Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1/*
2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008-2011 Luis R. Rodriguez <mcgrof@qca.qualcomm.com>
6 * Copyright 2013-2014 Intel Mobile Communications GmbH
7 * Copyright 2017 Intel Deutschland GmbH
8 * Copyright (C) 2018 - 2022 Intel Corporation
9 *
10 * Permission to use, copy, modify, and/or distribute this software for any
11 * purpose with or without fee is hereby granted, provided that the above
12 * copyright notice and this permission notice appear in all copies.
13 *
14 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
15 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
16 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
17 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
18 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
19 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
20 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21 */
22
23
24/**
25 * DOC: Wireless regulatory infrastructure
26 *
27 * The usual implementation is for a driver to read a device EEPROM to
28 * determine which regulatory domain it should be operating under, then
29 * looking up the allowable channels in a driver-local table and finally
30 * registering those channels in the wiphy structure.
31 *
32 * Another set of compliance enforcement is for drivers to use their
33 * own compliance limits which can be stored on the EEPROM. The host
34 * driver or firmware may ensure these are used.
35 *
36 * In addition to all this we provide an extra layer of regulatory
37 * conformance. For drivers which do not have any regulatory
38 * information CRDA provides the complete regulatory solution.
39 * For others it provides a community effort on further restrictions
40 * to enhance compliance.
41 *
42 * Note: When number of rules --> infinity we will not be able to
43 * index on alpha2 any more, instead we'll probably have to
44 * rely on some SHA1 checksum of the regdomain for example.
45 *
46 */
47
48#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
49
50#include <linux/kernel.h>
51#include <linux/export.h>
52#include <linux/slab.h>
53#include <linux/list.h>
54#include <linux/ctype.h>
55#include <linux/nl80211.h>
56#include <linux/platform_device.h>
57#include <linux/verification.h>
58#include <linux/moduleparam.h>
59#include <linux/firmware.h>
60#include <net/cfg80211.h>
61#include "core.h"
62#include "reg.h"
63#include "rdev-ops.h"
64#include "nl80211.h"
65
66/*
67 * Grace period we give before making sure all current interfaces reside on
68 * channels allowed by the current regulatory domain.
69 */
70#define REG_ENFORCE_GRACE_MS 60000
71
72/**
73 * enum reg_request_treatment - regulatory request treatment
74 *
75 * @REG_REQ_OK: continue processing the regulatory request
76 * @REG_REQ_IGNORE: ignore the regulatory request
77 * @REG_REQ_INTERSECT: the regulatory domain resulting from this request should
78 * be intersected with the current one.
79 * @REG_REQ_ALREADY_SET: the regulatory request will not change the current
80 * regulatory settings, and no further processing is required.
81 */
82enum reg_request_treatment {
83 REG_REQ_OK,
84 REG_REQ_IGNORE,
85 REG_REQ_INTERSECT,
86 REG_REQ_ALREADY_SET,
87};
88
89static struct regulatory_request core_request_world = {
90 .initiator = NL80211_REGDOM_SET_BY_CORE,
91 .alpha2[0] = '0',
92 .alpha2[1] = '0',
93 .intersect = false,
94 .processed = true,
95 .country_ie_env = ENVIRON_ANY,
96};
97
98/*
99 * Receipt of information from last regulatory request,
100 * protected by RTNL (and can be accessed with RCU protection)
101 */
102static struct regulatory_request __rcu *last_request =
103 (void __force __rcu *)&core_request_world;
104
105/* To trigger userspace events and load firmware */
106static struct platform_device *reg_pdev;
107
108/*
109 * Central wireless core regulatory domains, we only need two,
110 * the current one and a world regulatory domain in case we have no
111 * information to give us an alpha2.
112 * (protected by RTNL, can be read under RCU)
113 */
114const struct ieee80211_regdomain __rcu *cfg80211_regdomain;
115
116/*
117 * Number of devices that registered to the core
118 * that support cellular base station regulatory hints
119 * (protected by RTNL)
120 */
121static int reg_num_devs_support_basehint;
122
123/*
124 * State variable indicating if the platform on which the devices
125 * are attached is operating in an indoor environment. The state variable
126 * is relevant for all registered devices.
127 */
128static bool reg_is_indoor;
129static DEFINE_SPINLOCK(reg_indoor_lock);
130
131/* Used to track the userspace process controlling the indoor setting */
132static u32 reg_is_indoor_portid;
133
134static void restore_regulatory_settings(bool reset_user, bool cached);
135static void print_regdomain(const struct ieee80211_regdomain *rd);
136static void reg_process_hint(struct regulatory_request *reg_request);
137
138static const struct ieee80211_regdomain *get_cfg80211_regdom(void)
139{
140 return rcu_dereference_rtnl(cfg80211_regdomain);
141}
142
143/*
144 * Returns the regulatory domain associated with the wiphy.
145 *
146 * Requires any of RTNL, wiphy mutex or RCU protection.
147 */
148const struct ieee80211_regdomain *get_wiphy_regdom(struct wiphy *wiphy)
149{
150 return rcu_dereference_check(wiphy->regd,
151 lockdep_is_held(&wiphy->mtx) ||
152 lockdep_rtnl_is_held());
153}
154EXPORT_SYMBOL(get_wiphy_regdom);
155
156static const char *reg_dfs_region_str(enum nl80211_dfs_regions dfs_region)
157{
158 switch (dfs_region) {
159 case NL80211_DFS_UNSET:
160 return "unset";
161 case NL80211_DFS_FCC:
162 return "FCC";
163 case NL80211_DFS_ETSI:
164 return "ETSI";
165 case NL80211_DFS_JP:
166 return "JP";
167 }
168 return "Unknown";
169}
170
171enum nl80211_dfs_regions reg_get_dfs_region(struct wiphy *wiphy)
172{
173 const struct ieee80211_regdomain *regd = NULL;
174 const struct ieee80211_regdomain *wiphy_regd = NULL;
175 enum nl80211_dfs_regions dfs_region;
176
177 rcu_read_lock();
178 regd = get_cfg80211_regdom();
179 dfs_region = regd->dfs_region;
180
181 if (!wiphy)
182 goto out;
183
184 wiphy_regd = get_wiphy_regdom(wiphy);
185 if (!wiphy_regd)
186 goto out;
187
188 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
189 dfs_region = wiphy_regd->dfs_region;
190 goto out;
191 }
192
193 if (wiphy_regd->dfs_region == regd->dfs_region)
194 goto out;
195
196 pr_debug("%s: device specific dfs_region (%s) disagrees with cfg80211's central dfs_region (%s)\n",
197 dev_name(&wiphy->dev),
198 reg_dfs_region_str(wiphy_regd->dfs_region),
199 reg_dfs_region_str(regd->dfs_region));
200
201out:
202 rcu_read_unlock();
203
204 return dfs_region;
205}
206
207static void rcu_free_regdom(const struct ieee80211_regdomain *r)
208{
209 if (!r)
210 return;
211 kfree_rcu((struct ieee80211_regdomain *)r, rcu_head);
212}
213
214static struct regulatory_request *get_last_request(void)
215{
216 return rcu_dereference_rtnl(last_request);
217}
218
219/* Used to queue up regulatory hints */
220static LIST_HEAD(reg_requests_list);
221static DEFINE_SPINLOCK(reg_requests_lock);
222
223/* Used to queue up beacon hints for review */
224static LIST_HEAD(reg_pending_beacons);
225static DEFINE_SPINLOCK(reg_pending_beacons_lock);
226
227/* Used to keep track of processed beacon hints */
228static LIST_HEAD(reg_beacon_list);
229
230struct reg_beacon {
231 struct list_head list;
232 struct ieee80211_channel chan;
233};
234
235static void reg_check_chans_work(struct work_struct *work);
236static DECLARE_DELAYED_WORK(reg_check_chans, reg_check_chans_work);
237
238static void reg_todo(struct work_struct *work);
239static DECLARE_WORK(reg_work, reg_todo);
240
241/* We keep a static world regulatory domain in case of the absence of CRDA */
242static const struct ieee80211_regdomain world_regdom = {
243 .n_reg_rules = 8,
244 .alpha2 = "00",
245 .reg_rules = {
246 /* IEEE 802.11b/g, channels 1..11 */
247 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
248 /* IEEE 802.11b/g, channels 12..13. */
249 REG_RULE(2467-10, 2472+10, 20, 6, 20,
250 NL80211_RRF_NO_IR | NL80211_RRF_AUTO_BW),
251 /* IEEE 802.11 channel 14 - Only JP enables
252 * this and for 802.11b only */
253 REG_RULE(2484-10, 2484+10, 20, 6, 20,
254 NL80211_RRF_NO_IR |
255 NL80211_RRF_NO_OFDM),
256 /* IEEE 802.11a, channel 36..48 */
257 REG_RULE(5180-10, 5240+10, 80, 6, 20,
258 NL80211_RRF_NO_IR |
259 NL80211_RRF_AUTO_BW),
260
261 /* IEEE 802.11a, channel 52..64 - DFS required */
262 REG_RULE(5260-10, 5320+10, 80, 6, 20,
263 NL80211_RRF_NO_IR |
264 NL80211_RRF_AUTO_BW |
265 NL80211_RRF_DFS),
266
267 /* IEEE 802.11a, channel 100..144 - DFS required */
268 REG_RULE(5500-10, 5720+10, 160, 6, 20,
269 NL80211_RRF_NO_IR |
270 NL80211_RRF_DFS),
271
272 /* IEEE 802.11a, channel 149..165 */
273 REG_RULE(5745-10, 5825+10, 80, 6, 20,
274 NL80211_RRF_NO_IR),
275
276 /* IEEE 802.11ad (60GHz), channels 1..3 */
277 REG_RULE(56160+2160*1-1080, 56160+2160*3+1080, 2160, 0, 0, 0),
278 }
279};
280
281/* protected by RTNL */
282static const struct ieee80211_regdomain *cfg80211_world_regdom =
283 &world_regdom;
284
285static char *ieee80211_regdom = "00";
286static char user_alpha2[2];
287static const struct ieee80211_regdomain *cfg80211_user_regdom;
288
289module_param(ieee80211_regdom, charp, 0444);
290MODULE_PARM_DESC(ieee80211_regdom, "IEEE 802.11 regulatory domain code");
291
292static void reg_free_request(struct regulatory_request *request)
293{
294 if (request == &core_request_world)
295 return;
296
297 if (request != get_last_request())
298 kfree(request);
299}
300
301static void reg_free_last_request(void)
302{
303 struct regulatory_request *lr = get_last_request();
304
305 if (lr != &core_request_world && lr)
306 kfree_rcu(lr, rcu_head);
307}
308
309static void reg_update_last_request(struct regulatory_request *request)
310{
311 struct regulatory_request *lr;
312
313 lr = get_last_request();
314 if (lr == request)
315 return;
316
317 reg_free_last_request();
318 rcu_assign_pointer(last_request, request);
319}
320
321static void reset_regdomains(bool full_reset,
322 const struct ieee80211_regdomain *new_regdom)
323{
324 const struct ieee80211_regdomain *r;
325
326 ASSERT_RTNL();
327
328 r = get_cfg80211_regdom();
329
330 /* avoid freeing static information or freeing something twice */
331 if (r == cfg80211_world_regdom)
332 r = NULL;
333 if (cfg80211_world_regdom == &world_regdom)
334 cfg80211_world_regdom = NULL;
335 if (r == &world_regdom)
336 r = NULL;
337
338 rcu_free_regdom(r);
339 rcu_free_regdom(cfg80211_world_regdom);
340
341 cfg80211_world_regdom = &world_regdom;
342 rcu_assign_pointer(cfg80211_regdomain, new_regdom);
343
344 if (!full_reset)
345 return;
346
347 reg_update_last_request(&core_request_world);
348}
349
350/*
351 * Dynamic world regulatory domain requested by the wireless
352 * core upon initialization
353 */
354static void update_world_regdomain(const struct ieee80211_regdomain *rd)
355{
356 struct regulatory_request *lr;
357
358 lr = get_last_request();
359
360 WARN_ON(!lr);
361
362 reset_regdomains(false, rd);
363
364 cfg80211_world_regdom = rd;
365}
366
367bool is_world_regdom(const char *alpha2)
368{
369 if (!alpha2)
370 return false;
371 return alpha2[0] == '0' && alpha2[1] == '0';
372}
373
374static bool is_alpha2_set(const char *alpha2)
375{
376 if (!alpha2)
377 return false;
378 return alpha2[0] && alpha2[1];
379}
380
381static bool is_unknown_alpha2(const char *alpha2)
382{
383 if (!alpha2)
384 return false;
385 /*
386 * Special case where regulatory domain was built by driver
387 * but a specific alpha2 cannot be determined
388 */
389 return alpha2[0] == '9' && alpha2[1] == '9';
390}
391
392static bool is_intersected_alpha2(const char *alpha2)
393{
394 if (!alpha2)
395 return false;
396 /*
397 * Special case where regulatory domain is the
398 * result of an intersection between two regulatory domain
399 * structures
400 */
401 return alpha2[0] == '9' && alpha2[1] == '8';
402}
403
404static bool is_an_alpha2(const char *alpha2)
405{
406 if (!alpha2)
407 return false;
408 return isalpha(alpha2[0]) && isalpha(alpha2[1]);
409}
410
411static bool alpha2_equal(const char *alpha2_x, const char *alpha2_y)
412{
413 if (!alpha2_x || !alpha2_y)
414 return false;
415 return alpha2_x[0] == alpha2_y[0] && alpha2_x[1] == alpha2_y[1];
416}
417
418static bool regdom_changes(const char *alpha2)
419{
420 const struct ieee80211_regdomain *r = get_cfg80211_regdom();
421
422 if (!r)
423 return true;
424 return !alpha2_equal(r->alpha2, alpha2);
425}
426
427/*
428 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
429 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
430 * has ever been issued.
431 */
432static bool is_user_regdom_saved(void)
433{
434 if (user_alpha2[0] == '9' && user_alpha2[1] == '7')
435 return false;
436
437 /* This would indicate a mistake on the design */
438 if (WARN(!is_world_regdom(user_alpha2) && !is_an_alpha2(user_alpha2),
439 "Unexpected user alpha2: %c%c\n",
440 user_alpha2[0], user_alpha2[1]))
441 return false;
442
443 return true;
444}
445
446static const struct ieee80211_regdomain *
447reg_copy_regd(const struct ieee80211_regdomain *src_regd)
448{
449 struct ieee80211_regdomain *regd;
450 unsigned int i;
451
452 regd = kzalloc(struct_size(regd, reg_rules, src_regd->n_reg_rules),
453 GFP_KERNEL);
454 if (!regd)
455 return ERR_PTR(-ENOMEM);
456
457 memcpy(regd, src_regd, sizeof(struct ieee80211_regdomain));
458
459 for (i = 0; i < src_regd->n_reg_rules; i++)
460 memcpy(®d->reg_rules[i], &src_regd->reg_rules[i],
461 sizeof(struct ieee80211_reg_rule));
462
463 return regd;
464}
465
466static void cfg80211_save_user_regdom(const struct ieee80211_regdomain *rd)
467{
468 ASSERT_RTNL();
469
470 if (!IS_ERR(cfg80211_user_regdom))
471 kfree(cfg80211_user_regdom);
472 cfg80211_user_regdom = reg_copy_regd(rd);
473}
474
475struct reg_regdb_apply_request {
476 struct list_head list;
477 const struct ieee80211_regdomain *regdom;
478};
479
480static LIST_HEAD(reg_regdb_apply_list);
481static DEFINE_MUTEX(reg_regdb_apply_mutex);
482
483static void reg_regdb_apply(struct work_struct *work)
484{
485 struct reg_regdb_apply_request *request;
486
487 rtnl_lock();
488
489 mutex_lock(®_regdb_apply_mutex);
490 while (!list_empty(®_regdb_apply_list)) {
491 request = list_first_entry(®_regdb_apply_list,
492 struct reg_regdb_apply_request,
493 list);
494 list_del(&request->list);
495
496 set_regdom(request->regdom, REGD_SOURCE_INTERNAL_DB);
497 kfree(request);
498 }
499 mutex_unlock(®_regdb_apply_mutex);
500
501 rtnl_unlock();
502}
503
504static DECLARE_WORK(reg_regdb_work, reg_regdb_apply);
505
506static int reg_schedule_apply(const struct ieee80211_regdomain *regdom)
507{
508 struct reg_regdb_apply_request *request;
509
510 request = kzalloc(sizeof(struct reg_regdb_apply_request), GFP_KERNEL);
511 if (!request) {
512 kfree(regdom);
513 return -ENOMEM;
514 }
515
516 request->regdom = regdom;
517
518 mutex_lock(®_regdb_apply_mutex);
519 list_add_tail(&request->list, ®_regdb_apply_list);
520 mutex_unlock(®_regdb_apply_mutex);
521
522 schedule_work(®_regdb_work);
523 return 0;
524}
525
526#ifdef CONFIG_CFG80211_CRDA_SUPPORT
527/* Max number of consecutive attempts to communicate with CRDA */
528#define REG_MAX_CRDA_TIMEOUTS 10
529
530static u32 reg_crda_timeouts;
531
532static void crda_timeout_work(struct work_struct *work);
533static DECLARE_DELAYED_WORK(crda_timeout, crda_timeout_work);
534
535static void crda_timeout_work(struct work_struct *work)
536{
537 pr_debug("Timeout while waiting for CRDA to reply, restoring regulatory settings\n");
538 rtnl_lock();
539 reg_crda_timeouts++;
540 restore_regulatory_settings(true, false);
541 rtnl_unlock();
542}
543
544static void cancel_crda_timeout(void)
545{
546 cancel_delayed_work(&crda_timeout);
547}
548
549static void cancel_crda_timeout_sync(void)
550{
551 cancel_delayed_work_sync(&crda_timeout);
552}
553
554static void reset_crda_timeouts(void)
555{
556 reg_crda_timeouts = 0;
557}
558
559/*
560 * This lets us keep regulatory code which is updated on a regulatory
561 * basis in userspace.
562 */
563static int call_crda(const char *alpha2)
564{
565 char country[12];
566 char *env[] = { country, NULL };
567 int ret;
568
569 snprintf(country, sizeof(country), "COUNTRY=%c%c",
570 alpha2[0], alpha2[1]);
571
572 if (reg_crda_timeouts > REG_MAX_CRDA_TIMEOUTS) {
573 pr_debug("Exceeded CRDA call max attempts. Not calling CRDA\n");
574 return -EINVAL;
575 }
576
577 if (!is_world_regdom((char *) alpha2))
578 pr_debug("Calling CRDA for country: %c%c\n",
579 alpha2[0], alpha2[1]);
580 else
581 pr_debug("Calling CRDA to update world regulatory domain\n");
582
583 ret = kobject_uevent_env(®_pdev->dev.kobj, KOBJ_CHANGE, env);
584 if (ret)
585 return ret;
586
587 queue_delayed_work(system_power_efficient_wq,
588 &crda_timeout, msecs_to_jiffies(3142));
589 return 0;
590}
591#else
592static inline void cancel_crda_timeout(void) {}
593static inline void cancel_crda_timeout_sync(void) {}
594static inline void reset_crda_timeouts(void) {}
595static inline int call_crda(const char *alpha2)
596{
597 return -ENODATA;
598}
599#endif /* CONFIG_CFG80211_CRDA_SUPPORT */
600
601/* code to directly load a firmware database through request_firmware */
602static const struct fwdb_header *regdb;
603
604struct fwdb_country {
605 u8 alpha2[2];
606 __be16 coll_ptr;
607 /* this struct cannot be extended */
608} __packed __aligned(4);
609
610struct fwdb_collection {
611 u8 len;
612 u8 n_rules;
613 u8 dfs_region;
614 /* no optional data yet */
615 /* aligned to 2, then followed by __be16 array of rule pointers */
616} __packed __aligned(4);
617
618enum fwdb_flags {
619 FWDB_FLAG_NO_OFDM = BIT(0),
620 FWDB_FLAG_NO_OUTDOOR = BIT(1),
621 FWDB_FLAG_DFS = BIT(2),
622 FWDB_FLAG_NO_IR = BIT(3),
623 FWDB_FLAG_AUTO_BW = BIT(4),
624};
625
626struct fwdb_wmm_ac {
627 u8 ecw;
628 u8 aifsn;
629 __be16 cot;
630} __packed;
631
632struct fwdb_wmm_rule {
633 struct fwdb_wmm_ac client[IEEE80211_NUM_ACS];
634 struct fwdb_wmm_ac ap[IEEE80211_NUM_ACS];
635} __packed;
636
637struct fwdb_rule {
638 u8 len;
639 u8 flags;
640 __be16 max_eirp;
641 __be32 start, end, max_bw;
642 /* start of optional data */
643 __be16 cac_timeout;
644 __be16 wmm_ptr;
645} __packed __aligned(4);
646
647#define FWDB_MAGIC 0x52474442
648#define FWDB_VERSION 20
649
650struct fwdb_header {
651 __be32 magic;
652 __be32 version;
653 struct fwdb_country country[];
654} __packed __aligned(4);
655
656static int ecw2cw(int ecw)
657{
658 return (1 << ecw) - 1;
659}
660
661static bool valid_wmm(struct fwdb_wmm_rule *rule)
662{
663 struct fwdb_wmm_ac *ac = (struct fwdb_wmm_ac *)rule;
664 int i;
665
666 for (i = 0; i < IEEE80211_NUM_ACS * 2; i++) {
667 u16 cw_min = ecw2cw((ac[i].ecw & 0xf0) >> 4);
668 u16 cw_max = ecw2cw(ac[i].ecw & 0x0f);
669 u8 aifsn = ac[i].aifsn;
670
671 if (cw_min >= cw_max)
672 return false;
673
674 if (aifsn < 1)
675 return false;
676 }
677
678 return true;
679}
680
681static bool valid_rule(const u8 *data, unsigned int size, u16 rule_ptr)
682{
683 struct fwdb_rule *rule = (void *)(data + (rule_ptr << 2));
684
685 if ((u8 *)rule + sizeof(rule->len) > data + size)
686 return false;
687
688 /* mandatory fields */
689 if (rule->len < offsetofend(struct fwdb_rule, max_bw))
690 return false;
691 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr)) {
692 u32 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
693 struct fwdb_wmm_rule *wmm;
694
695 if (wmm_ptr + sizeof(struct fwdb_wmm_rule) > size)
696 return false;
697
698 wmm = (void *)(data + wmm_ptr);
699
700 if (!valid_wmm(wmm))
701 return false;
702 }
703 return true;
704}
705
706static bool valid_country(const u8 *data, unsigned int size,
707 const struct fwdb_country *country)
708{
709 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
710 struct fwdb_collection *coll = (void *)(data + ptr);
711 __be16 *rules_ptr;
712 unsigned int i;
713
714 /* make sure we can read len/n_rules */
715 if ((u8 *)coll + offsetofend(typeof(*coll), n_rules) > data + size)
716 return false;
717
718 /* make sure base struct and all rules fit */
719 if ((u8 *)coll + ALIGN(coll->len, 2) +
720 (coll->n_rules * 2) > data + size)
721 return false;
722
723 /* mandatory fields must exist */
724 if (coll->len < offsetofend(struct fwdb_collection, dfs_region))
725 return false;
726
727 rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
728
729 for (i = 0; i < coll->n_rules; i++) {
730 u16 rule_ptr = be16_to_cpu(rules_ptr[i]);
731
732 if (!valid_rule(data, size, rule_ptr))
733 return false;
734 }
735
736 return true;
737}
738
739#ifdef CONFIG_CFG80211_REQUIRE_SIGNED_REGDB
740#include <keys/asymmetric-type.h>
741
742static struct key *builtin_regdb_keys;
743
744static int __init load_builtin_regdb_keys(void)
745{
746 builtin_regdb_keys =
747 keyring_alloc(".builtin_regdb_keys",
748 KUIDT_INIT(0), KGIDT_INIT(0), current_cred(),
749 ((KEY_POS_ALL & ~KEY_POS_SETATTR) |
750 KEY_USR_VIEW | KEY_USR_READ | KEY_USR_SEARCH),
751 KEY_ALLOC_NOT_IN_QUOTA, NULL, NULL);
752 if (IS_ERR(builtin_regdb_keys))
753 return PTR_ERR(builtin_regdb_keys);
754
755 pr_notice("Loading compiled-in X.509 certificates for regulatory database\n");
756
757#ifdef CONFIG_CFG80211_USE_KERNEL_REGDB_KEYS
758 x509_load_certificate_list(shipped_regdb_certs,
759 shipped_regdb_certs_len,
760 builtin_regdb_keys);
761#endif
762#ifdef CONFIG_CFG80211_EXTRA_REGDB_KEYDIR
763 if (CONFIG_CFG80211_EXTRA_REGDB_KEYDIR[0] != '\0')
764 x509_load_certificate_list(extra_regdb_certs,
765 extra_regdb_certs_len,
766 builtin_regdb_keys);
767#endif
768
769 return 0;
770}
771
772MODULE_FIRMWARE("regulatory.db.p7s");
773
774static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
775{
776 const struct firmware *sig;
777 bool result;
778
779 if (request_firmware(&sig, "regulatory.db.p7s", ®_pdev->dev))
780 return false;
781
782 result = verify_pkcs7_signature(data, size, sig->data, sig->size,
783 builtin_regdb_keys,
784 VERIFYING_UNSPECIFIED_SIGNATURE,
785 NULL, NULL) == 0;
786
787 release_firmware(sig);
788
789 return result;
790}
791
792static void free_regdb_keyring(void)
793{
794 key_put(builtin_regdb_keys);
795}
796#else
797static int load_builtin_regdb_keys(void)
798{
799 return 0;
800}
801
802static bool regdb_has_valid_signature(const u8 *data, unsigned int size)
803{
804 return true;
805}
806
807static void free_regdb_keyring(void)
808{
809}
810#endif /* CONFIG_CFG80211_REQUIRE_SIGNED_REGDB */
811
812static bool valid_regdb(const u8 *data, unsigned int size)
813{
814 const struct fwdb_header *hdr = (void *)data;
815 const struct fwdb_country *country;
816
817 if (size < sizeof(*hdr))
818 return false;
819
820 if (hdr->magic != cpu_to_be32(FWDB_MAGIC))
821 return false;
822
823 if (hdr->version != cpu_to_be32(FWDB_VERSION))
824 return false;
825
826 if (!regdb_has_valid_signature(data, size))
827 return false;
828
829 country = &hdr->country[0];
830 while ((u8 *)(country + 1) <= data + size) {
831 if (!country->coll_ptr)
832 break;
833 if (!valid_country(data, size, country))
834 return false;
835 country++;
836 }
837
838 return true;
839}
840
841static void set_wmm_rule(const struct fwdb_header *db,
842 const struct fwdb_country *country,
843 const struct fwdb_rule *rule,
844 struct ieee80211_reg_rule *rrule)
845{
846 struct ieee80211_wmm_rule *wmm_rule = &rrule->wmm_rule;
847 struct fwdb_wmm_rule *wmm;
848 unsigned int i, wmm_ptr;
849
850 wmm_ptr = be16_to_cpu(rule->wmm_ptr) << 2;
851 wmm = (void *)((u8 *)db + wmm_ptr);
852
853 if (!valid_wmm(wmm)) {
854 pr_err("Invalid regulatory WMM rule %u-%u in domain %c%c\n",
855 be32_to_cpu(rule->start), be32_to_cpu(rule->end),
856 country->alpha2[0], country->alpha2[1]);
857 return;
858 }
859
860 for (i = 0; i < IEEE80211_NUM_ACS; i++) {
861 wmm_rule->client[i].cw_min =
862 ecw2cw((wmm->client[i].ecw & 0xf0) >> 4);
863 wmm_rule->client[i].cw_max = ecw2cw(wmm->client[i].ecw & 0x0f);
864 wmm_rule->client[i].aifsn = wmm->client[i].aifsn;
865 wmm_rule->client[i].cot =
866 1000 * be16_to_cpu(wmm->client[i].cot);
867 wmm_rule->ap[i].cw_min = ecw2cw((wmm->ap[i].ecw & 0xf0) >> 4);
868 wmm_rule->ap[i].cw_max = ecw2cw(wmm->ap[i].ecw & 0x0f);
869 wmm_rule->ap[i].aifsn = wmm->ap[i].aifsn;
870 wmm_rule->ap[i].cot = 1000 * be16_to_cpu(wmm->ap[i].cot);
871 }
872
873 rrule->has_wmm = true;
874}
875
876static int __regdb_query_wmm(const struct fwdb_header *db,
877 const struct fwdb_country *country, int freq,
878 struct ieee80211_reg_rule *rrule)
879{
880 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
881 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
882 int i;
883
884 for (i = 0; i < coll->n_rules; i++) {
885 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
886 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
887 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
888
889 if (rule->len < offsetofend(struct fwdb_rule, wmm_ptr))
890 continue;
891
892 if (freq >= KHZ_TO_MHZ(be32_to_cpu(rule->start)) &&
893 freq <= KHZ_TO_MHZ(be32_to_cpu(rule->end))) {
894 set_wmm_rule(db, country, rule, rrule);
895 return 0;
896 }
897 }
898
899 return -ENODATA;
900}
901
902int reg_query_regdb_wmm(char *alpha2, int freq, struct ieee80211_reg_rule *rule)
903{
904 const struct fwdb_header *hdr = regdb;
905 const struct fwdb_country *country;
906
907 if (!regdb)
908 return -ENODATA;
909
910 if (IS_ERR(regdb))
911 return PTR_ERR(regdb);
912
913 country = &hdr->country[0];
914 while (country->coll_ptr) {
915 if (alpha2_equal(alpha2, country->alpha2))
916 return __regdb_query_wmm(regdb, country, freq, rule);
917
918 country++;
919 }
920
921 return -ENODATA;
922}
923EXPORT_SYMBOL(reg_query_regdb_wmm);
924
925static int regdb_query_country(const struct fwdb_header *db,
926 const struct fwdb_country *country)
927{
928 unsigned int ptr = be16_to_cpu(country->coll_ptr) << 2;
929 struct fwdb_collection *coll = (void *)((u8 *)db + ptr);
930 struct ieee80211_regdomain *regdom;
931 unsigned int i;
932
933 regdom = kzalloc(struct_size(regdom, reg_rules, coll->n_rules),
934 GFP_KERNEL);
935 if (!regdom)
936 return -ENOMEM;
937
938 regdom->n_reg_rules = coll->n_rules;
939 regdom->alpha2[0] = country->alpha2[0];
940 regdom->alpha2[1] = country->alpha2[1];
941 regdom->dfs_region = coll->dfs_region;
942
943 for (i = 0; i < regdom->n_reg_rules; i++) {
944 __be16 *rules_ptr = (void *)((u8 *)coll + ALIGN(coll->len, 2));
945 unsigned int rule_ptr = be16_to_cpu(rules_ptr[i]) << 2;
946 struct fwdb_rule *rule = (void *)((u8 *)db + rule_ptr);
947 struct ieee80211_reg_rule *rrule = ®dom->reg_rules[i];
948
949 rrule->freq_range.start_freq_khz = be32_to_cpu(rule->start);
950 rrule->freq_range.end_freq_khz = be32_to_cpu(rule->end);
951 rrule->freq_range.max_bandwidth_khz = be32_to_cpu(rule->max_bw);
952
953 rrule->power_rule.max_antenna_gain = 0;
954 rrule->power_rule.max_eirp = be16_to_cpu(rule->max_eirp);
955
956 rrule->flags = 0;
957 if (rule->flags & FWDB_FLAG_NO_OFDM)
958 rrule->flags |= NL80211_RRF_NO_OFDM;
959 if (rule->flags & FWDB_FLAG_NO_OUTDOOR)
960 rrule->flags |= NL80211_RRF_NO_OUTDOOR;
961 if (rule->flags & FWDB_FLAG_DFS)
962 rrule->flags |= NL80211_RRF_DFS;
963 if (rule->flags & FWDB_FLAG_NO_IR)
964 rrule->flags |= NL80211_RRF_NO_IR;
965 if (rule->flags & FWDB_FLAG_AUTO_BW)
966 rrule->flags |= NL80211_RRF_AUTO_BW;
967
968 rrule->dfs_cac_ms = 0;
969
970 /* handle optional data */
971 if (rule->len >= offsetofend(struct fwdb_rule, cac_timeout))
972 rrule->dfs_cac_ms =
973 1000 * be16_to_cpu(rule->cac_timeout);
974 if (rule->len >= offsetofend(struct fwdb_rule, wmm_ptr))
975 set_wmm_rule(db, country, rule, rrule);
976 }
977
978 return reg_schedule_apply(regdom);
979}
980
981static int query_regdb(const char *alpha2)
982{
983 const struct fwdb_header *hdr = regdb;
984 const struct fwdb_country *country;
985
986 ASSERT_RTNL();
987
988 if (IS_ERR(regdb))
989 return PTR_ERR(regdb);
990
991 country = &hdr->country[0];
992 while (country->coll_ptr) {
993 if (alpha2_equal(alpha2, country->alpha2))
994 return regdb_query_country(regdb, country);
995 country++;
996 }
997
998 return -ENODATA;
999}
1000
1001static void regdb_fw_cb(const struct firmware *fw, void *context)
1002{
1003 int set_error = 0;
1004 bool restore = true;
1005 void *db;
1006
1007 if (!fw) {
1008 pr_info("failed to load regulatory.db\n");
1009 set_error = -ENODATA;
1010 } else if (!valid_regdb(fw->data, fw->size)) {
1011 pr_info("loaded regulatory.db is malformed or signature is missing/invalid\n");
1012 set_error = -EINVAL;
1013 }
1014
1015 rtnl_lock();
1016 if (regdb && !IS_ERR(regdb)) {
1017 /* negative case - a bug
1018 * positive case - can happen due to race in case of multiple cb's in
1019 * queue, due to usage of asynchronous callback
1020 *
1021 * Either case, just restore and free new db.
1022 */
1023 } else if (set_error) {
1024 regdb = ERR_PTR(set_error);
1025 } else if (fw) {
1026 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1027 if (db) {
1028 regdb = db;
1029 restore = context && query_regdb(context);
1030 } else {
1031 restore = true;
1032 }
1033 }
1034
1035 if (restore)
1036 restore_regulatory_settings(true, false);
1037
1038 rtnl_unlock();
1039
1040 kfree(context);
1041
1042 release_firmware(fw);
1043}
1044
1045MODULE_FIRMWARE("regulatory.db");
1046
1047static int query_regdb_file(const char *alpha2)
1048{
1049 int err;
1050
1051 ASSERT_RTNL();
1052
1053 if (regdb)
1054 return query_regdb(alpha2);
1055
1056 alpha2 = kmemdup(alpha2, 2, GFP_KERNEL);
1057 if (!alpha2)
1058 return -ENOMEM;
1059
1060 err = request_firmware_nowait(THIS_MODULE, true, "regulatory.db",
1061 ®_pdev->dev, GFP_KERNEL,
1062 (void *)alpha2, regdb_fw_cb);
1063 if (err)
1064 kfree(alpha2);
1065
1066 return err;
1067}
1068
1069int reg_reload_regdb(void)
1070{
1071 const struct firmware *fw;
1072 void *db;
1073 int err;
1074 const struct ieee80211_regdomain *current_regdomain;
1075 struct regulatory_request *request;
1076
1077 err = request_firmware(&fw, "regulatory.db", ®_pdev->dev);
1078 if (err)
1079 return err;
1080
1081 if (!valid_regdb(fw->data, fw->size)) {
1082 err = -ENODATA;
1083 goto out;
1084 }
1085
1086 db = kmemdup(fw->data, fw->size, GFP_KERNEL);
1087 if (!db) {
1088 err = -ENOMEM;
1089 goto out;
1090 }
1091
1092 rtnl_lock();
1093 if (!IS_ERR_OR_NULL(regdb))
1094 kfree(regdb);
1095 regdb = db;
1096
1097 /* reset regulatory domain */
1098 current_regdomain = get_cfg80211_regdom();
1099
1100 request = kzalloc(sizeof(*request), GFP_KERNEL);
1101 if (!request) {
1102 err = -ENOMEM;
1103 goto out_unlock;
1104 }
1105
1106 request->wiphy_idx = WIPHY_IDX_INVALID;
1107 request->alpha2[0] = current_regdomain->alpha2[0];
1108 request->alpha2[1] = current_regdomain->alpha2[1];
1109 request->initiator = NL80211_REGDOM_SET_BY_CORE;
1110 request->user_reg_hint_type = NL80211_USER_REG_HINT_USER;
1111
1112 reg_process_hint(request);
1113
1114out_unlock:
1115 rtnl_unlock();
1116 out:
1117 release_firmware(fw);
1118 return err;
1119}
1120
1121static bool reg_query_database(struct regulatory_request *request)
1122{
1123 if (query_regdb_file(request->alpha2) == 0)
1124 return true;
1125
1126 if (call_crda(request->alpha2) == 0)
1127 return true;
1128
1129 return false;
1130}
1131
1132bool reg_is_valid_request(const char *alpha2)
1133{
1134 struct regulatory_request *lr = get_last_request();
1135
1136 if (!lr || lr->processed)
1137 return false;
1138
1139 return alpha2_equal(lr->alpha2, alpha2);
1140}
1141
1142static const struct ieee80211_regdomain *reg_get_regdomain(struct wiphy *wiphy)
1143{
1144 struct regulatory_request *lr = get_last_request();
1145
1146 /*
1147 * Follow the driver's regulatory domain, if present, unless a country
1148 * IE has been processed or a user wants to help complaince further
1149 */
1150 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1151 lr->initiator != NL80211_REGDOM_SET_BY_USER &&
1152 wiphy->regd)
1153 return get_wiphy_regdom(wiphy);
1154
1155 return get_cfg80211_regdom();
1156}
1157
1158static unsigned int
1159reg_get_max_bandwidth_from_range(const struct ieee80211_regdomain *rd,
1160 const struct ieee80211_reg_rule *rule)
1161{
1162 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1163 const struct ieee80211_freq_range *freq_range_tmp;
1164 const struct ieee80211_reg_rule *tmp;
1165 u32 start_freq, end_freq, idx, no;
1166
1167 for (idx = 0; idx < rd->n_reg_rules; idx++)
1168 if (rule == &rd->reg_rules[idx])
1169 break;
1170
1171 if (idx == rd->n_reg_rules)
1172 return 0;
1173
1174 /* get start_freq */
1175 no = idx;
1176
1177 while (no) {
1178 tmp = &rd->reg_rules[--no];
1179 freq_range_tmp = &tmp->freq_range;
1180
1181 if (freq_range_tmp->end_freq_khz < freq_range->start_freq_khz)
1182 break;
1183
1184 freq_range = freq_range_tmp;
1185 }
1186
1187 start_freq = freq_range->start_freq_khz;
1188
1189 /* get end_freq */
1190 freq_range = &rule->freq_range;
1191 no = idx;
1192
1193 while (no < rd->n_reg_rules - 1) {
1194 tmp = &rd->reg_rules[++no];
1195 freq_range_tmp = &tmp->freq_range;
1196
1197 if (freq_range_tmp->start_freq_khz > freq_range->end_freq_khz)
1198 break;
1199
1200 freq_range = freq_range_tmp;
1201 }
1202
1203 end_freq = freq_range->end_freq_khz;
1204
1205 return end_freq - start_freq;
1206}
1207
1208unsigned int reg_get_max_bandwidth(const struct ieee80211_regdomain *rd,
1209 const struct ieee80211_reg_rule *rule)
1210{
1211 unsigned int bw = reg_get_max_bandwidth_from_range(rd, rule);
1212
1213 if (rule->flags & NL80211_RRF_NO_320MHZ)
1214 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(160));
1215 if (rule->flags & NL80211_RRF_NO_160MHZ)
1216 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(80));
1217 if (rule->flags & NL80211_RRF_NO_80MHZ)
1218 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(40));
1219
1220 /*
1221 * HT40+/HT40- limits are handled per-channel. Only limit BW if both
1222 * are not allowed.
1223 */
1224 if (rule->flags & NL80211_RRF_NO_HT40MINUS &&
1225 rule->flags & NL80211_RRF_NO_HT40PLUS)
1226 bw = min_t(unsigned int, bw, MHZ_TO_KHZ(20));
1227
1228 return bw;
1229}
1230
1231/* Sanity check on a regulatory rule */
1232static bool is_valid_reg_rule(const struct ieee80211_reg_rule *rule)
1233{
1234 const struct ieee80211_freq_range *freq_range = &rule->freq_range;
1235 u32 freq_diff;
1236
1237 if (freq_range->start_freq_khz <= 0 || freq_range->end_freq_khz <= 0)
1238 return false;
1239
1240 if (freq_range->start_freq_khz > freq_range->end_freq_khz)
1241 return false;
1242
1243 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1244
1245 if (freq_range->end_freq_khz <= freq_range->start_freq_khz ||
1246 freq_range->max_bandwidth_khz > freq_diff)
1247 return false;
1248
1249 return true;
1250}
1251
1252static bool is_valid_rd(const struct ieee80211_regdomain *rd)
1253{
1254 const struct ieee80211_reg_rule *reg_rule = NULL;
1255 unsigned int i;
1256
1257 if (!rd->n_reg_rules)
1258 return false;
1259
1260 if (WARN_ON(rd->n_reg_rules > NL80211_MAX_SUPP_REG_RULES))
1261 return false;
1262
1263 for (i = 0; i < rd->n_reg_rules; i++) {
1264 reg_rule = &rd->reg_rules[i];
1265 if (!is_valid_reg_rule(reg_rule))
1266 return false;
1267 }
1268
1269 return true;
1270}
1271
1272/**
1273 * freq_in_rule_band - tells us if a frequency is in a frequency band
1274 * @freq_range: frequency rule we want to query
1275 * @freq_khz: frequency we are inquiring about
1276 *
1277 * This lets us know if a specific frequency rule is or is not relevant to
1278 * a specific frequency's band. Bands are device specific and artificial
1279 * definitions (the "2.4 GHz band", the "5 GHz band" and the "60GHz band"),
1280 * however it is safe for now to assume that a frequency rule should not be
1281 * part of a frequency's band if the start freq or end freq are off by more
1282 * than 2 GHz for the 2.4 and 5 GHz bands, and by more than 20 GHz for the
1283 * 60 GHz band.
1284 * This resolution can be lowered and should be considered as we add
1285 * regulatory rule support for other "bands".
1286 **/
1287static bool freq_in_rule_band(const struct ieee80211_freq_range *freq_range,
1288 u32 freq_khz)
1289{
1290#define ONE_GHZ_IN_KHZ 1000000
1291 /*
1292 * From 802.11ad: directional multi-gigabit (DMG):
1293 * Pertaining to operation in a frequency band containing a channel
1294 * with the Channel starting frequency above 45 GHz.
1295 */
1296 u32 limit = freq_khz > 45 * ONE_GHZ_IN_KHZ ?
1297 20 * ONE_GHZ_IN_KHZ : 2 * ONE_GHZ_IN_KHZ;
1298 if (abs(freq_khz - freq_range->start_freq_khz) <= limit)
1299 return true;
1300 if (abs(freq_khz - freq_range->end_freq_khz) <= limit)
1301 return true;
1302 return false;
1303#undef ONE_GHZ_IN_KHZ
1304}
1305
1306/*
1307 * Later on we can perhaps use the more restrictive DFS
1308 * region but we don't have information for that yet so
1309 * for now simply disallow conflicts.
1310 */
1311static enum nl80211_dfs_regions
1312reg_intersect_dfs_region(const enum nl80211_dfs_regions dfs_region1,
1313 const enum nl80211_dfs_regions dfs_region2)
1314{
1315 if (dfs_region1 != dfs_region2)
1316 return NL80211_DFS_UNSET;
1317 return dfs_region1;
1318}
1319
1320static void reg_wmm_rules_intersect(const struct ieee80211_wmm_ac *wmm_ac1,
1321 const struct ieee80211_wmm_ac *wmm_ac2,
1322 struct ieee80211_wmm_ac *intersect)
1323{
1324 intersect->cw_min = max_t(u16, wmm_ac1->cw_min, wmm_ac2->cw_min);
1325 intersect->cw_max = max_t(u16, wmm_ac1->cw_max, wmm_ac2->cw_max);
1326 intersect->cot = min_t(u16, wmm_ac1->cot, wmm_ac2->cot);
1327 intersect->aifsn = max_t(u8, wmm_ac1->aifsn, wmm_ac2->aifsn);
1328}
1329
1330/*
1331 * Helper for regdom_intersect(), this does the real
1332 * mathematical intersection fun
1333 */
1334static int reg_rules_intersect(const struct ieee80211_regdomain *rd1,
1335 const struct ieee80211_regdomain *rd2,
1336 const struct ieee80211_reg_rule *rule1,
1337 const struct ieee80211_reg_rule *rule2,
1338 struct ieee80211_reg_rule *intersected_rule)
1339{
1340 const struct ieee80211_freq_range *freq_range1, *freq_range2;
1341 struct ieee80211_freq_range *freq_range;
1342 const struct ieee80211_power_rule *power_rule1, *power_rule2;
1343 struct ieee80211_power_rule *power_rule;
1344 const struct ieee80211_wmm_rule *wmm_rule1, *wmm_rule2;
1345 struct ieee80211_wmm_rule *wmm_rule;
1346 u32 freq_diff, max_bandwidth1, max_bandwidth2;
1347
1348 freq_range1 = &rule1->freq_range;
1349 freq_range2 = &rule2->freq_range;
1350 freq_range = &intersected_rule->freq_range;
1351
1352 power_rule1 = &rule1->power_rule;
1353 power_rule2 = &rule2->power_rule;
1354 power_rule = &intersected_rule->power_rule;
1355
1356 wmm_rule1 = &rule1->wmm_rule;
1357 wmm_rule2 = &rule2->wmm_rule;
1358 wmm_rule = &intersected_rule->wmm_rule;
1359
1360 freq_range->start_freq_khz = max(freq_range1->start_freq_khz,
1361 freq_range2->start_freq_khz);
1362 freq_range->end_freq_khz = min(freq_range1->end_freq_khz,
1363 freq_range2->end_freq_khz);
1364
1365 max_bandwidth1 = freq_range1->max_bandwidth_khz;
1366 max_bandwidth2 = freq_range2->max_bandwidth_khz;
1367
1368 if (rule1->flags & NL80211_RRF_AUTO_BW)
1369 max_bandwidth1 = reg_get_max_bandwidth(rd1, rule1);
1370 if (rule2->flags & NL80211_RRF_AUTO_BW)
1371 max_bandwidth2 = reg_get_max_bandwidth(rd2, rule2);
1372
1373 freq_range->max_bandwidth_khz = min(max_bandwidth1, max_bandwidth2);
1374
1375 intersected_rule->flags = rule1->flags | rule2->flags;
1376
1377 /*
1378 * In case NL80211_RRF_AUTO_BW requested for both rules
1379 * set AUTO_BW in intersected rule also. Next we will
1380 * calculate BW correctly in handle_channel function.
1381 * In other case remove AUTO_BW flag while we calculate
1382 * maximum bandwidth correctly and auto calculation is
1383 * not required.
1384 */
1385 if ((rule1->flags & NL80211_RRF_AUTO_BW) &&
1386 (rule2->flags & NL80211_RRF_AUTO_BW))
1387 intersected_rule->flags |= NL80211_RRF_AUTO_BW;
1388 else
1389 intersected_rule->flags &= ~NL80211_RRF_AUTO_BW;
1390
1391 freq_diff = freq_range->end_freq_khz - freq_range->start_freq_khz;
1392 if (freq_range->max_bandwidth_khz > freq_diff)
1393 freq_range->max_bandwidth_khz = freq_diff;
1394
1395 power_rule->max_eirp = min(power_rule1->max_eirp,
1396 power_rule2->max_eirp);
1397 power_rule->max_antenna_gain = min(power_rule1->max_antenna_gain,
1398 power_rule2->max_antenna_gain);
1399
1400 intersected_rule->dfs_cac_ms = max(rule1->dfs_cac_ms,
1401 rule2->dfs_cac_ms);
1402
1403 if (rule1->has_wmm && rule2->has_wmm) {
1404 u8 ac;
1405
1406 for (ac = 0; ac < IEEE80211_NUM_ACS; ac++) {
1407 reg_wmm_rules_intersect(&wmm_rule1->client[ac],
1408 &wmm_rule2->client[ac],
1409 &wmm_rule->client[ac]);
1410 reg_wmm_rules_intersect(&wmm_rule1->ap[ac],
1411 &wmm_rule2->ap[ac],
1412 &wmm_rule->ap[ac]);
1413 }
1414
1415 intersected_rule->has_wmm = true;
1416 } else if (rule1->has_wmm) {
1417 *wmm_rule = *wmm_rule1;
1418 intersected_rule->has_wmm = true;
1419 } else if (rule2->has_wmm) {
1420 *wmm_rule = *wmm_rule2;
1421 intersected_rule->has_wmm = true;
1422 } else {
1423 intersected_rule->has_wmm = false;
1424 }
1425
1426 if (!is_valid_reg_rule(intersected_rule))
1427 return -EINVAL;
1428
1429 return 0;
1430}
1431
1432/* check whether old rule contains new rule */
1433static bool rule_contains(struct ieee80211_reg_rule *r1,
1434 struct ieee80211_reg_rule *r2)
1435{
1436 /* for simplicity, currently consider only same flags */
1437 if (r1->flags != r2->flags)
1438 return false;
1439
1440 /* verify r1 is more restrictive */
1441 if ((r1->power_rule.max_antenna_gain >
1442 r2->power_rule.max_antenna_gain) ||
1443 r1->power_rule.max_eirp > r2->power_rule.max_eirp)
1444 return false;
1445
1446 /* make sure r2's range is contained within r1 */
1447 if (r1->freq_range.start_freq_khz > r2->freq_range.start_freq_khz ||
1448 r1->freq_range.end_freq_khz < r2->freq_range.end_freq_khz)
1449 return false;
1450
1451 /* and finally verify that r1.max_bw >= r2.max_bw */
1452 if (r1->freq_range.max_bandwidth_khz <
1453 r2->freq_range.max_bandwidth_khz)
1454 return false;
1455
1456 return true;
1457}
1458
1459/* add or extend current rules. do nothing if rule is already contained */
1460static void add_rule(struct ieee80211_reg_rule *rule,
1461 struct ieee80211_reg_rule *reg_rules, u32 *n_rules)
1462{
1463 struct ieee80211_reg_rule *tmp_rule;
1464 int i;
1465
1466 for (i = 0; i < *n_rules; i++) {
1467 tmp_rule = ®_rules[i];
1468 /* rule is already contained - do nothing */
1469 if (rule_contains(tmp_rule, rule))
1470 return;
1471
1472 /* extend rule if possible */
1473 if (rule_contains(rule, tmp_rule)) {
1474 memcpy(tmp_rule, rule, sizeof(*rule));
1475 return;
1476 }
1477 }
1478
1479 memcpy(®_rules[*n_rules], rule, sizeof(*rule));
1480 (*n_rules)++;
1481}
1482
1483/**
1484 * regdom_intersect - do the intersection between two regulatory domains
1485 * @rd1: first regulatory domain
1486 * @rd2: second regulatory domain
1487 *
1488 * Use this function to get the intersection between two regulatory domains.
1489 * Once completed we will mark the alpha2 for the rd as intersected, "98",
1490 * as no one single alpha2 can represent this regulatory domain.
1491 *
1492 * Returns a pointer to the regulatory domain structure which will hold the
1493 * resulting intersection of rules between rd1 and rd2. We will
1494 * kzalloc() this structure for you.
1495 */
1496static struct ieee80211_regdomain *
1497regdom_intersect(const struct ieee80211_regdomain *rd1,
1498 const struct ieee80211_regdomain *rd2)
1499{
1500 int r;
1501 unsigned int x, y;
1502 unsigned int num_rules = 0;
1503 const struct ieee80211_reg_rule *rule1, *rule2;
1504 struct ieee80211_reg_rule intersected_rule;
1505 struct ieee80211_regdomain *rd;
1506
1507 if (!rd1 || !rd2)
1508 return NULL;
1509
1510 /*
1511 * First we get a count of the rules we'll need, then we actually
1512 * build them. This is to so we can malloc() and free() a
1513 * regdomain once. The reason we use reg_rules_intersect() here
1514 * is it will return -EINVAL if the rule computed makes no sense.
1515 * All rules that do check out OK are valid.
1516 */
1517
1518 for (x = 0; x < rd1->n_reg_rules; x++) {
1519 rule1 = &rd1->reg_rules[x];
1520 for (y = 0; y < rd2->n_reg_rules; y++) {
1521 rule2 = &rd2->reg_rules[y];
1522 if (!reg_rules_intersect(rd1, rd2, rule1, rule2,
1523 &intersected_rule))
1524 num_rules++;
1525 }
1526 }
1527
1528 if (!num_rules)
1529 return NULL;
1530
1531 rd = kzalloc(struct_size(rd, reg_rules, num_rules), GFP_KERNEL);
1532 if (!rd)
1533 return NULL;
1534
1535 for (x = 0; x < rd1->n_reg_rules; x++) {
1536 rule1 = &rd1->reg_rules[x];
1537 for (y = 0; y < rd2->n_reg_rules; y++) {
1538 rule2 = &rd2->reg_rules[y];
1539 r = reg_rules_intersect(rd1, rd2, rule1, rule2,
1540 &intersected_rule);
1541 /*
1542 * No need to memset here the intersected rule here as
1543 * we're not using the stack anymore
1544 */
1545 if (r)
1546 continue;
1547
1548 add_rule(&intersected_rule, rd->reg_rules,
1549 &rd->n_reg_rules);
1550 }
1551 }
1552
1553 rd->alpha2[0] = '9';
1554 rd->alpha2[1] = '8';
1555 rd->dfs_region = reg_intersect_dfs_region(rd1->dfs_region,
1556 rd2->dfs_region);
1557
1558 return rd;
1559}
1560
1561/*
1562 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
1563 * want to just have the channel structure use these
1564 */
1565static u32 map_regdom_flags(u32 rd_flags)
1566{
1567 u32 channel_flags = 0;
1568 if (rd_flags & NL80211_RRF_NO_IR_ALL)
1569 channel_flags |= IEEE80211_CHAN_NO_IR;
1570 if (rd_flags & NL80211_RRF_DFS)
1571 channel_flags |= IEEE80211_CHAN_RADAR;
1572 if (rd_flags & NL80211_RRF_NO_OFDM)
1573 channel_flags |= IEEE80211_CHAN_NO_OFDM;
1574 if (rd_flags & NL80211_RRF_NO_OUTDOOR)
1575 channel_flags |= IEEE80211_CHAN_INDOOR_ONLY;
1576 if (rd_flags & NL80211_RRF_IR_CONCURRENT)
1577 channel_flags |= IEEE80211_CHAN_IR_CONCURRENT;
1578 if (rd_flags & NL80211_RRF_NO_HT40MINUS)
1579 channel_flags |= IEEE80211_CHAN_NO_HT40MINUS;
1580 if (rd_flags & NL80211_RRF_NO_HT40PLUS)
1581 channel_flags |= IEEE80211_CHAN_NO_HT40PLUS;
1582 if (rd_flags & NL80211_RRF_NO_80MHZ)
1583 channel_flags |= IEEE80211_CHAN_NO_80MHZ;
1584 if (rd_flags & NL80211_RRF_NO_160MHZ)
1585 channel_flags |= IEEE80211_CHAN_NO_160MHZ;
1586 if (rd_flags & NL80211_RRF_NO_HE)
1587 channel_flags |= IEEE80211_CHAN_NO_HE;
1588 if (rd_flags & NL80211_RRF_NO_320MHZ)
1589 channel_flags |= IEEE80211_CHAN_NO_320MHZ;
1590 return channel_flags;
1591}
1592
1593static const struct ieee80211_reg_rule *
1594freq_reg_info_regd(u32 center_freq,
1595 const struct ieee80211_regdomain *regd, u32 bw)
1596{
1597 int i;
1598 bool band_rule_found = false;
1599 bool bw_fits = false;
1600
1601 if (!regd)
1602 return ERR_PTR(-EINVAL);
1603
1604 for (i = 0; i < regd->n_reg_rules; i++) {
1605 const struct ieee80211_reg_rule *rr;
1606 const struct ieee80211_freq_range *fr = NULL;
1607
1608 rr = ®d->reg_rules[i];
1609 fr = &rr->freq_range;
1610
1611 /*
1612 * We only need to know if one frequency rule was
1613 * in center_freq's band, that's enough, so let's
1614 * not overwrite it once found
1615 */
1616 if (!band_rule_found)
1617 band_rule_found = freq_in_rule_band(fr, center_freq);
1618
1619 bw_fits = cfg80211_does_bw_fit_range(fr, center_freq, bw);
1620
1621 if (band_rule_found && bw_fits)
1622 return rr;
1623 }
1624
1625 if (!band_rule_found)
1626 return ERR_PTR(-ERANGE);
1627
1628 return ERR_PTR(-EINVAL);
1629}
1630
1631static const struct ieee80211_reg_rule *
1632__freq_reg_info(struct wiphy *wiphy, u32 center_freq, u32 min_bw)
1633{
1634 const struct ieee80211_regdomain *regd = reg_get_regdomain(wiphy);
1635 static const u32 bws[] = {0, 1, 2, 4, 5, 8, 10, 16, 20};
1636 const struct ieee80211_reg_rule *reg_rule = ERR_PTR(-ERANGE);
1637 int i = ARRAY_SIZE(bws) - 1;
1638 u32 bw;
1639
1640 for (bw = MHZ_TO_KHZ(bws[i]); bw >= min_bw; bw = MHZ_TO_KHZ(bws[i--])) {
1641 reg_rule = freq_reg_info_regd(center_freq, regd, bw);
1642 if (!IS_ERR(reg_rule))
1643 return reg_rule;
1644 }
1645
1646 return reg_rule;
1647}
1648
1649const struct ieee80211_reg_rule *freq_reg_info(struct wiphy *wiphy,
1650 u32 center_freq)
1651{
1652 u32 min_bw = center_freq < MHZ_TO_KHZ(1000) ? 1 : 20;
1653
1654 return __freq_reg_info(wiphy, center_freq, MHZ_TO_KHZ(min_bw));
1655}
1656EXPORT_SYMBOL(freq_reg_info);
1657
1658const char *reg_initiator_name(enum nl80211_reg_initiator initiator)
1659{
1660 switch (initiator) {
1661 case NL80211_REGDOM_SET_BY_CORE:
1662 return "core";
1663 case NL80211_REGDOM_SET_BY_USER:
1664 return "user";
1665 case NL80211_REGDOM_SET_BY_DRIVER:
1666 return "driver";
1667 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
1668 return "country element";
1669 default:
1670 WARN_ON(1);
1671 return "bug";
1672 }
1673}
1674EXPORT_SYMBOL(reg_initiator_name);
1675
1676static uint32_t reg_rule_to_chan_bw_flags(const struct ieee80211_regdomain *regd,
1677 const struct ieee80211_reg_rule *reg_rule,
1678 const struct ieee80211_channel *chan)
1679{
1680 const struct ieee80211_freq_range *freq_range = NULL;
1681 u32 max_bandwidth_khz, center_freq_khz, bw_flags = 0;
1682 bool is_s1g = chan->band == NL80211_BAND_S1GHZ;
1683
1684 freq_range = ®_rule->freq_range;
1685
1686 max_bandwidth_khz = freq_range->max_bandwidth_khz;
1687 center_freq_khz = ieee80211_channel_to_khz(chan);
1688 /* Check if auto calculation requested */
1689 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
1690 max_bandwidth_khz = reg_get_max_bandwidth(regd, reg_rule);
1691
1692 /* If we get a reg_rule we can assume that at least 5Mhz fit */
1693 if (!cfg80211_does_bw_fit_range(freq_range,
1694 center_freq_khz,
1695 MHZ_TO_KHZ(10)))
1696 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1697 if (!cfg80211_does_bw_fit_range(freq_range,
1698 center_freq_khz,
1699 MHZ_TO_KHZ(20)))
1700 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1701
1702 if (is_s1g) {
1703 /* S1G is strict about non overlapping channels. We can
1704 * calculate which bandwidth is allowed per channel by finding
1705 * the largest bandwidth which cleanly divides the freq_range.
1706 */
1707 int edge_offset;
1708 int ch_bw = max_bandwidth_khz;
1709
1710 while (ch_bw) {
1711 edge_offset = (center_freq_khz - ch_bw / 2) -
1712 freq_range->start_freq_khz;
1713 if (edge_offset % ch_bw == 0) {
1714 switch (KHZ_TO_MHZ(ch_bw)) {
1715 case 1:
1716 bw_flags |= IEEE80211_CHAN_1MHZ;
1717 break;
1718 case 2:
1719 bw_flags |= IEEE80211_CHAN_2MHZ;
1720 break;
1721 case 4:
1722 bw_flags |= IEEE80211_CHAN_4MHZ;
1723 break;
1724 case 8:
1725 bw_flags |= IEEE80211_CHAN_8MHZ;
1726 break;
1727 case 16:
1728 bw_flags |= IEEE80211_CHAN_16MHZ;
1729 break;
1730 default:
1731 /* If we got here, no bandwidths fit on
1732 * this frequency, ie. band edge.
1733 */
1734 bw_flags |= IEEE80211_CHAN_DISABLED;
1735 break;
1736 }
1737 break;
1738 }
1739 ch_bw /= 2;
1740 }
1741 } else {
1742 if (max_bandwidth_khz < MHZ_TO_KHZ(10))
1743 bw_flags |= IEEE80211_CHAN_NO_10MHZ;
1744 if (max_bandwidth_khz < MHZ_TO_KHZ(20))
1745 bw_flags |= IEEE80211_CHAN_NO_20MHZ;
1746 if (max_bandwidth_khz < MHZ_TO_KHZ(40))
1747 bw_flags |= IEEE80211_CHAN_NO_HT40;
1748 if (max_bandwidth_khz < MHZ_TO_KHZ(80))
1749 bw_flags |= IEEE80211_CHAN_NO_80MHZ;
1750 if (max_bandwidth_khz < MHZ_TO_KHZ(160))
1751 bw_flags |= IEEE80211_CHAN_NO_160MHZ;
1752 if (max_bandwidth_khz < MHZ_TO_KHZ(320))
1753 bw_flags |= IEEE80211_CHAN_NO_320MHZ;
1754 }
1755 return bw_flags;
1756}
1757
1758static void handle_channel_single_rule(struct wiphy *wiphy,
1759 enum nl80211_reg_initiator initiator,
1760 struct ieee80211_channel *chan,
1761 u32 flags,
1762 struct regulatory_request *lr,
1763 struct wiphy *request_wiphy,
1764 const struct ieee80211_reg_rule *reg_rule)
1765{
1766 u32 bw_flags = 0;
1767 const struct ieee80211_power_rule *power_rule = NULL;
1768 const struct ieee80211_regdomain *regd;
1769
1770 regd = reg_get_regdomain(wiphy);
1771
1772 power_rule = ®_rule->power_rule;
1773 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
1774
1775 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1776 request_wiphy && request_wiphy == wiphy &&
1777 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1778 /*
1779 * This guarantees the driver's requested regulatory domain
1780 * will always be used as a base for further regulatory
1781 * settings
1782 */
1783 chan->flags = chan->orig_flags =
1784 map_regdom_flags(reg_rule->flags) | bw_flags;
1785 chan->max_antenna_gain = chan->orig_mag =
1786 (int) MBI_TO_DBI(power_rule->max_antenna_gain);
1787 chan->max_reg_power = chan->max_power = chan->orig_mpwr =
1788 (int) MBM_TO_DBM(power_rule->max_eirp);
1789
1790 if (chan->flags & IEEE80211_CHAN_RADAR) {
1791 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1792 if (reg_rule->dfs_cac_ms)
1793 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1794 }
1795
1796 return;
1797 }
1798
1799 chan->dfs_state = NL80211_DFS_USABLE;
1800 chan->dfs_state_entered = jiffies;
1801
1802 chan->beacon_found = false;
1803 chan->flags = flags | bw_flags | map_regdom_flags(reg_rule->flags);
1804 chan->max_antenna_gain =
1805 min_t(int, chan->orig_mag,
1806 MBI_TO_DBI(power_rule->max_antenna_gain));
1807 chan->max_reg_power = (int) MBM_TO_DBM(power_rule->max_eirp);
1808
1809 if (chan->flags & IEEE80211_CHAN_RADAR) {
1810 if (reg_rule->dfs_cac_ms)
1811 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
1812 else
1813 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1814 }
1815
1816 if (chan->orig_mpwr) {
1817 /*
1818 * Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1819 * will always follow the passed country IE power settings.
1820 */
1821 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1822 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1823 chan->max_power = chan->max_reg_power;
1824 else
1825 chan->max_power = min(chan->orig_mpwr,
1826 chan->max_reg_power);
1827 } else
1828 chan->max_power = chan->max_reg_power;
1829}
1830
1831static void handle_channel_adjacent_rules(struct wiphy *wiphy,
1832 enum nl80211_reg_initiator initiator,
1833 struct ieee80211_channel *chan,
1834 u32 flags,
1835 struct regulatory_request *lr,
1836 struct wiphy *request_wiphy,
1837 const struct ieee80211_reg_rule *rrule1,
1838 const struct ieee80211_reg_rule *rrule2,
1839 struct ieee80211_freq_range *comb_range)
1840{
1841 u32 bw_flags1 = 0;
1842 u32 bw_flags2 = 0;
1843 const struct ieee80211_power_rule *power_rule1 = NULL;
1844 const struct ieee80211_power_rule *power_rule2 = NULL;
1845 const struct ieee80211_regdomain *regd;
1846
1847 regd = reg_get_regdomain(wiphy);
1848
1849 power_rule1 = &rrule1->power_rule;
1850 power_rule2 = &rrule2->power_rule;
1851 bw_flags1 = reg_rule_to_chan_bw_flags(regd, rrule1, chan);
1852 bw_flags2 = reg_rule_to_chan_bw_flags(regd, rrule2, chan);
1853
1854 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
1855 request_wiphy && request_wiphy == wiphy &&
1856 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
1857 /* This guarantees the driver's requested regulatory domain
1858 * will always be used as a base for further regulatory
1859 * settings
1860 */
1861 chan->flags =
1862 map_regdom_flags(rrule1->flags) |
1863 map_regdom_flags(rrule2->flags) |
1864 bw_flags1 |
1865 bw_flags2;
1866 chan->orig_flags = chan->flags;
1867 chan->max_antenna_gain =
1868 min_t(int, MBI_TO_DBI(power_rule1->max_antenna_gain),
1869 MBI_TO_DBI(power_rule2->max_antenna_gain));
1870 chan->orig_mag = chan->max_antenna_gain;
1871 chan->max_reg_power =
1872 min_t(int, MBM_TO_DBM(power_rule1->max_eirp),
1873 MBM_TO_DBM(power_rule2->max_eirp));
1874 chan->max_power = chan->max_reg_power;
1875 chan->orig_mpwr = chan->max_reg_power;
1876
1877 if (chan->flags & IEEE80211_CHAN_RADAR) {
1878 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1879 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1880 chan->dfs_cac_ms = max_t(unsigned int,
1881 rrule1->dfs_cac_ms,
1882 rrule2->dfs_cac_ms);
1883 }
1884
1885 return;
1886 }
1887
1888 chan->dfs_state = NL80211_DFS_USABLE;
1889 chan->dfs_state_entered = jiffies;
1890
1891 chan->beacon_found = false;
1892 chan->flags = flags | bw_flags1 | bw_flags2 |
1893 map_regdom_flags(rrule1->flags) |
1894 map_regdom_flags(rrule2->flags);
1895
1896 /* reg_rule_to_chan_bw_flags may forbids 10 and forbids 20 MHz
1897 * (otherwise no adj. rule case), recheck therefore
1898 */
1899 if (cfg80211_does_bw_fit_range(comb_range,
1900 ieee80211_channel_to_khz(chan),
1901 MHZ_TO_KHZ(10)))
1902 chan->flags &= ~IEEE80211_CHAN_NO_10MHZ;
1903 if (cfg80211_does_bw_fit_range(comb_range,
1904 ieee80211_channel_to_khz(chan),
1905 MHZ_TO_KHZ(20)))
1906 chan->flags &= ~IEEE80211_CHAN_NO_20MHZ;
1907
1908 chan->max_antenna_gain =
1909 min_t(int, chan->orig_mag,
1910 min_t(int,
1911 MBI_TO_DBI(power_rule1->max_antenna_gain),
1912 MBI_TO_DBI(power_rule2->max_antenna_gain)));
1913 chan->max_reg_power = min_t(int,
1914 MBM_TO_DBM(power_rule1->max_eirp),
1915 MBM_TO_DBM(power_rule2->max_eirp));
1916
1917 if (chan->flags & IEEE80211_CHAN_RADAR) {
1918 if (rrule1->dfs_cac_ms || rrule2->dfs_cac_ms)
1919 chan->dfs_cac_ms = max_t(unsigned int,
1920 rrule1->dfs_cac_ms,
1921 rrule2->dfs_cac_ms);
1922 else
1923 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
1924 }
1925
1926 if (chan->orig_mpwr) {
1927 /* Devices that use REGULATORY_COUNTRY_IE_FOLLOW_POWER
1928 * will always follow the passed country IE power settings.
1929 */
1930 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
1931 wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_FOLLOW_POWER)
1932 chan->max_power = chan->max_reg_power;
1933 else
1934 chan->max_power = min(chan->orig_mpwr,
1935 chan->max_reg_power);
1936 } else {
1937 chan->max_power = chan->max_reg_power;
1938 }
1939}
1940
1941/* Note that right now we assume the desired channel bandwidth
1942 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
1943 * per channel, the primary and the extension channel).
1944 */
1945static void handle_channel(struct wiphy *wiphy,
1946 enum nl80211_reg_initiator initiator,
1947 struct ieee80211_channel *chan)
1948{
1949 const u32 orig_chan_freq = ieee80211_channel_to_khz(chan);
1950 struct regulatory_request *lr = get_last_request();
1951 struct wiphy *request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
1952 const struct ieee80211_reg_rule *rrule = NULL;
1953 const struct ieee80211_reg_rule *rrule1 = NULL;
1954 const struct ieee80211_reg_rule *rrule2 = NULL;
1955
1956 u32 flags = chan->orig_flags;
1957
1958 rrule = freq_reg_info(wiphy, orig_chan_freq);
1959 if (IS_ERR(rrule)) {
1960 /* check for adjacent match, therefore get rules for
1961 * chan - 20 MHz and chan + 20 MHz and test
1962 * if reg rules are adjacent
1963 */
1964 rrule1 = freq_reg_info(wiphy,
1965 orig_chan_freq - MHZ_TO_KHZ(20));
1966 rrule2 = freq_reg_info(wiphy,
1967 orig_chan_freq + MHZ_TO_KHZ(20));
1968 if (!IS_ERR(rrule1) && !IS_ERR(rrule2)) {
1969 struct ieee80211_freq_range comb_range;
1970
1971 if (rrule1->freq_range.end_freq_khz !=
1972 rrule2->freq_range.start_freq_khz)
1973 goto disable_chan;
1974
1975 comb_range.start_freq_khz =
1976 rrule1->freq_range.start_freq_khz;
1977 comb_range.end_freq_khz =
1978 rrule2->freq_range.end_freq_khz;
1979 comb_range.max_bandwidth_khz =
1980 min_t(u32,
1981 rrule1->freq_range.max_bandwidth_khz,
1982 rrule2->freq_range.max_bandwidth_khz);
1983
1984 if (!cfg80211_does_bw_fit_range(&comb_range,
1985 orig_chan_freq,
1986 MHZ_TO_KHZ(20)))
1987 goto disable_chan;
1988
1989 handle_channel_adjacent_rules(wiphy, initiator, chan,
1990 flags, lr, request_wiphy,
1991 rrule1, rrule2,
1992 &comb_range);
1993 return;
1994 }
1995
1996disable_chan:
1997 /* We will disable all channels that do not match our
1998 * received regulatory rule unless the hint is coming
1999 * from a Country IE and the Country IE had no information
2000 * about a band. The IEEE 802.11 spec allows for an AP
2001 * to send only a subset of the regulatory rules allowed,
2002 * so an AP in the US that only supports 2.4 GHz may only send
2003 * a country IE with information for the 2.4 GHz band
2004 * while 5 GHz is still supported.
2005 */
2006 if (initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2007 PTR_ERR(rrule) == -ERANGE)
2008 return;
2009
2010 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2011 request_wiphy && request_wiphy == wiphy &&
2012 request_wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
2013 pr_debug("Disabling freq %d.%03d MHz for good\n",
2014 chan->center_freq, chan->freq_offset);
2015 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2016 chan->flags = chan->orig_flags;
2017 } else {
2018 pr_debug("Disabling freq %d.%03d MHz\n",
2019 chan->center_freq, chan->freq_offset);
2020 chan->flags |= IEEE80211_CHAN_DISABLED;
2021 }
2022 return;
2023 }
2024
2025 handle_channel_single_rule(wiphy, initiator, chan, flags, lr,
2026 request_wiphy, rrule);
2027}
2028
2029static void handle_band(struct wiphy *wiphy,
2030 enum nl80211_reg_initiator initiator,
2031 struct ieee80211_supported_band *sband)
2032{
2033 unsigned int i;
2034
2035 if (!sband)
2036 return;
2037
2038 for (i = 0; i < sband->n_channels; i++)
2039 handle_channel(wiphy, initiator, &sband->channels[i]);
2040}
2041
2042static bool reg_request_cell_base(struct regulatory_request *request)
2043{
2044 if (request->initiator != NL80211_REGDOM_SET_BY_USER)
2045 return false;
2046 return request->user_reg_hint_type == NL80211_USER_REG_HINT_CELL_BASE;
2047}
2048
2049bool reg_last_request_cell_base(void)
2050{
2051 return reg_request_cell_base(get_last_request());
2052}
2053
2054#ifdef CONFIG_CFG80211_REG_CELLULAR_HINTS
2055/* Core specific check */
2056static enum reg_request_treatment
2057reg_ignore_cell_hint(struct regulatory_request *pending_request)
2058{
2059 struct regulatory_request *lr = get_last_request();
2060
2061 if (!reg_num_devs_support_basehint)
2062 return REG_REQ_IGNORE;
2063
2064 if (reg_request_cell_base(lr) &&
2065 !regdom_changes(pending_request->alpha2))
2066 return REG_REQ_ALREADY_SET;
2067
2068 return REG_REQ_OK;
2069}
2070
2071/* Device specific check */
2072static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2073{
2074 return !(wiphy->features & NL80211_FEATURE_CELL_BASE_REG_HINTS);
2075}
2076#else
2077static enum reg_request_treatment
2078reg_ignore_cell_hint(struct regulatory_request *pending_request)
2079{
2080 return REG_REQ_IGNORE;
2081}
2082
2083static bool reg_dev_ignore_cell_hint(struct wiphy *wiphy)
2084{
2085 return true;
2086}
2087#endif
2088
2089static bool wiphy_strict_alpha2_regd(struct wiphy *wiphy)
2090{
2091 if (wiphy->regulatory_flags & REGULATORY_STRICT_REG &&
2092 !(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG))
2093 return true;
2094 return false;
2095}
2096
2097static bool ignore_reg_update(struct wiphy *wiphy,
2098 enum nl80211_reg_initiator initiator)
2099{
2100 struct regulatory_request *lr = get_last_request();
2101
2102 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2103 return true;
2104
2105 if (!lr) {
2106 pr_debug("Ignoring regulatory request set by %s since last_request is not set\n",
2107 reg_initiator_name(initiator));
2108 return true;
2109 }
2110
2111 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2112 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG) {
2113 pr_debug("Ignoring regulatory request set by %s since the driver uses its own custom regulatory domain\n",
2114 reg_initiator_name(initiator));
2115 return true;
2116 }
2117
2118 /*
2119 * wiphy->regd will be set once the device has its own
2120 * desired regulatory domain set
2121 */
2122 if (wiphy_strict_alpha2_regd(wiphy) && !wiphy->regd &&
2123 initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2124 !is_world_regdom(lr->alpha2)) {
2125 pr_debug("Ignoring regulatory request set by %s since the driver requires its own regulatory domain to be set first\n",
2126 reg_initiator_name(initiator));
2127 return true;
2128 }
2129
2130 if (reg_request_cell_base(lr))
2131 return reg_dev_ignore_cell_hint(wiphy);
2132
2133 return false;
2134}
2135
2136static bool reg_is_world_roaming(struct wiphy *wiphy)
2137{
2138 const struct ieee80211_regdomain *cr = get_cfg80211_regdom();
2139 const struct ieee80211_regdomain *wr = get_wiphy_regdom(wiphy);
2140 struct regulatory_request *lr = get_last_request();
2141
2142 if (is_world_regdom(cr->alpha2) || (wr && is_world_regdom(wr->alpha2)))
2143 return true;
2144
2145 if (lr && lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE &&
2146 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG)
2147 return true;
2148
2149 return false;
2150}
2151
2152static void handle_reg_beacon(struct wiphy *wiphy, unsigned int chan_idx,
2153 struct reg_beacon *reg_beacon)
2154{
2155 struct ieee80211_supported_band *sband;
2156 struct ieee80211_channel *chan;
2157 bool channel_changed = false;
2158 struct ieee80211_channel chan_before;
2159
2160 sband = wiphy->bands[reg_beacon->chan.band];
2161 chan = &sband->channels[chan_idx];
2162
2163 if (likely(!ieee80211_channel_equal(chan, ®_beacon->chan)))
2164 return;
2165
2166 if (chan->beacon_found)
2167 return;
2168
2169 chan->beacon_found = true;
2170
2171 if (!reg_is_world_roaming(wiphy))
2172 return;
2173
2174 if (wiphy->regulatory_flags & REGULATORY_DISABLE_BEACON_HINTS)
2175 return;
2176
2177 chan_before = *chan;
2178
2179 if (chan->flags & IEEE80211_CHAN_NO_IR) {
2180 chan->flags &= ~IEEE80211_CHAN_NO_IR;
2181 channel_changed = true;
2182 }
2183
2184 if (channel_changed)
2185 nl80211_send_beacon_hint_event(wiphy, &chan_before, chan);
2186}
2187
2188/*
2189 * Called when a scan on a wiphy finds a beacon on
2190 * new channel
2191 */
2192static void wiphy_update_new_beacon(struct wiphy *wiphy,
2193 struct reg_beacon *reg_beacon)
2194{
2195 unsigned int i;
2196 struct ieee80211_supported_band *sband;
2197
2198 if (!wiphy->bands[reg_beacon->chan.band])
2199 return;
2200
2201 sband = wiphy->bands[reg_beacon->chan.band];
2202
2203 for (i = 0; i < sband->n_channels; i++)
2204 handle_reg_beacon(wiphy, i, reg_beacon);
2205}
2206
2207/*
2208 * Called upon reg changes or a new wiphy is added
2209 */
2210static void wiphy_update_beacon_reg(struct wiphy *wiphy)
2211{
2212 unsigned int i;
2213 struct ieee80211_supported_band *sband;
2214 struct reg_beacon *reg_beacon;
2215
2216 list_for_each_entry(reg_beacon, ®_beacon_list, list) {
2217 if (!wiphy->bands[reg_beacon->chan.band])
2218 continue;
2219 sband = wiphy->bands[reg_beacon->chan.band];
2220 for (i = 0; i < sband->n_channels; i++)
2221 handle_reg_beacon(wiphy, i, reg_beacon);
2222 }
2223}
2224
2225/* Reap the advantages of previously found beacons */
2226static void reg_process_beacons(struct wiphy *wiphy)
2227{
2228 /*
2229 * Means we are just firing up cfg80211, so no beacons would
2230 * have been processed yet.
2231 */
2232 if (!last_request)
2233 return;
2234 wiphy_update_beacon_reg(wiphy);
2235}
2236
2237static bool is_ht40_allowed(struct ieee80211_channel *chan)
2238{
2239 if (!chan)
2240 return false;
2241 if (chan->flags & IEEE80211_CHAN_DISABLED)
2242 return false;
2243 /* This would happen when regulatory rules disallow HT40 completely */
2244 if ((chan->flags & IEEE80211_CHAN_NO_HT40) == IEEE80211_CHAN_NO_HT40)
2245 return false;
2246 return true;
2247}
2248
2249static void reg_process_ht_flags_channel(struct wiphy *wiphy,
2250 struct ieee80211_channel *channel)
2251{
2252 struct ieee80211_supported_band *sband = wiphy->bands[channel->band];
2253 struct ieee80211_channel *channel_before = NULL, *channel_after = NULL;
2254 const struct ieee80211_regdomain *regd;
2255 unsigned int i;
2256 u32 flags;
2257
2258 if (!is_ht40_allowed(channel)) {
2259 channel->flags |= IEEE80211_CHAN_NO_HT40;
2260 return;
2261 }
2262
2263 /*
2264 * We need to ensure the extension channels exist to
2265 * be able to use HT40- or HT40+, this finds them (or not)
2266 */
2267 for (i = 0; i < sband->n_channels; i++) {
2268 struct ieee80211_channel *c = &sband->channels[i];
2269
2270 if (c->center_freq == (channel->center_freq - 20))
2271 channel_before = c;
2272 if (c->center_freq == (channel->center_freq + 20))
2273 channel_after = c;
2274 }
2275
2276 flags = 0;
2277 regd = get_wiphy_regdom(wiphy);
2278 if (regd) {
2279 const struct ieee80211_reg_rule *reg_rule =
2280 freq_reg_info_regd(MHZ_TO_KHZ(channel->center_freq),
2281 regd, MHZ_TO_KHZ(20));
2282
2283 if (!IS_ERR(reg_rule))
2284 flags = reg_rule->flags;
2285 }
2286
2287 /*
2288 * Please note that this assumes target bandwidth is 20 MHz,
2289 * if that ever changes we also need to change the below logic
2290 * to include that as well.
2291 */
2292 if (!is_ht40_allowed(channel_before) ||
2293 flags & NL80211_RRF_NO_HT40MINUS)
2294 channel->flags |= IEEE80211_CHAN_NO_HT40MINUS;
2295 else
2296 channel->flags &= ~IEEE80211_CHAN_NO_HT40MINUS;
2297
2298 if (!is_ht40_allowed(channel_after) ||
2299 flags & NL80211_RRF_NO_HT40PLUS)
2300 channel->flags |= IEEE80211_CHAN_NO_HT40PLUS;
2301 else
2302 channel->flags &= ~IEEE80211_CHAN_NO_HT40PLUS;
2303}
2304
2305static void reg_process_ht_flags_band(struct wiphy *wiphy,
2306 struct ieee80211_supported_band *sband)
2307{
2308 unsigned int i;
2309
2310 if (!sband)
2311 return;
2312
2313 for (i = 0; i < sband->n_channels; i++)
2314 reg_process_ht_flags_channel(wiphy, &sband->channels[i]);
2315}
2316
2317static void reg_process_ht_flags(struct wiphy *wiphy)
2318{
2319 enum nl80211_band band;
2320
2321 if (!wiphy)
2322 return;
2323
2324 for (band = 0; band < NUM_NL80211_BANDS; band++)
2325 reg_process_ht_flags_band(wiphy, wiphy->bands[band]);
2326}
2327
2328static void reg_call_notifier(struct wiphy *wiphy,
2329 struct regulatory_request *request)
2330{
2331 if (wiphy->reg_notifier)
2332 wiphy->reg_notifier(wiphy, request);
2333}
2334
2335static bool reg_wdev_chan_valid(struct wiphy *wiphy, struct wireless_dev *wdev)
2336{
2337 struct cfg80211_chan_def chandef = {};
2338 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2339 enum nl80211_iftype iftype;
2340 bool ret;
2341 int link;
2342
2343 wdev_lock(wdev);
2344 iftype = wdev->iftype;
2345
2346 /* make sure the interface is active */
2347 if (!wdev->netdev || !netif_running(wdev->netdev))
2348 goto wdev_inactive_unlock;
2349
2350 for (link = 0; link < ARRAY_SIZE(wdev->links); link++) {
2351 struct ieee80211_channel *chan;
2352
2353 if (!wdev->valid_links && link > 0)
2354 break;
2355 if (!(wdev->valid_links & BIT(link)))
2356 continue;
2357 switch (iftype) {
2358 case NL80211_IFTYPE_AP:
2359 case NL80211_IFTYPE_P2P_GO:
2360 if (!wdev->links[link].ap.beacon_interval)
2361 continue;
2362 chandef = wdev->links[link].ap.chandef;
2363 break;
2364 case NL80211_IFTYPE_MESH_POINT:
2365 if (!wdev->u.mesh.beacon_interval)
2366 continue;
2367 chandef = wdev->u.mesh.chandef;
2368 break;
2369 case NL80211_IFTYPE_ADHOC:
2370 if (!wdev->u.ibss.ssid_len)
2371 continue;
2372 chandef = wdev->u.ibss.chandef;
2373 break;
2374 case NL80211_IFTYPE_STATION:
2375 case NL80211_IFTYPE_P2P_CLIENT:
2376 /* Maybe we could consider disabling that link only? */
2377 if (!wdev->links[link].client.current_bss)
2378 continue;
2379
2380 chan = wdev->links[link].client.current_bss->pub.channel;
2381 if (!chan)
2382 continue;
2383
2384 if (!rdev->ops->get_channel ||
2385 rdev_get_channel(rdev, wdev, link, &chandef))
2386 cfg80211_chandef_create(&chandef, chan,
2387 NL80211_CHAN_NO_HT);
2388 break;
2389 case NL80211_IFTYPE_MONITOR:
2390 case NL80211_IFTYPE_AP_VLAN:
2391 case NL80211_IFTYPE_P2P_DEVICE:
2392 /* no enforcement required */
2393 break;
2394 default:
2395 /* others not implemented for now */
2396 WARN_ON(1);
2397 break;
2398 }
2399
2400 wdev_unlock(wdev);
2401
2402 switch (iftype) {
2403 case NL80211_IFTYPE_AP:
2404 case NL80211_IFTYPE_P2P_GO:
2405 case NL80211_IFTYPE_ADHOC:
2406 case NL80211_IFTYPE_MESH_POINT:
2407 wiphy_lock(wiphy);
2408 ret = cfg80211_reg_can_beacon_relax(wiphy, &chandef,
2409 iftype);
2410 wiphy_unlock(wiphy);
2411
2412 if (!ret)
2413 return ret;
2414 break;
2415 case NL80211_IFTYPE_STATION:
2416 case NL80211_IFTYPE_P2P_CLIENT:
2417 ret = cfg80211_chandef_usable(wiphy, &chandef,
2418 IEEE80211_CHAN_DISABLED);
2419 if (!ret)
2420 return ret;
2421 break;
2422 default:
2423 break;
2424 }
2425
2426 wdev_lock(wdev);
2427 }
2428
2429 wdev_unlock(wdev);
2430
2431 return true;
2432
2433wdev_inactive_unlock:
2434 wdev_unlock(wdev);
2435 return true;
2436}
2437
2438static void reg_leave_invalid_chans(struct wiphy *wiphy)
2439{
2440 struct wireless_dev *wdev;
2441 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
2442
2443 ASSERT_RTNL();
2444
2445 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list)
2446 if (!reg_wdev_chan_valid(wiphy, wdev))
2447 cfg80211_leave(rdev, wdev);
2448}
2449
2450static void reg_check_chans_work(struct work_struct *work)
2451{
2452 struct cfg80211_registered_device *rdev;
2453
2454 pr_debug("Verifying active interfaces after reg change\n");
2455 rtnl_lock();
2456
2457 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
2458 if (!(rdev->wiphy.regulatory_flags &
2459 REGULATORY_IGNORE_STALE_KICKOFF))
2460 reg_leave_invalid_chans(&rdev->wiphy);
2461
2462 rtnl_unlock();
2463}
2464
2465static void reg_check_channels(void)
2466{
2467 /*
2468 * Give usermode a chance to do something nicer (move to another
2469 * channel, orderly disconnection), before forcing a disconnection.
2470 */
2471 mod_delayed_work(system_power_efficient_wq,
2472 ®_check_chans,
2473 msecs_to_jiffies(REG_ENFORCE_GRACE_MS));
2474}
2475
2476static void wiphy_update_regulatory(struct wiphy *wiphy,
2477 enum nl80211_reg_initiator initiator)
2478{
2479 enum nl80211_band band;
2480 struct regulatory_request *lr = get_last_request();
2481
2482 if (ignore_reg_update(wiphy, initiator)) {
2483 /*
2484 * Regulatory updates set by CORE are ignored for custom
2485 * regulatory cards. Let us notify the changes to the driver,
2486 * as some drivers used this to restore its orig_* reg domain.
2487 */
2488 if (initiator == NL80211_REGDOM_SET_BY_CORE &&
2489 wiphy->regulatory_flags & REGULATORY_CUSTOM_REG &&
2490 !(wiphy->regulatory_flags &
2491 REGULATORY_WIPHY_SELF_MANAGED))
2492 reg_call_notifier(wiphy, lr);
2493 return;
2494 }
2495
2496 lr->dfs_region = get_cfg80211_regdom()->dfs_region;
2497
2498 for (band = 0; band < NUM_NL80211_BANDS; band++)
2499 handle_band(wiphy, initiator, wiphy->bands[band]);
2500
2501 reg_process_beacons(wiphy);
2502 reg_process_ht_flags(wiphy);
2503 reg_call_notifier(wiphy, lr);
2504}
2505
2506static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator)
2507{
2508 struct cfg80211_registered_device *rdev;
2509 struct wiphy *wiphy;
2510
2511 ASSERT_RTNL();
2512
2513 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2514 wiphy = &rdev->wiphy;
2515 wiphy_update_regulatory(wiphy, initiator);
2516 }
2517
2518 reg_check_channels();
2519}
2520
2521static void handle_channel_custom(struct wiphy *wiphy,
2522 struct ieee80211_channel *chan,
2523 const struct ieee80211_regdomain *regd,
2524 u32 min_bw)
2525{
2526 u32 bw_flags = 0;
2527 const struct ieee80211_reg_rule *reg_rule = NULL;
2528 const struct ieee80211_power_rule *power_rule = NULL;
2529 u32 bw, center_freq_khz;
2530
2531 center_freq_khz = ieee80211_channel_to_khz(chan);
2532 for (bw = MHZ_TO_KHZ(20); bw >= min_bw; bw = bw / 2) {
2533 reg_rule = freq_reg_info_regd(center_freq_khz, regd, bw);
2534 if (!IS_ERR(reg_rule))
2535 break;
2536 }
2537
2538 if (IS_ERR_OR_NULL(reg_rule)) {
2539 pr_debug("Disabling freq %d.%03d MHz as custom regd has no rule that fits it\n",
2540 chan->center_freq, chan->freq_offset);
2541 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
2542 chan->flags |= IEEE80211_CHAN_DISABLED;
2543 } else {
2544 chan->orig_flags |= IEEE80211_CHAN_DISABLED;
2545 chan->flags = chan->orig_flags;
2546 }
2547 return;
2548 }
2549
2550 power_rule = ®_rule->power_rule;
2551 bw_flags = reg_rule_to_chan_bw_flags(regd, reg_rule, chan);
2552
2553 chan->dfs_state_entered = jiffies;
2554 chan->dfs_state = NL80211_DFS_USABLE;
2555
2556 chan->beacon_found = false;
2557
2558 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
2559 chan->flags = chan->orig_flags | bw_flags |
2560 map_regdom_flags(reg_rule->flags);
2561 else
2562 chan->flags |= map_regdom_flags(reg_rule->flags) | bw_flags;
2563
2564 chan->max_antenna_gain = (int) MBI_TO_DBI(power_rule->max_antenna_gain);
2565 chan->max_reg_power = chan->max_power =
2566 (int) MBM_TO_DBM(power_rule->max_eirp);
2567
2568 if (chan->flags & IEEE80211_CHAN_RADAR) {
2569 if (reg_rule->dfs_cac_ms)
2570 chan->dfs_cac_ms = reg_rule->dfs_cac_ms;
2571 else
2572 chan->dfs_cac_ms = IEEE80211_DFS_MIN_CAC_TIME_MS;
2573 }
2574
2575 chan->max_power = chan->max_reg_power;
2576}
2577
2578static void handle_band_custom(struct wiphy *wiphy,
2579 struct ieee80211_supported_band *sband,
2580 const struct ieee80211_regdomain *regd)
2581{
2582 unsigned int i;
2583
2584 if (!sband)
2585 return;
2586
2587 /*
2588 * We currently assume that you always want at least 20 MHz,
2589 * otherwise channel 12 might get enabled if this rule is
2590 * compatible to US, which permits 2402 - 2472 MHz.
2591 */
2592 for (i = 0; i < sband->n_channels; i++)
2593 handle_channel_custom(wiphy, &sband->channels[i], regd,
2594 MHZ_TO_KHZ(20));
2595}
2596
2597/* Used by drivers prior to wiphy registration */
2598void wiphy_apply_custom_regulatory(struct wiphy *wiphy,
2599 const struct ieee80211_regdomain *regd)
2600{
2601 const struct ieee80211_regdomain *new_regd, *tmp;
2602 enum nl80211_band band;
2603 unsigned int bands_set = 0;
2604
2605 WARN(!(wiphy->regulatory_flags & REGULATORY_CUSTOM_REG),
2606 "wiphy should have REGULATORY_CUSTOM_REG\n");
2607 wiphy->regulatory_flags |= REGULATORY_CUSTOM_REG;
2608
2609 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2610 if (!wiphy->bands[band])
2611 continue;
2612 handle_band_custom(wiphy, wiphy->bands[band], regd);
2613 bands_set++;
2614 }
2615
2616 /*
2617 * no point in calling this if it won't have any effect
2618 * on your device's supported bands.
2619 */
2620 WARN_ON(!bands_set);
2621 new_regd = reg_copy_regd(regd);
2622 if (IS_ERR(new_regd))
2623 return;
2624
2625 rtnl_lock();
2626 wiphy_lock(wiphy);
2627
2628 tmp = get_wiphy_regdom(wiphy);
2629 rcu_assign_pointer(wiphy->regd, new_regd);
2630 rcu_free_regdom(tmp);
2631
2632 wiphy_unlock(wiphy);
2633 rtnl_unlock();
2634}
2635EXPORT_SYMBOL(wiphy_apply_custom_regulatory);
2636
2637static void reg_set_request_processed(void)
2638{
2639 bool need_more_processing = false;
2640 struct regulatory_request *lr = get_last_request();
2641
2642 lr->processed = true;
2643
2644 spin_lock(®_requests_lock);
2645 if (!list_empty(®_requests_list))
2646 need_more_processing = true;
2647 spin_unlock(®_requests_lock);
2648
2649 cancel_crda_timeout();
2650
2651 if (need_more_processing)
2652 schedule_work(®_work);
2653}
2654
2655/**
2656 * reg_process_hint_core - process core regulatory requests
2657 * @core_request: a pending core regulatory request
2658 *
2659 * The wireless subsystem can use this function to process
2660 * a regulatory request issued by the regulatory core.
2661 */
2662static enum reg_request_treatment
2663reg_process_hint_core(struct regulatory_request *core_request)
2664{
2665 if (reg_query_database(core_request)) {
2666 core_request->intersect = false;
2667 core_request->processed = false;
2668 reg_update_last_request(core_request);
2669 return REG_REQ_OK;
2670 }
2671
2672 return REG_REQ_IGNORE;
2673}
2674
2675static enum reg_request_treatment
2676__reg_process_hint_user(struct regulatory_request *user_request)
2677{
2678 struct regulatory_request *lr = get_last_request();
2679
2680 if (reg_request_cell_base(user_request))
2681 return reg_ignore_cell_hint(user_request);
2682
2683 if (reg_request_cell_base(lr))
2684 return REG_REQ_IGNORE;
2685
2686 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE)
2687 return REG_REQ_INTERSECT;
2688 /*
2689 * If the user knows better the user should set the regdom
2690 * to their country before the IE is picked up
2691 */
2692 if (lr->initiator == NL80211_REGDOM_SET_BY_USER &&
2693 lr->intersect)
2694 return REG_REQ_IGNORE;
2695 /*
2696 * Process user requests only after previous user/driver/core
2697 * requests have been processed
2698 */
2699 if ((lr->initiator == NL80211_REGDOM_SET_BY_CORE ||
2700 lr->initiator == NL80211_REGDOM_SET_BY_DRIVER ||
2701 lr->initiator == NL80211_REGDOM_SET_BY_USER) &&
2702 regdom_changes(lr->alpha2))
2703 return REG_REQ_IGNORE;
2704
2705 if (!regdom_changes(user_request->alpha2))
2706 return REG_REQ_ALREADY_SET;
2707
2708 return REG_REQ_OK;
2709}
2710
2711/**
2712 * reg_process_hint_user - process user regulatory requests
2713 * @user_request: a pending user regulatory request
2714 *
2715 * The wireless subsystem can use this function to process
2716 * a regulatory request initiated by userspace.
2717 */
2718static enum reg_request_treatment
2719reg_process_hint_user(struct regulatory_request *user_request)
2720{
2721 enum reg_request_treatment treatment;
2722
2723 treatment = __reg_process_hint_user(user_request);
2724 if (treatment == REG_REQ_IGNORE ||
2725 treatment == REG_REQ_ALREADY_SET)
2726 return REG_REQ_IGNORE;
2727
2728 user_request->intersect = treatment == REG_REQ_INTERSECT;
2729 user_request->processed = false;
2730
2731 if (reg_query_database(user_request)) {
2732 reg_update_last_request(user_request);
2733 user_alpha2[0] = user_request->alpha2[0];
2734 user_alpha2[1] = user_request->alpha2[1];
2735 return REG_REQ_OK;
2736 }
2737
2738 return REG_REQ_IGNORE;
2739}
2740
2741static enum reg_request_treatment
2742__reg_process_hint_driver(struct regulatory_request *driver_request)
2743{
2744 struct regulatory_request *lr = get_last_request();
2745
2746 if (lr->initiator == NL80211_REGDOM_SET_BY_CORE) {
2747 if (regdom_changes(driver_request->alpha2))
2748 return REG_REQ_OK;
2749 return REG_REQ_ALREADY_SET;
2750 }
2751
2752 /*
2753 * This would happen if you unplug and plug your card
2754 * back in or if you add a new device for which the previously
2755 * loaded card also agrees on the regulatory domain.
2756 */
2757 if (lr->initiator == NL80211_REGDOM_SET_BY_DRIVER &&
2758 !regdom_changes(driver_request->alpha2))
2759 return REG_REQ_ALREADY_SET;
2760
2761 return REG_REQ_INTERSECT;
2762}
2763
2764/**
2765 * reg_process_hint_driver - process driver regulatory requests
2766 * @wiphy: the wireless device for the regulatory request
2767 * @driver_request: a pending driver regulatory request
2768 *
2769 * The wireless subsystem can use this function to process
2770 * a regulatory request issued by an 802.11 driver.
2771 *
2772 * Returns one of the different reg request treatment values.
2773 */
2774static enum reg_request_treatment
2775reg_process_hint_driver(struct wiphy *wiphy,
2776 struct regulatory_request *driver_request)
2777{
2778 const struct ieee80211_regdomain *regd, *tmp;
2779 enum reg_request_treatment treatment;
2780
2781 treatment = __reg_process_hint_driver(driver_request);
2782
2783 switch (treatment) {
2784 case REG_REQ_OK:
2785 break;
2786 case REG_REQ_IGNORE:
2787 return REG_REQ_IGNORE;
2788 case REG_REQ_INTERSECT:
2789 case REG_REQ_ALREADY_SET:
2790 regd = reg_copy_regd(get_cfg80211_regdom());
2791 if (IS_ERR(regd))
2792 return REG_REQ_IGNORE;
2793
2794 tmp = get_wiphy_regdom(wiphy);
2795 ASSERT_RTNL();
2796 wiphy_lock(wiphy);
2797 rcu_assign_pointer(wiphy->regd, regd);
2798 wiphy_unlock(wiphy);
2799 rcu_free_regdom(tmp);
2800 }
2801
2802
2803 driver_request->intersect = treatment == REG_REQ_INTERSECT;
2804 driver_request->processed = false;
2805
2806 /*
2807 * Since CRDA will not be called in this case as we already
2808 * have applied the requested regulatory domain before we just
2809 * inform userspace we have processed the request
2810 */
2811 if (treatment == REG_REQ_ALREADY_SET) {
2812 nl80211_send_reg_change_event(driver_request);
2813 reg_update_last_request(driver_request);
2814 reg_set_request_processed();
2815 return REG_REQ_ALREADY_SET;
2816 }
2817
2818 if (reg_query_database(driver_request)) {
2819 reg_update_last_request(driver_request);
2820 return REG_REQ_OK;
2821 }
2822
2823 return REG_REQ_IGNORE;
2824}
2825
2826static enum reg_request_treatment
2827__reg_process_hint_country_ie(struct wiphy *wiphy,
2828 struct regulatory_request *country_ie_request)
2829{
2830 struct wiphy *last_wiphy = NULL;
2831 struct regulatory_request *lr = get_last_request();
2832
2833 if (reg_request_cell_base(lr)) {
2834 /* Trust a Cell base station over the AP's country IE */
2835 if (regdom_changes(country_ie_request->alpha2))
2836 return REG_REQ_IGNORE;
2837 return REG_REQ_ALREADY_SET;
2838 } else {
2839 if (wiphy->regulatory_flags & REGULATORY_COUNTRY_IE_IGNORE)
2840 return REG_REQ_IGNORE;
2841 }
2842
2843 if (unlikely(!is_an_alpha2(country_ie_request->alpha2)))
2844 return -EINVAL;
2845
2846 if (lr->initiator != NL80211_REGDOM_SET_BY_COUNTRY_IE)
2847 return REG_REQ_OK;
2848
2849 last_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
2850
2851 if (last_wiphy != wiphy) {
2852 /*
2853 * Two cards with two APs claiming different
2854 * Country IE alpha2s. We could
2855 * intersect them, but that seems unlikely
2856 * to be correct. Reject second one for now.
2857 */
2858 if (regdom_changes(country_ie_request->alpha2))
2859 return REG_REQ_IGNORE;
2860 return REG_REQ_ALREADY_SET;
2861 }
2862
2863 if (regdom_changes(country_ie_request->alpha2))
2864 return REG_REQ_OK;
2865 return REG_REQ_ALREADY_SET;
2866}
2867
2868/**
2869 * reg_process_hint_country_ie - process regulatory requests from country IEs
2870 * @wiphy: the wireless device for the regulatory request
2871 * @country_ie_request: a regulatory request from a country IE
2872 *
2873 * The wireless subsystem can use this function to process
2874 * a regulatory request issued by a country Information Element.
2875 *
2876 * Returns one of the different reg request treatment values.
2877 */
2878static enum reg_request_treatment
2879reg_process_hint_country_ie(struct wiphy *wiphy,
2880 struct regulatory_request *country_ie_request)
2881{
2882 enum reg_request_treatment treatment;
2883
2884 treatment = __reg_process_hint_country_ie(wiphy, country_ie_request);
2885
2886 switch (treatment) {
2887 case REG_REQ_OK:
2888 break;
2889 case REG_REQ_IGNORE:
2890 return REG_REQ_IGNORE;
2891 case REG_REQ_ALREADY_SET:
2892 reg_free_request(country_ie_request);
2893 return REG_REQ_ALREADY_SET;
2894 case REG_REQ_INTERSECT:
2895 /*
2896 * This doesn't happen yet, not sure we
2897 * ever want to support it for this case.
2898 */
2899 WARN_ONCE(1, "Unexpected intersection for country elements");
2900 return REG_REQ_IGNORE;
2901 }
2902
2903 country_ie_request->intersect = false;
2904 country_ie_request->processed = false;
2905
2906 if (reg_query_database(country_ie_request)) {
2907 reg_update_last_request(country_ie_request);
2908 return REG_REQ_OK;
2909 }
2910
2911 return REG_REQ_IGNORE;
2912}
2913
2914bool reg_dfs_domain_same(struct wiphy *wiphy1, struct wiphy *wiphy2)
2915{
2916 const struct ieee80211_regdomain *wiphy1_regd = NULL;
2917 const struct ieee80211_regdomain *wiphy2_regd = NULL;
2918 const struct ieee80211_regdomain *cfg80211_regd = NULL;
2919 bool dfs_domain_same;
2920
2921 rcu_read_lock();
2922
2923 cfg80211_regd = rcu_dereference(cfg80211_regdomain);
2924 wiphy1_regd = rcu_dereference(wiphy1->regd);
2925 if (!wiphy1_regd)
2926 wiphy1_regd = cfg80211_regd;
2927
2928 wiphy2_regd = rcu_dereference(wiphy2->regd);
2929 if (!wiphy2_regd)
2930 wiphy2_regd = cfg80211_regd;
2931
2932 dfs_domain_same = wiphy1_regd->dfs_region == wiphy2_regd->dfs_region;
2933
2934 rcu_read_unlock();
2935
2936 return dfs_domain_same;
2937}
2938
2939static void reg_copy_dfs_chan_state(struct ieee80211_channel *dst_chan,
2940 struct ieee80211_channel *src_chan)
2941{
2942 if (!(dst_chan->flags & IEEE80211_CHAN_RADAR) ||
2943 !(src_chan->flags & IEEE80211_CHAN_RADAR))
2944 return;
2945
2946 if (dst_chan->flags & IEEE80211_CHAN_DISABLED ||
2947 src_chan->flags & IEEE80211_CHAN_DISABLED)
2948 return;
2949
2950 if (src_chan->center_freq == dst_chan->center_freq &&
2951 dst_chan->dfs_state == NL80211_DFS_USABLE) {
2952 dst_chan->dfs_state = src_chan->dfs_state;
2953 dst_chan->dfs_state_entered = src_chan->dfs_state_entered;
2954 }
2955}
2956
2957static void wiphy_share_dfs_chan_state(struct wiphy *dst_wiphy,
2958 struct wiphy *src_wiphy)
2959{
2960 struct ieee80211_supported_band *src_sband, *dst_sband;
2961 struct ieee80211_channel *src_chan, *dst_chan;
2962 int i, j, band;
2963
2964 if (!reg_dfs_domain_same(dst_wiphy, src_wiphy))
2965 return;
2966
2967 for (band = 0; band < NUM_NL80211_BANDS; band++) {
2968 dst_sband = dst_wiphy->bands[band];
2969 src_sband = src_wiphy->bands[band];
2970 if (!dst_sband || !src_sband)
2971 continue;
2972
2973 for (i = 0; i < dst_sband->n_channels; i++) {
2974 dst_chan = &dst_sband->channels[i];
2975 for (j = 0; j < src_sband->n_channels; j++) {
2976 src_chan = &src_sband->channels[j];
2977 reg_copy_dfs_chan_state(dst_chan, src_chan);
2978 }
2979 }
2980 }
2981}
2982
2983static void wiphy_all_share_dfs_chan_state(struct wiphy *wiphy)
2984{
2985 struct cfg80211_registered_device *rdev;
2986
2987 ASSERT_RTNL();
2988
2989 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
2990 if (wiphy == &rdev->wiphy)
2991 continue;
2992 wiphy_share_dfs_chan_state(wiphy, &rdev->wiphy);
2993 }
2994}
2995
2996/* This processes *all* regulatory hints */
2997static void reg_process_hint(struct regulatory_request *reg_request)
2998{
2999 struct wiphy *wiphy = NULL;
3000 enum reg_request_treatment treatment;
3001 enum nl80211_reg_initiator initiator = reg_request->initiator;
3002
3003 if (reg_request->wiphy_idx != WIPHY_IDX_INVALID)
3004 wiphy = wiphy_idx_to_wiphy(reg_request->wiphy_idx);
3005
3006 switch (initiator) {
3007 case NL80211_REGDOM_SET_BY_CORE:
3008 treatment = reg_process_hint_core(reg_request);
3009 break;
3010 case NL80211_REGDOM_SET_BY_USER:
3011 treatment = reg_process_hint_user(reg_request);
3012 break;
3013 case NL80211_REGDOM_SET_BY_DRIVER:
3014 if (!wiphy)
3015 goto out_free;
3016 treatment = reg_process_hint_driver(wiphy, reg_request);
3017 break;
3018 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3019 if (!wiphy)
3020 goto out_free;
3021 treatment = reg_process_hint_country_ie(wiphy, reg_request);
3022 break;
3023 default:
3024 WARN(1, "invalid initiator %d\n", initiator);
3025 goto out_free;
3026 }
3027
3028 if (treatment == REG_REQ_IGNORE)
3029 goto out_free;
3030
3031 WARN(treatment != REG_REQ_OK && treatment != REG_REQ_ALREADY_SET,
3032 "unexpected treatment value %d\n", treatment);
3033
3034 /* This is required so that the orig_* parameters are saved.
3035 * NOTE: treatment must be set for any case that reaches here!
3036 */
3037 if (treatment == REG_REQ_ALREADY_SET && wiphy &&
3038 wiphy->regulatory_flags & REGULATORY_STRICT_REG) {
3039 wiphy_update_regulatory(wiphy, initiator);
3040 wiphy_all_share_dfs_chan_state(wiphy);
3041 reg_check_channels();
3042 }
3043
3044 return;
3045
3046out_free:
3047 reg_free_request(reg_request);
3048}
3049
3050static void notify_self_managed_wiphys(struct regulatory_request *request)
3051{
3052 struct cfg80211_registered_device *rdev;
3053 struct wiphy *wiphy;
3054
3055 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3056 wiphy = &rdev->wiphy;
3057 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED &&
3058 request->initiator == NL80211_REGDOM_SET_BY_USER)
3059 reg_call_notifier(wiphy, request);
3060 }
3061}
3062
3063/*
3064 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
3065 * Regulatory hints come on a first come first serve basis and we
3066 * must process each one atomically.
3067 */
3068static void reg_process_pending_hints(void)
3069{
3070 struct regulatory_request *reg_request, *lr;
3071
3072 lr = get_last_request();
3073
3074 /* When last_request->processed becomes true this will be rescheduled */
3075 if (lr && !lr->processed) {
3076 pr_debug("Pending regulatory request, waiting for it to be processed...\n");
3077 return;
3078 }
3079
3080 spin_lock(®_requests_lock);
3081
3082 if (list_empty(®_requests_list)) {
3083 spin_unlock(®_requests_lock);
3084 return;
3085 }
3086
3087 reg_request = list_first_entry(®_requests_list,
3088 struct regulatory_request,
3089 list);
3090 list_del_init(®_request->list);
3091
3092 spin_unlock(®_requests_lock);
3093
3094 notify_self_managed_wiphys(reg_request);
3095
3096 reg_process_hint(reg_request);
3097
3098 lr = get_last_request();
3099
3100 spin_lock(®_requests_lock);
3101 if (!list_empty(®_requests_list) && lr && lr->processed)
3102 schedule_work(®_work);
3103 spin_unlock(®_requests_lock);
3104}
3105
3106/* Processes beacon hints -- this has nothing to do with country IEs */
3107static void reg_process_pending_beacon_hints(void)
3108{
3109 struct cfg80211_registered_device *rdev;
3110 struct reg_beacon *pending_beacon, *tmp;
3111
3112 /* This goes through the _pending_ beacon list */
3113 spin_lock_bh(®_pending_beacons_lock);
3114
3115 list_for_each_entry_safe(pending_beacon, tmp,
3116 ®_pending_beacons, list) {
3117 list_del_init(&pending_beacon->list);
3118
3119 /* Applies the beacon hint to current wiphys */
3120 list_for_each_entry(rdev, &cfg80211_rdev_list, list)
3121 wiphy_update_new_beacon(&rdev->wiphy, pending_beacon);
3122
3123 /* Remembers the beacon hint for new wiphys or reg changes */
3124 list_add_tail(&pending_beacon->list, ®_beacon_list);
3125 }
3126
3127 spin_unlock_bh(®_pending_beacons_lock);
3128}
3129
3130static void reg_process_self_managed_hint(struct wiphy *wiphy)
3131{
3132 struct cfg80211_registered_device *rdev = wiphy_to_rdev(wiphy);
3133 const struct ieee80211_regdomain *tmp;
3134 const struct ieee80211_regdomain *regd;
3135 enum nl80211_band band;
3136 struct regulatory_request request = {};
3137
3138 ASSERT_RTNL();
3139 lockdep_assert_wiphy(wiphy);
3140
3141 spin_lock(®_requests_lock);
3142 regd = rdev->requested_regd;
3143 rdev->requested_regd = NULL;
3144 spin_unlock(®_requests_lock);
3145
3146 if (!regd)
3147 return;
3148
3149 tmp = get_wiphy_regdom(wiphy);
3150 rcu_assign_pointer(wiphy->regd, regd);
3151 rcu_free_regdom(tmp);
3152
3153 for (band = 0; band < NUM_NL80211_BANDS; band++)
3154 handle_band_custom(wiphy, wiphy->bands[band], regd);
3155
3156 reg_process_ht_flags(wiphy);
3157
3158 request.wiphy_idx = get_wiphy_idx(wiphy);
3159 request.alpha2[0] = regd->alpha2[0];
3160 request.alpha2[1] = regd->alpha2[1];
3161 request.initiator = NL80211_REGDOM_SET_BY_DRIVER;
3162
3163 if (wiphy->flags & WIPHY_FLAG_NOTIFY_REGDOM_BY_DRIVER)
3164 reg_call_notifier(wiphy, &request);
3165
3166 nl80211_send_wiphy_reg_change_event(&request);
3167}
3168
3169static void reg_process_self_managed_hints(void)
3170{
3171 struct cfg80211_registered_device *rdev;
3172
3173 ASSERT_RTNL();
3174
3175 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3176 wiphy_lock(&rdev->wiphy);
3177 reg_process_self_managed_hint(&rdev->wiphy);
3178 wiphy_unlock(&rdev->wiphy);
3179 }
3180
3181 reg_check_channels();
3182}
3183
3184static void reg_todo(struct work_struct *work)
3185{
3186 rtnl_lock();
3187 reg_process_pending_hints();
3188 reg_process_pending_beacon_hints();
3189 reg_process_self_managed_hints();
3190 rtnl_unlock();
3191}
3192
3193static void queue_regulatory_request(struct regulatory_request *request)
3194{
3195 request->alpha2[0] = toupper(request->alpha2[0]);
3196 request->alpha2[1] = toupper(request->alpha2[1]);
3197
3198 spin_lock(®_requests_lock);
3199 list_add_tail(&request->list, ®_requests_list);
3200 spin_unlock(®_requests_lock);
3201
3202 schedule_work(®_work);
3203}
3204
3205/*
3206 * Core regulatory hint -- happens during cfg80211_init()
3207 * and when we restore regulatory settings.
3208 */
3209static int regulatory_hint_core(const char *alpha2)
3210{
3211 struct regulatory_request *request;
3212
3213 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3214 if (!request)
3215 return -ENOMEM;
3216
3217 request->alpha2[0] = alpha2[0];
3218 request->alpha2[1] = alpha2[1];
3219 request->initiator = NL80211_REGDOM_SET_BY_CORE;
3220 request->wiphy_idx = WIPHY_IDX_INVALID;
3221
3222 queue_regulatory_request(request);
3223
3224 return 0;
3225}
3226
3227/* User hints */
3228int regulatory_hint_user(const char *alpha2,
3229 enum nl80211_user_reg_hint_type user_reg_hint_type)
3230{
3231 struct regulatory_request *request;
3232
3233 if (WARN_ON(!alpha2))
3234 return -EINVAL;
3235
3236 if (!is_world_regdom(alpha2) && !is_an_alpha2(alpha2))
3237 return -EINVAL;
3238
3239 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3240 if (!request)
3241 return -ENOMEM;
3242
3243 request->wiphy_idx = WIPHY_IDX_INVALID;
3244 request->alpha2[0] = alpha2[0];
3245 request->alpha2[1] = alpha2[1];
3246 request->initiator = NL80211_REGDOM_SET_BY_USER;
3247 request->user_reg_hint_type = user_reg_hint_type;
3248
3249 /* Allow calling CRDA again */
3250 reset_crda_timeouts();
3251
3252 queue_regulatory_request(request);
3253
3254 return 0;
3255}
3256
3257int regulatory_hint_indoor(bool is_indoor, u32 portid)
3258{
3259 spin_lock(®_indoor_lock);
3260
3261 /* It is possible that more than one user space process is trying to
3262 * configure the indoor setting. To handle such cases, clear the indoor
3263 * setting in case that some process does not think that the device
3264 * is operating in an indoor environment. In addition, if a user space
3265 * process indicates that it is controlling the indoor setting, save its
3266 * portid, i.e., make it the owner.
3267 */
3268 reg_is_indoor = is_indoor;
3269 if (reg_is_indoor) {
3270 if (!reg_is_indoor_portid)
3271 reg_is_indoor_portid = portid;
3272 } else {
3273 reg_is_indoor_portid = 0;
3274 }
3275
3276 spin_unlock(®_indoor_lock);
3277
3278 if (!is_indoor)
3279 reg_check_channels();
3280
3281 return 0;
3282}
3283
3284void regulatory_netlink_notify(u32 portid)
3285{
3286 spin_lock(®_indoor_lock);
3287
3288 if (reg_is_indoor_portid != portid) {
3289 spin_unlock(®_indoor_lock);
3290 return;
3291 }
3292
3293 reg_is_indoor = false;
3294 reg_is_indoor_portid = 0;
3295
3296 spin_unlock(®_indoor_lock);
3297
3298 reg_check_channels();
3299}
3300
3301/* Driver hints */
3302int regulatory_hint(struct wiphy *wiphy, const char *alpha2)
3303{
3304 struct regulatory_request *request;
3305
3306 if (WARN_ON(!alpha2 || !wiphy))
3307 return -EINVAL;
3308
3309 wiphy->regulatory_flags &= ~REGULATORY_CUSTOM_REG;
3310
3311 request = kzalloc(sizeof(struct regulatory_request), GFP_KERNEL);
3312 if (!request)
3313 return -ENOMEM;
3314
3315 request->wiphy_idx = get_wiphy_idx(wiphy);
3316
3317 request->alpha2[0] = alpha2[0];
3318 request->alpha2[1] = alpha2[1];
3319 request->initiator = NL80211_REGDOM_SET_BY_DRIVER;
3320
3321 /* Allow calling CRDA again */
3322 reset_crda_timeouts();
3323
3324 queue_regulatory_request(request);
3325
3326 return 0;
3327}
3328EXPORT_SYMBOL(regulatory_hint);
3329
3330void regulatory_hint_country_ie(struct wiphy *wiphy, enum nl80211_band band,
3331 const u8 *country_ie, u8 country_ie_len)
3332{
3333 char alpha2[2];
3334 enum environment_cap env = ENVIRON_ANY;
3335 struct regulatory_request *request = NULL, *lr;
3336
3337 /* IE len must be evenly divisible by 2 */
3338 if (country_ie_len & 0x01)
3339 return;
3340
3341 if (country_ie_len < IEEE80211_COUNTRY_IE_MIN_LEN)
3342 return;
3343
3344 request = kzalloc(sizeof(*request), GFP_KERNEL);
3345 if (!request)
3346 return;
3347
3348 alpha2[0] = country_ie[0];
3349 alpha2[1] = country_ie[1];
3350
3351 if (country_ie[2] == 'I')
3352 env = ENVIRON_INDOOR;
3353 else if (country_ie[2] == 'O')
3354 env = ENVIRON_OUTDOOR;
3355
3356 rcu_read_lock();
3357 lr = get_last_request();
3358
3359 if (unlikely(!lr))
3360 goto out;
3361
3362 /*
3363 * We will run this only upon a successful connection on cfg80211.
3364 * We leave conflict resolution to the workqueue, where can hold
3365 * the RTNL.
3366 */
3367 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE &&
3368 lr->wiphy_idx != WIPHY_IDX_INVALID)
3369 goto out;
3370
3371 request->wiphy_idx = get_wiphy_idx(wiphy);
3372 request->alpha2[0] = alpha2[0];
3373 request->alpha2[1] = alpha2[1];
3374 request->initiator = NL80211_REGDOM_SET_BY_COUNTRY_IE;
3375 request->country_ie_env = env;
3376
3377 /* Allow calling CRDA again */
3378 reset_crda_timeouts();
3379
3380 queue_regulatory_request(request);
3381 request = NULL;
3382out:
3383 kfree(request);
3384 rcu_read_unlock();
3385}
3386
3387static void restore_alpha2(char *alpha2, bool reset_user)
3388{
3389 /* indicates there is no alpha2 to consider for restoration */
3390 alpha2[0] = '9';
3391 alpha2[1] = '7';
3392
3393 /* The user setting has precedence over the module parameter */
3394 if (is_user_regdom_saved()) {
3395 /* Unless we're asked to ignore it and reset it */
3396 if (reset_user) {
3397 pr_debug("Restoring regulatory settings including user preference\n");
3398 user_alpha2[0] = '9';
3399 user_alpha2[1] = '7';
3400
3401 /*
3402 * If we're ignoring user settings, we still need to
3403 * check the module parameter to ensure we put things
3404 * back as they were for a full restore.
3405 */
3406 if (!is_world_regdom(ieee80211_regdom)) {
3407 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3408 ieee80211_regdom[0], ieee80211_regdom[1]);
3409 alpha2[0] = ieee80211_regdom[0];
3410 alpha2[1] = ieee80211_regdom[1];
3411 }
3412 } else {
3413 pr_debug("Restoring regulatory settings while preserving user preference for: %c%c\n",
3414 user_alpha2[0], user_alpha2[1]);
3415 alpha2[0] = user_alpha2[0];
3416 alpha2[1] = user_alpha2[1];
3417 }
3418 } else if (!is_world_regdom(ieee80211_regdom)) {
3419 pr_debug("Keeping preference on module parameter ieee80211_regdom: %c%c\n",
3420 ieee80211_regdom[0], ieee80211_regdom[1]);
3421 alpha2[0] = ieee80211_regdom[0];
3422 alpha2[1] = ieee80211_regdom[1];
3423 } else
3424 pr_debug("Restoring regulatory settings\n");
3425}
3426
3427static void restore_custom_reg_settings(struct wiphy *wiphy)
3428{
3429 struct ieee80211_supported_band *sband;
3430 enum nl80211_band band;
3431 struct ieee80211_channel *chan;
3432 int i;
3433
3434 for (band = 0; band < NUM_NL80211_BANDS; band++) {
3435 sband = wiphy->bands[band];
3436 if (!sband)
3437 continue;
3438 for (i = 0; i < sband->n_channels; i++) {
3439 chan = &sband->channels[i];
3440 chan->flags = chan->orig_flags;
3441 chan->max_antenna_gain = chan->orig_mag;
3442 chan->max_power = chan->orig_mpwr;
3443 chan->beacon_found = false;
3444 }
3445 }
3446}
3447
3448/*
3449 * Restoring regulatory settings involves ignoring any
3450 * possibly stale country IE information and user regulatory
3451 * settings if so desired, this includes any beacon hints
3452 * learned as we could have traveled outside to another country
3453 * after disconnection. To restore regulatory settings we do
3454 * exactly what we did at bootup:
3455 *
3456 * - send a core regulatory hint
3457 * - send a user regulatory hint if applicable
3458 *
3459 * Device drivers that send a regulatory hint for a specific country
3460 * keep their own regulatory domain on wiphy->regd so that does
3461 * not need to be remembered.
3462 */
3463static void restore_regulatory_settings(bool reset_user, bool cached)
3464{
3465 char alpha2[2];
3466 char world_alpha2[2];
3467 struct reg_beacon *reg_beacon, *btmp;
3468 LIST_HEAD(tmp_reg_req_list);
3469 struct cfg80211_registered_device *rdev;
3470
3471 ASSERT_RTNL();
3472
3473 /*
3474 * Clear the indoor setting in case that it is not controlled by user
3475 * space, as otherwise there is no guarantee that the device is still
3476 * operating in an indoor environment.
3477 */
3478 spin_lock(®_indoor_lock);
3479 if (reg_is_indoor && !reg_is_indoor_portid) {
3480 reg_is_indoor = false;
3481 reg_check_channels();
3482 }
3483 spin_unlock(®_indoor_lock);
3484
3485 reset_regdomains(true, &world_regdom);
3486 restore_alpha2(alpha2, reset_user);
3487
3488 /*
3489 * If there's any pending requests we simply
3490 * stash them to a temporary pending queue and
3491 * add then after we've restored regulatory
3492 * settings.
3493 */
3494 spin_lock(®_requests_lock);
3495 list_splice_tail_init(®_requests_list, &tmp_reg_req_list);
3496 spin_unlock(®_requests_lock);
3497
3498 /* Clear beacon hints */
3499 spin_lock_bh(®_pending_beacons_lock);
3500 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) {
3501 list_del(®_beacon->list);
3502 kfree(reg_beacon);
3503 }
3504 spin_unlock_bh(®_pending_beacons_lock);
3505
3506 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) {
3507 list_del(®_beacon->list);
3508 kfree(reg_beacon);
3509 }
3510
3511 /* First restore to the basic regulatory settings */
3512 world_alpha2[0] = cfg80211_world_regdom->alpha2[0];
3513 world_alpha2[1] = cfg80211_world_regdom->alpha2[1];
3514
3515 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3516 if (rdev->wiphy.regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED)
3517 continue;
3518 if (rdev->wiphy.regulatory_flags & REGULATORY_CUSTOM_REG)
3519 restore_custom_reg_settings(&rdev->wiphy);
3520 }
3521
3522 if (cached && (!is_an_alpha2(alpha2) ||
3523 !IS_ERR_OR_NULL(cfg80211_user_regdom))) {
3524 reset_regdomains(false, cfg80211_world_regdom);
3525 update_all_wiphy_regulatory(NL80211_REGDOM_SET_BY_CORE);
3526 print_regdomain(get_cfg80211_regdom());
3527 nl80211_send_reg_change_event(&core_request_world);
3528 reg_set_request_processed();
3529
3530 if (is_an_alpha2(alpha2) &&
3531 !regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER)) {
3532 struct regulatory_request *ureq;
3533
3534 spin_lock(®_requests_lock);
3535 ureq = list_last_entry(®_requests_list,
3536 struct regulatory_request,
3537 list);
3538 list_del(&ureq->list);
3539 spin_unlock(®_requests_lock);
3540
3541 notify_self_managed_wiphys(ureq);
3542 reg_update_last_request(ureq);
3543 set_regdom(reg_copy_regd(cfg80211_user_regdom),
3544 REGD_SOURCE_CACHED);
3545 }
3546 } else {
3547 regulatory_hint_core(world_alpha2);
3548
3549 /*
3550 * This restores the ieee80211_regdom module parameter
3551 * preference or the last user requested regulatory
3552 * settings, user regulatory settings takes precedence.
3553 */
3554 if (is_an_alpha2(alpha2))
3555 regulatory_hint_user(alpha2, NL80211_USER_REG_HINT_USER);
3556 }
3557
3558 spin_lock(®_requests_lock);
3559 list_splice_tail_init(&tmp_reg_req_list, ®_requests_list);
3560 spin_unlock(®_requests_lock);
3561
3562 pr_debug("Kicking the queue\n");
3563
3564 schedule_work(®_work);
3565}
3566
3567static bool is_wiphy_all_set_reg_flag(enum ieee80211_regulatory_flags flag)
3568{
3569 struct cfg80211_registered_device *rdev;
3570 struct wireless_dev *wdev;
3571
3572 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
3573 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
3574 wdev_lock(wdev);
3575 if (!(wdev->wiphy->regulatory_flags & flag)) {
3576 wdev_unlock(wdev);
3577 return false;
3578 }
3579 wdev_unlock(wdev);
3580 }
3581 }
3582
3583 return true;
3584}
3585
3586void regulatory_hint_disconnect(void)
3587{
3588 /* Restore of regulatory settings is not required when wiphy(s)
3589 * ignore IE from connected access point but clearance of beacon hints
3590 * is required when wiphy(s) supports beacon hints.
3591 */
3592 if (is_wiphy_all_set_reg_flag(REGULATORY_COUNTRY_IE_IGNORE)) {
3593 struct reg_beacon *reg_beacon, *btmp;
3594
3595 if (is_wiphy_all_set_reg_flag(REGULATORY_DISABLE_BEACON_HINTS))
3596 return;
3597
3598 spin_lock_bh(®_pending_beacons_lock);
3599 list_for_each_entry_safe(reg_beacon, btmp,
3600 ®_pending_beacons, list) {
3601 list_del(®_beacon->list);
3602 kfree(reg_beacon);
3603 }
3604 spin_unlock_bh(®_pending_beacons_lock);
3605
3606 list_for_each_entry_safe(reg_beacon, btmp,
3607 ®_beacon_list, list) {
3608 list_del(®_beacon->list);
3609 kfree(reg_beacon);
3610 }
3611
3612 return;
3613 }
3614
3615 pr_debug("All devices are disconnected, going to restore regulatory settings\n");
3616 restore_regulatory_settings(false, true);
3617}
3618
3619static bool freq_is_chan_12_13_14(u32 freq)
3620{
3621 if (freq == ieee80211_channel_to_frequency(12, NL80211_BAND_2GHZ) ||
3622 freq == ieee80211_channel_to_frequency(13, NL80211_BAND_2GHZ) ||
3623 freq == ieee80211_channel_to_frequency(14, NL80211_BAND_2GHZ))
3624 return true;
3625 return false;
3626}
3627
3628static bool pending_reg_beacon(struct ieee80211_channel *beacon_chan)
3629{
3630 struct reg_beacon *pending_beacon;
3631
3632 list_for_each_entry(pending_beacon, ®_pending_beacons, list)
3633 if (ieee80211_channel_equal(beacon_chan,
3634 &pending_beacon->chan))
3635 return true;
3636 return false;
3637}
3638
3639int regulatory_hint_found_beacon(struct wiphy *wiphy,
3640 struct ieee80211_channel *beacon_chan,
3641 gfp_t gfp)
3642{
3643 struct reg_beacon *reg_beacon;
3644 bool processing;
3645
3646 if (beacon_chan->beacon_found ||
3647 beacon_chan->flags & IEEE80211_CHAN_RADAR ||
3648 (beacon_chan->band == NL80211_BAND_2GHZ &&
3649 !freq_is_chan_12_13_14(beacon_chan->center_freq)))
3650 return 0;
3651
3652 spin_lock_bh(®_pending_beacons_lock);
3653 processing = pending_reg_beacon(beacon_chan);
3654 spin_unlock_bh(®_pending_beacons_lock);
3655
3656 if (processing)
3657 return 0;
3658
3659 reg_beacon = kzalloc(sizeof(struct reg_beacon), gfp);
3660 if (!reg_beacon)
3661 return -ENOMEM;
3662
3663 pr_debug("Found new beacon on frequency: %d.%03d MHz (Ch %d) on %s\n",
3664 beacon_chan->center_freq, beacon_chan->freq_offset,
3665 ieee80211_freq_khz_to_channel(
3666 ieee80211_channel_to_khz(beacon_chan)),
3667 wiphy_name(wiphy));
3668
3669 memcpy(®_beacon->chan, beacon_chan,
3670 sizeof(struct ieee80211_channel));
3671
3672 /*
3673 * Since we can be called from BH or and non-BH context
3674 * we must use spin_lock_bh()
3675 */
3676 spin_lock_bh(®_pending_beacons_lock);
3677 list_add_tail(®_beacon->list, ®_pending_beacons);
3678 spin_unlock_bh(®_pending_beacons_lock);
3679
3680 schedule_work(®_work);
3681
3682 return 0;
3683}
3684
3685static void print_rd_rules(const struct ieee80211_regdomain *rd)
3686{
3687 unsigned int i;
3688 const struct ieee80211_reg_rule *reg_rule = NULL;
3689 const struct ieee80211_freq_range *freq_range = NULL;
3690 const struct ieee80211_power_rule *power_rule = NULL;
3691 char bw[32], cac_time[32];
3692
3693 pr_debug(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp), (dfs_cac_time)\n");
3694
3695 for (i = 0; i < rd->n_reg_rules; i++) {
3696 reg_rule = &rd->reg_rules[i];
3697 freq_range = ®_rule->freq_range;
3698 power_rule = ®_rule->power_rule;
3699
3700 if (reg_rule->flags & NL80211_RRF_AUTO_BW)
3701 snprintf(bw, sizeof(bw), "%d KHz, %u KHz AUTO",
3702 freq_range->max_bandwidth_khz,
3703 reg_get_max_bandwidth(rd, reg_rule));
3704 else
3705 snprintf(bw, sizeof(bw), "%d KHz",
3706 freq_range->max_bandwidth_khz);
3707
3708 if (reg_rule->flags & NL80211_RRF_DFS)
3709 scnprintf(cac_time, sizeof(cac_time), "%u s",
3710 reg_rule->dfs_cac_ms/1000);
3711 else
3712 scnprintf(cac_time, sizeof(cac_time), "N/A");
3713
3714
3715 /*
3716 * There may not be documentation for max antenna gain
3717 * in certain regions
3718 */
3719 if (power_rule->max_antenna_gain)
3720 pr_debug(" (%d KHz - %d KHz @ %s), (%d mBi, %d mBm), (%s)\n",
3721 freq_range->start_freq_khz,
3722 freq_range->end_freq_khz,
3723 bw,
3724 power_rule->max_antenna_gain,
3725 power_rule->max_eirp,
3726 cac_time);
3727 else
3728 pr_debug(" (%d KHz - %d KHz @ %s), (N/A, %d mBm), (%s)\n",
3729 freq_range->start_freq_khz,
3730 freq_range->end_freq_khz,
3731 bw,
3732 power_rule->max_eirp,
3733 cac_time);
3734 }
3735}
3736
3737bool reg_supported_dfs_region(enum nl80211_dfs_regions dfs_region)
3738{
3739 switch (dfs_region) {
3740 case NL80211_DFS_UNSET:
3741 case NL80211_DFS_FCC:
3742 case NL80211_DFS_ETSI:
3743 case NL80211_DFS_JP:
3744 return true;
3745 default:
3746 pr_debug("Ignoring unknown DFS master region: %d\n", dfs_region);
3747 return false;
3748 }
3749}
3750
3751static void print_regdomain(const struct ieee80211_regdomain *rd)
3752{
3753 struct regulatory_request *lr = get_last_request();
3754
3755 if (is_intersected_alpha2(rd->alpha2)) {
3756 if (lr->initiator == NL80211_REGDOM_SET_BY_COUNTRY_IE) {
3757 struct cfg80211_registered_device *rdev;
3758 rdev = cfg80211_rdev_by_wiphy_idx(lr->wiphy_idx);
3759 if (rdev) {
3760 pr_debug("Current regulatory domain updated by AP to: %c%c\n",
3761 rdev->country_ie_alpha2[0],
3762 rdev->country_ie_alpha2[1]);
3763 } else
3764 pr_debug("Current regulatory domain intersected:\n");
3765 } else
3766 pr_debug("Current regulatory domain intersected:\n");
3767 } else if (is_world_regdom(rd->alpha2)) {
3768 pr_debug("World regulatory domain updated:\n");
3769 } else {
3770 if (is_unknown_alpha2(rd->alpha2))
3771 pr_debug("Regulatory domain changed to driver built-in settings (unknown country)\n");
3772 else {
3773 if (reg_request_cell_base(lr))
3774 pr_debug("Regulatory domain changed to country: %c%c by Cell Station\n",
3775 rd->alpha2[0], rd->alpha2[1]);
3776 else
3777 pr_debug("Regulatory domain changed to country: %c%c\n",
3778 rd->alpha2[0], rd->alpha2[1]);
3779 }
3780 }
3781
3782 pr_debug(" DFS Master region: %s", reg_dfs_region_str(rd->dfs_region));
3783 print_rd_rules(rd);
3784}
3785
3786static void print_regdomain_info(const struct ieee80211_regdomain *rd)
3787{
3788 pr_debug("Regulatory domain: %c%c\n", rd->alpha2[0], rd->alpha2[1]);
3789 print_rd_rules(rd);
3790}
3791
3792static int reg_set_rd_core(const struct ieee80211_regdomain *rd)
3793{
3794 if (!is_world_regdom(rd->alpha2))
3795 return -EINVAL;
3796 update_world_regdomain(rd);
3797 return 0;
3798}
3799
3800static int reg_set_rd_user(const struct ieee80211_regdomain *rd,
3801 struct regulatory_request *user_request)
3802{
3803 const struct ieee80211_regdomain *intersected_rd = NULL;
3804
3805 if (!regdom_changes(rd->alpha2))
3806 return -EALREADY;
3807
3808 if (!is_valid_rd(rd)) {
3809 pr_err("Invalid regulatory domain detected: %c%c\n",
3810 rd->alpha2[0], rd->alpha2[1]);
3811 print_regdomain_info(rd);
3812 return -EINVAL;
3813 }
3814
3815 if (!user_request->intersect) {
3816 reset_regdomains(false, rd);
3817 return 0;
3818 }
3819
3820 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3821 if (!intersected_rd)
3822 return -EINVAL;
3823
3824 kfree(rd);
3825 rd = NULL;
3826 reset_regdomains(false, intersected_rd);
3827
3828 return 0;
3829}
3830
3831static int reg_set_rd_driver(const struct ieee80211_regdomain *rd,
3832 struct regulatory_request *driver_request)
3833{
3834 const struct ieee80211_regdomain *regd;
3835 const struct ieee80211_regdomain *intersected_rd = NULL;
3836 const struct ieee80211_regdomain *tmp;
3837 struct wiphy *request_wiphy;
3838
3839 if (is_world_regdom(rd->alpha2))
3840 return -EINVAL;
3841
3842 if (!regdom_changes(rd->alpha2))
3843 return -EALREADY;
3844
3845 if (!is_valid_rd(rd)) {
3846 pr_err("Invalid regulatory domain detected: %c%c\n",
3847 rd->alpha2[0], rd->alpha2[1]);
3848 print_regdomain_info(rd);
3849 return -EINVAL;
3850 }
3851
3852 request_wiphy = wiphy_idx_to_wiphy(driver_request->wiphy_idx);
3853 if (!request_wiphy)
3854 return -ENODEV;
3855
3856 if (!driver_request->intersect) {
3857 ASSERT_RTNL();
3858 wiphy_lock(request_wiphy);
3859 if (request_wiphy->regd) {
3860 wiphy_unlock(request_wiphy);
3861 return -EALREADY;
3862 }
3863
3864 regd = reg_copy_regd(rd);
3865 if (IS_ERR(regd)) {
3866 wiphy_unlock(request_wiphy);
3867 return PTR_ERR(regd);
3868 }
3869
3870 rcu_assign_pointer(request_wiphy->regd, regd);
3871 wiphy_unlock(request_wiphy);
3872 reset_regdomains(false, rd);
3873 return 0;
3874 }
3875
3876 intersected_rd = regdom_intersect(rd, get_cfg80211_regdom());
3877 if (!intersected_rd)
3878 return -EINVAL;
3879
3880 /*
3881 * We can trash what CRDA provided now.
3882 * However if a driver requested this specific regulatory
3883 * domain we keep it for its private use
3884 */
3885 tmp = get_wiphy_regdom(request_wiphy);
3886 rcu_assign_pointer(request_wiphy->regd, rd);
3887 rcu_free_regdom(tmp);
3888
3889 rd = NULL;
3890
3891 reset_regdomains(false, intersected_rd);
3892
3893 return 0;
3894}
3895
3896static int reg_set_rd_country_ie(const struct ieee80211_regdomain *rd,
3897 struct regulatory_request *country_ie_request)
3898{
3899 struct wiphy *request_wiphy;
3900
3901 if (!is_alpha2_set(rd->alpha2) && !is_an_alpha2(rd->alpha2) &&
3902 !is_unknown_alpha2(rd->alpha2))
3903 return -EINVAL;
3904
3905 /*
3906 * Lets only bother proceeding on the same alpha2 if the current
3907 * rd is non static (it means CRDA was present and was used last)
3908 * and the pending request came in from a country IE
3909 */
3910
3911 if (!is_valid_rd(rd)) {
3912 pr_err("Invalid regulatory domain detected: %c%c\n",
3913 rd->alpha2[0], rd->alpha2[1]);
3914 print_regdomain_info(rd);
3915 return -EINVAL;
3916 }
3917
3918 request_wiphy = wiphy_idx_to_wiphy(country_ie_request->wiphy_idx);
3919 if (!request_wiphy)
3920 return -ENODEV;
3921
3922 if (country_ie_request->intersect)
3923 return -EINVAL;
3924
3925 reset_regdomains(false, rd);
3926 return 0;
3927}
3928
3929/*
3930 * Use this call to set the current regulatory domain. Conflicts with
3931 * multiple drivers can be ironed out later. Caller must've already
3932 * kmalloc'd the rd structure.
3933 */
3934int set_regdom(const struct ieee80211_regdomain *rd,
3935 enum ieee80211_regd_source regd_src)
3936{
3937 struct regulatory_request *lr;
3938 bool user_reset = false;
3939 int r;
3940
3941 if (IS_ERR_OR_NULL(rd))
3942 return -ENODATA;
3943
3944 if (!reg_is_valid_request(rd->alpha2)) {
3945 kfree(rd);
3946 return -EINVAL;
3947 }
3948
3949 if (regd_src == REGD_SOURCE_CRDA)
3950 reset_crda_timeouts();
3951
3952 lr = get_last_request();
3953
3954 /* Note that this doesn't update the wiphys, this is done below */
3955 switch (lr->initiator) {
3956 case NL80211_REGDOM_SET_BY_CORE:
3957 r = reg_set_rd_core(rd);
3958 break;
3959 case NL80211_REGDOM_SET_BY_USER:
3960 cfg80211_save_user_regdom(rd);
3961 r = reg_set_rd_user(rd, lr);
3962 user_reset = true;
3963 break;
3964 case NL80211_REGDOM_SET_BY_DRIVER:
3965 r = reg_set_rd_driver(rd, lr);
3966 break;
3967 case NL80211_REGDOM_SET_BY_COUNTRY_IE:
3968 r = reg_set_rd_country_ie(rd, lr);
3969 break;
3970 default:
3971 WARN(1, "invalid initiator %d\n", lr->initiator);
3972 kfree(rd);
3973 return -EINVAL;
3974 }
3975
3976 if (r) {
3977 switch (r) {
3978 case -EALREADY:
3979 reg_set_request_processed();
3980 break;
3981 default:
3982 /* Back to world regulatory in case of errors */
3983 restore_regulatory_settings(user_reset, false);
3984 }
3985
3986 kfree(rd);
3987 return r;
3988 }
3989
3990 /* This would make this whole thing pointless */
3991 if (WARN_ON(!lr->intersect && rd != get_cfg80211_regdom()))
3992 return -EINVAL;
3993
3994 /* update all wiphys now with the new established regulatory domain */
3995 update_all_wiphy_regulatory(lr->initiator);
3996
3997 print_regdomain(get_cfg80211_regdom());
3998
3999 nl80211_send_reg_change_event(lr);
4000
4001 reg_set_request_processed();
4002
4003 return 0;
4004}
4005
4006static int __regulatory_set_wiphy_regd(struct wiphy *wiphy,
4007 struct ieee80211_regdomain *rd)
4008{
4009 const struct ieee80211_regdomain *regd;
4010 const struct ieee80211_regdomain *prev_regd;
4011 struct cfg80211_registered_device *rdev;
4012
4013 if (WARN_ON(!wiphy || !rd))
4014 return -EINVAL;
4015
4016 if (WARN(!(wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED),
4017 "wiphy should have REGULATORY_WIPHY_SELF_MANAGED\n"))
4018 return -EPERM;
4019
4020 if (WARN(!is_valid_rd(rd),
4021 "Invalid regulatory domain detected: %c%c\n",
4022 rd->alpha2[0], rd->alpha2[1])) {
4023 print_regdomain_info(rd);
4024 return -EINVAL;
4025 }
4026
4027 regd = reg_copy_regd(rd);
4028 if (IS_ERR(regd))
4029 return PTR_ERR(regd);
4030
4031 rdev = wiphy_to_rdev(wiphy);
4032
4033 spin_lock(®_requests_lock);
4034 prev_regd = rdev->requested_regd;
4035 rdev->requested_regd = regd;
4036 spin_unlock(®_requests_lock);
4037
4038 kfree(prev_regd);
4039 return 0;
4040}
4041
4042int regulatory_set_wiphy_regd(struct wiphy *wiphy,
4043 struct ieee80211_regdomain *rd)
4044{
4045 int ret = __regulatory_set_wiphy_regd(wiphy, rd);
4046
4047 if (ret)
4048 return ret;
4049
4050 schedule_work(®_work);
4051 return 0;
4052}
4053EXPORT_SYMBOL(regulatory_set_wiphy_regd);
4054
4055int regulatory_set_wiphy_regd_sync(struct wiphy *wiphy,
4056 struct ieee80211_regdomain *rd)
4057{
4058 int ret;
4059
4060 ASSERT_RTNL();
4061
4062 ret = __regulatory_set_wiphy_regd(wiphy, rd);
4063 if (ret)
4064 return ret;
4065
4066 /* process the request immediately */
4067 reg_process_self_managed_hint(wiphy);
4068 reg_check_channels();
4069 return 0;
4070}
4071EXPORT_SYMBOL(regulatory_set_wiphy_regd_sync);
4072
4073void wiphy_regulatory_register(struct wiphy *wiphy)
4074{
4075 struct regulatory_request *lr = get_last_request();
4076
4077 /* self-managed devices ignore beacon hints and country IE */
4078 if (wiphy->regulatory_flags & REGULATORY_WIPHY_SELF_MANAGED) {
4079 wiphy->regulatory_flags |= REGULATORY_DISABLE_BEACON_HINTS |
4080 REGULATORY_COUNTRY_IE_IGNORE;
4081
4082 /*
4083 * The last request may have been received before this
4084 * registration call. Call the driver notifier if
4085 * initiator is USER.
4086 */
4087 if (lr->initiator == NL80211_REGDOM_SET_BY_USER)
4088 reg_call_notifier(wiphy, lr);
4089 }
4090
4091 if (!reg_dev_ignore_cell_hint(wiphy))
4092 reg_num_devs_support_basehint++;
4093
4094 wiphy_update_regulatory(wiphy, lr->initiator);
4095 wiphy_all_share_dfs_chan_state(wiphy);
4096 reg_process_self_managed_hints();
4097}
4098
4099void wiphy_regulatory_deregister(struct wiphy *wiphy)
4100{
4101 struct wiphy *request_wiphy = NULL;
4102 struct regulatory_request *lr;
4103
4104 lr = get_last_request();
4105
4106 if (!reg_dev_ignore_cell_hint(wiphy))
4107 reg_num_devs_support_basehint--;
4108
4109 rcu_free_regdom(get_wiphy_regdom(wiphy));
4110 RCU_INIT_POINTER(wiphy->regd, NULL);
4111
4112 if (lr)
4113 request_wiphy = wiphy_idx_to_wiphy(lr->wiphy_idx);
4114
4115 if (!request_wiphy || request_wiphy != wiphy)
4116 return;
4117
4118 lr->wiphy_idx = WIPHY_IDX_INVALID;
4119 lr->country_ie_env = ENVIRON_ANY;
4120}
4121
4122/*
4123 * See FCC notices for UNII band definitions
4124 * 5GHz: https://www.fcc.gov/document/5-ghz-unlicensed-spectrum-unii
4125 * 6GHz: https://www.fcc.gov/document/fcc-proposes-more-spectrum-unlicensed-use-0
4126 */
4127int cfg80211_get_unii(int freq)
4128{
4129 /* UNII-1 */
4130 if (freq >= 5150 && freq <= 5250)
4131 return 0;
4132
4133 /* UNII-2A */
4134 if (freq > 5250 && freq <= 5350)
4135 return 1;
4136
4137 /* UNII-2B */
4138 if (freq > 5350 && freq <= 5470)
4139 return 2;
4140
4141 /* UNII-2C */
4142 if (freq > 5470 && freq <= 5725)
4143 return 3;
4144
4145 /* UNII-3 */
4146 if (freq > 5725 && freq <= 5825)
4147 return 4;
4148
4149 /* UNII-5 */
4150 if (freq > 5925 && freq <= 6425)
4151 return 5;
4152
4153 /* UNII-6 */
4154 if (freq > 6425 && freq <= 6525)
4155 return 6;
4156
4157 /* UNII-7 */
4158 if (freq > 6525 && freq <= 6875)
4159 return 7;
4160
4161 /* UNII-8 */
4162 if (freq > 6875 && freq <= 7125)
4163 return 8;
4164
4165 return -EINVAL;
4166}
4167
4168bool regulatory_indoor_allowed(void)
4169{
4170 return reg_is_indoor;
4171}
4172
4173bool regulatory_pre_cac_allowed(struct wiphy *wiphy)
4174{
4175 const struct ieee80211_regdomain *regd = NULL;
4176 const struct ieee80211_regdomain *wiphy_regd = NULL;
4177 bool pre_cac_allowed = false;
4178
4179 rcu_read_lock();
4180
4181 regd = rcu_dereference(cfg80211_regdomain);
4182 wiphy_regd = rcu_dereference(wiphy->regd);
4183 if (!wiphy_regd) {
4184 if (regd->dfs_region == NL80211_DFS_ETSI)
4185 pre_cac_allowed = true;
4186
4187 rcu_read_unlock();
4188
4189 return pre_cac_allowed;
4190 }
4191
4192 if (regd->dfs_region == wiphy_regd->dfs_region &&
4193 wiphy_regd->dfs_region == NL80211_DFS_ETSI)
4194 pre_cac_allowed = true;
4195
4196 rcu_read_unlock();
4197
4198 return pre_cac_allowed;
4199}
4200EXPORT_SYMBOL(regulatory_pre_cac_allowed);
4201
4202static void cfg80211_check_and_end_cac(struct cfg80211_registered_device *rdev)
4203{
4204 struct wireless_dev *wdev;
4205 /* If we finished CAC or received radar, we should end any
4206 * CAC running on the same channels.
4207 * the check !cfg80211_chandef_dfs_usable contain 2 options:
4208 * either all channels are available - those the CAC_FINISHED
4209 * event has effected another wdev state, or there is a channel
4210 * in unavailable state in wdev chandef - those the RADAR_DETECTED
4211 * event has effected another wdev state.
4212 * In both cases we should end the CAC on the wdev.
4213 */
4214 list_for_each_entry(wdev, &rdev->wiphy.wdev_list, list) {
4215 struct cfg80211_chan_def *chandef;
4216
4217 if (!wdev->cac_started)
4218 continue;
4219
4220 /* FIXME: radar detection is tied to link 0 for now */
4221 chandef = wdev_chandef(wdev, 0);
4222 if (!chandef)
4223 continue;
4224
4225 if (!cfg80211_chandef_dfs_usable(&rdev->wiphy, chandef))
4226 rdev_end_cac(rdev, wdev->netdev);
4227 }
4228}
4229
4230void regulatory_propagate_dfs_state(struct wiphy *wiphy,
4231 struct cfg80211_chan_def *chandef,
4232 enum nl80211_dfs_state dfs_state,
4233 enum nl80211_radar_event event)
4234{
4235 struct cfg80211_registered_device *rdev;
4236
4237 ASSERT_RTNL();
4238
4239 if (WARN_ON(!cfg80211_chandef_valid(chandef)))
4240 return;
4241
4242 list_for_each_entry(rdev, &cfg80211_rdev_list, list) {
4243 if (wiphy == &rdev->wiphy)
4244 continue;
4245
4246 if (!reg_dfs_domain_same(wiphy, &rdev->wiphy))
4247 continue;
4248
4249 if (!ieee80211_get_channel(&rdev->wiphy,
4250 chandef->chan->center_freq))
4251 continue;
4252
4253 cfg80211_set_dfs_state(&rdev->wiphy, chandef, dfs_state);
4254
4255 if (event == NL80211_RADAR_DETECTED ||
4256 event == NL80211_RADAR_CAC_FINISHED) {
4257 cfg80211_sched_dfs_chan_update(rdev);
4258 cfg80211_check_and_end_cac(rdev);
4259 }
4260
4261 nl80211_radar_notify(rdev, chandef, event, NULL, GFP_KERNEL);
4262 }
4263}
4264
4265static int __init regulatory_init_db(void)
4266{
4267 int err;
4268
4269 /*
4270 * It's possible that - due to other bugs/issues - cfg80211
4271 * never called regulatory_init() below, or that it failed;
4272 * in that case, don't try to do any further work here as
4273 * it's doomed to lead to crashes.
4274 */
4275 if (IS_ERR_OR_NULL(reg_pdev))
4276 return -EINVAL;
4277
4278 err = load_builtin_regdb_keys();
4279 if (err) {
4280 platform_device_unregister(reg_pdev);
4281 return err;
4282 }
4283
4284 /* We always try to get an update for the static regdomain */
4285 err = regulatory_hint_core(cfg80211_world_regdom->alpha2);
4286 if (err) {
4287 if (err == -ENOMEM) {
4288 platform_device_unregister(reg_pdev);
4289 return err;
4290 }
4291 /*
4292 * N.B. kobject_uevent_env() can fail mainly for when we're out
4293 * memory which is handled and propagated appropriately above
4294 * but it can also fail during a netlink_broadcast() or during
4295 * early boot for call_usermodehelper(). For now treat these
4296 * errors as non-fatal.
4297 */
4298 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
4299 }
4300
4301 /*
4302 * Finally, if the user set the module parameter treat it
4303 * as a user hint.
4304 */
4305 if (!is_world_regdom(ieee80211_regdom))
4306 regulatory_hint_user(ieee80211_regdom,
4307 NL80211_USER_REG_HINT_USER);
4308
4309 return 0;
4310}
4311#ifndef MODULE
4312late_initcall(regulatory_init_db);
4313#endif
4314
4315int __init regulatory_init(void)
4316{
4317 reg_pdev = platform_device_register_simple("regulatory", 0, NULL, 0);
4318 if (IS_ERR(reg_pdev))
4319 return PTR_ERR(reg_pdev);
4320
4321 rcu_assign_pointer(cfg80211_regdomain, cfg80211_world_regdom);
4322
4323 user_alpha2[0] = '9';
4324 user_alpha2[1] = '7';
4325
4326#ifdef MODULE
4327 return regulatory_init_db();
4328#else
4329 return 0;
4330#endif
4331}
4332
4333void regulatory_exit(void)
4334{
4335 struct regulatory_request *reg_request, *tmp;
4336 struct reg_beacon *reg_beacon, *btmp;
4337
4338 cancel_work_sync(®_work);
4339 cancel_crda_timeout_sync();
4340 cancel_delayed_work_sync(®_check_chans);
4341
4342 /* Lock to suppress warnings */
4343 rtnl_lock();
4344 reset_regdomains(true, NULL);
4345 rtnl_unlock();
4346
4347 dev_set_uevent_suppress(®_pdev->dev, true);
4348
4349 platform_device_unregister(reg_pdev);
4350
4351 list_for_each_entry_safe(reg_beacon, btmp, ®_pending_beacons, list) {
4352 list_del(®_beacon->list);
4353 kfree(reg_beacon);
4354 }
4355
4356 list_for_each_entry_safe(reg_beacon, btmp, ®_beacon_list, list) {
4357 list_del(®_beacon->list);
4358 kfree(reg_beacon);
4359 }
4360
4361 list_for_each_entry_safe(reg_request, tmp, ®_requests_list, list) {
4362 list_del(®_request->list);
4363 kfree(reg_request);
4364 }
4365
4366 if (!IS_ERR_OR_NULL(regdb))
4367 kfree(regdb);
4368 if (!IS_ERR_OR_NULL(cfg80211_user_regdom))
4369 kfree(cfg80211_user_regdom);
4370
4371 free_regdb_keyring();
4372}