Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * cfg80211 scan result handling
4 *
5 * Copyright 2008 Johannes Berg <johannes@sipsolutions.net>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2016 Intel Deutschland GmbH
8 * Copyright (C) 2018-2023 Intel Corporation
9 */
10#include <linux/kernel.h>
11#include <linux/slab.h>
12#include <linux/module.h>
13#include <linux/netdevice.h>
14#include <linux/wireless.h>
15#include <linux/nl80211.h>
16#include <linux/etherdevice.h>
17#include <linux/crc32.h>
18#include <linux/bitfield.h>
19#include <net/arp.h>
20#include <net/cfg80211.h>
21#include <net/cfg80211-wext.h>
22#include <net/iw_handler.h>
23#include "core.h"
24#include "nl80211.h"
25#include "wext-compat.h"
26#include "rdev-ops.h"
27
28/**
29 * DOC: BSS tree/list structure
30 *
31 * At the top level, the BSS list is kept in both a list in each
32 * registered device (@bss_list) as well as an RB-tree for faster
33 * lookup. In the RB-tree, entries can be looked up using their
34 * channel, MESHID, MESHCONF (for MBSSes) or channel, BSSID, SSID
35 * for other BSSes.
36 *
37 * Due to the possibility of hidden SSIDs, there's a second level
38 * structure, the "hidden_list" and "hidden_beacon_bss" pointer.
39 * The hidden_list connects all BSSes belonging to a single AP
40 * that has a hidden SSID, and connects beacon and probe response
41 * entries. For a probe response entry for a hidden SSID, the
42 * hidden_beacon_bss pointer points to the BSS struct holding the
43 * beacon's information.
44 *
45 * Reference counting is done for all these references except for
46 * the hidden_list, so that a beacon BSS struct that is otherwise
47 * not referenced has one reference for being on the bss_list and
48 * one for each probe response entry that points to it using the
49 * hidden_beacon_bss pointer. When a BSS struct that has such a
50 * pointer is get/put, the refcount update is also propagated to
51 * the referenced struct, this ensure that it cannot get removed
52 * while somebody is using the probe response version.
53 *
54 * Note that the hidden_beacon_bss pointer never changes, due to
55 * the reference counting. Therefore, no locking is needed for
56 * it.
57 *
58 * Also note that the hidden_beacon_bss pointer is only relevant
59 * if the driver uses something other than the IEs, e.g. private
60 * data stored in the BSS struct, since the beacon IEs are
61 * also linked into the probe response struct.
62 */
63
64/*
65 * Limit the number of BSS entries stored in mac80211. Each one is
66 * a bit over 4k at most, so this limits to roughly 4-5M of memory.
67 * If somebody wants to really attack this though, they'd likely
68 * use small beacons, and only one type of frame, limiting each of
69 * the entries to a much smaller size (in order to generate more
70 * entries in total, so overhead is bigger.)
71 */
72static int bss_entries_limit = 1000;
73module_param(bss_entries_limit, int, 0644);
74MODULE_PARM_DESC(bss_entries_limit,
75 "limit to number of scan BSS entries (per wiphy, default 1000)");
76
77#define IEEE80211_SCAN_RESULT_EXPIRE (30 * HZ)
78
79/**
80 * struct cfg80211_colocated_ap - colocated AP information
81 *
82 * @list: linked list to all colocated aPS
83 * @bssid: BSSID of the reported AP
84 * @ssid: SSID of the reported AP
85 * @ssid_len: length of the ssid
86 * @center_freq: frequency the reported AP is on
87 * @unsolicited_probe: the reported AP is part of an ESS, where all the APs
88 * that operate in the same channel as the reported AP and that might be
89 * detected by a STA receiving this frame, are transmitting unsolicited
90 * Probe Response frames every 20 TUs
91 * @oct_recommended: OCT is recommended to exchange MMPDUs with the reported AP
92 * @same_ssid: the reported AP has the same SSID as the reporting AP
93 * @multi_bss: the reported AP is part of a multiple BSSID set
94 * @transmitted_bssid: the reported AP is the transmitting BSSID
95 * @colocated_ess: all the APs that share the same ESS as the reported AP are
96 * colocated and can be discovered via legacy bands.
97 * @short_ssid_valid: short_ssid is valid and can be used
98 * @short_ssid: the short SSID for this SSID
99 */
100struct cfg80211_colocated_ap {
101 struct list_head list;
102 u8 bssid[ETH_ALEN];
103 u8 ssid[IEEE80211_MAX_SSID_LEN];
104 size_t ssid_len;
105 u32 short_ssid;
106 u32 center_freq;
107 u8 unsolicited_probe:1,
108 oct_recommended:1,
109 same_ssid:1,
110 multi_bss:1,
111 transmitted_bssid:1,
112 colocated_ess:1,
113 short_ssid_valid:1;
114};
115
116static void bss_free(struct cfg80211_internal_bss *bss)
117{
118 struct cfg80211_bss_ies *ies;
119
120 if (WARN_ON(atomic_read(&bss->hold)))
121 return;
122
123 ies = (void *)rcu_access_pointer(bss->pub.beacon_ies);
124 if (ies && !bss->pub.hidden_beacon_bss)
125 kfree_rcu(ies, rcu_head);
126 ies = (void *)rcu_access_pointer(bss->pub.proberesp_ies);
127 if (ies)
128 kfree_rcu(ies, rcu_head);
129
130 /*
131 * This happens when the module is removed, it doesn't
132 * really matter any more save for completeness
133 */
134 if (!list_empty(&bss->hidden_list))
135 list_del(&bss->hidden_list);
136
137 kfree(bss);
138}
139
140static inline void bss_ref_get(struct cfg80211_registered_device *rdev,
141 struct cfg80211_internal_bss *bss)
142{
143 lockdep_assert_held(&rdev->bss_lock);
144
145 bss->refcount++;
146
147 if (bss->pub.hidden_beacon_bss)
148 bss_from_pub(bss->pub.hidden_beacon_bss)->refcount++;
149
150 if (bss->pub.transmitted_bss)
151 bss_from_pub(bss->pub.transmitted_bss)->refcount++;
152}
153
154static inline void bss_ref_put(struct cfg80211_registered_device *rdev,
155 struct cfg80211_internal_bss *bss)
156{
157 lockdep_assert_held(&rdev->bss_lock);
158
159 if (bss->pub.hidden_beacon_bss) {
160 struct cfg80211_internal_bss *hbss;
161
162 hbss = bss_from_pub(bss->pub.hidden_beacon_bss);
163 hbss->refcount--;
164 if (hbss->refcount == 0)
165 bss_free(hbss);
166 }
167
168 if (bss->pub.transmitted_bss) {
169 struct cfg80211_internal_bss *tbss;
170
171 tbss = bss_from_pub(bss->pub.transmitted_bss);
172 tbss->refcount--;
173 if (tbss->refcount == 0)
174 bss_free(tbss);
175 }
176
177 bss->refcount--;
178 if (bss->refcount == 0)
179 bss_free(bss);
180}
181
182static bool __cfg80211_unlink_bss(struct cfg80211_registered_device *rdev,
183 struct cfg80211_internal_bss *bss)
184{
185 lockdep_assert_held(&rdev->bss_lock);
186
187 if (!list_empty(&bss->hidden_list)) {
188 /*
189 * don't remove the beacon entry if it has
190 * probe responses associated with it
191 */
192 if (!bss->pub.hidden_beacon_bss)
193 return false;
194 /*
195 * if it's a probe response entry break its
196 * link to the other entries in the group
197 */
198 list_del_init(&bss->hidden_list);
199 }
200
201 list_del_init(&bss->list);
202 list_del_init(&bss->pub.nontrans_list);
203 rb_erase(&bss->rbn, &rdev->bss_tree);
204 rdev->bss_entries--;
205 WARN_ONCE((rdev->bss_entries == 0) ^ list_empty(&rdev->bss_list),
206 "rdev bss entries[%d]/list[empty:%d] corruption\n",
207 rdev->bss_entries, list_empty(&rdev->bss_list));
208 bss_ref_put(rdev, bss);
209 return true;
210}
211
212bool cfg80211_is_element_inherited(const struct element *elem,
213 const struct element *non_inherit_elem)
214{
215 u8 id_len, ext_id_len, i, loop_len, id;
216 const u8 *list;
217
218 if (elem->id == WLAN_EID_MULTIPLE_BSSID)
219 return false;
220
221 if (!non_inherit_elem || non_inherit_elem->datalen < 2)
222 return true;
223
224 /*
225 * non inheritance element format is:
226 * ext ID (56) | IDs list len | list | extension IDs list len | list
227 * Both lists are optional. Both lengths are mandatory.
228 * This means valid length is:
229 * elem_len = 1 (extension ID) + 2 (list len fields) + list lengths
230 */
231 id_len = non_inherit_elem->data[1];
232 if (non_inherit_elem->datalen < 3 + id_len)
233 return true;
234
235 ext_id_len = non_inherit_elem->data[2 + id_len];
236 if (non_inherit_elem->datalen < 3 + id_len + ext_id_len)
237 return true;
238
239 if (elem->id == WLAN_EID_EXTENSION) {
240 if (!ext_id_len)
241 return true;
242 loop_len = ext_id_len;
243 list = &non_inherit_elem->data[3 + id_len];
244 id = elem->data[0];
245 } else {
246 if (!id_len)
247 return true;
248 loop_len = id_len;
249 list = &non_inherit_elem->data[2];
250 id = elem->id;
251 }
252
253 for (i = 0; i < loop_len; i++) {
254 if (list[i] == id)
255 return false;
256 }
257
258 return true;
259}
260EXPORT_SYMBOL(cfg80211_is_element_inherited);
261
262static size_t cfg80211_gen_new_ie(const u8 *ie, size_t ielen,
263 const u8 *subelement, size_t subie_len,
264 u8 *new_ie, gfp_t gfp)
265{
266 u8 *pos, *tmp;
267 const u8 *tmp_old, *tmp_new;
268 const struct element *non_inherit_elem;
269 u8 *sub_copy;
270
271 /* copy subelement as we need to change its content to
272 * mark an ie after it is processed.
273 */
274 sub_copy = kmemdup(subelement, subie_len, gfp);
275 if (!sub_copy)
276 return 0;
277
278 pos = &new_ie[0];
279
280 /* set new ssid */
281 tmp_new = cfg80211_find_ie(WLAN_EID_SSID, sub_copy, subie_len);
282 if (tmp_new) {
283 memcpy(pos, tmp_new, tmp_new[1] + 2);
284 pos += (tmp_new[1] + 2);
285 }
286
287 /* get non inheritance list if exists */
288 non_inherit_elem =
289 cfg80211_find_ext_elem(WLAN_EID_EXT_NON_INHERITANCE,
290 sub_copy, subie_len);
291
292 /* go through IEs in ie (skip SSID) and subelement,
293 * merge them into new_ie
294 */
295 tmp_old = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
296 tmp_old = (tmp_old) ? tmp_old + tmp_old[1] + 2 : ie;
297
298 while (tmp_old + 2 - ie <= ielen &&
299 tmp_old + tmp_old[1] + 2 - ie <= ielen) {
300 if (tmp_old[0] == 0) {
301 tmp_old++;
302 continue;
303 }
304
305 if (tmp_old[0] == WLAN_EID_EXTENSION)
306 tmp = (u8 *)cfg80211_find_ext_ie(tmp_old[2], sub_copy,
307 subie_len);
308 else
309 tmp = (u8 *)cfg80211_find_ie(tmp_old[0], sub_copy,
310 subie_len);
311
312 if (!tmp) {
313 const struct element *old_elem = (void *)tmp_old;
314
315 /* ie in old ie but not in subelement */
316 if (cfg80211_is_element_inherited(old_elem,
317 non_inherit_elem)) {
318 memcpy(pos, tmp_old, tmp_old[1] + 2);
319 pos += tmp_old[1] + 2;
320 }
321 } else {
322 /* ie in transmitting ie also in subelement,
323 * copy from subelement and flag the ie in subelement
324 * as copied (by setting eid field to WLAN_EID_SSID,
325 * which is skipped anyway).
326 * For vendor ie, compare OUI + type + subType to
327 * determine if they are the same ie.
328 */
329 if (tmp_old[0] == WLAN_EID_VENDOR_SPECIFIC) {
330 if (tmp_old[1] >= 5 && tmp[1] >= 5 &&
331 !memcmp(tmp_old + 2, tmp + 2, 5)) {
332 /* same vendor ie, copy from
333 * subelement
334 */
335 memcpy(pos, tmp, tmp[1] + 2);
336 pos += tmp[1] + 2;
337 tmp[0] = WLAN_EID_SSID;
338 } else {
339 memcpy(pos, tmp_old, tmp_old[1] + 2);
340 pos += tmp_old[1] + 2;
341 }
342 } else {
343 /* copy ie from subelement into new ie */
344 memcpy(pos, tmp, tmp[1] + 2);
345 pos += tmp[1] + 2;
346 tmp[0] = WLAN_EID_SSID;
347 }
348 }
349
350 if (tmp_old + tmp_old[1] + 2 - ie == ielen)
351 break;
352
353 tmp_old += tmp_old[1] + 2;
354 }
355
356 /* go through subelement again to check if there is any ie not
357 * copied to new ie, skip ssid, capability, bssid-index ie
358 */
359 tmp_new = sub_copy;
360 while (tmp_new + 2 - sub_copy <= subie_len &&
361 tmp_new + tmp_new[1] + 2 - sub_copy <= subie_len) {
362 if (!(tmp_new[0] == WLAN_EID_NON_TX_BSSID_CAP ||
363 tmp_new[0] == WLAN_EID_SSID)) {
364 memcpy(pos, tmp_new, tmp_new[1] + 2);
365 pos += tmp_new[1] + 2;
366 }
367 if (tmp_new + tmp_new[1] + 2 - sub_copy == subie_len)
368 break;
369 tmp_new += tmp_new[1] + 2;
370 }
371
372 kfree(sub_copy);
373 return pos - new_ie;
374}
375
376static bool is_bss(struct cfg80211_bss *a, const u8 *bssid,
377 const u8 *ssid, size_t ssid_len)
378{
379 const struct cfg80211_bss_ies *ies;
380 const struct element *ssid_elem;
381
382 if (bssid && !ether_addr_equal(a->bssid, bssid))
383 return false;
384
385 if (!ssid)
386 return true;
387
388 ies = rcu_access_pointer(a->ies);
389 if (!ies)
390 return false;
391 ssid_elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
392 if (!ssid_elem)
393 return false;
394 if (ssid_elem->datalen != ssid_len)
395 return false;
396 return memcmp(ssid_elem->data, ssid, ssid_len) == 0;
397}
398
399static int
400cfg80211_add_nontrans_list(struct cfg80211_bss *trans_bss,
401 struct cfg80211_bss *nontrans_bss)
402{
403 const struct element *ssid_elem;
404 struct cfg80211_bss *bss = NULL;
405
406 rcu_read_lock();
407 ssid_elem = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID);
408 if (!ssid_elem) {
409 rcu_read_unlock();
410 return -EINVAL;
411 }
412
413 /* check if nontrans_bss is in the list */
414 list_for_each_entry(bss, &trans_bss->nontrans_list, nontrans_list) {
415 if (is_bss(bss, nontrans_bss->bssid, ssid_elem->data,
416 ssid_elem->datalen)) {
417 rcu_read_unlock();
418 return 0;
419 }
420 }
421
422 rcu_read_unlock();
423
424 /*
425 * This is a bit weird - it's not on the list, but already on another
426 * one! The only way that could happen is if there's some BSSID/SSID
427 * shared by multiple APs in their multi-BSSID profiles, potentially
428 * with hidden SSID mixed in ... ignore it.
429 */
430 if (!list_empty(&nontrans_bss->nontrans_list))
431 return -EINVAL;
432
433 /* add to the list */
434 list_add_tail(&nontrans_bss->nontrans_list, &trans_bss->nontrans_list);
435 return 0;
436}
437
438static void __cfg80211_bss_expire(struct cfg80211_registered_device *rdev,
439 unsigned long expire_time)
440{
441 struct cfg80211_internal_bss *bss, *tmp;
442 bool expired = false;
443
444 lockdep_assert_held(&rdev->bss_lock);
445
446 list_for_each_entry_safe(bss, tmp, &rdev->bss_list, list) {
447 if (atomic_read(&bss->hold))
448 continue;
449 if (!time_after(expire_time, bss->ts))
450 continue;
451
452 if (__cfg80211_unlink_bss(rdev, bss))
453 expired = true;
454 }
455
456 if (expired)
457 rdev->bss_generation++;
458}
459
460static bool cfg80211_bss_expire_oldest(struct cfg80211_registered_device *rdev)
461{
462 struct cfg80211_internal_bss *bss, *oldest = NULL;
463 bool ret;
464
465 lockdep_assert_held(&rdev->bss_lock);
466
467 list_for_each_entry(bss, &rdev->bss_list, list) {
468 if (atomic_read(&bss->hold))
469 continue;
470
471 if (!list_empty(&bss->hidden_list) &&
472 !bss->pub.hidden_beacon_bss)
473 continue;
474
475 if (oldest && time_before(oldest->ts, bss->ts))
476 continue;
477 oldest = bss;
478 }
479
480 if (WARN_ON(!oldest))
481 return false;
482
483 /*
484 * The callers make sure to increase rdev->bss_generation if anything
485 * gets removed (and a new entry added), so there's no need to also do
486 * it here.
487 */
488
489 ret = __cfg80211_unlink_bss(rdev, oldest);
490 WARN_ON(!ret);
491 return ret;
492}
493
494static u8 cfg80211_parse_bss_param(u8 data,
495 struct cfg80211_colocated_ap *coloc_ap)
496{
497 coloc_ap->oct_recommended =
498 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_OCT_RECOMMENDED);
499 coloc_ap->same_ssid =
500 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_SAME_SSID);
501 coloc_ap->multi_bss =
502 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_MULTI_BSSID);
503 coloc_ap->transmitted_bssid =
504 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_TRANSMITTED_BSSID);
505 coloc_ap->unsolicited_probe =
506 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_PROBE_ACTIVE);
507 coloc_ap->colocated_ess =
508 u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_ESS);
509
510 return u8_get_bits(data, IEEE80211_RNR_TBTT_PARAMS_COLOC_AP);
511}
512
513static int cfg80211_calc_short_ssid(const struct cfg80211_bss_ies *ies,
514 const struct element **elem, u32 *s_ssid)
515{
516
517 *elem = cfg80211_find_elem(WLAN_EID_SSID, ies->data, ies->len);
518 if (!*elem || (*elem)->datalen > IEEE80211_MAX_SSID_LEN)
519 return -EINVAL;
520
521 *s_ssid = ~crc32_le(~0, (*elem)->data, (*elem)->datalen);
522 return 0;
523}
524
525static void cfg80211_free_coloc_ap_list(struct list_head *coloc_ap_list)
526{
527 struct cfg80211_colocated_ap *ap, *tmp_ap;
528
529 list_for_each_entry_safe(ap, tmp_ap, coloc_ap_list, list) {
530 list_del(&ap->list);
531 kfree(ap);
532 }
533}
534
535static int cfg80211_parse_ap_info(struct cfg80211_colocated_ap *entry,
536 const u8 *pos, u8 length,
537 const struct element *ssid_elem,
538 int s_ssid_tmp)
539{
540 /* skip the TBTT offset */
541 pos++;
542
543 /* ignore entries with invalid BSSID */
544 if (!is_valid_ether_addr(pos))
545 return -EINVAL;
546
547 memcpy(entry->bssid, pos, ETH_ALEN);
548 pos += ETH_ALEN;
549
550 if (length >= IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM) {
551 memcpy(&entry->short_ssid, pos,
552 sizeof(entry->short_ssid));
553 entry->short_ssid_valid = true;
554 pos += 4;
555 }
556
557 /* skip non colocated APs */
558 if (!cfg80211_parse_bss_param(*pos, entry))
559 return -EINVAL;
560 pos++;
561
562 if (length == IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM) {
563 /*
564 * no information about the short ssid. Consider the entry valid
565 * for now. It would later be dropped in case there are explicit
566 * SSIDs that need to be matched
567 */
568 if (!entry->same_ssid)
569 return 0;
570 }
571
572 if (entry->same_ssid) {
573 entry->short_ssid = s_ssid_tmp;
574 entry->short_ssid_valid = true;
575
576 /*
577 * This is safe because we validate datalen in
578 * cfg80211_parse_colocated_ap(), before calling this
579 * function.
580 */
581 memcpy(&entry->ssid, &ssid_elem->data,
582 ssid_elem->datalen);
583 entry->ssid_len = ssid_elem->datalen;
584 }
585 return 0;
586}
587
588static int cfg80211_parse_colocated_ap(const struct cfg80211_bss_ies *ies,
589 struct list_head *list)
590{
591 struct ieee80211_neighbor_ap_info *ap_info;
592 const struct element *elem, *ssid_elem;
593 const u8 *pos, *end;
594 u32 s_ssid_tmp;
595 int n_coloc = 0, ret;
596 LIST_HEAD(ap_list);
597
598 elem = cfg80211_find_elem(WLAN_EID_REDUCED_NEIGHBOR_REPORT, ies->data,
599 ies->len);
600 if (!elem)
601 return 0;
602
603 pos = elem->data;
604 end = pos + elem->datalen;
605
606 ret = cfg80211_calc_short_ssid(ies, &ssid_elem, &s_ssid_tmp);
607 if (ret)
608 return ret;
609
610 /* RNR IE may contain more than one NEIGHBOR_AP_INFO */
611 while (pos + sizeof(*ap_info) <= end) {
612 enum nl80211_band band;
613 int freq;
614 u8 length, i, count;
615
616 ap_info = (void *)pos;
617 count = u8_get_bits(ap_info->tbtt_info_hdr,
618 IEEE80211_AP_INFO_TBTT_HDR_COUNT) + 1;
619 length = ap_info->tbtt_info_len;
620
621 pos += sizeof(*ap_info);
622
623 if (!ieee80211_operating_class_to_band(ap_info->op_class,
624 &band))
625 break;
626
627 freq = ieee80211_channel_to_frequency(ap_info->channel, band);
628
629 if (end - pos < count * length)
630 break;
631
632 /*
633 * TBTT info must include bss param + BSSID +
634 * (short SSID or same_ssid bit to be set).
635 * ignore other options, and move to the
636 * next AP info
637 */
638 if (band != NL80211_BAND_6GHZ ||
639 (length != IEEE80211_TBTT_INFO_OFFSET_BSSID_BSS_PARAM &&
640 length < IEEE80211_TBTT_INFO_OFFSET_BSSID_SSSID_BSS_PARAM)) {
641 pos += count * length;
642 continue;
643 }
644
645 for (i = 0; i < count; i++) {
646 struct cfg80211_colocated_ap *entry;
647
648 entry = kzalloc(sizeof(*entry) + IEEE80211_MAX_SSID_LEN,
649 GFP_ATOMIC);
650
651 if (!entry)
652 break;
653
654 entry->center_freq = freq;
655
656 if (!cfg80211_parse_ap_info(entry, pos, length,
657 ssid_elem, s_ssid_tmp)) {
658 n_coloc++;
659 list_add_tail(&entry->list, &ap_list);
660 } else {
661 kfree(entry);
662 }
663
664 pos += length;
665 }
666 }
667
668 if (pos != end) {
669 cfg80211_free_coloc_ap_list(&ap_list);
670 return 0;
671 }
672
673 list_splice_tail(&ap_list, list);
674 return n_coloc;
675}
676
677static void cfg80211_scan_req_add_chan(struct cfg80211_scan_request *request,
678 struct ieee80211_channel *chan,
679 bool add_to_6ghz)
680{
681 int i;
682 u32 n_channels = request->n_channels;
683 struct cfg80211_scan_6ghz_params *params =
684 &request->scan_6ghz_params[request->n_6ghz_params];
685
686 for (i = 0; i < n_channels; i++) {
687 if (request->channels[i] == chan) {
688 if (add_to_6ghz)
689 params->channel_idx = i;
690 return;
691 }
692 }
693
694 request->channels[n_channels] = chan;
695 if (add_to_6ghz)
696 request->scan_6ghz_params[request->n_6ghz_params].channel_idx =
697 n_channels;
698
699 request->n_channels++;
700}
701
702static bool cfg80211_find_ssid_match(struct cfg80211_colocated_ap *ap,
703 struct cfg80211_scan_request *request)
704{
705 int i;
706 u32 s_ssid;
707
708 for (i = 0; i < request->n_ssids; i++) {
709 /* wildcard ssid in the scan request */
710 if (!request->ssids[i].ssid_len) {
711 if (ap->multi_bss && !ap->transmitted_bssid)
712 continue;
713
714 return true;
715 }
716
717 if (ap->ssid_len &&
718 ap->ssid_len == request->ssids[i].ssid_len) {
719 if (!memcmp(request->ssids[i].ssid, ap->ssid,
720 ap->ssid_len))
721 return true;
722 } else if (ap->short_ssid_valid) {
723 s_ssid = ~crc32_le(~0, request->ssids[i].ssid,
724 request->ssids[i].ssid_len);
725
726 if (ap->short_ssid == s_ssid)
727 return true;
728 }
729 }
730
731 return false;
732}
733
734static int cfg80211_scan_6ghz(struct cfg80211_registered_device *rdev)
735{
736 u8 i;
737 struct cfg80211_colocated_ap *ap;
738 int n_channels, count = 0, err;
739 struct cfg80211_scan_request *request, *rdev_req = rdev->scan_req;
740 LIST_HEAD(coloc_ap_list);
741 bool need_scan_psc = true;
742 const struct ieee80211_sband_iftype_data *iftd;
743
744 rdev_req->scan_6ghz = true;
745
746 if (!rdev->wiphy.bands[NL80211_BAND_6GHZ])
747 return -EOPNOTSUPP;
748
749 iftd = ieee80211_get_sband_iftype_data(rdev->wiphy.bands[NL80211_BAND_6GHZ],
750 rdev_req->wdev->iftype);
751 if (!iftd || !iftd->he_cap.has_he)
752 return -EOPNOTSUPP;
753
754 n_channels = rdev->wiphy.bands[NL80211_BAND_6GHZ]->n_channels;
755
756 if (rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ) {
757 struct cfg80211_internal_bss *intbss;
758
759 spin_lock_bh(&rdev->bss_lock);
760 list_for_each_entry(intbss, &rdev->bss_list, list) {
761 struct cfg80211_bss *res = &intbss->pub;
762 const struct cfg80211_bss_ies *ies;
763
764 ies = rcu_access_pointer(res->ies);
765 count += cfg80211_parse_colocated_ap(ies,
766 &coloc_ap_list);
767 }
768 spin_unlock_bh(&rdev->bss_lock);
769 }
770
771 request = kzalloc(struct_size(request, channels, n_channels) +
772 sizeof(*request->scan_6ghz_params) * count +
773 sizeof(*request->ssids) * rdev_req->n_ssids,
774 GFP_KERNEL);
775 if (!request) {
776 cfg80211_free_coloc_ap_list(&coloc_ap_list);
777 return -ENOMEM;
778 }
779
780 *request = *rdev_req;
781 request->n_channels = 0;
782 request->scan_6ghz_params =
783 (void *)&request->channels[n_channels];
784
785 /*
786 * PSC channels should not be scanned in case of direct scan with 1 SSID
787 * and at least one of the reported co-located APs with same SSID
788 * indicating that all APs in the same ESS are co-located
789 */
790 if (count && request->n_ssids == 1 && request->ssids[0].ssid_len) {
791 list_for_each_entry(ap, &coloc_ap_list, list) {
792 if (ap->colocated_ess &&
793 cfg80211_find_ssid_match(ap, request)) {
794 need_scan_psc = false;
795 break;
796 }
797 }
798 }
799
800 /*
801 * add to the scan request the channels that need to be scanned
802 * regardless of the collocated APs (PSC channels or all channels
803 * in case that NL80211_SCAN_FLAG_COLOCATED_6GHZ is not set)
804 */
805 for (i = 0; i < rdev_req->n_channels; i++) {
806 if (rdev_req->channels[i]->band == NL80211_BAND_6GHZ &&
807 ((need_scan_psc &&
808 cfg80211_channel_is_psc(rdev_req->channels[i])) ||
809 !(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))) {
810 cfg80211_scan_req_add_chan(request,
811 rdev_req->channels[i],
812 false);
813 }
814 }
815
816 if (!(rdev_req->flags & NL80211_SCAN_FLAG_COLOCATED_6GHZ))
817 goto skip;
818
819 list_for_each_entry(ap, &coloc_ap_list, list) {
820 bool found = false;
821 struct cfg80211_scan_6ghz_params *scan_6ghz_params =
822 &request->scan_6ghz_params[request->n_6ghz_params];
823 struct ieee80211_channel *chan =
824 ieee80211_get_channel(&rdev->wiphy, ap->center_freq);
825
826 if (!chan || chan->flags & IEEE80211_CHAN_DISABLED)
827 continue;
828
829 for (i = 0; i < rdev_req->n_channels; i++) {
830 if (rdev_req->channels[i] == chan)
831 found = true;
832 }
833
834 if (!found)
835 continue;
836
837 if (request->n_ssids > 0 &&
838 !cfg80211_find_ssid_match(ap, request))
839 continue;
840
841 if (!request->n_ssids && ap->multi_bss && !ap->transmitted_bssid)
842 continue;
843
844 cfg80211_scan_req_add_chan(request, chan, true);
845 memcpy(scan_6ghz_params->bssid, ap->bssid, ETH_ALEN);
846 scan_6ghz_params->short_ssid = ap->short_ssid;
847 scan_6ghz_params->short_ssid_valid = ap->short_ssid_valid;
848 scan_6ghz_params->unsolicited_probe = ap->unsolicited_probe;
849
850 /*
851 * If a PSC channel is added to the scan and 'need_scan_psc' is
852 * set to false, then all the APs that the scan logic is
853 * interested with on the channel are collocated and thus there
854 * is no need to perform the initial PSC channel listen.
855 */
856 if (cfg80211_channel_is_psc(chan) && !need_scan_psc)
857 scan_6ghz_params->psc_no_listen = true;
858
859 request->n_6ghz_params++;
860 }
861
862skip:
863 cfg80211_free_coloc_ap_list(&coloc_ap_list);
864
865 if (request->n_channels) {
866 struct cfg80211_scan_request *old = rdev->int_scan_req;
867 rdev->int_scan_req = request;
868
869 /*
870 * Add the ssids from the parent scan request to the new scan
871 * request, so the driver would be able to use them in its
872 * probe requests to discover hidden APs on PSC channels.
873 */
874 request->ssids = (void *)&request->channels[request->n_channels];
875 request->n_ssids = rdev_req->n_ssids;
876 memcpy(request->ssids, rdev_req->ssids, sizeof(*request->ssids) *
877 request->n_ssids);
878
879 /*
880 * If this scan follows a previous scan, save the scan start
881 * info from the first part of the scan
882 */
883 if (old)
884 rdev->int_scan_req->info = old->info;
885
886 err = rdev_scan(rdev, request);
887 if (err) {
888 rdev->int_scan_req = old;
889 kfree(request);
890 } else {
891 kfree(old);
892 }
893
894 return err;
895 }
896
897 kfree(request);
898 return -EINVAL;
899}
900
901int cfg80211_scan(struct cfg80211_registered_device *rdev)
902{
903 struct cfg80211_scan_request *request;
904 struct cfg80211_scan_request *rdev_req = rdev->scan_req;
905 u32 n_channels = 0, idx, i;
906
907 if (!(rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ))
908 return rdev_scan(rdev, rdev_req);
909
910 for (i = 0; i < rdev_req->n_channels; i++) {
911 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
912 n_channels++;
913 }
914
915 if (!n_channels)
916 return cfg80211_scan_6ghz(rdev);
917
918 request = kzalloc(struct_size(request, channels, n_channels),
919 GFP_KERNEL);
920 if (!request)
921 return -ENOMEM;
922
923 *request = *rdev_req;
924 request->n_channels = n_channels;
925
926 for (i = idx = 0; i < rdev_req->n_channels; i++) {
927 if (rdev_req->channels[i]->band != NL80211_BAND_6GHZ)
928 request->channels[idx++] = rdev_req->channels[i];
929 }
930
931 rdev_req->scan_6ghz = false;
932 rdev->int_scan_req = request;
933 return rdev_scan(rdev, request);
934}
935
936void ___cfg80211_scan_done(struct cfg80211_registered_device *rdev,
937 bool send_message)
938{
939 struct cfg80211_scan_request *request, *rdev_req;
940 struct wireless_dev *wdev;
941 struct sk_buff *msg;
942#ifdef CONFIG_CFG80211_WEXT
943 union iwreq_data wrqu;
944#endif
945
946 lockdep_assert_held(&rdev->wiphy.mtx);
947
948 if (rdev->scan_msg) {
949 nl80211_send_scan_msg(rdev, rdev->scan_msg);
950 rdev->scan_msg = NULL;
951 return;
952 }
953
954 rdev_req = rdev->scan_req;
955 if (!rdev_req)
956 return;
957
958 wdev = rdev_req->wdev;
959 request = rdev->int_scan_req ? rdev->int_scan_req : rdev_req;
960
961 if (wdev_running(wdev) &&
962 (rdev->wiphy.flags & WIPHY_FLAG_SPLIT_SCAN_6GHZ) &&
963 !rdev_req->scan_6ghz && !request->info.aborted &&
964 !cfg80211_scan_6ghz(rdev))
965 return;
966
967 /*
968 * This must be before sending the other events!
969 * Otherwise, wpa_supplicant gets completely confused with
970 * wext events.
971 */
972 if (wdev->netdev)
973 cfg80211_sme_scan_done(wdev->netdev);
974
975 if (!request->info.aborted &&
976 request->flags & NL80211_SCAN_FLAG_FLUSH) {
977 /* flush entries from previous scans */
978 spin_lock_bh(&rdev->bss_lock);
979 __cfg80211_bss_expire(rdev, request->scan_start);
980 spin_unlock_bh(&rdev->bss_lock);
981 }
982
983 msg = nl80211_build_scan_msg(rdev, wdev, request->info.aborted);
984
985#ifdef CONFIG_CFG80211_WEXT
986 if (wdev->netdev && !request->info.aborted) {
987 memset(&wrqu, 0, sizeof(wrqu));
988
989 wireless_send_event(wdev->netdev, SIOCGIWSCAN, &wrqu, NULL);
990 }
991#endif
992
993 dev_put(wdev->netdev);
994
995 kfree(rdev->int_scan_req);
996 rdev->int_scan_req = NULL;
997
998 kfree(rdev->scan_req);
999 rdev->scan_req = NULL;
1000
1001 if (!send_message)
1002 rdev->scan_msg = msg;
1003 else
1004 nl80211_send_scan_msg(rdev, msg);
1005}
1006
1007void __cfg80211_scan_done(struct work_struct *wk)
1008{
1009 struct cfg80211_registered_device *rdev;
1010
1011 rdev = container_of(wk, struct cfg80211_registered_device,
1012 scan_done_wk);
1013
1014 wiphy_lock(&rdev->wiphy);
1015 ___cfg80211_scan_done(rdev, true);
1016 wiphy_unlock(&rdev->wiphy);
1017}
1018
1019void cfg80211_scan_done(struct cfg80211_scan_request *request,
1020 struct cfg80211_scan_info *info)
1021{
1022 struct cfg80211_scan_info old_info = request->info;
1023
1024 trace_cfg80211_scan_done(request, info);
1025 WARN_ON(request != wiphy_to_rdev(request->wiphy)->scan_req &&
1026 request != wiphy_to_rdev(request->wiphy)->int_scan_req);
1027
1028 request->info = *info;
1029
1030 /*
1031 * In case the scan is split, the scan_start_tsf and tsf_bssid should
1032 * be of the first part. In such a case old_info.scan_start_tsf should
1033 * be non zero.
1034 */
1035 if (request->scan_6ghz && old_info.scan_start_tsf) {
1036 request->info.scan_start_tsf = old_info.scan_start_tsf;
1037 memcpy(request->info.tsf_bssid, old_info.tsf_bssid,
1038 sizeof(request->info.tsf_bssid));
1039 }
1040
1041 request->notified = true;
1042 queue_work(cfg80211_wq, &wiphy_to_rdev(request->wiphy)->scan_done_wk);
1043}
1044EXPORT_SYMBOL(cfg80211_scan_done);
1045
1046void cfg80211_add_sched_scan_req(struct cfg80211_registered_device *rdev,
1047 struct cfg80211_sched_scan_request *req)
1048{
1049 lockdep_assert_held(&rdev->wiphy.mtx);
1050
1051 list_add_rcu(&req->list, &rdev->sched_scan_req_list);
1052}
1053
1054static void cfg80211_del_sched_scan_req(struct cfg80211_registered_device *rdev,
1055 struct cfg80211_sched_scan_request *req)
1056{
1057 lockdep_assert_held(&rdev->wiphy.mtx);
1058
1059 list_del_rcu(&req->list);
1060 kfree_rcu(req, rcu_head);
1061}
1062
1063static struct cfg80211_sched_scan_request *
1064cfg80211_find_sched_scan_req(struct cfg80211_registered_device *rdev, u64 reqid)
1065{
1066 struct cfg80211_sched_scan_request *pos;
1067
1068 list_for_each_entry_rcu(pos, &rdev->sched_scan_req_list, list,
1069 lockdep_is_held(&rdev->wiphy.mtx)) {
1070 if (pos->reqid == reqid)
1071 return pos;
1072 }
1073 return NULL;
1074}
1075
1076/*
1077 * Determines if a scheduled scan request can be handled. When a legacy
1078 * scheduled scan is running no other scheduled scan is allowed regardless
1079 * whether the request is for legacy or multi-support scan. When a multi-support
1080 * scheduled scan is running a request for legacy scan is not allowed. In this
1081 * case a request for multi-support scan can be handled if resources are
1082 * available, ie. struct wiphy::max_sched_scan_reqs limit is not yet reached.
1083 */
1084int cfg80211_sched_scan_req_possible(struct cfg80211_registered_device *rdev,
1085 bool want_multi)
1086{
1087 struct cfg80211_sched_scan_request *pos;
1088 int i = 0;
1089
1090 list_for_each_entry(pos, &rdev->sched_scan_req_list, list) {
1091 /* request id zero means legacy in progress */
1092 if (!i && !pos->reqid)
1093 return -EINPROGRESS;
1094 i++;
1095 }
1096
1097 if (i) {
1098 /* no legacy allowed when multi request(s) are active */
1099 if (!want_multi)
1100 return -EINPROGRESS;
1101
1102 /* resource limit reached */
1103 if (i == rdev->wiphy.max_sched_scan_reqs)
1104 return -ENOSPC;
1105 }
1106 return 0;
1107}
1108
1109void cfg80211_sched_scan_results_wk(struct work_struct *work)
1110{
1111 struct cfg80211_registered_device *rdev;
1112 struct cfg80211_sched_scan_request *req, *tmp;
1113
1114 rdev = container_of(work, struct cfg80211_registered_device,
1115 sched_scan_res_wk);
1116
1117 wiphy_lock(&rdev->wiphy);
1118 list_for_each_entry_safe(req, tmp, &rdev->sched_scan_req_list, list) {
1119 if (req->report_results) {
1120 req->report_results = false;
1121 if (req->flags & NL80211_SCAN_FLAG_FLUSH) {
1122 /* flush entries from previous scans */
1123 spin_lock_bh(&rdev->bss_lock);
1124 __cfg80211_bss_expire(rdev, req->scan_start);
1125 spin_unlock_bh(&rdev->bss_lock);
1126 req->scan_start = jiffies;
1127 }
1128 nl80211_send_sched_scan(req,
1129 NL80211_CMD_SCHED_SCAN_RESULTS);
1130 }
1131 }
1132 wiphy_unlock(&rdev->wiphy);
1133}
1134
1135void cfg80211_sched_scan_results(struct wiphy *wiphy, u64 reqid)
1136{
1137 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1138 struct cfg80211_sched_scan_request *request;
1139
1140 trace_cfg80211_sched_scan_results(wiphy, reqid);
1141 /* ignore if we're not scanning */
1142
1143 rcu_read_lock();
1144 request = cfg80211_find_sched_scan_req(rdev, reqid);
1145 if (request) {
1146 request->report_results = true;
1147 queue_work(cfg80211_wq, &rdev->sched_scan_res_wk);
1148 }
1149 rcu_read_unlock();
1150}
1151EXPORT_SYMBOL(cfg80211_sched_scan_results);
1152
1153void cfg80211_sched_scan_stopped_locked(struct wiphy *wiphy, u64 reqid)
1154{
1155 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1156
1157 lockdep_assert_held(&wiphy->mtx);
1158
1159 trace_cfg80211_sched_scan_stopped(wiphy, reqid);
1160
1161 __cfg80211_stop_sched_scan(rdev, reqid, true);
1162}
1163EXPORT_SYMBOL(cfg80211_sched_scan_stopped_locked);
1164
1165void cfg80211_sched_scan_stopped(struct wiphy *wiphy, u64 reqid)
1166{
1167 wiphy_lock(wiphy);
1168 cfg80211_sched_scan_stopped_locked(wiphy, reqid);
1169 wiphy_unlock(wiphy);
1170}
1171EXPORT_SYMBOL(cfg80211_sched_scan_stopped);
1172
1173int cfg80211_stop_sched_scan_req(struct cfg80211_registered_device *rdev,
1174 struct cfg80211_sched_scan_request *req,
1175 bool driver_initiated)
1176{
1177 lockdep_assert_held(&rdev->wiphy.mtx);
1178
1179 if (!driver_initiated) {
1180 int err = rdev_sched_scan_stop(rdev, req->dev, req->reqid);
1181 if (err)
1182 return err;
1183 }
1184
1185 nl80211_send_sched_scan(req, NL80211_CMD_SCHED_SCAN_STOPPED);
1186
1187 cfg80211_del_sched_scan_req(rdev, req);
1188
1189 return 0;
1190}
1191
1192int __cfg80211_stop_sched_scan(struct cfg80211_registered_device *rdev,
1193 u64 reqid, bool driver_initiated)
1194{
1195 struct cfg80211_sched_scan_request *sched_scan_req;
1196
1197 lockdep_assert_held(&rdev->wiphy.mtx);
1198
1199 sched_scan_req = cfg80211_find_sched_scan_req(rdev, reqid);
1200 if (!sched_scan_req)
1201 return -ENOENT;
1202
1203 return cfg80211_stop_sched_scan_req(rdev, sched_scan_req,
1204 driver_initiated);
1205}
1206
1207void cfg80211_bss_age(struct cfg80211_registered_device *rdev,
1208 unsigned long age_secs)
1209{
1210 struct cfg80211_internal_bss *bss;
1211 unsigned long age_jiffies = msecs_to_jiffies(age_secs * MSEC_PER_SEC);
1212
1213 spin_lock_bh(&rdev->bss_lock);
1214 list_for_each_entry(bss, &rdev->bss_list, list)
1215 bss->ts -= age_jiffies;
1216 spin_unlock_bh(&rdev->bss_lock);
1217}
1218
1219void cfg80211_bss_expire(struct cfg80211_registered_device *rdev)
1220{
1221 __cfg80211_bss_expire(rdev, jiffies - IEEE80211_SCAN_RESULT_EXPIRE);
1222}
1223
1224void cfg80211_bss_flush(struct wiphy *wiphy)
1225{
1226 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1227
1228 spin_lock_bh(&rdev->bss_lock);
1229 __cfg80211_bss_expire(rdev, jiffies);
1230 spin_unlock_bh(&rdev->bss_lock);
1231}
1232EXPORT_SYMBOL(cfg80211_bss_flush);
1233
1234const struct element *
1235cfg80211_find_elem_match(u8 eid, const u8 *ies, unsigned int len,
1236 const u8 *match, unsigned int match_len,
1237 unsigned int match_offset)
1238{
1239 const struct element *elem;
1240
1241 for_each_element_id(elem, eid, ies, len) {
1242 if (elem->datalen >= match_offset + match_len &&
1243 !memcmp(elem->data + match_offset, match, match_len))
1244 return elem;
1245 }
1246
1247 return NULL;
1248}
1249EXPORT_SYMBOL(cfg80211_find_elem_match);
1250
1251const struct element *cfg80211_find_vendor_elem(unsigned int oui, int oui_type,
1252 const u8 *ies,
1253 unsigned int len)
1254{
1255 const struct element *elem;
1256 u8 match[] = { oui >> 16, oui >> 8, oui, oui_type };
1257 int match_len = (oui_type < 0) ? 3 : sizeof(match);
1258
1259 if (WARN_ON(oui_type > 0xff))
1260 return NULL;
1261
1262 elem = cfg80211_find_elem_match(WLAN_EID_VENDOR_SPECIFIC, ies, len,
1263 match, match_len, 0);
1264
1265 if (!elem || elem->datalen < 4)
1266 return NULL;
1267
1268 return elem;
1269}
1270EXPORT_SYMBOL(cfg80211_find_vendor_elem);
1271
1272/**
1273 * enum bss_compare_mode - BSS compare mode
1274 * @BSS_CMP_REGULAR: regular compare mode (for insertion and normal find)
1275 * @BSS_CMP_HIDE_ZLEN: find hidden SSID with zero-length mode
1276 * @BSS_CMP_HIDE_NUL: find hidden SSID with NUL-ed out mode
1277 */
1278enum bss_compare_mode {
1279 BSS_CMP_REGULAR,
1280 BSS_CMP_HIDE_ZLEN,
1281 BSS_CMP_HIDE_NUL,
1282};
1283
1284static int cmp_bss(struct cfg80211_bss *a,
1285 struct cfg80211_bss *b,
1286 enum bss_compare_mode mode)
1287{
1288 const struct cfg80211_bss_ies *a_ies, *b_ies;
1289 const u8 *ie1 = NULL;
1290 const u8 *ie2 = NULL;
1291 int i, r;
1292
1293 if (a->channel != b->channel)
1294 return (b->channel->center_freq * 1000 + b->channel->freq_offset) -
1295 (a->channel->center_freq * 1000 + a->channel->freq_offset);
1296
1297 a_ies = rcu_access_pointer(a->ies);
1298 if (!a_ies)
1299 return -1;
1300 b_ies = rcu_access_pointer(b->ies);
1301 if (!b_ies)
1302 return 1;
1303
1304 if (WLAN_CAPABILITY_IS_STA_BSS(a->capability))
1305 ie1 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1306 a_ies->data, a_ies->len);
1307 if (WLAN_CAPABILITY_IS_STA_BSS(b->capability))
1308 ie2 = cfg80211_find_ie(WLAN_EID_MESH_ID,
1309 b_ies->data, b_ies->len);
1310 if (ie1 && ie2) {
1311 int mesh_id_cmp;
1312
1313 if (ie1[1] == ie2[1])
1314 mesh_id_cmp = memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1315 else
1316 mesh_id_cmp = ie2[1] - ie1[1];
1317
1318 ie1 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1319 a_ies->data, a_ies->len);
1320 ie2 = cfg80211_find_ie(WLAN_EID_MESH_CONFIG,
1321 b_ies->data, b_ies->len);
1322 if (ie1 && ie2) {
1323 if (mesh_id_cmp)
1324 return mesh_id_cmp;
1325 if (ie1[1] != ie2[1])
1326 return ie2[1] - ie1[1];
1327 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1328 }
1329 }
1330
1331 r = memcmp(a->bssid, b->bssid, sizeof(a->bssid));
1332 if (r)
1333 return r;
1334
1335 ie1 = cfg80211_find_ie(WLAN_EID_SSID, a_ies->data, a_ies->len);
1336 ie2 = cfg80211_find_ie(WLAN_EID_SSID, b_ies->data, b_ies->len);
1337
1338 if (!ie1 && !ie2)
1339 return 0;
1340
1341 /*
1342 * Note that with "hide_ssid", the function returns a match if
1343 * the already-present BSS ("b") is a hidden SSID beacon for
1344 * the new BSS ("a").
1345 */
1346
1347 /* sort missing IE before (left of) present IE */
1348 if (!ie1)
1349 return -1;
1350 if (!ie2)
1351 return 1;
1352
1353 switch (mode) {
1354 case BSS_CMP_HIDE_ZLEN:
1355 /*
1356 * In ZLEN mode we assume the BSS entry we're
1357 * looking for has a zero-length SSID. So if
1358 * the one we're looking at right now has that,
1359 * return 0. Otherwise, return the difference
1360 * in length, but since we're looking for the
1361 * 0-length it's really equivalent to returning
1362 * the length of the one we're looking at.
1363 *
1364 * No content comparison is needed as we assume
1365 * the content length is zero.
1366 */
1367 return ie2[1];
1368 case BSS_CMP_REGULAR:
1369 default:
1370 /* sort by length first, then by contents */
1371 if (ie1[1] != ie2[1])
1372 return ie2[1] - ie1[1];
1373 return memcmp(ie1 + 2, ie2 + 2, ie1[1]);
1374 case BSS_CMP_HIDE_NUL:
1375 if (ie1[1] != ie2[1])
1376 return ie2[1] - ie1[1];
1377 /* this is equivalent to memcmp(zeroes, ie2 + 2, len) */
1378 for (i = 0; i < ie2[1]; i++)
1379 if (ie2[i + 2])
1380 return -1;
1381 return 0;
1382 }
1383}
1384
1385static bool cfg80211_bss_type_match(u16 capability,
1386 enum nl80211_band band,
1387 enum ieee80211_bss_type bss_type)
1388{
1389 bool ret = true;
1390 u16 mask, val;
1391
1392 if (bss_type == IEEE80211_BSS_TYPE_ANY)
1393 return ret;
1394
1395 if (band == NL80211_BAND_60GHZ) {
1396 mask = WLAN_CAPABILITY_DMG_TYPE_MASK;
1397 switch (bss_type) {
1398 case IEEE80211_BSS_TYPE_ESS:
1399 val = WLAN_CAPABILITY_DMG_TYPE_AP;
1400 break;
1401 case IEEE80211_BSS_TYPE_PBSS:
1402 val = WLAN_CAPABILITY_DMG_TYPE_PBSS;
1403 break;
1404 case IEEE80211_BSS_TYPE_IBSS:
1405 val = WLAN_CAPABILITY_DMG_TYPE_IBSS;
1406 break;
1407 default:
1408 return false;
1409 }
1410 } else {
1411 mask = WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS;
1412 switch (bss_type) {
1413 case IEEE80211_BSS_TYPE_ESS:
1414 val = WLAN_CAPABILITY_ESS;
1415 break;
1416 case IEEE80211_BSS_TYPE_IBSS:
1417 val = WLAN_CAPABILITY_IBSS;
1418 break;
1419 case IEEE80211_BSS_TYPE_MBSS:
1420 val = 0;
1421 break;
1422 default:
1423 return false;
1424 }
1425 }
1426
1427 ret = ((capability & mask) == val);
1428 return ret;
1429}
1430
1431/* Returned bss is reference counted and must be cleaned up appropriately. */
1432struct cfg80211_bss *cfg80211_get_bss(struct wiphy *wiphy,
1433 struct ieee80211_channel *channel,
1434 const u8 *bssid,
1435 const u8 *ssid, size_t ssid_len,
1436 enum ieee80211_bss_type bss_type,
1437 enum ieee80211_privacy privacy)
1438{
1439 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1440 struct cfg80211_internal_bss *bss, *res = NULL;
1441 unsigned long now = jiffies;
1442 int bss_privacy;
1443
1444 trace_cfg80211_get_bss(wiphy, channel, bssid, ssid, ssid_len, bss_type,
1445 privacy);
1446
1447 spin_lock_bh(&rdev->bss_lock);
1448
1449 list_for_each_entry(bss, &rdev->bss_list, list) {
1450 if (!cfg80211_bss_type_match(bss->pub.capability,
1451 bss->pub.channel->band, bss_type))
1452 continue;
1453
1454 bss_privacy = (bss->pub.capability & WLAN_CAPABILITY_PRIVACY);
1455 if ((privacy == IEEE80211_PRIVACY_ON && !bss_privacy) ||
1456 (privacy == IEEE80211_PRIVACY_OFF && bss_privacy))
1457 continue;
1458 if (channel && bss->pub.channel != channel)
1459 continue;
1460 if (!is_valid_ether_addr(bss->pub.bssid))
1461 continue;
1462 /* Don't get expired BSS structs */
1463 if (time_after(now, bss->ts + IEEE80211_SCAN_RESULT_EXPIRE) &&
1464 !atomic_read(&bss->hold))
1465 continue;
1466 if (is_bss(&bss->pub, bssid, ssid, ssid_len)) {
1467 res = bss;
1468 bss_ref_get(rdev, res);
1469 break;
1470 }
1471 }
1472
1473 spin_unlock_bh(&rdev->bss_lock);
1474 if (!res)
1475 return NULL;
1476 trace_cfg80211_return_bss(&res->pub);
1477 return &res->pub;
1478}
1479EXPORT_SYMBOL(cfg80211_get_bss);
1480
1481static void rb_insert_bss(struct cfg80211_registered_device *rdev,
1482 struct cfg80211_internal_bss *bss)
1483{
1484 struct rb_node **p = &rdev->bss_tree.rb_node;
1485 struct rb_node *parent = NULL;
1486 struct cfg80211_internal_bss *tbss;
1487 int cmp;
1488
1489 while (*p) {
1490 parent = *p;
1491 tbss = rb_entry(parent, struct cfg80211_internal_bss, rbn);
1492
1493 cmp = cmp_bss(&bss->pub, &tbss->pub, BSS_CMP_REGULAR);
1494
1495 if (WARN_ON(!cmp)) {
1496 /* will sort of leak this BSS */
1497 return;
1498 }
1499
1500 if (cmp < 0)
1501 p = &(*p)->rb_left;
1502 else
1503 p = &(*p)->rb_right;
1504 }
1505
1506 rb_link_node(&bss->rbn, parent, p);
1507 rb_insert_color(&bss->rbn, &rdev->bss_tree);
1508}
1509
1510static struct cfg80211_internal_bss *
1511rb_find_bss(struct cfg80211_registered_device *rdev,
1512 struct cfg80211_internal_bss *res,
1513 enum bss_compare_mode mode)
1514{
1515 struct rb_node *n = rdev->bss_tree.rb_node;
1516 struct cfg80211_internal_bss *bss;
1517 int r;
1518
1519 while (n) {
1520 bss = rb_entry(n, struct cfg80211_internal_bss, rbn);
1521 r = cmp_bss(&res->pub, &bss->pub, mode);
1522
1523 if (r == 0)
1524 return bss;
1525 else if (r < 0)
1526 n = n->rb_left;
1527 else
1528 n = n->rb_right;
1529 }
1530
1531 return NULL;
1532}
1533
1534static bool cfg80211_combine_bsses(struct cfg80211_registered_device *rdev,
1535 struct cfg80211_internal_bss *new)
1536{
1537 const struct cfg80211_bss_ies *ies;
1538 struct cfg80211_internal_bss *bss;
1539 const u8 *ie;
1540 int i, ssidlen;
1541 u8 fold = 0;
1542 u32 n_entries = 0;
1543
1544 ies = rcu_access_pointer(new->pub.beacon_ies);
1545 if (WARN_ON(!ies))
1546 return false;
1547
1548 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1549 if (!ie) {
1550 /* nothing to do */
1551 return true;
1552 }
1553
1554 ssidlen = ie[1];
1555 for (i = 0; i < ssidlen; i++)
1556 fold |= ie[2 + i];
1557
1558 if (fold) {
1559 /* not a hidden SSID */
1560 return true;
1561 }
1562
1563 /* This is the bad part ... */
1564
1565 list_for_each_entry(bss, &rdev->bss_list, list) {
1566 /*
1567 * we're iterating all the entries anyway, so take the
1568 * opportunity to validate the list length accounting
1569 */
1570 n_entries++;
1571
1572 if (!ether_addr_equal(bss->pub.bssid, new->pub.bssid))
1573 continue;
1574 if (bss->pub.channel != new->pub.channel)
1575 continue;
1576 if (bss->pub.scan_width != new->pub.scan_width)
1577 continue;
1578 if (rcu_access_pointer(bss->pub.beacon_ies))
1579 continue;
1580 ies = rcu_access_pointer(bss->pub.ies);
1581 if (!ies)
1582 continue;
1583 ie = cfg80211_find_ie(WLAN_EID_SSID, ies->data, ies->len);
1584 if (!ie)
1585 continue;
1586 if (ssidlen && ie[1] != ssidlen)
1587 continue;
1588 if (WARN_ON_ONCE(bss->pub.hidden_beacon_bss))
1589 continue;
1590 if (WARN_ON_ONCE(!list_empty(&bss->hidden_list)))
1591 list_del(&bss->hidden_list);
1592 /* combine them */
1593 list_add(&bss->hidden_list, &new->hidden_list);
1594 bss->pub.hidden_beacon_bss = &new->pub;
1595 new->refcount += bss->refcount;
1596 rcu_assign_pointer(bss->pub.beacon_ies,
1597 new->pub.beacon_ies);
1598 }
1599
1600 WARN_ONCE(n_entries != rdev->bss_entries,
1601 "rdev bss entries[%d]/list[len:%d] corruption\n",
1602 rdev->bss_entries, n_entries);
1603
1604 return true;
1605}
1606
1607struct cfg80211_non_tx_bss {
1608 struct cfg80211_bss *tx_bss;
1609 u8 max_bssid_indicator;
1610 u8 bssid_index;
1611};
1612
1613static void cfg80211_update_hidden_bsses(struct cfg80211_internal_bss *known,
1614 const struct cfg80211_bss_ies *new_ies,
1615 const struct cfg80211_bss_ies *old_ies)
1616{
1617 struct cfg80211_internal_bss *bss;
1618
1619 /* Assign beacon IEs to all sub entries */
1620 list_for_each_entry(bss, &known->hidden_list, hidden_list) {
1621 const struct cfg80211_bss_ies *ies;
1622
1623 ies = rcu_access_pointer(bss->pub.beacon_ies);
1624 WARN_ON(ies != old_ies);
1625
1626 rcu_assign_pointer(bss->pub.beacon_ies, new_ies);
1627 }
1628}
1629
1630static bool
1631cfg80211_update_known_bss(struct cfg80211_registered_device *rdev,
1632 struct cfg80211_internal_bss *known,
1633 struct cfg80211_internal_bss *new,
1634 bool signal_valid)
1635{
1636 lockdep_assert_held(&rdev->bss_lock);
1637
1638 /* Update IEs */
1639 if (rcu_access_pointer(new->pub.proberesp_ies)) {
1640 const struct cfg80211_bss_ies *old;
1641
1642 old = rcu_access_pointer(known->pub.proberesp_ies);
1643
1644 rcu_assign_pointer(known->pub.proberesp_ies,
1645 new->pub.proberesp_ies);
1646 /* Override possible earlier Beacon frame IEs */
1647 rcu_assign_pointer(known->pub.ies,
1648 new->pub.proberesp_ies);
1649 if (old)
1650 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1651 } else if (rcu_access_pointer(new->pub.beacon_ies)) {
1652 const struct cfg80211_bss_ies *old;
1653
1654 if (known->pub.hidden_beacon_bss &&
1655 !list_empty(&known->hidden_list)) {
1656 const struct cfg80211_bss_ies *f;
1657
1658 /* The known BSS struct is one of the probe
1659 * response members of a group, but we're
1660 * receiving a beacon (beacon_ies in the new
1661 * bss is used). This can only mean that the
1662 * AP changed its beacon from not having an
1663 * SSID to showing it, which is confusing so
1664 * drop this information.
1665 */
1666
1667 f = rcu_access_pointer(new->pub.beacon_ies);
1668 kfree_rcu((struct cfg80211_bss_ies *)f, rcu_head);
1669 return false;
1670 }
1671
1672 old = rcu_access_pointer(known->pub.beacon_ies);
1673
1674 rcu_assign_pointer(known->pub.beacon_ies, new->pub.beacon_ies);
1675
1676 /* Override IEs if they were from a beacon before */
1677 if (old == rcu_access_pointer(known->pub.ies))
1678 rcu_assign_pointer(known->pub.ies, new->pub.beacon_ies);
1679
1680 cfg80211_update_hidden_bsses(known,
1681 rcu_access_pointer(new->pub.beacon_ies),
1682 old);
1683
1684 if (old)
1685 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
1686 }
1687
1688 known->pub.beacon_interval = new->pub.beacon_interval;
1689
1690 /* don't update the signal if beacon was heard on
1691 * adjacent channel.
1692 */
1693 if (signal_valid)
1694 known->pub.signal = new->pub.signal;
1695 known->pub.capability = new->pub.capability;
1696 known->ts = new->ts;
1697 known->ts_boottime = new->ts_boottime;
1698 known->parent_tsf = new->parent_tsf;
1699 known->pub.chains = new->pub.chains;
1700 memcpy(known->pub.chain_signal, new->pub.chain_signal,
1701 IEEE80211_MAX_CHAINS);
1702 ether_addr_copy(known->parent_bssid, new->parent_bssid);
1703 known->pub.max_bssid_indicator = new->pub.max_bssid_indicator;
1704 known->pub.bssid_index = new->pub.bssid_index;
1705
1706 return true;
1707}
1708
1709/* Returned bss is reference counted and must be cleaned up appropriately. */
1710struct cfg80211_internal_bss *
1711cfg80211_bss_update(struct cfg80211_registered_device *rdev,
1712 struct cfg80211_internal_bss *tmp,
1713 bool signal_valid, unsigned long ts)
1714{
1715 struct cfg80211_internal_bss *found = NULL;
1716
1717 if (WARN_ON(!tmp->pub.channel))
1718 return NULL;
1719
1720 tmp->ts = ts;
1721
1722 spin_lock_bh(&rdev->bss_lock);
1723
1724 if (WARN_ON(!rcu_access_pointer(tmp->pub.ies))) {
1725 spin_unlock_bh(&rdev->bss_lock);
1726 return NULL;
1727 }
1728
1729 found = rb_find_bss(rdev, tmp, BSS_CMP_REGULAR);
1730
1731 if (found) {
1732 if (!cfg80211_update_known_bss(rdev, found, tmp, signal_valid))
1733 goto drop;
1734 } else {
1735 struct cfg80211_internal_bss *new;
1736 struct cfg80211_internal_bss *hidden;
1737 struct cfg80211_bss_ies *ies;
1738
1739 /*
1740 * create a copy -- the "res" variable that is passed in
1741 * is allocated on the stack since it's not needed in the
1742 * more common case of an update
1743 */
1744 new = kzalloc(sizeof(*new) + rdev->wiphy.bss_priv_size,
1745 GFP_ATOMIC);
1746 if (!new) {
1747 ies = (void *)rcu_dereference(tmp->pub.beacon_ies);
1748 if (ies)
1749 kfree_rcu(ies, rcu_head);
1750 ies = (void *)rcu_dereference(tmp->pub.proberesp_ies);
1751 if (ies)
1752 kfree_rcu(ies, rcu_head);
1753 goto drop;
1754 }
1755 memcpy(new, tmp, sizeof(*new));
1756 new->refcount = 1;
1757 INIT_LIST_HEAD(&new->hidden_list);
1758 INIT_LIST_HEAD(&new->pub.nontrans_list);
1759 /* we'll set this later if it was non-NULL */
1760 new->pub.transmitted_bss = NULL;
1761
1762 if (rcu_access_pointer(tmp->pub.proberesp_ies)) {
1763 hidden = rb_find_bss(rdev, tmp, BSS_CMP_HIDE_ZLEN);
1764 if (!hidden)
1765 hidden = rb_find_bss(rdev, tmp,
1766 BSS_CMP_HIDE_NUL);
1767 if (hidden) {
1768 new->pub.hidden_beacon_bss = &hidden->pub;
1769 list_add(&new->hidden_list,
1770 &hidden->hidden_list);
1771 hidden->refcount++;
1772 rcu_assign_pointer(new->pub.beacon_ies,
1773 hidden->pub.beacon_ies);
1774 }
1775 } else {
1776 /*
1777 * Ok so we found a beacon, and don't have an entry. If
1778 * it's a beacon with hidden SSID, we might be in for an
1779 * expensive search for any probe responses that should
1780 * be grouped with this beacon for updates ...
1781 */
1782 if (!cfg80211_combine_bsses(rdev, new)) {
1783 bss_ref_put(rdev, new);
1784 goto drop;
1785 }
1786 }
1787
1788 if (rdev->bss_entries >= bss_entries_limit &&
1789 !cfg80211_bss_expire_oldest(rdev)) {
1790 bss_ref_put(rdev, new);
1791 goto drop;
1792 }
1793
1794 /* This must be before the call to bss_ref_get */
1795 if (tmp->pub.transmitted_bss) {
1796 new->pub.transmitted_bss = tmp->pub.transmitted_bss;
1797 bss_ref_get(rdev, bss_from_pub(tmp->pub.transmitted_bss));
1798 }
1799
1800 list_add_tail(&new->list, &rdev->bss_list);
1801 rdev->bss_entries++;
1802 rb_insert_bss(rdev, new);
1803 found = new;
1804 }
1805
1806 rdev->bss_generation++;
1807 bss_ref_get(rdev, found);
1808 spin_unlock_bh(&rdev->bss_lock);
1809
1810 return found;
1811 drop:
1812 spin_unlock_bh(&rdev->bss_lock);
1813 return NULL;
1814}
1815
1816int cfg80211_get_ies_channel_number(const u8 *ie, size_t ielen,
1817 enum nl80211_band band)
1818{
1819 const struct element *tmp;
1820
1821 if (band == NL80211_BAND_6GHZ) {
1822 struct ieee80211_he_operation *he_oper;
1823
1824 tmp = cfg80211_find_ext_elem(WLAN_EID_EXT_HE_OPERATION, ie,
1825 ielen);
1826 if (tmp && tmp->datalen >= sizeof(*he_oper) &&
1827 tmp->datalen >= ieee80211_he_oper_size(&tmp->data[1])) {
1828 const struct ieee80211_he_6ghz_oper *he_6ghz_oper;
1829
1830 he_oper = (void *)&tmp->data[1];
1831
1832 he_6ghz_oper = ieee80211_he_6ghz_oper(he_oper);
1833 if (!he_6ghz_oper)
1834 return -1;
1835
1836 return he_6ghz_oper->primary;
1837 }
1838 } else if (band == NL80211_BAND_S1GHZ) {
1839 tmp = cfg80211_find_elem(WLAN_EID_S1G_OPERATION, ie, ielen);
1840 if (tmp && tmp->datalen >= sizeof(struct ieee80211_s1g_oper_ie)) {
1841 struct ieee80211_s1g_oper_ie *s1gop = (void *)tmp->data;
1842
1843 return s1gop->oper_ch;
1844 }
1845 } else {
1846 tmp = cfg80211_find_elem(WLAN_EID_DS_PARAMS, ie, ielen);
1847 if (tmp && tmp->datalen == 1)
1848 return tmp->data[0];
1849
1850 tmp = cfg80211_find_elem(WLAN_EID_HT_OPERATION, ie, ielen);
1851 if (tmp &&
1852 tmp->datalen >= sizeof(struct ieee80211_ht_operation)) {
1853 struct ieee80211_ht_operation *htop = (void *)tmp->data;
1854
1855 return htop->primary_chan;
1856 }
1857 }
1858
1859 return -1;
1860}
1861EXPORT_SYMBOL(cfg80211_get_ies_channel_number);
1862
1863/*
1864 * Update RX channel information based on the available frame payload
1865 * information. This is mainly for the 2.4 GHz band where frames can be received
1866 * from neighboring channels and the Beacon frames use the DSSS Parameter Set
1867 * element to indicate the current (transmitting) channel, but this might also
1868 * be needed on other bands if RX frequency does not match with the actual
1869 * operating channel of a BSS, or if the AP reports a different primary channel.
1870 */
1871static struct ieee80211_channel *
1872cfg80211_get_bss_channel(struct wiphy *wiphy, const u8 *ie, size_t ielen,
1873 struct ieee80211_channel *channel,
1874 enum nl80211_bss_scan_width scan_width)
1875{
1876 u32 freq;
1877 int channel_number;
1878 struct ieee80211_channel *alt_channel;
1879
1880 channel_number = cfg80211_get_ies_channel_number(ie, ielen,
1881 channel->band);
1882
1883 if (channel_number < 0) {
1884 /* No channel information in frame payload */
1885 return channel;
1886 }
1887
1888 freq = ieee80211_channel_to_freq_khz(channel_number, channel->band);
1889
1890 /*
1891 * Frame info (beacon/prob res) is the same as received channel,
1892 * no need for further processing.
1893 */
1894 if (freq == ieee80211_channel_to_khz(channel))
1895 return channel;
1896
1897 alt_channel = ieee80211_get_channel_khz(wiphy, freq);
1898 if (!alt_channel) {
1899 if (channel->band == NL80211_BAND_2GHZ ||
1900 channel->band == NL80211_BAND_6GHZ) {
1901 /*
1902 * Better not allow unexpected channels when that could
1903 * be going beyond the 1-11 range (e.g., discovering
1904 * BSS on channel 12 when radio is configured for
1905 * channel 11) or beyond the 6 GHz channel range.
1906 */
1907 return NULL;
1908 }
1909
1910 /* No match for the payload channel number - ignore it */
1911 return channel;
1912 }
1913
1914 if (scan_width == NL80211_BSS_CHAN_WIDTH_10 ||
1915 scan_width == NL80211_BSS_CHAN_WIDTH_5) {
1916 /*
1917 * Ignore channel number in 5 and 10 MHz channels where there
1918 * may not be an n:1 or 1:n mapping between frequencies and
1919 * channel numbers.
1920 */
1921 return channel;
1922 }
1923
1924 /*
1925 * Use the channel determined through the payload channel number
1926 * instead of the RX channel reported by the driver.
1927 */
1928 if (alt_channel->flags & IEEE80211_CHAN_DISABLED)
1929 return NULL;
1930 return alt_channel;
1931}
1932
1933/* Returned bss is reference counted and must be cleaned up appropriately. */
1934static struct cfg80211_bss *
1935cfg80211_inform_single_bss_data(struct wiphy *wiphy,
1936 struct cfg80211_inform_bss *data,
1937 enum cfg80211_bss_frame_type ftype,
1938 const u8 *bssid, u64 tsf, u16 capability,
1939 u16 beacon_interval, const u8 *ie, size_t ielen,
1940 struct cfg80211_non_tx_bss *non_tx_data,
1941 gfp_t gfp)
1942{
1943 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
1944 struct cfg80211_bss_ies *ies;
1945 struct ieee80211_channel *channel;
1946 struct cfg80211_internal_bss tmp = {}, *res;
1947 int bss_type;
1948 bool signal_valid;
1949 unsigned long ts;
1950
1951 if (WARN_ON(!wiphy))
1952 return NULL;
1953
1954 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
1955 (data->signal < 0 || data->signal > 100)))
1956 return NULL;
1957
1958 channel = cfg80211_get_bss_channel(wiphy, ie, ielen, data->chan,
1959 data->scan_width);
1960 if (!channel)
1961 return NULL;
1962
1963 memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
1964 tmp.pub.channel = channel;
1965 tmp.pub.scan_width = data->scan_width;
1966 tmp.pub.signal = data->signal;
1967 tmp.pub.beacon_interval = beacon_interval;
1968 tmp.pub.capability = capability;
1969 tmp.ts_boottime = data->boottime_ns;
1970 tmp.parent_tsf = data->parent_tsf;
1971 ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
1972
1973 if (non_tx_data) {
1974 tmp.pub.transmitted_bss = non_tx_data->tx_bss;
1975 ts = bss_from_pub(non_tx_data->tx_bss)->ts;
1976 tmp.pub.bssid_index = non_tx_data->bssid_index;
1977 tmp.pub.max_bssid_indicator = non_tx_data->max_bssid_indicator;
1978 } else {
1979 ts = jiffies;
1980 }
1981
1982 /*
1983 * If we do not know here whether the IEs are from a Beacon or Probe
1984 * Response frame, we need to pick one of the options and only use it
1985 * with the driver that does not provide the full Beacon/Probe Response
1986 * frame. Use Beacon frame pointer to avoid indicating that this should
1987 * override the IEs pointer should we have received an earlier
1988 * indication of Probe Response data.
1989 */
1990 ies = kzalloc(sizeof(*ies) + ielen, gfp);
1991 if (!ies)
1992 return NULL;
1993 ies->len = ielen;
1994 ies->tsf = tsf;
1995 ies->from_beacon = false;
1996 memcpy(ies->data, ie, ielen);
1997
1998 switch (ftype) {
1999 case CFG80211_BSS_FTYPE_BEACON:
2000 ies->from_beacon = true;
2001 fallthrough;
2002 case CFG80211_BSS_FTYPE_UNKNOWN:
2003 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2004 break;
2005 case CFG80211_BSS_FTYPE_PRESP:
2006 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2007 break;
2008 }
2009 rcu_assign_pointer(tmp.pub.ies, ies);
2010
2011 signal_valid = data->chan == channel;
2012 res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid, ts);
2013 if (!res)
2014 return NULL;
2015
2016 if (channel->band == NL80211_BAND_60GHZ) {
2017 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
2018 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2019 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2020 regulatory_hint_found_beacon(wiphy, channel, gfp);
2021 } else {
2022 if (res->pub.capability & WLAN_CAPABILITY_ESS)
2023 regulatory_hint_found_beacon(wiphy, channel, gfp);
2024 }
2025
2026 if (non_tx_data) {
2027 /* this is a nontransmitting bss, we need to add it to
2028 * transmitting bss' list if it is not there
2029 */
2030 spin_lock_bh(&rdev->bss_lock);
2031 if (cfg80211_add_nontrans_list(non_tx_data->tx_bss,
2032 &res->pub)) {
2033 if (__cfg80211_unlink_bss(rdev, res)) {
2034 rdev->bss_generation++;
2035 res = NULL;
2036 }
2037 }
2038 spin_unlock_bh(&rdev->bss_lock);
2039
2040 if (!res)
2041 return NULL;
2042 }
2043
2044 trace_cfg80211_return_bss(&res->pub);
2045 /* cfg80211_bss_update gives us a referenced result */
2046 return &res->pub;
2047}
2048
2049static const struct element
2050*cfg80211_get_profile_continuation(const u8 *ie, size_t ielen,
2051 const struct element *mbssid_elem,
2052 const struct element *sub_elem)
2053{
2054 const u8 *mbssid_end = mbssid_elem->data + mbssid_elem->datalen;
2055 const struct element *next_mbssid;
2056 const struct element *next_sub;
2057
2058 next_mbssid = cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID,
2059 mbssid_end,
2060 ielen - (mbssid_end - ie));
2061
2062 /*
2063 * If it is not the last subelement in current MBSSID IE or there isn't
2064 * a next MBSSID IE - profile is complete.
2065 */
2066 if ((sub_elem->data + sub_elem->datalen < mbssid_end - 1) ||
2067 !next_mbssid)
2068 return NULL;
2069
2070 /* For any length error, just return NULL */
2071
2072 if (next_mbssid->datalen < 4)
2073 return NULL;
2074
2075 next_sub = (void *)&next_mbssid->data[1];
2076
2077 if (next_mbssid->data + next_mbssid->datalen <
2078 next_sub->data + next_sub->datalen)
2079 return NULL;
2080
2081 if (next_sub->id != 0 || next_sub->datalen < 2)
2082 return NULL;
2083
2084 /*
2085 * Check if the first element in the next sub element is a start
2086 * of a new profile
2087 */
2088 return next_sub->data[0] == WLAN_EID_NON_TX_BSSID_CAP ?
2089 NULL : next_mbssid;
2090}
2091
2092size_t cfg80211_merge_profile(const u8 *ie, size_t ielen,
2093 const struct element *mbssid_elem,
2094 const struct element *sub_elem,
2095 u8 *merged_ie, size_t max_copy_len)
2096{
2097 size_t copied_len = sub_elem->datalen;
2098 const struct element *next_mbssid;
2099
2100 if (sub_elem->datalen > max_copy_len)
2101 return 0;
2102
2103 memcpy(merged_ie, sub_elem->data, sub_elem->datalen);
2104
2105 while ((next_mbssid = cfg80211_get_profile_continuation(ie, ielen,
2106 mbssid_elem,
2107 sub_elem))) {
2108 const struct element *next_sub = (void *)&next_mbssid->data[1];
2109
2110 if (copied_len + next_sub->datalen > max_copy_len)
2111 break;
2112 memcpy(merged_ie + copied_len, next_sub->data,
2113 next_sub->datalen);
2114 copied_len += next_sub->datalen;
2115 }
2116
2117 return copied_len;
2118}
2119EXPORT_SYMBOL(cfg80211_merge_profile);
2120
2121static void cfg80211_parse_mbssid_data(struct wiphy *wiphy,
2122 struct cfg80211_inform_bss *data,
2123 enum cfg80211_bss_frame_type ftype,
2124 const u8 *bssid, u64 tsf,
2125 u16 beacon_interval, const u8 *ie,
2126 size_t ielen,
2127 struct cfg80211_non_tx_bss *non_tx_data,
2128 gfp_t gfp)
2129{
2130 const u8 *mbssid_index_ie;
2131 const struct element *elem, *sub;
2132 size_t new_ie_len;
2133 u8 new_bssid[ETH_ALEN];
2134 u8 *new_ie, *profile;
2135 u64 seen_indices = 0;
2136 u16 capability;
2137 struct cfg80211_bss *bss;
2138
2139 if (!non_tx_data)
2140 return;
2141 if (!cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
2142 return;
2143 if (!wiphy->support_mbssid)
2144 return;
2145 if (wiphy->support_only_he_mbssid &&
2146 !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
2147 return;
2148
2149 new_ie = kmalloc(IEEE80211_MAX_DATA_LEN, gfp);
2150 if (!new_ie)
2151 return;
2152
2153 profile = kmalloc(ielen, gfp);
2154 if (!profile)
2155 goto out;
2156
2157 for_each_element_id(elem, WLAN_EID_MULTIPLE_BSSID, ie, ielen) {
2158 if (elem->datalen < 4)
2159 continue;
2160 if (elem->data[0] < 1 || (int)elem->data[0] > 8)
2161 continue;
2162 for_each_element(sub, elem->data + 1, elem->datalen - 1) {
2163 u8 profile_len;
2164
2165 if (sub->id != 0 || sub->datalen < 4) {
2166 /* not a valid BSS profile */
2167 continue;
2168 }
2169
2170 if (sub->data[0] != WLAN_EID_NON_TX_BSSID_CAP ||
2171 sub->data[1] != 2) {
2172 /* The first element within the Nontransmitted
2173 * BSSID Profile is not the Nontransmitted
2174 * BSSID Capability element.
2175 */
2176 continue;
2177 }
2178
2179 memset(profile, 0, ielen);
2180 profile_len = cfg80211_merge_profile(ie, ielen,
2181 elem,
2182 sub,
2183 profile,
2184 ielen);
2185
2186 /* found a Nontransmitted BSSID Profile */
2187 mbssid_index_ie = cfg80211_find_ie
2188 (WLAN_EID_MULTI_BSSID_IDX,
2189 profile, profile_len);
2190 if (!mbssid_index_ie || mbssid_index_ie[1] < 1 ||
2191 mbssid_index_ie[2] == 0 ||
2192 mbssid_index_ie[2] > 46) {
2193 /* No valid Multiple BSSID-Index element */
2194 continue;
2195 }
2196
2197 if (seen_indices & BIT_ULL(mbssid_index_ie[2]))
2198 /* We don't support legacy split of a profile */
2199 net_dbg_ratelimited("Partial info for BSSID index %d\n",
2200 mbssid_index_ie[2]);
2201
2202 seen_indices |= BIT_ULL(mbssid_index_ie[2]);
2203
2204 non_tx_data->bssid_index = mbssid_index_ie[2];
2205 non_tx_data->max_bssid_indicator = elem->data[0];
2206
2207 cfg80211_gen_new_bssid(bssid,
2208 non_tx_data->max_bssid_indicator,
2209 non_tx_data->bssid_index,
2210 new_bssid);
2211 memset(new_ie, 0, IEEE80211_MAX_DATA_LEN);
2212 new_ie_len = cfg80211_gen_new_ie(ie, ielen,
2213 profile,
2214 profile_len, new_ie,
2215 gfp);
2216 if (!new_ie_len)
2217 continue;
2218
2219 capability = get_unaligned_le16(profile + 2);
2220 bss = cfg80211_inform_single_bss_data(wiphy, data,
2221 ftype,
2222 new_bssid, tsf,
2223 capability,
2224 beacon_interval,
2225 new_ie,
2226 new_ie_len,
2227 non_tx_data,
2228 gfp);
2229 if (!bss)
2230 break;
2231 cfg80211_put_bss(wiphy, bss);
2232 }
2233 }
2234
2235out:
2236 kfree(new_ie);
2237 kfree(profile);
2238}
2239
2240struct cfg80211_bss *
2241cfg80211_inform_bss_data(struct wiphy *wiphy,
2242 struct cfg80211_inform_bss *data,
2243 enum cfg80211_bss_frame_type ftype,
2244 const u8 *bssid, u64 tsf, u16 capability,
2245 u16 beacon_interval, const u8 *ie, size_t ielen,
2246 gfp_t gfp)
2247{
2248 struct cfg80211_bss *res;
2249 struct cfg80211_non_tx_bss non_tx_data;
2250
2251 res = cfg80211_inform_single_bss_data(wiphy, data, ftype, bssid, tsf,
2252 capability, beacon_interval, ie,
2253 ielen, NULL, gfp);
2254 if (!res)
2255 return NULL;
2256 non_tx_data.tx_bss = res;
2257 cfg80211_parse_mbssid_data(wiphy, data, ftype, bssid, tsf,
2258 beacon_interval, ie, ielen, &non_tx_data,
2259 gfp);
2260 return res;
2261}
2262EXPORT_SYMBOL(cfg80211_inform_bss_data);
2263
2264static void
2265cfg80211_parse_mbssid_frame_data(struct wiphy *wiphy,
2266 struct cfg80211_inform_bss *data,
2267 struct ieee80211_mgmt *mgmt, size_t len,
2268 struct cfg80211_non_tx_bss *non_tx_data,
2269 gfp_t gfp)
2270{
2271 enum cfg80211_bss_frame_type ftype;
2272 const u8 *ie = mgmt->u.probe_resp.variable;
2273 size_t ielen = len - offsetof(struct ieee80211_mgmt,
2274 u.probe_resp.variable);
2275
2276 ftype = ieee80211_is_beacon(mgmt->frame_control) ?
2277 CFG80211_BSS_FTYPE_BEACON : CFG80211_BSS_FTYPE_PRESP;
2278
2279 cfg80211_parse_mbssid_data(wiphy, data, ftype, mgmt->bssid,
2280 le64_to_cpu(mgmt->u.probe_resp.timestamp),
2281 le16_to_cpu(mgmt->u.probe_resp.beacon_int),
2282 ie, ielen, non_tx_data, gfp);
2283}
2284
2285static void
2286cfg80211_update_notlisted_nontrans(struct wiphy *wiphy,
2287 struct cfg80211_bss *nontrans_bss,
2288 struct ieee80211_mgmt *mgmt, size_t len)
2289{
2290 u8 *ie, *new_ie, *pos;
2291 const struct element *nontrans_ssid;
2292 const u8 *trans_ssid, *mbssid;
2293 size_t ielen = len - offsetof(struct ieee80211_mgmt,
2294 u.probe_resp.variable);
2295 size_t new_ie_len;
2296 struct cfg80211_bss_ies *new_ies;
2297 const struct cfg80211_bss_ies *old;
2298 size_t cpy_len;
2299
2300 lockdep_assert_held(&wiphy_to_rdev(wiphy)->bss_lock);
2301
2302 ie = mgmt->u.probe_resp.variable;
2303
2304 new_ie_len = ielen;
2305 trans_ssid = cfg80211_find_ie(WLAN_EID_SSID, ie, ielen);
2306 if (!trans_ssid)
2307 return;
2308 new_ie_len -= trans_ssid[1];
2309 mbssid = cfg80211_find_ie(WLAN_EID_MULTIPLE_BSSID, ie, ielen);
2310 /*
2311 * It's not valid to have the MBSSID element before SSID
2312 * ignore if that happens - the code below assumes it is
2313 * after (while copying things inbetween).
2314 */
2315 if (!mbssid || mbssid < trans_ssid)
2316 return;
2317 new_ie_len -= mbssid[1];
2318
2319 nontrans_ssid = ieee80211_bss_get_elem(nontrans_bss, WLAN_EID_SSID);
2320 if (!nontrans_ssid)
2321 return;
2322
2323 new_ie_len += nontrans_ssid->datalen;
2324
2325 /* generate new ie for nontrans BSS
2326 * 1. replace SSID with nontrans BSS' SSID
2327 * 2. skip MBSSID IE
2328 */
2329 new_ie = kzalloc(new_ie_len, GFP_ATOMIC);
2330 if (!new_ie)
2331 return;
2332
2333 new_ies = kzalloc(sizeof(*new_ies) + new_ie_len, GFP_ATOMIC);
2334 if (!new_ies)
2335 goto out_free;
2336
2337 pos = new_ie;
2338
2339 /* copy the nontransmitted SSID */
2340 cpy_len = nontrans_ssid->datalen + 2;
2341 memcpy(pos, nontrans_ssid, cpy_len);
2342 pos += cpy_len;
2343 /* copy the IEs between SSID and MBSSID */
2344 cpy_len = trans_ssid[1] + 2;
2345 memcpy(pos, (trans_ssid + cpy_len), (mbssid - (trans_ssid + cpy_len)));
2346 pos += (mbssid - (trans_ssid + cpy_len));
2347 /* copy the IEs after MBSSID */
2348 cpy_len = mbssid[1] + 2;
2349 memcpy(pos, mbssid + cpy_len, ((ie + ielen) - (mbssid + cpy_len)));
2350
2351 /* update ie */
2352 new_ies->len = new_ie_len;
2353 new_ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2354 new_ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control);
2355 memcpy(new_ies->data, new_ie, new_ie_len);
2356 if (ieee80211_is_probe_resp(mgmt->frame_control)) {
2357 old = rcu_access_pointer(nontrans_bss->proberesp_ies);
2358 rcu_assign_pointer(nontrans_bss->proberesp_ies, new_ies);
2359 rcu_assign_pointer(nontrans_bss->ies, new_ies);
2360 if (old)
2361 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
2362 } else {
2363 old = rcu_access_pointer(nontrans_bss->beacon_ies);
2364 rcu_assign_pointer(nontrans_bss->beacon_ies, new_ies);
2365 cfg80211_update_hidden_bsses(bss_from_pub(nontrans_bss),
2366 new_ies, old);
2367 rcu_assign_pointer(nontrans_bss->ies, new_ies);
2368 if (old)
2369 kfree_rcu((struct cfg80211_bss_ies *)old, rcu_head);
2370 }
2371
2372out_free:
2373 kfree(new_ie);
2374}
2375
2376/* cfg80211_inform_bss_width_frame helper */
2377static struct cfg80211_bss *
2378cfg80211_inform_single_bss_frame_data(struct wiphy *wiphy,
2379 struct cfg80211_inform_bss *data,
2380 struct ieee80211_mgmt *mgmt, size_t len,
2381 gfp_t gfp)
2382{
2383 struct cfg80211_internal_bss tmp = {}, *res;
2384 struct cfg80211_bss_ies *ies;
2385 struct ieee80211_channel *channel;
2386 bool signal_valid;
2387 struct ieee80211_ext *ext = NULL;
2388 u8 *bssid, *variable;
2389 u16 capability, beacon_int;
2390 size_t ielen, min_hdr_len = offsetof(struct ieee80211_mgmt,
2391 u.probe_resp.variable);
2392 int bss_type;
2393
2394 BUILD_BUG_ON(offsetof(struct ieee80211_mgmt, u.probe_resp.variable) !=
2395 offsetof(struct ieee80211_mgmt, u.beacon.variable));
2396
2397 trace_cfg80211_inform_bss_frame(wiphy, data, mgmt, len);
2398
2399 if (WARN_ON(!mgmt))
2400 return NULL;
2401
2402 if (WARN_ON(!wiphy))
2403 return NULL;
2404
2405 if (WARN_ON(wiphy->signal_type == CFG80211_SIGNAL_TYPE_UNSPEC &&
2406 (data->signal < 0 || data->signal > 100)))
2407 return NULL;
2408
2409 if (ieee80211_is_s1g_beacon(mgmt->frame_control)) {
2410 ext = (void *) mgmt;
2411 min_hdr_len = offsetof(struct ieee80211_ext, u.s1g_beacon);
2412 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2413 min_hdr_len = offsetof(struct ieee80211_ext,
2414 u.s1g_short_beacon.variable);
2415 }
2416
2417 if (WARN_ON(len < min_hdr_len))
2418 return NULL;
2419
2420 ielen = len - min_hdr_len;
2421 variable = mgmt->u.probe_resp.variable;
2422 if (ext) {
2423 if (ieee80211_is_s1g_short_beacon(mgmt->frame_control))
2424 variable = ext->u.s1g_short_beacon.variable;
2425 else
2426 variable = ext->u.s1g_beacon.variable;
2427 }
2428
2429 channel = cfg80211_get_bss_channel(wiphy, variable,
2430 ielen, data->chan, data->scan_width);
2431 if (!channel)
2432 return NULL;
2433
2434 if (ext) {
2435 const struct ieee80211_s1g_bcn_compat_ie *compat;
2436 const struct element *elem;
2437
2438 elem = cfg80211_find_elem(WLAN_EID_S1G_BCN_COMPAT,
2439 variable, ielen);
2440 if (!elem)
2441 return NULL;
2442 if (elem->datalen < sizeof(*compat))
2443 return NULL;
2444 compat = (void *)elem->data;
2445 bssid = ext->u.s1g_beacon.sa;
2446 capability = le16_to_cpu(compat->compat_info);
2447 beacon_int = le16_to_cpu(compat->beacon_int);
2448 } else {
2449 bssid = mgmt->bssid;
2450 beacon_int = le16_to_cpu(mgmt->u.probe_resp.beacon_int);
2451 capability = le16_to_cpu(mgmt->u.probe_resp.capab_info);
2452 }
2453
2454 ies = kzalloc(sizeof(*ies) + ielen, gfp);
2455 if (!ies)
2456 return NULL;
2457 ies->len = ielen;
2458 ies->tsf = le64_to_cpu(mgmt->u.probe_resp.timestamp);
2459 ies->from_beacon = ieee80211_is_beacon(mgmt->frame_control) ||
2460 ieee80211_is_s1g_beacon(mgmt->frame_control);
2461 memcpy(ies->data, variable, ielen);
2462
2463 if (ieee80211_is_probe_resp(mgmt->frame_control))
2464 rcu_assign_pointer(tmp.pub.proberesp_ies, ies);
2465 else
2466 rcu_assign_pointer(tmp.pub.beacon_ies, ies);
2467 rcu_assign_pointer(tmp.pub.ies, ies);
2468
2469 memcpy(tmp.pub.bssid, bssid, ETH_ALEN);
2470 tmp.pub.beacon_interval = beacon_int;
2471 tmp.pub.capability = capability;
2472 tmp.pub.channel = channel;
2473 tmp.pub.scan_width = data->scan_width;
2474 tmp.pub.signal = data->signal;
2475 tmp.ts_boottime = data->boottime_ns;
2476 tmp.parent_tsf = data->parent_tsf;
2477 tmp.pub.chains = data->chains;
2478 memcpy(tmp.pub.chain_signal, data->chain_signal, IEEE80211_MAX_CHAINS);
2479 ether_addr_copy(tmp.parent_bssid, data->parent_bssid);
2480
2481 signal_valid = data->chan == channel;
2482 res = cfg80211_bss_update(wiphy_to_rdev(wiphy), &tmp, signal_valid,
2483 jiffies);
2484 if (!res)
2485 return NULL;
2486
2487 if (channel->band == NL80211_BAND_60GHZ) {
2488 bss_type = res->pub.capability & WLAN_CAPABILITY_DMG_TYPE_MASK;
2489 if (bss_type == WLAN_CAPABILITY_DMG_TYPE_AP ||
2490 bss_type == WLAN_CAPABILITY_DMG_TYPE_PBSS)
2491 regulatory_hint_found_beacon(wiphy, channel, gfp);
2492 } else {
2493 if (res->pub.capability & WLAN_CAPABILITY_ESS)
2494 regulatory_hint_found_beacon(wiphy, channel, gfp);
2495 }
2496
2497 trace_cfg80211_return_bss(&res->pub);
2498 /* cfg80211_bss_update gives us a referenced result */
2499 return &res->pub;
2500}
2501
2502struct cfg80211_bss *
2503cfg80211_inform_bss_frame_data(struct wiphy *wiphy,
2504 struct cfg80211_inform_bss *data,
2505 struct ieee80211_mgmt *mgmt, size_t len,
2506 gfp_t gfp)
2507{
2508 struct cfg80211_bss *res, *tmp_bss;
2509 const u8 *ie = mgmt->u.probe_resp.variable;
2510 const struct cfg80211_bss_ies *ies1, *ies2;
2511 size_t ielen = len - offsetof(struct ieee80211_mgmt,
2512 u.probe_resp.variable);
2513 struct cfg80211_non_tx_bss non_tx_data = {};
2514
2515 res = cfg80211_inform_single_bss_frame_data(wiphy, data, mgmt,
2516 len, gfp);
2517
2518 /* don't do any further MBSSID handling for S1G */
2519 if (ieee80211_is_s1g_beacon(mgmt->frame_control))
2520 return res;
2521
2522 if (!res || !wiphy->support_mbssid ||
2523 !cfg80211_find_elem(WLAN_EID_MULTIPLE_BSSID, ie, ielen))
2524 return res;
2525 if (wiphy->support_only_he_mbssid &&
2526 !cfg80211_find_ext_elem(WLAN_EID_EXT_HE_CAPABILITY, ie, ielen))
2527 return res;
2528
2529 non_tx_data.tx_bss = res;
2530 /* process each non-transmitting bss */
2531 cfg80211_parse_mbssid_frame_data(wiphy, data, mgmt, len,
2532 &non_tx_data, gfp);
2533
2534 spin_lock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
2535
2536 /* check if the res has other nontransmitting bss which is not
2537 * in MBSSID IE
2538 */
2539 ies1 = rcu_access_pointer(res->ies);
2540
2541 /* go through nontrans_list, if the timestamp of the BSS is
2542 * earlier than the timestamp of the transmitting BSS then
2543 * update it
2544 */
2545 list_for_each_entry(tmp_bss, &res->nontrans_list,
2546 nontrans_list) {
2547 ies2 = rcu_access_pointer(tmp_bss->ies);
2548 if (ies2->tsf < ies1->tsf)
2549 cfg80211_update_notlisted_nontrans(wiphy, tmp_bss,
2550 mgmt, len);
2551 }
2552 spin_unlock_bh(&wiphy_to_rdev(wiphy)->bss_lock);
2553
2554 return res;
2555}
2556EXPORT_SYMBOL(cfg80211_inform_bss_frame_data);
2557
2558void cfg80211_ref_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2559{
2560 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2561
2562 if (!pub)
2563 return;
2564
2565 spin_lock_bh(&rdev->bss_lock);
2566 bss_ref_get(rdev, bss_from_pub(pub));
2567 spin_unlock_bh(&rdev->bss_lock);
2568}
2569EXPORT_SYMBOL(cfg80211_ref_bss);
2570
2571void cfg80211_put_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2572{
2573 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2574
2575 if (!pub)
2576 return;
2577
2578 spin_lock_bh(&rdev->bss_lock);
2579 bss_ref_put(rdev, bss_from_pub(pub));
2580 spin_unlock_bh(&rdev->bss_lock);
2581}
2582EXPORT_SYMBOL(cfg80211_put_bss);
2583
2584void cfg80211_unlink_bss(struct wiphy *wiphy, struct cfg80211_bss *pub)
2585{
2586 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2587 struct cfg80211_internal_bss *bss, *tmp1;
2588 struct cfg80211_bss *nontrans_bss, *tmp;
2589
2590 if (WARN_ON(!pub))
2591 return;
2592
2593 bss = bss_from_pub(pub);
2594
2595 spin_lock_bh(&rdev->bss_lock);
2596 if (list_empty(&bss->list))
2597 goto out;
2598
2599 list_for_each_entry_safe(nontrans_bss, tmp,
2600 &pub->nontrans_list,
2601 nontrans_list) {
2602 tmp1 = bss_from_pub(nontrans_bss);
2603 if (__cfg80211_unlink_bss(rdev, tmp1))
2604 rdev->bss_generation++;
2605 }
2606
2607 if (__cfg80211_unlink_bss(rdev, bss))
2608 rdev->bss_generation++;
2609out:
2610 spin_unlock_bh(&rdev->bss_lock);
2611}
2612EXPORT_SYMBOL(cfg80211_unlink_bss);
2613
2614void cfg80211_bss_iter(struct wiphy *wiphy,
2615 struct cfg80211_chan_def *chandef,
2616 void (*iter)(struct wiphy *wiphy,
2617 struct cfg80211_bss *bss,
2618 void *data),
2619 void *iter_data)
2620{
2621 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2622 struct cfg80211_internal_bss *bss;
2623
2624 spin_lock_bh(&rdev->bss_lock);
2625
2626 list_for_each_entry(bss, &rdev->bss_list, list) {
2627 if (!chandef || cfg80211_is_sub_chan(chandef, bss->pub.channel,
2628 false))
2629 iter(wiphy, &bss->pub, iter_data);
2630 }
2631
2632 spin_unlock_bh(&rdev->bss_lock);
2633}
2634EXPORT_SYMBOL(cfg80211_bss_iter);
2635
2636void cfg80211_update_assoc_bss_entry(struct wireless_dev *wdev,
2637 unsigned int link_id,
2638 struct ieee80211_channel *chan)
2639{
2640 struct wiphy *wiphy = wdev->wiphy;
2641 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2642 struct cfg80211_internal_bss *cbss = wdev->links[link_id].client.current_bss;
2643 struct cfg80211_internal_bss *new = NULL;
2644 struct cfg80211_internal_bss *bss;
2645 struct cfg80211_bss *nontrans_bss;
2646 struct cfg80211_bss *tmp;
2647
2648 spin_lock_bh(&rdev->bss_lock);
2649
2650 /*
2651 * Some APs use CSA also for bandwidth changes, i.e., without actually
2652 * changing the control channel, so no need to update in such a case.
2653 */
2654 if (cbss->pub.channel == chan)
2655 goto done;
2656
2657 /* use transmitting bss */
2658 if (cbss->pub.transmitted_bss)
2659 cbss = bss_from_pub(cbss->pub.transmitted_bss);
2660
2661 cbss->pub.channel = chan;
2662
2663 list_for_each_entry(bss, &rdev->bss_list, list) {
2664 if (!cfg80211_bss_type_match(bss->pub.capability,
2665 bss->pub.channel->band,
2666 wdev->conn_bss_type))
2667 continue;
2668
2669 if (bss == cbss)
2670 continue;
2671
2672 if (!cmp_bss(&bss->pub, &cbss->pub, BSS_CMP_REGULAR)) {
2673 new = bss;
2674 break;
2675 }
2676 }
2677
2678 if (new) {
2679 /* to save time, update IEs for transmitting bss only */
2680 if (cfg80211_update_known_bss(rdev, cbss, new, false)) {
2681 new->pub.proberesp_ies = NULL;
2682 new->pub.beacon_ies = NULL;
2683 }
2684
2685 list_for_each_entry_safe(nontrans_bss, tmp,
2686 &new->pub.nontrans_list,
2687 nontrans_list) {
2688 bss = bss_from_pub(nontrans_bss);
2689 if (__cfg80211_unlink_bss(rdev, bss))
2690 rdev->bss_generation++;
2691 }
2692
2693 WARN_ON(atomic_read(&new->hold));
2694 if (!WARN_ON(!__cfg80211_unlink_bss(rdev, new)))
2695 rdev->bss_generation++;
2696 }
2697
2698 rb_erase(&cbss->rbn, &rdev->bss_tree);
2699 rb_insert_bss(rdev, cbss);
2700 rdev->bss_generation++;
2701
2702 list_for_each_entry_safe(nontrans_bss, tmp,
2703 &cbss->pub.nontrans_list,
2704 nontrans_list) {
2705 bss = bss_from_pub(nontrans_bss);
2706 bss->pub.channel = chan;
2707 rb_erase(&bss->rbn, &rdev->bss_tree);
2708 rb_insert_bss(rdev, bss);
2709 rdev->bss_generation++;
2710 }
2711
2712done:
2713 spin_unlock_bh(&rdev->bss_lock);
2714}
2715
2716#ifdef CONFIG_CFG80211_WEXT
2717static struct cfg80211_registered_device *
2718cfg80211_get_dev_from_ifindex(struct net *net, int ifindex)
2719{
2720 struct cfg80211_registered_device *rdev;
2721 struct net_device *dev;
2722
2723 ASSERT_RTNL();
2724
2725 dev = dev_get_by_index(net, ifindex);
2726 if (!dev)
2727 return ERR_PTR(-ENODEV);
2728 if (dev->ieee80211_ptr)
2729 rdev = wiphy_to_rdev(dev->ieee80211_ptr->wiphy);
2730 else
2731 rdev = ERR_PTR(-ENODEV);
2732 dev_put(dev);
2733 return rdev;
2734}
2735
2736int cfg80211_wext_siwscan(struct net_device *dev,
2737 struct iw_request_info *info,
2738 union iwreq_data *wrqu, char *extra)
2739{
2740 struct cfg80211_registered_device *rdev;
2741 struct wiphy *wiphy;
2742 struct iw_scan_req *wreq = NULL;
2743 struct cfg80211_scan_request *creq;
2744 int i, err, n_channels = 0;
2745 enum nl80211_band band;
2746
2747 if (!netif_running(dev))
2748 return -ENETDOWN;
2749
2750 if (wrqu->data.length == sizeof(struct iw_scan_req))
2751 wreq = (struct iw_scan_req *)extra;
2752
2753 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
2754
2755 if (IS_ERR(rdev))
2756 return PTR_ERR(rdev);
2757
2758 if (rdev->scan_req || rdev->scan_msg)
2759 return -EBUSY;
2760
2761 wiphy = &rdev->wiphy;
2762
2763 /* Determine number of channels, needed to allocate creq */
2764 if (wreq && wreq->num_channels)
2765 n_channels = wreq->num_channels;
2766 else
2767 n_channels = ieee80211_get_num_supported_channels(wiphy);
2768
2769 creq = kzalloc(sizeof(*creq) + sizeof(struct cfg80211_ssid) +
2770 n_channels * sizeof(void *),
2771 GFP_ATOMIC);
2772 if (!creq)
2773 return -ENOMEM;
2774
2775 creq->wiphy = wiphy;
2776 creq->wdev = dev->ieee80211_ptr;
2777 /* SSIDs come after channels */
2778 creq->ssids = (void *)&creq->channels[n_channels];
2779 creq->n_channels = n_channels;
2780 creq->n_ssids = 1;
2781 creq->scan_start = jiffies;
2782
2783 /* translate "Scan on frequencies" request */
2784 i = 0;
2785 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2786 int j;
2787
2788 if (!wiphy->bands[band])
2789 continue;
2790
2791 for (j = 0; j < wiphy->bands[band]->n_channels; j++) {
2792 /* ignore disabled channels */
2793 if (wiphy->bands[band]->channels[j].flags &
2794 IEEE80211_CHAN_DISABLED)
2795 continue;
2796
2797 /* If we have a wireless request structure and the
2798 * wireless request specifies frequencies, then search
2799 * for the matching hardware channel.
2800 */
2801 if (wreq && wreq->num_channels) {
2802 int k;
2803 int wiphy_freq = wiphy->bands[band]->channels[j].center_freq;
2804 for (k = 0; k < wreq->num_channels; k++) {
2805 struct iw_freq *freq =
2806 &wreq->channel_list[k];
2807 int wext_freq =
2808 cfg80211_wext_freq(freq);
2809
2810 if (wext_freq == wiphy_freq)
2811 goto wext_freq_found;
2812 }
2813 goto wext_freq_not_found;
2814 }
2815
2816 wext_freq_found:
2817 creq->channels[i] = &wiphy->bands[band]->channels[j];
2818 i++;
2819 wext_freq_not_found: ;
2820 }
2821 }
2822 /* No channels found? */
2823 if (!i) {
2824 err = -EINVAL;
2825 goto out;
2826 }
2827
2828 /* Set real number of channels specified in creq->channels[] */
2829 creq->n_channels = i;
2830
2831 /* translate "Scan for SSID" request */
2832 if (wreq) {
2833 if (wrqu->data.flags & IW_SCAN_THIS_ESSID) {
2834 if (wreq->essid_len > IEEE80211_MAX_SSID_LEN) {
2835 err = -EINVAL;
2836 goto out;
2837 }
2838 memcpy(creq->ssids[0].ssid, wreq->essid, wreq->essid_len);
2839 creq->ssids[0].ssid_len = wreq->essid_len;
2840 }
2841 if (wreq->scan_type == IW_SCAN_TYPE_PASSIVE)
2842 creq->n_ssids = 0;
2843 }
2844
2845 for (i = 0; i < NUM_NL80211_BANDS; i++)
2846 if (wiphy->bands[i])
2847 creq->rates[i] = (1 << wiphy->bands[i]->n_bitrates) - 1;
2848
2849 eth_broadcast_addr(creq->bssid);
2850
2851 wiphy_lock(&rdev->wiphy);
2852
2853 rdev->scan_req = creq;
2854 err = rdev_scan(rdev, creq);
2855 if (err) {
2856 rdev->scan_req = NULL;
2857 /* creq will be freed below */
2858 } else {
2859 nl80211_send_scan_start(rdev, dev->ieee80211_ptr);
2860 /* creq now owned by driver */
2861 creq = NULL;
2862 dev_hold(dev);
2863 }
2864 wiphy_unlock(&rdev->wiphy);
2865 out:
2866 kfree(creq);
2867 return err;
2868}
2869EXPORT_WEXT_HANDLER(cfg80211_wext_siwscan);
2870
2871static char *ieee80211_scan_add_ies(struct iw_request_info *info,
2872 const struct cfg80211_bss_ies *ies,
2873 char *current_ev, char *end_buf)
2874{
2875 const u8 *pos, *end, *next;
2876 struct iw_event iwe;
2877
2878 if (!ies)
2879 return current_ev;
2880
2881 /*
2882 * If needed, fragment the IEs buffer (at IE boundaries) into short
2883 * enough fragments to fit into IW_GENERIC_IE_MAX octet messages.
2884 */
2885 pos = ies->data;
2886 end = pos + ies->len;
2887
2888 while (end - pos > IW_GENERIC_IE_MAX) {
2889 next = pos + 2 + pos[1];
2890 while (next + 2 + next[1] - pos < IW_GENERIC_IE_MAX)
2891 next = next + 2 + next[1];
2892
2893 memset(&iwe, 0, sizeof(iwe));
2894 iwe.cmd = IWEVGENIE;
2895 iwe.u.data.length = next - pos;
2896 current_ev = iwe_stream_add_point_check(info, current_ev,
2897 end_buf, &iwe,
2898 (void *)pos);
2899 if (IS_ERR(current_ev))
2900 return current_ev;
2901 pos = next;
2902 }
2903
2904 if (end > pos) {
2905 memset(&iwe, 0, sizeof(iwe));
2906 iwe.cmd = IWEVGENIE;
2907 iwe.u.data.length = end - pos;
2908 current_ev = iwe_stream_add_point_check(info, current_ev,
2909 end_buf, &iwe,
2910 (void *)pos);
2911 if (IS_ERR(current_ev))
2912 return current_ev;
2913 }
2914
2915 return current_ev;
2916}
2917
2918static char *
2919ieee80211_bss(struct wiphy *wiphy, struct iw_request_info *info,
2920 struct cfg80211_internal_bss *bss, char *current_ev,
2921 char *end_buf)
2922{
2923 const struct cfg80211_bss_ies *ies;
2924 struct iw_event iwe;
2925 const u8 *ie;
2926 u8 buf[50];
2927 u8 *cfg, *p, *tmp;
2928 int rem, i, sig;
2929 bool ismesh = false;
2930
2931 memset(&iwe, 0, sizeof(iwe));
2932 iwe.cmd = SIOCGIWAP;
2933 iwe.u.ap_addr.sa_family = ARPHRD_ETHER;
2934 memcpy(iwe.u.ap_addr.sa_data, bss->pub.bssid, ETH_ALEN);
2935 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2936 IW_EV_ADDR_LEN);
2937 if (IS_ERR(current_ev))
2938 return current_ev;
2939
2940 memset(&iwe, 0, sizeof(iwe));
2941 iwe.cmd = SIOCGIWFREQ;
2942 iwe.u.freq.m = ieee80211_frequency_to_channel(bss->pub.channel->center_freq);
2943 iwe.u.freq.e = 0;
2944 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2945 IW_EV_FREQ_LEN);
2946 if (IS_ERR(current_ev))
2947 return current_ev;
2948
2949 memset(&iwe, 0, sizeof(iwe));
2950 iwe.cmd = SIOCGIWFREQ;
2951 iwe.u.freq.m = bss->pub.channel->center_freq;
2952 iwe.u.freq.e = 6;
2953 current_ev = iwe_stream_add_event_check(info, current_ev, end_buf, &iwe,
2954 IW_EV_FREQ_LEN);
2955 if (IS_ERR(current_ev))
2956 return current_ev;
2957
2958 if (wiphy->signal_type != CFG80211_SIGNAL_TYPE_NONE) {
2959 memset(&iwe, 0, sizeof(iwe));
2960 iwe.cmd = IWEVQUAL;
2961 iwe.u.qual.updated = IW_QUAL_LEVEL_UPDATED |
2962 IW_QUAL_NOISE_INVALID |
2963 IW_QUAL_QUAL_UPDATED;
2964 switch (wiphy->signal_type) {
2965 case CFG80211_SIGNAL_TYPE_MBM:
2966 sig = bss->pub.signal / 100;
2967 iwe.u.qual.level = sig;
2968 iwe.u.qual.updated |= IW_QUAL_DBM;
2969 if (sig < -110) /* rather bad */
2970 sig = -110;
2971 else if (sig > -40) /* perfect */
2972 sig = -40;
2973 /* will give a range of 0 .. 70 */
2974 iwe.u.qual.qual = sig + 110;
2975 break;
2976 case CFG80211_SIGNAL_TYPE_UNSPEC:
2977 iwe.u.qual.level = bss->pub.signal;
2978 /* will give range 0 .. 100 */
2979 iwe.u.qual.qual = bss->pub.signal;
2980 break;
2981 default:
2982 /* not reached */
2983 break;
2984 }
2985 current_ev = iwe_stream_add_event_check(info, current_ev,
2986 end_buf, &iwe,
2987 IW_EV_QUAL_LEN);
2988 if (IS_ERR(current_ev))
2989 return current_ev;
2990 }
2991
2992 memset(&iwe, 0, sizeof(iwe));
2993 iwe.cmd = SIOCGIWENCODE;
2994 if (bss->pub.capability & WLAN_CAPABILITY_PRIVACY)
2995 iwe.u.data.flags = IW_ENCODE_ENABLED | IW_ENCODE_NOKEY;
2996 else
2997 iwe.u.data.flags = IW_ENCODE_DISABLED;
2998 iwe.u.data.length = 0;
2999 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3000 &iwe, "");
3001 if (IS_ERR(current_ev))
3002 return current_ev;
3003
3004 rcu_read_lock();
3005 ies = rcu_dereference(bss->pub.ies);
3006 rem = ies->len;
3007 ie = ies->data;
3008
3009 while (rem >= 2) {
3010 /* invalid data */
3011 if (ie[1] > rem - 2)
3012 break;
3013
3014 switch (ie[0]) {
3015 case WLAN_EID_SSID:
3016 memset(&iwe, 0, sizeof(iwe));
3017 iwe.cmd = SIOCGIWESSID;
3018 iwe.u.data.length = ie[1];
3019 iwe.u.data.flags = 1;
3020 current_ev = iwe_stream_add_point_check(info,
3021 current_ev,
3022 end_buf, &iwe,
3023 (u8 *)ie + 2);
3024 if (IS_ERR(current_ev))
3025 goto unlock;
3026 break;
3027 case WLAN_EID_MESH_ID:
3028 memset(&iwe, 0, sizeof(iwe));
3029 iwe.cmd = SIOCGIWESSID;
3030 iwe.u.data.length = ie[1];
3031 iwe.u.data.flags = 1;
3032 current_ev = iwe_stream_add_point_check(info,
3033 current_ev,
3034 end_buf, &iwe,
3035 (u8 *)ie + 2);
3036 if (IS_ERR(current_ev))
3037 goto unlock;
3038 break;
3039 case WLAN_EID_MESH_CONFIG:
3040 ismesh = true;
3041 if (ie[1] != sizeof(struct ieee80211_meshconf_ie))
3042 break;
3043 cfg = (u8 *)ie + 2;
3044 memset(&iwe, 0, sizeof(iwe));
3045 iwe.cmd = IWEVCUSTOM;
3046 sprintf(buf, "Mesh Network Path Selection Protocol ID: "
3047 "0x%02X", cfg[0]);
3048 iwe.u.data.length = strlen(buf);
3049 current_ev = iwe_stream_add_point_check(info,
3050 current_ev,
3051 end_buf,
3052 &iwe, buf);
3053 if (IS_ERR(current_ev))
3054 goto unlock;
3055 sprintf(buf, "Path Selection Metric ID: 0x%02X",
3056 cfg[1]);
3057 iwe.u.data.length = strlen(buf);
3058 current_ev = iwe_stream_add_point_check(info,
3059 current_ev,
3060 end_buf,
3061 &iwe, buf);
3062 if (IS_ERR(current_ev))
3063 goto unlock;
3064 sprintf(buf, "Congestion Control Mode ID: 0x%02X",
3065 cfg[2]);
3066 iwe.u.data.length = strlen(buf);
3067 current_ev = iwe_stream_add_point_check(info,
3068 current_ev,
3069 end_buf,
3070 &iwe, buf);
3071 if (IS_ERR(current_ev))
3072 goto unlock;
3073 sprintf(buf, "Synchronization ID: 0x%02X", cfg[3]);
3074 iwe.u.data.length = strlen(buf);
3075 current_ev = iwe_stream_add_point_check(info,
3076 current_ev,
3077 end_buf,
3078 &iwe, buf);
3079 if (IS_ERR(current_ev))
3080 goto unlock;
3081 sprintf(buf, "Authentication ID: 0x%02X", cfg[4]);
3082 iwe.u.data.length = strlen(buf);
3083 current_ev = iwe_stream_add_point_check(info,
3084 current_ev,
3085 end_buf,
3086 &iwe, buf);
3087 if (IS_ERR(current_ev))
3088 goto unlock;
3089 sprintf(buf, "Formation Info: 0x%02X", cfg[5]);
3090 iwe.u.data.length = strlen(buf);
3091 current_ev = iwe_stream_add_point_check(info,
3092 current_ev,
3093 end_buf,
3094 &iwe, buf);
3095 if (IS_ERR(current_ev))
3096 goto unlock;
3097 sprintf(buf, "Capabilities: 0x%02X", cfg[6]);
3098 iwe.u.data.length = strlen(buf);
3099 current_ev = iwe_stream_add_point_check(info,
3100 current_ev,
3101 end_buf,
3102 &iwe, buf);
3103 if (IS_ERR(current_ev))
3104 goto unlock;
3105 break;
3106 case WLAN_EID_SUPP_RATES:
3107 case WLAN_EID_EXT_SUPP_RATES:
3108 /* display all supported rates in readable format */
3109 p = current_ev + iwe_stream_lcp_len(info);
3110
3111 memset(&iwe, 0, sizeof(iwe));
3112 iwe.cmd = SIOCGIWRATE;
3113 /* Those two flags are ignored... */
3114 iwe.u.bitrate.fixed = iwe.u.bitrate.disabled = 0;
3115
3116 for (i = 0; i < ie[1]; i++) {
3117 iwe.u.bitrate.value =
3118 ((ie[i + 2] & 0x7f) * 500000);
3119 tmp = p;
3120 p = iwe_stream_add_value(info, current_ev, p,
3121 end_buf, &iwe,
3122 IW_EV_PARAM_LEN);
3123 if (p == tmp) {
3124 current_ev = ERR_PTR(-E2BIG);
3125 goto unlock;
3126 }
3127 }
3128 current_ev = p;
3129 break;
3130 }
3131 rem -= ie[1] + 2;
3132 ie += ie[1] + 2;
3133 }
3134
3135 if (bss->pub.capability & (WLAN_CAPABILITY_ESS | WLAN_CAPABILITY_IBSS) ||
3136 ismesh) {
3137 memset(&iwe, 0, sizeof(iwe));
3138 iwe.cmd = SIOCGIWMODE;
3139 if (ismesh)
3140 iwe.u.mode = IW_MODE_MESH;
3141 else if (bss->pub.capability & WLAN_CAPABILITY_ESS)
3142 iwe.u.mode = IW_MODE_MASTER;
3143 else
3144 iwe.u.mode = IW_MODE_ADHOC;
3145 current_ev = iwe_stream_add_event_check(info, current_ev,
3146 end_buf, &iwe,
3147 IW_EV_UINT_LEN);
3148 if (IS_ERR(current_ev))
3149 goto unlock;
3150 }
3151
3152 memset(&iwe, 0, sizeof(iwe));
3153 iwe.cmd = IWEVCUSTOM;
3154 sprintf(buf, "tsf=%016llx", (unsigned long long)(ies->tsf));
3155 iwe.u.data.length = strlen(buf);
3156 current_ev = iwe_stream_add_point_check(info, current_ev, end_buf,
3157 &iwe, buf);
3158 if (IS_ERR(current_ev))
3159 goto unlock;
3160 memset(&iwe, 0, sizeof(iwe));
3161 iwe.cmd = IWEVCUSTOM;
3162 sprintf(buf, " Last beacon: %ums ago",
3163 elapsed_jiffies_msecs(bss->ts));
3164 iwe.u.data.length = strlen(buf);
3165 current_ev = iwe_stream_add_point_check(info, current_ev,
3166 end_buf, &iwe, buf);
3167 if (IS_ERR(current_ev))
3168 goto unlock;
3169
3170 current_ev = ieee80211_scan_add_ies(info, ies, current_ev, end_buf);
3171
3172 unlock:
3173 rcu_read_unlock();
3174 return current_ev;
3175}
3176
3177
3178static int ieee80211_scan_results(struct cfg80211_registered_device *rdev,
3179 struct iw_request_info *info,
3180 char *buf, size_t len)
3181{
3182 char *current_ev = buf;
3183 char *end_buf = buf + len;
3184 struct cfg80211_internal_bss *bss;
3185 int err = 0;
3186
3187 spin_lock_bh(&rdev->bss_lock);
3188 cfg80211_bss_expire(rdev);
3189
3190 list_for_each_entry(bss, &rdev->bss_list, list) {
3191 if (buf + len - current_ev <= IW_EV_ADDR_LEN) {
3192 err = -E2BIG;
3193 break;
3194 }
3195 current_ev = ieee80211_bss(&rdev->wiphy, info, bss,
3196 current_ev, end_buf);
3197 if (IS_ERR(current_ev)) {
3198 err = PTR_ERR(current_ev);
3199 break;
3200 }
3201 }
3202 spin_unlock_bh(&rdev->bss_lock);
3203
3204 if (err)
3205 return err;
3206 return current_ev - buf;
3207}
3208
3209
3210int cfg80211_wext_giwscan(struct net_device *dev,
3211 struct iw_request_info *info,
3212 union iwreq_data *wrqu, char *extra)
3213{
3214 struct iw_point *data = &wrqu->data;
3215 struct cfg80211_registered_device *rdev;
3216 int res;
3217
3218 if (!netif_running(dev))
3219 return -ENETDOWN;
3220
3221 rdev = cfg80211_get_dev_from_ifindex(dev_net(dev), dev->ifindex);
3222
3223 if (IS_ERR(rdev))
3224 return PTR_ERR(rdev);
3225
3226 if (rdev->scan_req || rdev->scan_msg)
3227 return -EAGAIN;
3228
3229 res = ieee80211_scan_results(rdev, info, extra, data->length);
3230 data->length = 0;
3231 if (res >= 0) {
3232 data->length = res;
3233 res = 0;
3234 }
3235
3236 return res;
3237}
3238EXPORT_WEXT_HANDLER(cfg80211_wext_giwscan);
3239#endif