Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Wireless utility functions
4 *
5 * Copyright 2007-2009 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018-2022 Intel Corporation
9 */
10#include <linux/export.h>
11#include <linux/bitops.h>
12#include <linux/etherdevice.h>
13#include <linux/slab.h>
14#include <linux/ieee80211.h>
15#include <net/cfg80211.h>
16#include <net/ip.h>
17#include <net/dsfield.h>
18#include <linux/if_vlan.h>
19#include <linux/mpls.h>
20#include <linux/gcd.h>
21#include <linux/bitfield.h>
22#include <linux/nospec.h>
23#include "core.h"
24#include "rdev-ops.h"
25
26
27const struct ieee80211_rate *
28ieee80211_get_response_rate(struct ieee80211_supported_band *sband,
29 u32 basic_rates, int bitrate)
30{
31 struct ieee80211_rate *result = &sband->bitrates[0];
32 int i;
33
34 for (i = 0; i < sband->n_bitrates; i++) {
35 if (!(basic_rates & BIT(i)))
36 continue;
37 if (sband->bitrates[i].bitrate > bitrate)
38 continue;
39 result = &sband->bitrates[i];
40 }
41
42 return result;
43}
44EXPORT_SYMBOL(ieee80211_get_response_rate);
45
46u32 ieee80211_mandatory_rates(struct ieee80211_supported_band *sband,
47 enum nl80211_bss_scan_width scan_width)
48{
49 struct ieee80211_rate *bitrates;
50 u32 mandatory_rates = 0;
51 enum ieee80211_rate_flags mandatory_flag;
52 int i;
53
54 if (WARN_ON(!sband))
55 return 1;
56
57 if (sband->band == NL80211_BAND_2GHZ) {
58 if (scan_width == NL80211_BSS_CHAN_WIDTH_5 ||
59 scan_width == NL80211_BSS_CHAN_WIDTH_10)
60 mandatory_flag = IEEE80211_RATE_MANDATORY_G;
61 else
62 mandatory_flag = IEEE80211_RATE_MANDATORY_B;
63 } else {
64 mandatory_flag = IEEE80211_RATE_MANDATORY_A;
65 }
66
67 bitrates = sband->bitrates;
68 for (i = 0; i < sband->n_bitrates; i++)
69 if (bitrates[i].flags & mandatory_flag)
70 mandatory_rates |= BIT(i);
71 return mandatory_rates;
72}
73EXPORT_SYMBOL(ieee80211_mandatory_rates);
74
75u32 ieee80211_channel_to_freq_khz(int chan, enum nl80211_band band)
76{
77 /* see 802.11 17.3.8.3.2 and Annex J
78 * there are overlapping channel numbers in 5GHz and 2GHz bands */
79 if (chan <= 0)
80 return 0; /* not supported */
81 switch (band) {
82 case NL80211_BAND_2GHZ:
83 case NL80211_BAND_LC:
84 if (chan == 14)
85 return MHZ_TO_KHZ(2484);
86 else if (chan < 14)
87 return MHZ_TO_KHZ(2407 + chan * 5);
88 break;
89 case NL80211_BAND_5GHZ:
90 if (chan >= 182 && chan <= 196)
91 return MHZ_TO_KHZ(4000 + chan * 5);
92 else
93 return MHZ_TO_KHZ(5000 + chan * 5);
94 break;
95 case NL80211_BAND_6GHZ:
96 /* see 802.11ax D6.1 27.3.23.2 */
97 if (chan == 2)
98 return MHZ_TO_KHZ(5935);
99 if (chan <= 233)
100 return MHZ_TO_KHZ(5950 + chan * 5);
101 break;
102 case NL80211_BAND_60GHZ:
103 if (chan < 7)
104 return MHZ_TO_KHZ(56160 + chan * 2160);
105 break;
106 case NL80211_BAND_S1GHZ:
107 return 902000 + chan * 500;
108 default:
109 ;
110 }
111 return 0; /* not supported */
112}
113EXPORT_SYMBOL(ieee80211_channel_to_freq_khz);
114
115enum nl80211_chan_width
116ieee80211_s1g_channel_width(const struct ieee80211_channel *chan)
117{
118 if (WARN_ON(!chan || chan->band != NL80211_BAND_S1GHZ))
119 return NL80211_CHAN_WIDTH_20_NOHT;
120
121 /*S1G defines a single allowed channel width per channel.
122 * Extract that width here.
123 */
124 if (chan->flags & IEEE80211_CHAN_1MHZ)
125 return NL80211_CHAN_WIDTH_1;
126 else if (chan->flags & IEEE80211_CHAN_2MHZ)
127 return NL80211_CHAN_WIDTH_2;
128 else if (chan->flags & IEEE80211_CHAN_4MHZ)
129 return NL80211_CHAN_WIDTH_4;
130 else if (chan->flags & IEEE80211_CHAN_8MHZ)
131 return NL80211_CHAN_WIDTH_8;
132 else if (chan->flags & IEEE80211_CHAN_16MHZ)
133 return NL80211_CHAN_WIDTH_16;
134
135 pr_err("unknown channel width for channel at %dKHz?\n",
136 ieee80211_channel_to_khz(chan));
137
138 return NL80211_CHAN_WIDTH_1;
139}
140EXPORT_SYMBOL(ieee80211_s1g_channel_width);
141
142int ieee80211_freq_khz_to_channel(u32 freq)
143{
144 /* TODO: just handle MHz for now */
145 freq = KHZ_TO_MHZ(freq);
146
147 /* see 802.11 17.3.8.3.2 and Annex J */
148 if (freq == 2484)
149 return 14;
150 else if (freq < 2484)
151 return (freq - 2407) / 5;
152 else if (freq >= 4910 && freq <= 4980)
153 return (freq - 4000) / 5;
154 else if (freq < 5925)
155 return (freq - 5000) / 5;
156 else if (freq == 5935)
157 return 2;
158 else if (freq <= 45000) /* DMG band lower limit */
159 /* see 802.11ax D6.1 27.3.22.2 */
160 return (freq - 5950) / 5;
161 else if (freq >= 58320 && freq <= 70200)
162 return (freq - 56160) / 2160;
163 else
164 return 0;
165}
166EXPORT_SYMBOL(ieee80211_freq_khz_to_channel);
167
168struct ieee80211_channel *ieee80211_get_channel_khz(struct wiphy *wiphy,
169 u32 freq)
170{
171 enum nl80211_band band;
172 struct ieee80211_supported_band *sband;
173 int i;
174
175 for (band = 0; band < NUM_NL80211_BANDS; band++) {
176 sband = wiphy->bands[band];
177
178 if (!sband)
179 continue;
180
181 for (i = 0; i < sband->n_channels; i++) {
182 struct ieee80211_channel *chan = &sband->channels[i];
183
184 if (ieee80211_channel_to_khz(chan) == freq)
185 return chan;
186 }
187 }
188
189 return NULL;
190}
191EXPORT_SYMBOL(ieee80211_get_channel_khz);
192
193static void set_mandatory_flags_band(struct ieee80211_supported_band *sband)
194{
195 int i, want;
196
197 switch (sband->band) {
198 case NL80211_BAND_5GHZ:
199 case NL80211_BAND_6GHZ:
200 want = 3;
201 for (i = 0; i < sband->n_bitrates; i++) {
202 if (sband->bitrates[i].bitrate == 60 ||
203 sband->bitrates[i].bitrate == 120 ||
204 sband->bitrates[i].bitrate == 240) {
205 sband->bitrates[i].flags |=
206 IEEE80211_RATE_MANDATORY_A;
207 want--;
208 }
209 }
210 WARN_ON(want);
211 break;
212 case NL80211_BAND_2GHZ:
213 case NL80211_BAND_LC:
214 want = 7;
215 for (i = 0; i < sband->n_bitrates; i++) {
216 switch (sband->bitrates[i].bitrate) {
217 case 10:
218 case 20:
219 case 55:
220 case 110:
221 sband->bitrates[i].flags |=
222 IEEE80211_RATE_MANDATORY_B |
223 IEEE80211_RATE_MANDATORY_G;
224 want--;
225 break;
226 case 60:
227 case 120:
228 case 240:
229 sband->bitrates[i].flags |=
230 IEEE80211_RATE_MANDATORY_G;
231 want--;
232 fallthrough;
233 default:
234 sband->bitrates[i].flags |=
235 IEEE80211_RATE_ERP_G;
236 break;
237 }
238 }
239 WARN_ON(want != 0 && want != 3);
240 break;
241 case NL80211_BAND_60GHZ:
242 /* check for mandatory HT MCS 1..4 */
243 WARN_ON(!sband->ht_cap.ht_supported);
244 WARN_ON((sband->ht_cap.mcs.rx_mask[0] & 0x1e) != 0x1e);
245 break;
246 case NL80211_BAND_S1GHZ:
247 /* Figure 9-589bd: 3 means unsupported, so != 3 means at least
248 * mandatory is ok.
249 */
250 WARN_ON((sband->s1g_cap.nss_mcs[0] & 0x3) == 0x3);
251 break;
252 case NUM_NL80211_BANDS:
253 default:
254 WARN_ON(1);
255 break;
256 }
257}
258
259void ieee80211_set_bitrate_flags(struct wiphy *wiphy)
260{
261 enum nl80211_band band;
262
263 for (band = 0; band < NUM_NL80211_BANDS; band++)
264 if (wiphy->bands[band])
265 set_mandatory_flags_band(wiphy->bands[band]);
266}
267
268bool cfg80211_supported_cipher_suite(struct wiphy *wiphy, u32 cipher)
269{
270 int i;
271 for (i = 0; i < wiphy->n_cipher_suites; i++)
272 if (cipher == wiphy->cipher_suites[i])
273 return true;
274 return false;
275}
276
277static bool
278cfg80211_igtk_cipher_supported(struct cfg80211_registered_device *rdev)
279{
280 struct wiphy *wiphy = &rdev->wiphy;
281 int i;
282
283 for (i = 0; i < wiphy->n_cipher_suites; i++) {
284 switch (wiphy->cipher_suites[i]) {
285 case WLAN_CIPHER_SUITE_AES_CMAC:
286 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
287 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
288 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
289 return true;
290 }
291 }
292
293 return false;
294}
295
296bool cfg80211_valid_key_idx(struct cfg80211_registered_device *rdev,
297 int key_idx, bool pairwise)
298{
299 int max_key_idx;
300
301 if (pairwise)
302 max_key_idx = 3;
303 else if (wiphy_ext_feature_isset(&rdev->wiphy,
304 NL80211_EXT_FEATURE_BEACON_PROTECTION) ||
305 wiphy_ext_feature_isset(&rdev->wiphy,
306 NL80211_EXT_FEATURE_BEACON_PROTECTION_CLIENT))
307 max_key_idx = 7;
308 else if (cfg80211_igtk_cipher_supported(rdev))
309 max_key_idx = 5;
310 else
311 max_key_idx = 3;
312
313 if (key_idx < 0 || key_idx > max_key_idx)
314 return false;
315
316 return true;
317}
318
319int cfg80211_validate_key_settings(struct cfg80211_registered_device *rdev,
320 struct key_params *params, int key_idx,
321 bool pairwise, const u8 *mac_addr)
322{
323 if (!cfg80211_valid_key_idx(rdev, key_idx, pairwise))
324 return -EINVAL;
325
326 if (!pairwise && mac_addr && !(rdev->wiphy.flags & WIPHY_FLAG_IBSS_RSN))
327 return -EINVAL;
328
329 if (pairwise && !mac_addr)
330 return -EINVAL;
331
332 switch (params->cipher) {
333 case WLAN_CIPHER_SUITE_TKIP:
334 /* Extended Key ID can only be used with CCMP/GCMP ciphers */
335 if ((pairwise && key_idx) ||
336 params->mode != NL80211_KEY_RX_TX)
337 return -EINVAL;
338 break;
339 case WLAN_CIPHER_SUITE_CCMP:
340 case WLAN_CIPHER_SUITE_CCMP_256:
341 case WLAN_CIPHER_SUITE_GCMP:
342 case WLAN_CIPHER_SUITE_GCMP_256:
343 /* IEEE802.11-2016 allows only 0 and - when supporting
344 * Extended Key ID - 1 as index for pairwise keys.
345 * @NL80211_KEY_NO_TX is only allowed for pairwise keys when
346 * the driver supports Extended Key ID.
347 * @NL80211_KEY_SET_TX can't be set when installing and
348 * validating a key.
349 */
350 if ((params->mode == NL80211_KEY_NO_TX && !pairwise) ||
351 params->mode == NL80211_KEY_SET_TX)
352 return -EINVAL;
353 if (wiphy_ext_feature_isset(&rdev->wiphy,
354 NL80211_EXT_FEATURE_EXT_KEY_ID)) {
355 if (pairwise && (key_idx < 0 || key_idx > 1))
356 return -EINVAL;
357 } else if (pairwise && key_idx) {
358 return -EINVAL;
359 }
360 break;
361 case WLAN_CIPHER_SUITE_AES_CMAC:
362 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
363 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
364 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
365 /* Disallow BIP (group-only) cipher as pairwise cipher */
366 if (pairwise)
367 return -EINVAL;
368 if (key_idx < 4)
369 return -EINVAL;
370 break;
371 case WLAN_CIPHER_SUITE_WEP40:
372 case WLAN_CIPHER_SUITE_WEP104:
373 if (key_idx > 3)
374 return -EINVAL;
375 break;
376 default:
377 break;
378 }
379
380 switch (params->cipher) {
381 case WLAN_CIPHER_SUITE_WEP40:
382 if (params->key_len != WLAN_KEY_LEN_WEP40)
383 return -EINVAL;
384 break;
385 case WLAN_CIPHER_SUITE_TKIP:
386 if (params->key_len != WLAN_KEY_LEN_TKIP)
387 return -EINVAL;
388 break;
389 case WLAN_CIPHER_SUITE_CCMP:
390 if (params->key_len != WLAN_KEY_LEN_CCMP)
391 return -EINVAL;
392 break;
393 case WLAN_CIPHER_SUITE_CCMP_256:
394 if (params->key_len != WLAN_KEY_LEN_CCMP_256)
395 return -EINVAL;
396 break;
397 case WLAN_CIPHER_SUITE_GCMP:
398 if (params->key_len != WLAN_KEY_LEN_GCMP)
399 return -EINVAL;
400 break;
401 case WLAN_CIPHER_SUITE_GCMP_256:
402 if (params->key_len != WLAN_KEY_LEN_GCMP_256)
403 return -EINVAL;
404 break;
405 case WLAN_CIPHER_SUITE_WEP104:
406 if (params->key_len != WLAN_KEY_LEN_WEP104)
407 return -EINVAL;
408 break;
409 case WLAN_CIPHER_SUITE_AES_CMAC:
410 if (params->key_len != WLAN_KEY_LEN_AES_CMAC)
411 return -EINVAL;
412 break;
413 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
414 if (params->key_len != WLAN_KEY_LEN_BIP_CMAC_256)
415 return -EINVAL;
416 break;
417 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
418 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_128)
419 return -EINVAL;
420 break;
421 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
422 if (params->key_len != WLAN_KEY_LEN_BIP_GMAC_256)
423 return -EINVAL;
424 break;
425 default:
426 /*
427 * We don't know anything about this algorithm,
428 * allow using it -- but the driver must check
429 * all parameters! We still check below whether
430 * or not the driver supports this algorithm,
431 * of course.
432 */
433 break;
434 }
435
436 if (params->seq) {
437 switch (params->cipher) {
438 case WLAN_CIPHER_SUITE_WEP40:
439 case WLAN_CIPHER_SUITE_WEP104:
440 /* These ciphers do not use key sequence */
441 return -EINVAL;
442 case WLAN_CIPHER_SUITE_TKIP:
443 case WLAN_CIPHER_SUITE_CCMP:
444 case WLAN_CIPHER_SUITE_CCMP_256:
445 case WLAN_CIPHER_SUITE_GCMP:
446 case WLAN_CIPHER_SUITE_GCMP_256:
447 case WLAN_CIPHER_SUITE_AES_CMAC:
448 case WLAN_CIPHER_SUITE_BIP_CMAC_256:
449 case WLAN_CIPHER_SUITE_BIP_GMAC_128:
450 case WLAN_CIPHER_SUITE_BIP_GMAC_256:
451 if (params->seq_len != 6)
452 return -EINVAL;
453 break;
454 }
455 }
456
457 if (!cfg80211_supported_cipher_suite(&rdev->wiphy, params->cipher))
458 return -EINVAL;
459
460 return 0;
461}
462
463unsigned int __attribute_const__ ieee80211_hdrlen(__le16 fc)
464{
465 unsigned int hdrlen = 24;
466
467 if (ieee80211_is_ext(fc)) {
468 hdrlen = 4;
469 goto out;
470 }
471
472 if (ieee80211_is_data(fc)) {
473 if (ieee80211_has_a4(fc))
474 hdrlen = 30;
475 if (ieee80211_is_data_qos(fc)) {
476 hdrlen += IEEE80211_QOS_CTL_LEN;
477 if (ieee80211_has_order(fc))
478 hdrlen += IEEE80211_HT_CTL_LEN;
479 }
480 goto out;
481 }
482
483 if (ieee80211_is_mgmt(fc)) {
484 if (ieee80211_has_order(fc))
485 hdrlen += IEEE80211_HT_CTL_LEN;
486 goto out;
487 }
488
489 if (ieee80211_is_ctl(fc)) {
490 /*
491 * ACK and CTS are 10 bytes, all others 16. To see how
492 * to get this condition consider
493 * subtype mask: 0b0000000011110000 (0x00F0)
494 * ACK subtype: 0b0000000011010000 (0x00D0)
495 * CTS subtype: 0b0000000011000000 (0x00C0)
496 * bits that matter: ^^^ (0x00E0)
497 * value of those: 0b0000000011000000 (0x00C0)
498 */
499 if ((fc & cpu_to_le16(0x00E0)) == cpu_to_le16(0x00C0))
500 hdrlen = 10;
501 else
502 hdrlen = 16;
503 }
504out:
505 return hdrlen;
506}
507EXPORT_SYMBOL(ieee80211_hdrlen);
508
509unsigned int ieee80211_get_hdrlen_from_skb(const struct sk_buff *skb)
510{
511 const struct ieee80211_hdr *hdr =
512 (const struct ieee80211_hdr *)skb->data;
513 unsigned int hdrlen;
514
515 if (unlikely(skb->len < 10))
516 return 0;
517 hdrlen = ieee80211_hdrlen(hdr->frame_control);
518 if (unlikely(hdrlen > skb->len))
519 return 0;
520 return hdrlen;
521}
522EXPORT_SYMBOL(ieee80211_get_hdrlen_from_skb);
523
524static unsigned int __ieee80211_get_mesh_hdrlen(u8 flags)
525{
526 int ae = flags & MESH_FLAGS_AE;
527 /* 802.11-2012, 8.2.4.7.3 */
528 switch (ae) {
529 default:
530 case 0:
531 return 6;
532 case MESH_FLAGS_AE_A4:
533 return 12;
534 case MESH_FLAGS_AE_A5_A6:
535 return 18;
536 }
537}
538
539unsigned int ieee80211_get_mesh_hdrlen(struct ieee80211s_hdr *meshhdr)
540{
541 return __ieee80211_get_mesh_hdrlen(meshhdr->flags);
542}
543EXPORT_SYMBOL(ieee80211_get_mesh_hdrlen);
544
545bool ieee80211_get_8023_tunnel_proto(const void *hdr, __be16 *proto)
546{
547 const __be16 *hdr_proto = hdr + ETH_ALEN;
548
549 if (!(ether_addr_equal(hdr, rfc1042_header) &&
550 *hdr_proto != htons(ETH_P_AARP) &&
551 *hdr_proto != htons(ETH_P_IPX)) &&
552 !ether_addr_equal(hdr, bridge_tunnel_header))
553 return false;
554
555 *proto = *hdr_proto;
556
557 return true;
558}
559EXPORT_SYMBOL(ieee80211_get_8023_tunnel_proto);
560
561int ieee80211_strip_8023_mesh_hdr(struct sk_buff *skb)
562{
563 const void *mesh_addr;
564 struct {
565 struct ethhdr eth;
566 u8 flags;
567 } payload;
568 int hdrlen;
569 int ret;
570
571 ret = skb_copy_bits(skb, 0, &payload, sizeof(payload));
572 if (ret)
573 return ret;
574
575 hdrlen = sizeof(payload.eth) + __ieee80211_get_mesh_hdrlen(payload.flags);
576
577 if (likely(pskb_may_pull(skb, hdrlen + 8) &&
578 ieee80211_get_8023_tunnel_proto(skb->data + hdrlen,
579 &payload.eth.h_proto)))
580 hdrlen += ETH_ALEN + 2;
581 else if (!pskb_may_pull(skb, hdrlen))
582 return -EINVAL;
583
584 mesh_addr = skb->data + sizeof(payload.eth) + ETH_ALEN;
585 switch (payload.flags & MESH_FLAGS_AE) {
586 case MESH_FLAGS_AE_A4:
587 memcpy(&payload.eth.h_source, mesh_addr, ETH_ALEN);
588 break;
589 case MESH_FLAGS_AE_A5_A6:
590 memcpy(&payload.eth, mesh_addr, 2 * ETH_ALEN);
591 break;
592 default:
593 break;
594 }
595
596 pskb_pull(skb, hdrlen - sizeof(payload.eth));
597 memcpy(skb->data, &payload.eth, sizeof(payload.eth));
598
599 return 0;
600}
601EXPORT_SYMBOL(ieee80211_strip_8023_mesh_hdr);
602
603int ieee80211_data_to_8023_exthdr(struct sk_buff *skb, struct ethhdr *ehdr,
604 const u8 *addr, enum nl80211_iftype iftype,
605 u8 data_offset, bool is_amsdu)
606{
607 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
608 struct {
609 u8 hdr[ETH_ALEN] __aligned(2);
610 __be16 proto;
611 } payload;
612 struct ethhdr tmp;
613 u16 hdrlen;
614
615 if (unlikely(!ieee80211_is_data_present(hdr->frame_control)))
616 return -1;
617
618 hdrlen = ieee80211_hdrlen(hdr->frame_control) + data_offset;
619 if (skb->len < hdrlen)
620 return -1;
621
622 /* convert IEEE 802.11 header + possible LLC headers into Ethernet
623 * header
624 * IEEE 802.11 address fields:
625 * ToDS FromDS Addr1 Addr2 Addr3 Addr4
626 * 0 0 DA SA BSSID n/a
627 * 0 1 DA BSSID SA n/a
628 * 1 0 BSSID SA DA n/a
629 * 1 1 RA TA DA SA
630 */
631 memcpy(tmp.h_dest, ieee80211_get_DA(hdr), ETH_ALEN);
632 memcpy(tmp.h_source, ieee80211_get_SA(hdr), ETH_ALEN);
633
634 switch (hdr->frame_control &
635 cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS)) {
636 case cpu_to_le16(IEEE80211_FCTL_TODS):
637 if (unlikely(iftype != NL80211_IFTYPE_AP &&
638 iftype != NL80211_IFTYPE_AP_VLAN &&
639 iftype != NL80211_IFTYPE_P2P_GO))
640 return -1;
641 break;
642 case cpu_to_le16(IEEE80211_FCTL_TODS | IEEE80211_FCTL_FROMDS):
643 if (unlikely(iftype != NL80211_IFTYPE_MESH_POINT &&
644 iftype != NL80211_IFTYPE_AP_VLAN &&
645 iftype != NL80211_IFTYPE_STATION))
646 return -1;
647 break;
648 case cpu_to_le16(IEEE80211_FCTL_FROMDS):
649 if ((iftype != NL80211_IFTYPE_STATION &&
650 iftype != NL80211_IFTYPE_P2P_CLIENT &&
651 iftype != NL80211_IFTYPE_MESH_POINT) ||
652 (is_multicast_ether_addr(tmp.h_dest) &&
653 ether_addr_equal(tmp.h_source, addr)))
654 return -1;
655 break;
656 case cpu_to_le16(0):
657 if (iftype != NL80211_IFTYPE_ADHOC &&
658 iftype != NL80211_IFTYPE_STATION &&
659 iftype != NL80211_IFTYPE_OCB)
660 return -1;
661 break;
662 }
663
664 if (likely(!is_amsdu && iftype != NL80211_IFTYPE_MESH_POINT &&
665 skb_copy_bits(skb, hdrlen, &payload, sizeof(payload)) == 0 &&
666 ieee80211_get_8023_tunnel_proto(&payload, &tmp.h_proto))) {
667 /* remove RFC1042 or Bridge-Tunnel encapsulation */
668 hdrlen += ETH_ALEN + 2;
669 skb_postpull_rcsum(skb, &payload, ETH_ALEN + 2);
670 } else {
671 tmp.h_proto = htons(skb->len - hdrlen);
672 }
673
674 pskb_pull(skb, hdrlen);
675
676 if (!ehdr)
677 ehdr = skb_push(skb, sizeof(struct ethhdr));
678 memcpy(ehdr, &tmp, sizeof(tmp));
679
680 return 0;
681}
682EXPORT_SYMBOL(ieee80211_data_to_8023_exthdr);
683
684static void
685__frame_add_frag(struct sk_buff *skb, struct page *page,
686 void *ptr, int len, int size)
687{
688 struct skb_shared_info *sh = skb_shinfo(skb);
689 int page_offset;
690
691 get_page(page);
692 page_offset = ptr - page_address(page);
693 skb_add_rx_frag(skb, sh->nr_frags, page, page_offset, len, size);
694}
695
696static void
697__ieee80211_amsdu_copy_frag(struct sk_buff *skb, struct sk_buff *frame,
698 int offset, int len)
699{
700 struct skb_shared_info *sh = skb_shinfo(skb);
701 const skb_frag_t *frag = &sh->frags[0];
702 struct page *frag_page;
703 void *frag_ptr;
704 int frag_len, frag_size;
705 int head_size = skb->len - skb->data_len;
706 int cur_len;
707
708 frag_page = virt_to_head_page(skb->head);
709 frag_ptr = skb->data;
710 frag_size = head_size;
711
712 while (offset >= frag_size) {
713 offset -= frag_size;
714 frag_page = skb_frag_page(frag);
715 frag_ptr = skb_frag_address(frag);
716 frag_size = skb_frag_size(frag);
717 frag++;
718 }
719
720 frag_ptr += offset;
721 frag_len = frag_size - offset;
722
723 cur_len = min(len, frag_len);
724
725 __frame_add_frag(frame, frag_page, frag_ptr, cur_len, frag_size);
726 len -= cur_len;
727
728 while (len > 0) {
729 frag_len = skb_frag_size(frag);
730 cur_len = min(len, frag_len);
731 __frame_add_frag(frame, skb_frag_page(frag),
732 skb_frag_address(frag), cur_len, frag_len);
733 len -= cur_len;
734 frag++;
735 }
736}
737
738static struct sk_buff *
739__ieee80211_amsdu_copy(struct sk_buff *skb, unsigned int hlen,
740 int offset, int len, bool reuse_frag,
741 int min_len)
742{
743 struct sk_buff *frame;
744 int cur_len = len;
745
746 if (skb->len - offset < len)
747 return NULL;
748
749 /*
750 * When reusing framents, copy some data to the head to simplify
751 * ethernet header handling and speed up protocol header processing
752 * in the stack later.
753 */
754 if (reuse_frag)
755 cur_len = min_t(int, len, min_len);
756
757 /*
758 * Allocate and reserve two bytes more for payload
759 * alignment since sizeof(struct ethhdr) is 14.
760 */
761 frame = dev_alloc_skb(hlen + sizeof(struct ethhdr) + 2 + cur_len);
762 if (!frame)
763 return NULL;
764
765 frame->priority = skb->priority;
766 skb_reserve(frame, hlen + sizeof(struct ethhdr) + 2);
767 skb_copy_bits(skb, offset, skb_put(frame, cur_len), cur_len);
768
769 len -= cur_len;
770 if (!len)
771 return frame;
772
773 offset += cur_len;
774 __ieee80211_amsdu_copy_frag(skb, frame, offset, len);
775
776 return frame;
777}
778
779static u16
780ieee80211_amsdu_subframe_length(void *field, u8 mesh_flags, u8 hdr_type)
781{
782 __le16 *field_le = field;
783 __be16 *field_be = field;
784 u16 len;
785
786 if (hdr_type >= 2)
787 len = le16_to_cpu(*field_le);
788 else
789 len = be16_to_cpu(*field_be);
790 if (hdr_type)
791 len += __ieee80211_get_mesh_hdrlen(mesh_flags);
792
793 return len;
794}
795
796bool ieee80211_is_valid_amsdu(struct sk_buff *skb, u8 mesh_hdr)
797{
798 int offset = 0, remaining, subframe_len, padding;
799
800 for (offset = 0; offset < skb->len; offset += subframe_len + padding) {
801 struct {
802 __be16 len;
803 u8 mesh_flags;
804 } hdr;
805 u16 len;
806
807 if (skb_copy_bits(skb, offset + 2 * ETH_ALEN, &hdr, sizeof(hdr)) < 0)
808 return false;
809
810 len = ieee80211_amsdu_subframe_length(&hdr.len, hdr.mesh_flags,
811 mesh_hdr);
812 subframe_len = sizeof(struct ethhdr) + len;
813 padding = (4 - subframe_len) & 0x3;
814 remaining = skb->len - offset;
815
816 if (subframe_len > remaining)
817 return false;
818 }
819
820 return true;
821}
822EXPORT_SYMBOL(ieee80211_is_valid_amsdu);
823
824void ieee80211_amsdu_to_8023s(struct sk_buff *skb, struct sk_buff_head *list,
825 const u8 *addr, enum nl80211_iftype iftype,
826 const unsigned int extra_headroom,
827 const u8 *check_da, const u8 *check_sa,
828 u8 mesh_control)
829{
830 unsigned int hlen = ALIGN(extra_headroom, 4);
831 struct sk_buff *frame = NULL;
832 int offset = 0, remaining;
833 struct {
834 struct ethhdr eth;
835 uint8_t flags;
836 } hdr;
837 bool reuse_frag = skb->head_frag && !skb_has_frag_list(skb);
838 bool reuse_skb = false;
839 bool last = false;
840 int copy_len = sizeof(hdr.eth);
841
842 if (iftype == NL80211_IFTYPE_MESH_POINT)
843 copy_len = sizeof(hdr);
844
845 while (!last) {
846 unsigned int subframe_len;
847 int len, mesh_len = 0;
848 u8 padding;
849
850 skb_copy_bits(skb, offset, &hdr, copy_len);
851 if (iftype == NL80211_IFTYPE_MESH_POINT)
852 mesh_len = __ieee80211_get_mesh_hdrlen(hdr.flags);
853 len = ieee80211_amsdu_subframe_length(&hdr.eth.h_proto, hdr.flags,
854 mesh_control);
855 subframe_len = sizeof(struct ethhdr) + len;
856 padding = (4 - subframe_len) & 0x3;
857
858 /* the last MSDU has no padding */
859 remaining = skb->len - offset;
860 if (subframe_len > remaining)
861 goto purge;
862 /* mitigate A-MSDU aggregation injection attacks */
863 if (ether_addr_equal(hdr.eth.h_dest, rfc1042_header))
864 goto purge;
865
866 offset += sizeof(struct ethhdr);
867 last = remaining <= subframe_len + padding;
868
869 /* FIXME: should we really accept multicast DA? */
870 if ((check_da && !is_multicast_ether_addr(hdr.eth.h_dest) &&
871 !ether_addr_equal(check_da, hdr.eth.h_dest)) ||
872 (check_sa && !ether_addr_equal(check_sa, hdr.eth.h_source))) {
873 offset += len + padding;
874 continue;
875 }
876
877 /* reuse skb for the last subframe */
878 if (!skb_is_nonlinear(skb) && !reuse_frag && last) {
879 skb_pull(skb, offset);
880 frame = skb;
881 reuse_skb = true;
882 } else {
883 frame = __ieee80211_amsdu_copy(skb, hlen, offset, len,
884 reuse_frag, 32 + mesh_len);
885 if (!frame)
886 goto purge;
887
888 offset += len + padding;
889 }
890
891 skb_reset_network_header(frame);
892 frame->dev = skb->dev;
893 frame->priority = skb->priority;
894
895 if (likely(iftype != NL80211_IFTYPE_MESH_POINT &&
896 ieee80211_get_8023_tunnel_proto(frame->data, &hdr.eth.h_proto)))
897 skb_pull(frame, ETH_ALEN + 2);
898
899 memcpy(skb_push(frame, sizeof(hdr.eth)), &hdr.eth, sizeof(hdr.eth));
900 __skb_queue_tail(list, frame);
901 }
902
903 if (!reuse_skb)
904 dev_kfree_skb(skb);
905
906 return;
907
908 purge:
909 __skb_queue_purge(list);
910 dev_kfree_skb(skb);
911}
912EXPORT_SYMBOL(ieee80211_amsdu_to_8023s);
913
914/* Given a data frame determine the 802.1p/1d tag to use. */
915unsigned int cfg80211_classify8021d(struct sk_buff *skb,
916 struct cfg80211_qos_map *qos_map)
917{
918 unsigned int dscp;
919 unsigned char vlan_priority;
920 unsigned int ret;
921
922 /* skb->priority values from 256->263 are magic values to
923 * directly indicate a specific 802.1d priority. This is used
924 * to allow 802.1d priority to be passed directly in from VLAN
925 * tags, etc.
926 */
927 if (skb->priority >= 256 && skb->priority <= 263) {
928 ret = skb->priority - 256;
929 goto out;
930 }
931
932 if (skb_vlan_tag_present(skb)) {
933 vlan_priority = (skb_vlan_tag_get(skb) & VLAN_PRIO_MASK)
934 >> VLAN_PRIO_SHIFT;
935 if (vlan_priority > 0) {
936 ret = vlan_priority;
937 goto out;
938 }
939 }
940
941 switch (skb->protocol) {
942 case htons(ETH_P_IP):
943 dscp = ipv4_get_dsfield(ip_hdr(skb)) & 0xfc;
944 break;
945 case htons(ETH_P_IPV6):
946 dscp = ipv6_get_dsfield(ipv6_hdr(skb)) & 0xfc;
947 break;
948 case htons(ETH_P_MPLS_UC):
949 case htons(ETH_P_MPLS_MC): {
950 struct mpls_label mpls_tmp, *mpls;
951
952 mpls = skb_header_pointer(skb, sizeof(struct ethhdr),
953 sizeof(*mpls), &mpls_tmp);
954 if (!mpls)
955 return 0;
956
957 ret = (ntohl(mpls->entry) & MPLS_LS_TC_MASK)
958 >> MPLS_LS_TC_SHIFT;
959 goto out;
960 }
961 case htons(ETH_P_80221):
962 /* 802.21 is always network control traffic */
963 return 7;
964 default:
965 return 0;
966 }
967
968 if (qos_map) {
969 unsigned int i, tmp_dscp = dscp >> 2;
970
971 for (i = 0; i < qos_map->num_des; i++) {
972 if (tmp_dscp == qos_map->dscp_exception[i].dscp) {
973 ret = qos_map->dscp_exception[i].up;
974 goto out;
975 }
976 }
977
978 for (i = 0; i < 8; i++) {
979 if (tmp_dscp >= qos_map->up[i].low &&
980 tmp_dscp <= qos_map->up[i].high) {
981 ret = i;
982 goto out;
983 }
984 }
985 }
986
987 ret = dscp >> 5;
988out:
989 return array_index_nospec(ret, IEEE80211_NUM_TIDS);
990}
991EXPORT_SYMBOL(cfg80211_classify8021d);
992
993const struct element *ieee80211_bss_get_elem(struct cfg80211_bss *bss, u8 id)
994{
995 const struct cfg80211_bss_ies *ies;
996
997 ies = rcu_dereference(bss->ies);
998 if (!ies)
999 return NULL;
1000
1001 return cfg80211_find_elem(id, ies->data, ies->len);
1002}
1003EXPORT_SYMBOL(ieee80211_bss_get_elem);
1004
1005void cfg80211_upload_connect_keys(struct wireless_dev *wdev)
1006{
1007 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
1008 struct net_device *dev = wdev->netdev;
1009 int i;
1010
1011 if (!wdev->connect_keys)
1012 return;
1013
1014 for (i = 0; i < 4; i++) {
1015 if (!wdev->connect_keys->params[i].cipher)
1016 continue;
1017 if (rdev_add_key(rdev, dev, -1, i, false, NULL,
1018 &wdev->connect_keys->params[i])) {
1019 netdev_err(dev, "failed to set key %d\n", i);
1020 continue;
1021 }
1022 if (wdev->connect_keys->def == i &&
1023 rdev_set_default_key(rdev, dev, -1, i, true, true)) {
1024 netdev_err(dev, "failed to set defkey %d\n", i);
1025 continue;
1026 }
1027 }
1028
1029 kfree_sensitive(wdev->connect_keys);
1030 wdev->connect_keys = NULL;
1031}
1032
1033void cfg80211_process_wdev_events(struct wireless_dev *wdev)
1034{
1035 struct cfg80211_event *ev;
1036 unsigned long flags;
1037
1038 spin_lock_irqsave(&wdev->event_lock, flags);
1039 while (!list_empty(&wdev->event_list)) {
1040 ev = list_first_entry(&wdev->event_list,
1041 struct cfg80211_event, list);
1042 list_del(&ev->list);
1043 spin_unlock_irqrestore(&wdev->event_lock, flags);
1044
1045 wdev_lock(wdev);
1046 switch (ev->type) {
1047 case EVENT_CONNECT_RESULT:
1048 __cfg80211_connect_result(
1049 wdev->netdev,
1050 &ev->cr,
1051 ev->cr.status == WLAN_STATUS_SUCCESS);
1052 break;
1053 case EVENT_ROAMED:
1054 __cfg80211_roamed(wdev, &ev->rm);
1055 break;
1056 case EVENT_DISCONNECTED:
1057 __cfg80211_disconnected(wdev->netdev,
1058 ev->dc.ie, ev->dc.ie_len,
1059 ev->dc.reason,
1060 !ev->dc.locally_generated);
1061 break;
1062 case EVENT_IBSS_JOINED:
1063 __cfg80211_ibss_joined(wdev->netdev, ev->ij.bssid,
1064 ev->ij.channel);
1065 break;
1066 case EVENT_STOPPED:
1067 __cfg80211_leave(wiphy_to_rdev(wdev->wiphy), wdev);
1068 break;
1069 case EVENT_PORT_AUTHORIZED:
1070 __cfg80211_port_authorized(wdev, ev->pa.bssid,
1071 ev->pa.td_bitmap,
1072 ev->pa.td_bitmap_len);
1073 break;
1074 }
1075 wdev_unlock(wdev);
1076
1077 kfree(ev);
1078
1079 spin_lock_irqsave(&wdev->event_lock, flags);
1080 }
1081 spin_unlock_irqrestore(&wdev->event_lock, flags);
1082}
1083
1084void cfg80211_process_rdev_events(struct cfg80211_registered_device *rdev)
1085{
1086 struct wireless_dev *wdev;
1087
1088 lockdep_assert_held(&rdev->wiphy.mtx);
1089
1090 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
1091 cfg80211_process_wdev_events(wdev);
1092}
1093
1094int cfg80211_change_iface(struct cfg80211_registered_device *rdev,
1095 struct net_device *dev, enum nl80211_iftype ntype,
1096 struct vif_params *params)
1097{
1098 int err;
1099 enum nl80211_iftype otype = dev->ieee80211_ptr->iftype;
1100
1101 lockdep_assert_held(&rdev->wiphy.mtx);
1102
1103 /* don't support changing VLANs, you just re-create them */
1104 if (otype == NL80211_IFTYPE_AP_VLAN)
1105 return -EOPNOTSUPP;
1106
1107 /* cannot change into P2P device or NAN */
1108 if (ntype == NL80211_IFTYPE_P2P_DEVICE ||
1109 ntype == NL80211_IFTYPE_NAN)
1110 return -EOPNOTSUPP;
1111
1112 if (!rdev->ops->change_virtual_intf ||
1113 !(rdev->wiphy.interface_modes & (1 << ntype)))
1114 return -EOPNOTSUPP;
1115
1116 if (ntype != otype) {
1117 /* if it's part of a bridge, reject changing type to station/ibss */
1118 if (netif_is_bridge_port(dev) &&
1119 (ntype == NL80211_IFTYPE_ADHOC ||
1120 ntype == NL80211_IFTYPE_STATION ||
1121 ntype == NL80211_IFTYPE_P2P_CLIENT))
1122 return -EBUSY;
1123
1124 dev->ieee80211_ptr->use_4addr = false;
1125 wdev_lock(dev->ieee80211_ptr);
1126 rdev_set_qos_map(rdev, dev, NULL);
1127 wdev_unlock(dev->ieee80211_ptr);
1128
1129 switch (otype) {
1130 case NL80211_IFTYPE_AP:
1131 case NL80211_IFTYPE_P2P_GO:
1132 cfg80211_stop_ap(rdev, dev, -1, true);
1133 break;
1134 case NL80211_IFTYPE_ADHOC:
1135 cfg80211_leave_ibss(rdev, dev, false);
1136 break;
1137 case NL80211_IFTYPE_STATION:
1138 case NL80211_IFTYPE_P2P_CLIENT:
1139 wdev_lock(dev->ieee80211_ptr);
1140 cfg80211_disconnect(rdev, dev,
1141 WLAN_REASON_DEAUTH_LEAVING, true);
1142 wdev_unlock(dev->ieee80211_ptr);
1143 break;
1144 case NL80211_IFTYPE_MESH_POINT:
1145 /* mesh should be handled? */
1146 break;
1147 case NL80211_IFTYPE_OCB:
1148 cfg80211_leave_ocb(rdev, dev);
1149 break;
1150 default:
1151 break;
1152 }
1153
1154 cfg80211_process_rdev_events(rdev);
1155 cfg80211_mlme_purge_registrations(dev->ieee80211_ptr);
1156
1157 memset(&dev->ieee80211_ptr->u, 0,
1158 sizeof(dev->ieee80211_ptr->u));
1159 memset(&dev->ieee80211_ptr->links, 0,
1160 sizeof(dev->ieee80211_ptr->links));
1161 }
1162
1163 err = rdev_change_virtual_intf(rdev, dev, ntype, params);
1164
1165 WARN_ON(!err && dev->ieee80211_ptr->iftype != ntype);
1166
1167 if (!err && params && params->use_4addr != -1)
1168 dev->ieee80211_ptr->use_4addr = params->use_4addr;
1169
1170 if (!err) {
1171 dev->priv_flags &= ~IFF_DONT_BRIDGE;
1172 switch (ntype) {
1173 case NL80211_IFTYPE_STATION:
1174 if (dev->ieee80211_ptr->use_4addr)
1175 break;
1176 fallthrough;
1177 case NL80211_IFTYPE_OCB:
1178 case NL80211_IFTYPE_P2P_CLIENT:
1179 case NL80211_IFTYPE_ADHOC:
1180 dev->priv_flags |= IFF_DONT_BRIDGE;
1181 break;
1182 case NL80211_IFTYPE_P2P_GO:
1183 case NL80211_IFTYPE_AP:
1184 case NL80211_IFTYPE_AP_VLAN:
1185 case NL80211_IFTYPE_MESH_POINT:
1186 /* bridging OK */
1187 break;
1188 case NL80211_IFTYPE_MONITOR:
1189 /* monitor can't bridge anyway */
1190 break;
1191 case NL80211_IFTYPE_UNSPECIFIED:
1192 case NUM_NL80211_IFTYPES:
1193 /* not happening */
1194 break;
1195 case NL80211_IFTYPE_P2P_DEVICE:
1196 case NL80211_IFTYPE_WDS:
1197 case NL80211_IFTYPE_NAN:
1198 WARN_ON(1);
1199 break;
1200 }
1201 }
1202
1203 if (!err && ntype != otype && netif_running(dev)) {
1204 cfg80211_update_iface_num(rdev, ntype, 1);
1205 cfg80211_update_iface_num(rdev, otype, -1);
1206 }
1207
1208 return err;
1209}
1210
1211static u32 cfg80211_calculate_bitrate_ht(struct rate_info *rate)
1212{
1213 int modulation, streams, bitrate;
1214
1215 /* the formula below does only work for MCS values smaller than 32 */
1216 if (WARN_ON_ONCE(rate->mcs >= 32))
1217 return 0;
1218
1219 modulation = rate->mcs & 7;
1220 streams = (rate->mcs >> 3) + 1;
1221
1222 bitrate = (rate->bw == RATE_INFO_BW_40) ? 13500000 : 6500000;
1223
1224 if (modulation < 4)
1225 bitrate *= (modulation + 1);
1226 else if (modulation == 4)
1227 bitrate *= (modulation + 2);
1228 else
1229 bitrate *= (modulation + 3);
1230
1231 bitrate *= streams;
1232
1233 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1234 bitrate = (bitrate / 9) * 10;
1235
1236 /* do NOT round down here */
1237 return (bitrate + 50000) / 100000;
1238}
1239
1240static u32 cfg80211_calculate_bitrate_dmg(struct rate_info *rate)
1241{
1242 static const u32 __mcs2bitrate[] = {
1243 /* control PHY */
1244 [0] = 275,
1245 /* SC PHY */
1246 [1] = 3850,
1247 [2] = 7700,
1248 [3] = 9625,
1249 [4] = 11550,
1250 [5] = 12512, /* 1251.25 mbps */
1251 [6] = 15400,
1252 [7] = 19250,
1253 [8] = 23100,
1254 [9] = 25025,
1255 [10] = 30800,
1256 [11] = 38500,
1257 [12] = 46200,
1258 /* OFDM PHY */
1259 [13] = 6930,
1260 [14] = 8662, /* 866.25 mbps */
1261 [15] = 13860,
1262 [16] = 17325,
1263 [17] = 20790,
1264 [18] = 27720,
1265 [19] = 34650,
1266 [20] = 41580,
1267 [21] = 45045,
1268 [22] = 51975,
1269 [23] = 62370,
1270 [24] = 67568, /* 6756.75 mbps */
1271 /* LP-SC PHY */
1272 [25] = 6260,
1273 [26] = 8340,
1274 [27] = 11120,
1275 [28] = 12510,
1276 [29] = 16680,
1277 [30] = 22240,
1278 [31] = 25030,
1279 };
1280
1281 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1282 return 0;
1283
1284 return __mcs2bitrate[rate->mcs];
1285}
1286
1287static u32 cfg80211_calculate_bitrate_extended_sc_dmg(struct rate_info *rate)
1288{
1289 static const u32 __mcs2bitrate[] = {
1290 [6 - 6] = 26950, /* MCS 9.1 : 2695.0 mbps */
1291 [7 - 6] = 50050, /* MCS 12.1 */
1292 [8 - 6] = 53900,
1293 [9 - 6] = 57750,
1294 [10 - 6] = 63900,
1295 [11 - 6] = 75075,
1296 [12 - 6] = 80850,
1297 };
1298
1299 /* Extended SC MCS not defined for base MCS below 6 or above 12 */
1300 if (WARN_ON_ONCE(rate->mcs < 6 || rate->mcs > 12))
1301 return 0;
1302
1303 return __mcs2bitrate[rate->mcs - 6];
1304}
1305
1306static u32 cfg80211_calculate_bitrate_edmg(struct rate_info *rate)
1307{
1308 static const u32 __mcs2bitrate[] = {
1309 /* control PHY */
1310 [0] = 275,
1311 /* SC PHY */
1312 [1] = 3850,
1313 [2] = 7700,
1314 [3] = 9625,
1315 [4] = 11550,
1316 [5] = 12512, /* 1251.25 mbps */
1317 [6] = 13475,
1318 [7] = 15400,
1319 [8] = 19250,
1320 [9] = 23100,
1321 [10] = 25025,
1322 [11] = 26950,
1323 [12] = 30800,
1324 [13] = 38500,
1325 [14] = 46200,
1326 [15] = 50050,
1327 [16] = 53900,
1328 [17] = 57750,
1329 [18] = 69300,
1330 [19] = 75075,
1331 [20] = 80850,
1332 };
1333
1334 if (WARN_ON_ONCE(rate->mcs >= ARRAY_SIZE(__mcs2bitrate)))
1335 return 0;
1336
1337 return __mcs2bitrate[rate->mcs] * rate->n_bonded_ch;
1338}
1339
1340static u32 cfg80211_calculate_bitrate_vht(struct rate_info *rate)
1341{
1342 static const u32 base[4][12] = {
1343 { 6500000,
1344 13000000,
1345 19500000,
1346 26000000,
1347 39000000,
1348 52000000,
1349 58500000,
1350 65000000,
1351 78000000,
1352 /* not in the spec, but some devices use this: */
1353 86700000,
1354 97500000,
1355 108300000,
1356 },
1357 { 13500000,
1358 27000000,
1359 40500000,
1360 54000000,
1361 81000000,
1362 108000000,
1363 121500000,
1364 135000000,
1365 162000000,
1366 180000000,
1367 202500000,
1368 225000000,
1369 },
1370 { 29300000,
1371 58500000,
1372 87800000,
1373 117000000,
1374 175500000,
1375 234000000,
1376 263300000,
1377 292500000,
1378 351000000,
1379 390000000,
1380 438800000,
1381 487500000,
1382 },
1383 { 58500000,
1384 117000000,
1385 175500000,
1386 234000000,
1387 351000000,
1388 468000000,
1389 526500000,
1390 585000000,
1391 702000000,
1392 780000000,
1393 877500000,
1394 975000000,
1395 },
1396 };
1397 u32 bitrate;
1398 int idx;
1399
1400 if (rate->mcs > 11)
1401 goto warn;
1402
1403 switch (rate->bw) {
1404 case RATE_INFO_BW_160:
1405 idx = 3;
1406 break;
1407 case RATE_INFO_BW_80:
1408 idx = 2;
1409 break;
1410 case RATE_INFO_BW_40:
1411 idx = 1;
1412 break;
1413 case RATE_INFO_BW_5:
1414 case RATE_INFO_BW_10:
1415 default:
1416 goto warn;
1417 case RATE_INFO_BW_20:
1418 idx = 0;
1419 }
1420
1421 bitrate = base[idx][rate->mcs];
1422 bitrate *= rate->nss;
1423
1424 if (rate->flags & RATE_INFO_FLAGS_SHORT_GI)
1425 bitrate = (bitrate / 9) * 10;
1426
1427 /* do NOT round down here */
1428 return (bitrate + 50000) / 100000;
1429 warn:
1430 WARN_ONCE(1, "invalid rate bw=%d, mcs=%d, nss=%d\n",
1431 rate->bw, rate->mcs, rate->nss);
1432 return 0;
1433}
1434
1435static u32 cfg80211_calculate_bitrate_he(struct rate_info *rate)
1436{
1437#define SCALE 6144
1438 u32 mcs_divisors[14] = {
1439 102399, /* 16.666666... */
1440 51201, /* 8.333333... */
1441 34134, /* 5.555555... */
1442 25599, /* 4.166666... */
1443 17067, /* 2.777777... */
1444 12801, /* 2.083333... */
1445 11377, /* 1.851725... */
1446 10239, /* 1.666666... */
1447 8532, /* 1.388888... */
1448 7680, /* 1.250000... */
1449 6828, /* 1.111111... */
1450 6144, /* 1.000000... */
1451 5690, /* 0.926106... */
1452 5120, /* 0.833333... */
1453 };
1454 u32 rates_160M[3] = { 960777777, 907400000, 816666666 };
1455 u32 rates_969[3] = { 480388888, 453700000, 408333333 };
1456 u32 rates_484[3] = { 229411111, 216666666, 195000000 };
1457 u32 rates_242[3] = { 114711111, 108333333, 97500000 };
1458 u32 rates_106[3] = { 40000000, 37777777, 34000000 };
1459 u32 rates_52[3] = { 18820000, 17777777, 16000000 };
1460 u32 rates_26[3] = { 9411111, 8888888, 8000000 };
1461 u64 tmp;
1462 u32 result;
1463
1464 if (WARN_ON_ONCE(rate->mcs > 13))
1465 return 0;
1466
1467 if (WARN_ON_ONCE(rate->he_gi > NL80211_RATE_INFO_HE_GI_3_2))
1468 return 0;
1469 if (WARN_ON_ONCE(rate->he_ru_alloc >
1470 NL80211_RATE_INFO_HE_RU_ALLOC_2x996))
1471 return 0;
1472 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1473 return 0;
1474
1475 if (rate->bw == RATE_INFO_BW_160)
1476 result = rates_160M[rate->he_gi];
1477 else if (rate->bw == RATE_INFO_BW_80 ||
1478 (rate->bw == RATE_INFO_BW_HE_RU &&
1479 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_996))
1480 result = rates_969[rate->he_gi];
1481 else if (rate->bw == RATE_INFO_BW_40 ||
1482 (rate->bw == RATE_INFO_BW_HE_RU &&
1483 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_484))
1484 result = rates_484[rate->he_gi];
1485 else if (rate->bw == RATE_INFO_BW_20 ||
1486 (rate->bw == RATE_INFO_BW_HE_RU &&
1487 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_242))
1488 result = rates_242[rate->he_gi];
1489 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1490 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_106)
1491 result = rates_106[rate->he_gi];
1492 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1493 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_52)
1494 result = rates_52[rate->he_gi];
1495 else if (rate->bw == RATE_INFO_BW_HE_RU &&
1496 rate->he_ru_alloc == NL80211_RATE_INFO_HE_RU_ALLOC_26)
1497 result = rates_26[rate->he_gi];
1498 else {
1499 WARN(1, "invalid HE MCS: bw:%d, ru:%d\n",
1500 rate->bw, rate->he_ru_alloc);
1501 return 0;
1502 }
1503
1504 /* now scale to the appropriate MCS */
1505 tmp = result;
1506 tmp *= SCALE;
1507 do_div(tmp, mcs_divisors[rate->mcs]);
1508 result = tmp;
1509
1510 /* and take NSS, DCM into account */
1511 result = (result * rate->nss) / 8;
1512 if (rate->he_dcm)
1513 result /= 2;
1514
1515 return result / 10000;
1516}
1517
1518static u32 cfg80211_calculate_bitrate_eht(struct rate_info *rate)
1519{
1520#define SCALE 6144
1521 static const u32 mcs_divisors[16] = {
1522 102399, /* 16.666666... */
1523 51201, /* 8.333333... */
1524 34134, /* 5.555555... */
1525 25599, /* 4.166666... */
1526 17067, /* 2.777777... */
1527 12801, /* 2.083333... */
1528 11377, /* 1.851725... */
1529 10239, /* 1.666666... */
1530 8532, /* 1.388888... */
1531 7680, /* 1.250000... */
1532 6828, /* 1.111111... */
1533 6144, /* 1.000000... */
1534 5690, /* 0.926106... */
1535 5120, /* 0.833333... */
1536 409600, /* 66.666666... */
1537 204800, /* 33.333333... */
1538 };
1539 static const u32 rates_996[3] = { 480388888, 453700000, 408333333 };
1540 static const u32 rates_484[3] = { 229411111, 216666666, 195000000 };
1541 static const u32 rates_242[3] = { 114711111, 108333333, 97500000 };
1542 static const u32 rates_106[3] = { 40000000, 37777777, 34000000 };
1543 static const u32 rates_52[3] = { 18820000, 17777777, 16000000 };
1544 static const u32 rates_26[3] = { 9411111, 8888888, 8000000 };
1545 u64 tmp;
1546 u32 result;
1547
1548 if (WARN_ON_ONCE(rate->mcs > 15))
1549 return 0;
1550 if (WARN_ON_ONCE(rate->eht_gi > NL80211_RATE_INFO_EHT_GI_3_2))
1551 return 0;
1552 if (WARN_ON_ONCE(rate->eht_ru_alloc >
1553 NL80211_RATE_INFO_EHT_RU_ALLOC_4x996))
1554 return 0;
1555 if (WARN_ON_ONCE(rate->nss < 1 || rate->nss > 8))
1556 return 0;
1557
1558 /* Bandwidth checks for MCS 14 */
1559 if (rate->mcs == 14) {
1560 if ((rate->bw != RATE_INFO_BW_EHT_RU &&
1561 rate->bw != RATE_INFO_BW_80 &&
1562 rate->bw != RATE_INFO_BW_160 &&
1563 rate->bw != RATE_INFO_BW_320) ||
1564 (rate->bw == RATE_INFO_BW_EHT_RU &&
1565 rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_996 &&
1566 rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_2x996 &&
1567 rate->eht_ru_alloc != NL80211_RATE_INFO_EHT_RU_ALLOC_4x996)) {
1568 WARN(1, "invalid EHT BW for MCS 14: bw:%d, ru:%d\n",
1569 rate->bw, rate->eht_ru_alloc);
1570 return 0;
1571 }
1572 }
1573
1574 if (rate->bw == RATE_INFO_BW_320 ||
1575 (rate->bw == RATE_INFO_BW_EHT_RU &&
1576 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_4x996))
1577 result = 4 * rates_996[rate->eht_gi];
1578 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1579 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996P484)
1580 result = 3 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1581 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1582 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_3x996)
1583 result = 3 * rates_996[rate->eht_gi];
1584 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1585 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996P484)
1586 result = 2 * rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1587 else if (rate->bw == RATE_INFO_BW_160 ||
1588 (rate->bw == RATE_INFO_BW_EHT_RU &&
1589 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_2x996))
1590 result = 2 * rates_996[rate->eht_gi];
1591 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1592 rate->eht_ru_alloc ==
1593 NL80211_RATE_INFO_EHT_RU_ALLOC_996P484P242)
1594 result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi]
1595 + rates_242[rate->eht_gi];
1596 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1597 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996P484)
1598 result = rates_996[rate->eht_gi] + rates_484[rate->eht_gi];
1599 else if (rate->bw == RATE_INFO_BW_80 ||
1600 (rate->bw == RATE_INFO_BW_EHT_RU &&
1601 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_996))
1602 result = rates_996[rate->eht_gi];
1603 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1604 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484P242)
1605 result = rates_484[rate->eht_gi] + rates_242[rate->eht_gi];
1606 else if (rate->bw == RATE_INFO_BW_40 ||
1607 (rate->bw == RATE_INFO_BW_EHT_RU &&
1608 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_484))
1609 result = rates_484[rate->eht_gi];
1610 else if (rate->bw == RATE_INFO_BW_20 ||
1611 (rate->bw == RATE_INFO_BW_EHT_RU &&
1612 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_242))
1613 result = rates_242[rate->eht_gi];
1614 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1615 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106P26)
1616 result = rates_106[rate->eht_gi] + rates_26[rate->eht_gi];
1617 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1618 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_106)
1619 result = rates_106[rate->eht_gi];
1620 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1621 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52P26)
1622 result = rates_52[rate->eht_gi] + rates_26[rate->eht_gi];
1623 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1624 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_52)
1625 result = rates_52[rate->eht_gi];
1626 else if (rate->bw == RATE_INFO_BW_EHT_RU &&
1627 rate->eht_ru_alloc == NL80211_RATE_INFO_EHT_RU_ALLOC_26)
1628 result = rates_26[rate->eht_gi];
1629 else {
1630 WARN(1, "invalid EHT MCS: bw:%d, ru:%d\n",
1631 rate->bw, rate->eht_ru_alloc);
1632 return 0;
1633 }
1634
1635 /* now scale to the appropriate MCS */
1636 tmp = result;
1637 tmp *= SCALE;
1638 do_div(tmp, mcs_divisors[rate->mcs]);
1639
1640 /* and take NSS */
1641 tmp *= rate->nss;
1642 do_div(tmp, 8);
1643
1644 result = tmp;
1645
1646 return result / 10000;
1647}
1648
1649u32 cfg80211_calculate_bitrate(struct rate_info *rate)
1650{
1651 if (rate->flags & RATE_INFO_FLAGS_MCS)
1652 return cfg80211_calculate_bitrate_ht(rate);
1653 if (rate->flags & RATE_INFO_FLAGS_DMG)
1654 return cfg80211_calculate_bitrate_dmg(rate);
1655 if (rate->flags & RATE_INFO_FLAGS_EXTENDED_SC_DMG)
1656 return cfg80211_calculate_bitrate_extended_sc_dmg(rate);
1657 if (rate->flags & RATE_INFO_FLAGS_EDMG)
1658 return cfg80211_calculate_bitrate_edmg(rate);
1659 if (rate->flags & RATE_INFO_FLAGS_VHT_MCS)
1660 return cfg80211_calculate_bitrate_vht(rate);
1661 if (rate->flags & RATE_INFO_FLAGS_HE_MCS)
1662 return cfg80211_calculate_bitrate_he(rate);
1663 if (rate->flags & RATE_INFO_FLAGS_EHT_MCS)
1664 return cfg80211_calculate_bitrate_eht(rate);
1665
1666 return rate->legacy;
1667}
1668EXPORT_SYMBOL(cfg80211_calculate_bitrate);
1669
1670int cfg80211_get_p2p_attr(const u8 *ies, unsigned int len,
1671 enum ieee80211_p2p_attr_id attr,
1672 u8 *buf, unsigned int bufsize)
1673{
1674 u8 *out = buf;
1675 u16 attr_remaining = 0;
1676 bool desired_attr = false;
1677 u16 desired_len = 0;
1678
1679 while (len > 0) {
1680 unsigned int iedatalen;
1681 unsigned int copy;
1682 const u8 *iedata;
1683
1684 if (len < 2)
1685 return -EILSEQ;
1686 iedatalen = ies[1];
1687 if (iedatalen + 2 > len)
1688 return -EILSEQ;
1689
1690 if (ies[0] != WLAN_EID_VENDOR_SPECIFIC)
1691 goto cont;
1692
1693 if (iedatalen < 4)
1694 goto cont;
1695
1696 iedata = ies + 2;
1697
1698 /* check WFA OUI, P2P subtype */
1699 if (iedata[0] != 0x50 || iedata[1] != 0x6f ||
1700 iedata[2] != 0x9a || iedata[3] != 0x09)
1701 goto cont;
1702
1703 iedatalen -= 4;
1704 iedata += 4;
1705
1706 /* check attribute continuation into this IE */
1707 copy = min_t(unsigned int, attr_remaining, iedatalen);
1708 if (copy && desired_attr) {
1709 desired_len += copy;
1710 if (out) {
1711 memcpy(out, iedata, min(bufsize, copy));
1712 out += min(bufsize, copy);
1713 bufsize -= min(bufsize, copy);
1714 }
1715
1716
1717 if (copy == attr_remaining)
1718 return desired_len;
1719 }
1720
1721 attr_remaining -= copy;
1722 if (attr_remaining)
1723 goto cont;
1724
1725 iedatalen -= copy;
1726 iedata += copy;
1727
1728 while (iedatalen > 0) {
1729 u16 attr_len;
1730
1731 /* P2P attribute ID & size must fit */
1732 if (iedatalen < 3)
1733 return -EILSEQ;
1734 desired_attr = iedata[0] == attr;
1735 attr_len = get_unaligned_le16(iedata + 1);
1736 iedatalen -= 3;
1737 iedata += 3;
1738
1739 copy = min_t(unsigned int, attr_len, iedatalen);
1740
1741 if (desired_attr) {
1742 desired_len += copy;
1743 if (out) {
1744 memcpy(out, iedata, min(bufsize, copy));
1745 out += min(bufsize, copy);
1746 bufsize -= min(bufsize, copy);
1747 }
1748
1749 if (copy == attr_len)
1750 return desired_len;
1751 }
1752
1753 iedata += copy;
1754 iedatalen -= copy;
1755 attr_remaining = attr_len - copy;
1756 }
1757
1758 cont:
1759 len -= ies[1] + 2;
1760 ies += ies[1] + 2;
1761 }
1762
1763 if (attr_remaining && desired_attr)
1764 return -EILSEQ;
1765
1766 return -ENOENT;
1767}
1768EXPORT_SYMBOL(cfg80211_get_p2p_attr);
1769
1770static bool ieee80211_id_in_list(const u8 *ids, int n_ids, u8 id, bool id_ext)
1771{
1772 int i;
1773
1774 /* Make sure array values are legal */
1775 if (WARN_ON(ids[n_ids - 1] == WLAN_EID_EXTENSION))
1776 return false;
1777
1778 i = 0;
1779 while (i < n_ids) {
1780 if (ids[i] == WLAN_EID_EXTENSION) {
1781 if (id_ext && (ids[i + 1] == id))
1782 return true;
1783
1784 i += 2;
1785 continue;
1786 }
1787
1788 if (ids[i] == id && !id_ext)
1789 return true;
1790
1791 i++;
1792 }
1793 return false;
1794}
1795
1796static size_t skip_ie(const u8 *ies, size_t ielen, size_t pos)
1797{
1798 /* we assume a validly formed IEs buffer */
1799 u8 len = ies[pos + 1];
1800
1801 pos += 2 + len;
1802
1803 /* the IE itself must have 255 bytes for fragments to follow */
1804 if (len < 255)
1805 return pos;
1806
1807 while (pos < ielen && ies[pos] == WLAN_EID_FRAGMENT) {
1808 len = ies[pos + 1];
1809 pos += 2 + len;
1810 }
1811
1812 return pos;
1813}
1814
1815size_t ieee80211_ie_split_ric(const u8 *ies, size_t ielen,
1816 const u8 *ids, int n_ids,
1817 const u8 *after_ric, int n_after_ric,
1818 size_t offset)
1819{
1820 size_t pos = offset;
1821
1822 while (pos < ielen) {
1823 u8 ext = 0;
1824
1825 if (ies[pos] == WLAN_EID_EXTENSION)
1826 ext = 2;
1827 if ((pos + ext) >= ielen)
1828 break;
1829
1830 if (!ieee80211_id_in_list(ids, n_ids, ies[pos + ext],
1831 ies[pos] == WLAN_EID_EXTENSION))
1832 break;
1833
1834 if (ies[pos] == WLAN_EID_RIC_DATA && n_after_ric) {
1835 pos = skip_ie(ies, ielen, pos);
1836
1837 while (pos < ielen) {
1838 if (ies[pos] == WLAN_EID_EXTENSION)
1839 ext = 2;
1840 else
1841 ext = 0;
1842
1843 if ((pos + ext) >= ielen)
1844 break;
1845
1846 if (!ieee80211_id_in_list(after_ric,
1847 n_after_ric,
1848 ies[pos + ext],
1849 ext == 2))
1850 pos = skip_ie(ies, ielen, pos);
1851 else
1852 break;
1853 }
1854 } else {
1855 pos = skip_ie(ies, ielen, pos);
1856 }
1857 }
1858
1859 return pos;
1860}
1861EXPORT_SYMBOL(ieee80211_ie_split_ric);
1862
1863bool ieee80211_operating_class_to_band(u8 operating_class,
1864 enum nl80211_band *band)
1865{
1866 switch (operating_class) {
1867 case 112:
1868 case 115 ... 127:
1869 case 128 ... 130:
1870 *band = NL80211_BAND_5GHZ;
1871 return true;
1872 case 131 ... 135:
1873 *band = NL80211_BAND_6GHZ;
1874 return true;
1875 case 81:
1876 case 82:
1877 case 83:
1878 case 84:
1879 *band = NL80211_BAND_2GHZ;
1880 return true;
1881 case 180:
1882 *band = NL80211_BAND_60GHZ;
1883 return true;
1884 }
1885
1886 return false;
1887}
1888EXPORT_SYMBOL(ieee80211_operating_class_to_band);
1889
1890bool ieee80211_chandef_to_operating_class(struct cfg80211_chan_def *chandef,
1891 u8 *op_class)
1892{
1893 u8 vht_opclass;
1894 u32 freq = chandef->center_freq1;
1895
1896 if (freq >= 2412 && freq <= 2472) {
1897 if (chandef->width > NL80211_CHAN_WIDTH_40)
1898 return false;
1899
1900 /* 2.407 GHz, channels 1..13 */
1901 if (chandef->width == NL80211_CHAN_WIDTH_40) {
1902 if (freq > chandef->chan->center_freq)
1903 *op_class = 83; /* HT40+ */
1904 else
1905 *op_class = 84; /* HT40- */
1906 } else {
1907 *op_class = 81;
1908 }
1909
1910 return true;
1911 }
1912
1913 if (freq == 2484) {
1914 /* channel 14 is only for IEEE 802.11b */
1915 if (chandef->width != NL80211_CHAN_WIDTH_20_NOHT)
1916 return false;
1917
1918 *op_class = 82; /* channel 14 */
1919 return true;
1920 }
1921
1922 switch (chandef->width) {
1923 case NL80211_CHAN_WIDTH_80:
1924 vht_opclass = 128;
1925 break;
1926 case NL80211_CHAN_WIDTH_160:
1927 vht_opclass = 129;
1928 break;
1929 case NL80211_CHAN_WIDTH_80P80:
1930 vht_opclass = 130;
1931 break;
1932 case NL80211_CHAN_WIDTH_10:
1933 case NL80211_CHAN_WIDTH_5:
1934 return false; /* unsupported for now */
1935 default:
1936 vht_opclass = 0;
1937 break;
1938 }
1939
1940 /* 5 GHz, channels 36..48 */
1941 if (freq >= 5180 && freq <= 5240) {
1942 if (vht_opclass) {
1943 *op_class = vht_opclass;
1944 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1945 if (freq > chandef->chan->center_freq)
1946 *op_class = 116;
1947 else
1948 *op_class = 117;
1949 } else {
1950 *op_class = 115;
1951 }
1952
1953 return true;
1954 }
1955
1956 /* 5 GHz, channels 52..64 */
1957 if (freq >= 5260 && freq <= 5320) {
1958 if (vht_opclass) {
1959 *op_class = vht_opclass;
1960 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1961 if (freq > chandef->chan->center_freq)
1962 *op_class = 119;
1963 else
1964 *op_class = 120;
1965 } else {
1966 *op_class = 118;
1967 }
1968
1969 return true;
1970 }
1971
1972 /* 5 GHz, channels 100..144 */
1973 if (freq >= 5500 && freq <= 5720) {
1974 if (vht_opclass) {
1975 *op_class = vht_opclass;
1976 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1977 if (freq > chandef->chan->center_freq)
1978 *op_class = 122;
1979 else
1980 *op_class = 123;
1981 } else {
1982 *op_class = 121;
1983 }
1984
1985 return true;
1986 }
1987
1988 /* 5 GHz, channels 149..169 */
1989 if (freq >= 5745 && freq <= 5845) {
1990 if (vht_opclass) {
1991 *op_class = vht_opclass;
1992 } else if (chandef->width == NL80211_CHAN_WIDTH_40) {
1993 if (freq > chandef->chan->center_freq)
1994 *op_class = 126;
1995 else
1996 *op_class = 127;
1997 } else if (freq <= 5805) {
1998 *op_class = 124;
1999 } else {
2000 *op_class = 125;
2001 }
2002
2003 return true;
2004 }
2005
2006 /* 56.16 GHz, channel 1..4 */
2007 if (freq >= 56160 + 2160 * 1 && freq <= 56160 + 2160 * 6) {
2008 if (chandef->width >= NL80211_CHAN_WIDTH_40)
2009 return false;
2010
2011 *op_class = 180;
2012 return true;
2013 }
2014
2015 /* not supported yet */
2016 return false;
2017}
2018EXPORT_SYMBOL(ieee80211_chandef_to_operating_class);
2019
2020static int cfg80211_wdev_bi(struct wireless_dev *wdev)
2021{
2022 switch (wdev->iftype) {
2023 case NL80211_IFTYPE_AP:
2024 case NL80211_IFTYPE_P2P_GO:
2025 WARN_ON(wdev->valid_links);
2026 return wdev->links[0].ap.beacon_interval;
2027 case NL80211_IFTYPE_MESH_POINT:
2028 return wdev->u.mesh.beacon_interval;
2029 case NL80211_IFTYPE_ADHOC:
2030 return wdev->u.ibss.beacon_interval;
2031 default:
2032 break;
2033 }
2034
2035 return 0;
2036}
2037
2038static void cfg80211_calculate_bi_data(struct wiphy *wiphy, u32 new_beacon_int,
2039 u32 *beacon_int_gcd,
2040 bool *beacon_int_different)
2041{
2042 struct wireless_dev *wdev;
2043
2044 *beacon_int_gcd = 0;
2045 *beacon_int_different = false;
2046
2047 list_for_each_entry(wdev, &wiphy->wdev_list, list) {
2048 int wdev_bi;
2049
2050 /* this feature isn't supported with MLO */
2051 if (wdev->valid_links)
2052 continue;
2053
2054 wdev_bi = cfg80211_wdev_bi(wdev);
2055
2056 if (!wdev_bi)
2057 continue;
2058
2059 if (!*beacon_int_gcd) {
2060 *beacon_int_gcd = wdev_bi;
2061 continue;
2062 }
2063
2064 if (wdev_bi == *beacon_int_gcd)
2065 continue;
2066
2067 *beacon_int_different = true;
2068 *beacon_int_gcd = gcd(*beacon_int_gcd, wdev_bi);
2069 }
2070
2071 if (new_beacon_int && *beacon_int_gcd != new_beacon_int) {
2072 if (*beacon_int_gcd)
2073 *beacon_int_different = true;
2074 *beacon_int_gcd = gcd(*beacon_int_gcd, new_beacon_int);
2075 }
2076}
2077
2078int cfg80211_validate_beacon_int(struct cfg80211_registered_device *rdev,
2079 enum nl80211_iftype iftype, u32 beacon_int)
2080{
2081 /*
2082 * This is just a basic pre-condition check; if interface combinations
2083 * are possible the driver must already be checking those with a call
2084 * to cfg80211_check_combinations(), in which case we'll validate more
2085 * through the cfg80211_calculate_bi_data() call and code in
2086 * cfg80211_iter_combinations().
2087 */
2088
2089 if (beacon_int < 10 || beacon_int > 10000)
2090 return -EINVAL;
2091
2092 return 0;
2093}
2094
2095int cfg80211_iter_combinations(struct wiphy *wiphy,
2096 struct iface_combination_params *params,
2097 void (*iter)(const struct ieee80211_iface_combination *c,
2098 void *data),
2099 void *data)
2100{
2101 const struct ieee80211_regdomain *regdom;
2102 enum nl80211_dfs_regions region = 0;
2103 int i, j, iftype;
2104 int num_interfaces = 0;
2105 u32 used_iftypes = 0;
2106 u32 beacon_int_gcd;
2107 bool beacon_int_different;
2108
2109 /*
2110 * This is a bit strange, since the iteration used to rely only on
2111 * the data given by the driver, but here it now relies on context,
2112 * in form of the currently operating interfaces.
2113 * This is OK for all current users, and saves us from having to
2114 * push the GCD calculations into all the drivers.
2115 * In the future, this should probably rely more on data that's in
2116 * cfg80211 already - the only thing not would appear to be any new
2117 * interfaces (while being brought up) and channel/radar data.
2118 */
2119 cfg80211_calculate_bi_data(wiphy, params->new_beacon_int,
2120 &beacon_int_gcd, &beacon_int_different);
2121
2122 if (params->radar_detect) {
2123 rcu_read_lock();
2124 regdom = rcu_dereference(cfg80211_regdomain);
2125 if (regdom)
2126 region = regdom->dfs_region;
2127 rcu_read_unlock();
2128 }
2129
2130 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
2131 num_interfaces += params->iftype_num[iftype];
2132 if (params->iftype_num[iftype] > 0 &&
2133 !cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
2134 used_iftypes |= BIT(iftype);
2135 }
2136
2137 for (i = 0; i < wiphy->n_iface_combinations; i++) {
2138 const struct ieee80211_iface_combination *c;
2139 struct ieee80211_iface_limit *limits;
2140 u32 all_iftypes = 0;
2141
2142 c = &wiphy->iface_combinations[i];
2143
2144 if (num_interfaces > c->max_interfaces)
2145 continue;
2146 if (params->num_different_channels > c->num_different_channels)
2147 continue;
2148
2149 limits = kmemdup(c->limits, sizeof(limits[0]) * c->n_limits,
2150 GFP_KERNEL);
2151 if (!limits)
2152 return -ENOMEM;
2153
2154 for (iftype = 0; iftype < NUM_NL80211_IFTYPES; iftype++) {
2155 if (cfg80211_iftype_allowed(wiphy, iftype, 0, 1))
2156 continue;
2157 for (j = 0; j < c->n_limits; j++) {
2158 all_iftypes |= limits[j].types;
2159 if (!(limits[j].types & BIT(iftype)))
2160 continue;
2161 if (limits[j].max < params->iftype_num[iftype])
2162 goto cont;
2163 limits[j].max -= params->iftype_num[iftype];
2164 }
2165 }
2166
2167 if (params->radar_detect !=
2168 (c->radar_detect_widths & params->radar_detect))
2169 goto cont;
2170
2171 if (params->radar_detect && c->radar_detect_regions &&
2172 !(c->radar_detect_regions & BIT(region)))
2173 goto cont;
2174
2175 /* Finally check that all iftypes that we're currently
2176 * using are actually part of this combination. If they
2177 * aren't then we can't use this combination and have
2178 * to continue to the next.
2179 */
2180 if ((all_iftypes & used_iftypes) != used_iftypes)
2181 goto cont;
2182
2183 if (beacon_int_gcd) {
2184 if (c->beacon_int_min_gcd &&
2185 beacon_int_gcd < c->beacon_int_min_gcd)
2186 goto cont;
2187 if (!c->beacon_int_min_gcd && beacon_int_different)
2188 goto cont;
2189 }
2190
2191 /* This combination covered all interface types and
2192 * supported the requested numbers, so we're good.
2193 */
2194
2195 (*iter)(c, data);
2196 cont:
2197 kfree(limits);
2198 }
2199
2200 return 0;
2201}
2202EXPORT_SYMBOL(cfg80211_iter_combinations);
2203
2204static void
2205cfg80211_iter_sum_ifcombs(const struct ieee80211_iface_combination *c,
2206 void *data)
2207{
2208 int *num = data;
2209 (*num)++;
2210}
2211
2212int cfg80211_check_combinations(struct wiphy *wiphy,
2213 struct iface_combination_params *params)
2214{
2215 int err, num = 0;
2216
2217 err = cfg80211_iter_combinations(wiphy, params,
2218 cfg80211_iter_sum_ifcombs, &num);
2219 if (err)
2220 return err;
2221 if (num == 0)
2222 return -EBUSY;
2223
2224 return 0;
2225}
2226EXPORT_SYMBOL(cfg80211_check_combinations);
2227
2228int ieee80211_get_ratemask(struct ieee80211_supported_band *sband,
2229 const u8 *rates, unsigned int n_rates,
2230 u32 *mask)
2231{
2232 int i, j;
2233
2234 if (!sband)
2235 return -EINVAL;
2236
2237 if (n_rates == 0 || n_rates > NL80211_MAX_SUPP_RATES)
2238 return -EINVAL;
2239
2240 *mask = 0;
2241
2242 for (i = 0; i < n_rates; i++) {
2243 int rate = (rates[i] & 0x7f) * 5;
2244 bool found = false;
2245
2246 for (j = 0; j < sband->n_bitrates; j++) {
2247 if (sband->bitrates[j].bitrate == rate) {
2248 found = true;
2249 *mask |= BIT(j);
2250 break;
2251 }
2252 }
2253 if (!found)
2254 return -EINVAL;
2255 }
2256
2257 /*
2258 * mask must have at least one bit set here since we
2259 * didn't accept a 0-length rates array nor allowed
2260 * entries in the array that didn't exist
2261 */
2262
2263 return 0;
2264}
2265
2266unsigned int ieee80211_get_num_supported_channels(struct wiphy *wiphy)
2267{
2268 enum nl80211_band band;
2269 unsigned int n_channels = 0;
2270
2271 for (band = 0; band < NUM_NL80211_BANDS; band++)
2272 if (wiphy->bands[band])
2273 n_channels += wiphy->bands[band]->n_channels;
2274
2275 return n_channels;
2276}
2277EXPORT_SYMBOL(ieee80211_get_num_supported_channels);
2278
2279int cfg80211_get_station(struct net_device *dev, const u8 *mac_addr,
2280 struct station_info *sinfo)
2281{
2282 struct cfg80211_registered_device *rdev;
2283 struct wireless_dev *wdev;
2284
2285 wdev = dev->ieee80211_ptr;
2286 if (!wdev)
2287 return -EOPNOTSUPP;
2288
2289 rdev = wiphy_to_rdev(wdev->wiphy);
2290 if (!rdev->ops->get_station)
2291 return -EOPNOTSUPP;
2292
2293 memset(sinfo, 0, sizeof(*sinfo));
2294
2295 return rdev_get_station(rdev, dev, mac_addr, sinfo);
2296}
2297EXPORT_SYMBOL(cfg80211_get_station);
2298
2299void cfg80211_free_nan_func(struct cfg80211_nan_func *f)
2300{
2301 int i;
2302
2303 if (!f)
2304 return;
2305
2306 kfree(f->serv_spec_info);
2307 kfree(f->srf_bf);
2308 kfree(f->srf_macs);
2309 for (i = 0; i < f->num_rx_filters; i++)
2310 kfree(f->rx_filters[i].filter);
2311
2312 for (i = 0; i < f->num_tx_filters; i++)
2313 kfree(f->tx_filters[i].filter);
2314
2315 kfree(f->rx_filters);
2316 kfree(f->tx_filters);
2317 kfree(f);
2318}
2319EXPORT_SYMBOL(cfg80211_free_nan_func);
2320
2321bool cfg80211_does_bw_fit_range(const struct ieee80211_freq_range *freq_range,
2322 u32 center_freq_khz, u32 bw_khz)
2323{
2324 u32 start_freq_khz, end_freq_khz;
2325
2326 start_freq_khz = center_freq_khz - (bw_khz / 2);
2327 end_freq_khz = center_freq_khz + (bw_khz / 2);
2328
2329 if (start_freq_khz >= freq_range->start_freq_khz &&
2330 end_freq_khz <= freq_range->end_freq_khz)
2331 return true;
2332
2333 return false;
2334}
2335
2336int cfg80211_sinfo_alloc_tid_stats(struct station_info *sinfo, gfp_t gfp)
2337{
2338 sinfo->pertid = kcalloc(IEEE80211_NUM_TIDS + 1,
2339 sizeof(*(sinfo->pertid)),
2340 gfp);
2341 if (!sinfo->pertid)
2342 return -ENOMEM;
2343
2344 return 0;
2345}
2346EXPORT_SYMBOL(cfg80211_sinfo_alloc_tid_stats);
2347
2348/* See IEEE 802.1H for LLC/SNAP encapsulation/decapsulation */
2349/* Ethernet-II snap header (RFC1042 for most EtherTypes) */
2350const unsigned char rfc1042_header[] __aligned(2) =
2351 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0x00 };
2352EXPORT_SYMBOL(rfc1042_header);
2353
2354/* Bridge-Tunnel header (for EtherTypes ETH_P_AARP and ETH_P_IPX) */
2355const unsigned char bridge_tunnel_header[] __aligned(2) =
2356 { 0xaa, 0xaa, 0x03, 0x00, 0x00, 0xf8 };
2357EXPORT_SYMBOL(bridge_tunnel_header);
2358
2359/* Layer 2 Update frame (802.2 Type 1 LLC XID Update response) */
2360struct iapp_layer2_update {
2361 u8 da[ETH_ALEN]; /* broadcast */
2362 u8 sa[ETH_ALEN]; /* STA addr */
2363 __be16 len; /* 6 */
2364 u8 dsap; /* 0 */
2365 u8 ssap; /* 0 */
2366 u8 control;
2367 u8 xid_info[3];
2368} __packed;
2369
2370void cfg80211_send_layer2_update(struct net_device *dev, const u8 *addr)
2371{
2372 struct iapp_layer2_update *msg;
2373 struct sk_buff *skb;
2374
2375 /* Send Level 2 Update Frame to update forwarding tables in layer 2
2376 * bridge devices */
2377
2378 skb = dev_alloc_skb(sizeof(*msg));
2379 if (!skb)
2380 return;
2381 msg = skb_put(skb, sizeof(*msg));
2382
2383 /* 802.2 Type 1 Logical Link Control (LLC) Exchange Identifier (XID)
2384 * Update response frame; IEEE Std 802.2-1998, 5.4.1.2.1 */
2385
2386 eth_broadcast_addr(msg->da);
2387 ether_addr_copy(msg->sa, addr);
2388 msg->len = htons(6);
2389 msg->dsap = 0;
2390 msg->ssap = 0x01; /* NULL LSAP, CR Bit: Response */
2391 msg->control = 0xaf; /* XID response lsb.1111F101.
2392 * F=0 (no poll command; unsolicited frame) */
2393 msg->xid_info[0] = 0x81; /* XID format identifier */
2394 msg->xid_info[1] = 1; /* LLC types/classes: Type 1 LLC */
2395 msg->xid_info[2] = 0; /* XID sender's receive window size (RW) */
2396
2397 skb->dev = dev;
2398 skb->protocol = eth_type_trans(skb, dev);
2399 memset(skb->cb, 0, sizeof(skb->cb));
2400 netif_rx(skb);
2401}
2402EXPORT_SYMBOL(cfg80211_send_layer2_update);
2403
2404int ieee80211_get_vht_max_nss(struct ieee80211_vht_cap *cap,
2405 enum ieee80211_vht_chanwidth bw,
2406 int mcs, bool ext_nss_bw_capable,
2407 unsigned int max_vht_nss)
2408{
2409 u16 map = le16_to_cpu(cap->supp_mcs.rx_mcs_map);
2410 int ext_nss_bw;
2411 int supp_width;
2412 int i, mcs_encoding;
2413
2414 if (map == 0xffff)
2415 return 0;
2416
2417 if (WARN_ON(mcs > 9 || max_vht_nss > 8))
2418 return 0;
2419 if (mcs <= 7)
2420 mcs_encoding = 0;
2421 else if (mcs == 8)
2422 mcs_encoding = 1;
2423 else
2424 mcs_encoding = 2;
2425
2426 if (!max_vht_nss) {
2427 /* find max_vht_nss for the given MCS */
2428 for (i = 7; i >= 0; i--) {
2429 int supp = (map >> (2 * i)) & 3;
2430
2431 if (supp == 3)
2432 continue;
2433
2434 if (supp >= mcs_encoding) {
2435 max_vht_nss = i + 1;
2436 break;
2437 }
2438 }
2439 }
2440
2441 if (!(cap->supp_mcs.tx_mcs_map &
2442 cpu_to_le16(IEEE80211_VHT_EXT_NSS_BW_CAPABLE)))
2443 return max_vht_nss;
2444
2445 ext_nss_bw = le32_get_bits(cap->vht_cap_info,
2446 IEEE80211_VHT_CAP_EXT_NSS_BW_MASK);
2447 supp_width = le32_get_bits(cap->vht_cap_info,
2448 IEEE80211_VHT_CAP_SUPP_CHAN_WIDTH_MASK);
2449
2450 /* if not capable, treat ext_nss_bw as 0 */
2451 if (!ext_nss_bw_capable)
2452 ext_nss_bw = 0;
2453
2454 /* This is invalid */
2455 if (supp_width == 3)
2456 return 0;
2457
2458 /* This is an invalid combination so pretend nothing is supported */
2459 if (supp_width == 2 && (ext_nss_bw == 1 || ext_nss_bw == 2))
2460 return 0;
2461
2462 /*
2463 * Cover all the special cases according to IEEE 802.11-2016
2464 * Table 9-250. All other cases are either factor of 1 or not
2465 * valid/supported.
2466 */
2467 switch (bw) {
2468 case IEEE80211_VHT_CHANWIDTH_USE_HT:
2469 case IEEE80211_VHT_CHANWIDTH_80MHZ:
2470 if ((supp_width == 1 || supp_width == 2) &&
2471 ext_nss_bw == 3)
2472 return 2 * max_vht_nss;
2473 break;
2474 case IEEE80211_VHT_CHANWIDTH_160MHZ:
2475 if (supp_width == 0 &&
2476 (ext_nss_bw == 1 || ext_nss_bw == 2))
2477 return max_vht_nss / 2;
2478 if (supp_width == 0 &&
2479 ext_nss_bw == 3)
2480 return (3 * max_vht_nss) / 4;
2481 if (supp_width == 1 &&
2482 ext_nss_bw == 3)
2483 return 2 * max_vht_nss;
2484 break;
2485 case IEEE80211_VHT_CHANWIDTH_80P80MHZ:
2486 if (supp_width == 0 && ext_nss_bw == 1)
2487 return 0; /* not possible */
2488 if (supp_width == 0 &&
2489 ext_nss_bw == 2)
2490 return max_vht_nss / 2;
2491 if (supp_width == 0 &&
2492 ext_nss_bw == 3)
2493 return (3 * max_vht_nss) / 4;
2494 if (supp_width == 1 &&
2495 ext_nss_bw == 0)
2496 return 0; /* not possible */
2497 if (supp_width == 1 &&
2498 ext_nss_bw == 1)
2499 return max_vht_nss / 2;
2500 if (supp_width == 1 &&
2501 ext_nss_bw == 2)
2502 return (3 * max_vht_nss) / 4;
2503 break;
2504 }
2505
2506 /* not covered or invalid combination received */
2507 return max_vht_nss;
2508}
2509EXPORT_SYMBOL(ieee80211_get_vht_max_nss);
2510
2511bool cfg80211_iftype_allowed(struct wiphy *wiphy, enum nl80211_iftype iftype,
2512 bool is_4addr, u8 check_swif)
2513
2514{
2515 bool is_vlan = iftype == NL80211_IFTYPE_AP_VLAN;
2516
2517 switch (check_swif) {
2518 case 0:
2519 if (is_vlan && is_4addr)
2520 return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2521 return wiphy->interface_modes & BIT(iftype);
2522 case 1:
2523 if (!(wiphy->software_iftypes & BIT(iftype)) && is_vlan)
2524 return wiphy->flags & WIPHY_FLAG_4ADDR_AP;
2525 return wiphy->software_iftypes & BIT(iftype);
2526 default:
2527 break;
2528 }
2529
2530 return false;
2531}
2532EXPORT_SYMBOL(cfg80211_iftype_allowed);
2533
2534void cfg80211_remove_link(struct wireless_dev *wdev, unsigned int link_id)
2535{
2536 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wdev->wiphy);
2537
2538 ASSERT_WDEV_LOCK(wdev);
2539
2540 switch (wdev->iftype) {
2541 case NL80211_IFTYPE_AP:
2542 case NL80211_IFTYPE_P2P_GO:
2543 __cfg80211_stop_ap(rdev, wdev->netdev, link_id, true);
2544 break;
2545 default:
2546 /* per-link not relevant */
2547 break;
2548 }
2549
2550 wdev->valid_links &= ~BIT(link_id);
2551
2552 rdev_del_intf_link(rdev, wdev, link_id);
2553
2554 eth_zero_addr(wdev->links[link_id].addr);
2555}
2556
2557void cfg80211_remove_links(struct wireless_dev *wdev)
2558{
2559 unsigned int link_id;
2560
2561 wdev_lock(wdev);
2562 if (wdev->valid_links) {
2563 for_each_valid_link(wdev, link_id)
2564 cfg80211_remove_link(wdev, link_id);
2565 }
2566 wdev_unlock(wdev);
2567}
2568
2569int cfg80211_remove_virtual_intf(struct cfg80211_registered_device *rdev,
2570 struct wireless_dev *wdev)
2571{
2572 cfg80211_remove_links(wdev);
2573
2574 return rdev_del_virtual_intf(rdev, wdev);
2575}
2576
2577const struct wiphy_iftype_ext_capab *
2578cfg80211_get_iftype_ext_capa(struct wiphy *wiphy, enum nl80211_iftype type)
2579{
2580 int i;
2581
2582 for (i = 0; i < wiphy->num_iftype_ext_capab; i++) {
2583 if (wiphy->iftype_ext_capab[i].iftype == type)
2584 return &wiphy->iftype_ext_capab[i];
2585 }
2586
2587 return NULL;
2588}
2589EXPORT_SYMBOL(cfg80211_get_iftype_ext_capa);