Linux kernel mirror (for testing)
git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
kernel
os
linux
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Core registration and callback routines for MTD
4 * drivers and users.
5 *
6 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
7 * Copyright © 2006 Red Hat UK Limited
8 */
9
10#include <linux/module.h>
11#include <linux/kernel.h>
12#include <linux/ptrace.h>
13#include <linux/seq_file.h>
14#include <linux/string.h>
15#include <linux/timer.h>
16#include <linux/major.h>
17#include <linux/fs.h>
18#include <linux/err.h>
19#include <linux/ioctl.h>
20#include <linux/init.h>
21#include <linux/of.h>
22#include <linux/proc_fs.h>
23#include <linux/idr.h>
24#include <linux/backing-dev.h>
25#include <linux/gfp.h>
26#include <linux/slab.h>
27#include <linux/reboot.h>
28#include <linux/leds.h>
29#include <linux/debugfs.h>
30#include <linux/nvmem-provider.h>
31#include <linux/root_dev.h>
32
33#include <linux/mtd/mtd.h>
34#include <linux/mtd/partitions.h>
35
36#include "mtdcore.h"
37
38struct backing_dev_info *mtd_bdi;
39
40#ifdef CONFIG_PM_SLEEP
41
42static int mtd_cls_suspend(struct device *dev)
43{
44 struct mtd_info *mtd = dev_get_drvdata(dev);
45
46 return mtd ? mtd_suspend(mtd) : 0;
47}
48
49static int mtd_cls_resume(struct device *dev)
50{
51 struct mtd_info *mtd = dev_get_drvdata(dev);
52
53 if (mtd)
54 mtd_resume(mtd);
55 return 0;
56}
57
58static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
59#define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
60#else
61#define MTD_CLS_PM_OPS NULL
62#endif
63
64static struct class mtd_class = {
65 .name = "mtd",
66 .pm = MTD_CLS_PM_OPS,
67};
68
69static DEFINE_IDR(mtd_idr);
70
71/* These are exported solely for the purpose of mtd_blkdevs.c. You
72 should not use them for _anything_ else */
73DEFINE_MUTEX(mtd_table_mutex);
74EXPORT_SYMBOL_GPL(mtd_table_mutex);
75
76struct mtd_info *__mtd_next_device(int i)
77{
78 return idr_get_next(&mtd_idr, &i);
79}
80EXPORT_SYMBOL_GPL(__mtd_next_device);
81
82static LIST_HEAD(mtd_notifiers);
83
84
85#define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
86
87/* REVISIT once MTD uses the driver model better, whoever allocates
88 * the mtd_info will probably want to use the release() hook...
89 */
90static void mtd_release(struct device *dev)
91{
92 struct mtd_info *mtd = dev_get_drvdata(dev);
93 dev_t index = MTD_DEVT(mtd->index);
94
95 /* remove /dev/mtdXro node */
96 device_destroy(&mtd_class, index + 1);
97}
98
99#define MTD_DEVICE_ATTR_RO(name) \
100static DEVICE_ATTR(name, 0444, mtd_##name##_show, NULL)
101
102#define MTD_DEVICE_ATTR_RW(name) \
103static DEVICE_ATTR(name, 0644, mtd_##name##_show, mtd_##name##_store)
104
105static ssize_t mtd_type_show(struct device *dev,
106 struct device_attribute *attr, char *buf)
107{
108 struct mtd_info *mtd = dev_get_drvdata(dev);
109 char *type;
110
111 switch (mtd->type) {
112 case MTD_ABSENT:
113 type = "absent";
114 break;
115 case MTD_RAM:
116 type = "ram";
117 break;
118 case MTD_ROM:
119 type = "rom";
120 break;
121 case MTD_NORFLASH:
122 type = "nor";
123 break;
124 case MTD_NANDFLASH:
125 type = "nand";
126 break;
127 case MTD_DATAFLASH:
128 type = "dataflash";
129 break;
130 case MTD_UBIVOLUME:
131 type = "ubi";
132 break;
133 case MTD_MLCNANDFLASH:
134 type = "mlc-nand";
135 break;
136 default:
137 type = "unknown";
138 }
139
140 return sysfs_emit(buf, "%s\n", type);
141}
142MTD_DEVICE_ATTR_RO(type);
143
144static ssize_t mtd_flags_show(struct device *dev,
145 struct device_attribute *attr, char *buf)
146{
147 struct mtd_info *mtd = dev_get_drvdata(dev);
148
149 return sysfs_emit(buf, "0x%lx\n", (unsigned long)mtd->flags);
150}
151MTD_DEVICE_ATTR_RO(flags);
152
153static ssize_t mtd_size_show(struct device *dev,
154 struct device_attribute *attr, char *buf)
155{
156 struct mtd_info *mtd = dev_get_drvdata(dev);
157
158 return sysfs_emit(buf, "%llu\n", (unsigned long long)mtd->size);
159}
160MTD_DEVICE_ATTR_RO(size);
161
162static ssize_t mtd_erasesize_show(struct device *dev,
163 struct device_attribute *attr, char *buf)
164{
165 struct mtd_info *mtd = dev_get_drvdata(dev);
166
167 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->erasesize);
168}
169MTD_DEVICE_ATTR_RO(erasesize);
170
171static ssize_t mtd_writesize_show(struct device *dev,
172 struct device_attribute *attr, char *buf)
173{
174 struct mtd_info *mtd = dev_get_drvdata(dev);
175
176 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->writesize);
177}
178MTD_DEVICE_ATTR_RO(writesize);
179
180static ssize_t mtd_subpagesize_show(struct device *dev,
181 struct device_attribute *attr, char *buf)
182{
183 struct mtd_info *mtd = dev_get_drvdata(dev);
184 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
185
186 return sysfs_emit(buf, "%u\n", subpagesize);
187}
188MTD_DEVICE_ATTR_RO(subpagesize);
189
190static ssize_t mtd_oobsize_show(struct device *dev,
191 struct device_attribute *attr, char *buf)
192{
193 struct mtd_info *mtd = dev_get_drvdata(dev);
194
195 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->oobsize);
196}
197MTD_DEVICE_ATTR_RO(oobsize);
198
199static ssize_t mtd_oobavail_show(struct device *dev,
200 struct device_attribute *attr, char *buf)
201{
202 struct mtd_info *mtd = dev_get_drvdata(dev);
203
204 return sysfs_emit(buf, "%u\n", mtd->oobavail);
205}
206MTD_DEVICE_ATTR_RO(oobavail);
207
208static ssize_t mtd_numeraseregions_show(struct device *dev,
209 struct device_attribute *attr, char *buf)
210{
211 struct mtd_info *mtd = dev_get_drvdata(dev);
212
213 return sysfs_emit(buf, "%u\n", mtd->numeraseregions);
214}
215MTD_DEVICE_ATTR_RO(numeraseregions);
216
217static ssize_t mtd_name_show(struct device *dev,
218 struct device_attribute *attr, char *buf)
219{
220 struct mtd_info *mtd = dev_get_drvdata(dev);
221
222 return sysfs_emit(buf, "%s\n", mtd->name);
223}
224MTD_DEVICE_ATTR_RO(name);
225
226static ssize_t mtd_ecc_strength_show(struct device *dev,
227 struct device_attribute *attr, char *buf)
228{
229 struct mtd_info *mtd = dev_get_drvdata(dev);
230
231 return sysfs_emit(buf, "%u\n", mtd->ecc_strength);
232}
233MTD_DEVICE_ATTR_RO(ecc_strength);
234
235static ssize_t mtd_bitflip_threshold_show(struct device *dev,
236 struct device_attribute *attr,
237 char *buf)
238{
239 struct mtd_info *mtd = dev_get_drvdata(dev);
240
241 return sysfs_emit(buf, "%u\n", mtd->bitflip_threshold);
242}
243
244static ssize_t mtd_bitflip_threshold_store(struct device *dev,
245 struct device_attribute *attr,
246 const char *buf, size_t count)
247{
248 struct mtd_info *mtd = dev_get_drvdata(dev);
249 unsigned int bitflip_threshold;
250 int retval;
251
252 retval = kstrtouint(buf, 0, &bitflip_threshold);
253 if (retval)
254 return retval;
255
256 mtd->bitflip_threshold = bitflip_threshold;
257 return count;
258}
259MTD_DEVICE_ATTR_RW(bitflip_threshold);
260
261static ssize_t mtd_ecc_step_size_show(struct device *dev,
262 struct device_attribute *attr, char *buf)
263{
264 struct mtd_info *mtd = dev_get_drvdata(dev);
265
266 return sysfs_emit(buf, "%u\n", mtd->ecc_step_size);
267
268}
269MTD_DEVICE_ATTR_RO(ecc_step_size);
270
271static ssize_t mtd_corrected_bits_show(struct device *dev,
272 struct device_attribute *attr, char *buf)
273{
274 struct mtd_info *mtd = dev_get_drvdata(dev);
275 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
276
277 return sysfs_emit(buf, "%u\n", ecc_stats->corrected);
278}
279MTD_DEVICE_ATTR_RO(corrected_bits); /* ecc stats corrected */
280
281static ssize_t mtd_ecc_failures_show(struct device *dev,
282 struct device_attribute *attr, char *buf)
283{
284 struct mtd_info *mtd = dev_get_drvdata(dev);
285 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
286
287 return sysfs_emit(buf, "%u\n", ecc_stats->failed);
288}
289MTD_DEVICE_ATTR_RO(ecc_failures); /* ecc stats errors */
290
291static ssize_t mtd_bad_blocks_show(struct device *dev,
292 struct device_attribute *attr, char *buf)
293{
294 struct mtd_info *mtd = dev_get_drvdata(dev);
295 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
296
297 return sysfs_emit(buf, "%u\n", ecc_stats->badblocks);
298}
299MTD_DEVICE_ATTR_RO(bad_blocks);
300
301static ssize_t mtd_bbt_blocks_show(struct device *dev,
302 struct device_attribute *attr, char *buf)
303{
304 struct mtd_info *mtd = dev_get_drvdata(dev);
305 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
306
307 return sysfs_emit(buf, "%u\n", ecc_stats->bbtblocks);
308}
309MTD_DEVICE_ATTR_RO(bbt_blocks);
310
311static struct attribute *mtd_attrs[] = {
312 &dev_attr_type.attr,
313 &dev_attr_flags.attr,
314 &dev_attr_size.attr,
315 &dev_attr_erasesize.attr,
316 &dev_attr_writesize.attr,
317 &dev_attr_subpagesize.attr,
318 &dev_attr_oobsize.attr,
319 &dev_attr_oobavail.attr,
320 &dev_attr_numeraseregions.attr,
321 &dev_attr_name.attr,
322 &dev_attr_ecc_strength.attr,
323 &dev_attr_ecc_step_size.attr,
324 &dev_attr_corrected_bits.attr,
325 &dev_attr_ecc_failures.attr,
326 &dev_attr_bad_blocks.attr,
327 &dev_attr_bbt_blocks.attr,
328 &dev_attr_bitflip_threshold.attr,
329 NULL,
330};
331ATTRIBUTE_GROUPS(mtd);
332
333static const struct device_type mtd_devtype = {
334 .name = "mtd",
335 .groups = mtd_groups,
336 .release = mtd_release,
337};
338
339static bool mtd_expert_analysis_mode;
340
341#ifdef CONFIG_DEBUG_FS
342bool mtd_check_expert_analysis_mode(void)
343{
344 const char *mtd_expert_analysis_warning =
345 "Bad block checks have been entirely disabled.\n"
346 "This is only reserved for post-mortem forensics and debug purposes.\n"
347 "Never enable this mode if you do not know what you are doing!\n";
348
349 return WARN_ONCE(mtd_expert_analysis_mode, mtd_expert_analysis_warning);
350}
351EXPORT_SYMBOL_GPL(mtd_check_expert_analysis_mode);
352#endif
353
354static struct dentry *dfs_dir_mtd;
355
356static void mtd_debugfs_populate(struct mtd_info *mtd)
357{
358 struct device *dev = &mtd->dev;
359
360 if (IS_ERR_OR_NULL(dfs_dir_mtd))
361 return;
362
363 mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(dev), dfs_dir_mtd);
364}
365
366#ifndef CONFIG_MMU
367unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
368{
369 switch (mtd->type) {
370 case MTD_RAM:
371 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
372 NOMMU_MAP_READ | NOMMU_MAP_WRITE;
373 case MTD_ROM:
374 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
375 NOMMU_MAP_READ;
376 default:
377 return NOMMU_MAP_COPY;
378 }
379}
380EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
381#endif
382
383static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
384 void *cmd)
385{
386 struct mtd_info *mtd;
387
388 mtd = container_of(n, struct mtd_info, reboot_notifier);
389 mtd->_reboot(mtd);
390
391 return NOTIFY_DONE;
392}
393
394/**
395 * mtd_wunit_to_pairing_info - get pairing information of a wunit
396 * @mtd: pointer to new MTD device info structure
397 * @wunit: write unit we are interested in
398 * @info: returned pairing information
399 *
400 * Retrieve pairing information associated to the wunit.
401 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
402 * paired together, and where programming a page may influence the page it is
403 * paired with.
404 * The notion of page is replaced by the term wunit (write-unit) to stay
405 * consistent with the ->writesize field.
406 *
407 * The @wunit argument can be extracted from an absolute offset using
408 * mtd_offset_to_wunit(). @info is filled with the pairing information attached
409 * to @wunit.
410 *
411 * From the pairing info the MTD user can find all the wunits paired with
412 * @wunit using the following loop:
413 *
414 * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
415 * info.pair = i;
416 * mtd_pairing_info_to_wunit(mtd, &info);
417 * ...
418 * }
419 */
420int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
421 struct mtd_pairing_info *info)
422{
423 struct mtd_info *master = mtd_get_master(mtd);
424 int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master);
425
426 if (wunit < 0 || wunit >= npairs)
427 return -EINVAL;
428
429 if (master->pairing && master->pairing->get_info)
430 return master->pairing->get_info(master, wunit, info);
431
432 info->group = 0;
433 info->pair = wunit;
434
435 return 0;
436}
437EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
438
439/**
440 * mtd_pairing_info_to_wunit - get wunit from pairing information
441 * @mtd: pointer to new MTD device info structure
442 * @info: pairing information struct
443 *
444 * Returns a positive number representing the wunit associated to the info
445 * struct, or a negative error code.
446 *
447 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
448 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
449 * doc).
450 *
451 * It can also be used to only program the first page of each pair (i.e.
452 * page attached to group 0), which allows one to use an MLC NAND in
453 * software-emulated SLC mode:
454 *
455 * info.group = 0;
456 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
457 * for (info.pair = 0; info.pair < npairs; info.pair++) {
458 * wunit = mtd_pairing_info_to_wunit(mtd, &info);
459 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
460 * mtd->writesize, &retlen, buf + (i * mtd->writesize));
461 * }
462 */
463int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
464 const struct mtd_pairing_info *info)
465{
466 struct mtd_info *master = mtd_get_master(mtd);
467 int ngroups = mtd_pairing_groups(master);
468 int npairs = mtd_wunit_per_eb(master) / ngroups;
469
470 if (!info || info->pair < 0 || info->pair >= npairs ||
471 info->group < 0 || info->group >= ngroups)
472 return -EINVAL;
473
474 if (master->pairing && master->pairing->get_wunit)
475 return mtd->pairing->get_wunit(master, info);
476
477 return info->pair;
478}
479EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
480
481/**
482 * mtd_pairing_groups - get the number of pairing groups
483 * @mtd: pointer to new MTD device info structure
484 *
485 * Returns the number of pairing groups.
486 *
487 * This number is usually equal to the number of bits exposed by a single
488 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
489 * to iterate over all pages of a given pair.
490 */
491int mtd_pairing_groups(struct mtd_info *mtd)
492{
493 struct mtd_info *master = mtd_get_master(mtd);
494
495 if (!master->pairing || !master->pairing->ngroups)
496 return 1;
497
498 return master->pairing->ngroups;
499}
500EXPORT_SYMBOL_GPL(mtd_pairing_groups);
501
502static int mtd_nvmem_reg_read(void *priv, unsigned int offset,
503 void *val, size_t bytes)
504{
505 struct mtd_info *mtd = priv;
506 size_t retlen;
507 int err;
508
509 err = mtd_read(mtd, offset, bytes, &retlen, val);
510 if (err && err != -EUCLEAN)
511 return err;
512
513 return retlen == bytes ? 0 : -EIO;
514}
515
516static int mtd_nvmem_add(struct mtd_info *mtd)
517{
518 struct device_node *node = mtd_get_of_node(mtd);
519 struct nvmem_config config = {};
520
521 config.id = NVMEM_DEVID_NONE;
522 config.dev = &mtd->dev;
523 config.name = dev_name(&mtd->dev);
524 config.owner = THIS_MODULE;
525 config.reg_read = mtd_nvmem_reg_read;
526 config.size = mtd->size;
527 config.word_size = 1;
528 config.stride = 1;
529 config.read_only = true;
530 config.root_only = true;
531 config.ignore_wp = true;
532 config.no_of_node = !of_device_is_compatible(node, "nvmem-cells");
533 config.priv = mtd;
534
535 mtd->nvmem = nvmem_register(&config);
536 if (IS_ERR(mtd->nvmem)) {
537 /* Just ignore if there is no NVMEM support in the kernel */
538 if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP)
539 mtd->nvmem = NULL;
540 else
541 return dev_err_probe(&mtd->dev, PTR_ERR(mtd->nvmem),
542 "Failed to register NVMEM device\n");
543 }
544
545 return 0;
546}
547
548static void mtd_check_of_node(struct mtd_info *mtd)
549{
550 struct device_node *partitions, *parent_dn, *mtd_dn = NULL;
551 const char *pname, *prefix = "partition-";
552 int plen, mtd_name_len, offset, prefix_len;
553
554 /* Check if MTD already has a device node */
555 if (mtd_get_of_node(mtd))
556 return;
557
558 if (!mtd_is_partition(mtd))
559 return;
560
561 parent_dn = of_node_get(mtd_get_of_node(mtd->parent));
562 if (!parent_dn)
563 return;
564
565 if (mtd_is_partition(mtd->parent))
566 partitions = of_node_get(parent_dn);
567 else
568 partitions = of_get_child_by_name(parent_dn, "partitions");
569 if (!partitions)
570 goto exit_parent;
571
572 prefix_len = strlen(prefix);
573 mtd_name_len = strlen(mtd->name);
574
575 /* Search if a partition is defined with the same name */
576 for_each_child_of_node(partitions, mtd_dn) {
577 /* Skip partition with no/wrong prefix */
578 if (!of_node_name_prefix(mtd_dn, prefix))
579 continue;
580
581 /* Label have priority. Check that first */
582 if (!of_property_read_string(mtd_dn, "label", &pname)) {
583 offset = 0;
584 } else {
585 pname = mtd_dn->name;
586 offset = prefix_len;
587 }
588
589 plen = strlen(pname) - offset;
590 if (plen == mtd_name_len &&
591 !strncmp(mtd->name, pname + offset, plen)) {
592 mtd_set_of_node(mtd, mtd_dn);
593 break;
594 }
595 }
596
597 of_node_put(partitions);
598exit_parent:
599 of_node_put(parent_dn);
600}
601
602/**
603 * add_mtd_device - register an MTD device
604 * @mtd: pointer to new MTD device info structure
605 *
606 * Add a device to the list of MTD devices present in the system, and
607 * notify each currently active MTD 'user' of its arrival. Returns
608 * zero on success or non-zero on failure.
609 */
610
611int add_mtd_device(struct mtd_info *mtd)
612{
613 struct device_node *np = mtd_get_of_node(mtd);
614 struct mtd_info *master = mtd_get_master(mtd);
615 struct mtd_notifier *not;
616 int i, error, ofidx;
617
618 /*
619 * May occur, for instance, on buggy drivers which call
620 * mtd_device_parse_register() multiple times on the same master MTD,
621 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
622 */
623 if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
624 return -EEXIST;
625
626 BUG_ON(mtd->writesize == 0);
627
628 /*
629 * MTD drivers should implement ->_{write,read}() or
630 * ->_{write,read}_oob(), but not both.
631 */
632 if (WARN_ON((mtd->_write && mtd->_write_oob) ||
633 (mtd->_read && mtd->_read_oob)))
634 return -EINVAL;
635
636 if (WARN_ON((!mtd->erasesize || !master->_erase) &&
637 !(mtd->flags & MTD_NO_ERASE)))
638 return -EINVAL;
639
640 /*
641 * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the
642 * master is an MLC NAND and has a proper pairing scheme defined.
643 * We also reject masters that implement ->_writev() for now, because
644 * NAND controller drivers don't implement this hook, and adding the
645 * SLC -> MLC address/length conversion to this path is useless if we
646 * don't have a user.
647 */
648 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION &&
649 (!mtd_is_partition(mtd) || master->type != MTD_MLCNANDFLASH ||
650 !master->pairing || master->_writev))
651 return -EINVAL;
652
653 mutex_lock(&mtd_table_mutex);
654
655 ofidx = -1;
656 if (np)
657 ofidx = of_alias_get_id(np, "mtd");
658 if (ofidx >= 0)
659 i = idr_alloc(&mtd_idr, mtd, ofidx, ofidx + 1, GFP_KERNEL);
660 else
661 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
662 if (i < 0) {
663 error = i;
664 goto fail_locked;
665 }
666
667 mtd->index = i;
668 mtd->usecount = 0;
669
670 /* default value if not set by driver */
671 if (mtd->bitflip_threshold == 0)
672 mtd->bitflip_threshold = mtd->ecc_strength;
673
674 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
675 int ngroups = mtd_pairing_groups(master);
676
677 mtd->erasesize /= ngroups;
678 mtd->size = (u64)mtd_div_by_eb(mtd->size, master) *
679 mtd->erasesize;
680 }
681
682 if (is_power_of_2(mtd->erasesize))
683 mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
684 else
685 mtd->erasesize_shift = 0;
686
687 if (is_power_of_2(mtd->writesize))
688 mtd->writesize_shift = ffs(mtd->writesize) - 1;
689 else
690 mtd->writesize_shift = 0;
691
692 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
693 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
694
695 /* Some chips always power up locked. Unlock them now */
696 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
697 error = mtd_unlock(mtd, 0, mtd->size);
698 if (error && error != -EOPNOTSUPP)
699 printk(KERN_WARNING
700 "%s: unlock failed, writes may not work\n",
701 mtd->name);
702 /* Ignore unlock failures? */
703 error = 0;
704 }
705
706 /* Caller should have set dev.parent to match the
707 * physical device, if appropriate.
708 */
709 mtd->dev.type = &mtd_devtype;
710 mtd->dev.class = &mtd_class;
711 mtd->dev.devt = MTD_DEVT(i);
712 dev_set_name(&mtd->dev, "mtd%d", i);
713 dev_set_drvdata(&mtd->dev, mtd);
714 mtd_check_of_node(mtd);
715 of_node_get(mtd_get_of_node(mtd));
716 error = device_register(&mtd->dev);
717 if (error) {
718 put_device(&mtd->dev);
719 goto fail_added;
720 }
721
722 /* Add the nvmem provider */
723 error = mtd_nvmem_add(mtd);
724 if (error)
725 goto fail_nvmem_add;
726
727 mtd_debugfs_populate(mtd);
728
729 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
730 "mtd%dro", i);
731
732 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
733 /* No need to get a refcount on the module containing
734 the notifier, since we hold the mtd_table_mutex */
735 list_for_each_entry(not, &mtd_notifiers, list)
736 not->add(mtd);
737
738 mutex_unlock(&mtd_table_mutex);
739
740 if (of_property_read_bool(mtd_get_of_node(mtd), "linux,rootfs")) {
741 if (IS_BUILTIN(CONFIG_MTD)) {
742 pr_info("mtd: setting mtd%d (%s) as root device\n", mtd->index, mtd->name);
743 ROOT_DEV = MKDEV(MTD_BLOCK_MAJOR, mtd->index);
744 } else {
745 pr_warn("mtd: can't set mtd%d (%s) as root device - mtd must be builtin\n",
746 mtd->index, mtd->name);
747 }
748 }
749
750 /* We _know_ we aren't being removed, because
751 our caller is still holding us here. So none
752 of this try_ nonsense, and no bitching about it
753 either. :) */
754 __module_get(THIS_MODULE);
755 return 0;
756
757fail_nvmem_add:
758 device_unregister(&mtd->dev);
759fail_added:
760 of_node_put(mtd_get_of_node(mtd));
761 idr_remove(&mtd_idr, i);
762fail_locked:
763 mutex_unlock(&mtd_table_mutex);
764 return error;
765}
766
767/**
768 * del_mtd_device - unregister an MTD device
769 * @mtd: pointer to MTD device info structure
770 *
771 * Remove a device from the list of MTD devices present in the system,
772 * and notify each currently active MTD 'user' of its departure.
773 * Returns zero on success or 1 on failure, which currently will happen
774 * if the requested device does not appear to be present in the list.
775 */
776
777int del_mtd_device(struct mtd_info *mtd)
778{
779 int ret;
780 struct mtd_notifier *not;
781 struct device_node *mtd_of_node;
782
783 mutex_lock(&mtd_table_mutex);
784
785 if (idr_find(&mtd_idr, mtd->index) != mtd) {
786 ret = -ENODEV;
787 goto out_error;
788 }
789
790 /* No need to get a refcount on the module containing
791 the notifier, since we hold the mtd_table_mutex */
792 list_for_each_entry(not, &mtd_notifiers, list)
793 not->remove(mtd);
794
795 if (mtd->usecount) {
796 printk(KERN_NOTICE "Removing MTD device #%d (%s) with use count %d\n",
797 mtd->index, mtd->name, mtd->usecount);
798 ret = -EBUSY;
799 } else {
800 mtd_of_node = mtd_get_of_node(mtd);
801 debugfs_remove_recursive(mtd->dbg.dfs_dir);
802
803 /* Try to remove the NVMEM provider */
804 nvmem_unregister(mtd->nvmem);
805
806 device_unregister(&mtd->dev);
807
808 /* Clear dev so mtd can be safely re-registered later if desired */
809 memset(&mtd->dev, 0, sizeof(mtd->dev));
810
811 idr_remove(&mtd_idr, mtd->index);
812 of_node_put(mtd_of_node);
813
814 module_put(THIS_MODULE);
815 ret = 0;
816 }
817
818out_error:
819 mutex_unlock(&mtd_table_mutex);
820 return ret;
821}
822
823/*
824 * Set a few defaults based on the parent devices, if not provided by the
825 * driver
826 */
827static void mtd_set_dev_defaults(struct mtd_info *mtd)
828{
829 if (mtd->dev.parent) {
830 if (!mtd->owner && mtd->dev.parent->driver)
831 mtd->owner = mtd->dev.parent->driver->owner;
832 if (!mtd->name)
833 mtd->name = dev_name(mtd->dev.parent);
834 } else {
835 pr_debug("mtd device won't show a device symlink in sysfs\n");
836 }
837
838 INIT_LIST_HEAD(&mtd->partitions);
839 mutex_init(&mtd->master.partitions_lock);
840 mutex_init(&mtd->master.chrdev_lock);
841}
842
843static ssize_t mtd_otp_size(struct mtd_info *mtd, bool is_user)
844{
845 struct otp_info *info;
846 ssize_t size = 0;
847 unsigned int i;
848 size_t retlen;
849 int ret;
850
851 info = kmalloc(PAGE_SIZE, GFP_KERNEL);
852 if (!info)
853 return -ENOMEM;
854
855 if (is_user)
856 ret = mtd_get_user_prot_info(mtd, PAGE_SIZE, &retlen, info);
857 else
858 ret = mtd_get_fact_prot_info(mtd, PAGE_SIZE, &retlen, info);
859 if (ret)
860 goto err;
861
862 for (i = 0; i < retlen / sizeof(*info); i++)
863 size += info[i].length;
864
865 kfree(info);
866 return size;
867
868err:
869 kfree(info);
870
871 /* ENODATA means there is no OTP region. */
872 return ret == -ENODATA ? 0 : ret;
873}
874
875static struct nvmem_device *mtd_otp_nvmem_register(struct mtd_info *mtd,
876 const char *compatible,
877 int size,
878 nvmem_reg_read_t reg_read)
879{
880 struct nvmem_device *nvmem = NULL;
881 struct nvmem_config config = {};
882 struct device_node *np;
883
884 /* DT binding is optional */
885 np = of_get_compatible_child(mtd->dev.of_node, compatible);
886
887 /* OTP nvmem will be registered on the physical device */
888 config.dev = mtd->dev.parent;
889 config.name = compatible;
890 config.id = NVMEM_DEVID_AUTO;
891 config.owner = THIS_MODULE;
892 config.type = NVMEM_TYPE_OTP;
893 config.root_only = true;
894 config.ignore_wp = true;
895 config.reg_read = reg_read;
896 config.size = size;
897 config.of_node = np;
898 config.priv = mtd;
899
900 nvmem = nvmem_register(&config);
901 /* Just ignore if there is no NVMEM support in the kernel */
902 if (IS_ERR(nvmem) && PTR_ERR(nvmem) == -EOPNOTSUPP)
903 nvmem = NULL;
904
905 of_node_put(np);
906
907 return nvmem;
908}
909
910static int mtd_nvmem_user_otp_reg_read(void *priv, unsigned int offset,
911 void *val, size_t bytes)
912{
913 struct mtd_info *mtd = priv;
914 size_t retlen;
915 int ret;
916
917 ret = mtd_read_user_prot_reg(mtd, offset, bytes, &retlen, val);
918 if (ret)
919 return ret;
920
921 return retlen == bytes ? 0 : -EIO;
922}
923
924static int mtd_nvmem_fact_otp_reg_read(void *priv, unsigned int offset,
925 void *val, size_t bytes)
926{
927 struct mtd_info *mtd = priv;
928 size_t retlen;
929 int ret;
930
931 ret = mtd_read_fact_prot_reg(mtd, offset, bytes, &retlen, val);
932 if (ret)
933 return ret;
934
935 return retlen == bytes ? 0 : -EIO;
936}
937
938static int mtd_otp_nvmem_add(struct mtd_info *mtd)
939{
940 struct device *dev = mtd->dev.parent;
941 struct nvmem_device *nvmem;
942 ssize_t size;
943 int err;
944
945 if (mtd->_get_user_prot_info && mtd->_read_user_prot_reg) {
946 size = mtd_otp_size(mtd, true);
947 if (size < 0)
948 return size;
949
950 if (size > 0) {
951 nvmem = mtd_otp_nvmem_register(mtd, "user-otp", size,
952 mtd_nvmem_user_otp_reg_read);
953 if (IS_ERR(nvmem)) {
954 err = PTR_ERR(nvmem);
955 goto err;
956 }
957 mtd->otp_user_nvmem = nvmem;
958 }
959 }
960
961 if (mtd->_get_fact_prot_info && mtd->_read_fact_prot_reg) {
962 size = mtd_otp_size(mtd, false);
963 if (size < 0) {
964 err = size;
965 goto err;
966 }
967
968 if (size > 0) {
969 nvmem = mtd_otp_nvmem_register(mtd, "factory-otp", size,
970 mtd_nvmem_fact_otp_reg_read);
971 if (IS_ERR(nvmem)) {
972 err = PTR_ERR(nvmem);
973 goto err;
974 }
975 mtd->otp_factory_nvmem = nvmem;
976 }
977 }
978
979 return 0;
980
981err:
982 nvmem_unregister(mtd->otp_user_nvmem);
983 return dev_err_probe(dev, err, "Failed to register OTP NVMEM device\n");
984}
985
986/**
987 * mtd_device_parse_register - parse partitions and register an MTD device.
988 *
989 * @mtd: the MTD device to register
990 * @types: the list of MTD partition probes to try, see
991 * 'parse_mtd_partitions()' for more information
992 * @parser_data: MTD partition parser-specific data
993 * @parts: fallback partition information to register, if parsing fails;
994 * only valid if %nr_parts > %0
995 * @nr_parts: the number of partitions in parts, if zero then the full
996 * MTD device is registered if no partition info is found
997 *
998 * This function aggregates MTD partitions parsing (done by
999 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
1000 * basically follows the most common pattern found in many MTD drivers:
1001 *
1002 * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
1003 * registered first.
1004 * * Then It tries to probe partitions on MTD device @mtd using parsers
1005 * specified in @types (if @types is %NULL, then the default list of parsers
1006 * is used, see 'parse_mtd_partitions()' for more information). If none are
1007 * found this functions tries to fallback to information specified in
1008 * @parts/@nr_parts.
1009 * * If no partitions were found this function just registers the MTD device
1010 * @mtd and exits.
1011 *
1012 * Returns zero in case of success and a negative error code in case of failure.
1013 */
1014int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
1015 struct mtd_part_parser_data *parser_data,
1016 const struct mtd_partition *parts,
1017 int nr_parts)
1018{
1019 int ret;
1020
1021 mtd_set_dev_defaults(mtd);
1022
1023 ret = mtd_otp_nvmem_add(mtd);
1024 if (ret)
1025 goto out;
1026
1027 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
1028 ret = add_mtd_device(mtd);
1029 if (ret)
1030 goto out;
1031 }
1032
1033 /* Prefer parsed partitions over driver-provided fallback */
1034 ret = parse_mtd_partitions(mtd, types, parser_data);
1035 if (ret == -EPROBE_DEFER)
1036 goto out;
1037
1038 if (ret > 0)
1039 ret = 0;
1040 else if (nr_parts)
1041 ret = add_mtd_partitions(mtd, parts, nr_parts);
1042 else if (!device_is_registered(&mtd->dev))
1043 ret = add_mtd_device(mtd);
1044 else
1045 ret = 0;
1046
1047 if (ret)
1048 goto out;
1049
1050 /*
1051 * FIXME: some drivers unfortunately call this function more than once.
1052 * So we have to check if we've already assigned the reboot notifier.
1053 *
1054 * Generally, we can make multiple calls work for most cases, but it
1055 * does cause problems with parse_mtd_partitions() above (e.g.,
1056 * cmdlineparts will register partitions more than once).
1057 */
1058 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
1059 "MTD already registered\n");
1060 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
1061 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
1062 register_reboot_notifier(&mtd->reboot_notifier);
1063 }
1064
1065out:
1066 if (ret) {
1067 nvmem_unregister(mtd->otp_user_nvmem);
1068 nvmem_unregister(mtd->otp_factory_nvmem);
1069 }
1070
1071 if (ret && device_is_registered(&mtd->dev))
1072 del_mtd_device(mtd);
1073
1074 return ret;
1075}
1076EXPORT_SYMBOL_GPL(mtd_device_parse_register);
1077
1078/**
1079 * mtd_device_unregister - unregister an existing MTD device.
1080 *
1081 * @master: the MTD device to unregister. This will unregister both the master
1082 * and any partitions if registered.
1083 */
1084int mtd_device_unregister(struct mtd_info *master)
1085{
1086 int err;
1087
1088 if (master->_reboot) {
1089 unregister_reboot_notifier(&master->reboot_notifier);
1090 memset(&master->reboot_notifier, 0, sizeof(master->reboot_notifier));
1091 }
1092
1093 nvmem_unregister(master->otp_user_nvmem);
1094 nvmem_unregister(master->otp_factory_nvmem);
1095
1096 err = del_mtd_partitions(master);
1097 if (err)
1098 return err;
1099
1100 if (!device_is_registered(&master->dev))
1101 return 0;
1102
1103 return del_mtd_device(master);
1104}
1105EXPORT_SYMBOL_GPL(mtd_device_unregister);
1106
1107/**
1108 * register_mtd_user - register a 'user' of MTD devices.
1109 * @new: pointer to notifier info structure
1110 *
1111 * Registers a pair of callbacks function to be called upon addition
1112 * or removal of MTD devices. Causes the 'add' callback to be immediately
1113 * invoked for each MTD device currently present in the system.
1114 */
1115void register_mtd_user (struct mtd_notifier *new)
1116{
1117 struct mtd_info *mtd;
1118
1119 mutex_lock(&mtd_table_mutex);
1120
1121 list_add(&new->list, &mtd_notifiers);
1122
1123 __module_get(THIS_MODULE);
1124
1125 mtd_for_each_device(mtd)
1126 new->add(mtd);
1127
1128 mutex_unlock(&mtd_table_mutex);
1129}
1130EXPORT_SYMBOL_GPL(register_mtd_user);
1131
1132/**
1133 * unregister_mtd_user - unregister a 'user' of MTD devices.
1134 * @old: pointer to notifier info structure
1135 *
1136 * Removes a callback function pair from the list of 'users' to be
1137 * notified upon addition or removal of MTD devices. Causes the
1138 * 'remove' callback to be immediately invoked for each MTD device
1139 * currently present in the system.
1140 */
1141int unregister_mtd_user (struct mtd_notifier *old)
1142{
1143 struct mtd_info *mtd;
1144
1145 mutex_lock(&mtd_table_mutex);
1146
1147 module_put(THIS_MODULE);
1148
1149 mtd_for_each_device(mtd)
1150 old->remove(mtd);
1151
1152 list_del(&old->list);
1153 mutex_unlock(&mtd_table_mutex);
1154 return 0;
1155}
1156EXPORT_SYMBOL_GPL(unregister_mtd_user);
1157
1158/**
1159 * get_mtd_device - obtain a validated handle for an MTD device
1160 * @mtd: last known address of the required MTD device
1161 * @num: internal device number of the required MTD device
1162 *
1163 * Given a number and NULL address, return the num'th entry in the device
1164 * table, if any. Given an address and num == -1, search the device table
1165 * for a device with that address and return if it's still present. Given
1166 * both, return the num'th driver only if its address matches. Return
1167 * error code if not.
1168 */
1169struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
1170{
1171 struct mtd_info *ret = NULL, *other;
1172 int err = -ENODEV;
1173
1174 mutex_lock(&mtd_table_mutex);
1175
1176 if (num == -1) {
1177 mtd_for_each_device(other) {
1178 if (other == mtd) {
1179 ret = mtd;
1180 break;
1181 }
1182 }
1183 } else if (num >= 0) {
1184 ret = idr_find(&mtd_idr, num);
1185 if (mtd && mtd != ret)
1186 ret = NULL;
1187 }
1188
1189 if (!ret) {
1190 ret = ERR_PTR(err);
1191 goto out;
1192 }
1193
1194 err = __get_mtd_device(ret);
1195 if (err)
1196 ret = ERR_PTR(err);
1197out:
1198 mutex_unlock(&mtd_table_mutex);
1199 return ret;
1200}
1201EXPORT_SYMBOL_GPL(get_mtd_device);
1202
1203
1204int __get_mtd_device(struct mtd_info *mtd)
1205{
1206 struct mtd_info *master = mtd_get_master(mtd);
1207 int err;
1208
1209 if (!try_module_get(master->owner))
1210 return -ENODEV;
1211
1212 if (master->_get_device) {
1213 err = master->_get_device(mtd);
1214
1215 if (err) {
1216 module_put(master->owner);
1217 return err;
1218 }
1219 }
1220
1221 master->usecount++;
1222
1223 while (mtd->parent) {
1224 mtd->usecount++;
1225 mtd = mtd->parent;
1226 }
1227
1228 return 0;
1229}
1230EXPORT_SYMBOL_GPL(__get_mtd_device);
1231
1232/**
1233 * of_get_mtd_device_by_node - obtain an MTD device associated with a given node
1234 *
1235 * @np: device tree node
1236 */
1237struct mtd_info *of_get_mtd_device_by_node(struct device_node *np)
1238{
1239 struct mtd_info *mtd = NULL;
1240 struct mtd_info *tmp;
1241 int err;
1242
1243 mutex_lock(&mtd_table_mutex);
1244
1245 err = -EPROBE_DEFER;
1246 mtd_for_each_device(tmp) {
1247 if (mtd_get_of_node(tmp) == np) {
1248 mtd = tmp;
1249 err = __get_mtd_device(mtd);
1250 break;
1251 }
1252 }
1253
1254 mutex_unlock(&mtd_table_mutex);
1255
1256 return err ? ERR_PTR(err) : mtd;
1257}
1258EXPORT_SYMBOL_GPL(of_get_mtd_device_by_node);
1259
1260/**
1261 * get_mtd_device_nm - obtain a validated handle for an MTD device by
1262 * device name
1263 * @name: MTD device name to open
1264 *
1265 * This function returns MTD device description structure in case of
1266 * success and an error code in case of failure.
1267 */
1268struct mtd_info *get_mtd_device_nm(const char *name)
1269{
1270 int err = -ENODEV;
1271 struct mtd_info *mtd = NULL, *other;
1272
1273 mutex_lock(&mtd_table_mutex);
1274
1275 mtd_for_each_device(other) {
1276 if (!strcmp(name, other->name)) {
1277 mtd = other;
1278 break;
1279 }
1280 }
1281
1282 if (!mtd)
1283 goto out_unlock;
1284
1285 err = __get_mtd_device(mtd);
1286 if (err)
1287 goto out_unlock;
1288
1289 mutex_unlock(&mtd_table_mutex);
1290 return mtd;
1291
1292out_unlock:
1293 mutex_unlock(&mtd_table_mutex);
1294 return ERR_PTR(err);
1295}
1296EXPORT_SYMBOL_GPL(get_mtd_device_nm);
1297
1298void put_mtd_device(struct mtd_info *mtd)
1299{
1300 mutex_lock(&mtd_table_mutex);
1301 __put_mtd_device(mtd);
1302 mutex_unlock(&mtd_table_mutex);
1303
1304}
1305EXPORT_SYMBOL_GPL(put_mtd_device);
1306
1307void __put_mtd_device(struct mtd_info *mtd)
1308{
1309 struct mtd_info *master = mtd_get_master(mtd);
1310
1311 while (mtd->parent) {
1312 --mtd->usecount;
1313 BUG_ON(mtd->usecount < 0);
1314 mtd = mtd->parent;
1315 }
1316
1317 master->usecount--;
1318
1319 if (master->_put_device)
1320 master->_put_device(master);
1321
1322 module_put(master->owner);
1323}
1324EXPORT_SYMBOL_GPL(__put_mtd_device);
1325
1326/*
1327 * Erase is an synchronous operation. Device drivers are epected to return a
1328 * negative error code if the operation failed and update instr->fail_addr
1329 * to point the portion that was not properly erased.
1330 */
1331int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1332{
1333 struct mtd_info *master = mtd_get_master(mtd);
1334 u64 mst_ofs = mtd_get_master_ofs(mtd, 0);
1335 struct erase_info adjinstr;
1336 int ret;
1337
1338 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
1339 adjinstr = *instr;
1340
1341 if (!mtd->erasesize || !master->_erase)
1342 return -ENOTSUPP;
1343
1344 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
1345 return -EINVAL;
1346 if (!(mtd->flags & MTD_WRITEABLE))
1347 return -EROFS;
1348
1349 if (!instr->len)
1350 return 0;
1351
1352 ledtrig_mtd_activity();
1353
1354 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1355 adjinstr.addr = (loff_t)mtd_div_by_eb(instr->addr, mtd) *
1356 master->erasesize;
1357 adjinstr.len = ((u64)mtd_div_by_eb(instr->addr + instr->len, mtd) *
1358 master->erasesize) -
1359 adjinstr.addr;
1360 }
1361
1362 adjinstr.addr += mst_ofs;
1363
1364 ret = master->_erase(master, &adjinstr);
1365
1366 if (adjinstr.fail_addr != MTD_FAIL_ADDR_UNKNOWN) {
1367 instr->fail_addr = adjinstr.fail_addr - mst_ofs;
1368 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1369 instr->fail_addr = mtd_div_by_eb(instr->fail_addr,
1370 master);
1371 instr->fail_addr *= mtd->erasesize;
1372 }
1373 }
1374
1375 return ret;
1376}
1377EXPORT_SYMBOL_GPL(mtd_erase);
1378
1379/*
1380 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
1381 */
1382int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1383 void **virt, resource_size_t *phys)
1384{
1385 struct mtd_info *master = mtd_get_master(mtd);
1386
1387 *retlen = 0;
1388 *virt = NULL;
1389 if (phys)
1390 *phys = 0;
1391 if (!master->_point)
1392 return -EOPNOTSUPP;
1393 if (from < 0 || from >= mtd->size || len > mtd->size - from)
1394 return -EINVAL;
1395 if (!len)
1396 return 0;
1397
1398 from = mtd_get_master_ofs(mtd, from);
1399 return master->_point(master, from, len, retlen, virt, phys);
1400}
1401EXPORT_SYMBOL_GPL(mtd_point);
1402
1403/* We probably shouldn't allow XIP if the unpoint isn't a NULL */
1404int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1405{
1406 struct mtd_info *master = mtd_get_master(mtd);
1407
1408 if (!master->_unpoint)
1409 return -EOPNOTSUPP;
1410 if (from < 0 || from >= mtd->size || len > mtd->size - from)
1411 return -EINVAL;
1412 if (!len)
1413 return 0;
1414 return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len);
1415}
1416EXPORT_SYMBOL_GPL(mtd_unpoint);
1417
1418/*
1419 * Allow NOMMU mmap() to directly map the device (if not NULL)
1420 * - return the address to which the offset maps
1421 * - return -ENOSYS to indicate refusal to do the mapping
1422 */
1423unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1424 unsigned long offset, unsigned long flags)
1425{
1426 size_t retlen;
1427 void *virt;
1428 int ret;
1429
1430 ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1431 if (ret)
1432 return ret;
1433 if (retlen != len) {
1434 mtd_unpoint(mtd, offset, retlen);
1435 return -ENOSYS;
1436 }
1437 return (unsigned long)virt;
1438}
1439EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1440
1441static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master,
1442 const struct mtd_ecc_stats *old_stats)
1443{
1444 struct mtd_ecc_stats diff;
1445
1446 if (master == mtd)
1447 return;
1448
1449 diff = master->ecc_stats;
1450 diff.failed -= old_stats->failed;
1451 diff.corrected -= old_stats->corrected;
1452
1453 while (mtd->parent) {
1454 mtd->ecc_stats.failed += diff.failed;
1455 mtd->ecc_stats.corrected += diff.corrected;
1456 mtd = mtd->parent;
1457 }
1458}
1459
1460int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1461 u_char *buf)
1462{
1463 struct mtd_oob_ops ops = {
1464 .len = len,
1465 .datbuf = buf,
1466 };
1467 int ret;
1468
1469 ret = mtd_read_oob(mtd, from, &ops);
1470 *retlen = ops.retlen;
1471
1472 return ret;
1473}
1474EXPORT_SYMBOL_GPL(mtd_read);
1475
1476int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1477 const u_char *buf)
1478{
1479 struct mtd_oob_ops ops = {
1480 .len = len,
1481 .datbuf = (u8 *)buf,
1482 };
1483 int ret;
1484
1485 ret = mtd_write_oob(mtd, to, &ops);
1486 *retlen = ops.retlen;
1487
1488 return ret;
1489}
1490EXPORT_SYMBOL_GPL(mtd_write);
1491
1492/*
1493 * In blackbox flight recorder like scenarios we want to make successful writes
1494 * in interrupt context. panic_write() is only intended to be called when its
1495 * known the kernel is about to panic and we need the write to succeed. Since
1496 * the kernel is not going to be running for much longer, this function can
1497 * break locks and delay to ensure the write succeeds (but not sleep).
1498 */
1499int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1500 const u_char *buf)
1501{
1502 struct mtd_info *master = mtd_get_master(mtd);
1503
1504 *retlen = 0;
1505 if (!master->_panic_write)
1506 return -EOPNOTSUPP;
1507 if (to < 0 || to >= mtd->size || len > mtd->size - to)
1508 return -EINVAL;
1509 if (!(mtd->flags & MTD_WRITEABLE))
1510 return -EROFS;
1511 if (!len)
1512 return 0;
1513 if (!master->oops_panic_write)
1514 master->oops_panic_write = true;
1515
1516 return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len,
1517 retlen, buf);
1518}
1519EXPORT_SYMBOL_GPL(mtd_panic_write);
1520
1521static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1522 struct mtd_oob_ops *ops)
1523{
1524 /*
1525 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1526 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1527 * this case.
1528 */
1529 if (!ops->datbuf)
1530 ops->len = 0;
1531
1532 if (!ops->oobbuf)
1533 ops->ooblen = 0;
1534
1535 if (offs < 0 || offs + ops->len > mtd->size)
1536 return -EINVAL;
1537
1538 if (ops->ooblen) {
1539 size_t maxooblen;
1540
1541 if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1542 return -EINVAL;
1543
1544 maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1545 mtd_div_by_ws(offs, mtd)) *
1546 mtd_oobavail(mtd, ops)) - ops->ooboffs;
1547 if (ops->ooblen > maxooblen)
1548 return -EINVAL;
1549 }
1550
1551 return 0;
1552}
1553
1554static int mtd_read_oob_std(struct mtd_info *mtd, loff_t from,
1555 struct mtd_oob_ops *ops)
1556{
1557 struct mtd_info *master = mtd_get_master(mtd);
1558 int ret;
1559
1560 from = mtd_get_master_ofs(mtd, from);
1561 if (master->_read_oob)
1562 ret = master->_read_oob(master, from, ops);
1563 else
1564 ret = master->_read(master, from, ops->len, &ops->retlen,
1565 ops->datbuf);
1566
1567 return ret;
1568}
1569
1570static int mtd_write_oob_std(struct mtd_info *mtd, loff_t to,
1571 struct mtd_oob_ops *ops)
1572{
1573 struct mtd_info *master = mtd_get_master(mtd);
1574 int ret;
1575
1576 to = mtd_get_master_ofs(mtd, to);
1577 if (master->_write_oob)
1578 ret = master->_write_oob(master, to, ops);
1579 else
1580 ret = master->_write(master, to, ops->len, &ops->retlen,
1581 ops->datbuf);
1582
1583 return ret;
1584}
1585
1586static int mtd_io_emulated_slc(struct mtd_info *mtd, loff_t start, bool read,
1587 struct mtd_oob_ops *ops)
1588{
1589 struct mtd_info *master = mtd_get_master(mtd);
1590 int ngroups = mtd_pairing_groups(master);
1591 int npairs = mtd_wunit_per_eb(master) / ngroups;
1592 struct mtd_oob_ops adjops = *ops;
1593 unsigned int wunit, oobavail;
1594 struct mtd_pairing_info info;
1595 int max_bitflips = 0;
1596 u32 ebofs, pageofs;
1597 loff_t base, pos;
1598
1599 ebofs = mtd_mod_by_eb(start, mtd);
1600 base = (loff_t)mtd_div_by_eb(start, mtd) * master->erasesize;
1601 info.group = 0;
1602 info.pair = mtd_div_by_ws(ebofs, mtd);
1603 pageofs = mtd_mod_by_ws(ebofs, mtd);
1604 oobavail = mtd_oobavail(mtd, ops);
1605
1606 while (ops->retlen < ops->len || ops->oobretlen < ops->ooblen) {
1607 int ret;
1608
1609 if (info.pair >= npairs) {
1610 info.pair = 0;
1611 base += master->erasesize;
1612 }
1613
1614 wunit = mtd_pairing_info_to_wunit(master, &info);
1615 pos = mtd_wunit_to_offset(mtd, base, wunit);
1616
1617 adjops.len = ops->len - ops->retlen;
1618 if (adjops.len > mtd->writesize - pageofs)
1619 adjops.len = mtd->writesize - pageofs;
1620
1621 adjops.ooblen = ops->ooblen - ops->oobretlen;
1622 if (adjops.ooblen > oobavail - adjops.ooboffs)
1623 adjops.ooblen = oobavail - adjops.ooboffs;
1624
1625 if (read) {
1626 ret = mtd_read_oob_std(mtd, pos + pageofs, &adjops);
1627 if (ret > 0)
1628 max_bitflips = max(max_bitflips, ret);
1629 } else {
1630 ret = mtd_write_oob_std(mtd, pos + pageofs, &adjops);
1631 }
1632
1633 if (ret < 0)
1634 return ret;
1635
1636 max_bitflips = max(max_bitflips, ret);
1637 ops->retlen += adjops.retlen;
1638 ops->oobretlen += adjops.oobretlen;
1639 adjops.datbuf += adjops.retlen;
1640 adjops.oobbuf += adjops.oobretlen;
1641 adjops.ooboffs = 0;
1642 pageofs = 0;
1643 info.pair++;
1644 }
1645
1646 return max_bitflips;
1647}
1648
1649int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1650{
1651 struct mtd_info *master = mtd_get_master(mtd);
1652 struct mtd_ecc_stats old_stats = master->ecc_stats;
1653 int ret_code;
1654
1655 ops->retlen = ops->oobretlen = 0;
1656
1657 ret_code = mtd_check_oob_ops(mtd, from, ops);
1658 if (ret_code)
1659 return ret_code;
1660
1661 ledtrig_mtd_activity();
1662
1663 /* Check the validity of a potential fallback on mtd->_read */
1664 if (!master->_read_oob && (!master->_read || ops->oobbuf))
1665 return -EOPNOTSUPP;
1666
1667 if (ops->stats)
1668 memset(ops->stats, 0, sizeof(*ops->stats));
1669
1670 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1671 ret_code = mtd_io_emulated_slc(mtd, from, true, ops);
1672 else
1673 ret_code = mtd_read_oob_std(mtd, from, ops);
1674
1675 mtd_update_ecc_stats(mtd, master, &old_stats);
1676
1677 /*
1678 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1679 * similar to mtd->_read(), returning a non-negative integer
1680 * representing max bitflips. In other cases, mtd->_read_oob() may
1681 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1682 */
1683 if (unlikely(ret_code < 0))
1684 return ret_code;
1685 if (mtd->ecc_strength == 0)
1686 return 0; /* device lacks ecc */
1687 if (ops->stats)
1688 ops->stats->max_bitflips = ret_code;
1689 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1690}
1691EXPORT_SYMBOL_GPL(mtd_read_oob);
1692
1693int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1694 struct mtd_oob_ops *ops)
1695{
1696 struct mtd_info *master = mtd_get_master(mtd);
1697 int ret;
1698
1699 ops->retlen = ops->oobretlen = 0;
1700
1701 if (!(mtd->flags & MTD_WRITEABLE))
1702 return -EROFS;
1703
1704 ret = mtd_check_oob_ops(mtd, to, ops);
1705 if (ret)
1706 return ret;
1707
1708 ledtrig_mtd_activity();
1709
1710 /* Check the validity of a potential fallback on mtd->_write */
1711 if (!master->_write_oob && (!master->_write || ops->oobbuf))
1712 return -EOPNOTSUPP;
1713
1714 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1715 return mtd_io_emulated_slc(mtd, to, false, ops);
1716
1717 return mtd_write_oob_std(mtd, to, ops);
1718}
1719EXPORT_SYMBOL_GPL(mtd_write_oob);
1720
1721/**
1722 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1723 * @mtd: MTD device structure
1724 * @section: ECC section. Depending on the layout you may have all the ECC
1725 * bytes stored in a single contiguous section, or one section
1726 * per ECC chunk (and sometime several sections for a single ECC
1727 * ECC chunk)
1728 * @oobecc: OOB region struct filled with the appropriate ECC position
1729 * information
1730 *
1731 * This function returns ECC section information in the OOB area. If you want
1732 * to get all the ECC bytes information, then you should call
1733 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1734 *
1735 * Returns zero on success, a negative error code otherwise.
1736 */
1737int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1738 struct mtd_oob_region *oobecc)
1739{
1740 struct mtd_info *master = mtd_get_master(mtd);
1741
1742 memset(oobecc, 0, sizeof(*oobecc));
1743
1744 if (!master || section < 0)
1745 return -EINVAL;
1746
1747 if (!master->ooblayout || !master->ooblayout->ecc)
1748 return -ENOTSUPP;
1749
1750 return master->ooblayout->ecc(master, section, oobecc);
1751}
1752EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1753
1754/**
1755 * mtd_ooblayout_free - Get the OOB region definition of a specific free
1756 * section
1757 * @mtd: MTD device structure
1758 * @section: Free section you are interested in. Depending on the layout
1759 * you may have all the free bytes stored in a single contiguous
1760 * section, or one section per ECC chunk plus an extra section
1761 * for the remaining bytes (or other funky layout).
1762 * @oobfree: OOB region struct filled with the appropriate free position
1763 * information
1764 *
1765 * This function returns free bytes position in the OOB area. If you want
1766 * to get all the free bytes information, then you should call
1767 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1768 *
1769 * Returns zero on success, a negative error code otherwise.
1770 */
1771int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1772 struct mtd_oob_region *oobfree)
1773{
1774 struct mtd_info *master = mtd_get_master(mtd);
1775
1776 memset(oobfree, 0, sizeof(*oobfree));
1777
1778 if (!master || section < 0)
1779 return -EINVAL;
1780
1781 if (!master->ooblayout || !master->ooblayout->free)
1782 return -ENOTSUPP;
1783
1784 return master->ooblayout->free(master, section, oobfree);
1785}
1786EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1787
1788/**
1789 * mtd_ooblayout_find_region - Find the region attached to a specific byte
1790 * @mtd: mtd info structure
1791 * @byte: the byte we are searching for
1792 * @sectionp: pointer where the section id will be stored
1793 * @oobregion: used to retrieve the ECC position
1794 * @iter: iterator function. Should be either mtd_ooblayout_free or
1795 * mtd_ooblayout_ecc depending on the region type you're searching for
1796 *
1797 * This function returns the section id and oobregion information of a
1798 * specific byte. For example, say you want to know where the 4th ECC byte is
1799 * stored, you'll use:
1800 *
1801 * mtd_ooblayout_find_region(mtd, 3, §ion, &oobregion, mtd_ooblayout_ecc);
1802 *
1803 * Returns zero on success, a negative error code otherwise.
1804 */
1805static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1806 int *sectionp, struct mtd_oob_region *oobregion,
1807 int (*iter)(struct mtd_info *,
1808 int section,
1809 struct mtd_oob_region *oobregion))
1810{
1811 int pos = 0, ret, section = 0;
1812
1813 memset(oobregion, 0, sizeof(*oobregion));
1814
1815 while (1) {
1816 ret = iter(mtd, section, oobregion);
1817 if (ret)
1818 return ret;
1819
1820 if (pos + oobregion->length > byte)
1821 break;
1822
1823 pos += oobregion->length;
1824 section++;
1825 }
1826
1827 /*
1828 * Adjust region info to make it start at the beginning at the
1829 * 'start' ECC byte.
1830 */
1831 oobregion->offset += byte - pos;
1832 oobregion->length -= byte - pos;
1833 *sectionp = section;
1834
1835 return 0;
1836}
1837
1838/**
1839 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1840 * ECC byte
1841 * @mtd: mtd info structure
1842 * @eccbyte: the byte we are searching for
1843 * @section: pointer where the section id will be stored
1844 * @oobregion: OOB region information
1845 *
1846 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1847 * byte.
1848 *
1849 * Returns zero on success, a negative error code otherwise.
1850 */
1851int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1852 int *section,
1853 struct mtd_oob_region *oobregion)
1854{
1855 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1856 mtd_ooblayout_ecc);
1857}
1858EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1859
1860/**
1861 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1862 * @mtd: mtd info structure
1863 * @buf: destination buffer to store OOB bytes
1864 * @oobbuf: OOB buffer
1865 * @start: first byte to retrieve
1866 * @nbytes: number of bytes to retrieve
1867 * @iter: section iterator
1868 *
1869 * Extract bytes attached to a specific category (ECC or free)
1870 * from the OOB buffer and copy them into buf.
1871 *
1872 * Returns zero on success, a negative error code otherwise.
1873 */
1874static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1875 const u8 *oobbuf, int start, int nbytes,
1876 int (*iter)(struct mtd_info *,
1877 int section,
1878 struct mtd_oob_region *oobregion))
1879{
1880 struct mtd_oob_region oobregion;
1881 int section, ret;
1882
1883 ret = mtd_ooblayout_find_region(mtd, start, §ion,
1884 &oobregion, iter);
1885
1886 while (!ret) {
1887 int cnt;
1888
1889 cnt = min_t(int, nbytes, oobregion.length);
1890 memcpy(buf, oobbuf + oobregion.offset, cnt);
1891 buf += cnt;
1892 nbytes -= cnt;
1893
1894 if (!nbytes)
1895 break;
1896
1897 ret = iter(mtd, ++section, &oobregion);
1898 }
1899
1900 return ret;
1901}
1902
1903/**
1904 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1905 * @mtd: mtd info structure
1906 * @buf: source buffer to get OOB bytes from
1907 * @oobbuf: OOB buffer
1908 * @start: first OOB byte to set
1909 * @nbytes: number of OOB bytes to set
1910 * @iter: section iterator
1911 *
1912 * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1913 * is selected by passing the appropriate iterator.
1914 *
1915 * Returns zero on success, a negative error code otherwise.
1916 */
1917static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1918 u8 *oobbuf, int start, int nbytes,
1919 int (*iter)(struct mtd_info *,
1920 int section,
1921 struct mtd_oob_region *oobregion))
1922{
1923 struct mtd_oob_region oobregion;
1924 int section, ret;
1925
1926 ret = mtd_ooblayout_find_region(mtd, start, §ion,
1927 &oobregion, iter);
1928
1929 while (!ret) {
1930 int cnt;
1931
1932 cnt = min_t(int, nbytes, oobregion.length);
1933 memcpy(oobbuf + oobregion.offset, buf, cnt);
1934 buf += cnt;
1935 nbytes -= cnt;
1936
1937 if (!nbytes)
1938 break;
1939
1940 ret = iter(mtd, ++section, &oobregion);
1941 }
1942
1943 return ret;
1944}
1945
1946/**
1947 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1948 * @mtd: mtd info structure
1949 * @iter: category iterator
1950 *
1951 * Count the number of bytes in a given category.
1952 *
1953 * Returns a positive value on success, a negative error code otherwise.
1954 */
1955static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1956 int (*iter)(struct mtd_info *,
1957 int section,
1958 struct mtd_oob_region *oobregion))
1959{
1960 struct mtd_oob_region oobregion;
1961 int section = 0, ret, nbytes = 0;
1962
1963 while (1) {
1964 ret = iter(mtd, section++, &oobregion);
1965 if (ret) {
1966 if (ret == -ERANGE)
1967 ret = nbytes;
1968 break;
1969 }
1970
1971 nbytes += oobregion.length;
1972 }
1973
1974 return ret;
1975}
1976
1977/**
1978 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
1979 * @mtd: mtd info structure
1980 * @eccbuf: destination buffer to store ECC bytes
1981 * @oobbuf: OOB buffer
1982 * @start: first ECC byte to retrieve
1983 * @nbytes: number of ECC bytes to retrieve
1984 *
1985 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
1986 *
1987 * Returns zero on success, a negative error code otherwise.
1988 */
1989int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
1990 const u8 *oobbuf, int start, int nbytes)
1991{
1992 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
1993 mtd_ooblayout_ecc);
1994}
1995EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
1996
1997/**
1998 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
1999 * @mtd: mtd info structure
2000 * @eccbuf: source buffer to get ECC bytes from
2001 * @oobbuf: OOB buffer
2002 * @start: first ECC byte to set
2003 * @nbytes: number of ECC bytes to set
2004 *
2005 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
2006 *
2007 * Returns zero on success, a negative error code otherwise.
2008 */
2009int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
2010 u8 *oobbuf, int start, int nbytes)
2011{
2012 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
2013 mtd_ooblayout_ecc);
2014}
2015EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
2016
2017/**
2018 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
2019 * @mtd: mtd info structure
2020 * @databuf: destination buffer to store ECC bytes
2021 * @oobbuf: OOB buffer
2022 * @start: first ECC byte to retrieve
2023 * @nbytes: number of ECC bytes to retrieve
2024 *
2025 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
2026 *
2027 * Returns zero on success, a negative error code otherwise.
2028 */
2029int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
2030 const u8 *oobbuf, int start, int nbytes)
2031{
2032 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
2033 mtd_ooblayout_free);
2034}
2035EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
2036
2037/**
2038 * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
2039 * @mtd: mtd info structure
2040 * @databuf: source buffer to get data bytes from
2041 * @oobbuf: OOB buffer
2042 * @start: first ECC byte to set
2043 * @nbytes: number of ECC bytes to set
2044 *
2045 * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes.
2046 *
2047 * Returns zero on success, a negative error code otherwise.
2048 */
2049int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
2050 u8 *oobbuf, int start, int nbytes)
2051{
2052 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
2053 mtd_ooblayout_free);
2054}
2055EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
2056
2057/**
2058 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
2059 * @mtd: mtd info structure
2060 *
2061 * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
2062 *
2063 * Returns zero on success, a negative error code otherwise.
2064 */
2065int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
2066{
2067 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
2068}
2069EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
2070
2071/**
2072 * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
2073 * @mtd: mtd info structure
2074 *
2075 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
2076 *
2077 * Returns zero on success, a negative error code otherwise.
2078 */
2079int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
2080{
2081 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
2082}
2083EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
2084
2085/*
2086 * Method to access the protection register area, present in some flash
2087 * devices. The user data is one time programmable but the factory data is read
2088 * only.
2089 */
2090int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
2091 struct otp_info *buf)
2092{
2093 struct mtd_info *master = mtd_get_master(mtd);
2094
2095 if (!master->_get_fact_prot_info)
2096 return -EOPNOTSUPP;
2097 if (!len)
2098 return 0;
2099 return master->_get_fact_prot_info(master, len, retlen, buf);
2100}
2101EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
2102
2103int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2104 size_t *retlen, u_char *buf)
2105{
2106 struct mtd_info *master = mtd_get_master(mtd);
2107
2108 *retlen = 0;
2109 if (!master->_read_fact_prot_reg)
2110 return -EOPNOTSUPP;
2111 if (!len)
2112 return 0;
2113 return master->_read_fact_prot_reg(master, from, len, retlen, buf);
2114}
2115EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
2116
2117int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
2118 struct otp_info *buf)
2119{
2120 struct mtd_info *master = mtd_get_master(mtd);
2121
2122 if (!master->_get_user_prot_info)
2123 return -EOPNOTSUPP;
2124 if (!len)
2125 return 0;
2126 return master->_get_user_prot_info(master, len, retlen, buf);
2127}
2128EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
2129
2130int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2131 size_t *retlen, u_char *buf)
2132{
2133 struct mtd_info *master = mtd_get_master(mtd);
2134
2135 *retlen = 0;
2136 if (!master->_read_user_prot_reg)
2137 return -EOPNOTSUPP;
2138 if (!len)
2139 return 0;
2140 return master->_read_user_prot_reg(master, from, len, retlen, buf);
2141}
2142EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
2143
2144int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
2145 size_t *retlen, const u_char *buf)
2146{
2147 struct mtd_info *master = mtd_get_master(mtd);
2148 int ret;
2149
2150 *retlen = 0;
2151 if (!master->_write_user_prot_reg)
2152 return -EOPNOTSUPP;
2153 if (!len)
2154 return 0;
2155 ret = master->_write_user_prot_reg(master, to, len, retlen, buf);
2156 if (ret)
2157 return ret;
2158
2159 /*
2160 * If no data could be written at all, we are out of memory and
2161 * must return -ENOSPC.
2162 */
2163 return (*retlen) ? 0 : -ENOSPC;
2164}
2165EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
2166
2167int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2168{
2169 struct mtd_info *master = mtd_get_master(mtd);
2170
2171 if (!master->_lock_user_prot_reg)
2172 return -EOPNOTSUPP;
2173 if (!len)
2174 return 0;
2175 return master->_lock_user_prot_reg(master, from, len);
2176}
2177EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
2178
2179int mtd_erase_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2180{
2181 struct mtd_info *master = mtd_get_master(mtd);
2182
2183 if (!master->_erase_user_prot_reg)
2184 return -EOPNOTSUPP;
2185 if (!len)
2186 return 0;
2187 return master->_erase_user_prot_reg(master, from, len);
2188}
2189EXPORT_SYMBOL_GPL(mtd_erase_user_prot_reg);
2190
2191/* Chip-supported device locking */
2192int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2193{
2194 struct mtd_info *master = mtd_get_master(mtd);
2195
2196 if (!master->_lock)
2197 return -EOPNOTSUPP;
2198 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2199 return -EINVAL;
2200 if (!len)
2201 return 0;
2202
2203 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2204 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2205 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2206 }
2207
2208 return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len);
2209}
2210EXPORT_SYMBOL_GPL(mtd_lock);
2211
2212int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2213{
2214 struct mtd_info *master = mtd_get_master(mtd);
2215
2216 if (!master->_unlock)
2217 return -EOPNOTSUPP;
2218 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2219 return -EINVAL;
2220 if (!len)
2221 return 0;
2222
2223 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2224 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2225 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2226 }
2227
2228 return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len);
2229}
2230EXPORT_SYMBOL_GPL(mtd_unlock);
2231
2232int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2233{
2234 struct mtd_info *master = mtd_get_master(mtd);
2235
2236 if (!master->_is_locked)
2237 return -EOPNOTSUPP;
2238 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2239 return -EINVAL;
2240 if (!len)
2241 return 0;
2242
2243 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2244 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2245 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2246 }
2247
2248 return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len);
2249}
2250EXPORT_SYMBOL_GPL(mtd_is_locked);
2251
2252int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
2253{
2254 struct mtd_info *master = mtd_get_master(mtd);
2255
2256 if (ofs < 0 || ofs >= mtd->size)
2257 return -EINVAL;
2258 if (!master->_block_isreserved)
2259 return 0;
2260
2261 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2262 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2263
2264 return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs));
2265}
2266EXPORT_SYMBOL_GPL(mtd_block_isreserved);
2267
2268int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
2269{
2270 struct mtd_info *master = mtd_get_master(mtd);
2271
2272 if (ofs < 0 || ofs >= mtd->size)
2273 return -EINVAL;
2274 if (!master->_block_isbad)
2275 return 0;
2276
2277 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2278 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2279
2280 return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs));
2281}
2282EXPORT_SYMBOL_GPL(mtd_block_isbad);
2283
2284int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
2285{
2286 struct mtd_info *master = mtd_get_master(mtd);
2287 int ret;
2288
2289 if (!master->_block_markbad)
2290 return -EOPNOTSUPP;
2291 if (ofs < 0 || ofs >= mtd->size)
2292 return -EINVAL;
2293 if (!(mtd->flags & MTD_WRITEABLE))
2294 return -EROFS;
2295
2296 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2297 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2298
2299 ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs));
2300 if (ret)
2301 return ret;
2302
2303 while (mtd->parent) {
2304 mtd->ecc_stats.badblocks++;
2305 mtd = mtd->parent;
2306 }
2307
2308 return 0;
2309}
2310EXPORT_SYMBOL_GPL(mtd_block_markbad);
2311
2312/*
2313 * default_mtd_writev - the default writev method
2314 * @mtd: mtd device description object pointer
2315 * @vecs: the vectors to write
2316 * @count: count of vectors in @vecs
2317 * @to: the MTD device offset to write to
2318 * @retlen: on exit contains the count of bytes written to the MTD device.
2319 *
2320 * This function returns zero in case of success and a negative error code in
2321 * case of failure.
2322 */
2323static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2324 unsigned long count, loff_t to, size_t *retlen)
2325{
2326 unsigned long i;
2327 size_t totlen = 0, thislen;
2328 int ret = 0;
2329
2330 for (i = 0; i < count; i++) {
2331 if (!vecs[i].iov_len)
2332 continue;
2333 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
2334 vecs[i].iov_base);
2335 totlen += thislen;
2336 if (ret || thislen != vecs[i].iov_len)
2337 break;
2338 to += vecs[i].iov_len;
2339 }
2340 *retlen = totlen;
2341 return ret;
2342}
2343
2344/*
2345 * mtd_writev - the vector-based MTD write method
2346 * @mtd: mtd device description object pointer
2347 * @vecs: the vectors to write
2348 * @count: count of vectors in @vecs
2349 * @to: the MTD device offset to write to
2350 * @retlen: on exit contains the count of bytes written to the MTD device.
2351 *
2352 * This function returns zero in case of success and a negative error code in
2353 * case of failure.
2354 */
2355int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2356 unsigned long count, loff_t to, size_t *retlen)
2357{
2358 struct mtd_info *master = mtd_get_master(mtd);
2359
2360 *retlen = 0;
2361 if (!(mtd->flags & MTD_WRITEABLE))
2362 return -EROFS;
2363
2364 if (!master->_writev)
2365 return default_mtd_writev(mtd, vecs, count, to, retlen);
2366
2367 return master->_writev(master, vecs, count,
2368 mtd_get_master_ofs(mtd, to), retlen);
2369}
2370EXPORT_SYMBOL_GPL(mtd_writev);
2371
2372/**
2373 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
2374 * @mtd: mtd device description object pointer
2375 * @size: a pointer to the ideal or maximum size of the allocation, points
2376 * to the actual allocation size on success.
2377 *
2378 * This routine attempts to allocate a contiguous kernel buffer up to
2379 * the specified size, backing off the size of the request exponentially
2380 * until the request succeeds or until the allocation size falls below
2381 * the system page size. This attempts to make sure it does not adversely
2382 * impact system performance, so when allocating more than one page, we
2383 * ask the memory allocator to avoid re-trying, swapping, writing back
2384 * or performing I/O.
2385 *
2386 * Note, this function also makes sure that the allocated buffer is aligned to
2387 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
2388 *
2389 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
2390 * to handle smaller (i.e. degraded) buffer allocations under low- or
2391 * fragmented-memory situations where such reduced allocations, from a
2392 * requested ideal, are allowed.
2393 *
2394 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
2395 */
2396void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
2397{
2398 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
2399 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
2400 void *kbuf;
2401
2402 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
2403
2404 while (*size > min_alloc) {
2405 kbuf = kmalloc(*size, flags);
2406 if (kbuf)
2407 return kbuf;
2408
2409 *size >>= 1;
2410 *size = ALIGN(*size, mtd->writesize);
2411 }
2412
2413 /*
2414 * For the last resort allocation allow 'kmalloc()' to do all sorts of
2415 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
2416 */
2417 return kmalloc(*size, GFP_KERNEL);
2418}
2419EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
2420
2421#ifdef CONFIG_PROC_FS
2422
2423/*====================================================================*/
2424/* Support for /proc/mtd */
2425
2426static int mtd_proc_show(struct seq_file *m, void *v)
2427{
2428 struct mtd_info *mtd;
2429
2430 seq_puts(m, "dev: size erasesize name\n");
2431 mutex_lock(&mtd_table_mutex);
2432 mtd_for_each_device(mtd) {
2433 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
2434 mtd->index, (unsigned long long)mtd->size,
2435 mtd->erasesize, mtd->name);
2436 }
2437 mutex_unlock(&mtd_table_mutex);
2438 return 0;
2439}
2440#endif /* CONFIG_PROC_FS */
2441
2442/*====================================================================*/
2443/* Init code */
2444
2445static struct backing_dev_info * __init mtd_bdi_init(const char *name)
2446{
2447 struct backing_dev_info *bdi;
2448 int ret;
2449
2450 bdi = bdi_alloc(NUMA_NO_NODE);
2451 if (!bdi)
2452 return ERR_PTR(-ENOMEM);
2453 bdi->ra_pages = 0;
2454 bdi->io_pages = 0;
2455
2456 /*
2457 * We put '-0' suffix to the name to get the same name format as we
2458 * used to get. Since this is called only once, we get a unique name.
2459 */
2460 ret = bdi_register(bdi, "%.28s-0", name);
2461 if (ret)
2462 bdi_put(bdi);
2463
2464 return ret ? ERR_PTR(ret) : bdi;
2465}
2466
2467static struct proc_dir_entry *proc_mtd;
2468
2469static int __init init_mtd(void)
2470{
2471 int ret;
2472
2473 ret = class_register(&mtd_class);
2474 if (ret)
2475 goto err_reg;
2476
2477 mtd_bdi = mtd_bdi_init("mtd");
2478 if (IS_ERR(mtd_bdi)) {
2479 ret = PTR_ERR(mtd_bdi);
2480 goto err_bdi;
2481 }
2482
2483 proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);
2484
2485 ret = init_mtdchar();
2486 if (ret)
2487 goto out_procfs;
2488
2489 dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
2490 debugfs_create_bool("expert_analysis_mode", 0600, dfs_dir_mtd,
2491 &mtd_expert_analysis_mode);
2492
2493 return 0;
2494
2495out_procfs:
2496 if (proc_mtd)
2497 remove_proc_entry("mtd", NULL);
2498 bdi_unregister(mtd_bdi);
2499 bdi_put(mtd_bdi);
2500err_bdi:
2501 class_unregister(&mtd_class);
2502err_reg:
2503 pr_err("Error registering mtd class or bdi: %d\n", ret);
2504 return ret;
2505}
2506
2507static void __exit cleanup_mtd(void)
2508{
2509 debugfs_remove_recursive(dfs_dir_mtd);
2510 cleanup_mtdchar();
2511 if (proc_mtd)
2512 remove_proc_entry("mtd", NULL);
2513 class_unregister(&mtd_class);
2514 bdi_unregister(mtd_bdi);
2515 bdi_put(mtd_bdi);
2516 idr_destroy(&mtd_idr);
2517}
2518
2519module_init(init_mtd);
2520module_exit(cleanup_mtd);
2521
2522MODULE_LICENSE("GPL");
2523MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
2524MODULE_DESCRIPTION("Core MTD registration and access routines");