandatory, can't proceed."
3162 : "BTF is optional, ignoring.");
3163 if (!btf_mandatory)
3164 err = 0;
3165 }
3166 return err;
3167}
3168
3169static const char *elf_sym_str(const struct bpf_object *obj, size_t off)
3170{
3171 const char *name;
3172
3173 name = elf_strptr(obj->efile.elf, obj->efile.strtabidx, off);
3174 if (!name) {
3175 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3176 off, obj->path, elf_errmsg(-1));
3177 return NULL;
3178 }
3179
3180 return name;
3181}
3182
3183static const char *elf_sec_str(const struct bpf_object *obj, size_t off)
3184{
3185 const char *name;
3186
3187 name = elf_strptr(obj->efile.elf, obj->efile.shstrndx, off);
3188 if (!name) {
3189 pr_warn("elf: failed to get section name string at offset %zu from %s: %s\n",
3190 off, obj->path, elf_errmsg(-1));
3191 return NULL;
3192 }
3193
3194 return name;
3195}
3196
3197static Elf_Scn *elf_sec_by_idx(const struct bpf_object *obj, size_t idx)
3198{
3199 Elf_Scn *scn;
3200
3201 scn = elf_getscn(obj->efile.elf, idx);
3202 if (!scn) {
3203 pr_warn("elf: failed to get section(%zu) from %s: %s\n",
3204 idx, obj->path, elf_errmsg(-1));
3205 return NULL;
3206 }
3207 return scn;
3208}
3209
3210static Elf_Scn *elf_sec_by_name(const struct bpf_object *obj, const char *name)
3211{
3212 Elf_Scn *scn = NULL;
3213 Elf *elf = obj->efile.elf;
3214 const char *sec_name;
3215
3216 while ((scn = elf_nextscn(elf, scn)) != NULL) {
3217 sec_name = elf_sec_name(obj, scn);
3218 if (!sec_name)
3219 return NULL;
3220
3221 if (strcmp(sec_name, name) != 0)
3222 continue;
3223
3224 return scn;
3225 }
3226 return NULL;
3227}
3228
3229static Elf64_Shdr *elf_sec_hdr(const struct bpf_object *obj, Elf_Scn *scn)
3230{
3231 Elf64_Shdr *shdr;
3232
3233 if (!scn)
3234 return NULL;
3235
3236 shdr = elf64_getshdr(scn);
3237 if (!shdr) {
3238 pr_warn("elf: failed to get section(%zu) header from %s: %s\n",
3239 elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3240 return NULL;
3241 }
3242
3243 return shdr;
3244}
3245
3246static const char *elf_sec_name(const struct bpf_object *obj, Elf_Scn *scn)
3247{
3248 const char *name;
3249 Elf64_Shdr *sh;
3250
3251 if (!scn)
3252 return NULL;
3253
3254 sh = elf_sec_hdr(obj, scn);
3255 if (!sh)
3256 return NULL;
3257
3258 name = elf_sec_str(obj, sh->sh_name);
3259 if (!name) {
3260 pr_warn("elf: failed to get section(%zu) name from %s: %s\n",
3261 elf_ndxscn(scn), obj->path, elf_errmsg(-1));
3262 return NULL;
3263 }
3264
3265 return name;
3266}
3267
3268static Elf_Data *elf_sec_data(const struct bpf_object *obj, Elf_Scn *scn)
3269{
3270 Elf_Data *data;
3271
3272 if (!scn)
3273 return NULL;
3274
3275 data = elf_getdata(scn, 0);
3276 if (!data) {
3277 pr_warn("elf: failed to get section(%zu) %s data from %s: %s\n",
3278 elf_ndxscn(scn), elf_sec_name(obj, scn) ?: "<?>",
3279 obj->path, elf_errmsg(-1));
3280 return NULL;
3281 }
3282
3283 return data;
3284}
3285
3286static Elf64_Sym *elf_sym_by_idx(const struct bpf_object *obj, size_t idx)
3287{
3288 if (idx >= obj->efile.symbols->d_size / sizeof(Elf64_Sym))
3289 return NULL;
3290
3291 return (Elf64_Sym *)obj->efile.symbols->d_buf + idx;
3292}
3293
3294static Elf64_Rel *elf_rel_by_idx(Elf_Data *data, size_t idx)
3295{
3296 if (idx >= data->d_size / sizeof(Elf64_Rel))
3297 return NULL;
3298
3299 return (Elf64_Rel *)data->d_buf + idx;
3300}
3301
3302static bool is_sec_name_dwarf(const char *name)
3303{
3304 /* approximation, but the actual list is too long */
3305 return str_has_pfx(name, ".debug_");
3306}
3307
3308static bool ignore_elf_section(Elf64_Shdr *hdr, const char *name)
3309{
3310 /* no special handling of .strtab */
3311 if (hdr->sh_type == SHT_STRTAB)
3312 return true;
3313
3314 /* ignore .llvm_addrsig section as well */
3315 if (hdr->sh_type == SHT_LLVM_ADDRSIG)
3316 return true;
3317
3318 /* no subprograms will lead to an empty .text section, ignore it */
3319 if (hdr->sh_type == SHT_PROGBITS && hdr->sh_size == 0 &&
3320 strcmp(name, ".text") == 0)
3321 return true;
3322
3323 /* DWARF sections */
3324 if (is_sec_name_dwarf(name))
3325 return true;
3326
3327 if (str_has_pfx(name, ".rel")) {
3328 name += sizeof(".rel") - 1;
3329 /* DWARF section relocations */
3330 if (is_sec_name_dwarf(name))
3331 return true;
3332
3333 /* .BTF and .BTF.ext don't need relocations */
3334 if (strcmp(name, BTF_ELF_SEC) == 0 ||
3335 strcmp(name, BTF_EXT_ELF_SEC) == 0)
3336 return true;
3337 }
3338
3339 return false;
3340}
3341
3342static int cmp_progs(const void *_a, const void *_b)
3343{
3344 const struct bpf_program *a = _a;
3345 const struct bpf_program *b = _b;
3346
3347 if (a->sec_idx != b->sec_idx)
3348 return a->sec_idx < b->sec_idx ? -1 : 1;
3349
3350 /* sec_insn_off can't be the same within the section */
3351 return a->sec_insn_off < b->sec_insn_off ? -1 : 1;
3352}
3353
3354static int bpf_object__elf_collect(struct bpf_object *obj)
3355{
3356 struct elf_sec_desc *sec_desc;
3357 Elf *elf = obj->efile.elf;
3358 Elf_Data *btf_ext_data = NULL;
3359 Elf_Data *btf_data = NULL;
3360 int idx = 0, err = 0;
3361 const char *name;
3362 Elf_Data *data;
3363 Elf_Scn *scn;
3364 Elf64_Shdr *sh;
3365
3366 /* ELF section indices are 0-based, but sec #0 is special "invalid"
3367 * section. Since section count retrieved by elf_getshdrnum() does
3368 * include sec #0, it is already the necessary size of an array to keep
3369 * all the sections.
3370 */
3371 if (elf_getshdrnum(obj->efile.elf, &obj->efile.sec_cnt)) {
3372 pr_warn("elf: failed to get the number of sections for %s: %s\n",
3373 obj->path, elf_errmsg(-1));
3374 return -LIBBPF_ERRNO__FORMAT;
3375 }
3376 obj->efile.secs = calloc(obj->efile.sec_cnt, sizeof(*obj->efile.secs));
3377 if (!obj->efile.secs)
3378 return -ENOMEM;
3379
3380 /* a bunch of ELF parsing functionality depends on processing symbols,
3381 * so do the first pass and find the symbol table
3382 */
3383 scn = NULL;
3384 while ((scn = elf_nextscn(elf, scn)) != NULL) {
3385 sh = elf_sec_hdr(obj, scn);
3386 if (!sh)
3387 return -LIBBPF_ERRNO__FORMAT;
3388
3389 if (sh->sh_type == SHT_SYMTAB) {
3390 if (obj->efile.symbols) {
3391 pr_warn("elf: multiple symbol tables in %s\n", obj->path);
3392 return -LIBBPF_ERRNO__FORMAT;
3393 }
3394
3395 data = elf_sec_data(obj, scn);
3396 if (!data)
3397 return -LIBBPF_ERRNO__FORMAT;
3398
3399 idx = elf_ndxscn(scn);
3400
3401 obj->efile.symbols = data;
3402 obj->efile.symbols_shndx = idx;
3403 obj->efile.strtabidx = sh->sh_link;
3404 }
3405 }
3406
3407 if (!obj->efile.symbols) {
3408 pr_warn("elf: couldn't find symbol table in %s, stripped object file?\n",
3409 obj->path);
3410 return -ENOENT;
3411 }
3412
3413 scn = NULL;
3414 while ((scn = elf_nextscn(elf, scn)) != NULL) {
3415 idx = elf_ndxscn(scn);
3416 sec_desc = &obj->efile.secs[idx];
3417
3418 sh = elf_sec_hdr(obj, scn);
3419 if (!sh)
3420 return -LIBBPF_ERRNO__FORMAT;
3421
3422 name = elf_sec_str(obj, sh->sh_name);
3423 if (!name)
3424 return -LIBBPF_ERRNO__FORMAT;
3425
3426 if (ignore_elf_section(sh, name))
3427 continue;
3428
3429 data = elf_sec_data(obj, scn);
3430 if (!data)
3431 return -LIBBPF_ERRNO__FORMAT;
3432
3433 pr_debug("elf: section(%d) %s, size %ld, link %d, flags %lx, type=%d\n",
3434 idx, name, (unsigned long)data->d_size,
3435 (int)sh->sh_link, (unsigned long)sh->sh_flags,
3436 (int)sh->sh_type);
3437
3438 if (strcmp(name, "license") == 0) {
3439 err = bpf_object__init_license(obj, data->d_buf, data->d_size);
3440 if (err)
3441 return err;
3442 } else if (strcmp(name, "version") == 0) {
3443 err = bpf_object__init_kversion(obj, data->d_buf, data->d_size);
3444 if (err)
3445 return err;
3446 } else if (strcmp(name, "maps") == 0) {
3447 pr_warn("elf: legacy map definitions in 'maps' section are not supported by libbpf v1.0+\n");
3448 return -ENOTSUP;
3449 } else if (strcmp(name, MAPS_ELF_SEC) == 0) {
3450 obj->efile.btf_maps_shndx = idx;
3451 } else if (strcmp(name, BTF_ELF_SEC) == 0) {
3452 if (sh->sh_type != SHT_PROGBITS)
3453 return -LIBBPF_ERRNO__FORMAT;
3454 btf_data = data;
3455 } else if (strcmp(name, BTF_EXT_ELF_SEC) == 0) {
3456 if (sh->sh_type != SHT_PROGBITS)
3457 return -LIBBPF_ERRNO__FORMAT;
3458 btf_ext_data = data;
3459 } else if (sh->sh_type == SHT_SYMTAB) {
3460 /* already processed during the first pass above */
3461 } else if (sh->sh_type == SHT_PROGBITS && data->d_size > 0) {
3462 if (sh->sh_flags & SHF_EXECINSTR) {
3463 if (strcmp(name, ".text") == 0)
3464 obj->efile.text_shndx = idx;
3465 err = bpf_object__add_programs(obj, data, name, idx);
3466 if (err)
3467 return err;
3468 } else if (strcmp(name, DATA_SEC) == 0 ||
3469 str_has_pfx(name, DATA_SEC ".")) {
3470 sec_desc->sec_type = SEC_DATA;
3471 sec_desc->shdr = sh;
3472 sec_desc->data = data;
3473 } else if (strcmp(name, RODATA_SEC) == 0 ||
3474 str_has_pfx(name, RODATA_SEC ".")) {
3475 sec_desc->sec_type = SEC_RODATA;
3476 sec_desc->shdr = sh;
3477 sec_desc->data = data;
3478 } else if (strcmp(name, STRUCT_OPS_SEC) == 0) {
3479 obj->efile.st_ops_data = data;
3480 obj->efile.st_ops_shndx = idx;
3481 } else if (strcmp(name, STRUCT_OPS_LINK_SEC) == 0) {
3482 obj->efile.st_ops_link_data = data;
3483 obj->efile.st_ops_link_shndx = idx;
3484 } else {
3485 pr_info("elf: skipping unrecognized data section(%d) %s\n",
3486 idx, name);
3487 }
3488 } else if (sh->sh_type == SHT_REL) {
3489 int targ_sec_idx = sh->sh_info; /* points to other section */
3490
3491 if (sh->sh_entsize != sizeof(Elf64_Rel) ||
3492 targ_sec_idx >= obj->efile.sec_cnt)
3493 return -LIBBPF_ERRNO__FORMAT;
3494
3495 /* Only do relo for section with exec instructions */
3496 if (!section_have_execinstr(obj, targ_sec_idx) &&
3497 strcmp(name, ".rel" STRUCT_OPS_SEC) &&
3498 strcmp(name, ".rel" STRUCT_OPS_LINK_SEC) &&
3499 strcmp(name, ".rel" MAPS_ELF_SEC)) {
3500 pr_info("elf: skipping relo section(%d) %s for section(%d) %s\n",
3501 idx, name, targ_sec_idx,
3502 elf_sec_name(obj, elf_sec_by_idx(obj, targ_sec_idx)) ?: "<?>");
3503 continue;
3504 }
3505
3506 sec_desc->sec_type = SEC_RELO;
3507 sec_desc->shdr = sh;
3508 sec_desc->data = data;
3509 } else if (sh->sh_type == SHT_NOBITS && (strcmp(name, BSS_SEC) == 0 ||
3510 str_has_pfx(name, BSS_SEC "."))) {
3511 sec_desc->sec_type = SEC_BSS;
3512 sec_desc->shdr = sh;
3513 sec_desc->data = data;
3514 } else {
3515 pr_info("elf: skipping section(%d) %s (size %zu)\n", idx, name,
3516 (size_t)sh->sh_size);
3517 }
3518 }
3519
3520 if (!obj->efile.strtabidx || obj->efile.strtabidx > idx) {
3521 pr_warn("elf: symbol strings section missing or invalid in %s\n", obj->path);
3522 return -LIBBPF_ERRNO__FORMAT;
3523 }
3524
3525 /* sort BPF programs by section name and in-section instruction offset
3526 * for faster search
3527 */
3528 if (obj->nr_programs)
3529 qsort(obj->programs, obj->nr_programs, sizeof(*obj->programs), cmp_progs);
3530
3531 return bpf_object__init_btf(obj, btf_data, btf_ext_data);
3532}
3533
3534static bool sym_is_extern(const Elf64_Sym *sym)
3535{
3536 int bind = ELF64_ST_BIND(sym->st_info);
3537 /* externs are symbols w/ type=NOTYPE, bind=GLOBAL|WEAK, section=UND */
3538 return sym->st_shndx == SHN_UNDEF &&
3539 (bind == STB_GLOBAL || bind == STB_WEAK) &&
3540 ELF64_ST_TYPE(sym->st_info) == STT_NOTYPE;
3541}
3542
3543static bool sym_is_subprog(const Elf64_Sym *sym, int text_shndx)
3544{
3545 int bind = ELF64_ST_BIND(sym->st_info);
3546 int type = ELF64_ST_TYPE(sym->st_info);
3547
3548 /* in .text section */
3549 if (sym->st_shndx != text_shndx)
3550 return false;
3551
3552 /* local function */
3553 if (bind == STB_LOCAL && type == STT_SECTION)
3554 return true;
3555
3556 /* global function */
3557 return bind == STB_GLOBAL && type == STT_FUNC;
3558}
3559
3560static int find_extern_btf_id(const struct btf *btf, const char *ext_name)
3561{
3562 const struct btf_type *t;
3563 const char *tname;
3564 int i, n;
3565
3566 if (!btf)
3567 return -ESRCH;
3568
3569 n = btf__type_cnt(btf);
3570 for (i = 1; i < n; i++) {
3571 t = btf__type_by_id(btf, i);
3572
3573 if (!btf_is_var(t) && !btf_is_func(t))
3574 continue;
3575
3576 tname = btf__name_by_offset(btf, t->name_off);
3577 if (strcmp(tname, ext_name))
3578 continue;
3579
3580 if (btf_is_var(t) &&
3581 btf_var(t)->linkage != BTF_VAR_GLOBAL_EXTERN)
3582 return -EINVAL;
3583
3584 if (btf_is_func(t) && btf_func_linkage(t) != BTF_FUNC_EXTERN)
3585 return -EINVAL;
3586
3587 return i;
3588 }
3589
3590 return -ENOENT;
3591}
3592
3593static int find_extern_sec_btf_id(struct btf *btf, int ext_btf_id) {
3594 const struct btf_var_secinfo *vs;
3595 const struct btf_type *t;
3596 int i, j, n;
3597
3598 if (!btf)
3599 return -ESRCH;
3600
3601 n = btf__type_cnt(btf);
3602 for (i = 1; i < n; i++) {
3603 t = btf__type_by_id(btf, i);
3604
3605 if (!btf_is_datasec(t))
3606 continue;
3607
3608 vs = btf_var_secinfos(t);
3609 for (j = 0; j < btf_vlen(t); j++, vs++) {
3610 if (vs->type == ext_btf_id)
3611 return i;
3612 }
3613 }
3614
3615 return -ENOENT;
3616}
3617
3618static enum kcfg_type find_kcfg_type(const struct btf *btf, int id,
3619 bool *is_signed)
3620{
3621 const struct btf_type *t;
3622 const char *name;
3623
3624 t = skip_mods_and_typedefs(btf, id, NULL);
3625 name = btf__name_by_offset(btf, t->name_off);
3626
3627 if (is_signed)
3628 *is_signed = false;
3629 switch (btf_kind(t)) {
3630 case BTF_KIND_INT: {
3631 int enc = btf_int_encoding(t);
3632
3633 if (enc & BTF_INT_BOOL)
3634 return t->size == 1 ? KCFG_BOOL : KCFG_UNKNOWN;
3635 if (is_signed)
3636 *is_signed = enc & BTF_INT_SIGNED;
3637 if (t->size == 1)
3638 return KCFG_CHAR;
3639 if (t->size < 1 || t->size > 8 || (t->size & (t->size - 1)))
3640 return KCFG_UNKNOWN;
3641 return KCFG_INT;
3642 }
3643 case BTF_KIND_ENUM:
3644 if (t->size != 4)
3645 return KCFG_UNKNOWN;
3646 if (strcmp(name, "libbpf_tristate"))
3647 return KCFG_UNKNOWN;
3648 return KCFG_TRISTATE;
3649 case BTF_KIND_ENUM64:
3650 if (strcmp(name, "libbpf_tristate"))
3651 return KCFG_UNKNOWN;
3652 return KCFG_TRISTATE;
3653 case BTF_KIND_ARRAY:
3654 if (btf_array(t)->nelems == 0)
3655 return KCFG_UNKNOWN;
3656 if (find_kcfg_type(btf, btf_array(t)->type, NULL) != KCFG_CHAR)
3657 return KCFG_UNKNOWN;
3658 return KCFG_CHAR_ARR;
3659 default:
3660 return KCFG_UNKNOWN;
3661 }
3662}
3663
3664static int cmp_externs(const void *_a, const void *_b)
3665{
3666 const struct extern_desc *a = _a;
3667 const struct extern_desc *b = _b;
3668
3669 if (a->type != b->type)
3670 return a->type < b->type ? -1 : 1;
3671
3672 if (a->type == EXT_KCFG) {
3673 /* descending order by alignment requirements */
3674 if (a->kcfg.align != b->kcfg.align)
3675 return a->kcfg.align > b->kcfg.align ? -1 : 1;
3676 /* ascending order by size, within same alignment class */
3677 if (a->kcfg.sz != b->kcfg.sz)
3678 return a->kcfg.sz < b->kcfg.sz ? -1 : 1;
3679 }
3680
3681 /* resolve ties by name */
3682 return strcmp(a->name, b->name);
3683}
3684
3685static int find_int_btf_id(const struct btf *btf)
3686{
3687 const struct btf_type *t;
3688 int i, n;
3689
3690 n = btf__type_cnt(btf);
3691 for (i = 1; i < n; i++) {
3692 t = btf__type_by_id(btf, i);
3693
3694 if (btf_is_int(t) && btf_int_bits(t) == 32)
3695 return i;
3696 }
3697
3698 return 0;
3699}
3700
3701static int add_dummy_ksym_var(struct btf *btf)
3702{
3703 int i, int_btf_id, sec_btf_id, dummy_var_btf_id;
3704 const struct btf_var_secinfo *vs;
3705 const struct btf_type *sec;
3706
3707 if (!btf)
3708 return 0;
3709
3710 sec_btf_id = btf__find_by_name_kind(btf, KSYMS_SEC,
3711 BTF_KIND_DATASEC);
3712 if (sec_btf_id < 0)
3713 return 0;
3714
3715 sec = btf__type_by_id(btf, sec_btf_id);
3716 vs = btf_var_secinfos(sec);
3717 for (i = 0; i < btf_vlen(sec); i++, vs++) {
3718 const struct btf_type *vt;
3719
3720 vt = btf__type_by_id(btf, vs->type);
3721 if (btf_is_func(vt))
3722 break;
3723 }
3724
3725 /* No func in ksyms sec. No need to add dummy var. */
3726 if (i == btf_vlen(sec))
3727 return 0;
3728
3729 int_btf_id = find_int_btf_id(btf);
3730 dummy_var_btf_id = btf__add_var(btf,
3731 "dummy_ksym",
3732 BTF_VAR_GLOBAL_ALLOCATED,
3733 int_btf_id);
3734 if (dummy_var_btf_id < 0)
3735 pr_warn("cannot create a dummy_ksym var\n");
3736
3737 return dummy_var_btf_id;
3738}
3739
3740static int bpf_object__collect_externs(struct bpf_object *obj)
3741{
3742 struct btf_type *sec, *kcfg_sec = NULL, *ksym_sec = NULL;
3743 const struct btf_type *t;
3744 struct extern_desc *ext;
3745 int i, n, off, dummy_var_btf_id;
3746 const char *ext_name, *sec_name;
3747 Elf_Scn *scn;
3748 Elf64_Shdr *sh;
3749
3750 if (!obj->efile.symbols)
3751 return 0;
3752
3753 scn = elf_sec_by_idx(obj, obj->efile.symbols_shndx);
3754 sh = elf_sec_hdr(obj, scn);
3755 if (!sh || sh->sh_entsize != sizeof(Elf64_Sym))
3756 return -LIBBPF_ERRNO__FORMAT;
3757
3758 dummy_var_btf_id = add_dummy_ksym_var(obj->btf);
3759 if (dummy_var_btf_id < 0)
3760 return dummy_var_btf_id;
3761
3762 n = sh->sh_size / sh->sh_entsize;
3763 pr_debug("looking for externs among %d symbols...\n", n);
3764
3765 for (i = 0; i < n; i++) {
3766 Elf64_Sym *sym = elf_sym_by_idx(obj, i);
3767
3768 if (!sym)
3769 return -LIBBPF_ERRNO__FORMAT;
3770 if (!sym_is_extern(sym))
3771 continue;
3772 ext_name = elf_sym_str(obj, sym->st_name);
3773 if (!ext_name || !ext_name[0])
3774 continue;
3775
3776 ext = obj->externs;
3777 ext = libbpf_reallocarray(ext, obj->nr_extern + 1, sizeof(*ext));
3778 if (!ext)
3779 return -ENOMEM;
3780 obj->externs = ext;
3781 ext = &ext[obj->nr_extern];
3782 memset(ext, 0, sizeof(*ext));
3783 obj->nr_extern++;
3784
3785 ext->btf_id = find_extern_btf_id(obj->btf, ext_name);
3786 if (ext->btf_id <= 0) {
3787 pr_warn("failed to find BTF for extern '%s': %d\n",
3788 ext_name, ext->btf_id);
3789 return ext->btf_id;
3790 }
3791 t = btf__type_by_id(obj->btf, ext->btf_id);
3792 ext->name = btf__name_by_offset(obj->btf, t->name_off);
3793 ext->sym_idx = i;
3794 ext->is_weak = ELF64_ST_BIND(sym->st_info) == STB_WEAK;
3795
3796 ext->sec_btf_id = find_extern_sec_btf_id(obj->btf, ext->btf_id);
3797 if (ext->sec_btf_id <= 0) {
3798 pr_warn("failed to find BTF for extern '%s' [%d] section: %d\n",
3799 ext_name, ext->btf_id, ext->sec_btf_id);
3800 return ext->sec_btf_id;
3801 }
3802 sec = (void *)btf__type_by_id(obj->btf, ext->sec_btf_id);
3803 sec_name = btf__name_by_offset(obj->btf, sec->name_off);
3804
3805 if (strcmp(sec_name, KCONFIG_SEC) == 0) {
3806 if (btf_is_func(t)) {
3807 pr_warn("extern function %s is unsupported under %s section\n",
3808 ext->name, KCONFIG_SEC);
3809 return -ENOTSUP;
3810 }
3811 kcfg_sec = sec;
3812 ext->type = EXT_KCFG;
3813 ext->kcfg.sz = btf__resolve_size(obj->btf, t->type);
3814 if (ext->kcfg.sz <= 0) {
3815 pr_warn("failed to resolve size of extern (kcfg) '%s': %d\n",
3816 ext_name, ext->kcfg.sz);
3817 return ext->kcfg.sz;
3818 }
3819 ext->kcfg.align = btf__align_of(obj->btf, t->type);
3820 if (ext->kcfg.align <= 0) {
3821 pr_warn("failed to determine alignment of extern (kcfg) '%s': %d\n",
3822 ext_name, ext->kcfg.align);
3823 return -EINVAL;
3824 }
3825 ext->kcfg.type = find_kcfg_type(obj->btf, t->type,
3826 &ext->kcfg.is_signed);
3827 if (ext->kcfg.type == KCFG_UNKNOWN) {
3828 pr_warn("extern (kcfg) '%s': type is unsupported\n", ext_name);
3829 return -ENOTSUP;
3830 }
3831 } else if (strcmp(sec_name, KSYMS_SEC) == 0) {
3832 ksym_sec = sec;
3833 ext->type = EXT_KSYM;
3834 skip_mods_and_typedefs(obj->btf, t->type,
3835 &ext->ksym.type_id);
3836 } else {
3837 pr_warn("unrecognized extern section '%s'\n", sec_name);
3838 return -ENOTSUP;
3839 }
3840 }
3841 pr_debug("collected %d externs total\n", obj->nr_extern);
3842
3843 if (!obj->nr_extern)
3844 return 0;
3845
3846 /* sort externs by type, for kcfg ones also by (align, size, name) */
3847 qsort(obj->externs, obj->nr_extern, sizeof(*ext), cmp_externs);
3848
3849 /* for .ksyms section, we need to turn all externs into allocated
3850 * variables in BTF to pass kernel verification; we do this by
3851 * pretending that each extern is a 8-byte variable
3852 */
3853 if (ksym_sec) {
3854 /* find existing 4-byte integer type in BTF to use for fake
3855 * extern variables in DATASEC
3856 */
3857 int int_btf_id = find_int_btf_id(obj->btf);
3858 /* For extern function, a dummy_var added earlier
3859 * will be used to replace the vs->type and
3860 * its name string will be used to refill
3861 * the missing param's name.
3862 */
3863 const struct btf_type *dummy_var;
3864
3865 dummy_var = btf__type_by_id(obj->btf, dummy_var_btf_id);
3866 for (i = 0; i < obj->nr_extern; i++) {
3867 ext = &obj->externs[i];
3868 if (ext->type != EXT_KSYM)
3869 continue;
3870 pr_debug("extern (ksym) #%d: symbol %d, name %s\n",
3871 i, ext->sym_idx, ext->name);
3872 }
3873
3874 sec = ksym_sec;
3875 n = btf_vlen(sec);
3876 for (i = 0, off = 0; i < n; i++, off += sizeof(int)) {
3877 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3878 struct btf_type *vt;
3879
3880 vt = (void *)btf__type_by_id(obj->btf, vs->type);
3881 ext_name = btf__name_by_offset(obj->btf, vt->name_off);
3882 ext = find_extern_by_name(obj, ext_name);
3883 if (!ext) {
3884 pr_warn("failed to find extern definition for BTF %s '%s'\n",
3885 btf_kind_str(vt), ext_name);
3886 return -ESRCH;
3887 }
3888 if (btf_is_func(vt)) {
3889 const struct btf_type *func_proto;
3890 struct btf_param *param;
3891 int j;
3892
3893 func_proto = btf__type_by_id(obj->btf,
3894 vt->type);
3895 param = btf_params(func_proto);
3896 /* Reuse the dummy_var string if the
3897 * func proto does not have param name.
3898 */
3899 for (j = 0; j < btf_vlen(func_proto); j++)
3900 if (param[j].type && !param[j].name_off)
3901 param[j].name_off =
3902 dummy_var->name_off;
3903 vs->type = dummy_var_btf_id;
3904 vt->info &= ~0xffff;
3905 vt->info |= BTF_FUNC_GLOBAL;
3906 } else {
3907 btf_var(vt)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3908 vt->type = int_btf_id;
3909 }
3910 vs->offset = off;
3911 vs->size = sizeof(int);
3912 }
3913 sec->size = off;
3914 }
3915
3916 if (kcfg_sec) {
3917 sec = kcfg_sec;
3918 /* for kcfg externs calculate their offsets within a .kconfig map */
3919 off = 0;
3920 for (i = 0; i < obj->nr_extern; i++) {
3921 ext = &obj->externs[i];
3922 if (ext->type != EXT_KCFG)
3923 continue;
3924
3925 ext->kcfg.data_off = roundup(off, ext->kcfg.align);
3926 off = ext->kcfg.data_off + ext->kcfg.sz;
3927 pr_debug("extern (kcfg) #%d: symbol %d, off %u, name %s\n",
3928 i, ext->sym_idx, ext->kcfg.data_off, ext->name);
3929 }
3930 sec->size = off;
3931 n = btf_vlen(sec);
3932 for (i = 0; i < n; i++) {
3933 struct btf_var_secinfo *vs = btf_var_secinfos(sec) + i;
3934
3935 t = btf__type_by_id(obj->btf, vs->type);
3936 ext_name = btf__name_by_offset(obj->btf, t->name_off);
3937 ext = find_extern_by_name(obj, ext_name);
3938 if (!ext) {
3939 pr_warn("failed to find extern definition for BTF var '%s'\n",
3940 ext_name);
3941 return -ESRCH;
3942 }
3943 btf_var(t)->linkage = BTF_VAR_GLOBAL_ALLOCATED;
3944 vs->offset = ext->kcfg.data_off;
3945 }
3946 }
3947 return 0;
3948}
3949
3950static bool prog_is_subprog(const struct bpf_object *obj, const struct bpf_program *prog)
3951{
3952 return prog->sec_idx == obj->efile.text_shndx && obj->nr_programs > 1;
3953}
3954
3955struct bpf_program *
3956bpf_object__find_program_by_name(const struct bpf_object *obj,
3957 const char *name)
3958{
3959 struct bpf_program *prog;
3960
3961 bpf_object__for_each_program(prog, obj) {
3962 if (prog_is_subprog(obj, prog))
3963 continue;
3964 if (!strcmp(prog->name, name))
3965 return prog;
3966 }
3967 return errno = ENOENT, NULL;
3968}
3969
3970static bool bpf_object__shndx_is_data(const struct bpf_object *obj,
3971 int shndx)
3972{
3973 switch (obj->efile.secs[shndx].sec_type) {
3974 case SEC_BSS:
3975 case SEC_DATA:
3976 case SEC_RODATA:
3977 return true;
3978 default:
3979 return false;
3980 }
3981}
3982
3983static bool bpf_object__shndx_is_maps(const struct bpf_object *obj,
3984 int shndx)
3985{
3986 return shndx == obj->efile.btf_maps_shndx;
3987}
3988
3989static enum libbpf_map_type
3990bpf_object__section_to_libbpf_map_type(const struct bpf_object *obj, int shndx)
3991{
3992 if (shndx == obj->efile.symbols_shndx)
3993 return LIBBPF_MAP_KCONFIG;
3994
3995 switch (obj->efile.secs[shndx].sec_type) {
3996 case SEC_BSS:
3997 return LIBBPF_MAP_BSS;
3998 case SEC_DATA:
3999 return LIBBPF_MAP_DATA;
4000 case SEC_RODATA:
4001 return LIBBPF_MAP_RODATA;
4002 default:
4003 return LIBBPF_MAP_UNSPEC;
4004 }
4005}
4006
4007static int bpf_program__record_reloc(struct bpf_program *prog,
4008 struct reloc_desc *reloc_desc,
4009 __u32 insn_idx, const char *sym_name,
4010 const Elf64_Sym *sym, const Elf64_Rel *rel)
4011{
4012 struct bpf_insn *insn = &prog->insns[insn_idx];
4013 size_t map_idx, nr_maps = prog->obj->nr_maps;
4014 struct bpf_object *obj = prog->obj;
4015 __u32 shdr_idx = sym->st_shndx;
4016 enum libbpf_map_type type;
4017 const char *sym_sec_name;
4018 struct bpf_map *map;
4019
4020 if (!is_call_insn(insn) && !is_ldimm64_insn(insn)) {
4021 pr_warn("prog '%s': invalid relo against '%s' for insns[%d].code 0x%x\n",
4022 prog->name, sym_name, insn_idx, insn->code);
4023 return -LIBBPF_ERRNO__RELOC;
4024 }
4025
4026 if (sym_is_extern(sym)) {
4027 int sym_idx = ELF64_R_SYM(rel->r_info);
4028 int i, n = obj->nr_extern;
4029 struct extern_desc *ext;
4030
4031 for (i = 0; i < n; i++) {
4032 ext = &obj->externs[i];
4033 if (ext->sym_idx == sym_idx)
4034 break;
4035 }
4036 if (i >= n) {
4037 pr_warn("prog '%s': extern relo failed to find extern for '%s' (%d)\n",
4038 prog->name, sym_name, sym_idx);
4039 return -LIBBPF_ERRNO__RELOC;
4040 }
4041 pr_debug("prog '%s': found extern #%d '%s' (sym %d) for insn #%u\n",
4042 prog->name, i, ext->name, ext->sym_idx, insn_idx);
4043 if (insn->code == (BPF_JMP | BPF_CALL))
4044 reloc_desc->type = RELO_EXTERN_CALL;
4045 else
4046 reloc_desc->type = RELO_EXTERN_LD64;
4047 reloc_desc->insn_idx = insn_idx;
4048 reloc_desc->ext_idx = i;
4049 return 0;
4050 }
4051
4052 /* sub-program call relocation */
4053 if (is_call_insn(insn)) {
4054 if (insn->src_reg != BPF_PSEUDO_CALL) {
4055 pr_warn("prog '%s': incorrect bpf_call opcode\n", prog->name);
4056 return -LIBBPF_ERRNO__RELOC;
4057 }
4058 /* text_shndx can be 0, if no default "main" program exists */
4059 if (!shdr_idx || shdr_idx != obj->efile.text_shndx) {
4060 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4061 pr_warn("prog '%s': bad call relo against '%s' in section '%s'\n",
4062 prog->name, sym_name, sym_sec_name);
4063 return -LIBBPF_ERRNO__RELOC;
4064 }
4065 if (sym->st_value % BPF_INSN_SZ) {
4066 pr_warn("prog '%s': bad call relo against '%s' at offset %zu\n",
4067 prog->name, sym_name, (size_t)sym->st_value);
4068 return -LIBBPF_ERRNO__RELOC;
4069 }
4070 reloc_desc->type = RELO_CALL;
4071 reloc_desc->insn_idx = insn_idx;
4072 reloc_desc->sym_off = sym->st_value;
4073 return 0;
4074 }
4075
4076 if (!shdr_idx || shdr_idx >= SHN_LORESERVE) {
4077 pr_warn("prog '%s': invalid relo against '%s' in special section 0x%x; forgot to initialize global var?..\n",
4078 prog->name, sym_name, shdr_idx);
4079 return -LIBBPF_ERRNO__RELOC;
4080 }
4081
4082 /* loading subprog addresses */
4083 if (sym_is_subprog(sym, obj->efile.text_shndx)) {
4084 /* global_func: sym->st_value = offset in the section, insn->imm = 0.
4085 * local_func: sym->st_value = 0, insn->imm = offset in the section.
4086 */
4087 if ((sym->st_value % BPF_INSN_SZ) || (insn->imm % BPF_INSN_SZ)) {
4088 pr_warn("prog '%s': bad subprog addr relo against '%s' at offset %zu+%d\n",
4089 prog->name, sym_name, (size_t)sym->st_value, insn->imm);
4090 return -LIBBPF_ERRNO__RELOC;
4091 }
4092
4093 reloc_desc->type = RELO_SUBPROG_ADDR;
4094 reloc_desc->insn_idx = insn_idx;
4095 reloc_desc->sym_off = sym->st_value;
4096 return 0;
4097 }
4098
4099 type = bpf_object__section_to_libbpf_map_type(obj, shdr_idx);
4100 sym_sec_name = elf_sec_name(obj, elf_sec_by_idx(obj, shdr_idx));
4101
4102 /* generic map reference relocation */
4103 if (type == LIBBPF_MAP_UNSPEC) {
4104 if (!bpf_object__shndx_is_maps(obj, shdr_idx)) {
4105 pr_warn("prog '%s': bad map relo against '%s' in section '%s'\n",
4106 prog->name, sym_name, sym_sec_name);
4107 return -LIBBPF_ERRNO__RELOC;
4108 }
4109 for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4110 map = &obj->maps[map_idx];
4111 if (map->libbpf_type != type ||
4112 map->sec_idx != sym->st_shndx ||
4113 map->sec_offset != sym->st_value)
4114 continue;
4115 pr_debug("prog '%s': found map %zd (%s, sec %d, off %zu) for insn #%u\n",
4116 prog->name, map_idx, map->name, map->sec_idx,
4117 map->sec_offset, insn_idx);
4118 break;
4119 }
4120 if (map_idx >= nr_maps) {
4121 pr_warn("prog '%s': map relo failed to find map for section '%s', off %zu\n",
4122 prog->name, sym_sec_name, (size_t)sym->st_value);
4123 return -LIBBPF_ERRNO__RELOC;
4124 }
4125 reloc_desc->type = RELO_LD64;
4126 reloc_desc->insn_idx = insn_idx;
4127 reloc_desc->map_idx = map_idx;
4128 reloc_desc->sym_off = 0; /* sym->st_value determines map_idx */
4129 return 0;
4130 }
4131
4132 /* global data map relocation */
4133 if (!bpf_object__shndx_is_data(obj, shdr_idx)) {
4134 pr_warn("prog '%s': bad data relo against section '%s'\n",
4135 prog->name, sym_sec_name);
4136 return -LIBBPF_ERRNO__RELOC;
4137 }
4138 for (map_idx = 0; map_idx < nr_maps; map_idx++) {
4139 map = &obj->maps[map_idx];
4140 if (map->libbpf_type != type || map->sec_idx != sym->st_shndx)
4141 continue;
4142 pr_debug("prog '%s': found data map %zd (%s, sec %d, off %zu) for insn %u\n",
4143 prog->name, map_idx, map->name, map->sec_idx,
4144 map->sec_offset, insn_idx);
4145 break;
4146 }
4147 if (map_idx >= nr_maps) {
4148 pr_warn("prog '%s': data relo failed to find map for section '%s'\n",
4149 prog->name, sym_sec_name);
4150 return -LIBBPF_ERRNO__RELOC;
4151 }
4152
4153 reloc_desc->type = RELO_DATA;
4154 reloc_desc->insn_idx = insn_idx;
4155 reloc_desc->map_idx = map_idx;
4156 reloc_desc->sym_off = sym->st_value;
4157 return 0;
4158}
4159
4160static bool prog_contains_insn(const struct bpf_program *prog, size_t insn_idx)
4161{
4162 return insn_idx >= prog->sec_insn_off &&
4163 insn_idx < prog->sec_insn_off + prog->sec_insn_cnt;
4164}
4165
4166static struct bpf_program *find_prog_by_sec_insn(const struct bpf_object *obj,
4167 size_t sec_idx, size_t insn_idx)
4168{
4169 int l = 0, r = obj->nr_programs - 1, m;
4170 struct bpf_program *prog;
4171
4172 if (!obj->nr_programs)
4173 return NULL;
4174
4175 while (l < r) {
4176 m = l + (r - l + 1) / 2;
4177 prog = &obj->programs[m];
4178
4179 if (prog->sec_idx < sec_idx ||
4180 (prog->sec_idx == sec_idx && prog->sec_insn_off <= insn_idx))
4181 l = m;
4182 else
4183 r = m - 1;
4184 }
4185 /* matching program could be at index l, but it still might be the
4186 * wrong one, so we need to double check conditions for the last time
4187 */
4188 prog = &obj->programs[l];
4189 if (prog->sec_idx == sec_idx && prog_contains_insn(prog, insn_idx))
4190 return prog;
4191 return NULL;
4192}
4193
4194static int
4195bpf_object__collect_prog_relos(struct bpf_object *obj, Elf64_Shdr *shdr, Elf_Data *data)
4196{
4197 const char *relo_sec_name, *sec_name;
4198 size_t sec_idx = shdr->sh_info, sym_idx;
4199 struct bpf_program *prog;
4200 struct reloc_desc *relos;
4201 int err, i, nrels;
4202 const char *sym_name;
4203 __u32 insn_idx;
4204 Elf_Scn *scn;
4205 Elf_Data *scn_data;
4206 Elf64_Sym *sym;
4207 Elf64_Rel *rel;
4208
4209 if (sec_idx >= obj->efile.sec_cnt)
4210 return -EINVAL;
4211
4212 scn = elf_sec_by_idx(obj, sec_idx);
4213 scn_data = elf_sec_data(obj, scn);
4214
4215 relo_sec_name = elf_sec_str(obj, shdr->sh_name);
4216 sec_name = elf_sec_name(obj, scn);
4217 if (!relo_sec_name || !sec_name)
4218 return -EINVAL;
4219
4220 pr_debug("sec '%s': collecting relocation for section(%zu) '%s'\n",
4221 relo_sec_name, sec_idx, sec_name);
4222 nrels = shdr->sh_size / shdr->sh_entsize;
4223
4224 for (i = 0; i < nrels; i++) {
4225 rel = elf_rel_by_idx(data, i);
4226 if (!rel) {
4227 pr_warn("sec '%s': failed to get relo #%d\n", relo_sec_name, i);
4228 return -LIBBPF_ERRNO__FORMAT;
4229 }
4230
4231 sym_idx = ELF64_R_SYM(rel->r_info);
4232 sym = elf_sym_by_idx(obj, sym_idx);
4233 if (!sym) {
4234 pr_warn("sec '%s': symbol #%zu not found for relo #%d\n",
4235 relo_sec_name, sym_idx, i);
4236 return -LIBBPF_ERRNO__FORMAT;
4237 }
4238
4239 if (sym->st_shndx >= obj->efile.sec_cnt) {
4240 pr_warn("sec '%s': corrupted symbol #%zu pointing to invalid section #%zu for relo #%d\n",
4241 relo_sec_name, sym_idx, (size_t)sym->st_shndx, i);
4242 return -LIBBPF_ERRNO__FORMAT;
4243 }
4244
4245 if (rel->r_offset % BPF_INSN_SZ || rel->r_offset >= scn_data->d_size) {
4246 pr_warn("sec '%s': invalid offset 0x%zx for relo #%d\n",
4247 relo_sec_name, (size_t)rel->r_offset, i);
4248 return -LIBBPF_ERRNO__FORMAT;
4249 }
4250
4251 insn_idx = rel->r_offset / BPF_INSN_SZ;
4252 /* relocations against static functions are recorded as
4253 * relocations against the section that contains a function;
4254 * in such case, symbol will be STT_SECTION and sym.st_name
4255 * will point to empty string (0), so fetch section name
4256 * instead
4257 */
4258 if (ELF64_ST_TYPE(sym->st_info) == STT_SECTION && sym->st_name == 0)
4259 sym_name = elf_sec_name(obj, elf_sec_by_idx(obj, sym->st_shndx));
4260 else
4261 sym_name = elf_sym_str(obj, sym->st_name);
4262 sym_name = sym_name ?: "<?";
4263
4264 pr_debug("sec '%s': relo #%d: insn #%u against '%s'\n",
4265 relo_sec_name, i, insn_idx, sym_name);
4266
4267 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
4268 if (!prog) {
4269 pr_debug("sec '%s': relo #%d: couldn't find program in section '%s' for insn #%u, probably overridden weak function, skipping...\n",
4270 relo_sec_name, i, sec_name, insn_idx);
4271 continue;
4272 }
4273
4274 relos = libbpf_reallocarray(prog->reloc_desc,
4275 prog->nr_reloc + 1, sizeof(*relos));
4276 if (!relos)
4277 return -ENOMEM;
4278 prog->reloc_desc = relos;
4279
4280 /* adjust insn_idx to local BPF program frame of reference */
4281 insn_idx -= prog->sec_insn_off;
4282 err = bpf_program__record_reloc(prog, &relos[prog->nr_reloc],
4283 insn_idx, sym_name, sym, rel);
4284 if (err)
4285 return err;
4286
4287 prog->nr_reloc++;
4288 }
4289 return 0;
4290}
4291
4292static int map_fill_btf_type_info(struct bpf_object *obj, struct bpf_map *map)
4293{
4294 int id;
4295
4296 if (!obj->btf)
4297 return -ENOENT;
4298
4299 /* if it's BTF-defined map, we don't need to search for type IDs.
4300 * For struct_ops map, it does not need btf_key_type_id and
4301 * btf_value_type_id.
4302 */
4303 if (map->sec_idx == obj->efile.btf_maps_shndx || bpf_map__is_struct_ops(map))
4304 return 0;
4305
4306 /*
4307 * LLVM annotates global data differently in BTF, that is,
4308 * only as '.data', '.bss' or '.rodata'.
4309 */
4310 if (!bpf_map__is_internal(map))
4311 return -ENOENT;
4312
4313 id = btf__find_by_name(obj->btf, map->real_name);
4314 if (id < 0)
4315 return id;
4316
4317 map->btf_key_type_id = 0;
4318 map->btf_value_type_id = id;
4319 return 0;
4320}
4321
4322static int bpf_get_map_info_from_fdinfo(int fd, struct bpf_map_info *info)
4323{
4324 char file[PATH_MAX], buff[4096];
4325 FILE *fp;
4326 __u32 val;
4327 int err;
4328
4329 snprintf(file, sizeof(file), "/proc/%d/fdinfo/%d", getpid(), fd);
4330 memset(info, 0, sizeof(*info));
4331
4332 fp = fopen(file, "r");
4333 if (!fp) {
4334 err = -errno;
4335 pr_warn("failed to open %s: %d. No procfs support?\n", file,
4336 err);
4337 return err;
4338 }
4339
4340 while (fgets(buff, sizeof(buff), fp)) {
4341 if (sscanf(buff, "map_type:\t%u", &val) == 1)
4342 info->type = val;
4343 else if (sscanf(buff, "key_size:\t%u", &val) == 1)
4344 info->key_size = val;
4345 else if (sscanf(buff, "value_size:\t%u", &val) == 1)
4346 info->value_size = val;
4347 else if (sscanf(buff, "max_entries:\t%u", &val) == 1)
4348 info->max_entries = val;
4349 else if (sscanf(buff, "map_flags:\t%i", &val) == 1)
4350 info->map_flags = val;
4351 }
4352
4353 fclose(fp);
4354
4355 return 0;
4356}
4357
4358bool bpf_map__autocreate(const struct bpf_map *map)
4359{
4360 return map->autocreate;
4361}
4362
4363int bpf_map__set_autocreate(struct bpf_map *map, bool autocreate)
4364{
4365 if (map->obj->loaded)
4366 return libbpf_err(-EBUSY);
4367
4368 map->autocreate = autocreate;
4369 return 0;
4370}
4371
4372int bpf_map__reuse_fd(struct bpf_map *map, int fd)
4373{
4374 struct bpf_map_info info;
4375 __u32 len = sizeof(info), name_len;
4376 int new_fd, err;
4377 char *new_name;
4378
4379 memset(&info, 0, len);
4380 err = bpf_map_get_info_by_fd(fd, &info, &len);
4381 if (err && errno == EINVAL)
4382 err = bpf_get_map_info_from_fdinfo(fd, &info);
4383 if (err)
4384 return libbpf_err(err);
4385
4386 name_len = strlen(info.name);
4387 if (name_len == BPF_OBJ_NAME_LEN - 1 && strncmp(map->name, info.name, name_len) == 0)
4388 new_name = strdup(map->name);
4389 else
4390 new_name = strdup(info.name);
4391
4392 if (!new_name)
4393 return libbpf_err(-errno);
4394
4395 new_fd = open("/", O_RDONLY | O_CLOEXEC);
4396 if (new_fd < 0) {
4397 err = -errno;
4398 goto err_free_new_name;
4399 }
4400
4401 new_fd = dup3(fd, new_fd, O_CLOEXEC);
4402 if (new_fd < 0) {
4403 err = -errno;
4404 goto err_close_new_fd;
4405 }
4406
4407 err = zclose(map->fd);
4408 if (err) {
4409 err = -errno;
4410 goto err_close_new_fd;
4411 }
4412 free(map->name);
4413
4414 map->fd = new_fd;
4415 map->name = new_name;
4416 map->def.type = info.type;
4417 map->def.key_size = info.key_size;
4418 map->def.value_size = info.value_size;
4419 map->def.max_entries = info.max_entries;
4420 map->def.map_flags = info.map_flags;
4421 map->btf_key_type_id = info.btf_key_type_id;
4422 map->btf_value_type_id = info.btf_value_type_id;
4423 map->reused = true;
4424 map->map_extra = info.map_extra;
4425
4426 return 0;
4427
4428err_close_new_fd:
4429 close(new_fd);
4430err_free_new_name:
4431 free(new_name);
4432 return libbpf_err(err);
4433}
4434
4435__u32 bpf_map__max_entries(const struct bpf_map *map)
4436{
4437 return map->def.max_entries;
4438}
4439
4440struct bpf_map *bpf_map__inner_map(struct bpf_map *map)
4441{
4442 if (!bpf_map_type__is_map_in_map(map->def.type))
4443 return errno = EINVAL, NULL;
4444
4445 return map->inner_map;
4446}
4447
4448int bpf_map__set_max_entries(struct bpf_map *map, __u32 max_entries)
4449{
4450 if (map->obj->loaded)
4451 return libbpf_err(-EBUSY);
4452
4453 map->def.max_entries = max_entries;
4454
4455 /* auto-adjust BPF ringbuf map max_entries to be a multiple of page size */
4456 if (map_is_ringbuf(map))
4457 map->def.max_entries = adjust_ringbuf_sz(map->def.max_entries);
4458
4459 return 0;
4460}
4461
4462static int
4463bpf_object__probe_loading(struct bpf_object *obj)
4464{
4465 char *cp, errmsg[STRERR_BUFSIZE];
4466 struct bpf_insn insns[] = {
4467 BPF_MOV64_IMM(BPF_REG_0, 0),
4468 BPF_EXIT_INSN(),
4469 };
4470 int ret, insn_cnt = ARRAY_SIZE(insns);
4471
4472 if (obj->gen_loader)
4473 return 0;
4474
4475 ret = bump_rlimit_memlock();
4476 if (ret)
4477 pr_warn("Failed to bump RLIMIT_MEMLOCK (err = %d), you might need to do it explicitly!\n", ret);
4478
4479 /* make sure basic loading works */
4480 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4481 if (ret < 0)
4482 ret = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL);
4483 if (ret < 0) {
4484 ret = errno;
4485 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4486 pr_warn("Error in %s():%s(%d). Couldn't load trivial BPF "
4487 "program. Make sure your kernel supports BPF "
4488 "(CONFIG_BPF_SYSCALL=y) and/or that RLIMIT_MEMLOCK is "
4489 "set to big enough value.\n", __func__, cp, ret);
4490 return -ret;
4491 }
4492 close(ret);
4493
4494 return 0;
4495}
4496
4497static int probe_fd(int fd)
4498{
4499 if (fd >= 0)
4500 close(fd);
4501 return fd >= 0;
4502}
4503
4504static int probe_kern_prog_name(void)
4505{
4506 const size_t attr_sz = offsetofend(union bpf_attr, prog_name);
4507 struct bpf_insn insns[] = {
4508 BPF_MOV64_IMM(BPF_REG_0, 0),
4509 BPF_EXIT_INSN(),
4510 };
4511 union bpf_attr attr;
4512 int ret;
4513
4514 memset(&attr, 0, attr_sz);
4515 attr.prog_type = BPF_PROG_TYPE_SOCKET_FILTER;
4516 attr.license = ptr_to_u64("GPL");
4517 attr.insns = ptr_to_u64(insns);
4518 attr.insn_cnt = (__u32)ARRAY_SIZE(insns);
4519 libbpf_strlcpy(attr.prog_name, "libbpf_nametest", sizeof(attr.prog_name));
4520
4521 /* make sure loading with name works */
4522 ret = sys_bpf_prog_load(&attr, attr_sz, PROG_LOAD_ATTEMPTS);
4523 return probe_fd(ret);
4524}
4525
4526static int probe_kern_global_data(void)
4527{
4528 char *cp, errmsg[STRERR_BUFSIZE];
4529 struct bpf_insn insns[] = {
4530 BPF_LD_MAP_VALUE(BPF_REG_1, 0, 16),
4531 BPF_ST_MEM(BPF_DW, BPF_REG_1, 0, 42),
4532 BPF_MOV64_IMM(BPF_REG_0, 0),
4533 BPF_EXIT_INSN(),
4534 };
4535 int ret, map, insn_cnt = ARRAY_SIZE(insns);
4536
4537 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_global", sizeof(int), 32, 1, NULL);
4538 if (map < 0) {
4539 ret = -errno;
4540 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4541 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
4542 __func__, cp, -ret);
4543 return ret;
4544 }
4545
4546 insns[0].imm = map;
4547
4548 ret = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4549 close(map);
4550 return probe_fd(ret);
4551}
4552
4553static int probe_kern_btf(void)
4554{
4555 static const char strs[] = "\0int";
4556 __u32 types[] = {
4557 /* int */
4558 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
4559 };
4560
4561 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4562 strs, sizeof(strs)));
4563}
4564
4565static int probe_kern_btf_func(void)
4566{
4567 static const char strs[] = "\0int\0x\0a";
4568 /* void x(int a) {} */
4569 __u32 types[] = {
4570 /* int */
4571 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4572 /* FUNC_PROTO */ /* [2] */
4573 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
4574 BTF_PARAM_ENC(7, 1),
4575 /* FUNC x */ /* [3] */
4576 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, 0), 2),
4577 };
4578
4579 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4580 strs, sizeof(strs)));
4581}
4582
4583static int probe_kern_btf_func_global(void)
4584{
4585 static const char strs[] = "\0int\0x\0a";
4586 /* static void x(int a) {} */
4587 __u32 types[] = {
4588 /* int */
4589 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4590 /* FUNC_PROTO */ /* [2] */
4591 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_FUNC_PROTO, 0, 1), 0),
4592 BTF_PARAM_ENC(7, 1),
4593 /* FUNC x BTF_FUNC_GLOBAL */ /* [3] */
4594 BTF_TYPE_ENC(5, BTF_INFO_ENC(BTF_KIND_FUNC, 0, BTF_FUNC_GLOBAL), 2),
4595 };
4596
4597 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4598 strs, sizeof(strs)));
4599}
4600
4601static int probe_kern_btf_datasec(void)
4602{
4603 static const char strs[] = "\0x\0.data";
4604 /* static int a; */
4605 __u32 types[] = {
4606 /* int */
4607 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4608 /* VAR x */ /* [2] */
4609 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
4610 BTF_VAR_STATIC,
4611 /* DATASEC val */ /* [3] */
4612 BTF_TYPE_ENC(3, BTF_INFO_ENC(BTF_KIND_DATASEC, 0, 1), 4),
4613 BTF_VAR_SECINFO_ENC(2, 0, 4),
4614 };
4615
4616 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4617 strs, sizeof(strs)));
4618}
4619
4620static int probe_kern_btf_float(void)
4621{
4622 static const char strs[] = "\0float";
4623 __u32 types[] = {
4624 /* float */
4625 BTF_TYPE_FLOAT_ENC(1, 4),
4626 };
4627
4628 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4629 strs, sizeof(strs)));
4630}
4631
4632static int probe_kern_btf_decl_tag(void)
4633{
4634 static const char strs[] = "\0tag";
4635 __u32 types[] = {
4636 /* int */
4637 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4638 /* VAR x */ /* [2] */
4639 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_VAR, 0, 0), 1),
4640 BTF_VAR_STATIC,
4641 /* attr */
4642 BTF_TYPE_DECL_TAG_ENC(1, 2, -1),
4643 };
4644
4645 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4646 strs, sizeof(strs)));
4647}
4648
4649static int probe_kern_btf_type_tag(void)
4650{
4651 static const char strs[] = "\0tag";
4652 __u32 types[] = {
4653 /* int */
4654 BTF_TYPE_INT_ENC(0, BTF_INT_SIGNED, 0, 32, 4), /* [1] */
4655 /* attr */
4656 BTF_TYPE_TYPE_TAG_ENC(1, 1), /* [2] */
4657 /* ptr */
4658 BTF_TYPE_ENC(0, BTF_INFO_ENC(BTF_KIND_PTR, 0, 0), 2), /* [3] */
4659 };
4660
4661 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4662 strs, sizeof(strs)));
4663}
4664
4665static int probe_kern_array_mmap(void)
4666{
4667 LIBBPF_OPTS(bpf_map_create_opts, opts, .map_flags = BPF_F_MMAPABLE);
4668 int fd;
4669
4670 fd = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_mmap", sizeof(int), sizeof(int), 1, &opts);
4671 return probe_fd(fd);
4672}
4673
4674static int probe_kern_exp_attach_type(void)
4675{
4676 LIBBPF_OPTS(bpf_prog_load_opts, opts, .expected_attach_type = BPF_CGROUP_INET_SOCK_CREATE);
4677 struct bpf_insn insns[] = {
4678 BPF_MOV64_IMM(BPF_REG_0, 0),
4679 BPF_EXIT_INSN(),
4680 };
4681 int fd, insn_cnt = ARRAY_SIZE(insns);
4682
4683 /* use any valid combination of program type and (optional)
4684 * non-zero expected attach type (i.e., not a BPF_CGROUP_INET_INGRESS)
4685 * to see if kernel supports expected_attach_type field for
4686 * BPF_PROG_LOAD command
4687 */
4688 fd = bpf_prog_load(BPF_PROG_TYPE_CGROUP_SOCK, NULL, "GPL", insns, insn_cnt, &opts);
4689 return probe_fd(fd);
4690}
4691
4692static int probe_kern_probe_read_kernel(void)
4693{
4694 struct bpf_insn insns[] = {
4695 BPF_MOV64_REG(BPF_REG_1, BPF_REG_10), /* r1 = r10 (fp) */
4696 BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -8), /* r1 += -8 */
4697 BPF_MOV64_IMM(BPF_REG_2, 8), /* r2 = 8 */
4698 BPF_MOV64_IMM(BPF_REG_3, 0), /* r3 = 0 */
4699 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_probe_read_kernel),
4700 BPF_EXIT_INSN(),
4701 };
4702 int fd, insn_cnt = ARRAY_SIZE(insns);
4703
4704 fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL", insns, insn_cnt, NULL);
4705 return probe_fd(fd);
4706}
4707
4708static int probe_prog_bind_map(void)
4709{
4710 char *cp, errmsg[STRERR_BUFSIZE];
4711 struct bpf_insn insns[] = {
4712 BPF_MOV64_IMM(BPF_REG_0, 0),
4713 BPF_EXIT_INSN(),
4714 };
4715 int ret, map, prog, insn_cnt = ARRAY_SIZE(insns);
4716
4717 map = bpf_map_create(BPF_MAP_TYPE_ARRAY, "libbpf_det_bind", sizeof(int), 32, 1, NULL);
4718 if (map < 0) {
4719 ret = -errno;
4720 cp = libbpf_strerror_r(ret, errmsg, sizeof(errmsg));
4721 pr_warn("Error in %s():%s(%d). Couldn't create simple array map.\n",
4722 __func__, cp, -ret);
4723 return ret;
4724 }
4725
4726 prog = bpf_prog_load(BPF_PROG_TYPE_SOCKET_FILTER, NULL, "GPL", insns, insn_cnt, NULL);
4727 if (prog < 0) {
4728 close(map);
4729 return 0;
4730 }
4731
4732 ret = bpf_prog_bind_map(prog, map, NULL);
4733
4734 close(map);
4735 close(prog);
4736
4737 return ret >= 0;
4738}
4739
4740static int probe_module_btf(void)
4741{
4742 static const char strs[] = "\0int";
4743 __u32 types[] = {
4744 /* int */
4745 BTF_TYPE_INT_ENC(1, BTF_INT_SIGNED, 0, 32, 4),
4746 };
4747 struct bpf_btf_info info;
4748 __u32 len = sizeof(info);
4749 char name[16];
4750 int fd, err;
4751
4752 fd = libbpf__load_raw_btf((char *)types, sizeof(types), strs, sizeof(strs));
4753 if (fd < 0)
4754 return 0; /* BTF not supported at all */
4755
4756 memset(&info, 0, sizeof(info));
4757 info.name = ptr_to_u64(name);
4758 info.name_len = sizeof(name);
4759
4760 /* check that BPF_OBJ_GET_INFO_BY_FD supports specifying name pointer;
4761 * kernel's module BTF support coincides with support for
4762 * name/name_len fields in struct bpf_btf_info.
4763 */
4764 err = bpf_btf_get_info_by_fd(fd, &info, &len);
4765 close(fd);
4766 return !err;
4767}
4768
4769static int probe_perf_link(void)
4770{
4771 struct bpf_insn insns[] = {
4772 BPF_MOV64_IMM(BPF_REG_0, 0),
4773 BPF_EXIT_INSN(),
4774 };
4775 int prog_fd, link_fd, err;
4776
4777 prog_fd = bpf_prog_load(BPF_PROG_TYPE_TRACEPOINT, NULL, "GPL",
4778 insns, ARRAY_SIZE(insns), NULL);
4779 if (prog_fd < 0)
4780 return -errno;
4781
4782 /* use invalid perf_event FD to get EBADF, if link is supported;
4783 * otherwise EINVAL should be returned
4784 */
4785 link_fd = bpf_link_create(prog_fd, -1, BPF_PERF_EVENT, NULL);
4786 err = -errno; /* close() can clobber errno */
4787
4788 if (link_fd >= 0)
4789 close(link_fd);
4790 close(prog_fd);
4791
4792 return link_fd < 0 && err == -EBADF;
4793}
4794
4795static int probe_kern_bpf_cookie(void)
4796{
4797 struct bpf_insn insns[] = {
4798 BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_get_attach_cookie),
4799 BPF_EXIT_INSN(),
4800 };
4801 int ret, insn_cnt = ARRAY_SIZE(insns);
4802
4803 ret = bpf_prog_load(BPF_PROG_TYPE_KPROBE, NULL, "GPL", insns, insn_cnt, NULL);
4804 return probe_fd(ret);
4805}
4806
4807static int probe_kern_btf_enum64(void)
4808{
4809 static const char strs[] = "\0enum64";
4810 __u32 types[] = {
4811 BTF_TYPE_ENC(1, BTF_INFO_ENC(BTF_KIND_ENUM64, 0, 0), 8),
4812 };
4813
4814 return probe_fd(libbpf__load_raw_btf((char *)types, sizeof(types),
4815 strs, sizeof(strs)));
4816}
4817
4818static int probe_kern_syscall_wrapper(void);
4819
4820enum kern_feature_result {
4821 FEAT_UNKNOWN = 0,
4822 FEAT_SUPPORTED = 1,
4823 FEAT_MISSING = 2,
4824};
4825
4826typedef int (*feature_probe_fn)(void);
4827
4828static struct kern_feature_desc {
4829 const char *desc;
4830 feature_probe_fn probe;
4831 enum kern_feature_result res;
4832} feature_probes[__FEAT_CNT] = {
4833 [FEAT_PROG_NAME] = {
4834 "BPF program name", probe_kern_prog_name,
4835 },
4836 [FEAT_GLOBAL_DATA] = {
4837 "global variables", probe_kern_global_data,
4838 },
4839 [FEAT_BTF] = {
4840 "minimal BTF", probe_kern_btf,
4841 },
4842 [FEAT_BTF_FUNC] = {
4843 "BTF functions", probe_kern_btf_func,
4844 },
4845 [FEAT_BTF_GLOBAL_FUNC] = {
4846 "BTF global function", probe_kern_btf_func_global,
4847 },
4848 [FEAT_BTF_DATASEC] = {
4849 "BTF data section and variable", probe_kern_btf_datasec,
4850 },
4851 [FEAT_ARRAY_MMAP] = {
4852 "ARRAY map mmap()", probe_kern_array_mmap,
4853 },
4854 [FEAT_EXP_ATTACH_TYPE] = {
4855 "BPF_PROG_LOAD expected_attach_type attribute",
4856 probe_kern_exp_attach_type,
4857 },
4858 [FEAT_PROBE_READ_KERN] = {
4859 "bpf_probe_read_kernel() helper", probe_kern_probe_read_kernel,
4860 },
4861 [FEAT_PROG_BIND_MAP] = {
4862 "BPF_PROG_BIND_MAP support", probe_prog_bind_map,
4863 },
4864 [FEAT_MODULE_BTF] = {
4865 "module BTF support", probe_module_btf,
4866 },
4867 [FEAT_BTF_FLOAT] = {
4868 "BTF_KIND_FLOAT support", probe_kern_btf_float,
4869 },
4870 [FEAT_PERF_LINK] = {
4871 "BPF perf link support", probe_perf_link,
4872 },
4873 [FEAT_BTF_DECL_TAG] = {
4874 "BTF_KIND_DECL_TAG support", probe_kern_btf_decl_tag,
4875 },
4876 [FEAT_BTF_TYPE_TAG] = {
4877 "BTF_KIND_TYPE_TAG support", probe_kern_btf_type_tag,
4878 },
4879 [FEAT_MEMCG_ACCOUNT] = {
4880 "memcg-based memory accounting", probe_memcg_account,
4881 },
4882 [FEAT_BPF_COOKIE] = {
4883 "BPF cookie support", probe_kern_bpf_cookie,
4884 },
4885 [FEAT_BTF_ENUM64] = {
4886 "BTF_KIND_ENUM64 support", probe_kern_btf_enum64,
4887 },
4888 [FEAT_SYSCALL_WRAPPER] = {
4889 "Kernel using syscall wrapper", probe_kern_syscall_wrapper,
4890 },
4891};
4892
4893bool kernel_supports(const struct bpf_object *obj, enum kern_feature_id feat_id)
4894{
4895 struct kern_feature_desc *feat = &feature_probes[feat_id];
4896 int ret;
4897
4898 if (obj && obj->gen_loader)
4899 /* To generate loader program assume the latest kernel
4900 * to avoid doing extra prog_load, map_create syscalls.
4901 */
4902 return true;
4903
4904 if (READ_ONCE(feat->res) == FEAT_UNKNOWN) {
4905 ret = feat->probe();
4906 if (ret > 0) {
4907 WRITE_ONCE(feat->res, FEAT_SUPPORTED);
4908 } else if (ret == 0) {
4909 WRITE_ONCE(feat->res, FEAT_MISSING);
4910 } else {
4911 pr_warn("Detection of kernel %s support failed: %d\n", feat->desc, ret);
4912 WRITE_ONCE(feat->res, FEAT_MISSING);
4913 }
4914 }
4915
4916 return READ_ONCE(feat->res) == FEAT_SUPPORTED;
4917}
4918
4919static bool map_is_reuse_compat(const struct bpf_map *map, int map_fd)
4920{
4921 struct bpf_map_info map_info;
4922 char msg[STRERR_BUFSIZE];
4923 __u32 map_info_len = sizeof(map_info);
4924 int err;
4925
4926 memset(&map_info, 0, map_info_len);
4927 err = bpf_map_get_info_by_fd(map_fd, &map_info, &map_info_len);
4928 if (err && errno == EINVAL)
4929 err = bpf_get_map_info_from_fdinfo(map_fd, &map_info);
4930 if (err) {
4931 pr_warn("failed to get map info for map FD %d: %s\n", map_fd,
4932 libbpf_strerror_r(errno, msg, sizeof(msg)));
4933 return false;
4934 }
4935
4936 return (map_info.type == map->def.type &&
4937 map_info.key_size == map->def.key_size &&
4938 map_info.value_size == map->def.value_size &&
4939 map_info.max_entries == map->def.max_entries &&
4940 map_info.map_flags == map->def.map_flags &&
4941 map_info.map_extra == map->map_extra);
4942}
4943
4944static int
4945bpf_object__reuse_map(struct bpf_map *map)
4946{
4947 char *cp, errmsg[STRERR_BUFSIZE];
4948 int err, pin_fd;
4949
4950 pin_fd = bpf_obj_get(map->pin_path);
4951 if (pin_fd < 0) {
4952 err = -errno;
4953 if (err == -ENOENT) {
4954 pr_debug("found no pinned map to reuse at '%s'\n",
4955 map->pin_path);
4956 return 0;
4957 }
4958
4959 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
4960 pr_warn("couldn't retrieve pinned map '%s': %s\n",
4961 map->pin_path, cp);
4962 return err;
4963 }
4964
4965 if (!map_is_reuse_compat(map, pin_fd)) {
4966 pr_warn("couldn't reuse pinned map at '%s': parameter mismatch\n",
4967 map->pin_path);
4968 close(pin_fd);
4969 return -EINVAL;
4970 }
4971
4972 err = bpf_map__reuse_fd(map, pin_fd);
4973 close(pin_fd);
4974 if (err)
4975 return err;
4976
4977 map->pinned = true;
4978 pr_debug("reused pinned map at '%s'\n", map->pin_path);
4979
4980 return 0;
4981}
4982
4983static int
4984bpf_object__populate_internal_map(struct bpf_object *obj, struct bpf_map *map)
4985{
4986 enum libbpf_map_type map_type = map->libbpf_type;
4987 char *cp, errmsg[STRERR_BUFSIZE];
4988 int err, zero = 0;
4989
4990 if (obj->gen_loader) {
4991 bpf_gen__map_update_elem(obj->gen_loader, map - obj->maps,
4992 map->mmaped, map->def.value_size);
4993 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG)
4994 bpf_gen__map_freeze(obj->gen_loader, map - obj->maps);
4995 return 0;
4996 }
4997 err = bpf_map_update_elem(map->fd, &zero, map->mmaped, 0);
4998 if (err) {
4999 err = -errno;
5000 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5001 pr_warn("Error setting initial map(%s) contents: %s\n",
5002 map->name, cp);
5003 return err;
5004 }
5005
5006 /* Freeze .rodata and .kconfig map as read-only from syscall side. */
5007 if (map_type == LIBBPF_MAP_RODATA || map_type == LIBBPF_MAP_KCONFIG) {
5008 err = bpf_map_freeze(map->fd);
5009 if (err) {
5010 err = -errno;
5011 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5012 pr_warn("Error freezing map(%s) as read-only: %s\n",
5013 map->name, cp);
5014 return err;
5015 }
5016 }
5017 return 0;
5018}
5019
5020static void bpf_map__destroy(struct bpf_map *map);
5021
5022static int bpf_object__create_map(struct bpf_object *obj, struct bpf_map *map, bool is_inner)
5023{
5024 LIBBPF_OPTS(bpf_map_create_opts, create_attr);
5025 struct bpf_map_def *def = &map->def;
5026 const char *map_name = NULL;
5027 int err = 0;
5028
5029 if (kernel_supports(obj, FEAT_PROG_NAME))
5030 map_name = map->name;
5031 create_attr.map_ifindex = map->map_ifindex;
5032 create_attr.map_flags = def->map_flags;
5033 create_attr.numa_node = map->numa_node;
5034 create_attr.map_extra = map->map_extra;
5035
5036 if (bpf_map__is_struct_ops(map))
5037 create_attr.btf_vmlinux_value_type_id = map->btf_vmlinux_value_type_id;
5038
5039 if (obj->btf && btf__fd(obj->btf) >= 0) {
5040 create_attr.btf_fd = btf__fd(obj->btf);
5041 create_attr.btf_key_type_id = map->btf_key_type_id;
5042 create_attr.btf_value_type_id = map->btf_value_type_id;
5043 }
5044
5045 if (bpf_map_type__is_map_in_map(def->type)) {
5046 if (map->inner_map) {
5047 err = bpf_object__create_map(obj, map->inner_map, true);
5048 if (err) {
5049 pr_warn("map '%s': failed to create inner map: %d\n",
5050 map->name, err);
5051 return err;
5052 }
5053 map->inner_map_fd = bpf_map__fd(map->inner_map);
5054 }
5055 if (map->inner_map_fd >= 0)
5056 create_attr.inner_map_fd = map->inner_map_fd;
5057 }
5058
5059 switch (def->type) {
5060 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
5061 case BPF_MAP_TYPE_CGROUP_ARRAY:
5062 case BPF_MAP_TYPE_STACK_TRACE:
5063 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
5064 case BPF_MAP_TYPE_HASH_OF_MAPS:
5065 case BPF_MAP_TYPE_DEVMAP:
5066 case BPF_MAP_TYPE_DEVMAP_HASH:
5067 case BPF_MAP_TYPE_CPUMAP:
5068 case BPF_MAP_TYPE_XSKMAP:
5069 case BPF_MAP_TYPE_SOCKMAP:
5070 case BPF_MAP_TYPE_SOCKHASH:
5071 case BPF_MAP_TYPE_QUEUE:
5072 case BPF_MAP_TYPE_STACK:
5073 create_attr.btf_fd = 0;
5074 create_attr.btf_key_type_id = 0;
5075 create_attr.btf_value_type_id = 0;
5076 map->btf_key_type_id = 0;
5077 map->btf_value_type_id = 0;
5078 default:
5079 break;
5080 }
5081
5082 if (obj->gen_loader) {
5083 bpf_gen__map_create(obj->gen_loader, def->type, map_name,
5084 def->key_size, def->value_size, def->max_entries,
5085 &create_attr, is_inner ? -1 : map - obj->maps);
5086 /* Pretend to have valid FD to pass various fd >= 0 checks.
5087 * This fd == 0 will not be used with any syscall and will be reset to -1 eventually.
5088 */
5089 map->fd = 0;
5090 } else {
5091 map->fd = bpf_map_create(def->type, map_name,
5092 def->key_size, def->value_size,
5093 def->max_entries, &create_attr);
5094 }
5095 if (map->fd < 0 && (create_attr.btf_key_type_id ||
5096 create_attr.btf_value_type_id)) {
5097 char *cp, errmsg[STRERR_BUFSIZE];
5098
5099 err = -errno;
5100 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5101 pr_warn("Error in bpf_create_map_xattr(%s):%s(%d). Retrying without BTF.\n",
5102 map->name, cp, err);
5103 create_attr.btf_fd = 0;
5104 create_attr.btf_key_type_id = 0;
5105 create_attr.btf_value_type_id = 0;
5106 map->btf_key_type_id = 0;
5107 map->btf_value_type_id = 0;
5108 map->fd = bpf_map_create(def->type, map_name,
5109 def->key_size, def->value_size,
5110 def->max_entries, &create_attr);
5111 }
5112
5113 err = map->fd < 0 ? -errno : 0;
5114
5115 if (bpf_map_type__is_map_in_map(def->type) && map->inner_map) {
5116 if (obj->gen_loader)
5117 map->inner_map->fd = -1;
5118 bpf_map__destroy(map->inner_map);
5119 zfree(&map->inner_map);
5120 }
5121
5122 return err;
5123}
5124
5125static int init_map_in_map_slots(struct bpf_object *obj, struct bpf_map *map)
5126{
5127 const struct bpf_map *targ_map;
5128 unsigned int i;
5129 int fd, err = 0;
5130
5131 for (i = 0; i < map->init_slots_sz; i++) {
5132 if (!map->init_slots[i])
5133 continue;
5134
5135 targ_map = map->init_slots[i];
5136 fd = bpf_map__fd(targ_map);
5137
5138 if (obj->gen_loader) {
5139 bpf_gen__populate_outer_map(obj->gen_loader,
5140 map - obj->maps, i,
5141 targ_map - obj->maps);
5142 } else {
5143 err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5144 }
5145 if (err) {
5146 err = -errno;
5147 pr_warn("map '%s': failed to initialize slot [%d] to map '%s' fd=%d: %d\n",
5148 map->name, i, targ_map->name, fd, err);
5149 return err;
5150 }
5151 pr_debug("map '%s': slot [%d] set to map '%s' fd=%d\n",
5152 map->name, i, targ_map->name, fd);
5153 }
5154
5155 zfree(&map->init_slots);
5156 map->init_slots_sz = 0;
5157
5158 return 0;
5159}
5160
5161static int init_prog_array_slots(struct bpf_object *obj, struct bpf_map *map)
5162{
5163 const struct bpf_program *targ_prog;
5164 unsigned int i;
5165 int fd, err;
5166
5167 if (obj->gen_loader)
5168 return -ENOTSUP;
5169
5170 for (i = 0; i < map->init_slots_sz; i++) {
5171 if (!map->init_slots[i])
5172 continue;
5173
5174 targ_prog = map->init_slots[i];
5175 fd = bpf_program__fd(targ_prog);
5176
5177 err = bpf_map_update_elem(map->fd, &i, &fd, 0);
5178 if (err) {
5179 err = -errno;
5180 pr_warn("map '%s': failed to initialize slot [%d] to prog '%s' fd=%d: %d\n",
5181 map->name, i, targ_prog->name, fd, err);
5182 return err;
5183 }
5184 pr_debug("map '%s': slot [%d] set to prog '%s' fd=%d\n",
5185 map->name, i, targ_prog->name, fd);
5186 }
5187
5188 zfree(&map->init_slots);
5189 map->init_slots_sz = 0;
5190
5191 return 0;
5192}
5193
5194static int bpf_object_init_prog_arrays(struct bpf_object *obj)
5195{
5196 struct bpf_map *map;
5197 int i, err;
5198
5199 for (i = 0; i < obj->nr_maps; i++) {
5200 map = &obj->maps[i];
5201
5202 if (!map->init_slots_sz || map->def.type != BPF_MAP_TYPE_PROG_ARRAY)
5203 continue;
5204
5205 err = init_prog_array_slots(obj, map);
5206 if (err < 0) {
5207 zclose(map->fd);
5208 return err;
5209 }
5210 }
5211 return 0;
5212}
5213
5214static int map_set_def_max_entries(struct bpf_map *map)
5215{
5216 if (map->def.type == BPF_MAP_TYPE_PERF_EVENT_ARRAY && !map->def.max_entries) {
5217 int nr_cpus;
5218
5219 nr_cpus = libbpf_num_possible_cpus();
5220 if (nr_cpus < 0) {
5221 pr_warn("map '%s': failed to determine number of system CPUs: %d\n",
5222 map->name, nr_cpus);
5223 return nr_cpus;
5224 }
5225 pr_debug("map '%s': setting size to %d\n", map->name, nr_cpus);
5226 map->def.max_entries = nr_cpus;
5227 }
5228
5229 return 0;
5230}
5231
5232static int
5233bpf_object__create_maps(struct bpf_object *obj)
5234{
5235 struct bpf_map *map;
5236 char *cp, errmsg[STRERR_BUFSIZE];
5237 unsigned int i, j;
5238 int err;
5239 bool retried;
5240
5241 for (i = 0; i < obj->nr_maps; i++) {
5242 map = &obj->maps[i];
5243
5244 /* To support old kernels, we skip creating global data maps
5245 * (.rodata, .data, .kconfig, etc); later on, during program
5246 * loading, if we detect that at least one of the to-be-loaded
5247 * programs is referencing any global data map, we'll error
5248 * out with program name and relocation index logged.
5249 * This approach allows to accommodate Clang emitting
5250 * unnecessary .rodata.str1.1 sections for string literals,
5251 * but also it allows to have CO-RE applications that use
5252 * global variables in some of BPF programs, but not others.
5253 * If those global variable-using programs are not loaded at
5254 * runtime due to bpf_program__set_autoload(prog, false),
5255 * bpf_object loading will succeed just fine even on old
5256 * kernels.
5257 */
5258 if (bpf_map__is_internal(map) && !kernel_supports(obj, FEAT_GLOBAL_DATA))
5259 map->autocreate = false;
5260
5261 if (!map->autocreate) {
5262 pr_debug("map '%s': skipped auto-creating...\n", map->name);
5263 continue;
5264 }
5265
5266 err = map_set_def_max_entries(map);
5267 if (err)
5268 goto err_out;
5269
5270 retried = false;
5271retry:
5272 if (map->pin_path) {
5273 err = bpf_object__reuse_map(map);
5274 if (err) {
5275 pr_warn("map '%s': error reusing pinned map\n",
5276 map->name);
5277 goto err_out;
5278 }
5279 if (retried && map->fd < 0) {
5280 pr_warn("map '%s': cannot find pinned map\n",
5281 map->name);
5282 err = -ENOENT;
5283 goto err_out;
5284 }
5285 }
5286
5287 if (map->fd >= 0) {
5288 pr_debug("map '%s': skipping creation (preset fd=%d)\n",
5289 map->name, map->fd);
5290 } else {
5291 err = bpf_object__create_map(obj, map, false);
5292 if (err)
5293 goto err_out;
5294
5295 pr_debug("map '%s': created successfully, fd=%d\n",
5296 map->name, map->fd);
5297
5298 if (bpf_map__is_internal(map)) {
5299 err = bpf_object__populate_internal_map(obj, map);
5300 if (err < 0) {
5301 zclose(map->fd);
5302 goto err_out;
5303 }
5304 }
5305
5306 if (map->init_slots_sz && map->def.type != BPF_MAP_TYPE_PROG_ARRAY) {
5307 err = init_map_in_map_slots(obj, map);
5308 if (err < 0) {
5309 zclose(map->fd);
5310 goto err_out;
5311 }
5312 }
5313 }
5314
5315 if (map->pin_path && !map->pinned) {
5316 err = bpf_map__pin(map, NULL);
5317 if (err) {
5318 zclose(map->fd);
5319 if (!retried && err == -EEXIST) {
5320 retried = true;
5321 goto retry;
5322 }
5323 pr_warn("map '%s': failed to auto-pin at '%s': %d\n",
5324 map->name, map->pin_path, err);
5325 goto err_out;
5326 }
5327 }
5328 }
5329
5330 return 0;
5331
5332err_out:
5333 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
5334 pr_warn("map '%s': failed to create: %s(%d)\n", map->name, cp, err);
5335 pr_perm_msg(err);
5336 for (j = 0; j < i; j++)
5337 zclose(obj->maps[j].fd);
5338 return err;
5339}
5340
5341static bool bpf_core_is_flavor_sep(const char *s)
5342{
5343 /* check X___Y name pattern, where X and Y are not underscores */
5344 return s[0] != '_' && /* X */
5345 s[1] == '_' && s[2] == '_' && s[3] == '_' && /* ___ */
5346 s[4] != '_'; /* Y */
5347}
5348
5349/* Given 'some_struct_name___with_flavor' return the length of a name prefix
5350 * before last triple underscore. Struct name part after last triple
5351 * underscore is ignored by BPF CO-RE relocation during relocation matching.
5352 */
5353size_t bpf_core_essential_name_len(const char *name)
5354{
5355 size_t n = strlen(name);
5356 int i;
5357
5358 for (i = n - 5; i >= 0; i--) {
5359 if (bpf_core_is_flavor_sep(name + i))
5360 return i + 1;
5361 }
5362 return n;
5363}
5364
5365void bpf_core_free_cands(struct bpf_core_cand_list *cands)
5366{
5367 if (!cands)
5368 return;
5369
5370 free(cands->cands);
5371 free(cands);
5372}
5373
5374int bpf_core_add_cands(struct bpf_core_cand *local_cand,
5375 size_t local_essent_len,
5376 const struct btf *targ_btf,
5377 const char *targ_btf_name,
5378 int targ_start_id,
5379 struct bpf_core_cand_list *cands)
5380{
5381 struct bpf_core_cand *new_cands, *cand;
5382 const struct btf_type *t, *local_t;
5383 const char *targ_name, *local_name;
5384 size_t targ_essent_len;
5385 int n, i;
5386
5387 local_t = btf__type_by_id(local_cand->btf, local_cand->id);
5388 local_name = btf__str_by_offset(local_cand->btf, local_t->name_off);
5389
5390 n = btf__type_cnt(targ_btf);
5391 for (i = targ_start_id; i < n; i++) {
5392 t = btf__type_by_id(targ_btf, i);
5393 if (!btf_kind_core_compat(t, local_t))
5394 continue;
5395
5396 targ_name = btf__name_by_offset(targ_btf, t->name_off);
5397 if (str_is_empty(targ_name))
5398 continue;
5399
5400 targ_essent_len = bpf_core_essential_name_len(targ_name);
5401 if (targ_essent_len != local_essent_len)
5402 continue;
5403
5404 if (strncmp(local_name, targ_name, local_essent_len) != 0)
5405 continue;
5406
5407 pr_debug("CO-RE relocating [%d] %s %s: found target candidate [%d] %s %s in [%s]\n",
5408 local_cand->id, btf_kind_str(local_t),
5409 local_name, i, btf_kind_str(t), targ_name,
5410 targ_btf_name);
5411 new_cands = libbpf_reallocarray(cands->cands, cands->len + 1,
5412 sizeof(*cands->cands));
5413 if (!new_cands)
5414 return -ENOMEM;
5415
5416 cand = &new_cands[cands->len];
5417 cand->btf = targ_btf;
5418 cand->id = i;
5419
5420 cands->cands = new_cands;
5421 cands->len++;
5422 }
5423 return 0;
5424}
5425
5426static int load_module_btfs(struct bpf_object *obj)
5427{
5428 struct bpf_btf_info info;
5429 struct module_btf *mod_btf;
5430 struct btf *btf;
5431 char name[64];
5432 __u32 id = 0, len;
5433 int err, fd;
5434
5435 if (obj->btf_modules_loaded)
5436 return 0;
5437
5438 if (obj->gen_loader)
5439 return 0;
5440
5441 /* don't do this again, even if we find no module BTFs */
5442 obj->btf_modules_loaded = true;
5443
5444 /* kernel too old to support module BTFs */
5445 if (!kernel_supports(obj, FEAT_MODULE_BTF))
5446 return 0;
5447
5448 while (true) {
5449 err = bpf_btf_get_next_id(id, &id);
5450 if (err && errno == ENOENT)
5451 return 0;
5452 if (err) {
5453 err = -errno;
5454 pr_warn("failed to iterate BTF objects: %d\n", err);
5455 return err;
5456 }
5457
5458 fd = bpf_btf_get_fd_by_id(id);
5459 if (fd < 0) {
5460 if (errno == ENOENT)
5461 continue; /* expected race: BTF was unloaded */
5462 err = -errno;
5463 pr_warn("failed to get BTF object #%d FD: %d\n", id, err);
5464 return err;
5465 }
5466
5467 len = sizeof(info);
5468 memset(&info, 0, sizeof(info));
5469 info.name = ptr_to_u64(name);
5470 info.name_len = sizeof(name);
5471
5472 err = bpf_btf_get_info_by_fd(fd, &info, &len);
5473 if (err) {
5474 err = -errno;
5475 pr_warn("failed to get BTF object #%d info: %d\n", id, err);
5476 goto err_out;
5477 }
5478
5479 /* ignore non-module BTFs */
5480 if (!info.kernel_btf || strcmp(name, "vmlinux") == 0) {
5481 close(fd);
5482 continue;
5483 }
5484
5485 btf = btf_get_from_fd(fd, obj->btf_vmlinux);
5486 err = libbpf_get_error(btf);
5487 if (err) {
5488 pr_warn("failed to load module [%s]'s BTF object #%d: %d\n",
5489 name, id, err);
5490 goto err_out;
5491 }
5492
5493 err = libbpf_ensure_mem((void **)&obj->btf_modules, &obj->btf_module_cap,
5494 sizeof(*obj->btf_modules), obj->btf_module_cnt + 1);
5495 if (err)
5496 goto err_out;
5497
5498 mod_btf = &obj->btf_modules[obj->btf_module_cnt++];
5499
5500 mod_btf->btf = btf;
5501 mod_btf->id = id;
5502 mod_btf->fd = fd;
5503 mod_btf->name = strdup(name);
5504 if (!mod_btf->name) {
5505 err = -ENOMEM;
5506 goto err_out;
5507 }
5508 continue;
5509
5510err_out:
5511 close(fd);
5512 return err;
5513 }
5514
5515 return 0;
5516}
5517
5518static struct bpf_core_cand_list *
5519bpf_core_find_cands(struct bpf_object *obj, const struct btf *local_btf, __u32 local_type_id)
5520{
5521 struct bpf_core_cand local_cand = {};
5522 struct bpf_core_cand_list *cands;
5523 const struct btf *main_btf;
5524 const struct btf_type *local_t;
5525 const char *local_name;
5526 size_t local_essent_len;
5527 int err, i;
5528
5529 local_cand.btf = local_btf;
5530 local_cand.id = local_type_id;
5531 local_t = btf__type_by_id(local_btf, local_type_id);
5532 if (!local_t)
5533 return ERR_PTR(-EINVAL);
5534
5535 local_name = btf__name_by_offset(local_btf, local_t->name_off);
5536 if (str_is_empty(local_name))
5537 return ERR_PTR(-EINVAL);
5538 local_essent_len = bpf_core_essential_name_len(local_name);
5539
5540 cands = calloc(1, sizeof(*cands));
5541 if (!cands)
5542 return ERR_PTR(-ENOMEM);
5543
5544 /* Attempt to find target candidates in vmlinux BTF first */
5545 main_btf = obj->btf_vmlinux_override ?: obj->btf_vmlinux;
5546 err = bpf_core_add_cands(&local_cand, local_essent_len, main_btf, "vmlinux", 1, cands);
5547 if (err)
5548 goto err_out;
5549
5550 /* if vmlinux BTF has any candidate, don't got for module BTFs */
5551 if (cands->len)
5552 return cands;
5553
5554 /* if vmlinux BTF was overridden, don't attempt to load module BTFs */
5555 if (obj->btf_vmlinux_override)
5556 return cands;
5557
5558 /* now look through module BTFs, trying to still find candidates */
5559 err = load_module_btfs(obj);
5560 if (err)
5561 goto err_out;
5562
5563 for (i = 0; i < obj->btf_module_cnt; i++) {
5564 err = bpf_core_add_cands(&local_cand, local_essent_len,
5565 obj->btf_modules[i].btf,
5566 obj->btf_modules[i].name,
5567 btf__type_cnt(obj->btf_vmlinux),
5568 cands);
5569 if (err)
5570 goto err_out;
5571 }
5572
5573 return cands;
5574err_out:
5575 bpf_core_free_cands(cands);
5576 return ERR_PTR(err);
5577}
5578
5579/* Check local and target types for compatibility. This check is used for
5580 * type-based CO-RE relocations and follow slightly different rules than
5581 * field-based relocations. This function assumes that root types were already
5582 * checked for name match. Beyond that initial root-level name check, names
5583 * are completely ignored. Compatibility rules are as follows:
5584 * - any two STRUCTs/UNIONs/FWDs/ENUMs/INTs are considered compatible, but
5585 * kind should match for local and target types (i.e., STRUCT is not
5586 * compatible with UNION);
5587 * - for ENUMs, the size is ignored;
5588 * - for INT, size and signedness are ignored;
5589 * - for ARRAY, dimensionality is ignored, element types are checked for
5590 * compatibility recursively;
5591 * - CONST/VOLATILE/RESTRICT modifiers are ignored;
5592 * - TYPEDEFs/PTRs are compatible if types they pointing to are compatible;
5593 * - FUNC_PROTOs are compatible if they have compatible signature: same
5594 * number of input args and compatible return and argument types.
5595 * These rules are not set in stone and probably will be adjusted as we get
5596 * more experience with using BPF CO-RE relocations.
5597 */
5598int bpf_core_types_are_compat(const struct btf *local_btf, __u32 local_id,
5599 const struct btf *targ_btf, __u32 targ_id)
5600{
5601 return __bpf_core_types_are_compat(local_btf, local_id, targ_btf, targ_id, 32);
5602}
5603
5604int bpf_core_types_match(const struct btf *local_btf, __u32 local_id,
5605 const struct btf *targ_btf, __u32 targ_id)
5606{
5607 return __bpf_core_types_match(local_btf, local_id, targ_btf, targ_id, false, 32);
5608}
5609
5610static size_t bpf_core_hash_fn(const long key, void *ctx)
5611{
5612 return key;
5613}
5614
5615static bool bpf_core_equal_fn(const long k1, const long k2, void *ctx)
5616{
5617 return k1 == k2;
5618}
5619
5620static int record_relo_core(struct bpf_program *prog,
5621 const struct bpf_core_relo *core_relo, int insn_idx)
5622{
5623 struct reloc_desc *relos, *relo;
5624
5625 relos = libbpf_reallocarray(prog->reloc_desc,
5626 prog->nr_reloc + 1, sizeof(*relos));
5627 if (!relos)
5628 return -ENOMEM;
5629 relo = &relos[prog->nr_reloc];
5630 relo->type = RELO_CORE;
5631 relo->insn_idx = insn_idx;
5632 relo->core_relo = core_relo;
5633 prog->reloc_desc = relos;
5634 prog->nr_reloc++;
5635 return 0;
5636}
5637
5638static const struct bpf_core_relo *find_relo_core(struct bpf_program *prog, int insn_idx)
5639{
5640 struct reloc_desc *relo;
5641 int i;
5642
5643 for (i = 0; i < prog->nr_reloc; i++) {
5644 relo = &prog->reloc_desc[i];
5645 if (relo->type != RELO_CORE || relo->insn_idx != insn_idx)
5646 continue;
5647
5648 return relo->core_relo;
5649 }
5650
5651 return NULL;
5652}
5653
5654static int bpf_core_resolve_relo(struct bpf_program *prog,
5655 const struct bpf_core_relo *relo,
5656 int relo_idx,
5657 const struct btf *local_btf,
5658 struct hashmap *cand_cache,
5659 struct bpf_core_relo_res *targ_res)
5660{
5661 struct bpf_core_spec specs_scratch[3] = {};
5662 struct bpf_core_cand_list *cands = NULL;
5663 const char *prog_name = prog->name;
5664 const struct btf_type *local_type;
5665 const char *local_name;
5666 __u32 local_id = relo->type_id;
5667 int err;
5668
5669 local_type = btf__type_by_id(local_btf, local_id);
5670 if (!local_type)
5671 return -EINVAL;
5672
5673 local_name = btf__name_by_offset(local_btf, local_type->name_off);
5674 if (!local_name)
5675 return -EINVAL;
5676
5677 if (relo->kind != BPF_CORE_TYPE_ID_LOCAL &&
5678 !hashmap__find(cand_cache, local_id, &cands)) {
5679 cands = bpf_core_find_cands(prog->obj, local_btf, local_id);
5680 if (IS_ERR(cands)) {
5681 pr_warn("prog '%s': relo #%d: target candidate search failed for [%d] %s %s: %ld\n",
5682 prog_name, relo_idx, local_id, btf_kind_str(local_type),
5683 local_name, PTR_ERR(cands));
5684 return PTR_ERR(cands);
5685 }
5686 err = hashmap__set(cand_cache, local_id, cands, NULL, NULL);
5687 if (err) {
5688 bpf_core_free_cands(cands);
5689 return err;
5690 }
5691 }
5692
5693 return bpf_core_calc_relo_insn(prog_name, relo, relo_idx, local_btf, cands, specs_scratch,
5694 targ_res);
5695}
5696
5697static int
5698bpf_object__relocate_core(struct bpf_object *obj, const char *targ_btf_path)
5699{
5700 const struct btf_ext_info_sec *sec;
5701 struct bpf_core_relo_res targ_res;
5702 const struct bpf_core_relo *rec;
5703 const struct btf_ext_info *seg;
5704 struct hashmap_entry *entry;
5705 struct hashmap *cand_cache = NULL;
5706 struct bpf_program *prog;
5707 struct bpf_insn *insn;
5708 const char *sec_name;
5709 int i, err = 0, insn_idx, sec_idx, sec_num;
5710
5711 if (obj->btf_ext->core_relo_info.len == 0)
5712 return 0;
5713
5714 if (targ_btf_path) {
5715 obj->btf_vmlinux_override = btf__parse(targ_btf_path, NULL);
5716 err = libbpf_get_error(obj->btf_vmlinux_override);
5717 if (err) {
5718 pr_warn("failed to parse target BTF: %d\n", err);
5719 return err;
5720 }
5721 }
5722
5723 cand_cache = hashmap__new(bpf_core_hash_fn, bpf_core_equal_fn, NULL);
5724 if (IS_ERR(cand_cache)) {
5725 err = PTR_ERR(cand_cache);
5726 goto out;
5727 }
5728
5729 seg = &obj->btf_ext->core_relo_info;
5730 sec_num = 0;
5731 for_each_btf_ext_sec(seg, sec) {
5732 sec_idx = seg->sec_idxs[sec_num];
5733 sec_num++;
5734
5735 sec_name = btf__name_by_offset(obj->btf, sec->sec_name_off);
5736 if (str_is_empty(sec_name)) {
5737 err = -EINVAL;
5738 goto out;
5739 }
5740
5741 pr_debug("sec '%s': found %d CO-RE relocations\n", sec_name, sec->num_info);
5742
5743 for_each_btf_ext_rec(seg, sec, i, rec) {
5744 if (rec->insn_off % BPF_INSN_SZ)
5745 return -EINVAL;
5746 insn_idx = rec->insn_off / BPF_INSN_SZ;
5747 prog = find_prog_by_sec_insn(obj, sec_idx, insn_idx);
5748 if (!prog) {
5749 /* When __weak subprog is "overridden" by another instance
5750 * of the subprog from a different object file, linker still
5751 * appends all the .BTF.ext info that used to belong to that
5752 * eliminated subprogram.
5753 * This is similar to what x86-64 linker does for relocations.
5754 * So just ignore such relocations just like we ignore
5755 * subprog instructions when discovering subprograms.
5756 */
5757 pr_debug("sec '%s': skipping CO-RE relocation #%d for insn #%d belonging to eliminated weak subprogram\n",
5758 sec_name, i, insn_idx);
5759 continue;
5760 }
5761 /* no need to apply CO-RE relocation if the program is
5762 * not going to be loaded
5763 */
5764 if (!prog->autoload)
5765 continue;
5766
5767 /* adjust insn_idx from section frame of reference to the local
5768 * program's frame of reference; (sub-)program code is not yet
5769 * relocated, so it's enough to just subtract in-section offset
5770 */
5771 insn_idx = insn_idx - prog->sec_insn_off;
5772 if (insn_idx >= prog->insns_cnt)
5773 return -EINVAL;
5774 insn = &prog->insns[insn_idx];
5775
5776 err = record_relo_core(prog, rec, insn_idx);
5777 if (err) {
5778 pr_warn("prog '%s': relo #%d: failed to record relocation: %d\n",
5779 prog->name, i, err);
5780 goto out;
5781 }
5782
5783 if (prog->obj->gen_loader)
5784 continue;
5785
5786 err = bpf_core_resolve_relo(prog, rec, i, obj->btf, cand_cache, &targ_res);
5787 if (err) {
5788 pr_warn("prog '%s': relo #%d: failed to relocate: %d\n",
5789 prog->name, i, err);
5790 goto out;
5791 }
5792
5793 err = bpf_core_patch_insn(prog->name, insn, insn_idx, rec, i, &targ_res);
5794 if (err) {
5795 pr_warn("prog '%s': relo #%d: failed to patch insn #%u: %d\n",
5796 prog->name, i, insn_idx, err);
5797 goto out;
5798 }
5799 }
5800 }
5801
5802out:
5803 /* obj->btf_vmlinux and module BTFs are freed after object load */
5804 btf__free(obj->btf_vmlinux_override);
5805 obj->btf_vmlinux_override = NULL;
5806
5807 if (!IS_ERR_OR_NULL(cand_cache)) {
5808 hashmap__for_each_entry(cand_cache, entry, i) {
5809 bpf_core_free_cands(entry->pvalue);
5810 }
5811 hashmap__free(cand_cache);
5812 }
5813 return err;
5814}
5815
5816/* base map load ldimm64 special constant, used also for log fixup logic */
5817#define POISON_LDIMM64_MAP_BASE 2001000000
5818#define POISON_LDIMM64_MAP_PFX "200100"
5819
5820static void poison_map_ldimm64(struct bpf_program *prog, int relo_idx,
5821 int insn_idx, struct bpf_insn *insn,
5822 int map_idx, const struct bpf_map *map)
5823{
5824 int i;
5825
5826 pr_debug("prog '%s': relo #%d: poisoning insn #%d that loads map #%d '%s'\n",
5827 prog->name, relo_idx, insn_idx, map_idx, map->name);
5828
5829 /* we turn single ldimm64 into two identical invalid calls */
5830 for (i = 0; i < 2; i++) {
5831 insn->code = BPF_JMP | BPF_CALL;
5832 insn->dst_reg = 0;
5833 insn->src_reg = 0;
5834 insn->off = 0;
5835 /* if this instruction is reachable (not a dead code),
5836 * verifier will complain with something like:
5837 * invalid func unknown#2001000123
5838 * where lower 123 is map index into obj->maps[] array
5839 */
5840 insn->imm = POISON_LDIMM64_MAP_BASE + map_idx;
5841
5842 insn++;
5843 }
5844}
5845
5846/* unresolved kfunc call special constant, used also for log fixup logic */
5847#define POISON_CALL_KFUNC_BASE 2002000000
5848#define POISON_CALL_KFUNC_PFX "2002"
5849
5850static void poison_kfunc_call(struct bpf_program *prog, int relo_idx,
5851 int insn_idx, struct bpf_insn *insn,
5852 int ext_idx, const struct extern_desc *ext)
5853{
5854 pr_debug("prog '%s': relo #%d: poisoning insn #%d that calls kfunc '%s'\n",
5855 prog->name, relo_idx, insn_idx, ext->name);
5856
5857 /* we turn kfunc call into invalid helper call with identifiable constant */
5858 insn->code = BPF_JMP | BPF_CALL;
5859 insn->dst_reg = 0;
5860 insn->src_reg = 0;
5861 insn->off = 0;
5862 /* if this instruction is reachable (not a dead code),
5863 * verifier will complain with something like:
5864 * invalid func unknown#2001000123
5865 * where lower 123 is extern index into obj->externs[] array
5866 */
5867 insn->imm = POISON_CALL_KFUNC_BASE + ext_idx;
5868}
5869
5870/* Relocate data references within program code:
5871 * - map references;
5872 * - global variable references;
5873 * - extern references.
5874 */
5875static int
5876bpf_object__relocate_data(struct bpf_object *obj, struct bpf_program *prog)
5877{
5878 int i;
5879
5880 for (i = 0; i < prog->nr_reloc; i++) {
5881 struct reloc_desc *relo = &prog->reloc_desc[i];
5882 struct bpf_insn *insn = &prog->insns[relo->insn_idx];
5883 const struct bpf_map *map;
5884 struct extern_desc *ext;
5885
5886 switch (relo->type) {
5887 case RELO_LD64:
5888 map = &obj->maps[relo->map_idx];
5889 if (obj->gen_loader) {
5890 insn[0].src_reg = BPF_PSEUDO_MAP_IDX;
5891 insn[0].imm = relo->map_idx;
5892 } else if (map->autocreate) {
5893 insn[0].src_reg = BPF_PSEUDO_MAP_FD;
5894 insn[0].imm = map->fd;
5895 } else {
5896 poison_map_ldimm64(prog, i, relo->insn_idx, insn,
5897 relo->map_idx, map);
5898 }
5899 break;
5900 case RELO_DATA:
5901 map = &obj->maps[relo->map_idx];
5902 insn[1].imm = insn[0].imm + relo->sym_off;
5903 if (obj->gen_loader) {
5904 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
5905 insn[0].imm = relo->map_idx;
5906 } else if (map->autocreate) {
5907 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
5908 insn[0].imm = map->fd;
5909 } else {
5910 poison_map_ldimm64(prog, i, relo->insn_idx, insn,
5911 relo->map_idx, map);
5912 }
5913 break;
5914 case RELO_EXTERN_LD64:
5915 ext = &obj->externs[relo->ext_idx];
5916 if (ext->type == EXT_KCFG) {
5917 if (obj->gen_loader) {
5918 insn[0].src_reg = BPF_PSEUDO_MAP_IDX_VALUE;
5919 insn[0].imm = obj->kconfig_map_idx;
5920 } else {
5921 insn[0].src_reg = BPF_PSEUDO_MAP_VALUE;
5922 insn[0].imm = obj->maps[obj->kconfig_map_idx].fd;
5923 }
5924 insn[1].imm = ext->kcfg.data_off;
5925 } else /* EXT_KSYM */ {
5926 if (ext->ksym.type_id && ext->is_set) { /* typed ksyms */
5927 insn[0].src_reg = BPF_PSEUDO_BTF_ID;
5928 insn[0].imm = ext->ksym.kernel_btf_id;
5929 insn[1].imm = ext->ksym.kernel_btf_obj_fd;
5930 } else { /* typeless ksyms or unresolved typed ksyms */
5931 insn[0].imm = (__u32)ext->ksym.addr;
5932 insn[1].imm = ext->ksym.addr >> 32;
5933 }
5934 }
5935 break;
5936 case RELO_EXTERN_CALL:
5937 ext = &obj->externs[relo->ext_idx];
5938 insn[0].src_reg = BPF_PSEUDO_KFUNC_CALL;
5939 if (ext->is_set) {
5940 insn[0].imm = ext->ksym.kernel_btf_id;
5941 insn[0].off = ext->ksym.btf_fd_idx;
5942 } else { /* unresolved weak kfunc call */
5943 poison_kfunc_call(prog, i, relo->insn_idx, insn,
5944 relo->ext_idx, ext);
5945 }
5946 break;
5947 case RELO_SUBPROG_ADDR:
5948 if (insn[0].src_reg != BPF_PSEUDO_FUNC) {
5949 pr_warn("prog '%s': relo #%d: bad insn\n",
5950 prog->name, i);
5951 return -EINVAL;
5952 }
5953 /* handled already */
5954 break;
5955 case RELO_CALL:
5956 /* handled already */
5957 break;
5958 case RELO_CORE:
5959 /* will be handled by bpf_program_record_relos() */
5960 break;
5961 default:
5962 pr_warn("prog '%s': relo #%d: bad relo type %d\n",
5963 prog->name, i, relo->type);
5964 return -EINVAL;
5965 }
5966 }
5967
5968 return 0;
5969}
5970
5971static int adjust_prog_btf_ext_info(const struct bpf_object *obj,
5972 const struct bpf_program *prog,
5973 const struct btf_ext_info *ext_info,
5974 void **prog_info, __u32 *prog_rec_cnt,
5975 __u32 *prog_rec_sz)
5976{
5977 void *copy_start = NULL, *copy_end = NULL;
5978 void *rec, *rec_end, *new_prog_info;
5979 const struct btf_ext_info_sec *sec;
5980 size_t old_sz, new_sz;
5981 int i, sec_num, sec_idx, off_adj;
5982
5983 sec_num = 0;
5984 for_each_btf_ext_sec(ext_info, sec) {
5985 sec_idx = ext_info->sec_idxs[sec_num];
5986 sec_num++;
5987 if (prog->sec_idx != sec_idx)
5988 continue;
5989
5990 for_each_btf_ext_rec(ext_info, sec, i, rec) {
5991 __u32 insn_off = *(__u32 *)rec / BPF_INSN_SZ;
5992
5993 if (insn_off < prog->sec_insn_off)
5994 continue;
5995 if (insn_off >= prog->sec_insn_off + prog->sec_insn_cnt)
5996 break;
5997
5998 if (!copy_start)
5999 copy_start = rec;
6000 copy_end = rec + ext_info->rec_size;
6001 }
6002
6003 if (!copy_start)
6004 return -ENOENT;
6005
6006 /* append func/line info of a given (sub-)program to the main
6007 * program func/line info
6008 */
6009 old_sz = (size_t)(*prog_rec_cnt) * ext_info->rec_size;
6010 new_sz = old_sz + (copy_end - copy_start);
6011 new_prog_info = realloc(*prog_info, new_sz);
6012 if (!new_prog_info)
6013 return -ENOMEM;
6014 *prog_info = new_prog_info;
6015 *prog_rec_cnt = new_sz / ext_info->rec_size;
6016 memcpy(new_prog_info + old_sz, copy_start, copy_end - copy_start);
6017
6018 /* Kernel instruction offsets are in units of 8-byte
6019 * instructions, while .BTF.ext instruction offsets generated
6020 * by Clang are in units of bytes. So convert Clang offsets
6021 * into kernel offsets and adjust offset according to program
6022 * relocated position.
6023 */
6024 off_adj = prog->sub_insn_off - prog->sec_insn_off;
6025 rec = new_prog_info + old_sz;
6026 rec_end = new_prog_info + new_sz;
6027 for (; rec < rec_end; rec += ext_info->rec_size) {
6028 __u32 *insn_off = rec;
6029
6030 *insn_off = *insn_off / BPF_INSN_SZ + off_adj;
6031 }
6032 *prog_rec_sz = ext_info->rec_size;
6033 return 0;
6034 }
6035
6036 return -ENOENT;
6037}
6038
6039static int
6040reloc_prog_func_and_line_info(const struct bpf_object *obj,
6041 struct bpf_program *main_prog,
6042 const struct bpf_program *prog)
6043{
6044 int err;
6045
6046 /* no .BTF.ext relocation if .BTF.ext is missing or kernel doesn't
6047 * supprot func/line info
6048 */
6049 if (!obj->btf_ext || !kernel_supports(obj, FEAT_BTF_FUNC))
6050 return 0;
6051
6052 /* only attempt func info relocation if main program's func_info
6053 * relocation was successful
6054 */
6055 if (main_prog != prog && !main_prog->func_info)
6056 goto line_info;
6057
6058 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->func_info,
6059 &main_prog->func_info,
6060 &main_prog->func_info_cnt,
6061 &main_prog->func_info_rec_size);
6062 if (err) {
6063 if (err != -ENOENT) {
6064 pr_warn("prog '%s': error relocating .BTF.ext function info: %d\n",
6065 prog->name, err);
6066 return err;
6067 }
6068 if (main_prog->func_info) {
6069 /*
6070 * Some info has already been found but has problem
6071 * in the last btf_ext reloc. Must have to error out.
6072 */
6073 pr_warn("prog '%s': missing .BTF.ext function info.\n", prog->name);
6074 return err;
6075 }
6076 /* Have problem loading the very first info. Ignore the rest. */
6077 pr_warn("prog '%s': missing .BTF.ext function info for the main program, skipping all of .BTF.ext func info.\n",
6078 prog->name);
6079 }
6080
6081line_info:
6082 /* don't relocate line info if main program's relocation failed */
6083 if (main_prog != prog && !main_prog->line_info)
6084 return 0;
6085
6086 err = adjust_prog_btf_ext_info(obj, prog, &obj->btf_ext->line_info,
6087 &main_prog->line_info,
6088 &main_prog->line_info_cnt,
6089 &main_prog->line_info_rec_size);
6090 if (err) {
6091 if (err != -ENOENT) {
6092 pr_warn("prog '%s': error relocating .BTF.ext line info: %d\n",
6093 prog->name, err);
6094 return err;
6095 }
6096 if (main_prog->line_info) {
6097 /*
6098 * Some info has already been found but has problem
6099 * in the last btf_ext reloc. Must have to error out.
6100 */
6101 pr_warn("prog '%s': missing .BTF.ext line info.\n", prog->name);
6102 return err;
6103 }
6104 /* Have problem loading the very first info. Ignore the rest. */
6105 pr_warn("prog '%s': missing .BTF.ext line info for the main program, skipping all of .BTF.ext line info.\n",
6106 prog->name);
6107 }
6108 return 0;
6109}
6110
6111static int cmp_relo_by_insn_idx(const void *key, const void *elem)
6112{
6113 size_t insn_idx = *(const size_t *)key;
6114 const struct reloc_desc *relo = elem;
6115
6116 if (insn_idx == relo->insn_idx)
6117 return 0;
6118 return insn_idx < relo->insn_idx ? -1 : 1;
6119}
6120
6121static struct reloc_desc *find_prog_insn_relo(const struct bpf_program *prog, size_t insn_idx)
6122{
6123 if (!prog->nr_reloc)
6124 return NULL;
6125 return bsearch(&insn_idx, prog->reloc_desc, prog->nr_reloc,
6126 sizeof(*prog->reloc_desc), cmp_relo_by_insn_idx);
6127}
6128
6129static int append_subprog_relos(struct bpf_program *main_prog, struct bpf_program *subprog)
6130{
6131 int new_cnt = main_prog->nr_reloc + subprog->nr_reloc;
6132 struct reloc_desc *relos;
6133 int i;
6134
6135 if (main_prog == subprog)
6136 return 0;
6137 relos = libbpf_reallocarray(main_prog->reloc_desc, new_cnt, sizeof(*relos));
6138 if (!relos)
6139 return -ENOMEM;
6140 if (subprog->nr_reloc)
6141 memcpy(relos + main_prog->nr_reloc, subprog->reloc_desc,
6142 sizeof(*relos) * subprog->nr_reloc);
6143
6144 for (i = main_prog->nr_reloc; i < new_cnt; i++)
6145 relos[i].insn_idx += subprog->sub_insn_off;
6146 /* After insn_idx adjustment the 'relos' array is still sorted
6147 * by insn_idx and doesn't break bsearch.
6148 */
6149 main_prog->reloc_desc = relos;
6150 main_prog->nr_reloc = new_cnt;
6151 return 0;
6152}
6153
6154static int
6155bpf_object__reloc_code(struct bpf_object *obj, struct bpf_program *main_prog,
6156 struct bpf_program *prog)
6157{
6158 size_t sub_insn_idx, insn_idx, new_cnt;
6159 struct bpf_program *subprog;
6160 struct bpf_insn *insns, *insn;
6161 struct reloc_desc *relo;
6162 int err;
6163
6164 err = reloc_prog_func_and_line_info(obj, main_prog, prog);
6165 if (err)
6166 return err;
6167
6168 for (insn_idx = 0; insn_idx < prog->sec_insn_cnt; insn_idx++) {
6169 insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6170 if (!insn_is_subprog_call(insn) && !insn_is_pseudo_func(insn))
6171 continue;
6172
6173 relo = find_prog_insn_relo(prog, insn_idx);
6174 if (relo && relo->type == RELO_EXTERN_CALL)
6175 /* kfunc relocations will be handled later
6176 * in bpf_object__relocate_data()
6177 */
6178 continue;
6179 if (relo && relo->type != RELO_CALL && relo->type != RELO_SUBPROG_ADDR) {
6180 pr_warn("prog '%s': unexpected relo for insn #%zu, type %d\n",
6181 prog->name, insn_idx, relo->type);
6182 return -LIBBPF_ERRNO__RELOC;
6183 }
6184 if (relo) {
6185 /* sub-program instruction index is a combination of
6186 * an offset of a symbol pointed to by relocation and
6187 * call instruction's imm field; for global functions,
6188 * call always has imm = -1, but for static functions
6189 * relocation is against STT_SECTION and insn->imm
6190 * points to a start of a static function
6191 *
6192 * for subprog addr relocation, the relo->sym_off + insn->imm is
6193 * the byte offset in the corresponding section.
6194 */
6195 if (relo->type == RELO_CALL)
6196 sub_insn_idx = relo->sym_off / BPF_INSN_SZ + insn->imm + 1;
6197 else
6198 sub_insn_idx = (relo->sym_off + insn->imm) / BPF_INSN_SZ;
6199 } else if (insn_is_pseudo_func(insn)) {
6200 /*
6201 * RELO_SUBPROG_ADDR relo is always emitted even if both
6202 * functions are in the same section, so it shouldn't reach here.
6203 */
6204 pr_warn("prog '%s': missing subprog addr relo for insn #%zu\n",
6205 prog->name, insn_idx);
6206 return -LIBBPF_ERRNO__RELOC;
6207 } else {
6208 /* if subprogram call is to a static function within
6209 * the same ELF section, there won't be any relocation
6210 * emitted, but it also means there is no additional
6211 * offset necessary, insns->imm is relative to
6212 * instruction's original position within the section
6213 */
6214 sub_insn_idx = prog->sec_insn_off + insn_idx + insn->imm + 1;
6215 }
6216
6217 /* we enforce that sub-programs should be in .text section */
6218 subprog = find_prog_by_sec_insn(obj, obj->efile.text_shndx, sub_insn_idx);
6219 if (!subprog) {
6220 pr_warn("prog '%s': no .text section found yet sub-program call exists\n",
6221 prog->name);
6222 return -LIBBPF_ERRNO__RELOC;
6223 }
6224
6225 /* if it's the first call instruction calling into this
6226 * subprogram (meaning this subprog hasn't been processed
6227 * yet) within the context of current main program:
6228 * - append it at the end of main program's instructions blog;
6229 * - process is recursively, while current program is put on hold;
6230 * - if that subprogram calls some other not yet processes
6231 * subprogram, same thing will happen recursively until
6232 * there are no more unprocesses subprograms left to append
6233 * and relocate.
6234 */
6235 if (subprog->sub_insn_off == 0) {
6236 subprog->sub_insn_off = main_prog->insns_cnt;
6237
6238 new_cnt = main_prog->insns_cnt + subprog->insns_cnt;
6239 insns = libbpf_reallocarray(main_prog->insns, new_cnt, sizeof(*insns));
6240 if (!insns) {
6241 pr_warn("prog '%s': failed to realloc prog code\n", main_prog->name);
6242 return -ENOMEM;
6243 }
6244 main_prog->insns = insns;
6245 main_prog->insns_cnt = new_cnt;
6246
6247 memcpy(main_prog->insns + subprog->sub_insn_off, subprog->insns,
6248 subprog->insns_cnt * sizeof(*insns));
6249
6250 pr_debug("prog '%s': added %zu insns from sub-prog '%s'\n",
6251 main_prog->name, subprog->insns_cnt, subprog->name);
6252
6253 /* The subprog insns are now appended. Append its relos too. */
6254 err = append_subprog_relos(main_prog, subprog);
6255 if (err)
6256 return err;
6257 err = bpf_object__reloc_code(obj, main_prog, subprog);
6258 if (err)
6259 return err;
6260 }
6261
6262 /* main_prog->insns memory could have been re-allocated, so
6263 * calculate pointer again
6264 */
6265 insn = &main_prog->insns[prog->sub_insn_off + insn_idx];
6266 /* calculate correct instruction position within current main
6267 * prog; each main prog can have a different set of
6268 * subprograms appended (potentially in different order as
6269 * well), so position of any subprog can be different for
6270 * different main programs
6271 */
6272 insn->imm = subprog->sub_insn_off - (prog->sub_insn_off + insn_idx) - 1;
6273
6274 pr_debug("prog '%s': insn #%zu relocated, imm %d points to subprog '%s' (now at %zu offset)\n",
6275 prog->name, insn_idx, insn->imm, subprog->name, subprog->sub_insn_off);
6276 }
6277
6278 return 0;
6279}
6280
6281/*
6282 * Relocate sub-program calls.
6283 *
6284 * Algorithm operates as follows. Each entry-point BPF program (referred to as
6285 * main prog) is processed separately. For each subprog (non-entry functions,
6286 * that can be called from either entry progs or other subprogs) gets their
6287 * sub_insn_off reset to zero. This serves as indicator that this subprogram
6288 * hasn't been yet appended and relocated within current main prog. Once its
6289 * relocated, sub_insn_off will point at the position within current main prog
6290 * where given subprog was appended. This will further be used to relocate all
6291 * the call instructions jumping into this subprog.
6292 *
6293 * We start with main program and process all call instructions. If the call
6294 * is into a subprog that hasn't been processed (i.e., subprog->sub_insn_off
6295 * is zero), subprog instructions are appended at the end of main program's
6296 * instruction array. Then main program is "put on hold" while we recursively
6297 * process newly appended subprogram. If that subprogram calls into another
6298 * subprogram that hasn't been appended, new subprogram is appended again to
6299 * the *main* prog's instructions (subprog's instructions are always left
6300 * untouched, as they need to be in unmodified state for subsequent main progs
6301 * and subprog instructions are always sent only as part of a main prog) and
6302 * the process continues recursively. Once all the subprogs called from a main
6303 * prog or any of its subprogs are appended (and relocated), all their
6304 * positions within finalized instructions array are known, so it's easy to
6305 * rewrite call instructions with correct relative offsets, corresponding to
6306 * desired target subprog.
6307 *
6308 * Its important to realize that some subprogs might not be called from some
6309 * main prog and any of its called/used subprogs. Those will keep their
6310 * subprog->sub_insn_off as zero at all times and won't be appended to current
6311 * main prog and won't be relocated within the context of current main prog.
6312 * They might still be used from other main progs later.
6313 *
6314 * Visually this process can be shown as below. Suppose we have two main
6315 * programs mainA and mainB and BPF object contains three subprogs: subA,
6316 * subB, and subC. mainA calls only subA, mainB calls only subC, but subA and
6317 * subC both call subB:
6318 *
6319 * +--------+ +-------+
6320 * | v v |
6321 * +--+---+ +--+-+-+ +---+--+
6322 * | subA | | subB | | subC |
6323 * +--+---+ +------+ +---+--+
6324 * ^ ^
6325 * | |
6326 * +---+-------+ +------+----+
6327 * | mainA | | mainB |
6328 * +-----------+ +-----------+
6329 *
6330 * We'll start relocating mainA, will find subA, append it and start
6331 * processing sub A recursively:
6332 *
6333 * +-----------+------+
6334 * | mainA | subA |
6335 * +-----------+------+
6336 *
6337 * At this point we notice that subB is used from subA, so we append it and
6338 * relocate (there are no further subcalls from subB):
6339 *
6340 * +-----------+------+------+
6341 * | mainA | subA | subB |
6342 * +-----------+------+------+
6343 *
6344 * At this point, we relocate subA calls, then go one level up and finish with
6345 * relocatin mainA calls. mainA is done.
6346 *
6347 * For mainB process is similar but results in different order. We start with
6348 * mainB and skip subA and subB, as mainB never calls them (at least
6349 * directly), but we see subC is needed, so we append and start processing it:
6350 *
6351 * +-----------+------+
6352 * | mainB | subC |
6353 * +-----------+------+
6354 * Now we see subC needs subB, so we go back to it, append and relocate it:
6355 *
6356 * +-----------+------+------+
6357 * | mainB | subC | subB |
6358 * +-----------+------+------+
6359 *
6360 * At this point we unwind recursion, relocate calls in subC, then in mainB.
6361 */
6362static int
6363bpf_object__relocate_calls(struct bpf_object *obj, struct bpf_program *prog)
6364{
6365 struct bpf_program *subprog;
6366 int i, err;
6367
6368 /* mark all subprogs as not relocated (yet) within the context of
6369 * current main program
6370 */
6371 for (i = 0; i < obj->nr_programs; i++) {
6372 subprog = &obj->programs[i];
6373 if (!prog_is_subprog(obj, subprog))
6374 continue;
6375
6376 subprog->sub_insn_off = 0;
6377 }
6378
6379 err = bpf_object__reloc_code(obj, prog, prog);
6380 if (err)
6381 return err;
6382
6383 return 0;
6384}
6385
6386static void
6387bpf_object__free_relocs(struct bpf_object *obj)
6388{
6389 struct bpf_program *prog;
6390 int i;
6391
6392 /* free up relocation descriptors */
6393 for (i = 0; i < obj->nr_programs; i++) {
6394 prog = &obj->programs[i];
6395 zfree(&prog->reloc_desc);
6396 prog->nr_reloc = 0;
6397 }
6398}
6399
6400static int cmp_relocs(const void *_a, const void *_b)
6401{
6402 const struct reloc_desc *a = _a;
6403 const struct reloc_desc *b = _b;
6404
6405 if (a->insn_idx != b->insn_idx)
6406 return a->insn_idx < b->insn_idx ? -1 : 1;
6407
6408 /* no two relocations should have the same insn_idx, but ... */
6409 if (a->type != b->type)
6410 return a->type < b->type ? -1 : 1;
6411
6412 return 0;
6413}
6414
6415static void bpf_object__sort_relos(struct bpf_object *obj)
6416{
6417 int i;
6418
6419 for (i = 0; i < obj->nr_programs; i++) {
6420 struct bpf_program *p = &obj->programs[i];
6421
6422 if (!p->nr_reloc)
6423 continue;
6424
6425 qsort(p->reloc_desc, p->nr_reloc, sizeof(*p->reloc_desc), cmp_relocs);
6426 }
6427}
6428
6429static int
6430bpf_object__relocate(struct bpf_object *obj, const char *targ_btf_path)
6431{
6432 struct bpf_program *prog;
6433 size_t i, j;
6434 int err;
6435
6436 if (obj->btf_ext) {
6437 err = bpf_object__relocate_core(obj, targ_btf_path);
6438 if (err) {
6439 pr_warn("failed to perform CO-RE relocations: %d\n",
6440 err);
6441 return err;
6442 }
6443 bpf_object__sort_relos(obj);
6444 }
6445
6446 /* Before relocating calls pre-process relocations and mark
6447 * few ld_imm64 instructions that points to subprogs.
6448 * Otherwise bpf_object__reloc_code() later would have to consider
6449 * all ld_imm64 insns as relocation candidates. That would
6450 * reduce relocation speed, since amount of find_prog_insn_relo()
6451 * would increase and most of them will fail to find a relo.
6452 */
6453 for (i = 0; i < obj->nr_programs; i++) {
6454 prog = &obj->programs[i];
6455 for (j = 0; j < prog->nr_reloc; j++) {
6456 struct reloc_desc *relo = &prog->reloc_desc[j];
6457 struct bpf_insn *insn = &prog->insns[relo->insn_idx];
6458
6459 /* mark the insn, so it's recognized by insn_is_pseudo_func() */
6460 if (relo->type == RELO_SUBPROG_ADDR)
6461 insn[0].src_reg = BPF_PSEUDO_FUNC;
6462 }
6463 }
6464
6465 /* relocate subprogram calls and append used subprograms to main
6466 * programs; each copy of subprogram code needs to be relocated
6467 * differently for each main program, because its code location might
6468 * have changed.
6469 * Append subprog relos to main programs to allow data relos to be
6470 * processed after text is completely relocated.
6471 */
6472 for (i = 0; i < obj->nr_programs; i++) {
6473 prog = &obj->programs[i];
6474 /* sub-program's sub-calls are relocated within the context of
6475 * its main program only
6476 */
6477 if (prog_is_subprog(obj, prog))
6478 continue;
6479 if (!prog->autoload)
6480 continue;
6481
6482 err = bpf_object__relocate_calls(obj, prog);
6483 if (err) {
6484 pr_warn("prog '%s': failed to relocate calls: %d\n",
6485 prog->name, err);
6486 return err;
6487 }
6488 }
6489 /* Process data relos for main programs */
6490 for (i = 0; i < obj->nr_programs; i++) {
6491 prog = &obj->programs[i];
6492 if (prog_is_subprog(obj, prog))
6493 continue;
6494 if (!prog->autoload)
6495 continue;
6496 err = bpf_object__relocate_data(obj, prog);
6497 if (err) {
6498 pr_warn("prog '%s': failed to relocate data references: %d\n",
6499 prog->name, err);
6500 return err;
6501 }
6502 }
6503
6504 return 0;
6505}
6506
6507static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
6508 Elf64_Shdr *shdr, Elf_Data *data);
6509
6510static int bpf_object__collect_map_relos(struct bpf_object *obj,
6511 Elf64_Shdr *shdr, Elf_Data *data)
6512{
6513 const int bpf_ptr_sz = 8, host_ptr_sz = sizeof(void *);
6514 int i, j, nrels, new_sz;
6515 const struct btf_var_secinfo *vi = NULL;
6516 const struct btf_type *sec, *var, *def;
6517 struct bpf_map *map = NULL, *targ_map = NULL;
6518 struct bpf_program *targ_prog = NULL;
6519 bool is_prog_array, is_map_in_map;
6520 const struct btf_member *member;
6521 const char *name, *mname, *type;
6522 unsigned int moff;
6523 Elf64_Sym *sym;
6524 Elf64_Rel *rel;
6525 void *tmp;
6526
6527 if (!obj->efile.btf_maps_sec_btf_id || !obj->btf)
6528 return -EINVAL;
6529 sec = btf__type_by_id(obj->btf, obj->efile.btf_maps_sec_btf_id);
6530 if (!sec)
6531 return -EINVAL;
6532
6533 nrels = shdr->sh_size / shdr->sh_entsize;
6534 for (i = 0; i < nrels; i++) {
6535 rel = elf_rel_by_idx(data, i);
6536 if (!rel) {
6537 pr_warn(".maps relo #%d: failed to get ELF relo\n", i);
6538 return -LIBBPF_ERRNO__FORMAT;
6539 }
6540
6541 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
6542 if (!sym) {
6543 pr_warn(".maps relo #%d: symbol %zx not found\n",
6544 i, (size_t)ELF64_R_SYM(rel->r_info));
6545 return -LIBBPF_ERRNO__FORMAT;
6546 }
6547 name = elf_sym_str(obj, sym->st_name) ?: "<?>";
6548
6549 pr_debug(".maps relo #%d: for %zd value %zd rel->r_offset %zu name %d ('%s')\n",
6550 i, (ssize_t)(rel->r_info >> 32), (size_t)sym->st_value,
6551 (size_t)rel->r_offset, sym->st_name, name);
6552
6553 for (j = 0; j < obj->nr_maps; j++) {
6554 map = &obj->maps[j];
6555 if (map->sec_idx != obj->efile.btf_maps_shndx)
6556 continue;
6557
6558 vi = btf_var_secinfos(sec) + map->btf_var_idx;
6559 if (vi->offset <= rel->r_offset &&
6560 rel->r_offset + bpf_ptr_sz <= vi->offset + vi->size)
6561 break;
6562 }
6563 if (j == obj->nr_maps) {
6564 pr_warn(".maps relo #%d: cannot find map '%s' at rel->r_offset %zu\n",
6565 i, name, (size_t)rel->r_offset);
6566 return -EINVAL;
6567 }
6568
6569 is_map_in_map = bpf_map_type__is_map_in_map(map->def.type);
6570 is_prog_array = map->def.type == BPF_MAP_TYPE_PROG_ARRAY;
6571 type = is_map_in_map ? "map" : "prog";
6572 if (is_map_in_map) {
6573 if (sym->st_shndx != obj->efile.btf_maps_shndx) {
6574 pr_warn(".maps relo #%d: '%s' isn't a BTF-defined map\n",
6575 i, name);
6576 return -LIBBPF_ERRNO__RELOC;
6577 }
6578 if (map->def.type == BPF_MAP_TYPE_HASH_OF_MAPS &&
6579 map->def.key_size != sizeof(int)) {
6580 pr_warn(".maps relo #%d: hash-of-maps '%s' should have key size %zu.\n",
6581 i, map->name, sizeof(int));
6582 return -EINVAL;
6583 }
6584 targ_map = bpf_object__find_map_by_name(obj, name);
6585 if (!targ_map) {
6586 pr_warn(".maps relo #%d: '%s' isn't a valid map reference\n",
6587 i, name);
6588 return -ESRCH;
6589 }
6590 } else if (is_prog_array) {
6591 targ_prog = bpf_object__find_program_by_name(obj, name);
6592 if (!targ_prog) {
6593 pr_warn(".maps relo #%d: '%s' isn't a valid program reference\n",
6594 i, name);
6595 return -ESRCH;
6596 }
6597 if (targ_prog->sec_idx != sym->st_shndx ||
6598 targ_prog->sec_insn_off * 8 != sym->st_value ||
6599 prog_is_subprog(obj, targ_prog)) {
6600 pr_warn(".maps relo #%d: '%s' isn't an entry-point program\n",
6601 i, name);
6602 return -LIBBPF_ERRNO__RELOC;
6603 }
6604 } else {
6605 return -EINVAL;
6606 }
6607
6608 var = btf__type_by_id(obj->btf, vi->type);
6609 def = skip_mods_and_typedefs(obj->btf, var->type, NULL);
6610 if (btf_vlen(def) == 0)
6611 return -EINVAL;
6612 member = btf_members(def) + btf_vlen(def) - 1;
6613 mname = btf__name_by_offset(obj->btf, member->name_off);
6614 if (strcmp(mname, "values"))
6615 return -EINVAL;
6616
6617 moff = btf_member_bit_offset(def, btf_vlen(def) - 1) / 8;
6618 if (rel->r_offset - vi->offset < moff)
6619 return -EINVAL;
6620
6621 moff = rel->r_offset - vi->offset - moff;
6622 /* here we use BPF pointer size, which is always 64 bit, as we
6623 * are parsing ELF that was built for BPF target
6624 */
6625 if (moff % bpf_ptr_sz)
6626 return -EINVAL;
6627 moff /= bpf_ptr_sz;
6628 if (moff >= map->init_slots_sz) {
6629 new_sz = moff + 1;
6630 tmp = libbpf_reallocarray(map->init_slots, new_sz, host_ptr_sz);
6631 if (!tmp)
6632 return -ENOMEM;
6633 map->init_slots = tmp;
6634 memset(map->init_slots + map->init_slots_sz, 0,
6635 (new_sz - map->init_slots_sz) * host_ptr_sz);
6636 map->init_slots_sz = new_sz;
6637 }
6638 map->init_slots[moff] = is_map_in_map ? (void *)targ_map : (void *)targ_prog;
6639
6640 pr_debug(".maps relo #%d: map '%s' slot [%d] points to %s '%s'\n",
6641 i, map->name, moff, type, name);
6642 }
6643
6644 return 0;
6645}
6646
6647static int bpf_object__collect_relos(struct bpf_object *obj)
6648{
6649 int i, err;
6650
6651 for (i = 0; i < obj->efile.sec_cnt; i++) {
6652 struct elf_sec_desc *sec_desc = &obj->efile.secs[i];
6653 Elf64_Shdr *shdr;
6654 Elf_Data *data;
6655 int idx;
6656
6657 if (sec_desc->sec_type != SEC_RELO)
6658 continue;
6659
6660 shdr = sec_desc->shdr;
6661 data = sec_desc->data;
6662 idx = shdr->sh_info;
6663
6664 if (shdr->sh_type != SHT_REL) {
6665 pr_warn("internal error at %d\n", __LINE__);
6666 return -LIBBPF_ERRNO__INTERNAL;
6667 }
6668
6669 if (idx == obj->efile.st_ops_shndx || idx == obj->efile.st_ops_link_shndx)
6670 err = bpf_object__collect_st_ops_relos(obj, shdr, data);
6671 else if (idx == obj->efile.btf_maps_shndx)
6672 err = bpf_object__collect_map_relos(obj, shdr, data);
6673 else
6674 err = bpf_object__collect_prog_relos(obj, shdr, data);
6675 if (err)
6676 return err;
6677 }
6678
6679 bpf_object__sort_relos(obj);
6680 return 0;
6681}
6682
6683static bool insn_is_helper_call(struct bpf_insn *insn, enum bpf_func_id *func_id)
6684{
6685 if (BPF_CLASS(insn->code) == BPF_JMP &&
6686 BPF_OP(insn->code) == BPF_CALL &&
6687 BPF_SRC(insn->code) == BPF_K &&
6688 insn->src_reg == 0 &&
6689 insn->dst_reg == 0) {
6690 *func_id = insn->imm;
6691 return true;
6692 }
6693 return false;
6694}
6695
6696static int bpf_object__sanitize_prog(struct bpf_object *obj, struct bpf_program *prog)
6697{
6698 struct bpf_insn *insn = prog->insns;
6699 enum bpf_func_id func_id;
6700 int i;
6701
6702 if (obj->gen_loader)
6703 return 0;
6704
6705 for (i = 0; i < prog->insns_cnt; i++, insn++) {
6706 if (!insn_is_helper_call(insn, &func_id))
6707 continue;
6708
6709 /* on kernels that don't yet support
6710 * bpf_probe_read_{kernel,user}[_str] helpers, fall back
6711 * to bpf_probe_read() which works well for old kernels
6712 */
6713 switch (func_id) {
6714 case BPF_FUNC_probe_read_kernel:
6715 case BPF_FUNC_probe_read_user:
6716 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
6717 insn->imm = BPF_FUNC_probe_read;
6718 break;
6719 case BPF_FUNC_probe_read_kernel_str:
6720 case BPF_FUNC_probe_read_user_str:
6721 if (!kernel_supports(obj, FEAT_PROBE_READ_KERN))
6722 insn->imm = BPF_FUNC_probe_read_str;
6723 break;
6724 default:
6725 break;
6726 }
6727 }
6728 return 0;
6729}
6730
6731static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
6732 int *btf_obj_fd, int *btf_type_id);
6733
6734/* this is called as prog->sec_def->prog_prepare_load_fn for libbpf-supported sec_defs */
6735static int libbpf_prepare_prog_load(struct bpf_program *prog,
6736 struct bpf_prog_load_opts *opts, long cookie)
6737{
6738 enum sec_def_flags def = cookie;
6739
6740 /* old kernels might not support specifying expected_attach_type */
6741 if ((def & SEC_EXP_ATTACH_OPT) && !kernel_supports(prog->obj, FEAT_EXP_ATTACH_TYPE))
6742 opts->expected_attach_type = 0;
6743
6744 if (def & SEC_SLEEPABLE)
6745 opts->prog_flags |= BPF_F_SLEEPABLE;
6746
6747 if (prog->type == BPF_PROG_TYPE_XDP && (def & SEC_XDP_FRAGS))
6748 opts->prog_flags |= BPF_F_XDP_HAS_FRAGS;
6749
6750 if ((def & SEC_ATTACH_BTF) && !prog->attach_btf_id) {
6751 int btf_obj_fd = 0, btf_type_id = 0, err;
6752 const char *attach_name;
6753
6754 attach_name = strchr(prog->sec_name, '/');
6755 if (!attach_name) {
6756 /* if BPF program is annotated with just SEC("fentry")
6757 * (or similar) without declaratively specifying
6758 * target, then it is expected that target will be
6759 * specified with bpf_program__set_attach_target() at
6760 * runtime before BPF object load step. If not, then
6761 * there is nothing to load into the kernel as BPF
6762 * verifier won't be able to validate BPF program
6763 * correctness anyways.
6764 */
6765 pr_warn("prog '%s': no BTF-based attach target is specified, use bpf_program__set_attach_target()\n",
6766 prog->name);
6767 return -EINVAL;
6768 }
6769 attach_name++; /* skip over / */
6770
6771 err = libbpf_find_attach_btf_id(prog, attach_name, &btf_obj_fd, &btf_type_id);
6772 if (err)
6773 return err;
6774
6775 /* cache resolved BTF FD and BTF type ID in the prog */
6776 prog->attach_btf_obj_fd = btf_obj_fd;
6777 prog->attach_btf_id = btf_type_id;
6778
6779 /* but by now libbpf common logic is not utilizing
6780 * prog->atach_btf_obj_fd/prog->attach_btf_id anymore because
6781 * this callback is called after opts were populated by
6782 * libbpf, so this callback has to update opts explicitly here
6783 */
6784 opts->attach_btf_obj_fd = btf_obj_fd;
6785 opts->attach_btf_id = btf_type_id;
6786 }
6787 return 0;
6788}
6789
6790static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz);
6791
6792static int bpf_object_load_prog(struct bpf_object *obj, struct bpf_program *prog,
6793 struct bpf_insn *insns, int insns_cnt,
6794 const char *license, __u32 kern_version, int *prog_fd)
6795{
6796 LIBBPF_OPTS(bpf_prog_load_opts, load_attr);
6797 const char *prog_name = NULL;
6798 char *cp, errmsg[STRERR_BUFSIZE];
6799 size_t log_buf_size = 0;
6800 char *log_buf = NULL, *tmp;
6801 int btf_fd, ret, err;
6802 bool own_log_buf = true;
6803 __u32 log_level = prog->log_level;
6804
6805 if (prog->type == BPF_PROG_TYPE_UNSPEC) {
6806 /*
6807 * The program type must be set. Most likely we couldn't find a proper
6808 * section definition at load time, and thus we didn't infer the type.
6809 */
6810 pr_warn("prog '%s': missing BPF prog type, check ELF section name '%s'\n",
6811 prog->name, prog->sec_name);
6812 return -EINVAL;
6813 }
6814
6815 if (!insns || !insns_cnt)
6816 return -EINVAL;
6817
6818 load_attr.expected_attach_type = prog->expected_attach_type;
6819 if (kernel_supports(obj, FEAT_PROG_NAME))
6820 prog_name = prog->name;
6821 load_attr.attach_prog_fd = prog->attach_prog_fd;
6822 load_attr.attach_btf_obj_fd = prog->attach_btf_obj_fd;
6823 load_attr.attach_btf_id = prog->attach_btf_id;
6824 load_attr.kern_version = kern_version;
6825 load_attr.prog_ifindex = prog->prog_ifindex;
6826
6827 /* specify func_info/line_info only if kernel supports them */
6828 btf_fd = bpf_object__btf_fd(obj);
6829 if (btf_fd >= 0 && kernel_supports(obj, FEAT_BTF_FUNC)) {
6830 load_attr.prog_btf_fd = btf_fd;
6831 load_attr.func_info = prog->func_info;
6832 load_attr.func_info_rec_size = prog->func_info_rec_size;
6833 load_attr.func_info_cnt = prog->func_info_cnt;
6834 load_attr.line_info = prog->line_info;
6835 load_attr.line_info_rec_size = prog->line_info_rec_size;
6836 load_attr.line_info_cnt = prog->line_info_cnt;
6837 }
6838 load_attr.log_level = log_level;
6839 load_attr.prog_flags = prog->prog_flags;
6840 load_attr.fd_array = obj->fd_array;
6841
6842 /* adjust load_attr if sec_def provides custom preload callback */
6843 if (prog->sec_def && prog->sec_def->prog_prepare_load_fn) {
6844 err = prog->sec_def->prog_prepare_load_fn(prog, &load_attr, prog->sec_def->cookie);
6845 if (err < 0) {
6846 pr_warn("prog '%s': failed to prepare load attributes: %d\n",
6847 prog->name, err);
6848 return err;
6849 }
6850 insns = prog->insns;
6851 insns_cnt = prog->insns_cnt;
6852 }
6853
6854 if (obj->gen_loader) {
6855 bpf_gen__prog_load(obj->gen_loader, prog->type, prog->name,
6856 license, insns, insns_cnt, &load_attr,
6857 prog - obj->programs);
6858 *prog_fd = -1;
6859 return 0;
6860 }
6861
6862retry_load:
6863 /* if log_level is zero, we don't request logs initially even if
6864 * custom log_buf is specified; if the program load fails, then we'll
6865 * bump log_level to 1 and use either custom log_buf or we'll allocate
6866 * our own and retry the load to get details on what failed
6867 */
6868 if (log_level) {
6869 if (prog->log_buf) {
6870 log_buf = prog->log_buf;
6871 log_buf_size = prog->log_size;
6872 own_log_buf = false;
6873 } else if (obj->log_buf) {
6874 log_buf = obj->log_buf;
6875 log_buf_size = obj->log_size;
6876 own_log_buf = false;
6877 } else {
6878 log_buf_size = max((size_t)BPF_LOG_BUF_SIZE, log_buf_size * 2);
6879 tmp = realloc(log_buf, log_buf_size);
6880 if (!tmp) {
6881 ret = -ENOMEM;
6882 goto out;
6883 }
6884 log_buf = tmp;
6885 log_buf[0] = '\0';
6886 own_log_buf = true;
6887 }
6888 }
6889
6890 load_attr.log_buf = log_buf;
6891 load_attr.log_size = log_buf_size;
6892 load_attr.log_level = log_level;
6893
6894 ret = bpf_prog_load(prog->type, prog_name, license, insns, insns_cnt, &load_attr);
6895 if (ret >= 0) {
6896 if (log_level && own_log_buf) {
6897 pr_debug("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
6898 prog->name, log_buf);
6899 }
6900
6901 if (obj->has_rodata && kernel_supports(obj, FEAT_PROG_BIND_MAP)) {
6902 struct bpf_map *map;
6903 int i;
6904
6905 for (i = 0; i < obj->nr_maps; i++) {
6906 map = &prog->obj->maps[i];
6907 if (map->libbpf_type != LIBBPF_MAP_RODATA)
6908 continue;
6909
6910 if (bpf_prog_bind_map(ret, bpf_map__fd(map), NULL)) {
6911 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
6912 pr_warn("prog '%s': failed to bind map '%s': %s\n",
6913 prog->name, map->real_name, cp);
6914 /* Don't fail hard if can't bind rodata. */
6915 }
6916 }
6917 }
6918
6919 *prog_fd = ret;
6920 ret = 0;
6921 goto out;
6922 }
6923
6924 if (log_level == 0) {
6925 log_level = 1;
6926 goto retry_load;
6927 }
6928 /* On ENOSPC, increase log buffer size and retry, unless custom
6929 * log_buf is specified.
6930 * Be careful to not overflow u32, though. Kernel's log buf size limit
6931 * isn't part of UAPI so it can always be bumped to full 4GB. So don't
6932 * multiply by 2 unless we are sure we'll fit within 32 bits.
6933 * Currently, we'll get -EINVAL when we reach (UINT_MAX >> 2).
6934 */
6935 if (own_log_buf && errno == ENOSPC && log_buf_size <= UINT_MAX / 2)
6936 goto retry_load;
6937
6938 ret = -errno;
6939
6940 /* post-process verifier log to improve error descriptions */
6941 fixup_verifier_log(prog, log_buf, log_buf_size);
6942
6943 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
6944 pr_warn("prog '%s': BPF program load failed: %s\n", prog->name, cp);
6945 pr_perm_msg(ret);
6946
6947 if (own_log_buf && log_buf && log_buf[0] != '\0') {
6948 pr_warn("prog '%s': -- BEGIN PROG LOAD LOG --\n%s-- END PROG LOAD LOG --\n",
6949 prog->name, log_buf);
6950 }
6951
6952out:
6953 if (own_log_buf)
6954 free(log_buf);
6955 return ret;
6956}
6957
6958static char *find_prev_line(char *buf, char *cur)
6959{
6960 char *p;
6961
6962 if (cur == buf) /* end of a log buf */
6963 return NULL;
6964
6965 p = cur - 1;
6966 while (p - 1 >= buf && *(p - 1) != '\n')
6967 p--;
6968
6969 return p;
6970}
6971
6972static void patch_log(char *buf, size_t buf_sz, size_t log_sz,
6973 char *orig, size_t orig_sz, const char *patch)
6974{
6975 /* size of the remaining log content to the right from the to-be-replaced part */
6976 size_t rem_sz = (buf + log_sz) - (orig + orig_sz);
6977 size_t patch_sz = strlen(patch);
6978
6979 if (patch_sz != orig_sz) {
6980 /* If patch line(s) are longer than original piece of verifier log,
6981 * shift log contents by (patch_sz - orig_sz) bytes to the right
6982 * starting from after to-be-replaced part of the log.
6983 *
6984 * If patch line(s) are shorter than original piece of verifier log,
6985 * shift log contents by (orig_sz - patch_sz) bytes to the left
6986 * starting from after to-be-replaced part of the log
6987 *
6988 * We need to be careful about not overflowing available
6989 * buf_sz capacity. If that's the case, we'll truncate the end
6990 * of the original log, as necessary.
6991 */
6992 if (patch_sz > orig_sz) {
6993 if (orig + patch_sz >= buf + buf_sz) {
6994 /* patch is big enough to cover remaining space completely */
6995 patch_sz -= (orig + patch_sz) - (buf + buf_sz) + 1;
6996 rem_sz = 0;
6997 } else if (patch_sz - orig_sz > buf_sz - log_sz) {
6998 /* patch causes part of remaining log to be truncated */
6999 rem_sz -= (patch_sz - orig_sz) - (buf_sz - log_sz);
7000 }
7001 }
7002 /* shift remaining log to the right by calculated amount */
7003 memmove(orig + patch_sz, orig + orig_sz, rem_sz);
7004 }
7005
7006 memcpy(orig, patch, patch_sz);
7007}
7008
7009static void fixup_log_failed_core_relo(struct bpf_program *prog,
7010 char *buf, size_t buf_sz, size_t log_sz,
7011 char *line1, char *line2, char *line3)
7012{
7013 /* Expected log for failed and not properly guarded CO-RE relocation:
7014 * line1 -> 123: (85) call unknown#195896080
7015 * line2 -> invalid func unknown#195896080
7016 * line3 -> <anything else or end of buffer>
7017 *
7018 * "123" is the index of the instruction that was poisoned. We extract
7019 * instruction index to find corresponding CO-RE relocation and
7020 * replace this part of the log with more relevant information about
7021 * failed CO-RE relocation.
7022 */
7023 const struct bpf_core_relo *relo;
7024 struct bpf_core_spec spec;
7025 char patch[512], spec_buf[256];
7026 int insn_idx, err, spec_len;
7027
7028 if (sscanf(line1, "%d: (%*d) call unknown#195896080\n", &insn_idx) != 1)
7029 return;
7030
7031 relo = find_relo_core(prog, insn_idx);
7032 if (!relo)
7033 return;
7034
7035 err = bpf_core_parse_spec(prog->name, prog->obj->btf, relo, &spec);
7036 if (err)
7037 return;
7038
7039 spec_len = bpf_core_format_spec(spec_buf, sizeof(spec_buf), &spec);
7040 snprintf(patch, sizeof(patch),
7041 "%d: <invalid CO-RE relocation>\n"
7042 "failed to resolve CO-RE relocation %s%s\n",
7043 insn_idx, spec_buf, spec_len >= sizeof(spec_buf) ? "..." : "");
7044
7045 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7046}
7047
7048static void fixup_log_missing_map_load(struct bpf_program *prog,
7049 char *buf, size_t buf_sz, size_t log_sz,
7050 char *line1, char *line2, char *line3)
7051{
7052 /* Expected log for failed and not properly guarded map reference:
7053 * line1 -> 123: (85) call unknown#2001000345
7054 * line2 -> invalid func unknown#2001000345
7055 * line3 -> <anything else or end of buffer>
7056 *
7057 * "123" is the index of the instruction that was poisoned.
7058 * "345" in "2001000345" is a map index in obj->maps to fetch map name.
7059 */
7060 struct bpf_object *obj = prog->obj;
7061 const struct bpf_map *map;
7062 int insn_idx, map_idx;
7063 char patch[128];
7064
7065 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &map_idx) != 2)
7066 return;
7067
7068 map_idx -= POISON_LDIMM64_MAP_BASE;
7069 if (map_idx < 0 || map_idx >= obj->nr_maps)
7070 return;
7071 map = &obj->maps[map_idx];
7072
7073 snprintf(patch, sizeof(patch),
7074 "%d: <invalid BPF map reference>\n"
7075 "BPF map '%s' is referenced but wasn't created\n",
7076 insn_idx, map->name);
7077
7078 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7079}
7080
7081static void fixup_log_missing_kfunc_call(struct bpf_program *prog,
7082 char *buf, size_t buf_sz, size_t log_sz,
7083 char *line1, char *line2, char *line3)
7084{
7085 /* Expected log for failed and not properly guarded kfunc call:
7086 * line1 -> 123: (85) call unknown#2002000345
7087 * line2 -> invalid func unknown#2002000345
7088 * line3 -> <anything else or end of buffer>
7089 *
7090 * "123" is the index of the instruction that was poisoned.
7091 * "345" in "2002000345" is an extern index in obj->externs to fetch kfunc name.
7092 */
7093 struct bpf_object *obj = prog->obj;
7094 const struct extern_desc *ext;
7095 int insn_idx, ext_idx;
7096 char patch[128];
7097
7098 if (sscanf(line1, "%d: (%*d) call unknown#%d\n", &insn_idx, &ext_idx) != 2)
7099 return;
7100
7101 ext_idx -= POISON_CALL_KFUNC_BASE;
7102 if (ext_idx < 0 || ext_idx >= obj->nr_extern)
7103 return;
7104 ext = &obj->externs[ext_idx];
7105
7106 snprintf(patch, sizeof(patch),
7107 "%d: <invalid kfunc call>\n"
7108 "kfunc '%s' is referenced but wasn't resolved\n",
7109 insn_idx, ext->name);
7110
7111 patch_log(buf, buf_sz, log_sz, line1, line3 - line1, patch);
7112}
7113
7114static void fixup_verifier_log(struct bpf_program *prog, char *buf, size_t buf_sz)
7115{
7116 /* look for familiar error patterns in last N lines of the log */
7117 const size_t max_last_line_cnt = 10;
7118 char *prev_line, *cur_line, *next_line;
7119 size_t log_sz;
7120 int i;
7121
7122 if (!buf)
7123 return;
7124
7125 log_sz = strlen(buf) + 1;
7126 next_line = buf + log_sz - 1;
7127
7128 for (i = 0; i < max_last_line_cnt; i++, next_line = cur_line) {
7129 cur_line = find_prev_line(buf, next_line);
7130 if (!cur_line)
7131 return;
7132
7133 if (str_has_pfx(cur_line, "invalid func unknown#195896080\n")) {
7134 prev_line = find_prev_line(buf, cur_line);
7135 if (!prev_line)
7136 continue;
7137
7138 /* failed CO-RE relocation case */
7139 fixup_log_failed_core_relo(prog, buf, buf_sz, log_sz,
7140 prev_line, cur_line, next_line);
7141 return;
7142 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_LDIMM64_MAP_PFX)) {
7143 prev_line = find_prev_line(buf, cur_line);
7144 if (!prev_line)
7145 continue;
7146
7147 /* reference to uncreated BPF map */
7148 fixup_log_missing_map_load(prog, buf, buf_sz, log_sz,
7149 prev_line, cur_line, next_line);
7150 return;
7151 } else if (str_has_pfx(cur_line, "invalid func unknown#"POISON_CALL_KFUNC_PFX)) {
7152 prev_line = find_prev_line(buf, cur_line);
7153 if (!prev_line)
7154 continue;
7155
7156 /* reference to unresolved kfunc */
7157 fixup_log_missing_kfunc_call(prog, buf, buf_sz, log_sz,
7158 prev_line, cur_line, next_line);
7159 return;
7160 }
7161 }
7162}
7163
7164static int bpf_program_record_relos(struct bpf_program *prog)
7165{
7166 struct bpf_object *obj = prog->obj;
7167 int i;
7168
7169 for (i = 0; i < prog->nr_reloc; i++) {
7170 struct reloc_desc *relo = &prog->reloc_desc[i];
7171 struct extern_desc *ext = &obj->externs[relo->ext_idx];
7172 int kind;
7173
7174 switch (relo->type) {
7175 case RELO_EXTERN_LD64:
7176 if (ext->type != EXT_KSYM)
7177 continue;
7178 kind = btf_is_var(btf__type_by_id(obj->btf, ext->btf_id)) ?
7179 BTF_KIND_VAR : BTF_KIND_FUNC;
7180 bpf_gen__record_extern(obj->gen_loader, ext->name,
7181 ext->is_weak, !ext->ksym.type_id,
7182 true, kind, relo->insn_idx);
7183 break;
7184 case RELO_EXTERN_CALL:
7185 bpf_gen__record_extern(obj->gen_loader, ext->name,
7186 ext->is_weak, false, false, BTF_KIND_FUNC,
7187 relo->insn_idx);
7188 break;
7189 case RELO_CORE: {
7190 struct bpf_core_relo cr = {
7191 .insn_off = relo->insn_idx * 8,
7192 .type_id = relo->core_relo->type_id,
7193 .access_str_off = relo->core_relo->access_str_off,
7194 .kind = relo->core_relo->kind,
7195 };
7196
7197 bpf_gen__record_relo_core(obj->gen_loader, &cr);
7198 break;
7199 }
7200 default:
7201 continue;
7202 }
7203 }
7204 return 0;
7205}
7206
7207static int
7208bpf_object__load_progs(struct bpf_object *obj, int log_level)
7209{
7210 struct bpf_program *prog;
7211 size_t i;
7212 int err;
7213
7214 for (i = 0; i < obj->nr_programs; i++) {
7215 prog = &obj->programs[i];
7216 err = bpf_object__sanitize_prog(obj, prog);
7217 if (err)
7218 return err;
7219 }
7220
7221 for (i = 0; i < obj->nr_programs; i++) {
7222 prog = &obj->programs[i];
7223 if (prog_is_subprog(obj, prog))
7224 continue;
7225 if (!prog->autoload) {
7226 pr_debug("prog '%s': skipped loading\n", prog->name);
7227 continue;
7228 }
7229 prog->log_level |= log_level;
7230
7231 if (obj->gen_loader)
7232 bpf_program_record_relos(prog);
7233
7234 err = bpf_object_load_prog(obj, prog, prog->insns, prog->insns_cnt,
7235 obj->license, obj->kern_version, &prog->fd);
7236 if (err) {
7237 pr_warn("prog '%s': failed to load: %d\n", prog->name, err);
7238 return err;
7239 }
7240 }
7241
7242 bpf_object__free_relocs(obj);
7243 return 0;
7244}
7245
7246static const struct bpf_sec_def *find_sec_def(const char *sec_name);
7247
7248static int bpf_object_init_progs(struct bpf_object *obj, const struct bpf_object_open_opts *opts)
7249{
7250 struct bpf_program *prog;
7251 int err;
7252
7253 bpf_object__for_each_program(prog, obj) {
7254 prog->sec_def = find_sec_def(prog->sec_name);
7255 if (!prog->sec_def) {
7256 /* couldn't guess, but user might manually specify */
7257 pr_debug("prog '%s': unrecognized ELF section name '%s'\n",
7258 prog->name, prog->sec_name);
7259 continue;
7260 }
7261
7262 prog->type = prog->sec_def->prog_type;
7263 prog->expected_attach_type = prog->sec_def->expected_attach_type;
7264
7265 /* sec_def can have custom callback which should be called
7266 * after bpf_program is initialized to adjust its properties
7267 */
7268 if (prog->sec_def->prog_setup_fn) {
7269 err = prog->sec_def->prog_setup_fn(prog, prog->sec_def->cookie);
7270 if (err < 0) {
7271 pr_warn("prog '%s': failed to initialize: %d\n",
7272 prog->name, err);
7273 return err;
7274 }
7275 }
7276 }
7277
7278 return 0;
7279}
7280
7281static struct bpf_object *bpf_object_open(const char *path, const void *obj_buf, size_t obj_buf_sz,
7282 const struct bpf_object_open_opts *opts)
7283{
7284 const char *obj_name, *kconfig, *btf_tmp_path;
7285 struct bpf_object *obj;
7286 char tmp_name[64];
7287 int err;
7288 char *log_buf;
7289 size_t log_size;
7290 __u32 log_level;
7291
7292 if (elf_version(EV_CURRENT) == EV_NONE) {
7293 pr_warn("failed to init libelf for %s\n",
7294 path ? : "(mem buf)");
7295 return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
7296 }
7297
7298 if (!OPTS_VALID(opts, bpf_object_open_opts))
7299 return ERR_PTR(-EINVAL);
7300
7301 obj_name = OPTS_GET(opts, object_name, NULL);
7302 if (obj_buf) {
7303 if (!obj_name) {
7304 snprintf(tmp_name, sizeof(tmp_name), "%lx-%lx",
7305 (unsigned long)obj_buf,
7306 (unsigned long)obj_buf_sz);
7307 obj_name = tmp_name;
7308 }
7309 path = obj_name;
7310 pr_debug("loading object '%s' from buffer\n", obj_name);
7311 }
7312
7313 log_buf = OPTS_GET(opts, kernel_log_buf, NULL);
7314 log_size = OPTS_GET(opts, kernel_log_size, 0);
7315 log_level = OPTS_GET(opts, kernel_log_level, 0);
7316 if (log_size > UINT_MAX)
7317 return ERR_PTR(-EINVAL);
7318 if (log_size && !log_buf)
7319 return ERR_PTR(-EINVAL);
7320
7321 obj = bpf_object__new(path, obj_buf, obj_buf_sz, obj_name);
7322 if (IS_ERR(obj))
7323 return obj;
7324
7325 obj->log_buf = log_buf;
7326 obj->log_size = log_size;
7327 obj->log_level = log_level;
7328
7329 btf_tmp_path = OPTS_GET(opts, btf_custom_path, NULL);
7330 if (btf_tmp_path) {
7331 if (strlen(btf_tmp_path) >= PATH_MAX) {
7332 err = -ENAMETOOLONG;
7333 goto out;
7334 }
7335 obj->btf_custom_path = strdup(btf_tmp_path);
7336 if (!obj->btf_custom_path) {
7337 err = -ENOMEM;
7338 goto out;
7339 }
7340 }
7341
7342 kconfig = OPTS_GET(opts, kconfig, NULL);
7343 if (kconfig) {
7344 obj->kconfig = strdup(kconfig);
7345 if (!obj->kconfig) {
7346 err = -ENOMEM;
7347 goto out;
7348 }
7349 }
7350
7351 err = bpf_object__elf_init(obj);
7352 err = err ? : bpf_object__check_endianness(obj);
7353 err = err ? : bpf_object__elf_collect(obj);
7354 err = err ? : bpf_object__collect_externs(obj);
7355 err = err ? : bpf_object_fixup_btf(obj);
7356 err = err ? : bpf_object__init_maps(obj, opts);
7357 err = err ? : bpf_object_init_progs(obj, opts);
7358 err = err ? : bpf_object__collect_relos(obj);
7359 if (err)
7360 goto out;
7361
7362 bpf_object__elf_finish(obj);
7363
7364 return obj;
7365out:
7366 bpf_object__close(obj);
7367 return ERR_PTR(err);
7368}
7369
7370struct bpf_object *
7371bpf_object__open_file(const char *path, const struct bpf_object_open_opts *opts)
7372{
7373 if (!path)
7374 return libbpf_err_ptr(-EINVAL);
7375
7376 pr_debug("loading %s\n", path);
7377
7378 return libbpf_ptr(bpf_object_open(path, NULL, 0, opts));
7379}
7380
7381struct bpf_object *bpf_object__open(const char *path)
7382{
7383 return bpf_object__open_file(path, NULL);
7384}
7385
7386struct bpf_object *
7387bpf_object__open_mem(const void *obj_buf, size_t obj_buf_sz,
7388 const struct bpf_object_open_opts *opts)
7389{
7390 if (!obj_buf || obj_buf_sz == 0)
7391 return libbpf_err_ptr(-EINVAL);
7392
7393 return libbpf_ptr(bpf_object_open(NULL, obj_buf, obj_buf_sz, opts));
7394}
7395
7396static int bpf_object_unload(struct bpf_object *obj)
7397{
7398 size_t i;
7399
7400 if (!obj)
7401 return libbpf_err(-EINVAL);
7402
7403 for (i = 0; i < obj->nr_maps; i++) {
7404 zclose(obj->maps[i].fd);
7405 if (obj->maps[i].st_ops)
7406 zfree(&obj->maps[i].st_ops->kern_vdata);
7407 }
7408
7409 for (i = 0; i < obj->nr_programs; i++)
7410 bpf_program__unload(&obj->programs[i]);
7411
7412 return 0;
7413}
7414
7415static int bpf_object__sanitize_maps(struct bpf_object *obj)
7416{
7417 struct bpf_map *m;
7418
7419 bpf_object__for_each_map(m, obj) {
7420 if (!bpf_map__is_internal(m))
7421 continue;
7422 if (!kernel_supports(obj, FEAT_ARRAY_MMAP))
7423 m->def.map_flags &= ~BPF_F_MMAPABLE;
7424 }
7425
7426 return 0;
7427}
7428
7429int libbpf_kallsyms_parse(kallsyms_cb_t cb, void *ctx)
7430{
7431 char sym_type, sym_name[500];
7432 unsigned long long sym_addr;
7433 int ret, err = 0;
7434 FILE *f;
7435
7436 f = fopen("/proc/kallsyms", "r");
7437 if (!f) {
7438 err = -errno;
7439 pr_warn("failed to open /proc/kallsyms: %d\n", err);
7440 return err;
7441 }
7442
7443 while (true) {
7444 ret = fscanf(f, "%llx %c %499s%*[^\n]\n",
7445 &sym_addr, &sym_type, sym_name);
7446 if (ret == EOF && feof(f))
7447 break;
7448 if (ret != 3) {
7449 pr_warn("failed to read kallsyms entry: %d\n", ret);
7450 err = -EINVAL;
7451 break;
7452 }
7453
7454 err = cb(sym_addr, sym_type, sym_name, ctx);
7455 if (err)
7456 break;
7457 }
7458
7459 fclose(f);
7460 return err;
7461}
7462
7463static int kallsyms_cb(unsigned long long sym_addr, char sym_type,
7464 const char *sym_name, void *ctx)
7465{
7466 struct bpf_object *obj = ctx;
7467 const struct btf_type *t;
7468 struct extern_desc *ext;
7469
7470 ext = find_extern_by_name(obj, sym_name);
7471 if (!ext || ext->type != EXT_KSYM)
7472 return 0;
7473
7474 t = btf__type_by_id(obj->btf, ext->btf_id);
7475 if (!btf_is_var(t))
7476 return 0;
7477
7478 if (ext->is_set && ext->ksym.addr != sym_addr) {
7479 pr_warn("extern (ksym) '%s': resolution is ambiguous: 0x%llx or 0x%llx\n",
7480 sym_name, ext->ksym.addr, sym_addr);
7481 return -EINVAL;
7482 }
7483 if (!ext->is_set) {
7484 ext->is_set = true;
7485 ext->ksym.addr = sym_addr;
7486 pr_debug("extern (ksym) '%s': set to 0x%llx\n", sym_name, sym_addr);
7487 }
7488 return 0;
7489}
7490
7491static int bpf_object__read_kallsyms_file(struct bpf_object *obj)
7492{
7493 return libbpf_kallsyms_parse(kallsyms_cb, obj);
7494}
7495
7496static int find_ksym_btf_id(struct bpf_object *obj, const char *ksym_name,
7497 __u16 kind, struct btf **res_btf,
7498 struct module_btf **res_mod_btf)
7499{
7500 struct module_btf *mod_btf;
7501 struct btf *btf;
7502 int i, id, err;
7503
7504 btf = obj->btf_vmlinux;
7505 mod_btf = NULL;
7506 id = btf__find_by_name_kind(btf, ksym_name, kind);
7507
7508 if (id == -ENOENT) {
7509 err = load_module_btfs(obj);
7510 if (err)
7511 return err;
7512
7513 for (i = 0; i < obj->btf_module_cnt; i++) {
7514 /* we assume module_btf's BTF FD is always >0 */
7515 mod_btf = &obj->btf_modules[i];
7516 btf = mod_btf->btf;
7517 id = btf__find_by_name_kind_own(btf, ksym_name, kind);
7518 if (id != -ENOENT)
7519 break;
7520 }
7521 }
7522 if (id <= 0)
7523 return -ESRCH;
7524
7525 *res_btf = btf;
7526 *res_mod_btf = mod_btf;
7527 return id;
7528}
7529
7530static int bpf_object__resolve_ksym_var_btf_id(struct bpf_object *obj,
7531 struct extern_desc *ext)
7532{
7533 const struct btf_type *targ_var, *targ_type;
7534 __u32 targ_type_id, local_type_id;
7535 struct module_btf *mod_btf = NULL;
7536 const char *targ_var_name;
7537 struct btf *btf = NULL;
7538 int id, err;
7539
7540 id = find_ksym_btf_id(obj, ext->name, BTF_KIND_VAR, &btf, &mod_btf);
7541 if (id < 0) {
7542 if (id == -ESRCH && ext->is_weak)
7543 return 0;
7544 pr_warn("extern (var ksym) '%s': not found in kernel BTF\n",
7545 ext->name);
7546 return id;
7547 }
7548
7549 /* find local type_id */
7550 local_type_id = ext->ksym.type_id;
7551
7552 /* find target type_id */
7553 targ_var = btf__type_by_id(btf, id);
7554 targ_var_name = btf__name_by_offset(btf, targ_var->name_off);
7555 targ_type = skip_mods_and_typedefs(btf, targ_var->type, &targ_type_id);
7556
7557 err = bpf_core_types_are_compat(obj->btf, local_type_id,
7558 btf, targ_type_id);
7559 if (err <= 0) {
7560 const struct btf_type *local_type;
7561 const char *targ_name, *local_name;
7562
7563 local_type = btf__type_by_id(obj->btf, local_type_id);
7564 local_name = btf__name_by_offset(obj->btf, local_type->name_off);
7565 targ_name = btf__name_by_offset(btf, targ_type->name_off);
7566
7567 pr_warn("extern (var ksym) '%s': incompatible types, expected [%d] %s %s, but kernel has [%d] %s %s\n",
7568 ext->name, local_type_id,
7569 btf_kind_str(local_type), local_name, targ_type_id,
7570 btf_kind_str(targ_type), targ_name);
7571 return -EINVAL;
7572 }
7573
7574 ext->is_set = true;
7575 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
7576 ext->ksym.kernel_btf_id = id;
7577 pr_debug("extern (var ksym) '%s': resolved to [%d] %s %s\n",
7578 ext->name, id, btf_kind_str(targ_var), targ_var_name);
7579
7580 return 0;
7581}
7582
7583static int bpf_object__resolve_ksym_func_btf_id(struct bpf_object *obj,
7584 struct extern_desc *ext)
7585{
7586 int local_func_proto_id, kfunc_proto_id, kfunc_id;
7587 struct module_btf *mod_btf = NULL;
7588 const struct btf_type *kern_func;
7589 struct btf *kern_btf = NULL;
7590 int ret;
7591
7592 local_func_proto_id = ext->ksym.type_id;
7593
7594 kfunc_id = find_ksym_btf_id(obj, ext->name, BTF_KIND_FUNC, &kern_btf, &mod_btf);
7595 if (kfunc_id < 0) {
7596 if (kfunc_id == -ESRCH && ext->is_weak)
7597 return 0;
7598 pr_warn("extern (func ksym) '%s': not found in kernel or module BTFs\n",
7599 ext->name);
7600 return kfunc_id;
7601 }
7602
7603 kern_func = btf__type_by_id(kern_btf, kfunc_id);
7604 kfunc_proto_id = kern_func->type;
7605
7606 ret = bpf_core_types_are_compat(obj->btf, local_func_proto_id,
7607 kern_btf, kfunc_proto_id);
7608 if (ret <= 0) {
7609 pr_warn("extern (func ksym) '%s': func_proto [%d] incompatible with %s [%d]\n",
7610 ext->name, local_func_proto_id,
7611 mod_btf ? mod_btf->name : "vmlinux", kfunc_proto_id);
7612 return -EINVAL;
7613 }
7614
7615 /* set index for module BTF fd in fd_array, if unset */
7616 if (mod_btf && !mod_btf->fd_array_idx) {
7617 /* insn->off is s16 */
7618 if (obj->fd_array_cnt == INT16_MAX) {
7619 pr_warn("extern (func ksym) '%s': module BTF fd index %d too big to fit in bpf_insn offset\n",
7620 ext->name, mod_btf->fd_array_idx);
7621 return -E2BIG;
7622 }
7623 /* Cannot use index 0 for module BTF fd */
7624 if (!obj->fd_array_cnt)
7625 obj->fd_array_cnt = 1;
7626
7627 ret = libbpf_ensure_mem((void **)&obj->fd_array, &obj->fd_array_cap, sizeof(int),
7628 obj->fd_array_cnt + 1);
7629 if (ret)
7630 return ret;
7631 mod_btf->fd_array_idx = obj->fd_array_cnt;
7632 /* we assume module BTF FD is always >0 */
7633 obj->fd_array[obj->fd_array_cnt++] = mod_btf->fd;
7634 }
7635
7636 ext->is_set = true;
7637 ext->ksym.kernel_btf_id = kfunc_id;
7638 ext->ksym.btf_fd_idx = mod_btf ? mod_btf->fd_array_idx : 0;
7639 /* Also set kernel_btf_obj_fd to make sure that bpf_object__relocate_data()
7640 * populates FD into ld_imm64 insn when it's used to point to kfunc.
7641 * {kernel_btf_id, btf_fd_idx} -> fixup bpf_call.
7642 * {kernel_btf_id, kernel_btf_obj_fd} -> fixup ld_imm64.
7643 */
7644 ext->ksym.kernel_btf_obj_fd = mod_btf ? mod_btf->fd : 0;
7645 pr_debug("extern (func ksym) '%s': resolved to %s [%d]\n",
7646 ext->name, mod_btf ? mod_btf->name : "vmlinux", kfunc_id);
7647
7648 return 0;
7649}
7650
7651static int bpf_object__resolve_ksyms_btf_id(struct bpf_object *obj)
7652{
7653 const struct btf_type *t;
7654 struct extern_desc *ext;
7655 int i, err;
7656
7657 for (i = 0; i < obj->nr_extern; i++) {
7658 ext = &obj->externs[i];
7659 if (ext->type != EXT_KSYM || !ext->ksym.type_id)
7660 continue;
7661
7662 if (obj->gen_loader) {
7663 ext->is_set = true;
7664 ext->ksym.kernel_btf_obj_fd = 0;
7665 ext->ksym.kernel_btf_id = 0;
7666 continue;
7667 }
7668 t = btf__type_by_id(obj->btf, ext->btf_id);
7669 if (btf_is_var(t))
7670 err = bpf_object__resolve_ksym_var_btf_id(obj, ext);
7671 else
7672 err = bpf_object__resolve_ksym_func_btf_id(obj, ext);
7673 if (err)
7674 return err;
7675 }
7676 return 0;
7677}
7678
7679static int bpf_object__resolve_externs(struct bpf_object *obj,
7680 const char *extra_kconfig)
7681{
7682 bool need_config = false, need_kallsyms = false;
7683 bool need_vmlinux_btf = false;
7684 struct extern_desc *ext;
7685 void *kcfg_data = NULL;
7686 int err, i;
7687
7688 if (obj->nr_extern == 0)
7689 return 0;
7690
7691 if (obj->kconfig_map_idx >= 0)
7692 kcfg_data = obj->maps[obj->kconfig_map_idx].mmaped;
7693
7694 for (i = 0; i < obj->nr_extern; i++) {
7695 ext = &obj->externs[i];
7696
7697 if (ext->type == EXT_KSYM) {
7698 if (ext->ksym.type_id)
7699 need_vmlinux_btf = true;
7700 else
7701 need_kallsyms = true;
7702 continue;
7703 } else if (ext->type == EXT_KCFG) {
7704 void *ext_ptr = kcfg_data + ext->kcfg.data_off;
7705 __u64 value = 0;
7706
7707 /* Kconfig externs need actual /proc/config.gz */
7708 if (str_has_pfx(ext->name, "CONFIG_")) {
7709 need_config = true;
7710 continue;
7711 }
7712
7713 /* Virtual kcfg externs are customly handled by libbpf */
7714 if (strcmp(ext->name, "LINUX_KERNEL_VERSION") == 0) {
7715 value = get_kernel_version();
7716 if (!value) {
7717 pr_warn("extern (kcfg) '%s': failed to get kernel version\n", ext->name);
7718 return -EINVAL;
7719 }
7720 } else if (strcmp(ext->name, "LINUX_HAS_BPF_COOKIE") == 0) {
7721 value = kernel_supports(obj, FEAT_BPF_COOKIE);
7722 } else if (strcmp(ext->name, "LINUX_HAS_SYSCALL_WRAPPER") == 0) {
7723 value = kernel_supports(obj, FEAT_SYSCALL_WRAPPER);
7724 } else if (!str_has_pfx(ext->name, "LINUX_") || !ext->is_weak) {
7725 /* Currently libbpf supports only CONFIG_ and LINUX_ prefixed
7726 * __kconfig externs, where LINUX_ ones are virtual and filled out
7727 * customly by libbpf (their values don't come from Kconfig).
7728 * If LINUX_xxx variable is not recognized by libbpf, but is marked
7729 * __weak, it defaults to zero value, just like for CONFIG_xxx
7730 * externs.
7731 */
7732 pr_warn("extern (kcfg) '%s': unrecognized virtual extern\n", ext->name);
7733 return -EINVAL;
7734 }
7735
7736 err = set_kcfg_value_num(ext, ext_ptr, value);
7737 if (err)
7738 return err;
7739 pr_debug("extern (kcfg) '%s': set to 0x%llx\n",
7740 ext->name, (long long)value);
7741 } else {
7742 pr_warn("extern '%s': unrecognized extern kind\n", ext->name);
7743 return -EINVAL;
7744 }
7745 }
7746 if (need_config && extra_kconfig) {
7747 err = bpf_object__read_kconfig_mem(obj, extra_kconfig, kcfg_data);
7748 if (err)
7749 return -EINVAL;
7750 need_config = false;
7751 for (i = 0; i < obj->nr_extern; i++) {
7752 ext = &obj->externs[i];
7753 if (ext->type == EXT_KCFG && !ext->is_set) {
7754 need_config = true;
7755 break;
7756 }
7757 }
7758 }
7759 if (need_config) {
7760 err = bpf_object__read_kconfig_file(obj, kcfg_data);
7761 if (err)
7762 return -EINVAL;
7763 }
7764 if (need_kallsyms) {
7765 err = bpf_object__read_kallsyms_file(obj);
7766 if (err)
7767 return -EINVAL;
7768 }
7769 if (need_vmlinux_btf) {
7770 err = bpf_object__resolve_ksyms_btf_id(obj);
7771 if (err)
7772 return -EINVAL;
7773 }
7774 for (i = 0; i < obj->nr_extern; i++) {
7775 ext = &obj->externs[i];
7776
7777 if (!ext->is_set && !ext->is_weak) {
7778 pr_warn("extern '%s' (strong): not resolved\n", ext->name);
7779 return -ESRCH;
7780 } else if (!ext->is_set) {
7781 pr_debug("extern '%s' (weak): not resolved, defaulting to zero\n",
7782 ext->name);
7783 }
7784 }
7785
7786 return 0;
7787}
7788
7789static void bpf_map_prepare_vdata(const struct bpf_map *map)
7790{
7791 struct bpf_struct_ops *st_ops;
7792 __u32 i;
7793
7794 st_ops = map->st_ops;
7795 for (i = 0; i < btf_vlen(st_ops->type); i++) {
7796 struct bpf_program *prog = st_ops->progs[i];
7797 void *kern_data;
7798 int prog_fd;
7799
7800 if (!prog)
7801 continue;
7802
7803 prog_fd = bpf_program__fd(prog);
7804 kern_data = st_ops->kern_vdata + st_ops->kern_func_off[i];
7805 *(unsigned long *)kern_data = prog_fd;
7806 }
7807}
7808
7809static int bpf_object_prepare_struct_ops(struct bpf_object *obj)
7810{
7811 int i;
7812
7813 for (i = 0; i < obj->nr_maps; i++)
7814 if (bpf_map__is_struct_ops(&obj->maps[i]))
7815 bpf_map_prepare_vdata(&obj->maps[i]);
7816
7817 return 0;
7818}
7819
7820static int bpf_object_load(struct bpf_object *obj, int extra_log_level, const char *target_btf_path)
7821{
7822 int err, i;
7823
7824 if (!obj)
7825 return libbpf_err(-EINVAL);
7826
7827 if (obj->loaded) {
7828 pr_warn("object '%s': load can't be attempted twice\n", obj->name);
7829 return libbpf_err(-EINVAL);
7830 }
7831
7832 if (obj->gen_loader)
7833 bpf_gen__init(obj->gen_loader, extra_log_level, obj->nr_programs, obj->nr_maps);
7834
7835 err = bpf_object__probe_loading(obj);
7836 err = err ? : bpf_object__load_vmlinux_btf(obj, false);
7837 err = err ? : bpf_object__resolve_externs(obj, obj->kconfig);
7838 err = err ? : bpf_object__sanitize_and_load_btf(obj);
7839 err = err ? : bpf_object__sanitize_maps(obj);
7840 err = err ? : bpf_object__init_kern_struct_ops_maps(obj);
7841 err = err ? : bpf_object__create_maps(obj);
7842 err = err ? : bpf_object__relocate(obj, obj->btf_custom_path ? : target_btf_path);
7843 err = err ? : bpf_object__load_progs(obj, extra_log_level);
7844 err = err ? : bpf_object_init_prog_arrays(obj);
7845 err = err ? : bpf_object_prepare_struct_ops(obj);
7846
7847 if (obj->gen_loader) {
7848 /* reset FDs */
7849 if (obj->btf)
7850 btf__set_fd(obj->btf, -1);
7851 for (i = 0; i < obj->nr_maps; i++)
7852 obj->maps[i].fd = -1;
7853 if (!err)
7854 err = bpf_gen__finish(obj->gen_loader, obj->nr_programs, obj->nr_maps);
7855 }
7856
7857 /* clean up fd_array */
7858 zfree(&obj->fd_array);
7859
7860 /* clean up module BTFs */
7861 for (i = 0; i < obj->btf_module_cnt; i++) {
7862 close(obj->btf_modules[i].fd);
7863 btf__free(obj->btf_modules[i].btf);
7864 free(obj->btf_modules[i].name);
7865 }
7866 free(obj->btf_modules);
7867
7868 /* clean up vmlinux BTF */
7869 btf__free(obj->btf_vmlinux);
7870 obj->btf_vmlinux = NULL;
7871
7872 obj->loaded = true; /* doesn't matter if successfully or not */
7873
7874 if (err)
7875 goto out;
7876
7877 return 0;
7878out:
7879 /* unpin any maps that were auto-pinned during load */
7880 for (i = 0; i < obj->nr_maps; i++)
7881 if (obj->maps[i].pinned && !obj->maps[i].reused)
7882 bpf_map__unpin(&obj->maps[i], NULL);
7883
7884 bpf_object_unload(obj);
7885 pr_warn("failed to load object '%s'\n", obj->path);
7886 return libbpf_err(err);
7887}
7888
7889int bpf_object__load(struct bpf_object *obj)
7890{
7891 return bpf_object_load(obj, 0, NULL);
7892}
7893
7894static int make_parent_dir(const char *path)
7895{
7896 char *cp, errmsg[STRERR_BUFSIZE];
7897 char *dname, *dir;
7898 int err = 0;
7899
7900 dname = strdup(path);
7901 if (dname == NULL)
7902 return -ENOMEM;
7903
7904 dir = dirname(dname);
7905 if (mkdir(dir, 0700) && errno != EEXIST)
7906 err = -errno;
7907
7908 free(dname);
7909 if (err) {
7910 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
7911 pr_warn("failed to mkdir %s: %s\n", path, cp);
7912 }
7913 return err;
7914}
7915
7916static int check_path(const char *path)
7917{
7918 char *cp, errmsg[STRERR_BUFSIZE];
7919 struct statfs st_fs;
7920 char *dname, *dir;
7921 int err = 0;
7922
7923 if (path == NULL)
7924 return -EINVAL;
7925
7926 dname = strdup(path);
7927 if (dname == NULL)
7928 return -ENOMEM;
7929
7930 dir = dirname(dname);
7931 if (statfs(dir, &st_fs)) {
7932 cp = libbpf_strerror_r(errno, errmsg, sizeof(errmsg));
7933 pr_warn("failed to statfs %s: %s\n", dir, cp);
7934 err = -errno;
7935 }
7936 free(dname);
7937
7938 if (!err && st_fs.f_type != BPF_FS_MAGIC) {
7939 pr_warn("specified path %s is not on BPF FS\n", path);
7940 err = -EINVAL;
7941 }
7942
7943 return err;
7944}
7945
7946int bpf_program__pin(struct bpf_program *prog, const char *path)
7947{
7948 char *cp, errmsg[STRERR_BUFSIZE];
7949 int err;
7950
7951 if (prog->fd < 0) {
7952 pr_warn("prog '%s': can't pin program that wasn't loaded\n", prog->name);
7953 return libbpf_err(-EINVAL);
7954 }
7955
7956 err = make_parent_dir(path);
7957 if (err)
7958 return libbpf_err(err);
7959
7960 err = check_path(path);
7961 if (err)
7962 return libbpf_err(err);
7963
7964 if (bpf_obj_pin(prog->fd, path)) {
7965 err = -errno;
7966 cp = libbpf_strerror_r(err, errmsg, sizeof(errmsg));
7967 pr_warn("prog '%s': failed to pin at '%s': %s\n", prog->name, path, cp);
7968 return libbpf_err(err);
7969 }
7970
7971 pr_debug("prog '%s': pinned at '%s'\n", prog->name, path);
7972 return 0;
7973}
7974
7975int bpf_program__unpin(struct bpf_program *prog, const char *path)
7976{
7977 int err;
7978
7979 if (prog->fd < 0) {
7980 pr_warn("prog '%s': can't unpin program that wasn't loaded\n", prog->name);
7981 return libbpf_err(-EINVAL);
7982 }
7983
7984 err = check_path(path);
7985 if (err)
7986 return libbpf_err(err);
7987
7988 err = unlink(path);
7989 if (err)
7990 return libbpf_err(-errno);
7991
7992 pr_debug("prog '%s': unpinned from '%s'\n", prog->name, path);
7993 return 0;
7994}
7995
7996int bpf_map__pin(struct bpf_map *map, const char *path)
7997{
7998 char *cp, errmsg[STRERR_BUFSIZE];
7999 int err;
8000
8001 if (map == NULL) {
8002 pr_warn("invalid map pointer\n");
8003 return libbpf_err(-EINVAL);
8004 }
8005
8006 if (map->pin_path) {
8007 if (path && strcmp(path, map->pin_path)) {
8008 pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
8009 bpf_map__name(map), map->pin_path, path);
8010 return libbpf_err(-EINVAL);
8011 } else if (map->pinned) {
8012 pr_debug("map '%s' already pinned at '%s'; not re-pinning\n",
8013 bpf_map__name(map), map->pin_path);
8014 return 0;
8015 }
8016 } else {
8017 if (!path) {
8018 pr_warn("missing a path to pin map '%s' at\n",
8019 bpf_map__name(map));
8020 return libbpf_err(-EINVAL);
8021 } else if (map->pinned) {
8022 pr_warn("map '%s' already pinned\n", bpf_map__name(map));
8023 return libbpf_err(-EEXIST);
8024 }
8025
8026 map->pin_path = strdup(path);
8027 if (!map->pin_path) {
8028 err = -errno;
8029 goto out_err;
8030 }
8031 }
8032
8033 err = make_parent_dir(map->pin_path);
8034 if (err)
8035 return libbpf_err(err);
8036
8037 err = check_path(map->pin_path);
8038 if (err)
8039 return libbpf_err(err);
8040
8041 if (bpf_obj_pin(map->fd, map->pin_path)) {
8042 err = -errno;
8043 goto out_err;
8044 }
8045
8046 map->pinned = true;
8047 pr_debug("pinned map '%s'\n", map->pin_path);
8048
8049 return 0;
8050
8051out_err:
8052 cp = libbpf_strerror_r(-err, errmsg, sizeof(errmsg));
8053 pr_warn("failed to pin map: %s\n", cp);
8054 return libbpf_err(err);
8055}
8056
8057int bpf_map__unpin(struct bpf_map *map, const char *path)
8058{
8059 int err;
8060
8061 if (map == NULL) {
8062 pr_warn("invalid map pointer\n");
8063 return libbpf_err(-EINVAL);
8064 }
8065
8066 if (map->pin_path) {
8067 if (path && strcmp(path, map->pin_path)) {
8068 pr_warn("map '%s' already has pin path '%s' different from '%s'\n",
8069 bpf_map__name(map), map->pin_path, path);
8070 return libbpf_err(-EINVAL);
8071 }
8072 path = map->pin_path;
8073 } else if (!path) {
8074 pr_warn("no path to unpin map '%s' from\n",
8075 bpf_map__name(map));
8076 return libbpf_err(-EINVAL);
8077 }
8078
8079 err = check_path(path);
8080 if (err)
8081 return libbpf_err(err);
8082
8083 err = unlink(path);
8084 if (err != 0)
8085 return libbpf_err(-errno);
8086
8087 map->pinned = false;
8088 pr_debug("unpinned map '%s' from '%s'\n", bpf_map__name(map), path);
8089
8090 return 0;
8091}
8092
8093int bpf_map__set_pin_path(struct bpf_map *map, const char *path)
8094{
8095 char *new = NULL;
8096
8097 if (path) {
8098 new = strdup(path);
8099 if (!new)
8100 return libbpf_err(-errno);
8101 }
8102
8103 free(map->pin_path);
8104 map->pin_path = new;
8105 return 0;
8106}
8107
8108__alias(bpf_map__pin_path)
8109const char *bpf_map__get_pin_path(const struct bpf_map *map);
8110
8111const char *bpf_map__pin_path(const struct bpf_map *map)
8112{
8113 return map->pin_path;
8114}
8115
8116bool bpf_map__is_pinned(const struct bpf_map *map)
8117{
8118 return map->pinned;
8119}
8120
8121static void sanitize_pin_path(char *s)
8122{
8123 /* bpffs disallows periods in path names */
8124 while (*s) {
8125 if (*s == '.')
8126 *s = '_';
8127 s++;
8128 }
8129}
8130
8131int bpf_object__pin_maps(struct bpf_object *obj, const char *path)
8132{
8133 struct bpf_map *map;
8134 int err;
8135
8136 if (!obj)
8137 return libbpf_err(-ENOENT);
8138
8139 if (!obj->loaded) {
8140 pr_warn("object not yet loaded; load it first\n");
8141 return libbpf_err(-ENOENT);
8142 }
8143
8144 bpf_object__for_each_map(map, obj) {
8145 char *pin_path = NULL;
8146 char buf[PATH_MAX];
8147
8148 if (!map->autocreate)
8149 continue;
8150
8151 if (path) {
8152 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
8153 if (err)
8154 goto err_unpin_maps;
8155 sanitize_pin_path(buf);
8156 pin_path = buf;
8157 } else if (!map->pin_path) {
8158 continue;
8159 }
8160
8161 err = bpf_map__pin(map, pin_path);
8162 if (err)
8163 goto err_unpin_maps;
8164 }
8165
8166 return 0;
8167
8168err_unpin_maps:
8169 while ((map = bpf_object__prev_map(obj, map))) {
8170 if (!map->pin_path)
8171 continue;
8172
8173 bpf_map__unpin(map, NULL);
8174 }
8175
8176 return libbpf_err(err);
8177}
8178
8179int bpf_object__unpin_maps(struct bpf_object *obj, const char *path)
8180{
8181 struct bpf_map *map;
8182 int err;
8183
8184 if (!obj)
8185 return libbpf_err(-ENOENT);
8186
8187 bpf_object__for_each_map(map, obj) {
8188 char *pin_path = NULL;
8189 char buf[PATH_MAX];
8190
8191 if (path) {
8192 err = pathname_concat(buf, sizeof(buf), path, bpf_map__name(map));
8193 if (err)
8194 return libbpf_err(err);
8195 sanitize_pin_path(buf);
8196 pin_path = buf;
8197 } else if (!map->pin_path) {
8198 continue;
8199 }
8200
8201 err = bpf_map__unpin(map, pin_path);
8202 if (err)
8203 return libbpf_err(err);
8204 }
8205
8206 return 0;
8207}
8208
8209int bpf_object__pin_programs(struct bpf_object *obj, const char *path)
8210{
8211 struct bpf_program *prog;
8212 char buf[PATH_MAX];
8213 int err;
8214
8215 if (!obj)
8216 return libbpf_err(-ENOENT);
8217
8218 if (!obj->loaded) {
8219 pr_warn("object not yet loaded; load it first\n");
8220 return libbpf_err(-ENOENT);
8221 }
8222
8223 bpf_object__for_each_program(prog, obj) {
8224 err = pathname_concat(buf, sizeof(buf), path, prog->name);
8225 if (err)
8226 goto err_unpin_programs;
8227
8228 err = bpf_program__pin(prog, buf);
8229 if (err)
8230 goto err_unpin_programs;
8231 }
8232
8233 return 0;
8234
8235err_unpin_programs:
8236 while ((prog = bpf_object__prev_program(obj, prog))) {
8237 if (pathname_concat(buf, sizeof(buf), path, prog->name))
8238 continue;
8239
8240 bpf_program__unpin(prog, buf);
8241 }
8242
8243 return libbpf_err(err);
8244}
8245
8246int bpf_object__unpin_programs(struct bpf_object *obj, const char *path)
8247{
8248 struct bpf_program *prog;
8249 int err;
8250
8251 if (!obj)
8252 return libbpf_err(-ENOENT);
8253
8254 bpf_object__for_each_program(prog, obj) {
8255 char buf[PATH_MAX];
8256
8257 err = pathname_concat(buf, sizeof(buf), path, prog->name);
8258 if (err)
8259 return libbpf_err(err);
8260
8261 err = bpf_program__unpin(prog, buf);
8262 if (err)
8263 return libbpf_err(err);
8264 }
8265
8266 return 0;
8267}
8268
8269int bpf_object__pin(struct bpf_object *obj, const char *path)
8270{
8271 int err;
8272
8273 err = bpf_object__pin_maps(obj, path);
8274 if (err)
8275 return libbpf_err(err);
8276
8277 err = bpf_object__pin_programs(obj, path);
8278 if (err) {
8279 bpf_object__unpin_maps(obj, path);
8280 return libbpf_err(err);
8281 }
8282
8283 return 0;
8284}
8285
8286static void bpf_map__destroy(struct bpf_map *map)
8287{
8288 if (map->inner_map) {
8289 bpf_map__destroy(map->inner_map);
8290 zfree(&map->inner_map);
8291 }
8292
8293 zfree(&map->init_slots);
8294 map->init_slots_sz = 0;
8295
8296 if (map->mmaped) {
8297 munmap(map->mmaped, bpf_map_mmap_sz(map));
8298 map->mmaped = NULL;
8299 }
8300
8301 if (map->st_ops) {
8302 zfree(&map->st_ops->data);
8303 zfree(&map->st_ops->progs);
8304 zfree(&map->st_ops->kern_func_off);
8305 zfree(&map->st_ops);
8306 }
8307
8308 zfree(&map->name);
8309 zfree(&map->real_name);
8310 zfree(&map->pin_path);
8311
8312 if (map->fd >= 0)
8313 zclose(map->fd);
8314}
8315
8316void bpf_object__close(struct bpf_object *obj)
8317{
8318 size_t i;
8319
8320 if (IS_ERR_OR_NULL(obj))
8321 return;
8322
8323 usdt_manager_free(obj->usdt_man);
8324 obj->usdt_man = NULL;
8325
8326 bpf_gen__free(obj->gen_loader);
8327 bpf_object__elf_finish(obj);
8328 bpf_object_unload(obj);
8329 btf__free(obj->btf);
8330 btf_ext__free(obj->btf_ext);
8331
8332 for (i = 0; i < obj->nr_maps; i++)
8333 bpf_map__destroy(&obj->maps[i]);
8334
8335 zfree(&obj->btf_custom_path);
8336 zfree(&obj->kconfig);
8337 zfree(&obj->externs);
8338 obj->nr_extern = 0;
8339
8340 zfree(&obj->maps);
8341 obj->nr_maps = 0;
8342
8343 if (obj->programs && obj->nr_programs) {
8344 for (i = 0; i < obj->nr_programs; i++)
8345 bpf_program__exit(&obj->programs[i]);
8346 }
8347 zfree(&obj->programs);
8348
8349 free(obj);
8350}
8351
8352const char *bpf_object__name(const struct bpf_object *obj)
8353{
8354 return obj ? obj->name : libbpf_err_ptr(-EINVAL);
8355}
8356
8357unsigned int bpf_object__kversion(const struct bpf_object *obj)
8358{
8359 return obj ? obj->kern_version : 0;
8360}
8361
8362struct btf *bpf_object__btf(const struct bpf_object *obj)
8363{
8364 return obj ? obj->btf : NULL;
8365}
8366
8367int bpf_object__btf_fd(const struct bpf_object *obj)
8368{
8369 return obj->btf ? btf__fd(obj->btf) : -1;
8370}
8371
8372int bpf_object__set_kversion(struct bpf_object *obj, __u32 kern_version)
8373{
8374 if (obj->loaded)
8375 return libbpf_err(-EINVAL);
8376
8377 obj->kern_version = kern_version;
8378
8379 return 0;
8380}
8381
8382int bpf_object__gen_loader(struct bpf_object *obj, struct gen_loader_opts *opts)
8383{
8384 struct bpf_gen *gen;
8385
8386 if (!opts)
8387 return -EFAULT;
8388 if (!OPTS_VALID(opts, gen_loader_opts))
8389 return -EINVAL;
8390 gen = calloc(sizeof(*gen), 1);
8391 if (!gen)
8392 return -ENOMEM;
8393 gen->opts = opts;
8394 obj->gen_loader = gen;
8395 return 0;
8396}
8397
8398static struct bpf_program *
8399__bpf_program__iter(const struct bpf_program *p, const struct bpf_object *obj,
8400 bool forward)
8401{
8402 size_t nr_programs = obj->nr_programs;
8403 ssize_t idx;
8404
8405 if (!nr_programs)
8406 return NULL;
8407
8408 if (!p)
8409 /* Iter from the beginning */
8410 return forward ? &obj->programs[0] :
8411 &obj->programs[nr_programs - 1];
8412
8413 if (p->obj != obj) {
8414 pr_warn("error: program handler doesn't match object\n");
8415 return errno = EINVAL, NULL;
8416 }
8417
8418 idx = (p - obj->programs) + (forward ? 1 : -1);
8419 if (idx >= obj->nr_programs || idx < 0)
8420 return NULL;
8421 return &obj->programs[idx];
8422}
8423
8424struct bpf_program *
8425bpf_object__next_program(const struct bpf_object *obj, struct bpf_program *prev)
8426{
8427 struct bpf_program *prog = prev;
8428
8429 do {
8430 prog = __bpf_program__iter(prog, obj, true);
8431 } while (prog && prog_is_subprog(obj, prog));
8432
8433 return prog;
8434}
8435
8436struct bpf_program *
8437bpf_object__prev_program(const struct bpf_object *obj, struct bpf_program *next)
8438{
8439 struct bpf_program *prog = next;
8440
8441 do {
8442 prog = __bpf_program__iter(prog, obj, false);
8443 } while (prog && prog_is_subprog(obj, prog));
8444
8445 return prog;
8446}
8447
8448void bpf_program__set_ifindex(struct bpf_program *prog, __u32 ifindex)
8449{
8450 prog->prog_ifindex = ifindex;
8451}
8452
8453const char *bpf_program__name(const struct bpf_program *prog)
8454{
8455 return prog->name;
8456}
8457
8458const char *bpf_program__section_name(const struct bpf_program *prog)
8459{
8460 return prog->sec_name;
8461}
8462
8463bool bpf_program__autoload(const struct bpf_program *prog)
8464{
8465 return prog->autoload;
8466}
8467
8468int bpf_program__set_autoload(struct bpf_program *prog, bool autoload)
8469{
8470 if (prog->obj->loaded)
8471 return libbpf_err(-EINVAL);
8472
8473 prog->autoload = autoload;
8474 return 0;
8475}
8476
8477bool bpf_program__autoattach(const struct bpf_program *prog)
8478{
8479 return prog->autoattach;
8480}
8481
8482void bpf_program__set_autoattach(struct bpf_program *prog, bool autoattach)
8483{
8484 prog->autoattach = autoattach;
8485}
8486
8487const struct bpf_insn *bpf_program__insns(const struct bpf_program *prog)
8488{
8489 return prog->insns;
8490}
8491
8492size_t bpf_program__insn_cnt(const struct bpf_program *prog)
8493{
8494 return prog->insns_cnt;
8495}
8496
8497int bpf_program__set_insns(struct bpf_program *prog,
8498 struct bpf_insn *new_insns, size_t new_insn_cnt)
8499{
8500 struct bpf_insn *insns;
8501
8502 if (prog->obj->loaded)
8503 return -EBUSY;
8504
8505 insns = libbpf_reallocarray(prog->insns, new_insn_cnt, sizeof(*insns));
8506 if (!insns) {
8507 pr_warn("prog '%s': failed to realloc prog code\n", prog->name);
8508 return -ENOMEM;
8509 }
8510 memcpy(insns, new_insns, new_insn_cnt * sizeof(*insns));
8511
8512 prog->insns = insns;
8513 prog->insns_cnt = new_insn_cnt;
8514 return 0;
8515}
8516
8517int bpf_program__fd(const struct bpf_program *prog)
8518{
8519 if (!prog)
8520 return libbpf_err(-EINVAL);
8521
8522 if (prog->fd < 0)
8523 return libbpf_err(-ENOENT);
8524
8525 return prog->fd;
8526}
8527
8528__alias(bpf_program__type)
8529enum bpf_prog_type bpf_program__get_type(const struct bpf_program *prog);
8530
8531enum bpf_prog_type bpf_program__type(const struct bpf_program *prog)
8532{
8533 return prog->type;
8534}
8535
8536int bpf_program__set_type(struct bpf_program *prog, enum bpf_prog_type type)
8537{
8538 if (prog->obj->loaded)
8539 return libbpf_err(-EBUSY);
8540
8541 prog->type = type;
8542 prog->sec_def = NULL;
8543 return 0;
8544}
8545
8546__alias(bpf_program__expected_attach_type)
8547enum bpf_attach_type bpf_program__get_expected_attach_type(const struct bpf_program *prog);
8548
8549enum bpf_attach_type bpf_program__expected_attach_type(const struct bpf_program *prog)
8550{
8551 return prog->expected_attach_type;
8552}
8553
8554int bpf_program__set_expected_attach_type(struct bpf_program *prog,
8555 enum bpf_attach_type type)
8556{
8557 if (prog->obj->loaded)
8558 return libbpf_err(-EBUSY);
8559
8560 prog->expected_attach_type = type;
8561 return 0;
8562}
8563
8564__u32 bpf_program__flags(const struct bpf_program *prog)
8565{
8566 return prog->prog_flags;
8567}
8568
8569int bpf_program__set_flags(struct bpf_program *prog, __u32 flags)
8570{
8571 if (prog->obj->loaded)
8572 return libbpf_err(-EBUSY);
8573
8574 prog->prog_flags = flags;
8575 return 0;
8576}
8577
8578__u32 bpf_program__log_level(const struct bpf_program *prog)
8579{
8580 return prog->log_level;
8581}
8582
8583int bpf_program__set_log_level(struct bpf_program *prog, __u32 log_level)
8584{
8585 if (prog->obj->loaded)
8586 return libbpf_err(-EBUSY);
8587
8588 prog->log_level = log_level;
8589 return 0;
8590}
8591
8592const char *bpf_program__log_buf(const struct bpf_program *prog, size_t *log_size)
8593{
8594 *log_size = prog->log_size;
8595 return prog->log_buf;
8596}
8597
8598int bpf_program__set_log_buf(struct bpf_program *prog, char *log_buf, size_t log_size)
8599{
8600 if (log_size && !log_buf)
8601 return -EINVAL;
8602 if (prog->log_size > UINT_MAX)
8603 return -EINVAL;
8604 if (prog->obj->loaded)
8605 return -EBUSY;
8606
8607 prog->log_buf = log_buf;
8608 prog->log_size = log_size;
8609 return 0;
8610}
8611
8612#define SEC_DEF(sec_pfx, ptype, atype, flags, ...) { \
8613 .sec = (char *)sec_pfx, \
8614 .prog_type = BPF_PROG_TYPE_##ptype, \
8615 .expected_attach_type = atype, \
8616 .cookie = (long)(flags), \
8617 .prog_prepare_load_fn = libbpf_prepare_prog_load, \
8618 __VA_ARGS__ \
8619}
8620
8621static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8622static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8623static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8624static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8625static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8626static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8627static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8628static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8629static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8630static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link);
8631
8632static const struct bpf_sec_def section_defs[] = {
8633 SEC_DEF("socket", SOCKET_FILTER, 0, SEC_NONE),
8634 SEC_DEF("sk_reuseport/migrate", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT_OR_MIGRATE, SEC_ATTACHABLE),
8635 SEC_DEF("sk_reuseport", SK_REUSEPORT, BPF_SK_REUSEPORT_SELECT, SEC_ATTACHABLE),
8636 SEC_DEF("kprobe+", KPROBE, 0, SEC_NONE, attach_kprobe),
8637 SEC_DEF("uprobe+", KPROBE, 0, SEC_NONE, attach_uprobe),
8638 SEC_DEF("uprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe),
8639 SEC_DEF("kretprobe+", KPROBE, 0, SEC_NONE, attach_kprobe),
8640 SEC_DEF("uretprobe+", KPROBE, 0, SEC_NONE, attach_uprobe),
8641 SEC_DEF("uretprobe.s+", KPROBE, 0, SEC_SLEEPABLE, attach_uprobe),
8642 SEC_DEF("kprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
8643 SEC_DEF("kretprobe.multi+", KPROBE, BPF_TRACE_KPROBE_MULTI, SEC_NONE, attach_kprobe_multi),
8644 SEC_DEF("ksyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall),
8645 SEC_DEF("kretsyscall+", KPROBE, 0, SEC_NONE, attach_ksyscall),
8646 SEC_DEF("usdt+", KPROBE, 0, SEC_NONE, attach_usdt),
8647 SEC_DEF("tc", SCHED_CLS, 0, SEC_NONE),
8648 SEC_DEF("classifier", SCHED_CLS, 0, SEC_NONE),
8649 SEC_DEF("action", SCHED_ACT, 0, SEC_NONE),
8650 SEC_DEF("tracepoint+", TRACEPOINT, 0, SEC_NONE, attach_tp),
8651 SEC_DEF("tp+", TRACEPOINT, 0, SEC_NONE, attach_tp),
8652 SEC_DEF("raw_tracepoint+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
8653 SEC_DEF("raw_tp+", RAW_TRACEPOINT, 0, SEC_NONE, attach_raw_tp),
8654 SEC_DEF("raw_tracepoint.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
8655 SEC_DEF("raw_tp.w+", RAW_TRACEPOINT_WRITABLE, 0, SEC_NONE, attach_raw_tp),
8656 SEC_DEF("tp_btf+", TRACING, BPF_TRACE_RAW_TP, SEC_ATTACH_BTF, attach_trace),
8657 SEC_DEF("fentry+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF, attach_trace),
8658 SEC_DEF("fmod_ret+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF, attach_trace),
8659 SEC_DEF("fexit+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF, attach_trace),
8660 SEC_DEF("fentry.s+", TRACING, BPF_TRACE_FENTRY, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8661 SEC_DEF("fmod_ret.s+", TRACING, BPF_MODIFY_RETURN, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8662 SEC_DEF("fexit.s+", TRACING, BPF_TRACE_FEXIT, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_trace),
8663 SEC_DEF("freplace+", EXT, 0, SEC_ATTACH_BTF, attach_trace),
8664 SEC_DEF("lsm+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF, attach_lsm),
8665 SEC_DEF("lsm.s+", LSM, BPF_LSM_MAC, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_lsm),
8666 SEC_DEF("lsm_cgroup+", LSM, BPF_LSM_CGROUP, SEC_ATTACH_BTF),
8667 SEC_DEF("iter+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF, attach_iter),
8668 SEC_DEF("iter.s+", TRACING, BPF_TRACE_ITER, SEC_ATTACH_BTF | SEC_SLEEPABLE, attach_iter),
8669 SEC_DEF("syscall", SYSCALL, 0, SEC_SLEEPABLE),
8670 SEC_DEF("xdp.frags/devmap", XDP, BPF_XDP_DEVMAP, SEC_XDP_FRAGS),
8671 SEC_DEF("xdp/devmap", XDP, BPF_XDP_DEVMAP, SEC_ATTACHABLE),
8672 SEC_DEF("xdp.frags/cpumap", XDP, BPF_XDP_CPUMAP, SEC_XDP_FRAGS),
8673 SEC_DEF("xdp/cpumap", XDP, BPF_XDP_CPUMAP, SEC_ATTACHABLE),
8674 SEC_DEF("xdp.frags", XDP, BPF_XDP, SEC_XDP_FRAGS),
8675 SEC_DEF("xdp", XDP, BPF_XDP, SEC_ATTACHABLE_OPT),
8676 SEC_DEF("perf_event", PERF_EVENT, 0, SEC_NONE),
8677 SEC_DEF("lwt_in", LWT_IN, 0, SEC_NONE),
8678 SEC_DEF("lwt_out", LWT_OUT, 0, SEC_NONE),
8679 SEC_DEF("lwt_xmit", LWT_XMIT, 0, SEC_NONE),
8680 SEC_DEF("lwt_seg6local", LWT_SEG6LOCAL, 0, SEC_NONE),
8681 SEC_DEF("sockops", SOCK_OPS, BPF_CGROUP_SOCK_OPS, SEC_ATTACHABLE_OPT),
8682 SEC_DEF("sk_skb/stream_parser", SK_SKB, BPF_SK_SKB_STREAM_PARSER, SEC_ATTACHABLE_OPT),
8683 SEC_DEF("sk_skb/stream_verdict",SK_SKB, BPF_SK_SKB_STREAM_VERDICT, SEC_ATTACHABLE_OPT),
8684 SEC_DEF("sk_skb", SK_SKB, 0, SEC_NONE),
8685 SEC_DEF("sk_msg", SK_MSG, BPF_SK_MSG_VERDICT, SEC_ATTACHABLE_OPT),
8686 SEC_DEF("lirc_mode2", LIRC_MODE2, BPF_LIRC_MODE2, SEC_ATTACHABLE_OPT),
8687 SEC_DEF("flow_dissector", FLOW_DISSECTOR, BPF_FLOW_DISSECTOR, SEC_ATTACHABLE_OPT),
8688 SEC_DEF("cgroup_skb/ingress", CGROUP_SKB, BPF_CGROUP_INET_INGRESS, SEC_ATTACHABLE_OPT),
8689 SEC_DEF("cgroup_skb/egress", CGROUP_SKB, BPF_CGROUP_INET_EGRESS, SEC_ATTACHABLE_OPT),
8690 SEC_DEF("cgroup/skb", CGROUP_SKB, 0, SEC_NONE),
8691 SEC_DEF("cgroup/sock_create", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE),
8692 SEC_DEF("cgroup/sock_release", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_RELEASE, SEC_ATTACHABLE),
8693 SEC_DEF("cgroup/sock", CGROUP_SOCK, BPF_CGROUP_INET_SOCK_CREATE, SEC_ATTACHABLE_OPT),
8694 SEC_DEF("cgroup/post_bind4", CGROUP_SOCK, BPF_CGROUP_INET4_POST_BIND, SEC_ATTACHABLE),
8695 SEC_DEF("cgroup/post_bind6", CGROUP_SOCK, BPF_CGROUP_INET6_POST_BIND, SEC_ATTACHABLE),
8696 SEC_DEF("cgroup/bind4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_BIND, SEC_ATTACHABLE),
8697 SEC_DEF("cgroup/bind6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_BIND, SEC_ATTACHABLE),
8698 SEC_DEF("cgroup/connect4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_CONNECT, SEC_ATTACHABLE),
8699 SEC_DEF("cgroup/connect6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_CONNECT, SEC_ATTACHABLE),
8700 SEC_DEF("cgroup/sendmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_SENDMSG, SEC_ATTACHABLE),
8701 SEC_DEF("cgroup/sendmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_SENDMSG, SEC_ATTACHABLE),
8702 SEC_DEF("cgroup/recvmsg4", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP4_RECVMSG, SEC_ATTACHABLE),
8703 SEC_DEF("cgroup/recvmsg6", CGROUP_SOCK_ADDR, BPF_CGROUP_UDP6_RECVMSG, SEC_ATTACHABLE),
8704 SEC_DEF("cgroup/getpeername4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETPEERNAME, SEC_ATTACHABLE),
8705 SEC_DEF("cgroup/getpeername6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETPEERNAME, SEC_ATTACHABLE),
8706 SEC_DEF("cgroup/getsockname4", CGROUP_SOCK_ADDR, BPF_CGROUP_INET4_GETSOCKNAME, SEC_ATTACHABLE),
8707 SEC_DEF("cgroup/getsockname6", CGROUP_SOCK_ADDR, BPF_CGROUP_INET6_GETSOCKNAME, SEC_ATTACHABLE),
8708 SEC_DEF("cgroup/sysctl", CGROUP_SYSCTL, BPF_CGROUP_SYSCTL, SEC_ATTACHABLE),
8709 SEC_DEF("cgroup/getsockopt", CGROUP_SOCKOPT, BPF_CGROUP_GETSOCKOPT, SEC_ATTACHABLE),
8710 SEC_DEF("cgroup/setsockopt", CGROUP_SOCKOPT, BPF_CGROUP_SETSOCKOPT, SEC_ATTACHABLE),
8711 SEC_DEF("cgroup/dev", CGROUP_DEVICE, BPF_CGROUP_DEVICE, SEC_ATTACHABLE_OPT),
8712 SEC_DEF("struct_ops+", STRUCT_OPS, 0, SEC_NONE),
8713 SEC_DEF("struct_ops.s+", STRUCT_OPS, 0, SEC_SLEEPABLE),
8714 SEC_DEF("sk_lookup", SK_LOOKUP, BPF_SK_LOOKUP, SEC_ATTACHABLE),
8715 SEC_DEF("netfilter", NETFILTER, 0, SEC_NONE),
8716};
8717
8718static size_t custom_sec_def_cnt;
8719static struct bpf_sec_def *custom_sec_defs;
8720static struct bpf_sec_def custom_fallback_def;
8721static bool has_custom_fallback_def;
8722
8723static int last_custom_sec_def_handler_id;
8724
8725int libbpf_register_prog_handler(const char *sec,
8726 enum bpf_prog_type prog_type,
8727 enum bpf_attach_type exp_attach_type,
8728 const struct libbpf_prog_handler_opts *opts)
8729{
8730 struct bpf_sec_def *sec_def;
8731
8732 if (!OPTS_VALID(opts, libbpf_prog_handler_opts))
8733 return libbpf_err(-EINVAL);
8734
8735 if (last_custom_sec_def_handler_id == INT_MAX) /* prevent overflow */
8736 return libbpf_err(-E2BIG);
8737
8738 if (sec) {
8739 sec_def = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt + 1,
8740 sizeof(*sec_def));
8741 if (!sec_def)
8742 return libbpf_err(-ENOMEM);
8743
8744 custom_sec_defs = sec_def;
8745 sec_def = &custom_sec_defs[custom_sec_def_cnt];
8746 } else {
8747 if (has_custom_fallback_def)
8748 return libbpf_err(-EBUSY);
8749
8750 sec_def = &custom_fallback_def;
8751 }
8752
8753 sec_def->sec = sec ? strdup(sec) : NULL;
8754 if (sec && !sec_def->sec)
8755 return libbpf_err(-ENOMEM);
8756
8757 sec_def->prog_type = prog_type;
8758 sec_def->expected_attach_type = exp_attach_type;
8759 sec_def->cookie = OPTS_GET(opts, cookie, 0);
8760
8761 sec_def->prog_setup_fn = OPTS_GET(opts, prog_setup_fn, NULL);
8762 sec_def->prog_prepare_load_fn = OPTS_GET(opts, prog_prepare_load_fn, NULL);
8763 sec_def->prog_attach_fn = OPTS_GET(opts, prog_attach_fn, NULL);
8764
8765 sec_def->handler_id = ++last_custom_sec_def_handler_id;
8766
8767 if (sec)
8768 custom_sec_def_cnt++;
8769 else
8770 has_custom_fallback_def = true;
8771
8772 return sec_def->handler_id;
8773}
8774
8775int libbpf_unregister_prog_handler(int handler_id)
8776{
8777 struct bpf_sec_def *sec_defs;
8778 int i;
8779
8780 if (handler_id <= 0)
8781 return libbpf_err(-EINVAL);
8782
8783 if (has_custom_fallback_def && custom_fallback_def.handler_id == handler_id) {
8784 memset(&custom_fallback_def, 0, sizeof(custom_fallback_def));
8785 has_custom_fallback_def = false;
8786 return 0;
8787 }
8788
8789 for (i = 0; i < custom_sec_def_cnt; i++) {
8790 if (custom_sec_defs[i].handler_id == handler_id)
8791 break;
8792 }
8793
8794 if (i == custom_sec_def_cnt)
8795 return libbpf_err(-ENOENT);
8796
8797 free(custom_sec_defs[i].sec);
8798 for (i = i + 1; i < custom_sec_def_cnt; i++)
8799 custom_sec_defs[i - 1] = custom_sec_defs[i];
8800 custom_sec_def_cnt--;
8801
8802 /* try to shrink the array, but it's ok if we couldn't */
8803 sec_defs = libbpf_reallocarray(custom_sec_defs, custom_sec_def_cnt, sizeof(*sec_defs));
8804 if (sec_defs)
8805 custom_sec_defs = sec_defs;
8806
8807 return 0;
8808}
8809
8810static bool sec_def_matches(const struct bpf_sec_def *sec_def, const char *sec_name)
8811{
8812 size_t len = strlen(sec_def->sec);
8813
8814 /* "type/" always has to have proper SEC("type/extras") form */
8815 if (sec_def->sec[len - 1] == '/') {
8816 if (str_has_pfx(sec_name, sec_def->sec))
8817 return true;
8818 return false;
8819 }
8820
8821 /* "type+" means it can be either exact SEC("type") or
8822 * well-formed SEC("type/extras") with proper '/' separator
8823 */
8824 if (sec_def->sec[len - 1] == '+') {
8825 len--;
8826 /* not even a prefix */
8827 if (strncmp(sec_name, sec_def->sec, len) != 0)
8828 return false;
8829 /* exact match or has '/' separator */
8830 if (sec_name[len] == '\0' || sec_name[len] == '/')
8831 return true;
8832 return false;
8833 }
8834
8835 return strcmp(sec_name, sec_def->sec) == 0;
8836}
8837
8838static const struct bpf_sec_def *find_sec_def(const char *sec_name)
8839{
8840 const struct bpf_sec_def *sec_def;
8841 int i, n;
8842
8843 n = custom_sec_def_cnt;
8844 for (i = 0; i < n; i++) {
8845 sec_def = &custom_sec_defs[i];
8846 if (sec_def_matches(sec_def, sec_name))
8847 return sec_def;
8848 }
8849
8850 n = ARRAY_SIZE(section_defs);
8851 for (i = 0; i < n; i++) {
8852 sec_def = §ion_defs[i];
8853 if (sec_def_matches(sec_def, sec_name))
8854 return sec_def;
8855 }
8856
8857 if (has_custom_fallback_def)
8858 return &custom_fallback_def;
8859
8860 return NULL;
8861}
8862
8863#define MAX_TYPE_NAME_SIZE 32
8864
8865static char *libbpf_get_type_names(bool attach_type)
8866{
8867 int i, len = ARRAY_SIZE(section_defs) * MAX_TYPE_NAME_SIZE;
8868 char *buf;
8869
8870 buf = malloc(len);
8871 if (!buf)
8872 return NULL;
8873
8874 buf[0] = '\0';
8875 /* Forge string buf with all available names */
8876 for (i = 0; i < ARRAY_SIZE(section_defs); i++) {
8877 const struct bpf_sec_def *sec_def = §ion_defs[i];
8878
8879 if (attach_type) {
8880 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
8881 continue;
8882
8883 if (!(sec_def->cookie & SEC_ATTACHABLE))
8884 continue;
8885 }
8886
8887 if (strlen(buf) + strlen(section_defs[i].sec) + 2 > len) {
8888 free(buf);
8889 return NULL;
8890 }
8891 strcat(buf, " ");
8892 strcat(buf, section_defs[i].sec);
8893 }
8894
8895 return buf;
8896}
8897
8898int libbpf_prog_type_by_name(const char *name, enum bpf_prog_type *prog_type,
8899 enum bpf_attach_type *expected_attach_type)
8900{
8901 const struct bpf_sec_def *sec_def;
8902 char *type_names;
8903
8904 if (!name)
8905 return libbpf_err(-EINVAL);
8906
8907 sec_def = find_sec_def(name);
8908 if (sec_def) {
8909 *prog_type = sec_def->prog_type;
8910 *expected_attach_type = sec_def->expected_attach_type;
8911 return 0;
8912 }
8913
8914 pr_debug("failed to guess program type from ELF section '%s'\n", name);
8915 type_names = libbpf_get_type_names(false);
8916 if (type_names != NULL) {
8917 pr_debug("supported section(type) names are:%s\n", type_names);
8918 free(type_names);
8919 }
8920
8921 return libbpf_err(-ESRCH);
8922}
8923
8924const char *libbpf_bpf_attach_type_str(enum bpf_attach_type t)
8925{
8926 if (t < 0 || t >= ARRAY_SIZE(attach_type_name))
8927 return NULL;
8928
8929 return attach_type_name[t];
8930}
8931
8932const char *libbpf_bpf_link_type_str(enum bpf_link_type t)
8933{
8934 if (t < 0 || t >= ARRAY_SIZE(link_type_name))
8935 return NULL;
8936
8937 return link_type_name[t];
8938}
8939
8940const char *libbpf_bpf_map_type_str(enum bpf_map_type t)
8941{
8942 if (t < 0 || t >= ARRAY_SIZE(map_type_name))
8943 return NULL;
8944
8945 return map_type_name[t];
8946}
8947
8948const char *libbpf_bpf_prog_type_str(enum bpf_prog_type t)
8949{
8950 if (t < 0 || t >= ARRAY_SIZE(prog_type_name))
8951 return NULL;
8952
8953 return prog_type_name[t];
8954}
8955
8956static struct bpf_map *find_struct_ops_map_by_offset(struct bpf_object *obj,
8957 int sec_idx,
8958 size_t offset)
8959{
8960 struct bpf_map *map;
8961 size_t i;
8962
8963 for (i = 0; i < obj->nr_maps; i++) {
8964 map = &obj->maps[i];
8965 if (!bpf_map__is_struct_ops(map))
8966 continue;
8967 if (map->sec_idx == sec_idx &&
8968 map->sec_offset <= offset &&
8969 offset - map->sec_offset < map->def.value_size)
8970 return map;
8971 }
8972
8973 return NULL;
8974}
8975
8976/* Collect the reloc from ELF and populate the st_ops->progs[] */
8977static int bpf_object__collect_st_ops_relos(struct bpf_object *obj,
8978 Elf64_Shdr *shdr, Elf_Data *data)
8979{
8980 const struct btf_member *member;
8981 struct bpf_struct_ops *st_ops;
8982 struct bpf_program *prog;
8983 unsigned int shdr_idx;
8984 const struct btf *btf;
8985 struct bpf_map *map;
8986 unsigned int moff, insn_idx;
8987 const char *name;
8988 __u32 member_idx;
8989 Elf64_Sym *sym;
8990 Elf64_Rel *rel;
8991 int i, nrels;
8992
8993 btf = obj->btf;
8994 nrels = shdr->sh_size / shdr->sh_entsize;
8995 for (i = 0; i < nrels; i++) {
8996 rel = elf_rel_by_idx(data, i);
8997 if (!rel) {
8998 pr_warn("struct_ops reloc: failed to get %d reloc\n", i);
8999 return -LIBBPF_ERRNO__FORMAT;
9000 }
9001
9002 sym = elf_sym_by_idx(obj, ELF64_R_SYM(rel->r_info));
9003 if (!sym) {
9004 pr_warn("struct_ops reloc: symbol %zx not found\n",
9005 (size_t)ELF64_R_SYM(rel->r_info));
9006 return -LIBBPF_ERRNO__FORMAT;
9007 }
9008
9009 name = elf_sym_str(obj, sym->st_name) ?: "<?>";
9010 map = find_struct_ops_map_by_offset(obj, shdr->sh_info, rel->r_offset);
9011 if (!map) {
9012 pr_warn("struct_ops reloc: cannot find map at rel->r_offset %zu\n",
9013 (size_t)rel->r_offset);
9014 return -EINVAL;
9015 }
9016
9017 moff = rel->r_offset - map->sec_offset;
9018 shdr_idx = sym->st_shndx;
9019 st_ops = map->st_ops;
9020 pr_debug("struct_ops reloc %s: for %lld value %lld shdr_idx %u rel->r_offset %zu map->sec_offset %zu name %d (\'%s\')\n",
9021 map->name,
9022 (long long)(rel->r_info >> 32),
9023 (long long)sym->st_value,
9024 shdr_idx, (size_t)rel->r_offset,
9025 map->sec_offset, sym->st_name, name);
9026
9027 if (shdr_idx >= SHN_LORESERVE) {
9028 pr_warn("struct_ops reloc %s: rel->r_offset %zu shdr_idx %u unsupported non-static function\n",
9029 map->name, (size_t)rel->r_offset, shdr_idx);
9030 return -LIBBPF_ERRNO__RELOC;
9031 }
9032 if (sym->st_value % BPF_INSN_SZ) {
9033 pr_warn("struct_ops reloc %s: invalid target program offset %llu\n",
9034 map->name, (unsigned long long)sym->st_value);
9035 return -LIBBPF_ERRNO__FORMAT;
9036 }
9037 insn_idx = sym->st_value / BPF_INSN_SZ;
9038
9039 member = find_member_by_offset(st_ops->type, moff * 8);
9040 if (!member) {
9041 pr_warn("struct_ops reloc %s: cannot find member at moff %u\n",
9042 map->name, moff);
9043 return -EINVAL;
9044 }
9045 member_idx = member - btf_members(st_ops->type);
9046 name = btf__name_by_offset(btf, member->name_off);
9047
9048 if (!resolve_func_ptr(btf, member->type, NULL)) {
9049 pr_warn("struct_ops reloc %s: cannot relocate non func ptr %s\n",
9050 map->name, name);
9051 return -EINVAL;
9052 }
9053
9054 prog = find_prog_by_sec_insn(obj, shdr_idx, insn_idx);
9055 if (!prog) {
9056 pr_warn("struct_ops reloc %s: cannot find prog at shdr_idx %u to relocate func ptr %s\n",
9057 map->name, shdr_idx, name);
9058 return -EINVAL;
9059 }
9060
9061 /* prevent the use of BPF prog with invalid type */
9062 if (prog->type != BPF_PROG_TYPE_STRUCT_OPS) {
9063 pr_warn("struct_ops reloc %s: prog %s is not struct_ops BPF program\n",
9064 map->name, prog->name);
9065 return -EINVAL;
9066 }
9067
9068 /* if we haven't yet processed this BPF program, record proper
9069 * attach_btf_id and member_idx
9070 */
9071 if (!prog->attach_btf_id) {
9072 prog->attach_btf_id = st_ops->type_id;
9073 prog->expected_attach_type = member_idx;
9074 }
9075
9076 /* struct_ops BPF prog can be re-used between multiple
9077 * .struct_ops & .struct_ops.link as long as it's the
9078 * same struct_ops struct definition and the same
9079 * function pointer field
9080 */
9081 if (prog->attach_btf_id != st_ops->type_id ||
9082 prog->expected_attach_type != member_idx) {
9083 pr_warn("struct_ops reloc %s: cannot use prog %s in sec %s with type %u attach_btf_id %u expected_attach_type %u for func ptr %s\n",
9084 map->name, prog->name, prog->sec_name, prog->type,
9085 prog->attach_btf_id, prog->expected_attach_type, name);
9086 return -EINVAL;
9087 }
9088
9089 st_ops->progs[member_idx] = prog;
9090 }
9091
9092 return 0;
9093}
9094
9095#define BTF_TRACE_PREFIX "btf_trace_"
9096#define BTF_LSM_PREFIX "bpf_lsm_"
9097#define BTF_ITER_PREFIX "bpf_iter_"
9098#define BTF_MAX_NAME_SIZE 128
9099
9100void btf_get_kernel_prefix_kind(enum bpf_attach_type attach_type,
9101 const char **prefix, int *kind)
9102{
9103 switch (attach_type) {
9104 case BPF_TRACE_RAW_TP:
9105 *prefix = BTF_TRACE_PREFIX;
9106 *kind = BTF_KIND_TYPEDEF;
9107 break;
9108 case BPF_LSM_MAC:
9109 case BPF_LSM_CGROUP:
9110 *prefix = BTF_LSM_PREFIX;
9111 *kind = BTF_KIND_FUNC;
9112 break;
9113 case BPF_TRACE_ITER:
9114 *prefix = BTF_ITER_PREFIX;
9115 *kind = BTF_KIND_FUNC;
9116 break;
9117 default:
9118 *prefix = "";
9119 *kind = BTF_KIND_FUNC;
9120 }
9121}
9122
9123static int find_btf_by_prefix_kind(const struct btf *btf, const char *prefix,
9124 const char *name, __u32 kind)
9125{
9126 char btf_type_name[BTF_MAX_NAME_SIZE];
9127 int ret;
9128
9129 ret = snprintf(btf_type_name, sizeof(btf_type_name),
9130 "%s%s", prefix, name);
9131 /* snprintf returns the number of characters written excluding the
9132 * terminating null. So, if >= BTF_MAX_NAME_SIZE are written, it
9133 * indicates truncation.
9134 */
9135 if (ret < 0 || ret >= sizeof(btf_type_name))
9136 return -ENAMETOOLONG;
9137 return btf__find_by_name_kind(btf, btf_type_name, kind);
9138}
9139
9140static inline int find_attach_btf_id(struct btf *btf, const char *name,
9141 enum bpf_attach_type attach_type)
9142{
9143 const char *prefix;
9144 int kind;
9145
9146 btf_get_kernel_prefix_kind(attach_type, &prefix, &kind);
9147 return find_btf_by_prefix_kind(btf, prefix, name, kind);
9148}
9149
9150int libbpf_find_vmlinux_btf_id(const char *name,
9151 enum bpf_attach_type attach_type)
9152{
9153 struct btf *btf;
9154 int err;
9155
9156 btf = btf__load_vmlinux_btf();
9157 err = libbpf_get_error(btf);
9158 if (err) {
9159 pr_warn("vmlinux BTF is not found\n");
9160 return libbpf_err(err);
9161 }
9162
9163 err = find_attach_btf_id(btf, name, attach_type);
9164 if (err <= 0)
9165 pr_warn("%s is not found in vmlinux BTF\n", name);
9166
9167 btf__free(btf);
9168 return libbpf_err(err);
9169}
9170
9171static int libbpf_find_prog_btf_id(const char *name, __u32 attach_prog_fd)
9172{
9173 struct bpf_prog_info info;
9174 __u32 info_len = sizeof(info);
9175 struct btf *btf;
9176 int err;
9177
9178 memset(&info, 0, info_len);
9179 err = bpf_prog_get_info_by_fd(attach_prog_fd, &info, &info_len);
9180 if (err) {
9181 pr_warn("failed bpf_prog_get_info_by_fd for FD %d: %d\n",
9182 attach_prog_fd, err);
9183 return err;
9184 }
9185
9186 err = -EINVAL;
9187 if (!info.btf_id) {
9188 pr_warn("The target program doesn't have BTF\n");
9189 goto out;
9190 }
9191 btf = btf__load_from_kernel_by_id(info.btf_id);
9192 err = libbpf_get_error(btf);
9193 if (err) {
9194 pr_warn("Failed to get BTF %d of the program: %d\n", info.btf_id, err);
9195 goto out;
9196 }
9197 err = btf__find_by_name_kind(btf, name, BTF_KIND_FUNC);
9198 btf__free(btf);
9199 if (err <= 0) {
9200 pr_warn("%s is not found in prog's BTF\n", name);
9201 goto out;
9202 }
9203out:
9204 return err;
9205}
9206
9207static int find_kernel_btf_id(struct bpf_object *obj, const char *attach_name,
9208 enum bpf_attach_type attach_type,
9209 int *btf_obj_fd, int *btf_type_id)
9210{
9211 int ret, i;
9212
9213 ret = find_attach_btf_id(obj->btf_vmlinux, attach_name, attach_type);
9214 if (ret > 0) {
9215 *btf_obj_fd = 0; /* vmlinux BTF */
9216 *btf_type_id = ret;
9217 return 0;
9218 }
9219 if (ret != -ENOENT)
9220 return ret;
9221
9222 ret = load_module_btfs(obj);
9223 if (ret)
9224 return ret;
9225
9226 for (i = 0; i < obj->btf_module_cnt; i++) {
9227 const struct module_btf *mod = &obj->btf_modules[i];
9228
9229 ret = find_attach_btf_id(mod->btf, attach_name, attach_type);
9230 if (ret > 0) {
9231 *btf_obj_fd = mod->fd;
9232 *btf_type_id = ret;
9233 return 0;
9234 }
9235 if (ret == -ENOENT)
9236 continue;
9237
9238 return ret;
9239 }
9240
9241 return -ESRCH;
9242}
9243
9244static int libbpf_find_attach_btf_id(struct bpf_program *prog, const char *attach_name,
9245 int *btf_obj_fd, int *btf_type_id)
9246{
9247 enum bpf_attach_type attach_type = prog->expected_attach_type;
9248 __u32 attach_prog_fd = prog->attach_prog_fd;
9249 int err = 0;
9250
9251 /* BPF program's BTF ID */
9252 if (prog->type == BPF_PROG_TYPE_EXT || attach_prog_fd) {
9253 if (!attach_prog_fd) {
9254 pr_warn("prog '%s': attach program FD is not set\n", prog->name);
9255 return -EINVAL;
9256 }
9257 err = libbpf_find_prog_btf_id(attach_name, attach_prog_fd);
9258 if (err < 0) {
9259 pr_warn("prog '%s': failed to find BPF program (FD %d) BTF ID for '%s': %d\n",
9260 prog->name, attach_prog_fd, attach_name, err);
9261 return err;
9262 }
9263 *btf_obj_fd = 0;
9264 *btf_type_id = err;
9265 return 0;
9266 }
9267
9268 /* kernel/module BTF ID */
9269 if (prog->obj->gen_loader) {
9270 bpf_gen__record_attach_target(prog->obj->gen_loader, attach_name, attach_type);
9271 *btf_obj_fd = 0;
9272 *btf_type_id = 1;
9273 } else {
9274 err = find_kernel_btf_id(prog->obj, attach_name, attach_type, btf_obj_fd, btf_type_id);
9275 }
9276 if (err) {
9277 pr_warn("prog '%s': failed to find kernel BTF type ID of '%s': %d\n",
9278 prog->name, attach_name, err);
9279 return err;
9280 }
9281 return 0;
9282}
9283
9284int libbpf_attach_type_by_name(const char *name,
9285 enum bpf_attach_type *attach_type)
9286{
9287 char *type_names;
9288 const struct bpf_sec_def *sec_def;
9289
9290 if (!name)
9291 return libbpf_err(-EINVAL);
9292
9293 sec_def = find_sec_def(name);
9294 if (!sec_def) {
9295 pr_debug("failed to guess attach type based on ELF section name '%s'\n", name);
9296 type_names = libbpf_get_type_names(true);
9297 if (type_names != NULL) {
9298 pr_debug("attachable section(type) names are:%s\n", type_names);
9299 free(type_names);
9300 }
9301
9302 return libbpf_err(-EINVAL);
9303 }
9304
9305 if (sec_def->prog_prepare_load_fn != libbpf_prepare_prog_load)
9306 return libbpf_err(-EINVAL);
9307 if (!(sec_def->cookie & SEC_ATTACHABLE))
9308 return libbpf_err(-EINVAL);
9309
9310 *attach_type = sec_def->expected_attach_type;
9311 return 0;
9312}
9313
9314int bpf_map__fd(const struct bpf_map *map)
9315{
9316 return map ? map->fd : libbpf_err(-EINVAL);
9317}
9318
9319static bool map_uses_real_name(const struct bpf_map *map)
9320{
9321 /* Since libbpf started to support custom .data.* and .rodata.* maps,
9322 * their user-visible name differs from kernel-visible name. Users see
9323 * such map's corresponding ELF section name as a map name.
9324 * This check distinguishes .data/.rodata from .data.* and .rodata.*
9325 * maps to know which name has to be returned to the user.
9326 */
9327 if (map->libbpf_type == LIBBPF_MAP_DATA && strcmp(map->real_name, DATA_SEC) != 0)
9328 return true;
9329 if (map->libbpf_type == LIBBPF_MAP_RODATA && strcmp(map->real_name, RODATA_SEC) != 0)
9330 return true;
9331 return false;
9332}
9333
9334const char *bpf_map__name(const struct bpf_map *map)
9335{
9336 if (!map)
9337 return NULL;
9338
9339 if (map_uses_real_name(map))
9340 return map->real_name;
9341
9342 return map->name;
9343}
9344
9345enum bpf_map_type bpf_map__type(const struct bpf_map *map)
9346{
9347 return map->def.type;
9348}
9349
9350int bpf_map__set_type(struct bpf_map *map, enum bpf_map_type type)
9351{
9352 if (map->fd >= 0)
9353 return libbpf_err(-EBUSY);
9354 map->def.type = type;
9355 return 0;
9356}
9357
9358__u32 bpf_map__map_flags(const struct bpf_map *map)
9359{
9360 return map->def.map_flags;
9361}
9362
9363int bpf_map__set_map_flags(struct bpf_map *map, __u32 flags)
9364{
9365 if (map->fd >= 0)
9366 return libbpf_err(-EBUSY);
9367 map->def.map_flags = flags;
9368 return 0;
9369}
9370
9371__u64 bpf_map__map_extra(const struct bpf_map *map)
9372{
9373 return map->map_extra;
9374}
9375
9376int bpf_map__set_map_extra(struct bpf_map *map, __u64 map_extra)
9377{
9378 if (map->fd >= 0)
9379 return libbpf_err(-EBUSY);
9380 map->map_extra = map_extra;
9381 return 0;
9382}
9383
9384__u32 bpf_map__numa_node(const struct bpf_map *map)
9385{
9386 return map->numa_node;
9387}
9388
9389int bpf_map__set_numa_node(struct bpf_map *map, __u32 numa_node)
9390{
9391 if (map->fd >= 0)
9392 return libbpf_err(-EBUSY);
9393 map->numa_node = numa_node;
9394 return 0;
9395}
9396
9397__u32 bpf_map__key_size(const struct bpf_map *map)
9398{
9399 return map->def.key_size;
9400}
9401
9402int bpf_map__set_key_size(struct bpf_map *map, __u32 size)
9403{
9404 if (map->fd >= 0)
9405 return libbpf_err(-EBUSY);
9406 map->def.key_size = size;
9407 return 0;
9408}
9409
9410__u32 bpf_map__value_size(const struct bpf_map *map)
9411{
9412 return map->def.value_size;
9413}
9414
9415int bpf_map__set_value_size(struct bpf_map *map, __u32 size)
9416{
9417 if (map->fd >= 0)
9418 return libbpf_err(-EBUSY);
9419 map->def.value_size = size;
9420 return 0;
9421}
9422
9423__u32 bpf_map__btf_key_type_id(const struct bpf_map *map)
9424{
9425 return map ? map->btf_key_type_id : 0;
9426}
9427
9428__u32 bpf_map__btf_value_type_id(const struct bpf_map *map)
9429{
9430 return map ? map->btf_value_type_id : 0;
9431}
9432
9433int bpf_map__set_initial_value(struct bpf_map *map,
9434 const void *data, size_t size)
9435{
9436 if (!map->mmaped || map->libbpf_type == LIBBPF_MAP_KCONFIG ||
9437 size != map->def.value_size || map->fd >= 0)
9438 return libbpf_err(-EINVAL);
9439
9440 memcpy(map->mmaped, data, size);
9441 return 0;
9442}
9443
9444const void *bpf_map__initial_value(struct bpf_map *map, size_t *psize)
9445{
9446 if (!map->mmaped)
9447 return NULL;
9448 *psize = map->def.value_size;
9449 return map->mmaped;
9450}
9451
9452bool bpf_map__is_internal(const struct bpf_map *map)
9453{
9454 return map->libbpf_type != LIBBPF_MAP_UNSPEC;
9455}
9456
9457__u32 bpf_map__ifindex(const struct bpf_map *map)
9458{
9459 return map->map_ifindex;
9460}
9461
9462int bpf_map__set_ifindex(struct bpf_map *map, __u32 ifindex)
9463{
9464 if (map->fd >= 0)
9465 return libbpf_err(-EBUSY);
9466 map->map_ifindex = ifindex;
9467 return 0;
9468}
9469
9470int bpf_map__set_inner_map_fd(struct bpf_map *map, int fd)
9471{
9472 if (!bpf_map_type__is_map_in_map(map->def.type)) {
9473 pr_warn("error: unsupported map type\n");
9474 return libbpf_err(-EINVAL);
9475 }
9476 if (map->inner_map_fd != -1) {
9477 pr_warn("error: inner_map_fd already specified\n");
9478 return libbpf_err(-EINVAL);
9479 }
9480 if (map->inner_map) {
9481 bpf_map__destroy(map->inner_map);
9482 zfree(&map->inner_map);
9483 }
9484 map->inner_map_fd = fd;
9485 return 0;
9486}
9487
9488static struct bpf_map *
9489__bpf_map__iter(const struct bpf_map *m, const struct bpf_object *obj, int i)
9490{
9491 ssize_t idx;
9492 struct bpf_map *s, *e;
9493
9494 if (!obj || !obj->maps)
9495 return errno = EINVAL, NULL;
9496
9497 s = obj->maps;
9498 e = obj->maps + obj->nr_maps;
9499
9500 if ((m < s) || (m >= e)) {
9501 pr_warn("error in %s: map handler doesn't belong to object\n",
9502 __func__);
9503 return errno = EINVAL, NULL;
9504 }
9505
9506 idx = (m - obj->maps) + i;
9507 if (idx >= obj->nr_maps || idx < 0)
9508 return NULL;
9509 return &obj->maps[idx];
9510}
9511
9512struct bpf_map *
9513bpf_object__next_map(const struct bpf_object *obj, const struct bpf_map *prev)
9514{
9515 if (prev == NULL)
9516 return obj->maps;
9517
9518 return __bpf_map__iter(prev, obj, 1);
9519}
9520
9521struct bpf_map *
9522bpf_object__prev_map(const struct bpf_object *obj, const struct bpf_map *next)
9523{
9524 if (next == NULL) {
9525 if (!obj->nr_maps)
9526 return NULL;
9527 return obj->maps + obj->nr_maps - 1;
9528 }
9529
9530 return __bpf_map__iter(next, obj, -1);
9531}
9532
9533struct bpf_map *
9534bpf_object__find_map_by_name(const struct bpf_object *obj, const char *name)
9535{
9536 struct bpf_map *pos;
9537
9538 bpf_object__for_each_map(pos, obj) {
9539 /* if it's a special internal map name (which always starts
9540 * with dot) then check if that special name matches the
9541 * real map name (ELF section name)
9542 */
9543 if (name[0] == '.') {
9544 if (pos->real_name && strcmp(pos->real_name, name) == 0)
9545 return pos;
9546 continue;
9547 }
9548 /* otherwise map name has to be an exact match */
9549 if (map_uses_real_name(pos)) {
9550 if (strcmp(pos->real_name, name) == 0)
9551 return pos;
9552 continue;
9553 }
9554 if (strcmp(pos->name, name) == 0)
9555 return pos;
9556 }
9557 return errno = ENOENT, NULL;
9558}
9559
9560int
9561bpf_object__find_map_fd_by_name(const struct bpf_object *obj, const char *name)
9562{
9563 return bpf_map__fd(bpf_object__find_map_by_name(obj, name));
9564}
9565
9566static int validate_map_op(const struct bpf_map *map, size_t key_sz,
9567 size_t value_sz, bool check_value_sz)
9568{
9569 if (map->fd <= 0)
9570 return -ENOENT;
9571
9572 if (map->def.key_size != key_sz) {
9573 pr_warn("map '%s': unexpected key size %zu provided, expected %u\n",
9574 map->name, key_sz, map->def.key_size);
9575 return -EINVAL;
9576 }
9577
9578 if (!check_value_sz)
9579 return 0;
9580
9581 switch (map->def.type) {
9582 case BPF_MAP_TYPE_PERCPU_ARRAY:
9583 case BPF_MAP_TYPE_PERCPU_HASH:
9584 case BPF_MAP_TYPE_LRU_PERCPU_HASH:
9585 case BPF_MAP_TYPE_PERCPU_CGROUP_STORAGE: {
9586 int num_cpu = libbpf_num_possible_cpus();
9587 size_t elem_sz = roundup(map->def.value_size, 8);
9588
9589 if (value_sz != num_cpu * elem_sz) {
9590 pr_warn("map '%s': unexpected value size %zu provided for per-CPU map, expected %d * %zu = %zd\n",
9591 map->name, value_sz, num_cpu, elem_sz, num_cpu * elem_sz);
9592 return -EINVAL;
9593 }
9594 break;
9595 }
9596 default:
9597 if (map->def.value_size != value_sz) {
9598 pr_warn("map '%s': unexpected value size %zu provided, expected %u\n",
9599 map->name, value_sz, map->def.value_size);
9600 return -EINVAL;
9601 }
9602 break;
9603 }
9604 return 0;
9605}
9606
9607int bpf_map__lookup_elem(const struct bpf_map *map,
9608 const void *key, size_t key_sz,
9609 void *value, size_t value_sz, __u64 flags)
9610{
9611 int err;
9612
9613 err = validate_map_op(map, key_sz, value_sz, true);
9614 if (err)
9615 return libbpf_err(err);
9616
9617 return bpf_map_lookup_elem_flags(map->fd, key, value, flags);
9618}
9619
9620int bpf_map__update_elem(const struct bpf_map *map,
9621 const void *key, size_t key_sz,
9622 const void *value, size_t value_sz, __u64 flags)
9623{
9624 int err;
9625
9626 err = validate_map_op(map, key_sz, value_sz, true);
9627 if (err)
9628 return libbpf_err(err);
9629
9630 return bpf_map_update_elem(map->fd, key, value, flags);
9631}
9632
9633int bpf_map__delete_elem(const struct bpf_map *map,
9634 const void *key, size_t key_sz, __u64 flags)
9635{
9636 int err;
9637
9638 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
9639 if (err)
9640 return libbpf_err(err);
9641
9642 return bpf_map_delete_elem_flags(map->fd, key, flags);
9643}
9644
9645int bpf_map__lookup_and_delete_elem(const struct bpf_map *map,
9646 const void *key, size_t key_sz,
9647 void *value, size_t value_sz, __u64 flags)
9648{
9649 int err;
9650
9651 err = validate_map_op(map, key_sz, value_sz, true);
9652 if (err)
9653 return libbpf_err(err);
9654
9655 return bpf_map_lookup_and_delete_elem_flags(map->fd, key, value, flags);
9656}
9657
9658int bpf_map__get_next_key(const struct bpf_map *map,
9659 const void *cur_key, void *next_key, size_t key_sz)
9660{
9661 int err;
9662
9663 err = validate_map_op(map, key_sz, 0, false /* check_value_sz */);
9664 if (err)
9665 return libbpf_err(err);
9666
9667 return bpf_map_get_next_key(map->fd, cur_key, next_key);
9668}
9669
9670long libbpf_get_error(const void *ptr)
9671{
9672 if (!IS_ERR_OR_NULL(ptr))
9673 return 0;
9674
9675 if (IS_ERR(ptr))
9676 errno = -PTR_ERR(ptr);
9677
9678 /* If ptr == NULL, then errno should be already set by the failing
9679 * API, because libbpf never returns NULL on success and it now always
9680 * sets errno on error. So no extra errno handling for ptr == NULL
9681 * case.
9682 */
9683 return -errno;
9684}
9685
9686/* Replace link's underlying BPF program with the new one */
9687int bpf_link__update_program(struct bpf_link *link, struct bpf_program *prog)
9688{
9689 int ret;
9690
9691 ret = bpf_link_update(bpf_link__fd(link), bpf_program__fd(prog), NULL);
9692 return libbpf_err_errno(ret);
9693}
9694
9695/* Release "ownership" of underlying BPF resource (typically, BPF program
9696 * attached to some BPF hook, e.g., tracepoint, kprobe, etc). Disconnected
9697 * link, when destructed through bpf_link__destroy() call won't attempt to
9698 * detach/unregisted that BPF resource. This is useful in situations where,
9699 * say, attached BPF program has to outlive userspace program that attached it
9700 * in the system. Depending on type of BPF program, though, there might be
9701 * additional steps (like pinning BPF program in BPF FS) necessary to ensure
9702 * exit of userspace program doesn't trigger automatic detachment and clean up
9703 * inside the kernel.
9704 */
9705void bpf_link__disconnect(struct bpf_link *link)
9706{
9707 link->disconnected = true;
9708}
9709
9710int bpf_link__destroy(struct bpf_link *link)
9711{
9712 int err = 0;
9713
9714 if (IS_ERR_OR_NULL(link))
9715 return 0;
9716
9717 if (!link->disconnected && link->detach)
9718 err = link->detach(link);
9719 if (link->pin_path)
9720 free(link->pin_path);
9721 if (link->dealloc)
9722 link->dealloc(link);
9723 else
9724 free(link);
9725
9726 return libbpf_err(err);
9727}
9728
9729int bpf_link__fd(const struct bpf_link *link)
9730{
9731 return link->fd;
9732}
9733
9734const char *bpf_link__pin_path(const struct bpf_link *link)
9735{
9736 return link->pin_path;
9737}
9738
9739static int bpf_link__detach_fd(struct bpf_link *link)
9740{
9741 return libbpf_err_errno(close(link->fd));
9742}
9743
9744struct bpf_link *bpf_link__open(const char *path)
9745{
9746 struct bpf_link *link;
9747 int fd;
9748
9749 fd = bpf_obj_get(path);
9750 if (fd < 0) {
9751 fd = -errno;
9752 pr_warn("failed to open link at %s: %d\n", path, fd);
9753 return libbpf_err_ptr(fd);
9754 }
9755
9756 link = calloc(1, sizeof(*link));
9757 if (!link) {
9758 close(fd);
9759 return libbpf_err_ptr(-ENOMEM);
9760 }
9761 link->detach = &bpf_link__detach_fd;
9762 link->fd = fd;
9763
9764 link->pin_path = strdup(path);
9765 if (!link->pin_path) {
9766 bpf_link__destroy(link);
9767 return libbpf_err_ptr(-ENOMEM);
9768 }
9769
9770 return link;
9771}
9772
9773int bpf_link__detach(struct bpf_link *link)
9774{
9775 return bpf_link_detach(link->fd) ? -errno : 0;
9776}
9777
9778int bpf_link__pin(struct bpf_link *link, const char *path)
9779{
9780 int err;
9781
9782 if (link->pin_path)
9783 return libbpf_err(-EBUSY);
9784 err = make_parent_dir(path);
9785 if (err)
9786 return libbpf_err(err);
9787 err = check_path(path);
9788 if (err)
9789 return libbpf_err(err);
9790
9791 link->pin_path = strdup(path);
9792 if (!link->pin_path)
9793 return libbpf_err(-ENOMEM);
9794
9795 if (bpf_obj_pin(link->fd, link->pin_path)) {
9796 err = -errno;
9797 zfree(&link->pin_path);
9798 return libbpf_err(err);
9799 }
9800
9801 pr_debug("link fd=%d: pinned at %s\n", link->fd, link->pin_path);
9802 return 0;
9803}
9804
9805int bpf_link__unpin(struct bpf_link *link)
9806{
9807 int err;
9808
9809 if (!link->pin_path)
9810 return libbpf_err(-EINVAL);
9811
9812 err = unlink(link->pin_path);
9813 if (err != 0)
9814 return -errno;
9815
9816 pr_debug("link fd=%d: unpinned from %s\n", link->fd, link->pin_path);
9817 zfree(&link->pin_path);
9818 return 0;
9819}
9820
9821struct bpf_link_perf {
9822 struct bpf_link link;
9823 int perf_event_fd;
9824 /* legacy kprobe support: keep track of probe identifier and type */
9825 char *legacy_probe_name;
9826 bool legacy_is_kprobe;
9827 bool legacy_is_retprobe;
9828};
9829
9830static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe);
9831static int remove_uprobe_event_legacy(const char *probe_name, bool retprobe);
9832
9833static int bpf_link_perf_detach(struct bpf_link *link)
9834{
9835 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
9836 int err = 0;
9837
9838 if (ioctl(perf_link->perf_event_fd, PERF_EVENT_IOC_DISABLE, 0) < 0)
9839 err = -errno;
9840
9841 if (perf_link->perf_event_fd != link->fd)
9842 close(perf_link->perf_event_fd);
9843 close(link->fd);
9844
9845 /* legacy uprobe/kprobe needs to be removed after perf event fd closure */
9846 if (perf_link->legacy_probe_name) {
9847 if (perf_link->legacy_is_kprobe) {
9848 err = remove_kprobe_event_legacy(perf_link->legacy_probe_name,
9849 perf_link->legacy_is_retprobe);
9850 } else {
9851 err = remove_uprobe_event_legacy(perf_link->legacy_probe_name,
9852 perf_link->legacy_is_retprobe);
9853 }
9854 }
9855
9856 return err;
9857}
9858
9859static void bpf_link_perf_dealloc(struct bpf_link *link)
9860{
9861 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
9862
9863 free(perf_link->legacy_probe_name);
9864 free(perf_link);
9865}
9866
9867struct bpf_link *bpf_program__attach_perf_event_opts(const struct bpf_program *prog, int pfd,
9868 const struct bpf_perf_event_opts *opts)
9869{
9870 char errmsg[STRERR_BUFSIZE];
9871 struct bpf_link_perf *link;
9872 int prog_fd, link_fd = -1, err;
9873 bool force_ioctl_attach;
9874
9875 if (!OPTS_VALID(opts, bpf_perf_event_opts))
9876 return libbpf_err_ptr(-EINVAL);
9877
9878 if (pfd < 0) {
9879 pr_warn("prog '%s': invalid perf event FD %d\n",
9880 prog->name, pfd);
9881 return libbpf_err_ptr(-EINVAL);
9882 }
9883 prog_fd = bpf_program__fd(prog);
9884 if (prog_fd < 0) {
9885 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
9886 prog->name);
9887 return libbpf_err_ptr(-EINVAL);
9888 }
9889
9890 link = calloc(1, sizeof(*link));
9891 if (!link)
9892 return libbpf_err_ptr(-ENOMEM);
9893 link->link.detach = &bpf_link_perf_detach;
9894 link->link.dealloc = &bpf_link_perf_dealloc;
9895 link->perf_event_fd = pfd;
9896
9897 force_ioctl_attach = OPTS_GET(opts, force_ioctl_attach, false);
9898 if (kernel_supports(prog->obj, FEAT_PERF_LINK) && !force_ioctl_attach) {
9899 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_opts,
9900 .perf_event.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0));
9901
9902 link_fd = bpf_link_create(prog_fd, pfd, BPF_PERF_EVENT, &link_opts);
9903 if (link_fd < 0) {
9904 err = -errno;
9905 pr_warn("prog '%s': failed to create BPF link for perf_event FD %d: %d (%s)\n",
9906 prog->name, pfd,
9907 err, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9908 goto err_out;
9909 }
9910 link->link.fd = link_fd;
9911 } else {
9912 if (OPTS_GET(opts, bpf_cookie, 0)) {
9913 pr_warn("prog '%s': user context value is not supported\n", prog->name);
9914 err = -EOPNOTSUPP;
9915 goto err_out;
9916 }
9917
9918 if (ioctl(pfd, PERF_EVENT_IOC_SET_BPF, prog_fd) < 0) {
9919 err = -errno;
9920 pr_warn("prog '%s': failed to attach to perf_event FD %d: %s\n",
9921 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9922 if (err == -EPROTO)
9923 pr_warn("prog '%s': try add PERF_SAMPLE_CALLCHAIN to or remove exclude_callchain_[kernel|user] from pfd %d\n",
9924 prog->name, pfd);
9925 goto err_out;
9926 }
9927 link->link.fd = pfd;
9928 }
9929 if (ioctl(pfd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
9930 err = -errno;
9931 pr_warn("prog '%s': failed to enable perf_event FD %d: %s\n",
9932 prog->name, pfd, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
9933 goto err_out;
9934 }
9935
9936 return &link->link;
9937err_out:
9938 if (link_fd >= 0)
9939 close(link_fd);
9940 free(link);
9941 return libbpf_err_ptr(err);
9942}
9943
9944struct bpf_link *bpf_program__attach_perf_event(const struct bpf_program *prog, int pfd)
9945{
9946 return bpf_program__attach_perf_event_opts(prog, pfd, NULL);
9947}
9948
9949/*
9950 * this function is expected to parse integer in the range of [0, 2^31-1] from
9951 * given file using scanf format string fmt. If actual parsed value is
9952 * negative, the result might be indistinguishable from error
9953 */
9954static int parse_uint_from_file(const char *file, const char *fmt)
9955{
9956 char buf[STRERR_BUFSIZE];
9957 int err, ret;
9958 FILE *f;
9959
9960 f = fopen(file, "r");
9961 if (!f) {
9962 err = -errno;
9963 pr_debug("failed to open '%s': %s\n", file,
9964 libbpf_strerror_r(err, buf, sizeof(buf)));
9965 return err;
9966 }
9967 err = fscanf(f, fmt, &ret);
9968 if (err != 1) {
9969 err = err == EOF ? -EIO : -errno;
9970 pr_debug("failed to parse '%s': %s\n", file,
9971 libbpf_strerror_r(err, buf, sizeof(buf)));
9972 fclose(f);
9973 return err;
9974 }
9975 fclose(f);
9976 return ret;
9977}
9978
9979static int determine_kprobe_perf_type(void)
9980{
9981 const char *file = "/sys/bus/event_source/devices/kprobe/type";
9982
9983 return parse_uint_from_file(file, "%d\n");
9984}
9985
9986static int determine_uprobe_perf_type(void)
9987{
9988 const char *file = "/sys/bus/event_source/devices/uprobe/type";
9989
9990 return parse_uint_from_file(file, "%d\n");
9991}
9992
9993static int determine_kprobe_retprobe_bit(void)
9994{
9995 const char *file = "/sys/bus/event_source/devices/kprobe/format/retprobe";
9996
9997 return parse_uint_from_file(file, "config:%d\n");
9998}
9999
10000static int determine_uprobe_retprobe_bit(void)
10001{
10002 const char *file = "/sys/bus/event_source/devices/uprobe/format/retprobe";
10003
10004 return parse_uint_from_file(file, "config:%d\n");
10005}
10006
10007#define PERF_UPROBE_REF_CTR_OFFSET_BITS 32
10008#define PERF_UPROBE_REF_CTR_OFFSET_SHIFT 32
10009
10010static int perf_event_open_probe(bool uprobe, bool retprobe, const char *name,
10011 uint64_t offset, int pid, size_t ref_ctr_off)
10012{
10013 const size_t attr_sz = sizeof(struct perf_event_attr);
10014 struct perf_event_attr attr;
10015 char errmsg[STRERR_BUFSIZE];
10016 int type, pfd;
10017
10018 if ((__u64)ref_ctr_off >= (1ULL << PERF_UPROBE_REF_CTR_OFFSET_BITS))
10019 return -EINVAL;
10020
10021 memset(&attr, 0, attr_sz);
10022
10023 type = uprobe ? determine_uprobe_perf_type()
10024 : determine_kprobe_perf_type();
10025 if (type < 0) {
10026 pr_warn("failed to determine %s perf type: %s\n",
10027 uprobe ? "uprobe" : "kprobe",
10028 libbpf_strerror_r(type, errmsg, sizeof(errmsg)));
10029 return type;
10030 }
10031 if (retprobe) {
10032 int bit = uprobe ? determine_uprobe_retprobe_bit()
10033 : determine_kprobe_retprobe_bit();
10034
10035 if (bit < 0) {
10036 pr_warn("failed to determine %s retprobe bit: %s\n",
10037 uprobe ? "uprobe" : "kprobe",
10038 libbpf_strerror_r(bit, errmsg, sizeof(errmsg)));
10039 return bit;
10040 }
10041 attr.config |= 1 << bit;
10042 }
10043 attr.size = attr_sz;
10044 attr.type = type;
10045 attr.config |= (__u64)ref_ctr_off << PERF_UPROBE_REF_CTR_OFFSET_SHIFT;
10046 attr.config1 = ptr_to_u64(name); /* kprobe_func or uprobe_path */
10047 attr.config2 = offset; /* kprobe_addr or probe_offset */
10048
10049 /* pid filter is meaningful only for uprobes */
10050 pfd = syscall(__NR_perf_event_open, &attr,
10051 pid < 0 ? -1 : pid /* pid */,
10052 pid == -1 ? 0 : -1 /* cpu */,
10053 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
10054 return pfd >= 0 ? pfd : -errno;
10055}
10056
10057static int append_to_file(const char *file, const char *fmt, ...)
10058{
10059 int fd, n, err = 0;
10060 va_list ap;
10061 char buf[1024];
10062
10063 va_start(ap, fmt);
10064 n = vsnprintf(buf, sizeof(buf), fmt, ap);
10065 va_end(ap);
10066
10067 if (n < 0 || n >= sizeof(buf))
10068 return -EINVAL;
10069
10070 fd = open(file, O_WRONLY | O_APPEND | O_CLOEXEC, 0);
10071 if (fd < 0)
10072 return -errno;
10073
10074 if (write(fd, buf, n) < 0)
10075 err = -errno;
10076
10077 close(fd);
10078 return err;
10079}
10080
10081#define DEBUGFS "/sys/kernel/debug/tracing"
10082#define TRACEFS "/sys/kernel/tracing"
10083
10084static bool use_debugfs(void)
10085{
10086 static int has_debugfs = -1;
10087
10088 if (has_debugfs < 0)
10089 has_debugfs = faccessat(AT_FDCWD, DEBUGFS, F_OK, AT_EACCESS) == 0;
10090
10091 return has_debugfs == 1;
10092}
10093
10094static const char *tracefs_path(void)
10095{
10096 return use_debugfs() ? DEBUGFS : TRACEFS;
10097}
10098
10099static const char *tracefs_kprobe_events(void)
10100{
10101 return use_debugfs() ? DEBUGFS"/kprobe_events" : TRACEFS"/kprobe_events";
10102}
10103
10104static const char *tracefs_uprobe_events(void)
10105{
10106 return use_debugfs() ? DEBUGFS"/uprobe_events" : TRACEFS"/uprobe_events";
10107}
10108
10109static void gen_kprobe_legacy_event_name(char *buf, size_t buf_sz,
10110 const char *kfunc_name, size_t offset)
10111{
10112 static int index = 0;
10113 int i;
10114
10115 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx_%d", getpid(), kfunc_name, offset,
10116 __sync_fetch_and_add(&index, 1));
10117
10118 /* sanitize binary_path in the probe name */
10119 for (i = 0; buf[i]; i++) {
10120 if (!isalnum(buf[i]))
10121 buf[i] = '_';
10122 }
10123}
10124
10125static int add_kprobe_event_legacy(const char *probe_name, bool retprobe,
10126 const char *kfunc_name, size_t offset)
10127{
10128 return append_to_file(tracefs_kprobe_events(), "%c:%s/%s %s+0x%zx",
10129 retprobe ? 'r' : 'p',
10130 retprobe ? "kretprobes" : "kprobes",
10131 probe_name, kfunc_name, offset);
10132}
10133
10134static int remove_kprobe_event_legacy(const char *probe_name, bool retprobe)
10135{
10136 return append_to_file(tracefs_kprobe_events(), "-:%s/%s",
10137 retprobe ? "kretprobes" : "kprobes", probe_name);
10138}
10139
10140static int determine_kprobe_perf_type_legacy(const char *probe_name, bool retprobe)
10141{
10142 char file[256];
10143
10144 snprintf(file, sizeof(file), "%s/events/%s/%s/id",
10145 tracefs_path(), retprobe ? "kretprobes" : "kprobes", probe_name);
10146
10147 return parse_uint_from_file(file, "%d\n");
10148}
10149
10150static int perf_event_kprobe_open_legacy(const char *probe_name, bool retprobe,
10151 const char *kfunc_name, size_t offset, int pid)
10152{
10153 const size_t attr_sz = sizeof(struct perf_event_attr);
10154 struct perf_event_attr attr;
10155 char errmsg[STRERR_BUFSIZE];
10156 int type, pfd, err;
10157
10158 err = add_kprobe_event_legacy(probe_name, retprobe, kfunc_name, offset);
10159 if (err < 0) {
10160 pr_warn("failed to add legacy kprobe event for '%s+0x%zx': %s\n",
10161 kfunc_name, offset,
10162 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10163 return err;
10164 }
10165 type = determine_kprobe_perf_type_legacy(probe_name, retprobe);
10166 if (type < 0) {
10167 err = type;
10168 pr_warn("failed to determine legacy kprobe event id for '%s+0x%zx': %s\n",
10169 kfunc_name, offset,
10170 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10171 goto err_clean_legacy;
10172 }
10173
10174 memset(&attr, 0, attr_sz);
10175 attr.size = attr_sz;
10176 attr.config = type;
10177 attr.type = PERF_TYPE_TRACEPOINT;
10178
10179 pfd = syscall(__NR_perf_event_open, &attr,
10180 pid < 0 ? -1 : pid, /* pid */
10181 pid == -1 ? 0 : -1, /* cpu */
10182 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
10183 if (pfd < 0) {
10184 err = -errno;
10185 pr_warn("legacy kprobe perf_event_open() failed: %s\n",
10186 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10187 goto err_clean_legacy;
10188 }
10189 return pfd;
10190
10191err_clean_legacy:
10192 /* Clear the newly added legacy kprobe_event */
10193 remove_kprobe_event_legacy(probe_name, retprobe);
10194 return err;
10195}
10196
10197static const char *arch_specific_syscall_pfx(void)
10198{
10199#if defined(__x86_64__)
10200 return "x64";
10201#elif defined(__i386__)
10202 return "ia32";
10203#elif defined(__s390x__)
10204 return "s390x";
10205#elif defined(__s390__)
10206 return "s390";
10207#elif defined(__arm__)
10208 return "arm";
10209#elif defined(__aarch64__)
10210 return "arm64";
10211#elif defined(__mips__)
10212 return "mips";
10213#elif defined(__riscv)
10214 return "riscv";
10215#elif defined(__powerpc__)
10216 return "powerpc";
10217#elif defined(__powerpc64__)
10218 return "powerpc64";
10219#else
10220 return NULL;
10221#endif
10222}
10223
10224static int probe_kern_syscall_wrapper(void)
10225{
10226 char syscall_name[64];
10227 const char *ksys_pfx;
10228
10229 ksys_pfx = arch_specific_syscall_pfx();
10230 if (!ksys_pfx)
10231 return 0;
10232
10233 snprintf(syscall_name, sizeof(syscall_name), "__%s_sys_bpf", ksys_pfx);
10234
10235 if (determine_kprobe_perf_type() >= 0) {
10236 int pfd;
10237
10238 pfd = perf_event_open_probe(false, false, syscall_name, 0, getpid(), 0);
10239 if (pfd >= 0)
10240 close(pfd);
10241
10242 return pfd >= 0 ? 1 : 0;
10243 } else { /* legacy mode */
10244 char probe_name[128];
10245
10246 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name), syscall_name, 0);
10247 if (add_kprobe_event_legacy(probe_name, false, syscall_name, 0) < 0)
10248 return 0;
10249
10250 (void)remove_kprobe_event_legacy(probe_name, false);
10251 return 1;
10252 }
10253}
10254
10255struct bpf_link *
10256bpf_program__attach_kprobe_opts(const struct bpf_program *prog,
10257 const char *func_name,
10258 const struct bpf_kprobe_opts *opts)
10259{
10260 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
10261 enum probe_attach_mode attach_mode;
10262 char errmsg[STRERR_BUFSIZE];
10263 char *legacy_probe = NULL;
10264 struct bpf_link *link;
10265 size_t offset;
10266 bool retprobe, legacy;
10267 int pfd, err;
10268
10269 if (!OPTS_VALID(opts, bpf_kprobe_opts))
10270 return libbpf_err_ptr(-EINVAL);
10271
10272 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT);
10273 retprobe = OPTS_GET(opts, retprobe, false);
10274 offset = OPTS_GET(opts, offset, 0);
10275 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
10276
10277 legacy = determine_kprobe_perf_type() < 0;
10278 switch (attach_mode) {
10279 case PROBE_ATTACH_MODE_LEGACY:
10280 legacy = true;
10281 pe_opts.force_ioctl_attach = true;
10282 break;
10283 case PROBE_ATTACH_MODE_PERF:
10284 if (legacy)
10285 return libbpf_err_ptr(-ENOTSUP);
10286 pe_opts.force_ioctl_attach = true;
10287 break;
10288 case PROBE_ATTACH_MODE_LINK:
10289 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK))
10290 return libbpf_err_ptr(-ENOTSUP);
10291 break;
10292 case PROBE_ATTACH_MODE_DEFAULT:
10293 break;
10294 default:
10295 return libbpf_err_ptr(-EINVAL);
10296 }
10297
10298 if (!legacy) {
10299 pfd = perf_event_open_probe(false /* uprobe */, retprobe,
10300 func_name, offset,
10301 -1 /* pid */, 0 /* ref_ctr_off */);
10302 } else {
10303 char probe_name[256];
10304
10305 gen_kprobe_legacy_event_name(probe_name, sizeof(probe_name),
10306 func_name, offset);
10307
10308 legacy_probe = strdup(probe_name);
10309 if (!legacy_probe)
10310 return libbpf_err_ptr(-ENOMEM);
10311
10312 pfd = perf_event_kprobe_open_legacy(legacy_probe, retprobe, func_name,
10313 offset, -1 /* pid */);
10314 }
10315 if (pfd < 0) {
10316 err = -errno;
10317 pr_warn("prog '%s': failed to create %s '%s+0x%zx' perf event: %s\n",
10318 prog->name, retprobe ? "kretprobe" : "kprobe",
10319 func_name, offset,
10320 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10321 goto err_out;
10322 }
10323 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
10324 err = libbpf_get_error(link);
10325 if (err) {
10326 close(pfd);
10327 pr_warn("prog '%s': failed to attach to %s '%s+0x%zx': %s\n",
10328 prog->name, retprobe ? "kretprobe" : "kprobe",
10329 func_name, offset,
10330 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10331 goto err_clean_legacy;
10332 }
10333 if (legacy) {
10334 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
10335
10336 perf_link->legacy_probe_name = legacy_probe;
10337 perf_link->legacy_is_kprobe = true;
10338 perf_link->legacy_is_retprobe = retprobe;
10339 }
10340
10341 return link;
10342
10343err_clean_legacy:
10344 if (legacy)
10345 remove_kprobe_event_legacy(legacy_probe, retprobe);
10346err_out:
10347 free(legacy_probe);
10348 return libbpf_err_ptr(err);
10349}
10350
10351struct bpf_link *bpf_program__attach_kprobe(const struct bpf_program *prog,
10352 bool retprobe,
10353 const char *func_name)
10354{
10355 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts,
10356 .retprobe = retprobe,
10357 );
10358
10359 return bpf_program__attach_kprobe_opts(prog, func_name, &opts);
10360}
10361
10362struct bpf_link *bpf_program__attach_ksyscall(const struct bpf_program *prog,
10363 const char *syscall_name,
10364 const struct bpf_ksyscall_opts *opts)
10365{
10366 LIBBPF_OPTS(bpf_kprobe_opts, kprobe_opts);
10367 char func_name[128];
10368
10369 if (!OPTS_VALID(opts, bpf_ksyscall_opts))
10370 return libbpf_err_ptr(-EINVAL);
10371
10372 if (kernel_supports(prog->obj, FEAT_SYSCALL_WRAPPER)) {
10373 /* arch_specific_syscall_pfx() should never return NULL here
10374 * because it is guarded by kernel_supports(). However, since
10375 * compiler does not know that we have an explicit conditional
10376 * as well.
10377 */
10378 snprintf(func_name, sizeof(func_name), "__%s_sys_%s",
10379 arch_specific_syscall_pfx() ? : "", syscall_name);
10380 } else {
10381 snprintf(func_name, sizeof(func_name), "__se_sys_%s", syscall_name);
10382 }
10383
10384 kprobe_opts.retprobe = OPTS_GET(opts, retprobe, false);
10385 kprobe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
10386
10387 return bpf_program__attach_kprobe_opts(prog, func_name, &kprobe_opts);
10388}
10389
10390/* Adapted from perf/util/string.c */
10391static bool glob_match(const char *str, const char *pat)
10392{
10393 while (*str && *pat && *pat != '*') {
10394 if (*pat == '?') { /* Matches any single character */
10395 str++;
10396 pat++;
10397 continue;
10398 }
10399 if (*str != *pat)
10400 return false;
10401 str++;
10402 pat++;
10403 }
10404 /* Check wild card */
10405 if (*pat == '*') {
10406 while (*pat == '*')
10407 pat++;
10408 if (!*pat) /* Tail wild card matches all */
10409 return true;
10410 while (*str)
10411 if (glob_match(str++, pat))
10412 return true;
10413 }
10414 return !*str && !*pat;
10415}
10416
10417struct kprobe_multi_resolve {
10418 const char *pattern;
10419 unsigned long *addrs;
10420 size_t cap;
10421 size_t cnt;
10422};
10423
10424static int
10425resolve_kprobe_multi_cb(unsigned long long sym_addr, char sym_type,
10426 const char *sym_name, void *ctx)
10427{
10428 struct kprobe_multi_resolve *res = ctx;
10429 int err;
10430
10431 if (!glob_match(sym_name, res->pattern))
10432 return 0;
10433
10434 err = libbpf_ensure_mem((void **) &res->addrs, &res->cap, sizeof(unsigned long),
10435 res->cnt + 1);
10436 if (err)
10437 return err;
10438
10439 res->addrs[res->cnt++] = (unsigned long) sym_addr;
10440 return 0;
10441}
10442
10443struct bpf_link *
10444bpf_program__attach_kprobe_multi_opts(const struct bpf_program *prog,
10445 const char *pattern,
10446 const struct bpf_kprobe_multi_opts *opts)
10447{
10448 LIBBPF_OPTS(bpf_link_create_opts, lopts);
10449 struct kprobe_multi_resolve res = {
10450 .pattern = pattern,
10451 };
10452 struct bpf_link *link = NULL;
10453 char errmsg[STRERR_BUFSIZE];
10454 const unsigned long *addrs;
10455 int err, link_fd, prog_fd;
10456 const __u64 *cookies;
10457 const char **syms;
10458 bool retprobe;
10459 size_t cnt;
10460
10461 if (!OPTS_VALID(opts, bpf_kprobe_multi_opts))
10462 return libbpf_err_ptr(-EINVAL);
10463
10464 syms = OPTS_GET(opts, syms, false);
10465 addrs = OPTS_GET(opts, addrs, false);
10466 cnt = OPTS_GET(opts, cnt, false);
10467 cookies = OPTS_GET(opts, cookies, false);
10468
10469 if (!pattern && !addrs && !syms)
10470 return libbpf_err_ptr(-EINVAL);
10471 if (pattern && (addrs || syms || cookies || cnt))
10472 return libbpf_err_ptr(-EINVAL);
10473 if (!pattern && !cnt)
10474 return libbpf_err_ptr(-EINVAL);
10475 if (addrs && syms)
10476 return libbpf_err_ptr(-EINVAL);
10477
10478 if (pattern) {
10479 err = libbpf_kallsyms_parse(resolve_kprobe_multi_cb, &res);
10480 if (err)
10481 goto error;
10482 if (!res.cnt) {
10483 err = -ENOENT;
10484 goto error;
10485 }
10486 addrs = res.addrs;
10487 cnt = res.cnt;
10488 }
10489
10490 retprobe = OPTS_GET(opts, retprobe, false);
10491
10492 lopts.kprobe_multi.syms = syms;
10493 lopts.kprobe_multi.addrs = addrs;
10494 lopts.kprobe_multi.cookies = cookies;
10495 lopts.kprobe_multi.cnt = cnt;
10496 lopts.kprobe_multi.flags = retprobe ? BPF_F_KPROBE_MULTI_RETURN : 0;
10497
10498 link = calloc(1, sizeof(*link));
10499 if (!link) {
10500 err = -ENOMEM;
10501 goto error;
10502 }
10503 link->detach = &bpf_link__detach_fd;
10504
10505 prog_fd = bpf_program__fd(prog);
10506 link_fd = bpf_link_create(prog_fd, 0, BPF_TRACE_KPROBE_MULTI, &lopts);
10507 if (link_fd < 0) {
10508 err = -errno;
10509 pr_warn("prog '%s': failed to attach: %s\n",
10510 prog->name, libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
10511 goto error;
10512 }
10513 link->fd = link_fd;
10514 free(res.addrs);
10515 return link;
10516
10517error:
10518 free(link);
10519 free(res.addrs);
10520 return libbpf_err_ptr(err);
10521}
10522
10523static int attach_kprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10524{
10525 DECLARE_LIBBPF_OPTS(bpf_kprobe_opts, opts);
10526 unsigned long offset = 0;
10527 const char *func_name;
10528 char *func;
10529 int n;
10530
10531 *link = NULL;
10532
10533 /* no auto-attach for SEC("kprobe") and SEC("kretprobe") */
10534 if (strcmp(prog->sec_name, "kprobe") == 0 || strcmp(prog->sec_name, "kretprobe") == 0)
10535 return 0;
10536
10537 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe/");
10538 if (opts.retprobe)
10539 func_name = prog->sec_name + sizeof("kretprobe/") - 1;
10540 else
10541 func_name = prog->sec_name + sizeof("kprobe/") - 1;
10542
10543 n = sscanf(func_name, "%m[a-zA-Z0-9_.]+%li", &func, &offset);
10544 if (n < 1) {
10545 pr_warn("kprobe name is invalid: %s\n", func_name);
10546 return -EINVAL;
10547 }
10548 if (opts.retprobe && offset != 0) {
10549 free(func);
10550 pr_warn("kretprobes do not support offset specification\n");
10551 return -EINVAL;
10552 }
10553
10554 opts.offset = offset;
10555 *link = bpf_program__attach_kprobe_opts(prog, func, &opts);
10556 free(func);
10557 return libbpf_get_error(*link);
10558}
10559
10560static int attach_ksyscall(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10561{
10562 LIBBPF_OPTS(bpf_ksyscall_opts, opts);
10563 const char *syscall_name;
10564
10565 *link = NULL;
10566
10567 /* no auto-attach for SEC("ksyscall") and SEC("kretsyscall") */
10568 if (strcmp(prog->sec_name, "ksyscall") == 0 || strcmp(prog->sec_name, "kretsyscall") == 0)
10569 return 0;
10570
10571 opts.retprobe = str_has_pfx(prog->sec_name, "kretsyscall/");
10572 if (opts.retprobe)
10573 syscall_name = prog->sec_name + sizeof("kretsyscall/") - 1;
10574 else
10575 syscall_name = prog->sec_name + sizeof("ksyscall/") - 1;
10576
10577 *link = bpf_program__attach_ksyscall(prog, syscall_name, &opts);
10578 return *link ? 0 : -errno;
10579}
10580
10581static int attach_kprobe_multi(const struct bpf_program *prog, long cookie, struct bpf_link **link)
10582{
10583 LIBBPF_OPTS(bpf_kprobe_multi_opts, opts);
10584 const char *spec;
10585 char *pattern;
10586 int n;
10587
10588 *link = NULL;
10589
10590 /* no auto-attach for SEC("kprobe.multi") and SEC("kretprobe.multi") */
10591 if (strcmp(prog->sec_name, "kprobe.multi") == 0 ||
10592 strcmp(prog->sec_name, "kretprobe.multi") == 0)
10593 return 0;
10594
10595 opts.retprobe = str_has_pfx(prog->sec_name, "kretprobe.multi/");
10596 if (opts.retprobe)
10597 spec = prog->sec_name + sizeof("kretprobe.multi/") - 1;
10598 else
10599 spec = prog->sec_name + sizeof("kprobe.multi/") - 1;
10600
10601 n = sscanf(spec, "%m[a-zA-Z0-9_.*?]", &pattern);
10602 if (n < 1) {
10603 pr_warn("kprobe multi pattern is invalid: %s\n", pattern);
10604 return -EINVAL;
10605 }
10606
10607 *link = bpf_program__attach_kprobe_multi_opts(prog, pattern, &opts);
10608 free(pattern);
10609 return libbpf_get_error(*link);
10610}
10611
10612static void gen_uprobe_legacy_event_name(char *buf, size_t buf_sz,
10613 const char *binary_path, uint64_t offset)
10614{
10615 int i;
10616
10617 snprintf(buf, buf_sz, "libbpf_%u_%s_0x%zx", getpid(), binary_path, (size_t)offset);
10618
10619 /* sanitize binary_path in the probe name */
10620 for (i = 0; buf[i]; i++) {
10621 if (!isalnum(buf[i]))
10622 buf[i] = '_';
10623 }
10624}
10625
10626static inline int add_uprobe_event_legacy(const char *probe_name, bool retprobe,
10627 const char *binary_path, size_t offset)
10628{
10629 return append_to_file(tracefs_uprobe_events(), "%c:%s/%s %s:0x%zx",
10630 retprobe ? 'r' : 'p',
10631 retprobe ? "uretprobes" : "uprobes",
10632 probe_name, binary_path, offset);
10633}
10634
10635static inline int remove_uprobe_event_legacy(const char *probe_name, bool retprobe)
10636{
10637 return append_to_file(tracefs_uprobe_events(), "-:%s/%s",
10638 retprobe ? "uretprobes" : "uprobes", probe_name);
10639}
10640
10641static int determine_uprobe_perf_type_legacy(const char *probe_name, bool retprobe)
10642{
10643 char file[512];
10644
10645 snprintf(file, sizeof(file), "%s/events/%s/%s/id",
10646 tracefs_path(), retprobe ? "uretprobes" : "uprobes", probe_name);
10647
10648 return parse_uint_from_file(file, "%d\n");
10649}
10650
10651static int perf_event_uprobe_open_legacy(const char *probe_name, bool retprobe,
10652 const char *binary_path, size_t offset, int pid)
10653{
10654 const size_t attr_sz = sizeof(struct perf_event_attr);
10655 struct perf_event_attr attr;
10656 int type, pfd, err;
10657
10658 err = add_uprobe_event_legacy(probe_name, retprobe, binary_path, offset);
10659 if (err < 0) {
10660 pr_warn("failed to add legacy uprobe event for %s:0x%zx: %d\n",
10661 binary_path, (size_t)offset, err);
10662 return err;
10663 }
10664 type = determine_uprobe_perf_type_legacy(probe_name, retprobe);
10665 if (type < 0) {
10666 err = type;
10667 pr_warn("failed to determine legacy uprobe event id for %s:0x%zx: %d\n",
10668 binary_path, offset, err);
10669 goto err_clean_legacy;
10670 }
10671
10672 memset(&attr, 0, attr_sz);
10673 attr.size = attr_sz;
10674 attr.config = type;
10675 attr.type = PERF_TYPE_TRACEPOINT;
10676
10677 pfd = syscall(__NR_perf_event_open, &attr,
10678 pid < 0 ? -1 : pid, /* pid */
10679 pid == -1 ? 0 : -1, /* cpu */
10680 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
10681 if (pfd < 0) {
10682 err = -errno;
10683 pr_warn("legacy uprobe perf_event_open() failed: %d\n", err);
10684 goto err_clean_legacy;
10685 }
10686 return pfd;
10687
10688err_clean_legacy:
10689 /* Clear the newly added legacy uprobe_event */
10690 remove_uprobe_event_legacy(probe_name, retprobe);
10691 return err;
10692}
10693
10694/* Return next ELF section of sh_type after scn, or first of that type if scn is NULL. */
10695static Elf_Scn *elf_find_next_scn_by_type(Elf *elf, int sh_type, Elf_Scn *scn)
10696{
10697 while ((scn = elf_nextscn(elf, scn)) != NULL) {
10698 GElf_Shdr sh;
10699
10700 if (!gelf_getshdr(scn, &sh))
10701 continue;
10702 if (sh.sh_type == sh_type)
10703 return scn;
10704 }
10705 return NULL;
10706}
10707
10708/* Find offset of function name in the provided ELF object. "binary_path" is
10709 * the path to the ELF binary represented by "elf", and only used for error
10710 * reporting matters. "name" matches symbol name or name@@LIB for library
10711 * functions.
10712 */
10713static long elf_find_func_offset(Elf *elf, const char *binary_path, const char *name)
10714{
10715 int i, sh_types[2] = { SHT_DYNSYM, SHT_SYMTAB };
10716 bool is_shared_lib, is_name_qualified;
10717 long ret = -ENOENT;
10718 size_t name_len;
10719 GElf_Ehdr ehdr;
10720
10721 if (!gelf_getehdr(elf, &ehdr)) {
10722 pr_warn("elf: failed to get ehdr from %s: %s\n", binary_path, elf_errmsg(-1));
10723 ret = -LIBBPF_ERRNO__FORMAT;
10724 goto out;
10725 }
10726 /* for shared lib case, we do not need to calculate relative offset */
10727 is_shared_lib = ehdr.e_type == ET_DYN;
10728
10729 name_len = strlen(name);
10730 /* Does name specify "@@LIB"? */
10731 is_name_qualified = strstr(name, "@@") != NULL;
10732
10733 /* Search SHT_DYNSYM, SHT_SYMTAB for symbol. This search order is used because if
10734 * a binary is stripped, it may only have SHT_DYNSYM, and a fully-statically
10735 * linked binary may not have SHT_DYMSYM, so absence of a section should not be
10736 * reported as a warning/error.
10737 */
10738 for (i = 0; i < ARRAY_SIZE(sh_types); i++) {
10739 size_t nr_syms, strtabidx, idx;
10740 Elf_Data *symbols = NULL;
10741 Elf_Scn *scn = NULL;
10742 int last_bind = -1;
10743 const char *sname;
10744 GElf_Shdr sh;
10745
10746 scn = elf_find_next_scn_by_type(elf, sh_types[i], NULL);
10747 if (!scn) {
10748 pr_debug("elf: failed to find symbol table ELF sections in '%s'\n",
10749 binary_path);
10750 continue;
10751 }
10752 if (!gelf_getshdr(scn, &sh))
10753 continue;
10754 strtabidx = sh.sh_link;
10755 symbols = elf_getdata(scn, 0);
10756 if (!symbols) {
10757 pr_warn("elf: failed to get symbols for symtab section in '%s': %s\n",
10758 binary_path, elf_errmsg(-1));
10759 ret = -LIBBPF_ERRNO__FORMAT;
10760 goto out;
10761 }
10762 nr_syms = symbols->d_size / sh.sh_entsize;
10763
10764 for (idx = 0; idx < nr_syms; idx++) {
10765 int curr_bind;
10766 GElf_Sym sym;
10767 Elf_Scn *sym_scn;
10768 GElf_Shdr sym_sh;
10769
10770 if (!gelf_getsym(symbols, idx, &sym))
10771 continue;
10772
10773 if (GELF_ST_TYPE(sym.st_info) != STT_FUNC)
10774 continue;
10775
10776 sname = elf_strptr(elf, strtabidx, sym.st_name);
10777 if (!sname)
10778 continue;
10779
10780 curr_bind = GELF_ST_BIND(sym.st_info);
10781
10782 /* User can specify func, func@@LIB or func@@LIB_VERSION. */
10783 if (strncmp(sname, name, name_len) != 0)
10784 continue;
10785 /* ...but we don't want a search for "foo" to match 'foo2" also, so any
10786 * additional characters in sname should be of the form "@@LIB".
10787 */
10788 if (!is_name_qualified && sname[name_len] != '\0' && sname[name_len] != '@')
10789 continue;
10790
10791 if (ret >= 0) {
10792 /* handle multiple matches */
10793 if (last_bind != STB_WEAK && curr_bind != STB_WEAK) {
10794 /* Only accept one non-weak bind. */
10795 pr_warn("elf: ambiguous match for '%s', '%s' in '%s'\n",
10796 sname, name, binary_path);
10797 ret = -LIBBPF_ERRNO__FORMAT;
10798 goto out;
10799 } else if (curr_bind == STB_WEAK) {
10800 /* already have a non-weak bind, and
10801 * this is a weak bind, so ignore.
10802 */
10803 continue;
10804 }
10805 }
10806
10807 /* Transform symbol's virtual address (absolute for
10808 * binaries and relative for shared libs) into file
10809 * offset, which is what kernel is expecting for
10810 * uprobe/uretprobe attachment.
10811 * See Documentation/trace/uprobetracer.rst for more
10812 * details.
10813 * This is done by looking up symbol's containing
10814 * section's header and using it's virtual address
10815 * (sh_addr) and corresponding file offset (sh_offset)
10816 * to transform sym.st_value (virtual address) into
10817 * desired final file offset.
10818 */
10819 sym_scn = elf_getscn(elf, sym.st_shndx);
10820 if (!sym_scn)
10821 continue;
10822 if (!gelf_getshdr(sym_scn, &sym_sh))
10823 continue;
10824
10825 ret = sym.st_value - sym_sh.sh_addr + sym_sh.sh_offset;
10826 last_bind = curr_bind;
10827 }
10828 if (ret > 0)
10829 break;
10830 }
10831
10832 if (ret > 0) {
10833 pr_debug("elf: symbol address match for '%s' in '%s': 0x%lx\n", name, binary_path,
10834 ret);
10835 } else {
10836 if (ret == 0) {
10837 pr_warn("elf: '%s' is 0 in symtab for '%s': %s\n", name, binary_path,
10838 is_shared_lib ? "should not be 0 in a shared library" :
10839 "try using shared library path instead");
10840 ret = -ENOENT;
10841 } else {
10842 pr_warn("elf: failed to find symbol '%s' in '%s'\n", name, binary_path);
10843 }
10844 }
10845out:
10846 return ret;
10847}
10848
10849/* Find offset of function name in ELF object specified by path. "name" matches
10850 * symbol name or name@@LIB for library functions.
10851 */
10852static long elf_find_func_offset_from_file(const char *binary_path, const char *name)
10853{
10854 char errmsg[STRERR_BUFSIZE];
10855 long ret = -ENOENT;
10856 Elf *elf;
10857 int fd;
10858
10859 fd = open(binary_path, O_RDONLY | O_CLOEXEC);
10860 if (fd < 0) {
10861 ret = -errno;
10862 pr_warn("failed to open %s: %s\n", binary_path,
10863 libbpf_strerror_r(ret, errmsg, sizeof(errmsg)));
10864 return ret;
10865 }
10866 elf = elf_begin(fd, ELF_C_READ_MMAP, NULL);
10867 if (!elf) {
10868 pr_warn("elf: could not read elf from %s: %s\n", binary_path, elf_errmsg(-1));
10869 close(fd);
10870 return -LIBBPF_ERRNO__FORMAT;
10871 }
10872
10873 ret = elf_find_func_offset(elf, binary_path, name);
10874 elf_end(elf);
10875 close(fd);
10876 return ret;
10877}
10878
10879/* Find offset of function name in archive specified by path. Currently
10880 * supported are .zip files that do not compress their contents, as used on
10881 * Android in the form of APKs, for example. "file_name" is the name of the ELF
10882 * file inside the archive. "func_name" matches symbol name or name@@LIB for
10883 * library functions.
10884 *
10885 * An overview of the APK format specifically provided here:
10886 * https://en.wikipedia.org/w/index.php?title=Apk_(file_format)&oldid=1139099120#Package_contents
10887 */
10888static long elf_find_func_offset_from_archive(const char *archive_path, const char *file_name,
10889 const char *func_name)
10890{
10891 struct zip_archive *archive;
10892 struct zip_entry entry;
10893 long ret;
10894 Elf *elf;
10895
10896 archive = zip_archive_open(archive_path);
10897 if (IS_ERR(archive)) {
10898 ret = PTR_ERR(archive);
10899 pr_warn("zip: failed to open %s: %ld\n", archive_path, ret);
10900 return ret;
10901 }
10902
10903 ret = zip_archive_find_entry(archive, file_name, &entry);
10904 if (ret) {
10905 pr_warn("zip: could not find archive member %s in %s: %ld\n", file_name,
10906 archive_path, ret);
10907 goto out;
10908 }
10909 pr_debug("zip: found entry for %s in %s at 0x%lx\n", file_name, archive_path,
10910 (unsigned long)entry.data_offset);
10911
10912 if (entry.compression) {
10913 pr_warn("zip: entry %s of %s is compressed and cannot be handled\n", file_name,
10914 archive_path);
10915 ret = -LIBBPF_ERRNO__FORMAT;
10916 goto out;
10917 }
10918
10919 elf = elf_memory((void *)entry.data, entry.data_length);
10920 if (!elf) {
10921 pr_warn("elf: could not read elf file %s from %s: %s\n", file_name, archive_path,
10922 elf_errmsg(-1));
10923 ret = -LIBBPF_ERRNO__LIBELF;
10924 goto out;
10925 }
10926
10927 ret = elf_find_func_offset(elf, file_name, func_name);
10928 if (ret > 0) {
10929 pr_debug("elf: symbol address match for %s of %s in %s: 0x%x + 0x%lx = 0x%lx\n",
10930 func_name, file_name, archive_path, entry.data_offset, ret,
10931 ret + entry.data_offset);
10932 ret += entry.data_offset;
10933 }
10934 elf_end(elf);
10935
10936out:
10937 zip_archive_close(archive);
10938 return ret;
10939}
10940
10941static const char *arch_specific_lib_paths(void)
10942{
10943 /*
10944 * Based on https://packages.debian.org/sid/libc6.
10945 *
10946 * Assume that the traced program is built for the same architecture
10947 * as libbpf, which should cover the vast majority of cases.
10948 */
10949#if defined(__x86_64__)
10950 return "/lib/x86_64-linux-gnu";
10951#elif defined(__i386__)
10952 return "/lib/i386-linux-gnu";
10953#elif defined(__s390x__)
10954 return "/lib/s390x-linux-gnu";
10955#elif defined(__s390__)
10956 return "/lib/s390-linux-gnu";
10957#elif defined(__arm__) && defined(__SOFTFP__)
10958 return "/lib/arm-linux-gnueabi";
10959#elif defined(__arm__) && !defined(__SOFTFP__)
10960 return "/lib/arm-linux-gnueabihf";
10961#elif defined(__aarch64__)
10962 return "/lib/aarch64-linux-gnu";
10963#elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 64
10964 return "/lib/mips64el-linux-gnuabi64";
10965#elif defined(__mips__) && defined(__MIPSEL__) && _MIPS_SZLONG == 32
10966 return "/lib/mipsel-linux-gnu";
10967#elif defined(__powerpc64__) && __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
10968 return "/lib/powerpc64le-linux-gnu";
10969#elif defined(__sparc__) && defined(__arch64__)
10970 return "/lib/sparc64-linux-gnu";
10971#elif defined(__riscv) && __riscv_xlen == 64
10972 return "/lib/riscv64-linux-gnu";
10973#else
10974 return NULL;
10975#endif
10976}
10977
10978/* Get full path to program/shared library. */
10979static int resolve_full_path(const char *file, char *result, size_t result_sz)
10980{
10981 const char *search_paths[3] = {};
10982 int i, perm;
10983
10984 if (str_has_sfx(file, ".so") || strstr(file, ".so.")) {
10985 search_paths[0] = getenv("LD_LIBRARY_PATH");
10986 search_paths[1] = "/usr/lib64:/usr/lib";
10987 search_paths[2] = arch_specific_lib_paths();
10988 perm = R_OK;
10989 } else {
10990 search_paths[0] = getenv("PATH");
10991 search_paths[1] = "/usr/bin:/usr/sbin";
10992 perm = R_OK | X_OK;
10993 }
10994
10995 for (i = 0; i < ARRAY_SIZE(search_paths); i++) {
10996 const char *s;
10997
10998 if (!search_paths[i])
10999 continue;
11000 for (s = search_paths[i]; s != NULL; s = strchr(s, ':')) {
11001 char *next_path;
11002 int seg_len;
11003
11004 if (s[0] == ':')
11005 s++;
11006 next_path = strchr(s, ':');
11007 seg_len = next_path ? next_path - s : strlen(s);
11008 if (!seg_len)
11009 continue;
11010 snprintf(result, result_sz, "%.*s/%s", seg_len, s, file);
11011 /* ensure it has required permissions */
11012 if (faccessat(AT_FDCWD, result, perm, AT_EACCESS) < 0)
11013 continue;
11014 pr_debug("resolved '%s' to '%s'\n", file, result);
11015 return 0;
11016 }
11017 }
11018 return -ENOENT;
11019}
11020
11021LIBBPF_API struct bpf_link *
11022bpf_program__attach_uprobe_opts(const struct bpf_program *prog, pid_t pid,
11023 const char *binary_path, size_t func_offset,
11024 const struct bpf_uprobe_opts *opts)
11025{
11026 const char *archive_path = NULL, *archive_sep = NULL;
11027 char errmsg[STRERR_BUFSIZE], *legacy_probe = NULL;
11028 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
11029 enum probe_attach_mode attach_mode;
11030 char full_path[PATH_MAX];
11031 struct bpf_link *link;
11032 size_t ref_ctr_off;
11033 int pfd, err;
11034 bool retprobe, legacy;
11035 const char *func_name;
11036
11037 if (!OPTS_VALID(opts, bpf_uprobe_opts))
11038 return libbpf_err_ptr(-EINVAL);
11039
11040 attach_mode = OPTS_GET(opts, attach_mode, PROBE_ATTACH_MODE_DEFAULT);
11041 retprobe = OPTS_GET(opts, retprobe, false);
11042 ref_ctr_off = OPTS_GET(opts, ref_ctr_offset, 0);
11043 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11044
11045 if (!binary_path)
11046 return libbpf_err_ptr(-EINVAL);
11047
11048 /* Check if "binary_path" refers to an archive. */
11049 archive_sep = strstr(binary_path, "!/");
11050 if (archive_sep) {
11051 full_path[0] = '\0';
11052 libbpf_strlcpy(full_path, binary_path,
11053 min(sizeof(full_path), (size_t)(archive_sep - binary_path + 1)));
11054 archive_path = full_path;
11055 binary_path = archive_sep + 2;
11056 } else if (!strchr(binary_path, '/')) {
11057 err = resolve_full_path(binary_path, full_path, sizeof(full_path));
11058 if (err) {
11059 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
11060 prog->name, binary_path, err);
11061 return libbpf_err_ptr(err);
11062 }
11063 binary_path = full_path;
11064 }
11065 func_name = OPTS_GET(opts, func_name, NULL);
11066 if (func_name) {
11067 long sym_off;
11068
11069 if (archive_path) {
11070 sym_off = elf_find_func_offset_from_archive(archive_path, binary_path,
11071 func_name);
11072 binary_path = archive_path;
11073 } else {
11074 sym_off = elf_find_func_offset_from_file(binary_path, func_name);
11075 }
11076 if (sym_off < 0)
11077 return libbpf_err_ptr(sym_off);
11078 func_offset += sym_off;
11079 }
11080
11081 legacy = determine_uprobe_perf_type() < 0;
11082 switch (attach_mode) {
11083 case PROBE_ATTACH_MODE_LEGACY:
11084 legacy = true;
11085 pe_opts.force_ioctl_attach = true;
11086 break;
11087 case PROBE_ATTACH_MODE_PERF:
11088 if (legacy)
11089 return libbpf_err_ptr(-ENOTSUP);
11090 pe_opts.force_ioctl_attach = true;
11091 break;
11092 case PROBE_ATTACH_MODE_LINK:
11093 if (legacy || !kernel_supports(prog->obj, FEAT_PERF_LINK))
11094 return libbpf_err_ptr(-ENOTSUP);
11095 break;
11096 case PROBE_ATTACH_MODE_DEFAULT:
11097 break;
11098 default:
11099 return libbpf_err_ptr(-EINVAL);
11100 }
11101
11102 if (!legacy) {
11103 pfd = perf_event_open_probe(true /* uprobe */, retprobe, binary_path,
11104 func_offset, pid, ref_ctr_off);
11105 } else {
11106 char probe_name[PATH_MAX + 64];
11107
11108 if (ref_ctr_off)
11109 return libbpf_err_ptr(-EINVAL);
11110
11111 gen_uprobe_legacy_event_name(probe_name, sizeof(probe_name),
11112 binary_path, func_offset);
11113
11114 legacy_probe = strdup(probe_name);
11115 if (!legacy_probe)
11116 return libbpf_err_ptr(-ENOMEM);
11117
11118 pfd = perf_event_uprobe_open_legacy(legacy_probe, retprobe,
11119 binary_path, func_offset, pid);
11120 }
11121 if (pfd < 0) {
11122 err = -errno;
11123 pr_warn("prog '%s': failed to create %s '%s:0x%zx' perf event: %s\n",
11124 prog->name, retprobe ? "uretprobe" : "uprobe",
11125 binary_path, func_offset,
11126 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11127 goto err_out;
11128 }
11129
11130 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
11131 err = libbpf_get_error(link);
11132 if (err) {
11133 close(pfd);
11134 pr_warn("prog '%s': failed to attach to %s '%s:0x%zx': %s\n",
11135 prog->name, retprobe ? "uretprobe" : "uprobe",
11136 binary_path, func_offset,
11137 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11138 goto err_clean_legacy;
11139 }
11140 if (legacy) {
11141 struct bpf_link_perf *perf_link = container_of(link, struct bpf_link_perf, link);
11142
11143 perf_link->legacy_probe_name = legacy_probe;
11144 perf_link->legacy_is_kprobe = false;
11145 perf_link->legacy_is_retprobe = retprobe;
11146 }
11147 return link;
11148
11149err_clean_legacy:
11150 if (legacy)
11151 remove_uprobe_event_legacy(legacy_probe, retprobe);
11152err_out:
11153 free(legacy_probe);
11154 return libbpf_err_ptr(err);
11155}
11156
11157/* Format of u[ret]probe section definition supporting auto-attach:
11158 * u[ret]probe/binary:function[+offset]
11159 *
11160 * binary can be an absolute/relative path or a filename; the latter is resolved to a
11161 * full binary path via bpf_program__attach_uprobe_opts.
11162 *
11163 * Specifying uprobe+ ensures we carry out strict matching; either "uprobe" must be
11164 * specified (and auto-attach is not possible) or the above format is specified for
11165 * auto-attach.
11166 */
11167static int attach_uprobe(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11168{
11169 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts);
11170 char *probe_type = NULL, *binary_path = NULL, *func_name = NULL;
11171 int n, ret = -EINVAL;
11172 long offset = 0;
11173
11174 *link = NULL;
11175
11176 n = sscanf(prog->sec_name, "%m[^/]/%m[^:]:%m[a-zA-Z0-9_.]+%li",
11177 &probe_type, &binary_path, &func_name, &offset);
11178 switch (n) {
11179 case 1:
11180 /* handle SEC("u[ret]probe") - format is valid, but auto-attach is impossible. */
11181 ret = 0;
11182 break;
11183 case 2:
11184 pr_warn("prog '%s': section '%s' missing ':function[+offset]' specification\n",
11185 prog->name, prog->sec_name);
11186 break;
11187 case 3:
11188 case 4:
11189 opts.retprobe = strcmp(probe_type, "uretprobe") == 0 ||
11190 strcmp(probe_type, "uretprobe.s") == 0;
11191 if (opts.retprobe && offset != 0) {
11192 pr_warn("prog '%s': uretprobes do not support offset specification\n",
11193 prog->name);
11194 break;
11195 }
11196 opts.func_name = func_name;
11197 *link = bpf_program__attach_uprobe_opts(prog, -1, binary_path, offset, &opts);
11198 ret = libbpf_get_error(*link);
11199 break;
11200 default:
11201 pr_warn("prog '%s': invalid format of section definition '%s'\n", prog->name,
11202 prog->sec_name);
11203 break;
11204 }
11205 free(probe_type);
11206 free(binary_path);
11207 free(func_name);
11208
11209 return ret;
11210}
11211
11212struct bpf_link *bpf_program__attach_uprobe(const struct bpf_program *prog,
11213 bool retprobe, pid_t pid,
11214 const char *binary_path,
11215 size_t func_offset)
11216{
11217 DECLARE_LIBBPF_OPTS(bpf_uprobe_opts, opts, .retprobe = retprobe);
11218
11219 return bpf_program__attach_uprobe_opts(prog, pid, binary_path, func_offset, &opts);
11220}
11221
11222struct bpf_link *bpf_program__attach_usdt(const struct bpf_program *prog,
11223 pid_t pid, const char *binary_path,
11224 const char *usdt_provider, const char *usdt_name,
11225 const struct bpf_usdt_opts *opts)
11226{
11227 char resolved_path[512];
11228 struct bpf_object *obj = prog->obj;
11229 struct bpf_link *link;
11230 __u64 usdt_cookie;
11231 int err;
11232
11233 if (!OPTS_VALID(opts, bpf_uprobe_opts))
11234 return libbpf_err_ptr(-EINVAL);
11235
11236 if (bpf_program__fd(prog) < 0) {
11237 pr_warn("prog '%s': can't attach BPF program w/o FD (did you load it?)\n",
11238 prog->name);
11239 return libbpf_err_ptr(-EINVAL);
11240 }
11241
11242 if (!binary_path)
11243 return libbpf_err_ptr(-EINVAL);
11244
11245 if (!strchr(binary_path, '/')) {
11246 err = resolve_full_path(binary_path, resolved_path, sizeof(resolved_path));
11247 if (err) {
11248 pr_warn("prog '%s': failed to resolve full path for '%s': %d\n",
11249 prog->name, binary_path, err);
11250 return libbpf_err_ptr(err);
11251 }
11252 binary_path = resolved_path;
11253 }
11254
11255 /* USDT manager is instantiated lazily on first USDT attach. It will
11256 * be destroyed together with BPF object in bpf_object__close().
11257 */
11258 if (IS_ERR(obj->usdt_man))
11259 return libbpf_ptr(obj->usdt_man);
11260 if (!obj->usdt_man) {
11261 obj->usdt_man = usdt_manager_new(obj);
11262 if (IS_ERR(obj->usdt_man))
11263 return libbpf_ptr(obj->usdt_man);
11264 }
11265
11266 usdt_cookie = OPTS_GET(opts, usdt_cookie, 0);
11267 link = usdt_manager_attach_usdt(obj->usdt_man, prog, pid, binary_path,
11268 usdt_provider, usdt_name, usdt_cookie);
11269 err = libbpf_get_error(link);
11270 if (err)
11271 return libbpf_err_ptr(err);
11272 return link;
11273}
11274
11275static int attach_usdt(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11276{
11277 char *path = NULL, *provider = NULL, *name = NULL;
11278 const char *sec_name;
11279 int n, err;
11280
11281 sec_name = bpf_program__section_name(prog);
11282 if (strcmp(sec_name, "usdt") == 0) {
11283 /* no auto-attach for just SEC("usdt") */
11284 *link = NULL;
11285 return 0;
11286 }
11287
11288 n = sscanf(sec_name, "usdt/%m[^:]:%m[^:]:%m[^:]", &path, &provider, &name);
11289 if (n != 3) {
11290 pr_warn("invalid section '%s', expected SEC(\"usdt/<path>:<provider>:<name>\")\n",
11291 sec_name);
11292 err = -EINVAL;
11293 } else {
11294 *link = bpf_program__attach_usdt(prog, -1 /* any process */, path,
11295 provider, name, NULL);
11296 err = libbpf_get_error(*link);
11297 }
11298 free(path);
11299 free(provider);
11300 free(name);
11301 return err;
11302}
11303
11304static int determine_tracepoint_id(const char *tp_category,
11305 const char *tp_name)
11306{
11307 char file[PATH_MAX];
11308 int ret;
11309
11310 ret = snprintf(file, sizeof(file), "%s/events/%s/%s/id",
11311 tracefs_path(), tp_category, tp_name);
11312 if (ret < 0)
11313 return -errno;
11314 if (ret >= sizeof(file)) {
11315 pr_debug("tracepoint %s/%s path is too long\n",
11316 tp_category, tp_name);
11317 return -E2BIG;
11318 }
11319 return parse_uint_from_file(file, "%d\n");
11320}
11321
11322static int perf_event_open_tracepoint(const char *tp_category,
11323 const char *tp_name)
11324{
11325 const size_t attr_sz = sizeof(struct perf_event_attr);
11326 struct perf_event_attr attr;
11327 char errmsg[STRERR_BUFSIZE];
11328 int tp_id, pfd, err;
11329
11330 tp_id = determine_tracepoint_id(tp_category, tp_name);
11331 if (tp_id < 0) {
11332 pr_warn("failed to determine tracepoint '%s/%s' perf event ID: %s\n",
11333 tp_category, tp_name,
11334 libbpf_strerror_r(tp_id, errmsg, sizeof(errmsg)));
11335 return tp_id;
11336 }
11337
11338 memset(&attr, 0, attr_sz);
11339 attr.type = PERF_TYPE_TRACEPOINT;
11340 attr.size = attr_sz;
11341 attr.config = tp_id;
11342
11343 pfd = syscall(__NR_perf_event_open, &attr, -1 /* pid */, 0 /* cpu */,
11344 -1 /* group_fd */, PERF_FLAG_FD_CLOEXEC);
11345 if (pfd < 0) {
11346 err = -errno;
11347 pr_warn("tracepoint '%s/%s' perf_event_open() failed: %s\n",
11348 tp_category, tp_name,
11349 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11350 return err;
11351 }
11352 return pfd;
11353}
11354
11355struct bpf_link *bpf_program__attach_tracepoint_opts(const struct bpf_program *prog,
11356 const char *tp_category,
11357 const char *tp_name,
11358 const struct bpf_tracepoint_opts *opts)
11359{
11360 DECLARE_LIBBPF_OPTS(bpf_perf_event_opts, pe_opts);
11361 char errmsg[STRERR_BUFSIZE];
11362 struct bpf_link *link;
11363 int pfd, err;
11364
11365 if (!OPTS_VALID(opts, bpf_tracepoint_opts))
11366 return libbpf_err_ptr(-EINVAL);
11367
11368 pe_opts.bpf_cookie = OPTS_GET(opts, bpf_cookie, 0);
11369
11370 pfd = perf_event_open_tracepoint(tp_category, tp_name);
11371 if (pfd < 0) {
11372 pr_warn("prog '%s': failed to create tracepoint '%s/%s' perf event: %s\n",
11373 prog->name, tp_category, tp_name,
11374 libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
11375 return libbpf_err_ptr(pfd);
11376 }
11377 link = bpf_program__attach_perf_event_opts(prog, pfd, &pe_opts);
11378 err = libbpf_get_error(link);
11379 if (err) {
11380 close(pfd);
11381 pr_warn("prog '%s': failed to attach to tracepoint '%s/%s': %s\n",
11382 prog->name, tp_category, tp_name,
11383 libbpf_strerror_r(err, errmsg, sizeof(errmsg)));
11384 return libbpf_err_ptr(err);
11385 }
11386 return link;
11387}
11388
11389struct bpf_link *bpf_program__attach_tracepoint(const struct bpf_program *prog,
11390 const char *tp_category,
11391 const char *tp_name)
11392{
11393 return bpf_program__attach_tracepoint_opts(prog, tp_category, tp_name, NULL);
11394}
11395
11396static int attach_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11397{
11398 char *sec_name, *tp_cat, *tp_name;
11399
11400 *link = NULL;
11401
11402 /* no auto-attach for SEC("tp") or SEC("tracepoint") */
11403 if (strcmp(prog->sec_name, "tp") == 0 || strcmp(prog->sec_name, "tracepoint") == 0)
11404 return 0;
11405
11406 sec_name = strdup(prog->sec_name);
11407 if (!sec_name)
11408 return -ENOMEM;
11409
11410 /* extract "tp/<category>/<name>" or "tracepoint/<category>/<name>" */
11411 if (str_has_pfx(prog->sec_name, "tp/"))
11412 tp_cat = sec_name + sizeof("tp/") - 1;
11413 else
11414 tp_cat = sec_name + sizeof("tracepoint/") - 1;
11415 tp_name = strchr(tp_cat, '/');
11416 if (!tp_name) {
11417 free(sec_name);
11418 return -EINVAL;
11419 }
11420 *tp_name = '\0';
11421 tp_name++;
11422
11423 *link = bpf_program__attach_tracepoint(prog, tp_cat, tp_name);
11424 free(sec_name);
11425 return libbpf_get_error(*link);
11426}
11427
11428struct bpf_link *bpf_program__attach_raw_tracepoint(const struct bpf_program *prog,
11429 const char *tp_name)
11430{
11431 char errmsg[STRERR_BUFSIZE];
11432 struct bpf_link *link;
11433 int prog_fd, pfd;
11434
11435 prog_fd = bpf_program__fd(prog);
11436 if (prog_fd < 0) {
11437 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11438 return libbpf_err_ptr(-EINVAL);
11439 }
11440
11441 link = calloc(1, sizeof(*link));
11442 if (!link)
11443 return libbpf_err_ptr(-ENOMEM);
11444 link->detach = &bpf_link__detach_fd;
11445
11446 pfd = bpf_raw_tracepoint_open(tp_name, prog_fd);
11447 if (pfd < 0) {
11448 pfd = -errno;
11449 free(link);
11450 pr_warn("prog '%s': failed to attach to raw tracepoint '%s': %s\n",
11451 prog->name, tp_name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
11452 return libbpf_err_ptr(pfd);
11453 }
11454 link->fd = pfd;
11455 return link;
11456}
11457
11458static int attach_raw_tp(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11459{
11460 static const char *const prefixes[] = {
11461 "raw_tp",
11462 "raw_tracepoint",
11463 "raw_tp.w",
11464 "raw_tracepoint.w",
11465 };
11466 size_t i;
11467 const char *tp_name = NULL;
11468
11469 *link = NULL;
11470
11471 for (i = 0; i < ARRAY_SIZE(prefixes); i++) {
11472 size_t pfx_len;
11473
11474 if (!str_has_pfx(prog->sec_name, prefixes[i]))
11475 continue;
11476
11477 pfx_len = strlen(prefixes[i]);
11478 /* no auto-attach case of, e.g., SEC("raw_tp") */
11479 if (prog->sec_name[pfx_len] == '\0')
11480 return 0;
11481
11482 if (prog->sec_name[pfx_len] != '/')
11483 continue;
11484
11485 tp_name = prog->sec_name + pfx_len + 1;
11486 break;
11487 }
11488
11489 if (!tp_name) {
11490 pr_warn("prog '%s': invalid section name '%s'\n",
11491 prog->name, prog->sec_name);
11492 return -EINVAL;
11493 }
11494
11495 *link = bpf_program__attach_raw_tracepoint(prog, tp_name);
11496 return libbpf_get_error(*link);
11497}
11498
11499/* Common logic for all BPF program types that attach to a btf_id */
11500static struct bpf_link *bpf_program__attach_btf_id(const struct bpf_program *prog,
11501 const struct bpf_trace_opts *opts)
11502{
11503 LIBBPF_OPTS(bpf_link_create_opts, link_opts);
11504 char errmsg[STRERR_BUFSIZE];
11505 struct bpf_link *link;
11506 int prog_fd, pfd;
11507
11508 if (!OPTS_VALID(opts, bpf_trace_opts))
11509 return libbpf_err_ptr(-EINVAL);
11510
11511 prog_fd = bpf_program__fd(prog);
11512 if (prog_fd < 0) {
11513 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11514 return libbpf_err_ptr(-EINVAL);
11515 }
11516
11517 link = calloc(1, sizeof(*link));
11518 if (!link)
11519 return libbpf_err_ptr(-ENOMEM);
11520 link->detach = &bpf_link__detach_fd;
11521
11522 /* libbpf is smart enough to redirect to BPF_RAW_TRACEPOINT_OPEN on old kernels */
11523 link_opts.tracing.cookie = OPTS_GET(opts, cookie, 0);
11524 pfd = bpf_link_create(prog_fd, 0, bpf_program__expected_attach_type(prog), &link_opts);
11525 if (pfd < 0) {
11526 pfd = -errno;
11527 free(link);
11528 pr_warn("prog '%s': failed to attach: %s\n",
11529 prog->name, libbpf_strerror_r(pfd, errmsg, sizeof(errmsg)));
11530 return libbpf_err_ptr(pfd);
11531 }
11532 link->fd = pfd;
11533 return link;
11534}
11535
11536struct bpf_link *bpf_program__attach_trace(const struct bpf_program *prog)
11537{
11538 return bpf_program__attach_btf_id(prog, NULL);
11539}
11540
11541struct bpf_link *bpf_program__attach_trace_opts(const struct bpf_program *prog,
11542 const struct bpf_trace_opts *opts)
11543{
11544 return bpf_program__attach_btf_id(prog, opts);
11545}
11546
11547struct bpf_link *bpf_program__attach_lsm(const struct bpf_program *prog)
11548{
11549 return bpf_program__attach_btf_id(prog, NULL);
11550}
11551
11552static int attach_trace(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11553{
11554 *link = bpf_program__attach_trace(prog);
11555 return libbpf_get_error(*link);
11556}
11557
11558static int attach_lsm(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11559{
11560 *link = bpf_program__attach_lsm(prog);
11561 return libbpf_get_error(*link);
11562}
11563
11564static struct bpf_link *
11565bpf_program__attach_fd(const struct bpf_program *prog, int target_fd, int btf_id,
11566 const char *target_name)
11567{
11568 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, opts,
11569 .target_btf_id = btf_id);
11570 enum bpf_attach_type attach_type;
11571 char errmsg[STRERR_BUFSIZE];
11572 struct bpf_link *link;
11573 int prog_fd, link_fd;
11574
11575 prog_fd = bpf_program__fd(prog);
11576 if (prog_fd < 0) {
11577 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11578 return libbpf_err_ptr(-EINVAL);
11579 }
11580
11581 link = calloc(1, sizeof(*link));
11582 if (!link)
11583 return libbpf_err_ptr(-ENOMEM);
11584 link->detach = &bpf_link__detach_fd;
11585
11586 attach_type = bpf_program__expected_attach_type(prog);
11587 link_fd = bpf_link_create(prog_fd, target_fd, attach_type, &opts);
11588 if (link_fd < 0) {
11589 link_fd = -errno;
11590 free(link);
11591 pr_warn("prog '%s': failed to attach to %s: %s\n",
11592 prog->name, target_name,
11593 libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
11594 return libbpf_err_ptr(link_fd);
11595 }
11596 link->fd = link_fd;
11597 return link;
11598}
11599
11600struct bpf_link *
11601bpf_program__attach_cgroup(const struct bpf_program *prog, int cgroup_fd)
11602{
11603 return bpf_program__attach_fd(prog, cgroup_fd, 0, "cgroup");
11604}
11605
11606struct bpf_link *
11607bpf_program__attach_netns(const struct bpf_program *prog, int netns_fd)
11608{
11609 return bpf_program__attach_fd(prog, netns_fd, 0, "netns");
11610}
11611
11612struct bpf_link *bpf_program__attach_xdp(const struct bpf_program *prog, int ifindex)
11613{
11614 /* target_fd/target_ifindex use the same field in LINK_CREATE */
11615 return bpf_program__attach_fd(prog, ifindex, 0, "xdp");
11616}
11617
11618struct bpf_link *bpf_program__attach_freplace(const struct bpf_program *prog,
11619 int target_fd,
11620 const char *attach_func_name)
11621{
11622 int btf_id;
11623
11624 if (!!target_fd != !!attach_func_name) {
11625 pr_warn("prog '%s': supply none or both of target_fd and attach_func_name\n",
11626 prog->name);
11627 return libbpf_err_ptr(-EINVAL);
11628 }
11629
11630 if (prog->type != BPF_PROG_TYPE_EXT) {
11631 pr_warn("prog '%s': only BPF_PROG_TYPE_EXT can attach as freplace",
11632 prog->name);
11633 return libbpf_err_ptr(-EINVAL);
11634 }
11635
11636 if (target_fd) {
11637 btf_id = libbpf_find_prog_btf_id(attach_func_name, target_fd);
11638 if (btf_id < 0)
11639 return libbpf_err_ptr(btf_id);
11640
11641 return bpf_program__attach_fd(prog, target_fd, btf_id, "freplace");
11642 } else {
11643 /* no target, so use raw_tracepoint_open for compatibility
11644 * with old kernels
11645 */
11646 return bpf_program__attach_trace(prog);
11647 }
11648}
11649
11650struct bpf_link *
11651bpf_program__attach_iter(const struct bpf_program *prog,
11652 const struct bpf_iter_attach_opts *opts)
11653{
11654 DECLARE_LIBBPF_OPTS(bpf_link_create_opts, link_create_opts);
11655 char errmsg[STRERR_BUFSIZE];
11656 struct bpf_link *link;
11657 int prog_fd, link_fd;
11658 __u32 target_fd = 0;
11659
11660 if (!OPTS_VALID(opts, bpf_iter_attach_opts))
11661 return libbpf_err_ptr(-EINVAL);
11662
11663 link_create_opts.iter_info = OPTS_GET(opts, link_info, (void *)0);
11664 link_create_opts.iter_info_len = OPTS_GET(opts, link_info_len, 0);
11665
11666 prog_fd = bpf_program__fd(prog);
11667 if (prog_fd < 0) {
11668 pr_warn("prog '%s': can't attach before loaded\n", prog->name);
11669 return libbpf_err_ptr(-EINVAL);
11670 }
11671
11672 link = calloc(1, sizeof(*link));
11673 if (!link)
11674 return libbpf_err_ptr(-ENOMEM);
11675 link->detach = &bpf_link__detach_fd;
11676
11677 link_fd = bpf_link_create(prog_fd, target_fd, BPF_TRACE_ITER,
11678 &link_create_opts);
11679 if (link_fd < 0) {
11680 link_fd = -errno;
11681 free(link);
11682 pr_warn("prog '%s': failed to attach to iterator: %s\n",
11683 prog->name, libbpf_strerror_r(link_fd, errmsg, sizeof(errmsg)));
11684 return libbpf_err_ptr(link_fd);
11685 }
11686 link->fd = link_fd;
11687 return link;
11688}
11689
11690static int attach_iter(const struct bpf_program *prog, long cookie, struct bpf_link **link)
11691{
11692 *link = bpf_program__attach_iter(prog, NULL);
11693 return libbpf_get_error(*link);
11694}
11695
11696struct bpf_link *bpf_program__attach(const struct bpf_program *prog)
11697{
11698 struct bpf_link *link = NULL;
11699 int err;
11700
11701 if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
11702 return libbpf_err_ptr(-EOPNOTSUPP);
11703
11704 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, &link);
11705 if (err)
11706 return libbpf_err_ptr(err);
11707
11708 /* When calling bpf_program__attach() explicitly, auto-attach support
11709 * is expected to work, so NULL returned link is considered an error.
11710 * This is different for skeleton's attach, see comment in
11711 * bpf_object__attach_skeleton().
11712 */
11713 if (!link)
11714 return libbpf_err_ptr(-EOPNOTSUPP);
11715
11716 return link;
11717}
11718
11719struct bpf_link_struct_ops {
11720 struct bpf_link link;
11721 int map_fd;
11722};
11723
11724static int bpf_link__detach_struct_ops(struct bpf_link *link)
11725{
11726 struct bpf_link_struct_ops *st_link;
11727 __u32 zero = 0;
11728
11729 st_link = container_of(link, struct bpf_link_struct_ops, link);
11730
11731 if (st_link->map_fd < 0)
11732 /* w/o a real link */
11733 return bpf_map_delete_elem(link->fd, &zero);
11734
11735 return close(link->fd);
11736}
11737
11738struct bpf_link *bpf_map__attach_struct_ops(const struct bpf_map *map)
11739{
11740 struct bpf_link_struct_ops *link;
11741 __u32 zero = 0;
11742 int err, fd;
11743
11744 if (!bpf_map__is_struct_ops(map) || map->fd == -1)
11745 return libbpf_err_ptr(-EINVAL);
11746
11747 link = calloc(1, sizeof(*link));
11748 if (!link)
11749 return libbpf_err_ptr(-EINVAL);
11750
11751 /* kern_vdata should be prepared during the loading phase. */
11752 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0);
11753 /* It can be EBUSY if the map has been used to create or
11754 * update a link before. We don't allow updating the value of
11755 * a struct_ops once it is set. That ensures that the value
11756 * never changed. So, it is safe to skip EBUSY.
11757 */
11758 if (err && (!(map->def.map_flags & BPF_F_LINK) || err != -EBUSY)) {
11759 free(link);
11760 return libbpf_err_ptr(err);
11761 }
11762
11763 link->link.detach = bpf_link__detach_struct_ops;
11764
11765 if (!(map->def.map_flags & BPF_F_LINK)) {
11766 /* w/o a real link */
11767 link->link.fd = map->fd;
11768 link->map_fd = -1;
11769 return &link->link;
11770 }
11771
11772 fd = bpf_link_create(map->fd, 0, BPF_STRUCT_OPS, NULL);
11773 if (fd < 0) {
11774 free(link);
11775 return libbpf_err_ptr(fd);
11776 }
11777
11778 link->link.fd = fd;
11779 link->map_fd = map->fd;
11780
11781 return &link->link;
11782}
11783
11784/*
11785 * Swap the back struct_ops of a link with a new struct_ops map.
11786 */
11787int bpf_link__update_map(struct bpf_link *link, const struct bpf_map *map)
11788{
11789 struct bpf_link_struct_ops *st_ops_link;
11790 __u32 zero = 0;
11791 int err;
11792
11793 if (!bpf_map__is_struct_ops(map) || map->fd < 0)
11794 return -EINVAL;
11795
11796 st_ops_link = container_of(link, struct bpf_link_struct_ops, link);
11797 /* Ensure the type of a link is correct */
11798 if (st_ops_link->map_fd < 0)
11799 return -EINVAL;
11800
11801 err = bpf_map_update_elem(map->fd, &zero, map->st_ops->kern_vdata, 0);
11802 /* It can be EBUSY if the map has been used to create or
11803 * update a link before. We don't allow updating the value of
11804 * a struct_ops once it is set. That ensures that the value
11805 * never changed. So, it is safe to skip EBUSY.
11806 */
11807 if (err && err != -EBUSY)
11808 return err;
11809
11810 err = bpf_link_update(link->fd, map->fd, NULL);
11811 if (err < 0)
11812 return err;
11813
11814 st_ops_link->map_fd = map->fd;
11815
11816 return 0;
11817}
11818
11819typedef enum bpf_perf_event_ret (*bpf_perf_event_print_t)(struct perf_event_header *hdr,
11820 void *private_data);
11821
11822static enum bpf_perf_event_ret
11823perf_event_read_simple(void *mmap_mem, size_t mmap_size, size_t page_size,
11824 void **copy_mem, size_t *copy_size,
11825 bpf_perf_event_print_t fn, void *private_data)
11826{
11827 struct perf_event_mmap_page *header = mmap_mem;
11828 __u64 data_head = ring_buffer_read_head(header);
11829 __u64 data_tail = header->data_tail;
11830 void *base = ((__u8 *)header) + page_size;
11831 int ret = LIBBPF_PERF_EVENT_CONT;
11832 struct perf_event_header *ehdr;
11833 size_t ehdr_size;
11834
11835 while (data_head != data_tail) {
11836 ehdr = base + (data_tail & (mmap_size - 1));
11837 ehdr_size = ehdr->size;
11838
11839 if (((void *)ehdr) + ehdr_size > base + mmap_size) {
11840 void *copy_start = ehdr;
11841 size_t len_first = base + mmap_size - copy_start;
11842 size_t len_secnd = ehdr_size - len_first;
11843
11844 if (*copy_size < ehdr_size) {
11845 free(*copy_mem);
11846 *copy_mem = malloc(ehdr_size);
11847 if (!*copy_mem) {
11848 *copy_size = 0;
11849 ret = LIBBPF_PERF_EVENT_ERROR;
11850 break;
11851 }
11852 *copy_size = ehdr_size;
11853 }
11854
11855 memcpy(*copy_mem, copy_start, len_first);
11856 memcpy(*copy_mem + len_first, base, len_secnd);
11857 ehdr = *copy_mem;
11858 }
11859
11860 ret = fn(ehdr, private_data);
11861 data_tail += ehdr_size;
11862 if (ret != LIBBPF_PERF_EVENT_CONT)
11863 break;
11864 }
11865
11866 ring_buffer_write_tail(header, data_tail);
11867 return libbpf_err(ret);
11868}
11869
11870struct perf_buffer;
11871
11872struct perf_buffer_params {
11873 struct perf_event_attr *attr;
11874 /* if event_cb is specified, it takes precendence */
11875 perf_buffer_event_fn event_cb;
11876 /* sample_cb and lost_cb are higher-level common-case callbacks */
11877 perf_buffer_sample_fn sample_cb;
11878 perf_buffer_lost_fn lost_cb;
11879 void *ctx;
11880 int cpu_cnt;
11881 int *cpus;
11882 int *map_keys;
11883};
11884
11885struct perf_cpu_buf {
11886 struct perf_buffer *pb;
11887 void *base; /* mmap()'ed memory */
11888 void *buf; /* for reconstructing segmented data */
11889 size_t buf_size;
11890 int fd;
11891 int cpu;
11892 int map_key;
11893};
11894
11895struct perf_buffer {
11896 perf_buffer_event_fn event_cb;
11897 perf_buffer_sample_fn sample_cb;
11898 perf_buffer_lost_fn lost_cb;
11899 void *ctx; /* passed into callbacks */
11900
11901 size_t page_size;
11902 size_t mmap_size;
11903 struct perf_cpu_buf **cpu_bufs;
11904 struct epoll_event *events;
11905 int cpu_cnt; /* number of allocated CPU buffers */
11906 int epoll_fd; /* perf event FD */
11907 int map_fd; /* BPF_MAP_TYPE_PERF_EVENT_ARRAY BPF map FD */
11908};
11909
11910static void perf_buffer__free_cpu_buf(struct perf_buffer *pb,
11911 struct perf_cpu_buf *cpu_buf)
11912{
11913 if (!cpu_buf)
11914 return;
11915 if (cpu_buf->base &&
11916 munmap(cpu_buf->base, pb->mmap_size + pb->page_size))
11917 pr_warn("failed to munmap cpu_buf #%d\n", cpu_buf->cpu);
11918 if (cpu_buf->fd >= 0) {
11919 ioctl(cpu_buf->fd, PERF_EVENT_IOC_DISABLE, 0);
11920 close(cpu_buf->fd);
11921 }
11922 free(cpu_buf->buf);
11923 free(cpu_buf);
11924}
11925
11926void perf_buffer__free(struct perf_buffer *pb)
11927{
11928 int i;
11929
11930 if (IS_ERR_OR_NULL(pb))
11931 return;
11932 if (pb->cpu_bufs) {
11933 for (i = 0; i < pb->cpu_cnt; i++) {
11934 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
11935
11936 if (!cpu_buf)
11937 continue;
11938
11939 bpf_map_delete_elem(pb->map_fd, &cpu_buf->map_key);
11940 perf_buffer__free_cpu_buf(pb, cpu_buf);
11941 }
11942 free(pb->cpu_bufs);
11943 }
11944 if (pb->epoll_fd >= 0)
11945 close(pb->epoll_fd);
11946 free(pb->events);
11947 free(pb);
11948}
11949
11950static struct perf_cpu_buf *
11951perf_buffer__open_cpu_buf(struct perf_buffer *pb, struct perf_event_attr *attr,
11952 int cpu, int map_key)
11953{
11954 struct perf_cpu_buf *cpu_buf;
11955 char msg[STRERR_BUFSIZE];
11956 int err;
11957
11958 cpu_buf = calloc(1, sizeof(*cpu_buf));
11959 if (!cpu_buf)
11960 return ERR_PTR(-ENOMEM);
11961
11962 cpu_buf->pb = pb;
11963 cpu_buf->cpu = cpu;
11964 cpu_buf->map_key = map_key;
11965
11966 cpu_buf->fd = syscall(__NR_perf_event_open, attr, -1 /* pid */, cpu,
11967 -1, PERF_FLAG_FD_CLOEXEC);
11968 if (cpu_buf->fd < 0) {
11969 err = -errno;
11970 pr_warn("failed to open perf buffer event on cpu #%d: %s\n",
11971 cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
11972 goto error;
11973 }
11974
11975 cpu_buf->base = mmap(NULL, pb->mmap_size + pb->page_size,
11976 PROT_READ | PROT_WRITE, MAP_SHARED,
11977 cpu_buf->fd, 0);
11978 if (cpu_buf->base == MAP_FAILED) {
11979 cpu_buf->base = NULL;
11980 err = -errno;
11981 pr_warn("failed to mmap perf buffer on cpu #%d: %s\n",
11982 cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
11983 goto error;
11984 }
11985
11986 if (ioctl(cpu_buf->fd, PERF_EVENT_IOC_ENABLE, 0) < 0) {
11987 err = -errno;
11988 pr_warn("failed to enable perf buffer event on cpu #%d: %s\n",
11989 cpu, libbpf_strerror_r(err, msg, sizeof(msg)));
11990 goto error;
11991 }
11992
11993 return cpu_buf;
11994
11995error:
11996 perf_buffer__free_cpu_buf(pb, cpu_buf);
11997 return (struct perf_cpu_buf *)ERR_PTR(err);
11998}
11999
12000static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
12001 struct perf_buffer_params *p);
12002
12003struct perf_buffer *perf_buffer__new(int map_fd, size_t page_cnt,
12004 perf_buffer_sample_fn sample_cb,
12005 perf_buffer_lost_fn lost_cb,
12006 void *ctx,
12007 const struct perf_buffer_opts *opts)
12008{
12009 const size_t attr_sz = sizeof(struct perf_event_attr);
12010 struct perf_buffer_params p = {};
12011 struct perf_event_attr attr;
12012 __u32 sample_period;
12013
12014 if (!OPTS_VALID(opts, perf_buffer_opts))
12015 return libbpf_err_ptr(-EINVAL);
12016
12017 sample_period = OPTS_GET(opts, sample_period, 1);
12018 if (!sample_period)
12019 sample_period = 1;
12020
12021 memset(&attr, 0, attr_sz);
12022 attr.size = attr_sz;
12023 attr.config = PERF_COUNT_SW_BPF_OUTPUT;
12024 attr.type = PERF_TYPE_SOFTWARE;
12025 attr.sample_type = PERF_SAMPLE_RAW;
12026 attr.sample_period = sample_period;
12027 attr.wakeup_events = sample_period;
12028
12029 p.attr = &attr;
12030 p.sample_cb = sample_cb;
12031 p.lost_cb = lost_cb;
12032 p.ctx = ctx;
12033
12034 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
12035}
12036
12037struct perf_buffer *perf_buffer__new_raw(int map_fd, size_t page_cnt,
12038 struct perf_event_attr *attr,
12039 perf_buffer_event_fn event_cb, void *ctx,
12040 const struct perf_buffer_raw_opts *opts)
12041{
12042 struct perf_buffer_params p = {};
12043
12044 if (!attr)
12045 return libbpf_err_ptr(-EINVAL);
12046
12047 if (!OPTS_VALID(opts, perf_buffer_raw_opts))
12048 return libbpf_err_ptr(-EINVAL);
12049
12050 p.attr = attr;
12051 p.event_cb = event_cb;
12052 p.ctx = ctx;
12053 p.cpu_cnt = OPTS_GET(opts, cpu_cnt, 0);
12054 p.cpus = OPTS_GET(opts, cpus, NULL);
12055 p.map_keys = OPTS_GET(opts, map_keys, NULL);
12056
12057 return libbpf_ptr(__perf_buffer__new(map_fd, page_cnt, &p));
12058}
12059
12060static struct perf_buffer *__perf_buffer__new(int map_fd, size_t page_cnt,
12061 struct perf_buffer_params *p)
12062{
12063 const char *online_cpus_file = "/sys/devices/system/cpu/online";
12064 struct bpf_map_info map;
12065 char msg[STRERR_BUFSIZE];
12066 struct perf_buffer *pb;
12067 bool *online = NULL;
12068 __u32 map_info_len;
12069 int err, i, j, n;
12070
12071 if (page_cnt == 0 || (page_cnt & (page_cnt - 1))) {
12072 pr_warn("page count should be power of two, but is %zu\n",
12073 page_cnt);
12074 return ERR_PTR(-EINVAL);
12075 }
12076
12077 /* best-effort sanity checks */
12078 memset(&map, 0, sizeof(map));
12079 map_info_len = sizeof(map);
12080 err = bpf_map_get_info_by_fd(map_fd, &map, &map_info_len);
12081 if (err) {
12082 err = -errno;
12083 /* if BPF_OBJ_GET_INFO_BY_FD is supported, will return
12084 * -EBADFD, -EFAULT, or -E2BIG on real error
12085 */
12086 if (err != -EINVAL) {
12087 pr_warn("failed to get map info for map FD %d: %s\n",
12088 map_fd, libbpf_strerror_r(err, msg, sizeof(msg)));
12089 return ERR_PTR(err);
12090 }
12091 pr_debug("failed to get map info for FD %d; API not supported? Ignoring...\n",
12092 map_fd);
12093 } else {
12094 if (map.type != BPF_MAP_TYPE_PERF_EVENT_ARRAY) {
12095 pr_warn("map '%s' should be BPF_MAP_TYPE_PERF_EVENT_ARRAY\n",
12096 map.name);
12097 return ERR_PTR(-EINVAL);
12098 }
12099 }
12100
12101 pb = calloc(1, sizeof(*pb));
12102 if (!pb)
12103 return ERR_PTR(-ENOMEM);
12104
12105 pb->event_cb = p->event_cb;
12106 pb->sample_cb = p->sample_cb;
12107 pb->lost_cb = p->lost_cb;
12108 pb->ctx = p->ctx;
12109
12110 pb->page_size = getpagesize();
12111 pb->mmap_size = pb->page_size * page_cnt;
12112 pb->map_fd = map_fd;
12113
12114 pb->epoll_fd = epoll_create1(EPOLL_CLOEXEC);
12115 if (pb->epoll_fd < 0) {
12116 err = -errno;
12117 pr_warn("failed to create epoll instance: %s\n",
12118 libbpf_strerror_r(err, msg, sizeof(msg)));
12119 goto error;
12120 }
12121
12122 if (p->cpu_cnt > 0) {
12123 pb->cpu_cnt = p->cpu_cnt;
12124 } else {
12125 pb->cpu_cnt = libbpf_num_possible_cpus();
12126 if (pb->cpu_cnt < 0) {
12127 err = pb->cpu_cnt;
12128 goto error;
12129 }
12130 if (map.max_entries && map.max_entries < pb->cpu_cnt)
12131 pb->cpu_cnt = map.max_entries;
12132 }
12133
12134 pb->events = calloc(pb->cpu_cnt, sizeof(*pb->events));
12135 if (!pb->events) {
12136 err = -ENOMEM;
12137 pr_warn("failed to allocate events: out of memory\n");
12138 goto error;
12139 }
12140 pb->cpu_bufs = calloc(pb->cpu_cnt, sizeof(*pb->cpu_bufs));
12141 if (!pb->cpu_bufs) {
12142 err = -ENOMEM;
12143 pr_warn("failed to allocate buffers: out of memory\n");
12144 goto error;
12145 }
12146
12147 err = parse_cpu_mask_file(online_cpus_file, &online, &n);
12148 if (err) {
12149 pr_warn("failed to get online CPU mask: %d\n", err);
12150 goto error;
12151 }
12152
12153 for (i = 0, j = 0; i < pb->cpu_cnt; i++) {
12154 struct perf_cpu_buf *cpu_buf;
12155 int cpu, map_key;
12156
12157 cpu = p->cpu_cnt > 0 ? p->cpus[i] : i;
12158 map_key = p->cpu_cnt > 0 ? p->map_keys[i] : i;
12159
12160 /* in case user didn't explicitly requested particular CPUs to
12161 * be attached to, skip offline/not present CPUs
12162 */
12163 if (p->cpu_cnt <= 0 && (cpu >= n || !online[cpu]))
12164 continue;
12165
12166 cpu_buf = perf_buffer__open_cpu_buf(pb, p->attr, cpu, map_key);
12167 if (IS_ERR(cpu_buf)) {
12168 err = PTR_ERR(cpu_buf);
12169 goto error;
12170 }
12171
12172 pb->cpu_bufs[j] = cpu_buf;
12173
12174 err = bpf_map_update_elem(pb->map_fd, &map_key,
12175 &cpu_buf->fd, 0);
12176 if (err) {
12177 err = -errno;
12178 pr_warn("failed to set cpu #%d, key %d -> perf FD %d: %s\n",
12179 cpu, map_key, cpu_buf->fd,
12180 libbpf_strerror_r(err, msg, sizeof(msg)));
12181 goto error;
12182 }
12183
12184 pb->events[j].events = EPOLLIN;
12185 pb->events[j].data.ptr = cpu_buf;
12186 if (epoll_ctl(pb->epoll_fd, EPOLL_CTL_ADD, cpu_buf->fd,
12187 &pb->events[j]) < 0) {
12188 err = -errno;
12189 pr_warn("failed to epoll_ctl cpu #%d perf FD %d: %s\n",
12190 cpu, cpu_buf->fd,
12191 libbpf_strerror_r(err, msg, sizeof(msg)));
12192 goto error;
12193 }
12194 j++;
12195 }
12196 pb->cpu_cnt = j;
12197 free(online);
12198
12199 return pb;
12200
12201error:
12202 free(online);
12203 if (pb)
12204 perf_buffer__free(pb);
12205 return ERR_PTR(err);
12206}
12207
12208struct perf_sample_raw {
12209 struct perf_event_header header;
12210 uint32_t size;
12211 char data[];
12212};
12213
12214struct perf_sample_lost {
12215 struct perf_event_header header;
12216 uint64_t id;
12217 uint64_t lost;
12218 uint64_t sample_id;
12219};
12220
12221static enum bpf_perf_event_ret
12222perf_buffer__process_record(struct perf_event_header *e, void *ctx)
12223{
12224 struct perf_cpu_buf *cpu_buf = ctx;
12225 struct perf_buffer *pb = cpu_buf->pb;
12226 void *data = e;
12227
12228 /* user wants full control over parsing perf event */
12229 if (pb->event_cb)
12230 return pb->event_cb(pb->ctx, cpu_buf->cpu, e);
12231
12232 switch (e->type) {
12233 case PERF_RECORD_SAMPLE: {
12234 struct perf_sample_raw *s = data;
12235
12236 if (pb->sample_cb)
12237 pb->sample_cb(pb->ctx, cpu_buf->cpu, s->data, s->size);
12238 break;
12239 }
12240 case PERF_RECORD_LOST: {
12241 struct perf_sample_lost *s = data;
12242
12243 if (pb->lost_cb)
12244 pb->lost_cb(pb->ctx, cpu_buf->cpu, s->lost);
12245 break;
12246 }
12247 default:
12248 pr_warn("unknown perf sample type %d\n", e->type);
12249 return LIBBPF_PERF_EVENT_ERROR;
12250 }
12251 return LIBBPF_PERF_EVENT_CONT;
12252}
12253
12254static int perf_buffer__process_records(struct perf_buffer *pb,
12255 struct perf_cpu_buf *cpu_buf)
12256{
12257 enum bpf_perf_event_ret ret;
12258
12259 ret = perf_event_read_simple(cpu_buf->base, pb->mmap_size,
12260 pb->page_size, &cpu_buf->buf,
12261 &cpu_buf->buf_size,
12262 perf_buffer__process_record, cpu_buf);
12263 if (ret != LIBBPF_PERF_EVENT_CONT)
12264 return ret;
12265 return 0;
12266}
12267
12268int perf_buffer__epoll_fd(const struct perf_buffer *pb)
12269{
12270 return pb->epoll_fd;
12271}
12272
12273int perf_buffer__poll(struct perf_buffer *pb, int timeout_ms)
12274{
12275 int i, cnt, err;
12276
12277 cnt = epoll_wait(pb->epoll_fd, pb->events, pb->cpu_cnt, timeout_ms);
12278 if (cnt < 0)
12279 return -errno;
12280
12281 for (i = 0; i < cnt; i++) {
12282 struct perf_cpu_buf *cpu_buf = pb->events[i].data.ptr;
12283
12284 err = perf_buffer__process_records(pb, cpu_buf);
12285 if (err) {
12286 pr_warn("error while processing records: %d\n", err);
12287 return libbpf_err(err);
12288 }
12289 }
12290 return cnt;
12291}
12292
12293/* Return number of PERF_EVENT_ARRAY map slots set up by this perf_buffer
12294 * manager.
12295 */
12296size_t perf_buffer__buffer_cnt(const struct perf_buffer *pb)
12297{
12298 return pb->cpu_cnt;
12299}
12300
12301/*
12302 * Return perf_event FD of a ring buffer in *buf_idx* slot of
12303 * PERF_EVENT_ARRAY BPF map. This FD can be polled for new data using
12304 * select()/poll()/epoll() Linux syscalls.
12305 */
12306int perf_buffer__buffer_fd(const struct perf_buffer *pb, size_t buf_idx)
12307{
12308 struct perf_cpu_buf *cpu_buf;
12309
12310 if (buf_idx >= pb->cpu_cnt)
12311 return libbpf_err(-EINVAL);
12312
12313 cpu_buf = pb->cpu_bufs[buf_idx];
12314 if (!cpu_buf)
12315 return libbpf_err(-ENOENT);
12316
12317 return cpu_buf->fd;
12318}
12319
12320int perf_buffer__buffer(struct perf_buffer *pb, int buf_idx, void **buf, size_t *buf_size)
12321{
12322 struct perf_cpu_buf *cpu_buf;
12323
12324 if (buf_idx >= pb->cpu_cnt)
12325 return libbpf_err(-EINVAL);
12326
12327 cpu_buf = pb->cpu_bufs[buf_idx];
12328 if (!cpu_buf)
12329 return libbpf_err(-ENOENT);
12330
12331 *buf = cpu_buf->base;
12332 *buf_size = pb->mmap_size;
12333 return 0;
12334}
12335
12336/*
12337 * Consume data from perf ring buffer corresponding to slot *buf_idx* in
12338 * PERF_EVENT_ARRAY BPF map without waiting/polling. If there is no data to
12339 * consume, do nothing and return success.
12340 * Returns:
12341 * - 0 on success;
12342 * - <0 on failure.
12343 */
12344int perf_buffer__consume_buffer(struct perf_buffer *pb, size_t buf_idx)
12345{
12346 struct perf_cpu_buf *cpu_buf;
12347
12348 if (buf_idx >= pb->cpu_cnt)
12349 return libbpf_err(-EINVAL);
12350
12351 cpu_buf = pb->cpu_bufs[buf_idx];
12352 if (!cpu_buf)
12353 return libbpf_err(-ENOENT);
12354
12355 return perf_buffer__process_records(pb, cpu_buf);
12356}
12357
12358int perf_buffer__consume(struct perf_buffer *pb)
12359{
12360 int i, err;
12361
12362 for (i = 0; i < pb->cpu_cnt; i++) {
12363 struct perf_cpu_buf *cpu_buf = pb->cpu_bufs[i];
12364
12365 if (!cpu_buf)
12366 continue;
12367
12368 err = perf_buffer__process_records(pb, cpu_buf);
12369 if (err) {
12370 pr_warn("perf_buffer: failed to process records in buffer #%d: %d\n", i, err);
12371 return libbpf_err(err);
12372 }
12373 }
12374 return 0;
12375}
12376
12377int bpf_program__set_attach_target(struct bpf_program *prog,
12378 int attach_prog_fd,
12379 const char *attach_func_name)
12380{
12381 int btf_obj_fd = 0, btf_id = 0, err;
12382
12383 if (!prog || attach_prog_fd < 0)
12384 return libbpf_err(-EINVAL);
12385
12386 if (prog->obj->loaded)
12387 return libbpf_err(-EINVAL);
12388
12389 if (attach_prog_fd && !attach_func_name) {
12390 /* remember attach_prog_fd and let bpf_program__load() find
12391 * BTF ID during the program load
12392 */
12393 prog->attach_prog_fd = attach_prog_fd;
12394 return 0;
12395 }
12396
12397 if (attach_prog_fd) {
12398 btf_id = libbpf_find_prog_btf_id(attach_func_name,
12399 attach_prog_fd);
12400 if (btf_id < 0)
12401 return libbpf_err(btf_id);
12402 } else {
12403 if (!attach_func_name)
12404 return libbpf_err(-EINVAL);
12405
12406 /* load btf_vmlinux, if not yet */
12407 err = bpf_object__load_vmlinux_btf(prog->obj, true);
12408 if (err)
12409 return libbpf_err(err);
12410 err = find_kernel_btf_id(prog->obj, attach_func_name,
12411 prog->expected_attach_type,
12412 &btf_obj_fd, &btf_id);
12413 if (err)
12414 return libbpf_err(err);
12415 }
12416
12417 prog->attach_btf_id = btf_id;
12418 prog->attach_btf_obj_fd = btf_obj_fd;
12419 prog->attach_prog_fd = attach_prog_fd;
12420 return 0;
12421}
12422
12423int parse_cpu_mask_str(const char *s, bool **mask, int *mask_sz)
12424{
12425 int err = 0, n, len, start, end = -1;
12426 bool *tmp;
12427
12428 *mask = NULL;
12429 *mask_sz = 0;
12430
12431 /* Each sub string separated by ',' has format \d+-\d+ or \d+ */
12432 while (*s) {
12433 if (*s == ',' || *s == '\n') {
12434 s++;
12435 continue;
12436 }
12437 n = sscanf(s, "%d%n-%d%n", &start, &len, &end, &len);
12438 if (n <= 0 || n > 2) {
12439 pr_warn("Failed to get CPU range %s: %d\n", s, n);
12440 err = -EINVAL;
12441 goto cleanup;
12442 } else if (n == 1) {
12443 end = start;
12444 }
12445 if (start < 0 || start > end) {
12446 pr_warn("Invalid CPU range [%d,%d] in %s\n",
12447 start, end, s);
12448 err = -EINVAL;
12449 goto cleanup;
12450 }
12451 tmp = realloc(*mask, end + 1);
12452 if (!tmp) {
12453 err = -ENOMEM;
12454 goto cleanup;
12455 }
12456 *mask = tmp;
12457 memset(tmp + *mask_sz, 0, start - *mask_sz);
12458 memset(tmp + start, 1, end - start + 1);
12459 *mask_sz = end + 1;
12460 s += len;
12461 }
12462 if (!*mask_sz) {
12463 pr_warn("Empty CPU range\n");
12464 return -EINVAL;
12465 }
12466 return 0;
12467cleanup:
12468 free(*mask);
12469 *mask = NULL;
12470 return err;
12471}
12472
12473int parse_cpu_mask_file(const char *fcpu, bool **mask, int *mask_sz)
12474{
12475 int fd, err = 0, len;
12476 char buf[128];
12477
12478 fd = open(fcpu, O_RDONLY | O_CLOEXEC);
12479 if (fd < 0) {
12480 err = -errno;
12481 pr_warn("Failed to open cpu mask file %s: %d\n", fcpu, err);
12482 return err;
12483 }
12484 len = read(fd, buf, sizeof(buf));
12485 close(fd);
12486 if (len <= 0) {
12487 err = len ? -errno : -EINVAL;
12488 pr_warn("Failed to read cpu mask from %s: %d\n", fcpu, err);
12489 return err;
12490 }
12491 if (len >= sizeof(buf)) {
12492 pr_warn("CPU mask is too big in file %s\n", fcpu);
12493 return -E2BIG;
12494 }
12495 buf[len] = '\0';
12496
12497 return parse_cpu_mask_str(buf, mask, mask_sz);
12498}
12499
12500int libbpf_num_possible_cpus(void)
12501{
12502 static const char *fcpu = "/sys/devices/system/cpu/possible";
12503 static int cpus;
12504 int err, n, i, tmp_cpus;
12505 bool *mask;
12506
12507 tmp_cpus = READ_ONCE(cpus);
12508 if (tmp_cpus > 0)
12509 return tmp_cpus;
12510
12511 err = parse_cpu_mask_file(fcpu, &mask, &n);
12512 if (err)
12513 return libbpf_err(err);
12514
12515 tmp_cpus = 0;
12516 for (i = 0; i < n; i++) {
12517 if (mask[i])
12518 tmp_cpus++;
12519 }
12520 free(mask);
12521
12522 WRITE_ONCE(cpus, tmp_cpus);
12523 return tmp_cpus;
12524}
12525
12526static int populate_skeleton_maps(const struct bpf_object *obj,
12527 struct bpf_map_skeleton *maps,
12528 size_t map_cnt)
12529{
12530 int i;
12531
12532 for (i = 0; i < map_cnt; i++) {
12533 struct bpf_map **map = maps[i].map;
12534 const char *name = maps[i].name;
12535 void **mmaped = maps[i].mmaped;
12536
12537 *map = bpf_object__find_map_by_name(obj, name);
12538 if (!*map) {
12539 pr_warn("failed to find skeleton map '%s'\n", name);
12540 return -ESRCH;
12541 }
12542
12543 /* externs shouldn't be pre-setup from user code */
12544 if (mmaped && (*map)->libbpf_type != LIBBPF_MAP_KCONFIG)
12545 *mmaped = (*map)->mmaped;
12546 }
12547 return 0;
12548}
12549
12550static int populate_skeleton_progs(const struct bpf_object *obj,
12551 struct bpf_prog_skeleton *progs,
12552 size_t prog_cnt)
12553{
12554 int i;
12555
12556 for (i = 0; i < prog_cnt; i++) {
12557 struct bpf_program **prog = progs[i].prog;
12558 const char *name = progs[i].name;
12559
12560 *prog = bpf_object__find_program_by_name(obj, name);
12561 if (!*prog) {
12562 pr_warn("failed to find skeleton program '%s'\n", name);
12563 return -ESRCH;
12564 }
12565 }
12566 return 0;
12567}
12568
12569int bpf_object__open_skeleton(struct bpf_object_skeleton *s,
12570 const struct bpf_object_open_opts *opts)
12571{
12572 DECLARE_LIBBPF_OPTS(bpf_object_open_opts, skel_opts,
12573 .object_name = s->name,
12574 );
12575 struct bpf_object *obj;
12576 int err;
12577
12578 /* Attempt to preserve opts->object_name, unless overriden by user
12579 * explicitly. Overwriting object name for skeletons is discouraged,
12580 * as it breaks global data maps, because they contain object name
12581 * prefix as their own map name prefix. When skeleton is generated,
12582 * bpftool is making an assumption that this name will stay the same.
12583 */
12584 if (opts) {
12585 memcpy(&skel_opts, opts, sizeof(*opts));
12586 if (!opts->object_name)
12587 skel_opts.object_name = s->name;
12588 }
12589
12590 obj = bpf_object__open_mem(s->data, s->data_sz, &skel_opts);
12591 err = libbpf_get_error(obj);
12592 if (err) {
12593 pr_warn("failed to initialize skeleton BPF object '%s': %d\n",
12594 s->name, err);
12595 return libbpf_err(err);
12596 }
12597
12598 *s->obj = obj;
12599 err = populate_skeleton_maps(obj, s->maps, s->map_cnt);
12600 if (err) {
12601 pr_warn("failed to populate skeleton maps for '%s': %d\n", s->name, err);
12602 return libbpf_err(err);
12603 }
12604
12605 err = populate_skeleton_progs(obj, s->progs, s->prog_cnt);
12606 if (err) {
12607 pr_warn("failed to populate skeleton progs for '%s': %d\n", s->name, err);
12608 return libbpf_err(err);
12609 }
12610
12611 return 0;
12612}
12613
12614int bpf_object__open_subskeleton(struct bpf_object_subskeleton *s)
12615{
12616 int err, len, var_idx, i;
12617 const char *var_name;
12618 const struct bpf_map *map;
12619 struct btf *btf;
12620 __u32 map_type_id;
12621 const struct btf_type *map_type, *var_type;
12622 const struct bpf_var_skeleton *var_skel;
12623 struct btf_var_secinfo *var;
12624
12625 if (!s->obj)
12626 return libbpf_err(-EINVAL);
12627
12628 btf = bpf_object__btf(s->obj);
12629 if (!btf) {
12630 pr_warn("subskeletons require BTF at runtime (object %s)\n",
12631 bpf_object__name(s->obj));
12632 return libbpf_err(-errno);
12633 }
12634
12635 err = populate_skeleton_maps(s->obj, s->maps, s->map_cnt);
12636 if (err) {
12637 pr_warn("failed to populate subskeleton maps: %d\n", err);
12638 return libbpf_err(err);
12639 }
12640
12641 err = populate_skeleton_progs(s->obj, s->progs, s->prog_cnt);
12642 if (err) {
12643 pr_warn("failed to populate subskeleton maps: %d\n", err);
12644 return libbpf_err(err);
12645 }
12646
12647 for (var_idx = 0; var_idx < s->var_cnt; var_idx++) {
12648 var_skel = &s->vars[var_idx];
12649 map = *var_skel->map;
12650 map_type_id = bpf_map__btf_value_type_id(map);
12651 map_type = btf__type_by_id(btf, map_type_id);
12652
12653 if (!btf_is_datasec(map_type)) {
12654 pr_warn("type for map '%1$s' is not a datasec: %2$s",
12655 bpf_map__name(map),
12656 __btf_kind_str(btf_kind(map_type)));
12657 return libbpf_err(-EINVAL);
12658 }
12659
12660 len = btf_vlen(map_type);
12661 var = btf_var_secinfos(map_type);
12662 for (i = 0; i < len; i++, var++) {
12663 var_type = btf__type_by_id(btf, var->type);
12664 var_name = btf__name_by_offset(btf, var_type->name_off);
12665 if (strcmp(var_name, var_skel->name) == 0) {
12666 *var_skel->addr = map->mmaped + var->offset;
12667 break;
12668 }
12669 }
12670 }
12671 return 0;
12672}
12673
12674void bpf_object__destroy_subskeleton(struct bpf_object_subskeleton *s)
12675{
12676 if (!s)
12677 return;
12678 free(s->maps);
12679 free(s->progs);
12680 free(s->vars);
12681 free(s);
12682}
12683
12684int bpf_object__load_skeleton(struct bpf_object_skeleton *s)
12685{
12686 int i, err;
12687
12688 err = bpf_object__load(*s->obj);
12689 if (err) {
12690 pr_warn("failed to load BPF skeleton '%s': %d\n", s->name, err);
12691 return libbpf_err(err);
12692 }
12693
12694 for (i = 0; i < s->map_cnt; i++) {
12695 struct bpf_map *map = *s->maps[i].map;
12696 size_t mmap_sz = bpf_map_mmap_sz(map);
12697 int prot, map_fd = bpf_map__fd(map);
12698 void **mmaped = s->maps[i].mmaped;
12699
12700 if (!mmaped)
12701 continue;
12702
12703 if (!(map->def.map_flags & BPF_F_MMAPABLE)) {
12704 *mmaped = NULL;
12705 continue;
12706 }
12707
12708 if (map->def.map_flags & BPF_F_RDONLY_PROG)
12709 prot = PROT_READ;
12710 else
12711 prot = PROT_READ | PROT_WRITE;
12712
12713 /* Remap anonymous mmap()-ed "map initialization image" as
12714 * a BPF map-backed mmap()-ed memory, but preserving the same
12715 * memory address. This will cause kernel to change process'
12716 * page table to point to a different piece of kernel memory,
12717 * but from userspace point of view memory address (and its
12718 * contents, being identical at this point) will stay the
12719 * same. This mapping will be released by bpf_object__close()
12720 * as per normal clean up procedure, so we don't need to worry
12721 * about it from skeleton's clean up perspective.
12722 */
12723 *mmaped = mmap(map->mmaped, mmap_sz, prot,
12724 MAP_SHARED | MAP_FIXED, map_fd, 0);
12725 if (*mmaped == MAP_FAILED) {
12726 err = -errno;
12727 *mmaped = NULL;
12728 pr_warn("failed to re-mmap() map '%s': %d\n",
12729 bpf_map__name(map), err);
12730 return libbpf_err(err);
12731 }
12732 }
12733
12734 return 0;
12735}
12736
12737int bpf_object__attach_skeleton(struct bpf_object_skeleton *s)
12738{
12739 int i, err;
12740
12741 for (i = 0; i < s->prog_cnt; i++) {
12742 struct bpf_program *prog = *s->progs[i].prog;
12743 struct bpf_link **link = s->progs[i].link;
12744
12745 if (!prog->autoload || !prog->autoattach)
12746 continue;
12747
12748 /* auto-attaching not supported for this program */
12749 if (!prog->sec_def || !prog->sec_def->prog_attach_fn)
12750 continue;
12751
12752 /* if user already set the link manually, don't attempt auto-attach */
12753 if (*link)
12754 continue;
12755
12756 err = prog->sec_def->prog_attach_fn(prog, prog->sec_def->cookie, link);
12757 if (err) {
12758 pr_warn("prog '%s': failed to auto-attach: %d\n",
12759 bpf_program__name(prog), err);
12760 return libbpf_err(err);
12761 }
12762
12763 /* It's possible that for some SEC() definitions auto-attach
12764 * is supported in some cases (e.g., if definition completely
12765 * specifies target information), but is not in other cases.
12766 * SEC("uprobe") is one such case. If user specified target
12767 * binary and function name, such BPF program can be
12768 * auto-attached. But if not, it shouldn't trigger skeleton's
12769 * attach to fail. It should just be skipped.
12770 * attach_fn signals such case with returning 0 (no error) and
12771 * setting link to NULL.
12772 */
12773 }
12774
12775 return 0;
12776}
12777
12778void bpf_object__detach_skeleton(struct bpf_object_skeleton *s)
12779{
12780 int i;
12781
12782 for (i = 0; i < s->prog_cnt; i++) {
12783 struct bpf_link **link = s->progs[i].link;
12784
12785 bpf_link__destroy(*link);
12786 *link = NULL;
12787 }
12788}
12789
12790void bpf_object__destroy_skeleton(struct bpf_object_skeleton *s)
12791{
12792 if (!s)
12793 return;
12794
12795 if (s->progs)
12796 bpf_object__detach_skeleton(s);
12797 if (s->obj)
12798 bpf_object__close(*s->obj);
12799 free(s->maps);
12800 free(s->progs);
12801 free(s);
12802}