Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/* SPDX-License-Identifier: GPL-2.0 */
2#ifndef _ALPHA_PGTABLE_H
3#define _ALPHA_PGTABLE_H
4
5#include <asm-generic/pgtable-nopud.h>
6
7/*
8 * This file contains the functions and defines necessary to modify and use
9 * the Alpha page table tree.
10 *
11 * This hopefully works with any standard Alpha page-size, as defined
12 * in <asm/page.h> (currently 8192).
13 */
14#include <linux/mmzone.h>
15
16#include <asm/page.h>
17#include <asm/processor.h> /* For TASK_SIZE */
18#include <asm/machvec.h>
19#include <asm/setup.h>
20
21struct mm_struct;
22struct vm_area_struct;
23
24/* Certain architectures need to do special things when PTEs
25 * within a page table are directly modified. Thus, the following
26 * hook is made available.
27 */
28#define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval))
29#define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
30
31/* PMD_SHIFT determines the size of the area a second-level page table can map */
32#define PMD_SHIFT (PAGE_SHIFT + (PAGE_SHIFT-3))
33#define PMD_SIZE (1UL << PMD_SHIFT)
34#define PMD_MASK (~(PMD_SIZE-1))
35
36/* PGDIR_SHIFT determines what a third-level page table entry can map */
37#define PGDIR_SHIFT (PAGE_SHIFT + 2*(PAGE_SHIFT-3))
38#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
39#define PGDIR_MASK (~(PGDIR_SIZE-1))
40
41/*
42 * Entries per page directory level: the Alpha is three-level, with
43 * all levels having a one-page page table.
44 */
45#define PTRS_PER_PTE (1UL << (PAGE_SHIFT-3))
46#define PTRS_PER_PMD (1UL << (PAGE_SHIFT-3))
47#define PTRS_PER_PGD (1UL << (PAGE_SHIFT-3))
48#define USER_PTRS_PER_PGD (TASK_SIZE / PGDIR_SIZE)
49
50/* Number of pointers that fit on a page: this will go away. */
51#define PTRS_PER_PAGE (1UL << (PAGE_SHIFT-3))
52
53#ifdef CONFIG_ALPHA_LARGE_VMALLOC
54#define VMALLOC_START 0xfffffe0000000000
55#else
56#define VMALLOC_START (-2*PGDIR_SIZE)
57#endif
58#define VMALLOC_END (-PGDIR_SIZE)
59
60/*
61 * OSF/1 PAL-code-imposed page table bits
62 */
63#define _PAGE_VALID 0x0001
64#define _PAGE_FOR 0x0002 /* used for page protection (fault on read) */
65#define _PAGE_FOW 0x0004 /* used for page protection (fault on write) */
66#define _PAGE_FOE 0x0008 /* used for page protection (fault on exec) */
67#define _PAGE_ASM 0x0010
68#define _PAGE_KRE 0x0100 /* xxx - see below on the "accessed" bit */
69#define _PAGE_URE 0x0200 /* xxx */
70#define _PAGE_KWE 0x1000 /* used to do the dirty bit in software */
71#define _PAGE_UWE 0x2000 /* used to do the dirty bit in software */
72
73/* .. and these are ours ... */
74#define _PAGE_DIRTY 0x20000
75#define _PAGE_ACCESSED 0x40000
76
77/* We borrow bit 39 to store the exclusive marker in swap PTEs. */
78#define _PAGE_SWP_EXCLUSIVE 0x8000000000UL
79
80/*
81 * NOTE! The "accessed" bit isn't necessarily exact: it can be kept exactly
82 * by software (use the KRE/URE/KWE/UWE bits appropriately), but I'll fake it.
83 * Under Linux/AXP, the "accessed" bit just means "read", and I'll just use
84 * the KRE/URE bits to watch for it. That way we don't need to overload the
85 * KWE/UWE bits with both handling dirty and accessed.
86 *
87 * Note that the kernel uses the accessed bit just to check whether to page
88 * out a page or not, so it doesn't have to be exact anyway.
89 */
90
91#define __DIRTY_BITS (_PAGE_DIRTY | _PAGE_KWE | _PAGE_UWE)
92#define __ACCESS_BITS (_PAGE_ACCESSED | _PAGE_KRE | _PAGE_URE)
93
94#define _PFN_MASK 0xFFFFFFFF00000000UL
95
96#define _PAGE_TABLE (_PAGE_VALID | __DIRTY_BITS | __ACCESS_BITS)
97#define _PAGE_CHG_MASK (_PFN_MASK | __DIRTY_BITS | __ACCESS_BITS)
98
99/*
100 * All the normal masks have the "page accessed" bits on, as any time they are used,
101 * the page is accessed. They are cleared only by the page-out routines
102 */
103#define PAGE_NONE __pgprot(_PAGE_VALID | __ACCESS_BITS | _PAGE_FOR | _PAGE_FOW | _PAGE_FOE)
104#define PAGE_SHARED __pgprot(_PAGE_VALID | __ACCESS_BITS)
105#define PAGE_COPY __pgprot(_PAGE_VALID | __ACCESS_BITS | _PAGE_FOW)
106#define PAGE_READONLY __pgprot(_PAGE_VALID | __ACCESS_BITS | _PAGE_FOW)
107#define PAGE_KERNEL __pgprot(_PAGE_VALID | _PAGE_ASM | _PAGE_KRE | _PAGE_KWE)
108
109#define _PAGE_NORMAL(x) __pgprot(_PAGE_VALID | __ACCESS_BITS | (x))
110
111#define _PAGE_P(x) _PAGE_NORMAL((x) | (((x) & _PAGE_FOW)?0:_PAGE_FOW))
112#define _PAGE_S(x) _PAGE_NORMAL(x)
113
114/*
115 * The hardware can handle write-only mappings, but as the Alpha
116 * architecture does byte-wide writes with a read-modify-write
117 * sequence, it's not practical to have write-without-read privs.
118 * Thus the "-w- -> rw-" and "-wx -> rwx" mapping here (and in
119 * arch/alpha/mm/fault.c)
120 */
121 /* xwr */
122
123/*
124 * pgprot_noncached() is only for infiniband pci support, and a real
125 * implementation for RAM would be more complicated.
126 */
127#define pgprot_noncached(prot) (prot)
128
129/*
130 * BAD_PAGETABLE is used when we need a bogus page-table, while
131 * BAD_PAGE is used for a bogus page.
132 *
133 * ZERO_PAGE is a global shared page that is always zero: used
134 * for zero-mapped memory areas etc..
135 */
136extern pte_t __bad_page(void);
137extern pmd_t * __bad_pagetable(void);
138
139extern unsigned long __zero_page(void);
140
141#define BAD_PAGETABLE __bad_pagetable()
142#define BAD_PAGE __bad_page()
143#define ZERO_PAGE(vaddr) (virt_to_page(ZERO_PGE))
144
145/* number of bits that fit into a memory pointer */
146#define BITS_PER_PTR (8*sizeof(unsigned long))
147
148/* to align the pointer to a pointer address */
149#define PTR_MASK (~(sizeof(void*)-1))
150
151/* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */
152#define SIZEOF_PTR_LOG2 3
153
154/* to find an entry in a page-table */
155#define PAGE_PTR(address) \
156 ((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK)
157
158/*
159 * On certain platforms whose physical address space can overlap KSEG,
160 * namely EV6 and above, we must re-twiddle the physaddr to restore the
161 * correct high-order bits.
162 *
163 * This is extremely confusing until you realize that this is actually
164 * just working around a userspace bug. The X server was intending to
165 * provide the physical address but instead provided the KSEG address.
166 * Or tried to, except it's not representable.
167 *
168 * On Tsunami there's nothing meaningful at 0x40000000000, so this is
169 * a safe thing to do. Come the first core logic that does put something
170 * in this area -- memory or whathaveyou -- then this hack will have
171 * to go away. So be prepared!
172 */
173
174#if defined(CONFIG_ALPHA_GENERIC) && defined(USE_48_BIT_KSEG)
175#error "EV6-only feature in a generic kernel"
176#endif
177#if defined(CONFIG_ALPHA_GENERIC) || \
178 (defined(CONFIG_ALPHA_EV6) && !defined(USE_48_BIT_KSEG))
179#define KSEG_PFN (0xc0000000000UL >> PAGE_SHIFT)
180#define PHYS_TWIDDLE(pfn) \
181 ((((pfn) & KSEG_PFN) == (0x40000000000UL >> PAGE_SHIFT)) \
182 ? ((pfn) ^= KSEG_PFN) : (pfn))
183#else
184#define PHYS_TWIDDLE(pfn) (pfn)
185#endif
186
187/*
188 * Conversion functions: convert a page and protection to a page entry,
189 * and a page entry and page directory to the page they refer to.
190 */
191#define page_to_pa(page) (page_to_pfn(page) << PAGE_SHIFT)
192#define pte_pfn(pte) (pte_val(pte) >> 32)
193
194#define pte_page(pte) pfn_to_page(pte_pfn(pte))
195#define mk_pte(page, pgprot) \
196({ \
197 pte_t pte; \
198 \
199 pte_val(pte) = (page_to_pfn(page) << 32) | pgprot_val(pgprot); \
200 pte; \
201})
202
203extern inline pte_t pfn_pte(unsigned long physpfn, pgprot_t pgprot)
204{ pte_t pte; pte_val(pte) = (PHYS_TWIDDLE(physpfn) << 32) | pgprot_val(pgprot); return pte; }
205
206extern inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
207{ pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; }
208
209extern inline void pmd_set(pmd_t * pmdp, pte_t * ptep)
210{ pmd_val(*pmdp) = _PAGE_TABLE | ((((unsigned long) ptep) - PAGE_OFFSET) << (32-PAGE_SHIFT)); }
211
212extern inline void pud_set(pud_t * pudp, pmd_t * pmdp)
213{ pud_val(*pudp) = _PAGE_TABLE | ((((unsigned long) pmdp) - PAGE_OFFSET) << (32-PAGE_SHIFT)); }
214
215
216extern inline unsigned long
217pmd_page_vaddr(pmd_t pmd)
218{
219 return ((pmd_val(pmd) & _PFN_MASK) >> (32-PAGE_SHIFT)) + PAGE_OFFSET;
220}
221
222#define pmd_pfn(pmd) (pmd_val(pmd) >> 32)
223#define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> 32))
224#define pud_page(pud) (pfn_to_page(pud_val(pud) >> 32))
225
226extern inline pmd_t *pud_pgtable(pud_t pgd)
227{
228 return (pmd_t *)(PAGE_OFFSET + ((pud_val(pgd) & _PFN_MASK) >> (32-PAGE_SHIFT)));
229}
230
231extern inline int pte_none(pte_t pte) { return !pte_val(pte); }
232extern inline int pte_present(pte_t pte) { return pte_val(pte) & _PAGE_VALID; }
233extern inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
234{
235 pte_val(*ptep) = 0;
236}
237
238extern inline int pmd_none(pmd_t pmd) { return !pmd_val(pmd); }
239extern inline int pmd_bad(pmd_t pmd) { return (pmd_val(pmd) & ~_PFN_MASK) != _PAGE_TABLE; }
240extern inline int pmd_present(pmd_t pmd) { return pmd_val(pmd) & _PAGE_VALID; }
241extern inline void pmd_clear(pmd_t * pmdp) { pmd_val(*pmdp) = 0; }
242
243extern inline int pud_none(pud_t pud) { return !pud_val(pud); }
244extern inline int pud_bad(pud_t pud) { return (pud_val(pud) & ~_PFN_MASK) != _PAGE_TABLE; }
245extern inline int pud_present(pud_t pud) { return pud_val(pud) & _PAGE_VALID; }
246extern inline void pud_clear(pud_t * pudp) { pud_val(*pudp) = 0; }
247
248/*
249 * The following only work if pte_present() is true.
250 * Undefined behaviour if not..
251 */
252extern inline int pte_write(pte_t pte) { return !(pte_val(pte) & _PAGE_FOW); }
253extern inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
254extern inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
255
256extern inline pte_t pte_wrprotect(pte_t pte) { pte_val(pte) |= _PAGE_FOW; return pte; }
257extern inline pte_t pte_mkclean(pte_t pte) { pte_val(pte) &= ~(__DIRTY_BITS); return pte; }
258extern inline pte_t pte_mkold(pte_t pte) { pte_val(pte) &= ~(__ACCESS_BITS); return pte; }
259extern inline pte_t pte_mkwrite(pte_t pte) { pte_val(pte) &= ~_PAGE_FOW; return pte; }
260extern inline pte_t pte_mkdirty(pte_t pte) { pte_val(pte) |= __DIRTY_BITS; return pte; }
261extern inline pte_t pte_mkyoung(pte_t pte) { pte_val(pte) |= __ACCESS_BITS; return pte; }
262
263/*
264 * The smp_rmb() in the following functions are required to order the load of
265 * *dir (the pointer in the top level page table) with any subsequent load of
266 * the returned pmd_t *ret (ret is data dependent on *dir).
267 *
268 * If this ordering is not enforced, the CPU might load an older value of
269 * *ret, which may be uninitialized data. See mm/memory.c:__pte_alloc for
270 * more details.
271 *
272 * Note that we never change the mm->pgd pointer after the task is running, so
273 * pgd_offset does not require such a barrier.
274 */
275
276/* Find an entry in the second-level page table.. */
277extern inline pmd_t * pmd_offset(pud_t * dir, unsigned long address)
278{
279 pmd_t *ret = pud_pgtable(*dir) + ((address >> PMD_SHIFT) & (PTRS_PER_PAGE - 1));
280 smp_rmb(); /* see above */
281 return ret;
282}
283#define pmd_offset pmd_offset
284
285/* Find an entry in the third-level page table.. */
286extern inline pte_t * pte_offset_kernel(pmd_t * dir, unsigned long address)
287{
288 pte_t *ret = (pte_t *) pmd_page_vaddr(*dir)
289 + ((address >> PAGE_SHIFT) & (PTRS_PER_PAGE - 1));
290 smp_rmb(); /* see above */
291 return ret;
292}
293#define pte_offset_kernel pte_offset_kernel
294
295extern pgd_t swapper_pg_dir[1024];
296
297/*
298 * The Alpha doesn't have any external MMU info: the kernel page
299 * tables contain all the necessary information.
300 */
301extern inline void update_mmu_cache(struct vm_area_struct * vma,
302 unsigned long address, pte_t *ptep)
303{
304}
305
306/*
307 * Encode/decode swap entries and swap PTEs. Swap PTEs are all PTEs that
308 * are !pte_none() && !pte_present().
309 *
310 * Format of swap PTEs:
311 *
312 * 6 6 6 6 5 5 5 5 5 5 5 5 5 5 4 4 4 4 4 4 4 4 4 4 3 3 3 3 3 3 3 3
313 * 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2
314 * <------------------- offset ------------------> E <--- type -->
315 *
316 * 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
317 * 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
318 * <--------------------------- zeroes -------------------------->
319 *
320 * E is the exclusive marker that is not stored in swap entries.
321 */
322extern inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
323{ pte_t pte; pte_val(pte) = ((type & 0x7f) << 32) | (offset << 40); return pte; }
324
325#define __swp_type(x) (((x).val >> 32) & 0x7f)
326#define __swp_offset(x) ((x).val >> 40)
327#define __swp_entry(type, off) ((swp_entry_t) { pte_val(mk_swap_pte((type), (off))) })
328#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
329#define __swp_entry_to_pte(x) ((pte_t) { (x).val })
330
331static inline int pte_swp_exclusive(pte_t pte)
332{
333 return pte_val(pte) & _PAGE_SWP_EXCLUSIVE;
334}
335
336static inline pte_t pte_swp_mkexclusive(pte_t pte)
337{
338 pte_val(pte) |= _PAGE_SWP_EXCLUSIVE;
339 return pte;
340}
341
342static inline pte_t pte_swp_clear_exclusive(pte_t pte)
343{
344 pte_val(pte) &= ~_PAGE_SWP_EXCLUSIVE;
345 return pte;
346}
347
348#define pte_ERROR(e) \
349 printk("%s:%d: bad pte %016lx.\n", __FILE__, __LINE__, pte_val(e))
350#define pmd_ERROR(e) \
351 printk("%s:%d: bad pmd %016lx.\n", __FILE__, __LINE__, pmd_val(e))
352#define pgd_ERROR(e) \
353 printk("%s:%d: bad pgd %016lx.\n", __FILE__, __LINE__, pgd_val(e))
354
355extern void paging_init(void);
356
357/* We have our own get_unmapped_area to cope with ADDR_LIMIT_32BIT. */
358#define HAVE_ARCH_UNMAPPED_AREA
359
360#endif /* _ALPHA_PGTABLE_H */